Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron
Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April
Schoenborn, Benno P
2010-11-01
The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.
Empirically testing vaterite structural models using neutron diffraction and thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan
Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less
Empirically testing vaterite structural models using neutron diffraction and thermal analysis
Chakoumakos, Bryan C.; Pracheil, Brenda M.; Koenigs, Ryan; ...
2016-11-18
Otoliths, calcium carbonate (CaCO 3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO 3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite a metastable polymorph of CaCO 3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while sturgeon otoliths are primarily composed ofmore » vaterite, they also contain the denser CaCO 3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6 522 model, a = 7.1443(4)Å , c = 25.350(4)Å , V = 1121.5(2)Å 3 provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups.« less
Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa
2016-07-01
Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.
Future directions in high-pressure neutron diffraction
NASA Astrophysics Data System (ADS)
Guthrie, M.
2015-04-01
The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.
Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers
NASA Astrophysics Data System (ADS)
Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.
2005-08-01
The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.
Diffraction in neutron imaging-A review
NASA Astrophysics Data System (ADS)
Woracek, Robin; Santisteban, Javier; Fedrigo, Anna; Strobl, Markus
2018-01-01
Neutron imaging is a highly successful experimental technique ever since adequate neutron sources were available. In general, neutron imaging is performed with a wide wavelength spectrum for best flux conditions in transmission geometry. Neutrons provide outstanding features in the penetration of many structural materials, which often makes them more suited for bulk sample studies than other forms of radiation, often in particular as they are also highly sensitive to some light elements, especially Hydrogen. In contrast to neutron scattering applications, imaging resolves macroscopic structures, nowadays down to, in the best case, below 10 micrometre, directly in real space. However, since more than a decade there is a growing number of techniques and applications in neutron imaging that - supported by powerful neutron sources - are taking advantage of wavelength resolved measurements. In this review we summarize and discuss this outstanding development and how wavelength resolved transmission neutron imaging is successfully exploiting diffraction mechanisms to access crystal structure information in the Angstrom regime, which conventionally is probed in reciprocal space by diffraction techniques. In particular the combination of information gained in real space and on crystallographic length scales makes this neutron imaging technique a valuable tool for a wide range of new applications, while it also qualifies neutron imaging to fully profit from the new generation of powerful pulsed neutron sources.
Interpretation of small-angle diffraction experiments on opal-like photonic crystals
NASA Astrophysics Data System (ADS)
Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.
2011-08-01
Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.
The use of neutron scattering to determine the functional structure of glycoside hydrolase.
Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko
2016-10-01
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences
NASA Astrophysics Data System (ADS)
Zhao, Y.; Los Alamos High Pressure Materials Research Team
2013-05-01
The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary science, particularly for the theoretical/computational modeling/simulations.;
Structure of Aqueous Trehalose Solution by Neutron Diffraction and Structural Modeling.
Olsson, Christoffer; Jansson, Helén; Youngs, Tristan; Swenson, Jan
2016-12-15
The molecular structure of an aqueous solution of the disaccharide trehalose (C 12 H 22 O 11 ) has been studied by neutron diffraction and empirical potential structure refinement modeling. Six different isotope compositions with 33 wt % trehalose (corresponding to 38 water molecules per trehalose molecule) were measured to ensure that water-water, trehalose-water, and trehalose-trehalose correlations were accurately determined. In fact, this is the first neutron diffraction study of an aqueous trehalose solution in which also the nonexchangeable hydrogen atoms in trehalose are deuterated. With this approach, it was possible to determine that (1) there is a substantial hydrogen bonding between trehalose and water (∼11 hydrogen bonds per trehalose molecule), which is in contrast to previous neutron diffraction studies, and (2) there is no tendency of clustering of trehalose, in contrast to what is generally observed by molecular dynamics simulations and experimentally found for other disaccharides. Thus, the results give the structural picture that trehalose prefers to interact with water and participate in a hydrogen-bonded network. This strong network character of the solution might be one of the key reasons for its extraordinary stabilization effect on biological materials.
Neutron Nucleic Acid Crystallography.
Chatake, Toshiyuki
2016-01-01
The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.
Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokshin, Konstantin A.; Zhao Yusheng
2005-06-15
We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld,more » and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K.« less
Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck
2016-10-04
The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkevich, Nikolai A; Johnson, Duane D
Nitinol (NiTi), the most widely used shape-memory alloy, exhibits an austenite phase that has yet to be identified. The usually assumed austenitic structure is cubic B2, which has imaginary phonon modes, hence it is unstable. We suggest a stable austenitic structure that “on average” has B2 symmetry (observed by x-ray and neutron diffraction), but it exhibits finite atomic displacements from the ideal B2 sites. The proposed structure has a phonon spectrum that agrees with that from neutron scattering, has diffraction spectra in agreement with x-ray diffraction, and has an energy relative to the ground state that agrees with calorimetry data.
The structural and magnetic phase transitions in a ``parent'' Fe pnictide compound
NASA Astrophysics Data System (ADS)
Ni, Ni; Allred, Jared; Cao, Huibo; Tian, Wei; Liu, Lian; Cho, Kyuil; Krogstad, Matthew; Ma, Jie; Taddei, Keith; Tanatar, Makariy; Prozorov, Ruslan; Matsuda, Masaaki; Rosenkranz, Stephan; Uemura, Yasutomo; Jiang, Shan
2015-03-01
We will present transport, thermodynamic, synchrotron X-ray, neutron diffraction, μSR, ARPES and polarized optical image measurements on the ``parent'' compound of the 112 high Tc superconducting Fe pnictide family. Structural and magnetic phase transitions are revealed. Detailed magnetic structure was solved by single crystal neutron diffraction. We will discuss the similarity and difference of these transitions comparing to the parent compounds of other Fe pnictide superconductors.
Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A
2005-10-22
Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.
Ting, Valeska P; Henry, Paul F; Schmidtmann, Marc; Wilson, Chick C; Weller, Mark T
2012-05-21
We demonstrate the extent to which modern detector technology, coupled with a high flux constant wavelength neutron source, can be used to obtain high quality diffraction data from short data collections, allowing the refinement of the full structures (including hydrogen positions) of hydrous compounds from in situ neutron powder diffraction measurements. The in situ thermodiffractometry and controlled humidity studies reported here reveal that important information on the reorientations of structural water molecules with changing conditions can be easily extracted, providing insight into the effects of hydrogen bonding on bulk physical properties. Using crystalline BaCl2·2H2O as an example system, we analyse the structural changes in the compound and its dehydration intermediates with changing temperature and humidity levels to demonstrate the quality of the dynamic structural information on the hydrogen atoms and associated hydrogen bonding that can be obtained without resorting to sample deuteration.
Instrument and method for focusing X-rays, gamma rays and neutrons
Smither, Robert K.
1984-01-01
A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P.; Kovalevsky, Andrey Y.
2010-11-01
X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-raymore » crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.« less
NASA Astrophysics Data System (ADS)
Qureshi, N.; Díaz, M. T. Fernández; Chapon, L. C.; Senyshyn, A.; Schweika, W.; Valldor, M.
2018-02-01
We present a study that combines polarized and unpolarized neutrons to derive the magnetic structure of the swedenborgite compound CaBa (Co3Fe ) O7. Integrated intensities from a standard neutron diffraction experiment and polarization matrices from spherical neutron polarimetry have been simultaneously analyzed revealing a complex order, which differs from the usual spin configurations on a kagome lattice. We find that the magnetic structure is well described by a combination of two one-dimensional representations corresponding to the magnetic superspace symmetry P 21' , and it consists of spins rotating around an axis close to the [110] direction. Due to the propagation vector q =(1/3 00 ) , this modulation has cycloidal and helicoidal character rendering this system a potential multiferroic. The resulting spin configuration can be mapped onto the classical √{3 }×√{3 } structure of a kagome lattice, and it indicates an important interplay between the kagome and the triangular layers of the crystal structure.
Structural properties of barium stannate
NASA Astrophysics Data System (ADS)
Phelan, D.; Han, F.; Lopez-Bezanilla, A.; Krogstad, M. J.; Gim, Y.; Rong, Y.; Zhang, Junjie; Parshall, D.; Zheng, H.; Cooper, S. L.; Feygenson, M.; Yang, Wenge; Chen, Yu-Sheng
2018-06-01
BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported by density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.
New in-situ neutron diffraction cell for electrode materials
NASA Astrophysics Data System (ADS)
Biendicho, Jordi Jacas; Roberts, Matthew; Offer, Colin; Noréus, Dag; Widenkvist, Erika; Smith, Ronald I.; Svensson, Gunnar; Edström, Kristina; Norberg, Stefan T.; Eriksson, Sten G.; Hull, Stephen
2014-02-01
A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the β-phase (charged) MH electrode obtained by Rietveld refinement are presented.
Structural molecular biology: Recent results from neutron diffraction
NASA Astrophysics Data System (ADS)
Timmins, Peter A.
1995-02-01
Neutron diffraction is of importance in structural biology at several different levels of resolution. In most cases the unique possibility arising from deuterium labelling or contrast variation is of fundamental importance in providing information complementary to that which can be obtained from X-ray diffraction. At high resolution, neutron crystallography of proteins allows the location of hydrogen atoms in the molecule or of the hydration water, both of which may be central to biological activity. A major difficulty in this field has been the poor signal-to-noise ratio of the data arising not only from relatively low beam intensities and small crystals but, most importantly from the incoherent background due to hydrogen atoms in the sample. Modern methods of molecular biology now offer ways of producing fully deuterated proteins by cloning in bacteria grown on fully deuterated media. At a slightly lower resolution, there are a number of systems which may be ordered in one or two dimensions. This is the case in the purple membrane where neutron diffraction with deuterium labelling has complemented high resolution electron diffraction. Finally there is a class of very large macromolecular systems which can be crystallised and have been studied by X-ray diffraction but in which part of the structure is locally disordered and usually has insufficient contrast to be seen with X-rays. In this case the use of H 2O/D 2O contrast variation allows these components to be located. Examples of this are the nucleic acid in virus structures and detergent bound to membrane proteins.
Magnetic and neutron diffraction study on quaternary oxides MTeMoO6 (M = Mn and Zn)
NASA Astrophysics Data System (ADS)
Doi, Yoshihiro; Suzuki, Ryo; Hinatsu, Yukio; Ohoyama, Kenji
2009-01-01
Crystal structures and magnetic properties of quaternary oxides MTeMoO6 (M = Mn and Zn) were investigated. From the Rietveld analyses for the powder x-ray and neutron diffraction measurements, their detailed structures have been determined. Both compounds have orthorhombic structure with space group P 21212 and a charge configuration of M2+Te4+Mo6+O6. ZnTeMoO6 shows diamagnetic behavior. In this structure, M ions are arranged in a square-planar manner. The temperature dependence of the magnetic susceptibility for MnTeMoO6 shows a broad peak at ~33 K, which is due to a two-dimensional characteristic of the magnetic interaction. In addition, this compound shows an antiferromagnetic transition at 20 K. The magnetic structure was determined by the powder neutron diffraction measurement at 3.3 K. The magnetic moments of Mn2+ ions (4.45 μB) order in a collinear antiferromagnetic arrangement along the b axis.
Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction
NASA Astrophysics Data System (ADS)
Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven
2016-10-01
The crystal structure and oxygen stoichiometry of the proposed double perovskite solid oxide fuel cell (SOFC) anode material PrBaMn2O5+δ were determined under SOFC anode conditions via in-situ neutron diffraction. Measurements were performed in reducing atmospheres between 692 K and 984 K. The structure was fit to a tetragonal (space group P4/mmm) layered double perovskite structure with alternating Pr and Ba A-site cation layers. Under all conditions examined, the oxygen sites in the Ba and Mn layers were fully occupied, while the sites in the Pr layer were close to completely vacant. The results of the neutron diffraction experiments are compared to previous thermogravimetric analysis experiments to verify the accuracy of both experiments. PrBaMn2O5+δ was shown to be stable over a wide range of reducing atmospheres similar to anode operating conditions in solid oxide fuel cells without significant structural changes.
On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study
NASA Astrophysics Data System (ADS)
Gruner, S.; Marczinke, J.; Hennet, L.; Hoyer, W.; Cuello, G. J.
2009-09-01
The atomic structure of the liquid NiSi and NiSi2 alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.
On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study.
Gruner, S; Marczinke, J; Hennet, L; Hoyer, W; Cuello, G J
2009-09-23
The atomic structure of the liquid NiSi and NiSi(2) alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.
Magnetic ground state of the multiferroic hexagonal LuFe O3
NASA Astrophysics Data System (ADS)
Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.
2018-05-01
The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .
Instrument and method for focusing x rays, gamma rays, and neutrons
Smither, R.K.
1982-03-25
A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.
NASA Astrophysics Data System (ADS)
Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.
Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.
Structural Properties of Barium Stannate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, D.; Han, F.; Lopez-Bezanilla, A.
2018-06-01
BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported bymore » density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.« less
Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita
The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.
Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction
Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita; ...
2017-04-28
The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.
Singh, Anar; Schefer, Jurg; Sura, Ravi; ...
2016-03-24
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La 1.95Sr 0.05CuO 4 has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for "forbidden" reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La 1.95Sr 0.05CuO 4 at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in amore » continuous way; however, the structure is stable below similar to 120K which agrees with other observed phenomena. Lastly, our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anar, E-mail: singhanar@gmail.com; Schefer, Jürg; Frontzek, Matthias
2016-03-28
The existing controversy about the symmetry of the crystal structure of the ground state of the critical doped La{sub 1.95}Sr{sub 0.05}CuO{sub 4} has been resolved by analyzing the single crystal neutron diffraction data collected between 5 and 730 K. We observed small but significant intensities for “forbidden” reflections given by extinction rules of the orthorhombic Bmab space group at low temperatures. A careful investigation of neutron diffraction data reveals that the crystal structure of La{sub 1.95}Sr{sub 0.05}CuO{sub 4} at 5 K is monoclinic with B2/m (2/m 1 1) space group. The monoclinic structure emerges from the orthorhombic structure in a continuous way;more » however, the structure is stable below ∼120 K which agrees with other observed phenomena. Our results on symmetry changes are crucial for the interpretation of physical properties also in other high temperature superconductors with similar structures.« less
González, Gabriela B.
2012-01-01
Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah
Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less
Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; ...
2015-01-01
Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm 3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected andmore » processed to 1.1 Å resolution in space group P2 12 12 1. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less
Unraveling protein catalysis through neutron diffraction
NASA Astrophysics Data System (ADS)
Myles, Dean
Neutron scattering and diffraction are exquisitely sensitive to the location, concentration and dynamics of hydrogen atoms in materials and provide a powerful tool for the characterization of structure-function and interfacial relationships in biological systems. Modern neutron scattering facilities offer access to a sophisticated, non-destructive suite of instruments for biophysical characterization that provide spatial and dynamic information spanning from Angstroms to microns and from picoseconds to microseconds, respectively. Applications range from atomic-resolution analysis of individual hydrogen atoms in enzymes, through to multi-scale analysis of hierarchical structures and assemblies in biological complexes, membranes and in living cells. Here we describe how the precise location of protein and water hydrogen atoms using neutron diffraction provides a more complete description of the atomic and electronic structures of proteins, enabling key questions concerning enzyme reaction mechanisms, molecular recognition and binding and protein-water interactions to be addressed. Current work is focused on understanding how molecular structure and dynamics control function in photosynthetic, cell signaling and DNA repair proteins. We will highlight recent studies that provide detailed understanding of the physiochemical mechanisms through which proteins recognize ligands and catalyze reactions, and help to define and understand the key principles involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, F.; Ramakrishnan, V.; Schoenborn, B.P.
1994-12-31
Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modifiedmore » to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.« less
Magnetic behaviour of synthetic Co(2)SiO(4).
Sazonov, Andrew; Meven, Martin; Hutanu, Vladimir; Heger, Gernot; Hansen, Thomas; Gukasov, Arsen
2009-12-01
Synthetic Co(2)SiO(4) crystallizes in the olivine structure (space group Pnma) with two crystallographically non-equivalent Co positions and shows antiferromagnetic ordering below 50 K. We have investigated the temperature variation of the Co(2)SiO(4) magnetic structure by means of non-polarized and polarized neutron diffraction for single crystals. Measurements with non-polarized neutrons were made at 2.5 K (below T(N)), whereas polarized neutron diffraction experiments were carried out at 70 and 150 K (above T(N)) in an external magnetic field of 7 T parallel to the b axis. Additional accurate non-polarized powder diffraction studies were performed in a broad temperature range from 5 to 500 K with small temperature increments. Detailed symmetry analysis of the Co(2)SiO(4) magnetic structure shows that it corresponds to the magnetic (Shubnikov) group Pnma, which allows the antiferromagnetic configuration (G(x), C(y), A(z)) for the 4a site with inversion symmetry 1 (Co1 position) and (0,C(y),0) for the 4c site with mirror symmetry m (Co2 position). The temperature dependence of the Co1 and Co2 magnetic moments obtained from neutron diffraction experiments was fitted in a modified molecular-field model. The polarized neutron study of the magnetization induced by an applied field shows a non-negligible amount of magnetic moment on the oxygen positions, indicating a delocalization of the magnetic moment from Co towards neighbouring O owing to superexchange coupling. The relative strength of the exchange interactions is discussed based on the non-polarized and polarized neutron data.
NASA Astrophysics Data System (ADS)
Maruyama, Shingo; Anbusathaiah, Varatharajan; Fennell, Amy; Enderle, Mechthild; Takeuchi, Ichiro; Ratcliff, William D.
2014-11-01
We report on the evolution of the magnetic structure of BiFeO3 thin films grown on SrTiO3 substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.
Pauling, L
1987-06-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).
Pauling, Linus
1987-01-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841
Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.
2003-01-01
Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.
NASA Astrophysics Data System (ADS)
Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.
2014-07-01
Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.
Pauling, Linus
1988-01-01
A unified structure theory of icosahedral quasicrystals, combining the twinned-cubic-crystal theory and the Penrose-tiling-six-dimensional-projection theory, is described. Values of the primitive-cubic lattice constant for several quasicrystals are evaluated from x-ray and neutron diffraction data. The fact that the low-angle diffraction maxima can be indexed with cubic unit cells provides additional support for the twinned-cubic-crystal theory of icosahedral quasicrystals. PMID:16593990
The Crystal Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction
DOE R&D Accomplishments Database
Rundle, R.E.; Shull, C.G.; Wollan, E.O.
1951-04-20
Thorium forms a tetragonal lower hydride of composition ThH{sub 2}. The hydrides ThH{sub 2}, ThD{sub 2}, and ZrD{sub 2} have been studied by neutron diffraction in order that hydrogen positions could be determined. The hydrides are isomorphous, and have a deformed fluorite structure. Metal-hydrogen distances in thorium hydride are unusually large, as in UH{sub 3}. Thorium and zirconium scattering amplitudes and a revised scattering amplitude for deuterium are reported.
Characterization of a neutron imaging setup at the INES facility
NASA Astrophysics Data System (ADS)
Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.
2013-10-01
The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budayova-Spano, Monika, E-mail: spano@embl-grenoble.fr; Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble; Bonneté, Françoise
2006-03-01
Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grownmore » in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.« less
Neutron diffraction study of the in situ oxidation of UO(2).
Desgranges, Lionel; Baldinozzi, Gianguido; Rousseau, Gurvan; Nièpce, Jean-Claude; Calvarin, Gilbert
2009-08-17
This paper discusses uranium oxide crystal structure modifications that are observed during the low-temperature oxidation which transforms UO(2) into U(3)O(8). The symmetries and the structural parameters of UO(2), beta-U(4)O(9), beta-U(3)O(7), and U(3)O(8) were determined by refining neutron diffraction patterns on pure single-phase samples. Neutron diffraction patterns were also collected during the in situ oxidation of powder samples at 483 K. The lattice parameters and relative ratios of the four pure phases were measured during the progression of the isothermal oxidation. The transformation of UO(2) into U(3)O(8) involves a complex modification of the oxygen sublattice and the onset of complex superstructures for U(4)O(9) and U(3)O(7), associated with regular stacks of complex defects known as cuboctahedra, which consist of 13 oxygen atoms. The kinetics of the oxidation process are discussed on the basis of the results of the structural analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bau, R.; Brewer, I.; Chiang, M.Y.
Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.
High-pressure studies on Ba-doped cobalt perovskites by neutron diffraction
NASA Astrophysics Data System (ADS)
Cao, Huibo; Garlea, Vasile; Wang, Fangwei; Dos Santos, Antonio; Cheng, Zhaohua
2012-02-01
Cobalt perovskite possess rich structural, magnetic and electrical properties depending on the subtle balance of the interactions among the spin, charge, and orbital degrees of freedom. Divalent hole-doped cobalt perovskites LaA^2+CoO3 exhibit structural phase transitions, metal-insulator transitions, and multi-magnetic phase transitions. High-pressure measurement is believed to mimic the size effects of the doped ions. We performed neutron diffraction experiments on selected Ba-doped LaCoO3 under pressures up to 6.3 GPa at SNAP at Spallation Neutron Source of ORNL. This work focuses on the high-pressure effects of the selected Ba-doped samples and the change of the phase diagram with pressure.
Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F
2010-01-14
The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.
Instrument and method for focusing x rays, gamma rays, and neutrons
Smither, R.K.
1981-04-20
A crystal diffraction instrument is described which has an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques.
The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.
Temleitner, László; Pusztai, László; Schweika, Werner
2007-08-22
The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.
Feng, Hao; Ashkar, Rana; Steinke, Nina; ...
2018-02-01
A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less
Neutron diffraction study of Tb0.5Ho0.5Mn2Si2
NASA Astrophysics Data System (ADS)
Pandey, Swati; Siruguri, Vasudeva; Rawat, Rajeev
2018-02-01
The magnetic properties of tetragonal polycrystalline intermetallic compound Tb0.5Ho0.5Mn2Si2 have been investigated using temperature dependent dc magnetic susceptibility and neutron powder diffraction studies. Results of high temperature susceptibility data shows anomaly at TN = 510 K while low temperature susceptibility data indicate two successive anomalies at T1 = 11 K and T2 = 25 K. Metamagnetic transition is observed in magnetization versus field curves. Our neutron diffraction results indicate three different magnetic regions with different magnetic structures. Neutron diffraction data shows that below T2, the intensities of some of the nuclear peaks get enhanced indicating ferromagnetic ordering, while additional magnetic reflections are observed below T1, indicating antiferromagnetic order. Ordering of rare earth sublattice at low temperature rearranges the ordering of Mn sublattice and results in reorientation of Mn spins at T1. At 2 K Tb/Ho moments are aligned along c-axis while Mn moments are aligned perpendicular to c-axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, Keiji, E-mail: itoh@okayama-u.ac.jp; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494
Pulsed neutron diffraction and synchrotron X-ray diffraction measurements were performed on Se{sub 100-x}Te{sub x} bulk glasses with x=10, 20, 30 and 40. The coordination numbers obtained from the diffraction results demonstrate that Se and Te atoms are twofold coordinated and the glass structure is formed by the chain network. The three-dimensional structure model for Se{sub 60}Te{sub 40} glass obtained by using reverse Monte Carlo modelling shows that the alternating arrangements of Se and Te atoms compose the major part of the chain clusters but several other fragments such as Se{sub n} chains and Te-Te dimers are also present in largemore » numbers. The chain clusters have geometrically disordered forms and the interchain atomic order is different from those in the crystal structures of trigonal Se and trigonal Te. - Graphical abstract: Coordination environment in Se{sub 60}Te{sub 40} glass.« less
Crystal structure of human tooth enamel studied by neutron diffraction
NASA Astrophysics Data System (ADS)
Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre
2015-02-01
Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.
2011-12-15
The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.
Neutron diffraction investigation of γ manganese hydride
NASA Astrophysics Data System (ADS)
Fedotov, V. K.; Antonov, V. E.; Kolesnikov, A. I.; Beskrovnyi, A. I.; Grosse, G.; Wagner, F. E.
1998-08-01
A profile analysis of the neutron diffraction spectrum of the fcc high pressure hydride λ-MnH 0.41 measured under ambient conditions showed that hydrogen is randomly distributed over the octahedral interstices of the fcc metal lattice and that the hydride is an antiferromagnet with the same collinear spin structure as pure λ-Mn, but with a smaller magnetic moment of about 1.9 Bohr magnetons per Mn atom.
STRUCTURE OF POTASSIUM HYDROGEN MALEATE BY NEUTRON DIFFRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.W.; Levy, H.A.
1958-10-01
The preliminary results of a neutron diffraction study are presented which confirm the existence in potassium hydrogen maleate of a short, strong, hydrogen bond and show the ion to be at least statistically symmetrical. The hydrogen is strongly linked to both neighboring oxygen atoms, and there is an existing mode of correlated motion of considerable amplitude in which the oxygen atoms are displaced but hydrogen is not. (J.R.D.)
Mühlbauer, Martin J.
2018-01-01
The need for rapid data collection and studies of small sample volumes in the range of cubic millimetres are the main driving forces for the concept of a new high-throughput monochromatic diffraction instrument at the Heinz Maier-Leibnitz Zentrum (MLZ), Germany. A large region of reciprocal space will be accessed by a detector with sufficient dynamic range and microsecond time resolution, while allowing for a variety of complementary sample environments. The medium-resolution neutron powder diffraction option for ‘energy research with neutrons’ (ErwiN) at the high-flux FRM II neutron source at the MLZ is foreseen to meet future demand. ErwiN will address studies of energy-related systems and materials with respect to their structure and uniformity by means of bulk and spatially resolved neutron powder diffraction. A set of experimental options will be implemented, enabling time-resolved studies, rapid parametric measurements as a function of external parameters and studies of small samples using an adapted radial collimator. The proposed powder diffraction option ErwiN will bridge the gap in functionality between the high-resolution powder diffractometer SPODI and the time-of-flight diffractometers POWTEX and SAPHiR at the MLZ. PMID:29896055
Magnetic structure of Ho0.5Y0.5Mn6Sn6 compound studied by powder neutron diffraction
NASA Astrophysics Data System (ADS)
Li, X.-Y.; Peng, L.-C.; He, L.-H.; Zhang, S.-Y.; Yao, J.-L.; Zhang, Y.; Wang, F.-W.
2018-05-01
The crystallographic and magnetic structures of the HfFe6Ge6-type compound Ho0.5Y0.5Mn6Sn6 have been studied by powder neutron diffraction and in-situ Lorentz transmission electron microscopy. Besides the nonlinear thermal expansion of lattice parameters, an incommensurate conical spiral magnetic structure was determined in the temperature interval of 2-340 K. A spin reorientation transition has been observed from 50 to 300 K, where the alignment of the c-axis component of magnetic moments of the Ho sublattice and the Mn sublattice transfers from ferrimagnetic to ferromagnetic.
Crystal Structure of Hydrazinium Iodide by Neutron Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.
The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.
Crystal Structure of Hydrazinium Iodide by Neutron Diffraction
Campbell, Eric V.; Wang, Xiaoping; Miller, Joel S.
2017-10-31
The structure of hydrazinium iodide, [H 5N 2] +·I -, at 100 K has monoclinic (P2 1/n) symmetry from single crystal neutron diffraction with a = 7.4599(7) Å, b = 5.3185(6) Å, c = 10.1628(11) Å, β = 103.150(10)°, V = 392.64(7) Å 3, Z = 4. The refinement converged to R = 0.0575, wR 2 = 0.1602, S = 1.022. Data for the crystal structure was collected on the SNS TOPAZ single-crystal time-of-flight Laue diffractometer. The compound has a one-dimensional structure which displays N–H···N hydrogen bonding. Finally, accurate intra- and intermolecular N–H distances have been determined.
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; ...
2017-10-13
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb2O6
NASA Astrophysics Data System (ADS)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.; Thompson, C. M.; Flacau, R.; Ding, C.; Guo, S.; Gong, Z.; Aczel, A. A.; Cao, H. B.; Williams, T. J.; Dabkowska, H. A.; Ning, F.; Greedan, J. E.; Luke, G. M.
2017-10-01
Neutron diffraction and muon spin relaxation (μ SR ) studies are presented for the newly characterized polymorph of NiNb2O6 (β -NiNb2O6) with space group P4 2/n and μ SR data only for the previously known columbite structure polymorph with space group P b c n . The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector k ⃗=(1/2 ,1/2 ,1/2 ) . Single-crystal data confirmed the same k ⃗ vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running along the a or b axis in adjacent Ni2 + layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb2O6 and NiTa2O6 . μ SR data finds a transition temperature of TN˜15 K for this system, while the columbite polymorph exhibits a lower TN=5.7 (3 ) K. Our μ SR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25 (3 ) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28 (3 ) for β -NiNb2O6 , in agreement with the μ SR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. In other words, although both systems appear to be well described by S =1 spin chains, the interchain interactions in the β polymorph are likely much larger.
Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munsie, T. J. S.; Wilson, M. N.; Millington, A.
Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less
Magnetic and Structural Characterization of Fe-Ga Using Kerr Microscopy and Neutron Scattering
2010-01-01
117 4.6 Schematic of triple axes single crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right...Therefore, USANS data is one-dimensional. 4.3.3 Single Crystal Neutron Diffraction The single crystal neutron diffractometer, TriCS at Paul Scherrer...crystal neutron diffractometer (left). TriCS intrument at Paul Scherrer Institut, Switzerland (right) [106] 4.4 Unpolarized SANS In this section, SANS
Neutron Scattering Studies on Large Length Scale Sample Structures
NASA Astrophysics Data System (ADS)
Feng, Hao
Neutron scattering can be used to study structures of matter. Depending on the interested sample properties, different scattering techniques can be chosen. Neutron reflectivity is more often used to detect in-depth profile of layered structures and the interfacial roughness while transmission is more sensitive to sample bulk properties. Neutron Reflectometry (NR) technique, one technique in neutron reflectivity, is first discussed in this thesis. Both specular reflectivity and the first order Bragg intensity were measured in the NR experiment with a diffraction grating in order to study the in-depth and the lateral structure of a sample (polymer) deposited on the grating. However, the first order Bragg intensity solely is sometimes inadequate to determine the lateral structure and high order Bragg intensities are difficult to measure using traditional neutron scattering techniques due to the low brightness of the current neutron sources. Spin Echo Small Angle Neutron Scattering (SESANS) technique overcomes this resolution problem by measuring the Fourier transforms of all the Bragg intensities, resulting in measuring the real-space density correlations of samples and allowing the accessible length scale from few-tens of nanometers to several microns. SESANS can be implemented by using two pairs of magnetic Wollaston prims (WP) and the accessible length scale is proportional to the magnetic field intensity in WPs. To increase the magnetic field and thus increase the accessible length scale, an apparatus named Superconducting Wollaston Prisms (SWP) which has a series of strong, well-defined shaped magnetic fields created by superconducting coils was developed in Indiana University in 2016. Since then, various kinds of optimization have been implemented, which are addressed in this thesis. Finally, applications of SWPs in other neutron scattering techniques like Neutron Larmor Diffraction (NLD) are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Gabriel; Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au; Johannessen, Bernt
The structures of some AUO{sub 4} (A=Ca, Sr, or Ba) oxides have been determined using a combination of neutron and synchrotron X-ray diffraction, supported by X-ray absorption spectroscopic measurements at the U L{sub 3}-edge. The smaller Ca cation favours a rhombohedral AUO{sub 4} structure with 8-coordinate UO{sub 8} moieties whilst an orthorhombic structure based on UO{sub 6} groups is found for BaUO{sub 4}. Both the rhombohedral and orthorhombic structures can be stabilised for SrUO{sub 4}. The structural studies suggest that the bonding requirements of the A site cation play a significant role in determining which structure is favoured. In themore » rhombohedral structure, Bond Valence Sums demonstrate the A site is invariably overbonded, which, in the case of rhombohedral α-SrUO{sub 4}, is compensated for by the formation of vacancies in the oxygen sub-lattice. The uranium cation, with its flexible oxidation state, is able to accommodate this by inducing vacancies along its equatorial coordination site as demonstrated by neutron powder diffraction. - Graphical abstract: Diffraction studies of AUO{sub 4} (A = Ca, Sr, or Ba) oxides reveal the importance of the bonding requirements of the A site cation in determining whether the structure is rhombohedral or orthorhombic. - Highlights: • Structures of AUO{sub 4} ( A = Ca Sr, Ba) refined against X-ray and Neutron diffraction. • The alkali cations size has a dramatic effect on the crystal structure. • Smaller cations favouring a rhombohedral structure. • Oxygen vacancies to stabilise the rhombohedral structure in SrUO{sub 4}.« less
Crystal structure studies with the Paris-Edinburgh cell: Neutron scattering aspects
NASA Astrophysics Data System (ADS)
Loveday, J. S.; Wilson, R. M.; Nelmes, R. J.; Besson, J. M.; Klotz, S.; Hamel, G.; Hull, S.
1994-07-01
The count rates achieved in neutron powder diffraction experiments create difficulties for high-pressure experiments because large sample volumes (˜100 mm3) must be used. Until recently it has been difficult to build suitable pressure cells with such large volumes and hence the maximum pressure for neutron diffraction has remained at the relatively low value of 3 GPa. We have now developed a pressure cell (the Paris-Edinburgh cell) which is capable of exceeding 10 GPa with a sample volume of ˜100 mm3 for use at the U.K. spallation source ISIS. Considerable effort has been devoted to the opimization of the cell, shielding, and detector geometry to enable the best possible data to be recorded. Finite-element calculations to correct for the systematic errors introduced by the attenuation of the pressure-cell materials have been developed and tested. As a result of this work we are now able to obtain accurate structural data to ˜12 GPa and recent studies of phase IV of ND3, the behaviour of the O-D bondlength in D2O ice VIII, and the structural pressure dependence of B4C illustrate the importance of the extension of neutron-diffraction studies to such pressures.
Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A
2010-05-01
The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.
Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T.; J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195
2014-11-15
We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use themore » aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.« less
Fisher, S. Zoë; Aggarwal, Mayank; Kovalevsky, Andrey Y.; Silverman, David N.; McKenna, Robert
2012-01-01
Carbonic anhydrases (CAs) catalyze the hydration of CO2 forming HCO3− and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM, or hydrogen (H) atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target. PMID:22928733
Neutron diffraction studies of some rare earth-transition metal deuterides
NASA Astrophysics Data System (ADS)
James, W. J.
1984-04-01
Neutron diffraction studies of the ternary alloy system Y6(Fel-xMnx)23 reveal that the unusual magnetic behavior upon substitution of Mn or Fe into the end members, is a consequence of atomic ordering wherein there is strong site preference of Mn for the f sub 2 sites and of Fe for the f sub 1 sites. In the Mn-rich compositions, Fe is found to have no spontaneous moments. Therefore, the long range magnetic ordering arises solely from Mn-Mn interactions. Upon substitution of Mn into the Fe-rich ternaries, the Fe moments are considerably reduced. Neutron diffraction studies of Y6Mn23D23 show that a transition occurs below 180K from a fcc structure to a primitive tetragonal structure, space group P4/mmm with the onset of antiferromagnetic ordering. The Mn moments are directed along the c-axis. The transition probably results from atomic ordering of the D atoms at low temperature which induces c axis magnetic ordering. The question of the appropriate space group of LaNi4.5Al0.5D4.5, P6/mmm or P3/m has been resolved by a careful refinement and analysis of neutron diffraction data. The preferred space group is P6/mmm. Neutron powder diffraction and thermal magnetization measurements on small single crystals of ErNi3, ErCo3, and ErFe3 (space group R3m) show that the magnetocrystalline properties are a consequence of competing local site anisotropies between the two non-equivalent crystallographic sites of Er and two of the three non-equivalent sites of the 3d-transition metal.
NASA Astrophysics Data System (ADS)
Klein, S.; Holland-Moritz, D.; Herlach, D. M.; Mauro, N. A.; Kelton, K. F.
2013-05-01
The short-range order in undercooled melts of the intermetallic Zr2Pd glass-forming alloy is investigated by combining electrostatic levitation (ESL) with high-energy X-ray diffraction and neutron diffraction. Experimentally determined structure factors are measured and analyzed with respect to various structures of short-range order. The comparative X-ray and neutron scattering experiments allow for investigations of topological and chemical short-range order. Based on these studies, no preference of a specific short-range order is found for the liquid Zr2Pd glass-forming alloy, even in the metastable state of the deeply undercooled melt. This is in agreement with an earlier report from X-ray diffraction and molecular-dynamics studies of a Zr75.5Pd24.5 liquid, which showed a broad distribution of cluster types. The results for the Zr2Pd liquid are discussed with respect to the glass-forming ability of this melt.
NASA Astrophysics Data System (ADS)
Paul, Neelima; Wandt, Johannes; Seidlmayer, Stefan; Schebesta, Sebastian; Mühlbauer, Martin J.; Dolotko, Oleksandr; Gasteiger, Hubert A.; Gilles, Ralph
2017-03-01
The aging behavior of commercially produced 18650-type Li-ion cells consisting of a lithium iron phosphate (LFP) based cathode and a graphite anode based on either mesocarbon microbeads (MCMB) or needle coke (NC) is studied by in situ neutron diffraction and standard electrochemical techniques. While the MCMB cells showed an excellent cycle life with only 8% relative capacity loss (i.e., referenced to the capacity after formation) after 4750 cycles and showed no capacity loss on storage for two years, the needle coke cells suffered a 23% relative capacity loss after cycling and a 11% loss after storage. Based on a combination of neutron diffraction and electrochemical characterization, it is shown that the entire capacity loss for both cell types is dominated by the loss of active lithium; no other aging mechanisms like structural degradation of anode or cathode active materials or deactivation of active material could be found, highlighting the high structural stability of the active material and the excellent quality of the investigated cells.
Wang, Xun-Li; An, Ke; Cai, Lu; Feng, Zhili; Nagler, Stephen E.; Daniel, Claus; Rhodes, Kevin J.; Stoica, Alexandru D.; Skorpenske, Harley D.; Liang, Chengdu; Zhang, Wei; Kim, Joon; Qi, Yue; Harris, Stephen J.
2012-01-01
We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e., charge to full capacity in 1 hour). However, the lithiation and dilithiation pathways are distinctively different and, unlike in slowing charging experiments with which the Li-Graphite phase diagram was established, no LiC24 phase was found during charge at 1C rate. Approximately 75 mol. % of the graphite converts to LiC6 at full charge, and a lattice dilation as large as 4% was observed during a charge-discharge cycle. Our work demonstrates the potential of in-situ, time and spatially resolved neutron diffraction study of the dynamic chemical and structural changes in “real-world” batteries under realistic cycling conditions, which should provide microscopic insights on degradation and the important role of diffusion kinetics in energy storage materials. PMID:23087812
In situ synthesis and characterization of uranium carbide using high temperature neutron diffraction
NASA Astrophysics Data System (ADS)
Reiche, H. Matthias; Vogel, Sven C.; Tang, Ming
2016-04-01
We investigated the formation of UCx from UO2+x and graphite in situ using neutron diffraction at high temperatures with particular focus on resolving the conflicting reports on the crystal structure of non-quenchable cubic UC2. The agents were UO2 nanopowder, which closely imitates nano grains observed in spent reactor fuels, and graphite powder. In situ neutron diffraction revealed the onset of the UO2 + 2C → UC + CO2 reaction at 1440 °C, with its completion at 1500 °C. Upon further heating, carbon diffuses into the uranium carbide forming C2 groups at the octahedral sites. This resulting high temperature cubic UC2 phase is similar to the NaCl-type structure as proposed by Bowman et al. Our novel experimental data provide insights into the mechanism and kinetics of formation of UC as well as characteristics of the high temperature cubic UC2 phase which agree with proposed rotational rehybridization found from simulations by Wen et al.
Neutron diffraction, specific heat and magnetization studies on Nd{sub 2}CuTiO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rayaprol, S., E-mail: sudhindra@csr.res.in; Kaushik, S. D.; Kumar, Naresh
2016-05-23
Structural and physical properties of a double-perovskite compound, Nd{sub 2}CuTiO{sub 6} have been studied using neutron diffraction, magnetization and specific heat measurements. The compound crystallizes in an orthorhombic structure in space group Pnma. The interesting observation we make here is that, though no long range magnetic order is observed between 2 and 300 K, the low temperature specific heat and magnetic susceptibility behavior exhibits non-Fermi liquid like behavior in this insulating compound. The magnetization and specific heat data are presented and discussed in light of these observations.
NASA Astrophysics Data System (ADS)
Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.
2018-05-01
Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.
Neutron and X-ray powder diffraction study of skutterudite thermoelectrics
Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...
2016-02-17
N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Wu, Xiaodong; Prior, M.
2005-12-01
The ferroelectric phase transition in deuterated benzil, C 14H 10O 2, has been studied using capacitance measurements and neutron powder diffraction. Hydrogenous benzil shows a phase transition at 83.5 K from a high temperature P3 121 phase to a cell-doubled P2 1 phase. The phase transition in d-benzil occurs at 88.1 K, a small isotope effect. Neutron powder diffraction was consistent with a low temperature phase of space group P2 1. Upon deuteration the transition remained first-order and the dynamics of the phenyl ring dominated the behaviour. The isotope effect can be attributed to the difference in mass and moment of inertia between C 6H 5 and C 6D 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, Ravi
In this research, phase transitions in the bulk electrodes for Li-ion batteries were investigated using neutron diffraction (ND) as well as neutron imaging techniques. The objectives of this research is to design of a novel in situ electrochemical cell to obtain Rietveld refinable neutron diffraction experiments using small volume electrodes of various laboratory/research-scale electrodes intended for Li-ion batteries. This cell is also to be used to investigate the complexity of phase transitions in Li(Mg) alloy electrodes, either by diffraction or by neutron imaging, which occur under electrochemical lithiation and delithiation, and to determine aspects of phase transition that enable/limit energymore » storage capacity. Additional objective is to investigate the phase transitions in electrodes made of etched micro-columns of silicon and investigate the effect of particle/column size on phase transitions and nonequilibrium structures. An in situ electrochemical cell was designed successfully and was used to study the phase transitions under in-situ neutron diffraction in both the electrodes (anode/cathode) simultaneously in graphite/LiCoO 2 and in graphite/LiMn 2O 4 cells each with two cells. The diffraction patterns fully validated the working of the in situ cell. Additional experimental were performed using the Si micro-columnar electrodes. The results revealed new lithiation phenomena, as evidenced by mosaicity formation in silicon electrode. These experiments were performed in Vulcan diffractometer at SNS, Oak Ridge National Laboratory. In parallel, the spatial distribution of Li during lithiation and delithiation processes in Li-battery electrodes were investigated. For this purpose, neutron tomographic imaging technique has been used for 3D mapping of Li distribution in bulk Li(Mg) alloy electrodes. It was possible to observe the phase boundary of Li(Mg) alloy indicating phase transition from Li-rich BCC β-phase to Li-lean α-phase. These experiments have been performed at CG-1D Neutron Imaging Prototype Station at SNS.« less
Electron Diffraction Using Transmission Electron Microscopy
Bendersky, Leonid A.; Gayle, Frank W.
2001-01-01
Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy. PMID:27500060
Neutron protein crystallography: A complementary tool for locating hydrogens in proteins.
O'Dell, William B; Bodenheimer, Annette M; Meilleur, Flora
2016-07-15
Neutron protein crystallography is a powerful tool for investigating protein chemistry because it directly locates hydrogen atom positions in a protein structure. The visibility of hydrogen and deuterium atoms arises from the strong interaction of neutrons with the nuclei of these isotopes. Positions can be unambiguously assigned from diffraction at resolutions typical of protein crystals. Neutrons have the additional benefit to structural biology of not inducing radiation damage in protein crystals. The same crystal could be measured multiple times for parametric studies. Here, we review the basic principles of neutron protein crystallography. The information that can be gained from a neutron structure is presented in balance with practical considerations. Methods to produce isotopically-substituted proteins and to grow large crystals are provided in the context of neutron structures reported in the literature. Available instruments for data collection and software for data processing and structure refinement are described along with technique-specific strategies including joint X-ray/neutron structure refinement. Examples are given to illustrate, ultimately, the unique scientific value of neutron protein crystal structures. Copyright © 2015 Elsevier Inc. All rights reserved.
Neutron diffraction studies on cobalt substituted BiFeO3
NASA Astrophysics Data System (ADS)
Ray, J.; Biswal, A. K.; Acharya, S.; Babu, P. D.; Siruguri, V.; Vishwakarma, P. N.
2013-02-01
A dilute concentration of single phase Cobalt substituted Bismuth ferrite, BiFe1-XCoXO3; (x=0, 0.02) is prepared by sol-gel auto combustion method. Room temperature neutron diffraction patterns show no change in the crystal and magnetic structure upon cobalt doping. The calculation of magnetic moments shows 3.848 μB for Fe+ and 2.85 μB for Co3+. The cobalt is found to be in intermediate spin state.
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, D.; Rodriguez, E. E.; Gao, J.
2014-11-17
We revisit the phase diagram of the relaxor ferroelectric PMN- xPT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- xPT were prepared with nominal compositions of x = 0:10, 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than thosemore » in the as-grown samples. Further, the diffraction patterns for x = 0:10, 0.20, and 0.30 are best refined using the monoclinic Cm space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- xPT vanishes on the Ti-rich side of the morphotropic phase boundary.« less
Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo; ...
2015-11-05
In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less
NASA Astrophysics Data System (ADS)
Kurbakov, A. I.; Korshunov, A. N.; Podchezertsev, S. Yu.; Malyshev, A. L.; Evstigneeva, M. A.; Damay, F.; Park, J.; Koo, C.; Klingeler, R.; Zvereva, E. A.; Nalbandyan, V. B.
2017-07-01
The magnetic structure of L i3N i2Sb O6 has been determined by low-temperature neutron diffraction, and the crystal structure has been refined by a combination of synchrotron and neutron powder diffraction. The monoclinic (C 2 /m ) symmetry, assigned previously to this pseudohexagonal layered structure, has been unambiguously proven by peak splitting in the synchrotron diffraction pattern. The structure is based on essentially hexagonal honeycomb-ordered N i2Sb O6 layers alternating with L i3 layers, all cations and anions being in an octahedral environment. The compound orders antiferromagnetically below TN=15 K , with the magnetic supercell being a 2 a ×2 b multiple of the crystal cell. The magnetic structure within the honeycomb layer consists of zigzag ferromagnetic spin chains coupled antiferromagnetically. The ordered magnetic moment amounts to 1.62 (2 ) μB/Ni , which is slightly lower than the full theoretical value. Upon cooling below TN, the spins tilt from the c axis, with a maximum tilting angle of 15 .6∘ at T =1.5 K . Our data imply non-negligible ferromagnetic interactions between the honeycomb layers. The observed antiferromagnetic resonance modes are in agreement with the two-sublattice model derived from the neutron data. Orthorhombic anisotropy shows up in zero-field splitting of Δ =198 ±4 and 218 ±4 GHz . Above TN, the electron spin resonance data imply short-range antiferromagnetic order up to about 80 K.
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; ...
2016-11-11
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
NASA Astrophysics Data System (ADS)
Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G.; Porcinai, S.; Giusti, A. M.; Materna, T.; Paradowska, A. M.
2011-03-01
Quantitative neutron studies of cultural heritage objects provide access to microscopic, mesoscopic, and macroscopic structures in a nondestructive manner. In this paper we present a neutron diffraction investigation of a Ghiberti Renaissance gilded bronze relief devoted to the measurement of cavities and inhomogeneities in the bulk of the sample, along with the bulk phase composition and residual strain distribution. The quantitative measurements allowed the determination of the re-melting parts extension, as well as improving current knowledge about the manufacturing process. The study provides significant and unique information to conservators and restorators about the history of the relief.
Status of the Neutron Imaging and Diffraction Instrument IMAT
NASA Astrophysics Data System (ADS)
Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.
A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.
Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN
NASA Astrophysics Data System (ADS)
Mao, Huican; Wang, Cao; Maynard-Casely, Helen E.; Huang, Qingzhen; Wang, Zhicheng; Cao, Guanghan; Li, Shiliang; Luo, Huiqian
2017-03-01
We report neutron diffraction and transport results on the newly discovered superconducting nitride ThFeAsN with T_c= 30 \\text{K} . No magnetic transition, but a weak structural distortion around 160 K, is observed by cooling from 300 K to 6 K. Analysis on the resistivity, Hall transport and crystal structure suggests that this material behaves as an electron optimally doped pnictide superconductor due to extra electrons from nitrogen deficiency or oxygen occupancy at the nitrogen site, which, together with the low arsenic height, may enhance the electron itinerancy and reduce the electron correlations, thus suppressing the static magnetic order.
Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.
Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D
2012-12-01
Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.
Multidataset Refinement Resonant Diffraction, and Magnetic Structures
Attfield, J. Paul
2004-01-01
The scope of Rietveld and other powder diffraction refinements continues to expand, driven by improvements in instrumentation, methodology and software. This will be illustrated by examples from our research in recent years. Multidataset refinement is now commonplace; the datasets may be from different detectors, e.g., in a time-of-flight experiment, or from separate experiments, such as at several x-ray energies giving resonant information. The complementary use of x rays and neutrons is exemplified by a recent combined refinement of the monoclinic superstructure of magnetite, Fe3O4, below the 122 K Verwey transition, which reveals evidence for Fe2+/Fe3+ charge ordering. Powder neutron diffraction data continue to be used for the solution and Rietveld refinement of magnetic structures. Time-of-flight instruments on cold neutron sources can produce data that have a high intensity and good resolution at high d-spacings. Such profiles have been used to study incommensurate magnetic structures such as FeAsO4 and β–CrPO4. A multiphase, multidataset refinement of the phase-separated perovskite (Pr0.35Y0.07Th0.04Ca0.04Sr0.5)MnO3 has been used to fit three components with different crystal and magnetic structures at low temperatures. PMID:27366599
Aronica, Christophe; Chumakov, Yurii; Jeanneau, Erwann; Luneau, Dominique; Neugebauer, Petr; Barra, Anne-Laure; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Tercero, Javier; Ruiz, Eliseo
2008-01-01
The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridier, Karl; Gillon, Béatrice; André, Gilles
2015-09-21
Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A newmore » length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.« less
Idealized powder diffraction patterns for cellulose polymorphs
USDA-ARS?s Scientific Manuscript database
Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...
Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T
2011-04-13
Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fenn, Timothy D.; Schnieders, Michael J.; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S.; Brunger, Axel T.
2011-01-01
Summary Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. PMID:21481775
Non-invasive characterisation of SIX Japanese hand-guards (tsuba)
NASA Astrophysics Data System (ADS)
Barzagli, Elisa; Grazzi, Francesco; Civita, Francesco; Scherillo, Antonella; Pietropaolo, Antonino; Festa, Giulia; Zoppi, Marco
2013-12-01
In this work we present a systematic study of Japanese sword hand-guards ( tsuba) carried out by means of non-invasive techniques using neutrons. Several tsuba from different periods, belonging to the Japanese Section of the Stibbert Museum, were analysed using an innovative approach to characterise the bulk of the samples, coupling two neutron techniques, namely Time of Flight Neutron Diffraction (ToF-ND) and Nuclear Resonance Capture Analysis (NRCA). The measurements were carried out on the same instrument: the INES beam-line at the ISIS spallation pulsed neutron source (UK). NRCA analysis allows identifying the elements present in the sample gauge volume, while neutron diffraction is exploited to quantify the phase distribution and other micro-structural parameters of the metal specimen. The results show that all samples are made of high-quality metal, either steel or copper alloy, with noticeable changes in composition and working techniques, depending on the place and time of manufacturing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fobes, David M.; Bauer, Eric Dietzgen; Thompson, Joe David
Here, two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn 5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment ofmore » $$m=0.54(2)\\,{{\\mu}_{\\text{B}}}$$. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain.« less
Fobes, David M.; Bauer, Eric Dietzgen; Thompson, Joe David; ...
2017-03-28
Here, two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn 5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment ofmore » $$m=0.54(2)\\,{{\\mu}_{\\text{B}}}$$. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain.« less
Yes, one can obtain better quality structures from routine X-ray data collection.
Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof
2016-01-01
Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.
Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.
Ubic, Rick; Hu, Yi; Abrahams, Isaac
2006-08-01
The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.de
Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ∼100 K after which it rises again. The same trend—albeit more pronounced—is observed for the c lattice parameter at ∼35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) statemore » to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.« less
Debye temperatures and magnetic structures of UFe xAl 12- x (3.6⩽ x⩽5) intermetallic alloys
NASA Astrophysics Data System (ADS)
Rećko, K.; Dobrzyński, L.; Szymański, K.; Hoser, A.
2000-03-01
Uranium ternary compounds UFe xAl 12- x crystallize in a body-centred tetragonal structure ThMn 12 (I 4/mmm No.139). The neutron powder diffraction, magnetization measurements as well as Mössbauer investigations clearly indicate the magnetic ordering within the iron sites. The rearrangement of iron magnetic moments from uncompensated antiferromagnetic system in UFe xAl 12- x with x<4, through coexistence of antiferro- and ferromagnetic iron components (4⩽ x<5) to pure ferromagnetic ordering for alloy with x=5 is observed. The neutron diffraction studies of magnetic structures of the aforementioned powder samples show a very rich world of possible uranium-iron magnetic interactions. For all these alloys the magnetic neutron scattering is generally weak in comparison to the nuclear one. Because of identical chemical and magnetic unit cells there are no pure magnetic reflections. Therefore, in order to extract magnetic part of the scattering one should be particularly careful in taking proper account of the thermal vibration effects.
NASA Astrophysics Data System (ADS)
Szeleszczuk, Łukasz; Gubica, Tomasz; Zimniak, Andrzej; Pisklak, Dariusz M.; Dąbrowska, Kinga; Cyrański, Michał K.; Kańska, Marianna
2017-10-01
A convenient method for the indirect crystal structure verification of methyl glycosides was demonstrated. Single-crystal X-ray diffraction structures for methyl glycoside acetates were deacetylated and subsequently subjected to DFT calculations under periodic boundary conditions. Solid-state NMR spectroscopy served as a guide for calculations. A high level of accuracy of the modelled crystal structures of methyl glycosides was confirmed by comparison with published results of neutron diffraction study using RMSD method.
Structure and texture analysis of PVC foils by neutron diffraction.
Kalvoda, L; Dlouhá, M; Vratislav, S
2010-01-01
Crystalline order of molded and then bi-axially stretched foils prepared from atactic PVC resin is investigated by means of wide-angle neutron diffraction (WAND). The observed high-resolution WAND patterns of all samples are dominated by a sharp maximum corresponding to the inter-planar distance 0.52 nm. Two weaker maxima are also resolved at 0.62 and 0.78 nm. Intensities of the peaks vary with deformation ratios of the samples and their diffraction position. Average size of the coherently scattering domains is estimated as approximately 4-8 nm. Based on the experimental data, a novel model of crystalline order of atactic PVC is proposed. Copyright 2009 Elsevier Ltd. All rights reserved.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils.
Boehler, R; Molaison, J J; Haberl, B
2017-08-01
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Sikolenko, Vadim
2004-09-01
The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.
Thompson, Helen; Soper, Alan K; Buchanan, Piers; Aldiwan, Nawaf; Creek, Jefferson L; Koh, Carolyn A
2006-04-28
Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.
Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J
2012-09-21
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (Å) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design.
The magnetic and crystal structures of Sr2IrO4: A neutron diffraction study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Chi, Songxue; Chakoumakos, Bryan C
2013-01-01
We report a single-crystal neutron diffraction study of the layered Sr2IrO4. This work unambigu- ously determines the magnetic and crystal structures, and reveals that the spin orientation rigidly tracks the staggered rotation of the IrO6 octahedra in Sr2IrO4. The long-range antiferromagnetic order has a canted spin configuration with an ordered moment of 0.208(3) B/Ir site within the basal plane; a detailed examination of the spin canting yields 0.202(3) and 0.049(2) B/site for the a-axis and the b-axis, respectively. It is intriguing that forbidden nuclear reflections of space group I41/acd are also observed in a wide temperature range from 4 Kmore » to 600 K, which suggests a reduced crystal structure symmetry. This neutron scattering work provides a direct, well-refined experimen- tal characterization of the magnetic and crystal structures that are crucial to the understanding of the unconventional magnetism existent in this unusual magnetic insulator.« less
Choudhury, R R; Chitra, R; Selezneva, E V; Makarova, I P
2017-10-01
The structure of the mixed crystal [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 as obtained from single-crystal neutron diffraction is compared with the previously reported room-temperature neutron structure of crystalline K 3 H(SO 4 ) 2 . The two structures are very similar, as indicated by the high value of their isostructurality index (94.8%). It was found that the replacement of even a small amount (3%) of K + with NH 4 + has a significant influence on the short strong hydrogen bond connecting the two SO 4 2- ions. Earlier optical measurements had revealed that the kinetics of the superionic transition in the solid solution [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 are much faster than in K 3 H(SO 4 ) 2 ; this reported difference in the kinetics of the superionic phase transition in this class of crystal is explained on the basis of the difference in strength of the hydrogen-bond interactions in the two structures.
Neutron powder diffraction study on the structures of LaNi 5- xAl xD y compounds
NASA Astrophysics Data System (ADS)
Du, Honglin; Zhang, Wenyong; Wang, Changsheng; Han, Jingzhi; Yang, Yingchang; Chen, Bo; Xie, Chaomei; Sun, Kai; Zhang, Baisheng
2003-10-01
The structures of LaNi 5- xAl xD y ( x=0.75, 0.25, y=1.01, 1.10, 1.91 and 3.1) were systematically investigated by neutron and X-ray diffraction. D atoms are found to enter the 6m site of the α-phase but not the reported 12n site, while the 6m and 12n sites of the β-phase. In the case of LaNi 4.75Al 0.25D y with lower Al content and symmetry, D atoms do not enter the α-phase but occupy the 4h site besides the 6m and 12n sites of the β-phase. The relationship between structures and properties is also discussed.
Using Neutron Diffraction to Determine the Low-Temperature Behavior of Pb2+ in Lead Feldspar
NASA Astrophysics Data System (ADS)
Kolbus, L. M.; Anovitz, L. M.; Chakoumackos, B. C.; Wesolowski, D. J.
2014-12-01
Feldspar minerals comprise 60% of the Earth's crust, so it imperative that the properties of feldspar be well understood for seismic modeling. The structure of feldspar consists of a three-dimensional framework of strongly-bonded TO4 tetrahedra formed by the sharing of oxygen atoms between tetrahedra. The main solid solution series found in natural feldspars are alkali NaAlSi3O8 -KAlSi3O8 and plagioclase CaAl2Si2O8-NaAlSi3O8. Recently, efforts have been made to systematically quantify feldspars structural change at non-ambient temperatures by considering only the relative tilts of the tetrahedral framework [1]. This serves as a tool to predict various behaviors of the structure such as the relative anisotropy of unit cell parameters and volume evolution with composition and temperature. Monoclinic feldspars are well predicted by the model [1], but discrepancies still remain between the model predictions and real structures with respect to absolute values of the unit cell parameters. To improve the existing model, a modification must be made to account for the M-cation interaction with its surrounding oxygen atoms. We have, therefore, chosen to study the structure of Pb-feldspar (PbAl2Si2O8), which provides the opportunity to characterize a monoclinic Al2Si2 feldspar containing a large M-site divalent cation using neutron diffraction. Neutron diffraction allows for the characterization of the M-site cation interaction between the oxygen atoms in the polyhedral cage by providing information to accurately determine the atomic displacement parameters.. Lead feldspar was synthesized for this study using the method described in [2], and confirmed to have a monoclinic C2/m space group. In this talk we will present structural determinations and atomic displacement parameters of Pb-feldspar from 10 - 300K generated from Neutron diffraction at the POWGEN beamline at the Spallation Neutron Source at Oak Ridge National lab, and compare our results to those predicted by the tetrahedral tilting model. [1] Angel, R.J. Ross, N.L, Zhao, J, Sochalski-Kolbus, L., Kruger, H., Schmidt, B.C. (2013) European Journal of Mineralogy, 25: 597-614. [2] Benna, P., Tribaudino, M., Bruno, E. (1996) American Mineralogist, 81: 1337-1343.
The early development of neutron diffraction: science in the wings of the Manhattan Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, T. E., E-mail: masont@ornl.gov; Gawne, T. J.; Nagler, S. E.
2013-01-01
Early neutron diffraction experiments performed in 1944 using the first nuclear reactors are described. Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quitemore » independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool.« less
Novel diamond cells for neutron diffraction using multi-carat CVD anvils
Boehler, R.; Molaison, J. J.; Haberl, B.
2017-08-17
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less
NASA Astrophysics Data System (ADS)
Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.
2017-04-01
Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.
Hydrogen atoms can be located accurately and precisely by x-ray crystallography.
Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan
2016-05-01
Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.
Hydrogen atoms can be located accurately and precisely by x-ray crystallography
Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan
2016-01-01
Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors. PMID:27386545
Liu, Hao; Liu, Haodong; Lapidus, Saul H.; ...
2017-06-21
Lithium transition metal oxides are an important class of electrode materials for lithium-ion batteries. Binary or ternary (transition) metal doping brings about new opportunities to improve the electrode’s performance and often leads to more complex stoichiometries and atomic structures than the archetypal LiCoO 2. Rietveld structural analyses of X-ray and neutron diffraction data is a widely-used approach for structural characterization of crystalline materials. But, different structural models and refinement approaches can lead to differing results, and some parameters can be difficult to quantify due to the inherent limitations of the data. Here, through the example of LiNi 0.8Co 0.15Al 0.05Omore » 2 (NCA), we demonstrated the sensitivity of various structural parameters in Rietveld structural analysis to different refinement approaches and structural models, and proposed an approach to reduce refinement uncertainties due to the inexact X-ray scattering factors of the constituent atoms within the lattice. Furthermore, this refinement approach was implemented for electrochemically-cycled NCA samples and yielded accurate structural parameters using only X-ray diffraction data. The present work provides the best practices for performing structural refinement of lithium transition metal oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Liu, Haodong; Lapidus, Saul H.
Lithium transition metal oxides are an important class of electrode materials for lithium-ion batteries. Binary or ternary (transition) metal doping brings about new opportunities to improve the electrode’s performance and often leads to more complex stoichiometries and atomic structures than the archetypal LiCoO 2. Rietveld structural analyses of X-ray and neutron diffraction data is a widely-used approach for structural characterization of crystalline materials. But, different structural models and refinement approaches can lead to differing results, and some parameters can be difficult to quantify due to the inherent limitations of the data. Here, through the example of LiNi 0.8Co 0.15Al 0.05Omore » 2 (NCA), we demonstrated the sensitivity of various structural parameters in Rietveld structural analysis to different refinement approaches and structural models, and proposed an approach to reduce refinement uncertainties due to the inexact X-ray scattering factors of the constituent atoms within the lattice. Furthermore, this refinement approach was implemented for electrochemically-cycled NCA samples and yielded accurate structural parameters using only X-ray diffraction data. The present work provides the best practices for performing structural refinement of lithium transition metal oxides.« less
NASA Astrophysics Data System (ADS)
Peetermans, S.; Bopp, M.; Vontobel, P.; Lehmann, E. H.
Common neutron imaging uses the full polychromatic neutron beam spectrum to reveal the material distribution in a non-destructive way. Performing it with a reduced energy band, i.e. energy-selective neutron imaging, allows access to local variation in sample crystallographic properties. Two sample categories can be discerned with different energy responses. Polycrystalline materials have an energy-dependent cross-section featuring Bragg edges. Energy-selective neutron imaging can be used to distinguish be- tween crystallographic phases, increase material sensitivity or penetration, improve quantification etc. An example of the latter is shown by the examination of copper discs prior to machining them into linear accelerator cavity structures. The cross-section of single crystals features distinct Bragg peaks. Based on their pattern, one can determine the orientation of the crystal, as in a Laue pattern, but with the tremendous advantage that the operation can be performed for each pixel, yielding crystal orientation maps at high spatial resolution. A wholly different method to investigate such samples is also introduced: neutron diffraction imaging. It is based on projections formed by neutrons diffracted from the crystal lattice out of the direct beam. The position of these projections on the detector gives information on the crystal orientation. The projection itself can be used to reconstruct the crystal shape. A three-dimensional mapping of local Bragg reflectivity or a grain orientation mapping can thus be obtained.
NASA Astrophysics Data System (ADS)
Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio
2013-06-01
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.
2017-01-31
The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Hao; Ashkar, Rana; Steinke, Nina
A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less
Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan
2012-12-05
Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.
NASA Astrophysics Data System (ADS)
Slodczyk, Aneta; Colomban, Philippe; Upasen, Settakorn; Grasset, Frédéric; André, Gilles
2015-08-01
Long-term chemical and structural stability of an ion conducting ceramic is one of the main criteria for its selection as an electrolytic membrane in energy plant devices. Consequently, medium density SrZr0.9Er0.1O3-δ (SZE) anhydrous proton conducting ceramic - a potential electrolyte of SOFC/PCFC, was analysed by neutron diffraction between room temperature and 900 °C. After the first heating/cooling cycle, the ceramic pieces were exposed to water vapour pressure in an autoclave (500 °C, 40 bar, 7 days) in order to incorporate protonic species; the protonated compound was then again analysed by neutron diffraction. This procedure was repeated two times. At each step, the sample was also controlled by TGA and Raman spectroscopy. These studies allow the first comprehensive comparison of structural and chemical stability during the protonation/deprotonation cycling. The results reveal good structural stability, although an irreversible small contraction of the unit-cell volume and local structure modifications near Zr/ErO5[] octahedra are detected after the first protonation. After the second protonation easy ceramic crumbling under a stress is observed because of the presence of secondary phases (SrCO3, Sr(OH)2) well detected by Raman scattering and TGA. The role of crystallographic purity, substituting element and residual porosity in the proton conducting perovskite electrolyte stability is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Amjad; Chen, Yan; Lugovy, Mykola
2014-01-01
The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresismore » loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.« less
Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...
2013-06-11
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Randolph
Spider silks have the potential to provide new bio-inspired materials for numerous applications in bioenergetics and products ranging from protective clothing to artificial ligaments and tendons. A number of spider silk genes have been cloned and sequenced by the Lewis laboratory revealing the basis for understanding the key elements of spider silk proteins with respect to their materials performance. In particular, specific amino acid motifs have been identified which have been conserved for over 125 million years in all spiders that use their silk to physically trap prey. The key element in taking the next step toward generating bio-based materialsmore » from spider silks will be to move from the current descriptive data to predictive knowledge. Current efforts are focused on mimicking spider silk through synthetic proteins. In developing synthetic silk fibers, we first need to understand the complete secondary and tertiary structure of natural silk so that we can compare synthetic constructs to the natural material. Being able to compare the structure on a single fiber level is critical to the future of molecular directed mimic development because we can vary mechanical properties by different spinning methods. The new generation of synchrotron x-ray diffraction and neutron beamlines will allow, for the first time, determination of the molecular structure of silk fibers and synthetic mimics. We propose an exciting new collaborative research team working jointly between Argonne National Laboratory, Arizona State U. and the University of Wyoming to address the ?characterization of synthetic and natural spider silk fibers using x-ray and neutron diffraction.? Thus these new methodologies will provide understanding of current fibers and determine changes needed to produce fibers with specific properties. The following specific aims are proposed: ? Synthesize spider silk fibers with molecular structures mimicking that of natural silks. Test the mechanic properties of these materials and compare them to natural silk fibers. ? Develop x-ray and neutron diffraction techniques to better determine the structure in amorphous and semicrystalline biopolymers, such as spider silk fibers. ? Combine mechanical testing and structural x-ray and neutron diffraction data to develop a molecular understanding of the structure-function relationship in spider silk materials. ? Elucidate the role water plays in spider silk fiber formation and structure. Emphasis will be placed on combined neutron and NMR studies. ? Use solid-state Nuclear Magnetic Resonance (NMR) to characterize synthetic and natural spider silk materials that show potential as a biomimetic material or bio-inspired polymer architecture. ? Develop EPSCoR student and postdoctoral training and exposure to national laboratory facilities. ? Further develop scientific outreach and chemical education programs and research.« less
Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke
2016-01-21
The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.
The structure of CO 2 hydrate between 0.7 and 1.0 GPa
Tulk, Chris A.; Machida, Shinichi; Klug, Dennis D.; ...
2014-11-05
A deuterated sample of CO 2 structure I (sI) clathrate hydrate (CO 2 ∙ 8.3 D 2O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO 2 hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai, et al. (J. Phys. Chem. 133, 124511 (2010)) and O. Bollengier et al. (Geochim. Cosmochim. AC. 119, 322 (2013)), but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO 2 molecules filling the watermore » channels. This CO 2+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts an MH-III ‘like’ filled ice structure with considerable disorder of the orientations of the CO 2molecule. Furthermore, the disorder appears be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al. our neutron diffraction data shows that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO 2 hydrate transforms directly from the sI form to the filled ice structure.« less
The structure of CO 2 hydrate between 0.7 and 1.0 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulk, C. A.; Machida, S.; Klug, D. D.
A deuterated sample of CO2 structure I (sI) clathrate hydrate (CO2·8.3 D2O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO2 hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai et al. [J. Phys. Chem. 133, 124511 (2010)] and Bollengier et al. [Geochim. Cosmochim. Acta 119, 322 (2013)], but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO2 molecules filling the water channels. This CO2+water system has also been investigatedmore » using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts a MH-III “like” filled ice structure with considerable disorder of the orientations of the CO2 molecule. Furthermore, the disorder appears to be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al., our neutron diffraction data show that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO2 hydrate transforms directly from the sI form to the filled ice structure.« less
The structure of CO{sub 2} hydrate between 0.7 and 1.0 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulk, C. A.; Molaison, J. J.; Machida, S.
A deuterated sample of CO{sub 2} structure I (sI) clathrate hydrate (CO{sub 2}·8.3 D{sub 2}O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO{sub 2} hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai et al. [J. Phys. Chem. 133, 124511 (2010)] and Bollengier et al. [Geochim. Cosmochim. Acta 119, 322 (2013)], but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO{sub 2} molecules filling the water channels. This CO{submore » 2}+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts a MH-III “like” filled ice structure with considerable disorder of the orientations of the CO{sub 2} molecule. Furthermore, the disorder appears to be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al., our neutron diffraction data show that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO{sub 2} hydrate transforms directly from the sI form to the filled ice structure.« less
The structure of CO 2 hydrate between 0.7 and 1.0 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulk, Chris A.; Machida, Shinichi; Klug, Dennis D.
A deuterated sample of CO 2 structure I (sI) clathrate hydrate (CO 2 ∙ 8.3 D 2O) has been formed and neutron diffraction experiments up to 1.0 GPa at 240 K were performed. The sI CO 2 hydrate transformed at 0.7 GPa into the high pressure phase that had been observed previously by Hirai, et al. (J. Phys. Chem. 133, 124511 (2010)) and O. Bollengier et al. (Geochim. Cosmochim. AC. 119, 322 (2013)), but which had not been structurally identified. The current neutron diffraction data were successfully fitted to a filled ice structure with CO 2 molecules filling the watermore » channels. This CO 2+water system has also been investigated using classical molecular dynamics and density functional ab initio methods to provide additional characterization of the high pressure structure. Both models indicate the water network adapts an MH-III ‘like’ filled ice structure with considerable disorder of the orientations of the CO 2molecule. Furthermore, the disorder appears be a direct result of the level of proton disorder in the water network. In contrast to the conclusions of Bollengier et al. our neutron diffraction data shows that the filled ice phase can be recovered to ambient pressure (0.1 MPa) at 96 K, and recrystallization to sI hydrate occurs upon subsequent heating to 150 K, possibly by first forming low density amorphous ice. Unlike other clathrate hydrate systems, which transform from the sI or sII structure to the hexagonal structure (sH) then to the filled ice structure, CO 2 hydrate transforms directly from the sI form to the filled ice structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Deepti; Rayaprol, S.; Siruguri, V.
We report the crystallographic properties of RE{sub 2}NiGe{sub 3} (RE=La, Ce) synthesized by arc melting. Rietveld refinement on the powder neutron diffraction (ND) data suggest both compounds are isostructural and crystallize in the non-centrosymmetric Er{sub 2}RhSi{sub 3} type structure having hexagonal space group P6{sup ¯}2c. In the crystal structure of RE{sub 2}NiGe{sub 3}, two dimensional arrangements of nickel and germanium atoms lead to the formation of hexagonal layers with rare earth atoms sandwiched between them. Magnetic susceptibility measurements performed in low fields exhibit antiferromagnetic ordering in cerium compound around (T{sub o}=) 3.2 K. Neutron diffraction measurements at 2.8 K (i.e.,more » at T« less
Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M
2010-06-09
The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.
Structure of TeO2 - LiNbO3 glasses
NASA Astrophysics Data System (ADS)
Shinde, A. B.; Krishna, P. S. R.; Rao, Rekha
2017-05-01
Tellurite based lithium niobate glasses with composition (100-x)TeO2-xLiNbO3 (x=0.1,0.2 & 0.3) were prepared by conventional melt quenching method. The microscopic structural investigation of these glasses is carried out by means of neutron diffraction and Raman scattering measurements. It is found that the basic structural units in these glasses are TeO4 trigonal bipyramids(TBP), TeO3 trigonal pyramids(TP) and NbO6 Octahedra depending on the composition. It is evident from Raman studies that TBPs decreases, TPs increases and NbO6 Octahedra increases with increasing x. From Neutron diffraction studies it is found that network is comprised of TBPs and TPs along with TeO3+1 structural units. Distorted NbO6 octahedral units are present and also increase with the increase in x.
Compositional Tuning, Crystal Growth, and Magnetic Properties of Iron Phosphate Oxide
NASA Astrophysics Data System (ADS)
Tarne, Michael
Iron phosphate oxide, Fe3PO4O 3, is a crystalline solid featuring magnetic Fe3+ ions on a complex lattice composed of closely-spaced triangles. Previous work from our research group on this compound has proposed a helical magnetic structure below T = 163 K attributed to J1 - J2 competing interactions between nearest-neighbor and next-nearest-neighbor iron atoms. This was based on neutron powder diffraction featuring unique broad, flat-topped magnetic reflections due to needle-like magnetic domains. In order to confirm the magnetic structure and origins of frustration, this thesis will expand upon the research focused on this compound. The first chapter focuses on single crystal growth of Fe3PO 4O3. While neutron powder diffraction provides insight to the magnetic structure, powder and domain averaging obfuscate a conclusive structure for Fe3PO4O3 and single crystal neutron scattering is necessary. Due to the incongruency of melting, single crystal growth has proven challenging. A number of techniques including flux growth, slow cooling, and optical floating zone growth were attempted and success has been achieved via heterogenous chemical vapor transport from FePO 4 using ZrCl4 as a transport agent. These crystals are of sufficient size for single crystal measurements on modern neutron diffractometers. Dilution of the magnetic sublattice in frustrated magnets can also provide insight into the nature of competing spin interactions. Dilution of the Fe 3+ lattice in Fe3PO4O3 is accomplished by substituting non-magnetic Ga3+ to form the solid solution series Fe3-xGaxPO4O3 with x = 0, 0.012, 0.06, 0.25, 0.5, 1.0, 1.5. The magnetic susceptibility and neutron powder diffraction data of these compounds are presented. A dramatic decrease of the both the helical pitch length and the domain size is observed with increasing x; for x > 0.5, the compounds lack long range magnetic order. The phases that do exhibit magnetic order show a decrease in helical pitch with increasing x as determined from the magnitude of the magnetic propagation vector. This trend can be qualitatively reproduced by increasing the ratio of J2/ J1 in the Heisenberg model. Intriguingly, the domain size extracted from peak broadening of the magnetic reflections is nearly equal to the pitch length for each value of x, which suggests that the two qualities are linked in this unusual antiferromagnet. The last chapter focuses on the oxyfluoride Fe3PO7-x Fx. Through fluorination using low-temperature chimie douce reactions with polytetrafluoroethylene, the magnetic properties show changes in the magnetic susceptibility, isothermal magnetization, and neutron powder diffraction. The magnetic susceptibility shows a peak near T = 13 K and a zero field cooled/field cooled splitting at T = 78 K. The broad, flat-topped magnetic reflections in the powder neutron diffraction exhibit a decrease in width and increase in intensity. The changes in the neutron powder diffraction suggest an increase in correlation length in the ab plane of the fluorinated compound. Iron phosphate oxide is a unique lattice showing a rich magnetic phase diagram in both the gallium-substituted and fluorinated species. While mean-field interactions are sufficient to describe interactions in the solid solution series Fe3-xGaxPO4O3, the additional magnetic transitions in Fe3PO7-xFx suggest a more complicated set of interactions.
La 3+ doping of the Sr 2CoWO 6 double perovskite: A structural and magnetic study
NASA Astrophysics Data System (ADS)
López, C. A.; Viola, M. C.; Pedregosa, J. C.; Carbonio, R. E.; Sánchez, R. D.; Fernández-Díaz, M. T.
2008-11-01
La-doped Sr 2CoWO 6 double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, λ=1.594 Å). At room temperature, the replacement of Sr 2+ by La 3+ induces a change of the tetragonal structure, space group I4/ m of the undoped Sr 2CoWO 6 into the distorted monoclinic crystal structure, space group P2 1/ n, Z=2. The structure of La-doped phases contains alternating CoO 6 and (Co/W)O 6 octahedra, almost fully ordered. On the other hand, the replacement of Sr 2+ by La 3+ induces a partial replacement of W 6+ by Co 2+ into the B sites, i.e. Sr 2-xLa xCoW 1-yCo yO 6 ( y= x/4) with segregation of SrWO 4. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below TN=24 K independently of the La-substitution.
Crystal structure and partial Ising-like magnetic ordering of orthorhombic D y 2 Ti O 5
Shamblin, Jacob; Calder, Stuart; Dun, Zhiling; ...
2016-07-12
The structure and magnetic properties of orthorhombic Dy 2TiO 5 have been investigated using x-ray diffraction, neutron diffraction, and alternating current (ac)/direct current (dc) magnetic susceptibility measurements. In this paper, we report a continuous structural distortion below 100 K characterized by negative thermal expansion in the [0 1 0] direction. Neutron diffraction and magnetic susceptibility measurements revealed that two-dimensional (2D) magnetic ordering begins at 3.1 K, which is followed by a three-dimensional magnetic transition at 1.7 K. The magnetic structure has been solved through a representational analysis approach and can be indexed with the propagation vector k = [0 1/2more » 0]. The spin structure corresponds to a coplanar model of interwoven 2D “sheets” extending in the [0 1 0] direction. The local crystal field is different for each Dy 3+ ion (Dy1 and Dy2), one of which possesses strong uniaxial symmetry indicative of Ising-like magnetic ordering. In conclusion, consequently, two succeeding transitions under magnetic field are observed in the ac susceptibility, which are associated with flipping each Dy 3+ spin independently.« less
Magnetic and crystal structures of the honeycomb lattice Na2IrO3 and single layer Sr2IrO4
NASA Astrophysics Data System (ADS)
Ye, Feng
2013-03-01
5 d based iridates have recently attracted great attention due to the large spin-orbit coupling (SOC). It is now recognized that the SOC that competes with other relevant energies, particularly the on-site Coulomb interaction U, and have driven novel electronic and magnetic phases. Combining single crystal neutron and x-ray diffractions, we have investigated the magnetic and crystal structures of the honeycomb lattice Na2IrO3. The system orders magnetically below 18.1 K with Ir4+ ions forming zigzag spin chains within the layered honeycomb network with ordered moment of 0.22 μB /Ir site. Such a configuration sharply contrasts the Neel or stripe states proposed in the Kitaev-Heisenberg model. The structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb lattice while the IrO6 octahedra experience a trigonal distortion that is critical to the ground state. The results of this study provide much-needed experimental insights into the magnetic and crystal structure crucial to the understanding of the exotic magnetic order and possible topological characteristics in the 5 d-electron based honeycomb lattice. Neutron diffraction experiments are also performed to investigate the magnetic and crystal structure of the single layer iridate Sr2IrO4, where new structural information and spin order are obtained that is not available from previous neutron powder diffraction measurement. This work was sponsored in part by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Diffraction des neutrons : principe, dispositifs expérimentaux et applications
NASA Astrophysics Data System (ADS)
Muller, C.
2003-02-01
La diffraction de neutrons, sur monocristal ou sur échantillon polycristallin (ou poudre), est une technique très largement utilisée, en science des matériaux comme en biologie, lorsque l'on souhaite déterminer la structure cristalline d'un composé ou d'une molécule. Toutefois, le degré de précision de la détermination structurale est très corrélé au choix de l'instrument utilisé. Il s'en suit que la question “comment choisir l'instrument le mieux adapté au composé et à la problématique ?" apparaît comme fondamentale. L'objectif de ce cours est de tenter de répondre à cette question en décrivant brièvement les caractéristiques instrumentales de différents diffractomètres, en exposant les avantages spécifiques des expériences de diffraction de neutrons et en donnant quelques exemples d'application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkel, Nathalie, E-mail: nathalie.kunkel@chimie-paristech.fr; FR 8.1 Universität des Saarlandes, Postach 151150, 66041 Saarbrücken; Reichert, Christian
2015-01-15
In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stablemore » structure for 0.7« less
The early development of neutron diffraction: science in the wings of the Manhattan Project
Mason, T. E.; Gawne, T. J.; Nagler, S. E.; Nestor, M. B.; Carpenter, J. M.
2013-01-01
Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan Project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurement of nuclear cross sections. Ernest O. Wollan, Lyle B. Borst and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor. Subsequent work by Wollan and Clifford G. Shull, who joined Wollan’s group at Oak Ridge in 1946, laid the foundations for widespread application of neutron diffraction as an important research tool. PMID:23250059
Probing the Hydrogen Sublattice of FeHx with High-Pressure Neutron Diffraction
NASA Astrophysics Data System (ADS)
Murphy, C. A.; Guthrie, M.; Boehler, R.; Somayazulu, M.; Fei, Y.; Molaison, J.; dos Santos, A. M.
2013-12-01
The combination of seismic, cosmochemical, and mineral physics observations have revealed that Earth's iron-rich core must contain some light elements, such as hydrogen, carbon, oxygen, silicon, and/or sulfur. Therefore, understanding the influence of these light elements on the structural, thermoelastic, and electronic properties of iron is important for constraining the composition of this remote layer of the Earth and, in turn, providing constraints on planetary differentiation and core formation models. The high-pressure structural and magnetic properties of iron hydride (FeHx) have previously been studied using synchrotron x-ray diffraction and Mössbauer spectroscopy. Such experiments revealed that the double hexagonal close-packed (dhcp) structure of FeHx is stable above a pressure of ~5 GPa and up to at least 80 GPa at 300 K [1]. In addition, dhcp-FeHx is ferromagnetic at low-pressures, but undergoes a magnetic collapse around 22 GPa [2]. X-ray experiments provide valuable insight into the properties of FeHx, but such techniques are largely sensitive to the iron component because it is difficult to detect the hydrogen sublattice with x-rays. Therefore, neutron diffraction has been used to investigate metastable FeHx, which is formed by quenching the high-pressure phase to liquid nitrogen temperatures and probing the sample at ambient pressure [3]. However, such neutron experiments have been limited to formation pressures below 10 GPa, and cannot be performed at ambient temperature. Here we present the first in-situ investigation of FeHx at 300 K using high-pressure neutron diffraction experiments performed at the Spallation Neutrons and Pressure Diffractometer (SNAP) instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. In order to achieve pressures of ~50 GPa, we loaded iron samples with a hydrogen gas pressure medium into newly designed large-volume panoramic diamond-anvil cells (DACs) for neutron diffraction experiments [4; 5]. We will present the details of our DAC preparations and results of our in-situ structural refinements of dhcp-FeHx up to ~50 GPa. Together with previous investigations of the thermoelastic and electronic properties of FeHx [2; 6], we will discuss implications for the composition of Earth's iron-rich core. References: 1. N. Hirao et al. (2004), Geophys. Res. Lett., 31, L06616, doi:10.1029/2003GL019380. 2. W.L. Mao et al. (2004), Geophys. Res. Lett., 31, L15618, doi:10.1029/2004GL020541. 3. V.E. Antonov et al. (2002), J. Phys.: Condens. Matter, 14, 6427-6445, doi:10.1088/0953-8984/14/25/311. 4. M. Guthrie et al. (2013), ACA Transactions, 44, in press. 5. R. Boehler et al. (2013), High Press. Res., in press, doi:10.1080/08957959.2013.823197. 6. Y. Shibazaki et al. (2012), Earth Planet. Sci. Lett., 313-314, 79-85, doi:10.1016/j.epsl.2011.11.002.
Structure and mechanical behavior of heavily drawn pearlite and martensite in a high carbon steel
NASA Astrophysics Data System (ADS)
Shiota, Y.; Tomota, Y.; Moriai, A.; Kamiyama, T.
2005-10-01
Neutron diffraction measurements have revealed that cementite peaks disappear in a pearlite steel with drawing and that the residual intergranular stresses are generated. The diffraction profiles in a heavily drawn specimen suggest the tetoragonality with a small c/a in the ferrite matrix. Although cementite was hardly observed in the heavily drawn specimen, its c/a value determined by neutron diffraction and mechanical behavior are quite different from those of as-quenched martensite. The changes in hardness and c/a with annealing or tempering were also different between heavily drawn pearlite and marteniste. Hence, most of carbon atoms do not exist inside the ferrite lattice in the drawn pearlite and multi-scaled heterogeneous plastic deformation in pearlite seems to affect the asymmetry in the diffraction profile. Fracture behavior and hardness change with tempering is different in the two microstructures.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Cranswick, Lachlan M. D.; Swainson, Ian
2006-11-01
The cell dimensions of the fluoroperovskite KMgF3 synthesized by solid state methods have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 293 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data demonstrate conclusively that cubic Pmoverline{3} m KMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. Cell dimensions range from 3.9924(2) Å at 293 K to 3.9800(2) Å at 3.6 K, and are essentially constant within experimental error from 50 to 3.6 K. The thermal expansion data are described using a fourth order polynomial function.
NASA Astrophysics Data System (ADS)
Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.
2017-08-01
Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.
Lee, Tae-Ho; Kim, Sung-Joon; Shin, Eunjoo; Takaki, Setsuo
2006-12-01
The ordered structure of Cr(2)N precipitates in high-nitrogen austenitic steel was investigated utilizing high-resolution neutron powder diffractometry (HRPD). On the basis of the Rietveld refinement of neutron diffraction patterns, the ordered Cr2N superstructure was confirmed to be trigonal (space group P31m), with lattice parameters a=4.800 (4) and c=4.472 (5) A, as suggested in previous transmission electron microscopy studies [Lee, Oh, Han, Lee, Kim & Takaki (2005). Acta Cryst. B61, 137-144; Lee, Kim & Takaki (2006). Acta Cryst. B62, 190-196]. The occupancies of the N atoms in four crystallographic sites [1(a), 1(b), 2(d) and 2(c) Wyckoff sites] were determined to be 1.00 (5), 0.0, 0.74 (9) and 0.12 (3), respectively, reflecting a partial disordering of N atoms along the c axis. The position of the metal atom was specified to be x=0.346 (8) and z=0.244 (6), corresponding to a deviation from the ideal position (x=0.333 and z=0.250). This deviation caused the ((1/3 1/3)(0))-type superlattice reflection to appear. A comparison between the ideal and measured crystal structures of Cr2N was performed using a computer simulation of selected-area diffraction patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew
2008-01-01
Neutron crystallography is used to locate hydrogen atoms in biological materials and can distinguish between negatively scattering hydrogen and positively scattering deuterium substituted positions in isomorphous neutron structures. Recently, Hauptman and Langs (2003) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering hydrogen atoms in the structure. Selective labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of hydrogen to deuterium atoms can be precisely controlled. We have applied methyl-selective labeling protocols to introduce (1H-delta methyl)-leucinemore » and (1H-gamma methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here we report on the production, crystallization, and preliminary neutron analysis of the selectively CH3-protonated, deuterated PfRd sample, which provided a high quality neutron data set extending to 1.75 resolution at the new LADI-III instrument at the Insititut Laue-Langevin. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of hydrogen atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.« less
Whitfield, Pamela S.
2016-04-29
Here, quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magneticmore » reflections from Fe 3O 4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Qregion (<0.6 Å) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high- Q (low d-spacing) background using simple polynomials.« less
Neutron diffraction study of a non-strichiometric Ni-Mn-Ga MSM alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari-Gur, Pnina; Garlea, Vasile O
2013-01-01
The structure and chemical order of a Heusler alloy of non-stoichiometric composition Ni-Mn-Ga were studied using constant-wavelength (1.538 ) neutron diffraction at 363K and the diffraction pattern was refined using the FullProf software. At this temperature the structure is austenite (cubic) with Fm-3m space group and lattice constant of a = 5.83913(4) [ ]. The chemical order is of critical importance in these alloys, as Mn becomes antiferromagnetic when the atoms are closer than the radius of the 3d shell. In the studied alloy the refinement of the site occupancy showed that the 4b (Ga site) contained as much asmore » 22% Mn; that significantly alters the distances between the Mn atoms in the crystal and, as a result, also the exchange energy between some of the Mn atoms. Based on the refinement, the composition was determined to be Ni1.91Mn1.29Ga0.8« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ari-Gur, Pnina; Garlea, Vasile O.; Cao, Huibo
In this study, Heusler alloys of Ni-Mn-Ga compositions demonstrate ferromagnetic shape memory effect in the martensitic state. The transformation temperature and the chemical order depend strongly on the composition. In the current work, the structure and chemical order of the martensitic phase of Ni 1.91Mn 1.29Ga 0.8 were studied using neutron diffraction; the diffraction pattern was refined using the FullProf software. It was determined that the structural transition occurs around 330 K. At room temperature, 300 K, which is below the martensite transformation temperature, all the Bragg reflections can be described by a monoclinic lattice with a symmetry of spacemore » group P 1 2/m 1 and lattice constants of a = 4.23047(7) [Å], b = 5.58333(6) [Å], c = 21.0179(2) [Å], beta = 90.328(1). The chemical order is of critical importance in these alloys, and it was previously studied at 363 K. Analysis of the neutron diffraction in the monoclinic phase shows that the chemical order is maintained during the martensitic transformation.« less
Magnetic topology of Co-based inverse opal-like structures
NASA Astrophysics Data System (ADS)
Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.
2011-08-01
The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.
Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.
Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H
2015-08-17
While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions.
Revealing the membrane-bound structure of neurokinin A using neutron diffraction
NASA Astrophysics Data System (ADS)
Darkes, Malcolm J. M.; Hauss, Thomas; Dante, Silvia; Bradshaw, Jeremy P.
2000-03-01
Neurokinin A (or substance K) belongs to the tachykinin family, a group of small amphipathic peptides that bind to specific membrane-embedded, G-protein coupled receptors. The agonist/receptor complex is quaternary in nature because the receptor binding sites are thought to be located within the lipid bilayer and because the role of water cannot be ignored. The cell membrane acts as a solvent to accumulate peptide and an inducer of peptide secondary structure. The three-dimensional shape that the peptide assumes when associated to the cell membrane will be an important parameter with regards to the receptor selectivity and affinity. Neutron diffraction measurements were carried out in order to define the location of the N-terminus of the peptide in synthetic phospholipid multi-bilayer stacks.
Röska, B; Park, S-H; Behal, D; Hess, K-U; Günther, A; Benka, G; Pfleiderer, C; Hoelzel, M; Kimura, T
2018-06-13
Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, [Formula: see text] [Formula: see text]. Its honeycomb-like H-bond network running without interruption along the crystallographic [Formula: see text] axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by [Formula: see text] cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature [Formula: see text]-83 K could be determined from the structure analysis with neutron diffraction data at 25 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroudi, Kristen; Gaulin, Bruce D.; Lapidus, Saul H.
2015-07-01
The Ho2Ti2O7, Er2Ti2O7 and Yb2Ti2O7 pyrochlores were studied by synchrotron X-ray diffraction to determine whether the (002) peak, forbidden in the pyrochlore space group Fd-3m but observed in single crystal neutron scattering measurements, is present due to a deviation of their pyrochlore structure from Fd-3m symmetry. Synchrotron diffraction measurements on precisely synthesized stoichiometric and non-stoichiometric powders and a crushed floating zone crystal of Ho2Ti2O7 revealed that the (002) reflection is absent in all cases to a sensitivity of approximately one part in 30,000 of the strongest X-ray diffraction peak. This indicates to high sensitivity that the structural space group ofmore » these rare earth titanate pyrochlores is Fd-3m, and that thus the (002) peak observed in the neutron scattering experiments has a non-structural origin. The cell parameters and internal strain for lightly stuffed Ho2+xTi2-xO7 are also presented.« less
Neutron diffraction study of layered Ni dioxides: Ag2NiO2
NASA Astrophysics Data System (ADS)
Nozaki, Hiroshi; Sugiyama, Jun; Janoschek, Marc; Roessli, Bertrand; Pomjakushin, Vladimir; Keller, Lukas; Yoshida, Hiroyuki; Hiroi, Zenji
2008-03-01
In order to elucidate the antiferromagnetic (AF) nature of hexagonal Ag2NiO2 with TN = 56 K and to know the mechanism of the structural phase transition of TS~270 K, neutron powder diffraction patterns have been measured in the temperature range between 1.5 and 330 K. One magnetic Bragg peak indexed as \\frac {1}{3}~\\frac {1}{3}~0 is clearly observed below TN, confirming the formation of long-range AF order, reported by a muon-spin spectroscopy measurement. The weak intensity of the magnetic peak also suggests the two-dimensional nature of the AF order, but the spin structure is still unknown. In addition, the precise structural analysis of the data between 160 and 330 K shows that only the cH-axis length changes drastically at TS, which suggests the appearance of local Jahn-Teller distortion below TS.
Magnetic texturing due to the partial ordering of Fe+3 and Cu+2 in NdBaCuFeO5
NASA Astrophysics Data System (ADS)
Pissas, M.
2017-06-01
The crystal and magnetic structure of the oxygen deficient double perovskite NdBaCuFeO5 was studied, using neutron powder diffraction data. The structure was refined from neutron powder diffraction data using the space groups P 4 / mmm and P 4 mm . For 2K ⩽ T ⩽TN2 = 260K three families of magnetic Bragg peaks exist. These peaks can be indexed with commensurate propagation vectors k1 =[1/2 1/2 1/2], k2 =[1/2 1/2 0] and the incommensurate k3 =[1/2 1/2 0.4]. Above TN2 only magnetic Bragg peaks originated from k1 and k2 propagation, were observed. The incommensurate magnetic structure can be attributed to a circular inclined spiral ordering as in YBaCuFeO5 compound.
Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy
NASA Astrophysics Data System (ADS)
Samanta, Tamalika; Bhobe, P. A.; Das, A.; Kumar, A.; Nigam, A. K.
2018-05-01
We present here a detailed investigation into the magnetic ordering of a full Heusler alloy Ga2MnCo using dc and ac magnetization measurements, neutron diffraction, and neutron depolarization experiments. The crystal structure at room temperature was first confirmed to be L 21 using the highly intense synchrotron x-ray diffraction technique. Temperature-dependent magnetization reveals that Ga2MnCo enters a ferromagnetic (FM) state at TC=154 K, characterized by a sharp increase in magnetization and a plateaulike region hereafter. As the temperature is decreased further, a sharp drop in magnetization is observed at Tf=50 K, hinting toward an antiferromagnetic (AFM) phase change. Neutron diffraction (ND) recorded over the range of temperature from 6 to 300 K provides combined information regarding crystal as well as magnetic structure. Accordingly, an increase in the intensity of the ND pattern is seen at 150 K, signaling the onset of long-range FM order. However, there is no sign of the appearance of superlattice reflections corresponding to the AFM phase in the patterns recorded below 50 K. An unusual discontinuity in the unit-cell volume is seen around Tf, indicating a coupling of this second transition with the contraction of the lattice. Attempts to unravel this interesting magnetic behavior using ac susceptibility measurements led to the existence of glassy magnetism below Tf. Systematic analysis of the susceptibility results along with neutron depolarization measurement identifies the low-temperature phase as a reentrant cluster glass.
X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.
Girardin, E; Millet, P; Lodini, A
2000-02-01
To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, D. M.; Smirnov, Lev S; Kolesnikov, Alexander I
2013-01-01
The (NH4)2WO2F4 compound undergoes a series of phase transitions: G0 -> 201 K -> G1 -> 160 K -> G2, with a significant change in entropy ( S1 ~ Rln10 at the G0 -> G1 transition), which indicates significant orientational disordering in the G0 phase and the order disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G0 phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO2F4]2 ions can form a superposition of dynamic and staticmore » orientational disorders in the anionic sublattice. A determination of the orientational position of [NH4]+ ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G0 phase. Powder neutron diffraction shows that the orientational disorder of NH4 ions can adequately be described within the free rotation approximation.« less
Kinetic studies of methane-ethane mixed gas hydrates by neutron diffraction and Raman spectroscopy.
Murshed, M Mangir; Kuhs, Werner F
2009-04-16
In situ formations of CH(4)-C(2)H(6) mixed gas hydrates were made using high flux neutron diffraction at 270 K and 5 MPa. For this purpose, a feed gas composition of CH(4) and C(2)H(6) (95 mol% CH(4)) was employed. The rates of transformation of spherical grains of deuterated ice Ih into hydrates were measured by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. Phase fractions of the crystalline constituents were obtained from Rietveld refinements. A concomitant formation of structure type I (sI) and structure type II (sII) hydrates were observed soon after the gas pressure was applied. The initial fast formation of sII hydrate reached its maximum volume and started declining very slowly. The formation of sI hydrate followed a sigmoid growth kinetics that slowed down due to diffusion limitation. This observation has been interpreted in terms of a kinetically favored nucleation of the sII hydrate along with a slow transformation into sI. Both powder diffraction and Raman spectroscopic results suggest that a C(2)H(6)-rich sII hydrate was formed at the early part of the clathration, which slowly decreased to approximately 3% after a reaction of 158 days as confirmed by synchrotron XRD. The final persistence of a small portion of sII hydrate points to a miscibility gap between CH(4)-rich sI and C(2)H(6)-rich sII hydrates.
NASA Astrophysics Data System (ADS)
Castellote, Marta; Llorente, I.; Andrade, Carmen; Turrillas, X.; Alonso, Cruz; Campo, Javier
2006-11-01
Realkalisation is an electrochemical technique for repairing concrete structures damaged by rebar corrosion due to carbonation. The treatment aims at restoring alkalinity of the concrete by application of a continuous current between the rebar, acting as a cathode, and an external auxiliary electrode placed in a carbonate solution and connected to a positive pole of a power supply. Here we report the application of neutron diffraction in the in situ monitoring of a realkalisation treatment, analysing at the same time the development of the electro-osmotic flux and the microstructural variations in the surroundings of the rebar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, R. L.; Wang, Y. D.; Nie, Z. H.
2008-01-01
This paper deals with the experimental study of stress-induced phase transformation in a polycrystalline Ni-Mn-Ga alloy under uniaxial compression and its powder under hydrostatic compression. In situ neutron diffraction experiments were employed to follow changes in the structure and lattice strains caused by the applied stresses. Large lattice strains that are dependent on the lattice planes or grain orientations were observed in the parent Heusler phase for both the bulk material and the powder sample. The development of such anisotropic strains and the influence of external load conditions are discussed in the paper.
Neutron scattering study of the interplay between structure and magnetism in Ba(Fe1-xCox)2As2
NASA Astrophysics Data System (ADS)
Lester, C.; Chu, Jiun-Haw; Analytis, J. G.; Capelli, S. C.; Erickson, A. S.; Condron, C. L.; Toney, M. F.; Fisher, I. R.; Hayden, S. M.
2009-04-01
Single-crystal neutron diffraction is used to investigate the magnetic and structural phase diagrams of the electron-doped superconductor Ba(Fe1-xCox)2As2 . Heat-capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe2As2 into two distinct transitions. For x=0.025 , we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (TTO=99±0.5K) and the antiferromagnetic transition occurs at TAF=93±0.5K . We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x≈0.055 . However, there is a region of coexistence of antiferromagnetism and signatures of superconductivity obtained from thermodynamic and transport properties. For all the compositions studied, we find two anomalies in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction at the same temperatures where anomalies in the heat capacity and resistivity have been previously identified. Thus for x=0.025 , where we have shown that the lower anomaly occurs at TAF , we infer that there is strong coupling between the antiferromagnetism and the crystal lattice which may persist to larger x .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fengqi; Kuang, Xiaojun, E-mail: kuangxj@glut.edu.cn
The structure of 18-layer shifted B-site deficient hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} compound has been re-examined by neutron powder diffraction. Structural analysis reveals that La{sub 6}MgTi{sub 4}O{sub 18} compound adopts a 18R octahedral-tilted structure with LaO{sub 3} layer stacking sequence of (hhcccc){sub 3} in space group R{sup {sup -}}3, in contrast with the previously proposed R3m. La{sub 6}MgTi{sub 4}O{sub 18} demonstrates partially ordered Mg cation distribution with a preference on the central octahedral sites over the outer octahedral sites in the cubic perovskite blocks isolated by the single vacant octahedral layers between the two consecutive hexagonal layers. The instabilitymore » of the La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic substrate at high temperature and its dependencies of cell parameters and permittivity were characterized as well. - Graphical abstract: 18-layer shifted hexagonal perovskite La{sub 6}MgTi{sub 4}O{sub 18} adopts octahedral-tilted structure in R{sup {sup -}}3 and demonstrates partially ordered Mg distribution in the cubic perovskite blocks isolated by the vacant octahedral layers. - Highlights: • Neutron diffraction reveals an octahedra-tilted structure in R{sup {sup -}}3 for La{sub 6}MgTi{sub 4}O{sub 18}. • Mg/Ti distribution in La{sub 6}MgTi{sub 4}O{sub 18} is partially ordered in the perovskite blocks. • Instability of La{sub 6}MgTi{sub 4}O{sub 18} on alumina ceramic at high temperature is demonstrated.« less
The early development of neutron diffraction: Science in the wings of the Manhattan Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, Thom; Gawne, Timothy J; Nagler, Stephen E
2012-01-01
Although neutron diffraction was first observed using radioactive decay sources shortly after the discovery of the neutron, it was only with the availability of higher intensity neutron beams from the first nuclear reactors, constructed as part of the Manhattan project, that systematic investigation of Bragg scattering became possible. Remarkably, at a time when the war effort was singularly focused on the development of the atomic bomb, groups working at Oak Ridge and Chicago carried out key measurements and recognized the future utility of neutron diffraction quite independent of its contributions to the measurements of nuclear cross sections. Ernest O. Wollan,more » Lyle B. Borst, and Walter H. Zinn were all able to observe neutron diffraction in 1944 using the X-10 graphite reactor and the CP-3 heavy water reactor.« less
Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels
NASA Astrophysics Data System (ADS)
Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.
2012-06-01
Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.
Residual stress determination in an overlay dissimilar welded pipe by neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Wan Chuck; Em, Vyacheslav; Hubbard, Camden R
2011-01-01
Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results showmore » significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.« less
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.
2018-04-01
We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.
Hirshfeld atom refinement for modelling strong hydrogen bonds.
Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon
2014-09-01
High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, O.I.; Caignaert, V.; Raveau, B.
2011-04-15
Structure determination of the fully intercalated phase Li{sub 12}Mo{sub 5}O{sub 17} and of the deintercalated oxide Li{sub 5}Mo{sub 5}O{sub 17} has been carried out by electron microscopy and neutron powder diffraction. The reversible topotactic transformation between the ordered rock salt structure of the former and the ribbon structure of the latter (closely related to that of Li{sub 4}Mo{sub 5}O{sub 17}) is explained on the following basis: both structures can be described as strips built up as an assembly of infinite ribbons of MoO{sub 6} octahedra that are five octahedra thick, and that differ by slight displacements of the octahedral ribbons.more » We show that the electrochemical behavior of the Li{sub x}Mo{sub 5}O{sub 17} system is based on two sorts of Li{sup +} sites; those that are located within the strips between the ribbons, and those that are located at the border of the strips. The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure. -- Graphical abstract: Structure determination of the fully intercalated phase Li{sub 12}Mo{sub 5}O{sub 17} and of the deintercalated oxide Li{sub 5}Mo{sub 5}O{sub 17} has been carried out by electron microscopy and neutron powder diffraction. The reversible topotactic transformation between the ordered rock salt structure of the former and the ribbon structure of the latter is explained on the following basis: both structures can be described as strips built up as an assembly of infinite ribbons of MoO{sub 6} octahedra that are five octahedra thick, and that differ by slight displacements of the octahedral ribbons. We show that the electrochemical behavior of the Li{sub x}Mo{sub 5}O{sub 17} system is based on two sorts of Li{sup +} sites; those that are located within the strips between the ribbons, and those that are located at the border of the strips. The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure. Research highlights: {yields} Electron microscopy and neutron powder diffraction structure determination {yields} We have explained the reversible topotactic transformation between an ordered rock salt structure and a ribbon structure {yields} We show that the electrochemical behavior of the Li{sub x}Mo{sub 5}O{sub 17} system is based on two sorts of Li{sup +} sites {yields} The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure.« less
Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry
Liao, Jian -Hong; Dhayal, Rajendra Singh; Wang, Xiaoping; ...
2014-10-07
The structure of a nanospheric polyhydrido copper cluster, [Cu 20(H) 11{S 2P(O iPr) 2} 9], was determined by single-crystal neutron diffraction. Cu 20 cluster consists of an elongated triangular orthobicupola constructed from 18 Cu atoms that encapsulate a [Cu 2H 5} 3- ion in the center with an exceptionally short Cu-Cu distance. The eleven hydrides in the cluster display three different coordination modes to the Cu atoms: Six μ 3-hydrides in pyramidal geometry, two μ 4-hydrides in tetrahedral cavity, and three μ 4-hydrides in an unprecedented near square-planar geometry. The neutron data set was collected on a small crystal ofmore » the size 0.20 mm x 0.50 mm x 0.65 mm for seven days using the Spallation Neutron Source TOPAZ single-crystal time-of-flight Laue diffractometer at the Oak Ridge National Laboratory. Furthermore, the final R-factor is 8.64% for 16014 reflections.« less
Magnetic order and electronic structure of 5d 3 double perovskite Sr 2ScOsO 6
Taylor, A. E.; Morrow, R.; Singh, D. J.; ...
2015-03-01
The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr 2ScOsO 6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92 K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Densitymore » functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.« less
Neutron diffraction study of antiferromagnetic ErNi3Ga9 in magnetic fields
NASA Astrophysics Data System (ADS)
Ninomiya, Hiroki; Sato, Takaaki; Matsumoto, Yuji; Moyoshi, Taketo; Nakao, Akiko; Ohishi, Kazuki; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya; Ohara, Shigeo
2018-05-01
We report specific heat, magnetization, magnetoresistance, and neutron diffraction measurements of single crystals of ErNi3Ga9. This compound crystalizes in a chiral structure with space group R 32 . The erbium ions form a two-dimensional honeycomb structure. ErNi3Ga9 displays antiferromagnetic order below 6.4 K. We determined that the magnetic structure is slightly amplitude-modulated as well as antiferromagnetic with q = (0 , 0 , 0.5) . The magnetic properties are described by an Ising-like model in which the magnetic moment is always along the c-axis owing to the large uniaxial anisotropy caused by the crystalline electric field effect in the low temperature region. When the magnetic field is applied along the c-axis, a metamagnetic transition is observed around 12 kOe at 2 K. ErNi3Ga9 possesses crystal chirality, but the antisymmetric magnetic interaction, the so-called Dzyaloshinskii-Moriya (DM) interaction, does not contribute to the magnetic structure, because the magnetic moments are parallel to the DM-vector.
Crystallography, chemistry and structural disorder in the new high-Tc Bi-Ca-Sr-Cu-O superconductor
NASA Technical Reports Server (NTRS)
Veblen, D. R.; Heaney, P. J.; Angel, R. J.; Finger, L. W.; Hazen, R. M.
1988-01-01
Diffraction experiments are reported which indicate that the new Bi-Ca-Sr-Cu-O layer-structure superconductor possesses a primitive orthorhombic unit cell with probable space group Pnnn. The material exhibits severe structural disorder which is primarily related to stacking within the layers. The apparent orthorhombic structure is an average resulting from orthorhombic material mixed with monoclinic domains in two twinned orientations. Two distinct types of structural disorder that are common in materials synthesized to date are also described. This disorder complicates the crystallographic analysis and suggests that X-ray and neutron diffraction methods may yield only an average structure.
Arsenic uptake by gypsum and calcite: Modelling and probing by neutron and X-ray scattering
NASA Astrophysics Data System (ADS)
Fernández-Martínez, A.; Román-Ross, G.; Cuello, G. J.; Turrillas, X.; Charlet, L.; Johnson, M. R.; Bardelli, F.
2006-11-01
Uptaking of contaminants by solid phases is relevant to many issues in environmental science as this process can remove them from solutions and retard their transport into the hydrosphere. Here we report on two structural studies performed on As-doped gypsum (CaSO 4 2H 2O) and calcite (CaCO 3), using neutron (D20-ILL) and X-ray (ID11-ESRF) diffraction data and EXAFS (BM8-ESRF). The aim of this study is to determine whether As gets into the bulk of gypsum and calcite structures or is simply adsorbed on the surface. Different mechanisms of substitution are used as hypotheses. The combined Rietveld analysis of neutron and X-ray diffraction data shows an expansion of the unit cell volume proportional to the As concentration within the samples. DFT-based simulations confirm the increase of the unit cell volume proportional to the amount of carbonate or sulphate groups substituted. Interpolation of the experimental Rietveld data allows us to distinguish As substituted within the structure from that adsorbed on the surface of both minerals. Results obtained by EXAFS analysis from calcite samples show good agreement with the hypothesis of replacement of As into the C crystallographic site.
Pressure-dependent structure of the null-scattering alloy Ti 0.676 Zr 0.324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeidler, Anita; Guthrie, Malcolm; Salmon, Philip S.
2015-05-13
The room temperature structure of the alloy Ti0.676Zr0.324Ti0.676Zr0.324 was measured by X-ray diffraction under compression at pressures up to ~30GPa. This alloy is used as a construction material in high pressure neutron-scattering research and has a mean coherent neutron scattering length of zero, that is, it is a so-called null-scattering alloy. A broad phase transition was observed from a hexagonal close-packed α-phase to a hexagonal ω-phase, which started at a pressure of ≲12GPa≲12GPa and was completed by ~25GPa. The data for the α-phase were fitted by using a third-order Birch–Murnaghan equation of state, giving an isothermal bulk modulus B0=87(4)GPaB0=87(4)GPa andmore » pressure derivative B'0=6.6(8)B0'=6.6(8). The results will help to ensure that accurate structural information can be gained from in situ high pressure neutron diffraction work on amorphous and liquid materials where the Ti0.676Zr0.324Ti0.676Zr0.324 alloy is used as a gasket material.« less
Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer.
Tudisca, V; Bruni, F; Scoppola, E; Angelini, R; Ruzicka, B; Zulian, L; Soper, A K; Ricci, M A
2014-09-01
The process of dynamical arrest, leading to formation of different arrested states such as glasses and gels, along with the closely related process of aging, is central for both basic research and technology. Here we report on a study of the time-dependent structural evolution of two aqueous Laponite clay suspensions at different weight concentrations. Neutron diffraction experiments have been performed with the near and intermediate range order diffractometer (NIMROD) that allows studies of the structure of liquids and disordered materials over a continuous length scale ranging from 1 to 300 Å, i.e., from the atomistic to the mesoscopic scales. NIMROD is presently a unique diffractometer, bridging the length scales traditionally investigated by small angle neutron scattering or small angle x-ray scattering with that accessible by traditional diffractometers for liquids. Interestingly, we have unveiled a signature of aging of both suspensions in the length scale region of NIMROD. This phenomenon, ascribed to sporadic contacts between Laponite platelets at long times, has been observed with the sample arrested as gel or as repulsive glass. Moreover, water molecules within the layers closest to Laponite platelets surface show orientational and translational order, which maps into the crystalline structure of Laponite.
NASA Astrophysics Data System (ADS)
Li, F.; Pomjakushin, V.; Mazet, T.; Sibille, R.; Malaman, B.; Yadav, R.; Keller, L.; Medarde, M.; Conder, K.; Pomjakushina, E.
2018-05-01
The magnetic ordering of La1 /3Sr2 /3FeO3 perovskite has been studied by neutron powder diffraction and 57Fe Mössbauer spectroscopy down to 2 K. From symmetry analysis, a chiral helical model and a collinear model are proposed to describe the magnetic structure. Both are commensurate, with propagation vector k =(0 ,0 ,1 ) in R 3 ¯c space group. In the former model, the magnetic moments of Fe adopt the magnetic space group P 3221 and have helical and antiferromagnetic ordering propagating along the c axis. The model allows only a single Fe site, with a magnetic moment of 3.46(2)μB at 2 K. In the latter model, the magnetic moments of iron ions adopt the magnetic space group C 2 /c or C 2'/c' and are aligned collinearly. The model allows the presence of two inequivalent Fe sites with magnetic moments of amplitude 3.26(3)μB and 3.67(2)μB, respectively. The neutron-diffraction pattern is equally well fitted by either model. The Mössbauer spectroscopy study suggests a single charge state Fe3.66 + above the magnetic transition and a charge disproportionation into Fe(3.66 -ζ )+ and Fe(3.66 +2 ζ )+ below the magnetic transition. The compatibility of the magnetic structure models with the Mössbauer spectroscopy results is discussed.
Low temperature magnetic properties of Nd2Ru2O7
NASA Astrophysics Data System (ADS)
Ku, S. T.; Kumar, D.; Lees, M. R.; Lee, W.-T.; Aldus, R.; Studer, A.; Imperia, P.; Asai, S.; Masuda, T.; Chen, S. W.; Chen, J. M.; Chang, L. J.
2018-04-01
We present magnetic susceptibility, heat capacity, and neutron diffraction measurements of polycrystalline Nd2Ru2O7 down to 0.4 K. Three anomalies in the magnetic susceptibility measurements at 146, 21 and 1.8 K are associated with an antiferromagnetic ordering of the Ru4+ moments, a weak ferromagnetic signal attributed to a canting of the Ru4+ and Nd3+ moments, and a long-range-ordering of the Nd3+ moments, respectively. The long-range order of the Nd3+ moments was observed in all the measurements, indicating that the ground state of the compound is not a spin glass. The magnetic entropy of Rln2 accumulated up to 5 K, suggests the Nd3+ has a doublet ground state. Lattice distortions accompany the transitions, as revealed by neutron diffraction measurements, and in agreement with earlier synchrotron x-ray studies. The magnetic moment of the Nd3+ ion at 0.4 K is estimated to be 1.54(2)µ B and the magnetic structure is all-in all-out as determined by our neutron diffraction measurements.
Growing Larger Crystals for Neutron Diffraction
NASA Technical Reports Server (NTRS)
Pusey, Marc
2003-01-01
Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.
2002-01-01
The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q.; Grigereit, T.E.; Lynn, J.W.
The nuclear and magnetic structures of HoNi{sub 2}B{sub 2}C have been investigated by neutron powder diffraction at room temperature and at 10, 5.1 and 2.2K. The compound crystallizes with the symmetry of space group 14/mmm and has room temperature lattice parameters a = 3.5170(1) and c = 10.5217(3) {angstrom}. No phase transitions of the nuclear structure have been observed in the range of temperatures examined. Magnetic peaks begin to appear at about 8K. The magnetic structure is the superposition of two configurations, one in which ferromagnetic sheets of holmium spins parallel to the a-b plane are coupled antiferromagnetically along themore » c-axis, and another in which the ferromagnetic planes are rotated away from the antiparallel configuration to give an incommensurate helicoidal structure with a period approximately equal to twelve times the length of the c-axis. The helicoidal structure competes with superconductivity while the antiferromagnetism coexists with it.« less
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshpande, S. K.; Angadi, Basavaraj
2018-04-01
The Pb0.7Bi0.3Fe0.65Nb0.35O3 (PBFNO) multiferroic solid solution was synthesized by using single step solid state reaction method. Single phase formation was confirmed through room temperature (RT) X Ray Diffraction (XRD) and Neutron Diffraction (ND). Rietveld refinement was used to perform the structural analysis using FullProf Suite program. RT XRD and ND patterns well fitted with monoclinic structure (Cm space group) and cell parameters from the ND data are found to be a = 5.6474(4) Å, b = 5.6415(3) Å, c = 3.9992(3) Å and β = 89.95(2)°. ND data at RT exhibits G-type antiferromagnetic structure. The electrical properties (impedance and modulus) of PBFNO were studied as a function of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K) by Impedance spectroscopy technique. Impedance and modulus spectroscopy studies confirm the contribution to the conductivity is from grains only and the relaxation is of non-Debye type. The PBFNO sample exhibits negative temperature coefficient of resistance (NTCR) behaviour. PBFNO is found be a potential candidate for RT applications.
Preparation, Crystal Structure, Dielectric Properties, and Magnetic Behavior of Ba 2Fe 2Ti 4O 13
NASA Astrophysics Data System (ADS)
Vanderah, T. A.; Huang, Q.; Wong-Ng, W.; Chakoumakos, B. C.; Goldfarb, R. B.; Geyer, R. G.; Baker-Jarvis, J.; Roth, R. S.; Santoro, A.
1995-11-01
The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba2Fe2Ti4O13 are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K2Ti6O13 and Ba2ZnTi5O13 (C2/m (No. 12); a = 15.216(1), b = 3.8979(3), c = 9.1350(6) Å, β = 98.460(7)°; V = 535.90(8) Å3; Z = 2). The cations Fe3+ and Ti4+ are partially ordered among distorted octahedral sites with Ba2+ occupying eleven-coordinated polyhedra. Ba2Fe2Ti4O13 exhibits TE0 resonance near 10 GHz with a dielectric constant of ∼28 and a dielectric loss tangent of 2 × 10-3. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.
NASA Astrophysics Data System (ADS)
García-Ramos, Crisanto A.; Larrégola, Sebastián; Retuerto, María; Fernández-Díaz, María Teresa; Krezhov, Kiril; Alonso, José Antonio
2018-06-01
New A2Fe(Mn0.5W0.5)O6 (A = Ca, Sr, Ba) double perovskite oxides have been prepared by ceramic techniques. X-ray diffraction (XRD) complemented with neutron powder diffraction (NPD) indicate a structural evolution from monoclinic (space group P21/n) for A = Ca to cubic (Fm-3m) for A = Sr and finally to hexagonal (P63/mmc) for A = Ba as the perovskite tolerance factor increases with the A2+ ionic size. The three oxides present different tilting schemes of the FeO6 and (Mn,W)O6 octahedra. NPD data also show evidence in all cases of a considerable anti-site disordering, involving the partial occupancy of Fe positions by Mn atoms, and vice-versa. Magnetic susceptibility data show magnetic transitions below 50 K characterized by a strong irreversibility between ZFC and FC susceptibility curves. The A = Ca perovskite shows a G-type magnetic structure, with weak ordered magnetic moments due to the mentioned antisite disordering. Interesting magnetostrictive effects are observed for the Sr perovskite below 10 K.
High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials
NASA Technical Reports Server (NTRS)
Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.
2004-01-01
Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.
Magnetic and structural instabilities in CePd 2Al 2 and LaPd 2Al 2
NASA Astrophysics Data System (ADS)
Chapon, L. C.; Goremychkin, E. A.; Osborn, R.; Rainford, B. D.; Short, S.
2006-05-01
We have investigated the crystal and magnetic structure of the RPd 2Al 2 compounds (R=La, Ce) by neutron powder diffraction (ND) and inelastic neutron scattering (INS). The ND study shows that both compounds undergo a structural phase transition from tetragonal to orthorhombic symmetry at 91.5 K (La) and 13.5 K (Ce). In the case of CePd 2Al 2 the crystal field excitation spectrum, which has an extra peak that cannot be explained by a standard crystal field model, indicates the presence of strong magneto-elastic coupling.
Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.
2011-01-01
An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rheinstaedter, Maikel C.; Enderle, Mechthild; Kloepperpieper, Axel
2005-01-01
Methanol-{beta}-hydroquinone clathrate has been established as a model system for dielectric ordering and fluctuations and is conceptually close to magnetic spin systems. In x-ray and neutron diffraction experiments, we investigated the ordered structure, the one-dimensional (1D) and the three-dimensional critical scattering in the paraelectric phase, and the temperature dependence of the lattice constants. Our results can be explained by microscopic models of the methanol pseudospin in the hydroquinone cage network, in consistency with previous dielectric investigations. A coupling of the 1D fluctuations to local strains leads to an anomalous temperature dependence of the 1D lattice parameter in the paraelectric regime.
Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.
Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R
2013-04-01
Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Experimental Report: ORNL Proposal ID IPTS 8937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirmelstein, A.
2014-02-03
Neutron scattering experiment was performed using fine-resolution Fermi chopper spectrometer “SEQUOIA” installed at the Spallation Neutron Source, ORNL. Although this spectrometer is designed to measure inelastic neutron scattering spectra, during experiments a signal of elastic scattering is also recorded. The coherent nuclear component of this elastic scattering provides Bragg diffraction pattern of a sample, i.e., CeNi single crystal in our case. Therefore, it is possible to follow the CeNi structural variations as a function of pressure and to register structural phase transition. Measurements were performed at the temperature of 15 K under pressure of zero (ambient pressure at 15 K),more » 400, 800, and 2200 bars.« less
Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...
2014-11-28
The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less
NASA Astrophysics Data System (ADS)
Reim, J. D.; Rosén, E.; Zaharko, O.; Mostovoy, M.; Robert, J.; Valldor, M.; Schweika, W.
2018-04-01
The hexagonal swedenborgite, CaBaCo2Fe2O7 , is a chiral frustrated antiferromagnet, in which magnetic ions form alternating kagome and triangular layers. We observe a long-range √{3 }×√{3 } antiferromagnetic order setting in below TN=160 K by neutron diffraction on single crystals of CaBaCo2Fe2O7 . Both magnetization and polarized neutron single crystal diffraction measurements show that close to TN spins lie predominantly in the a b plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya interactions. The ordered structure can be described and refined within the magnetic space group P 31 m' . Diffuse scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and coexistence of the √{3 }×√{3 } order with disorder. The coexistence can be explained by the freedom to vary spins without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken inversion symmetry of the lattice, in agreement with our symmetry analysis.
NASA Astrophysics Data System (ADS)
Vagadia, Megha; Hester, James; Nigam, A. K.
2018-04-01
We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.
NASA Astrophysics Data System (ADS)
Röska, B.; Park, S.-H.; Behal, D.; Hess, K.-U.; Günther, A.; Benka, G.; Pfleiderer, C.; Hoelzel, M.; Kimura, T.
2018-06-01
Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, . Its honeycomb-like H-bond network running without interruption along the crystallographic axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature –83 K could be determined from the structure analysis with neutron diffraction data at 25 K.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-06-30
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.
Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2016-01-01
Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605
LaCu6-xAgx : A promising host of an elastic quantum critical point
NASA Astrophysics Data System (ADS)
Poudel, L.; Cruz, C. de la; Koehler, M. R.; McGuire, M. A.; Keppens, V.; Mandrus, D.; Christianson, A. D.
2018-05-01
Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P21 / c) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc = 0.225 . All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx .
LaCu 6-xAg x: A promising host of an elastic quantum critical point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Lekh; Dela Cruz, Clarina R.; Koehler, Michael R.
Structural properties of LaCu 6-xAg x have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu 6-xAg x decrease with Ag composition until the monoclinic phase is completely suppressed at x c=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu 6-xAg x.
Structure of alkali tellurite glasses from neutron diffraction and molecular orbital calculations
NASA Astrophysics Data System (ADS)
Niida, Haruki; Uchino, Takashi; Jin, Jisun; Kim, Sae-Hoon; Fukunaga, Toshiharu; Yoko, Toshinobu
2001-01-01
The structure of pure TeO2 and alkali tellurite glasses has been examined by neutron diffraction and ab initio molecular orbital methods. The experimental radial distribution functions along with the calculated results have demonstrated that the basic structural units in tellurite glasses change from highly strained TeO4 trigonal bipyramids to more regular TeO3 trigonal pyramids with increasing alkali content. It has also been shown that the TeO3 trigonal pyramids do not exist in the form of isolated units in the glass network but interact with each other to form intertrigonal Te⋯O linkages. The present results suggest that nonbridging oxygen (NBO) atoms in tellurite glasses do not exist in their "pure" form; that is, all the NBO atoms in TeO3 trigonal bipyramids will interact with the first- and/or second-neighbor Te atoms, resulting in the three-dimensional continuous random network even in tellurite glasses with over 30 mol % of alkali oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Xueming; Duan, Yonghao; He, Lilin
A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porositymore » after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.« less
Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang
2017-05-01
A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, S.W.; Eckert, J.; Barthes, M.
1995-11-02
The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenylmore » ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.« less
Dhayal, Rajendra S.; Liao, Jian-Hong; Kahlal, Samia; ...
2015-04-20
An air- and moisture-stable nanoscale polyhydrido copper cluster [Cu 32(H) 20{S 2P(O i Pr) 2 } 12 ] (1 H) was synthesized and structurally characterized. The molecular structure of 1 H exhibits a hexacapped pseudo-rhombohedral core of 14 Cu atoms sandwiched between two nestlike triangular cupola fragments of (2x9) Cu atoms in an elongated triangular gyrobicupola polyhedron. The discrete Cu 32 cluster is stabilized by 12 dithiophosphate ligands and a record number of 20 hydride ligands, which were found by high-resolution neutron diffraction to exhibit tri-, tetra-, and pentacoordinated hydrides in capping and interstitial modes. We conclude that this resultmore » was further supported by a density functional theory investigation on the simplified model [Cu 32(H) 20(S 2PH 2) 12].« less
The Crystal Structures of Potentially Tautomeric Compounds
NASA Astrophysics Data System (ADS)
Furmanova, Nina G.
1981-08-01
Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.
The magnetic structure of Co(NCNH)₂ as determined by (spin-polarized) neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Senyshyn, Anatoliy
The magnetic structure of Co(NCNH)₂ has been studied by neutron diffraction data below 10 K using the SPODI and DNS instruments at FRM II, Munich. There is an intensity change in the (1 1 0) and (0 2 0) reflections around 4 K, to be attributed to the onset of a magnetic ordering of the Co²⁺ spins. Four different spin orientations have been evaluated on the basis of Rietveld refinements, comprising antiferromagnetic as well as ferromagnetic ordering along all three crystallographic axes. Both residual values and supplementary susceptibility measurements evidence that only a ferromagnetic ordering with all Co²⁺ spins parallelmore » to the c axis is a suitable description of the low-temperature magnetic ground state of Co(NCNH)₂. The deviation of the magnetic moment derived by the Rietveld refinement from the expectancy value may be explained either by an incomplete saturation of the moment at temperatures slightly below the Curie temperature or by a small Jahn–Teller distortion. - Graphical abstract: The magnetic ground state of Co(NCNH)₂ has been clarified by (spin-polarized) neutron diffraction data at low temperatures. Intensity changes below 4 K arise due to the onset of ferromagnetic ordering of the Co²⁺ spins parallel to the c axis, corroborated by various (magnetic) Rietveld refinements. Highlights: • Powderous Co(NCNH)₂ has been subjected to (spin-polarized) neutron diffraction. • Magnetic susceptibility data of Co(NCNH)₂ have been collected. • Below 4 K, the magnetic moments align ferromagnetically with all Co²⁺ spins parallel to the c axis. • The magnetic susceptibility data yield an effective magnetic moment of 4.68 and a Weiss constant of -13(2) K. • The ferromagnetic Rietveld refinement leads to a magnetic moment of 2.6 which is close to the expectancy value of 3.« less
NASA Astrophysics Data System (ADS)
Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton
2016-09-01
Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.
Ushakov, Sergey V.; Navrotsky, Alexandra; Weber, Richard J. K.; ...
2015-07-28
High-temperature time-of-flight neutron diffraction experiments were performed in this paper on cubic yttria-stabilized zirconia (YSZ, 10 mol% YO 1.5) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO 2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10 -6/K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZmore » are similar and within (7 ± 2) × 10 -6/K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10 -6/K at 2350°C–2550°C with oxygen displacement parameters (U iso) reaching 0.1 Å 2, similar to behavior observed in UO 2. Acquisition of powder-like high-temperature neutron diffraction data from solid-levitated samples is feasible and possible improvements are outlined. Finally, this methodology should be applicable to a wide range of materials for high-temperature applications.« less
Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V
2015-07-01
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron crystallography therefore remains the only approach where diffraction data can be collected at room temperature without radiation damage issues and the only approach to locate mobile or highly polarized H atoms and protons. Here a review of the current status of sub-atomic X-ray and neutron macromolecular crystallography is given and future prospects for combined approaches are outlined. New results from two metalloproteins, copper nitrite reductase and cytochrome c', are also included, which illustrate the type of information that can be obtained from sub-atomic-resolution (∼0.8 Å) X-ray structures, while also highlighting the need for complementary neutron studies that can provide details of H atoms not provided by X-ray crystallography.
NASA Technical Reports Server (NTRS)
Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Zhao, Y.; Palosz, B.; Palosz, W.
2003-01-01
Key properties of nanocrystals are determined by their real atomic structure, therefore a reasonable understanding and meaningful interpretation of their properties requires a realistic model of the structure. In this paper we present an evidence of a complex response of the lattice distances to external pressure indicating a presence of a complex structure of Sic nanopowders. The experiments were performed on nanocrystalline Sic subjected to hydrostatic or isostatic pressure using synchrotron and neutron powder diffraction. Elastic properties of the samples were examined based on X-ray diffraction data using a Diamond Anvil Cell (DAC) in HASYLAB at DESY. The dependence'of the lattice parameters and of the Bragg reflections width with pressure exhibits a ha1 nature of the properties (compressibilities) of the powders and indicates a complex structure of the grains. We interpreted tws behaviour as originating from different elastic properties of the grain interior and surface. Analysis of the dependence of individual interatomic distances on pressure was based on in-situ neutron diffraction measurements done with HbD diffractometer at LANSCE in Los Alamos National Laboratory with the Paris-Edinburgh cell under pressures up to 8 GPa (Qmax = 26/A). Interatomic distances were obtained by PDF analysis using the PDFgetN program. We have found that the interatomic distances undergo a complex, non-monotonic changes. Even under substantial pressures a considerable relaxation of the lattice may take place: some interatomic distances increase with an increase in pressure. We relate this phenomenon to: (1), changes of the microstructure of the densified material, in particular breaking of its fractal chain structure and, (2), its complex structure resembling that of a material composed of two phases, each with its distinct elastic properties.
Investigation of Renal Stones by X-ray and Neutron Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeva, M.; Boianova, A.; Beskrovnyi, A. I.
2007-04-23
Renal stones were investigated by X-ray diffraction. The obtained results showed only one crystal phase in every sample. With the aim to verify eventual availability of second phase (under 3 volume %) the same renal stones were investigated by neutron diffraction. The neutron spectra proved that additional crystal phase was absent in the renal stones. The obtained results are scientific-practical, in aid of the medicine, especially in the case of renal stone disease.
NASA Astrophysics Data System (ADS)
Jin, Long-huan; W, J. James; J, Rhyne; R, Lemaire
1985-06-01
Powder neutron diffraction measurements have been carried out on the intermetallic compound DyFe3 at 4 and 295K. The magnetic structure of the compound at 4 and 295K are noncollinear but coplanar in the a-c plane, and the moments of the Dy and Fe ions lie closer to the basal plane.
NASA Astrophysics Data System (ADS)
Sharma, Neeraj; Peterson, Vanessa K.; Elcombe, Margaret M.; Avdeev, Maxim; Studer, Andrew J.; Blagojevic, Ned; Yusoff, Rozila; Kamarulzaman, Norlida
The structural response to electrochemical cycling of the components within a commercial Li-ion battery (LiCoO 2 cathode, graphite anode) is shown through in situ neutron diffraction. Lithuim insertion and extraction is observed in both the cathode and anode. In particular, reversible Li incorporation into both layered and spinel-type LiCoO 2 phases that comprise the cathode is shown and each of these components features several phase transitions attributed to Li content and correlated with the state-of-charge of the battery. At the anode, a constant cell voltage correlates with a stable lithiated graphite phase. Transformation to de-lithiated graphite at the discharged state is characterised by a sharp decrease in both structural cell parameters and cell voltage. In the charged state, a two-phase region exists and is composed of the lithiated graphite phase and about 64% LiC 6. It is postulated that trapping Li in the solid|electrolyte interface layer results in minimal structural changes to the lithiated graphite anode across the constant cell voltage regions of the electrochemical cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekkebus, Allen E
Oak Ridge National Laboratory hosted two workshops in April 2007 relevant to nuclear engineering education. In the Neutron Stress, Texture, and Phase Transformation for Industry workshop [http://neutrons.ornl.gov/workshops/nst2/], several invited speakers gave examples of neutron stress mapping for nuclear engineering applications. These included John Root of National Research Council of Canada, Mike Fitzpatrick of the UK's Open University, and Yan Gao of GE Global Research on their experiences with industrial and academic uses of neutron diffraction. Xun-Li Wang and Camden Hubbard described the new instruments at ORNL that can be used for such studies. This was preceded by the Neutrons formore » Materials Science and Engineering educational symposium [http://neutrons.ornl.gov/workshops/edsym2007]. It was directed to the broad materials science and engineering community based in universities, industry and laboratories who wish to learn what the neutron sources in the US can provide for enhancing the understanding of materials behavior, processing and joining. Of particular interest was the presentation of Donald Brown of Los Alamos about using 'Neutron diffraction measurements of strain and texture to study mechanical behavior of structural materials.' At both workshops, the ORNL neutron scattering instruments relevant to nuclear engineering studies were described. The Neutron Residual Stress Mapping Facility (NRSF2) is currently in operation at the High Flux Isotope Reactor; the VULCAN Engineering Materials Diffractometer will begin commissioning in 2008 at the Spallation Neutron Source. For characteristics of these instruments, as well as details of other workshops, meetings, capabilities, and research proposal submissions, please visit http://neutrons.ornl.gov. To submit user proposals for time on NRSF2 contact Hubbard at hubbardcr@ornl.gov.« less
Structure of aqueous proline via parallel tempering molecular dynamics and neutron diffraction.
Troitzsch, R Z; Martyna, G J; McLain, S E; Soper, A K; Crain, J
2007-07-19
The structure of aqueous L-proline amino acid has been the subject of much debate centering on the validity of various proposed models, differing widely in the extent to which local and long-range correlations are present. Here, aqueous proline is investigated by atomistic, replica exchange molecular dynamics simulations, and the results are compared to neutron diffraction and small angle neutron scattering (SANS) data, which have been reported recently (McLain, S.; Soper, A.; Terry, A.; Watts, A. J. Phys. Chem. B 2007, 111, 4568). Comparisons between neutron experiments and simulation are made via the static structure factor S(Q) which is measured and computed from several systems with different H/D isotopic compositions at a concentration of 1:20 molar ratio. Several different empirical water models (TIP3P, TIP4P, and SPC/E) in conjunction with the CHARMM22 force field are investigated. Agreement between experiment and simulation is reasonably good across the entire Q range although there are significant model-dependent variations in some cases. In general, agreement is improved slightly upon application of approximate quantum corrections obtained from gas-phase path integral simulations. Dimers and short oligomeric chains formed by hydrogen bonds (frequently bifurcated) coexist with apolar (hydrophobic) contacts. These emerge as the dominant local motifs in the mixture. Evidence for long-range association is more equivocal: No long-range structures form spontaneously in the MD simulations, and no obvious low-Q signature is seen in the SANS data. Moreover, associations introduced artificially to replicate a long-standing proposed mesoscale structure for proline correlations as an initial condition are annealed out by parallel tempering MD simulations. However, some small residual aggregates do remain, implying a greater degree of long-range order than is apparent in the SANS data.
The impact of chemical doping on the magnetic state of the Sr{sub 2}YRuO{sub 6} double perovskite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayser, Paula; Ranjbar, Ben; Kennedy, Brendan J.
The impact of chemical doping of the type Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties of Sr{sub 2}YRuO{sub 6}, probed using variable temperature magnetic susceptibility, neutron diffraction and heat capacity measurements, are described. Specific-heat measurements of un-doped Sr{sub 2}YRuO{sub 6} reveal two features at ∼26 and ∼30 K. Neutron scattering measurements at these temperatures are consistent with a change from a 2D ordered state to the 3D type 1 AFM state. Magnetic and structural studies of a number of doped oxides are described that highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} andmore » demonstrate that doping destabilizes the intermediate 2D ordered state. - Graphical abstract: Neutron diffraction measurements of the ordered double perovskite Sr{sub 2}YRuO{sub 6}reveal a with a change from a 2D ordered state to the 3D type 1 AFM state upon cooling. The impact of chemical doping Sr{sub 2−x}A{sub x}YRuO{sub 6} (A=Ca, Ba) on the low temperature magnetic properties have also been investigated and these highlight the unique low temperature behavior of Sr{sub 2}YRuO{sub 6} with doping destabilizing the intermediate 2D ordered state. - Highlights: • Crystal and Magnetic Structure of Sr{sub 2}YRuO{sub 3} was studied using Neutron Diffraction. • Effect of doping on the magnetic ground state established. • Origin of two low temperature transitions discussed.« less
Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denninger, Andrew R.; Demé, Bruno; Cristiglio, Viviana
2014-12-01
The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, Schmidt–Lanterman incisures andmore » the axo–glial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.« less
Magnetostructural transition in Fe{sub 5}SiB{sub 2} observed with neutron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se; Kontos, Sofia; Hansen, Thomas C.
2016-03-15
The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by a combination of X-ray and neutron diffraction. Also, the magnetocrystalline anisotropy energy constant has been estimated from magnetisation measurements. High quality samples have been prepared using high temperature synthesis and subsequent heat treatment protocols. The crystal structure is tetragonal within the space group I4/mcm and the compound behaves ferromagnetically with a Curie temperature of 760 K. At 172 K a spin reorientation occurs in the compound and the magnetic moments go from aligning along the c-axis (high T) down to the ab-plane (low T). The magnetocrystalline anisotropymore » energy constant has been estimated to 0.3 MJ/m{sup 3} at 300 K. - Highlights: • The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by diffraction. • At 172 K a spin reorientation occurs in the compound. • The magnetic moments are aligned along the c-axis at high T. • The magnetic moments are aligned in the ab-plane at low T. • The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3}.« less
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; Sangeetha, N. S.; Sapkota, A.; Kothapalli, K.; Anand, V. K.; Tian, W.; Vaknin, D.; Johnston, D. C.; McQueeney, R. J.; Goldman, A. I.; Ueland, B. G.
2017-02-01
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca (Co1-xFex) yAs2 , 0 ≤x ≤1 , 1.86 ≤y ≤2 , are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲0.12 (1 ) . The antiferromagnetic order is smoothly suppressed with increasing x , with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤0.25 , nor does ferromagnetic order for x up to at least x =0.104 , and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo1.86As2 to the tetragonal (T) phase of CaFe2As2 occurs. These results suggest that hole doping CaCo1.86As2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
NMR crystallography of α-poly(L-lactide).
Pawlak, Tomasz; Jaworska, Magdalena; Potrzebowski, Marek J
2013-03-07
A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munshi, Parthapratim; Myles, Dean A A; Robertson, Lee
2013-01-01
We report the first high resolution neutron protein structure of perdeuterated rubredoxin from Pyrococcus furiosus (PfRd) determined using the new IMAGINE macromolecular neutron crystallography instrument at the Oak Ridge National Laboratory. Neutron diffraction data extending to 1.65 resolution were collected from a relatively small 0.7 mm3 PfRd crystal using 2.5 days (60 h) of beam time. The refined structure contains 371 out of 391, or 95%, of the deuterium atoms of the protein, and 58 solvent molecules. The IMAGINE instrument is designed to provide neutron data at or near atomic resolutions (1.5 ) from crystals with volume < 1.0 mm3more » and with unit cell edges < 100 . Beam line features include elliptical focusing mirrors that deliver 3x107 n s-1 cm-2 into a 3.5 x 2.0 mm2 focal spot at the sample position, and variable short and long wavelength cutoff optics that provide automated exchange between multiple wavelength configurations ( min=2.0 , 2.8 , 3.3 - max =3.0 , 4.0 , 4.5 , ~20 ). Notably, the crystal used to collect this PfRd data is 5-10 times smaller than has been previously reported.« less
Diffraction Techniques in Structural Biology
Egli, Martin
2016-01-01
A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784
Diffraction Techniques in Structural Biology
Egli, Martin
2010-01-01
A detailed understanding of chemical and biological function and the mechanisms underlying the activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy and neutron diffraction are well established and have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches and high-speed computing and visualization, now provide specialists and non-specialists alike with a steady flow of molecular images of unprecedented detail. The present chapter combines a general overview of diffraction methods with a step-by-step description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991
Diffraction Techniques in Structural Biology.
Egli, Martin
2016-06-01
A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude
2014-11-28
Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.
NASA Astrophysics Data System (ADS)
Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.
2017-12-01
We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.
Further Improvement of the RITS Code for Pulsed Neutron Bragg-edge Transmission Imaging
NASA Astrophysics Data System (ADS)
Sato, H.; Watanabe, K.; Kiyokawa, K.; Kiyanagi, R.; Hara, K. Y.; Kamiyama, T.; Furusaka, M.; Shinohara, T.; Kiyanagi, Y.
The RITS code is a unique and powerful tool for a whole Bragg-edge transmission spectrum fitting analysis. However, it has had two major problems. Therefore, we have proposed methods to overcome these problems. The first issue is the difference in the crystallite size values between the diffraction and the Bragg-edge analyses. We found the reason was a different definition of the crystal structure factor. It affects the crystallite size because the crystallite size is deduced from the primary extinction effect which depends on the crystal structure factor. As a result of algorithm change, crystallite sizes obtained by RITS drastically approached to crystallite sizes obtained by Rietveld analyses of diffraction data; from 155% to 110%. The second issue is correction of the effect of background neutrons scattered from a specimen. Through neutron transport simulation studies, we found that the background components consist of forward Bragg scattering, double backward Bragg scattering, and thermal diffuse scattering. RITS with the background correction function which was developed through the simulation studies could well reconstruct various simulated and experimental transmission spectra, but refined crystalline microstructural parameters were often distorted. Finally, it was recommended to reduce the background by improving experimental conditions.
XaNSoNS: GPU-accelerated simulator of diffraction patterns of nanoparticles
NASA Astrophysics Data System (ADS)
Neverov, V. S.
XaNSoNS is an open source software with GPU support, which simulates X-ray and neutron 1D (or 2D) diffraction patterns and pair-distribution functions (PDF) for amorphous or crystalline nanoparticles (up to ∼107 atoms) of heterogeneous structural content. Among the multiple parameters of the structure the user may specify atomic displacements, site occupancies, molecular displacements and molecular rotations. The software uses general equations nonspecific to crystalline structures to calculate the scattering intensity. It supports four major standards of parallel computing: MPI, OpenMP, Nvidia CUDA and OpenCL, enabling it to run on various architectures, from CPU-based HPCs to consumer-level GPUs.
Neutron-scattering spectrum of cesium hydrogen dinitrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roziere, J.; Berney, C.V.
1976-03-17
The neutron-scattering spectrum of cesium hydrogen dinitrate was obtained in order to complete previously reported structural chemical studies obtained by x-ray diffraction and infrared-Raman spectra. The proton position was of particular interest. Satellite peak intensities suggested proton coupling to motions of the NO/sub 3//sup -/ groups, and therefore not located at the center of the distorted tetrahedron formed by four of the oxygen groups. The precise position of the proton was not established. (DDA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298–220 K). We interpret this change in terms of the dynamic transition previously discussed using othermore » probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.« less
Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei
Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less
NASA Astrophysics Data System (ADS)
Yoshida, Koji; Baron, Alfred Q. R.; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-01
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Yoshida, Koji; Baron, Alfred Q R; Uchiyama, Hiroshi; Tsutsui, Satoshi; Yamaguchi, Toshio
2016-04-07
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Anti-site mixing and magnetic properties of Fe 3Co 3Nb 2 studied via neutron powder diffraction
Xu, Xiaoshan; Zhang, Xiaozhe; Yin, Yuewei; ...
2016-11-02
Here, we studied the crystal structure and magnetic properties of the rare-earth-free intermetallic compound Fe 3Co 3Nb 2, which has recently been demonstrated to have potentially high magnetic anisotropy, using temperature-dependent neutron powder diffraction. Furthermore, the temperature dependence of the diffraction spectra reveals a magnetic transition between 300 and 400 K, in agreement with the magnetometry measurements. According to the structural refinement of the paramagnetic state and the substantial magnetic contribution to the diffuse scattering in the ferromagnetic state, the Fe/Co anti-site mixing is so strong that the site occupation for Fe and Co is almost random. The projection ofmore » the magnetic moments turned out to be non-zero along the c axis and in the a–b plane of Fe 3Co 3Nb 2, most likely because of the exchange interactions between the randomly orientated nanograins in the samples. These findings suggest that future studies on the magnetism of Fe 3Co 3Nb 2 need to take the Fe/Co anti-site mixing into account, and the exchange interactions need to be suppressed to obtain large remanence and coercivity.« less
Neutron Reflectivity and Grazing Angle Diffraction
Ankner, J. F.; Majkrzak, C. F.; Satija, S. K.
1993-01-01
Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included. PMID:28053457
NASA Astrophysics Data System (ADS)
Weber, J. K. R.; Benmore, C. J.; Tailor, A. N.; Tumber, S. K.; Neuefeind, J.; Cherry, B.; Yarger, J. L.; Mou, Q.; Weber, W.; Byrn, S. R.
2013-10-01
Acoustic levitation was used to trap 1-3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.
Cesium vacancy ordering in phase-separated C s x F e 2 - y S e 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taddei, K. M.; Sturza, M.; Chung, D. Y.
2015-09-01
By simultaneously displaying magnetism and superconductivity in a single phase, the iron based superconductors provide a model system for the study of magnetism’s role in superconductivity. The class of intercalated iron selenide superconductors is unique amongst these in having the additional property of phase separation and coexistence of two distinct phases - one majority phase with iron vacancy ordering and strong antiferromagnetism and the other a poorly understood minority microscopic phase with a contested structure. Adding to the intrigue, the majority phase has never been found to show superconductivity on its own while the minority phase has never been successfullymore » synthesized separate from the majority phase. In order to better understand this minority phase, a series of high quality CsxFe2-ySe2 single crystals with (0.8 ≤ x ≤ 1; 0 ≤ y ≤ 0.3) were grown and studied. Neutron and x-ray powder diffraction performed on ground crystals show the average structure of the minority phase to be I4/mmm, however, the temperature evolution of its lattice parameters shows it to be distinct from the high temperature I4/mmm parent structure. Neutron and x-ray diffraction experiments performed on single crystal samples reveal the presence of previously unobserved discrete superlattice reflections that remove the degeneracy of the Cs sites in both the majority and minority phases and reduce their structural symmetries from body-centered to primitive. Group theoretical analysis in conjunction with structural modeling shows that the observed superlattice reflections originate from a three-dimensional Cs vacancy ordering in the minority phase. This model predicts a 25% vacancy of the Cs site which is consistent with the site’s refined occupancy. Magnetization measurements performed in tandem with neutron single crystal diffraction provide evidence that the minority phase is the host of superconductivity. Our results also reveal a superconducting dome in which the superconducting transition temperature varies as a function of the valence of iron.« less
Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.
Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less
Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations
Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.; ...
2016-08-29
Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less
Low Temperature Magnetic Ordering of the Magnetic Ionic Plastic Crystal, Choline[FeCl4
NASA Astrophysics Data System (ADS)
de Pedro, I.; García-Saiz, A.; Andreica, D.; Fernández Barquín, L.; Fernández-Díaz, M. T.; Blanco, J. A.; Amato, A.; Rodríguez Fernández, J.
2015-11-01
We report on the nature of the low temperature magnetic ordering of a magnetic ionic plastic crystal, Choline[FeCl4]. This investigation was carried out using heat capacity measurements, neutron diffraction experiments and muon spin relaxation (μSR) spectroscopy. The calorimetric measurements show the onset of an unusual magnetic ordering below 4 K with a possible second magnetic phase transition below 2 K. Low temperature neutron diffraction data reveal a three dimensional antiferromagnetic ordering at 2 K compatible with the previous magnetometry results. The analysis of μSR spectra indicates a magnetic phase transition below 2.2 K. At 1.6 K, the analysis of the shape of the μSR spectra suggests the existence of an additional magnetic phase with features of a possible incommensurate magnetic structure.
X-ray and neutron diffraction anomalies preceding martensitic phase transformation in AuCuZn2 alloys
NASA Astrophysics Data System (ADS)
Nagasawa, A.; Makita, T.; Nakanishi, N.; Iizumi, M.; Morii, Y.
1988-04-01
The present paper gives the results obtained by the X-ray and neutron diffraction studies on the single crystals of the beta-1 AuCuZn2 alloys. As precursor phenomena, the dispersion relation of the [110] TA1 phonon exhibits significant dip near 2/3 [110] q max position and anomalous peaks appear around 1/3 and 2/3 [110] q max positions. Characteristics of the interplanar force constants, obtained by the analysis of the dispersion relation, and the positions of the anomalous peaks predict the martensite structures to be formed in the beta phase alloys. In the present case, both the 6R and 18R martensites will be formed by cooling and/or under the stress field.
NASA Astrophysics Data System (ADS)
Landron, C.; Hennet, L.; Jenkins, T. E.; Greaves, G. N.; Coutures, J. P.; Soper, A. K.
2001-05-01
The neutron scattering structure factor SN\\(Q\\) for a 40 mg drop of molten alumina ( Al2O3) held at 2500 K, using a laser-heated aerodynamic levitation furnace, is measured for the first time. A 1700 atom model of liquid alumina is generated from these data using the technique of empirical potential structural refinement. About 62% of the aluminum sites are 4-fold coordinated, matching the mostly triply coordinated oxygen sites, but some 24% of the aluminum sites are 5-fold coordinated. The octahedral aluminum sites found in crystalline α-Al2O3 occur only at the 2% level in liquid alumina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoica, Alexandru Dan
2011-01-01
Twin variant reorientation in single-crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that, during compressive loading, {approx}85% of the twins were reoriented parallel to the loading direction resulting in a maximum pseudoplasticstrain of {approx}5.5%, which is in agreement with measured macroscopic strain.
Field-induced reentrant magnetoelectric phase in LiNiPO 4
Toft-Petersen, Rasmus; Fogh, Ellen; Kihara, Takumi; ...
2017-02-21
Using pulsed magnetic fields up to 30 T we have measured the bulk magnetization and electrical polarization of LiNiPO 4 and have studied its magnetic structure by time-of-flight neutron Laue diffraction. Our data establish the existence of a reentrant magnetoelectric phase between 19 T and 21 T. We show that a magnetized version of the zero field commensurate structure explains the magnetoelectric response quantitatively. The stability of this structure suggests a field-dependent spin anisotropy. Above 21 T , a magnetoelectrically inactive, short-wavelength incommensurate structure is identified. Lastly, our results demonstrate the combination of pulsed fields with epithermal neutron Laue diffractionmore » as a powerful method to probe even complex phase diagrams in strong magnetic fields.« less
Frustrated magnetism in the double perovskite L a2LiOs O6 : A comparison with L a2LiRu O6
NASA Astrophysics Data System (ADS)
Thompson, C. M.; Marjerrison, C. A.; Sharma, A. Z.; Wiebe, C. R.; Maharaj, D. D.; Sala, G.; Flacau, R.; Hallas, A. M.; Cai, Y.; Gaulin, B. D.; Luke, G. M.; Greedan, J. E.
2016-01-01
The frustrated double perovskite L a2LiOs O6 , based on O s5 +(5 d3,t23 ) is studied using magnetization, elastic neutron scattering, heat capacity, and muon spin relaxation (μSR) techniques and compared with isostructural (P 21/n ) L a2LiRu O6 ,R u5 +(4 d3,t23 ) . While previous studies of L a2LiOs O6 showed a broad susceptibility maximum (χmax) near 40 K, heat capacity data indicate a sharp peak at 30 K, similar to L a2LiRu O6 with χmax˜30 K and a heat capacity peak at 24 K. Significant differences between the two materials are seen in powder neutron diffraction where the magnetic structure is described by k =(1 /2 1 /2 0 ) for L a2LiOs O6 , while L a2LiRu O6 has been reported with k =(000 ) , structure for face centered lattices. For the k =(1 /2 1 /2 0 ) structure, one has antiferromagnetic layers stacked antiferromagnetically, while for k =(0 0 0 ) structure, ferromagnetic layers are stacked antiferromagnetically. In spite of these differences, both can be considered as type I fcc antiferromagnetic structures. For L a2LiOs O6 , the magnetic structure is best described in terms of linear combinations of basis vectors belonging to irreducible representations Γ2 and Γ4. The combinations Γ2- Γ4 and Γ2+Γ4 could not be distinguished from refinement of the data. In all cases, the O s5 + moments lie in the y z plane with the largest component along y . The total moment is 1.81(4) μB. For L a2LiRu O6 , the R u5 + moments are reported to lie in the x z plane. In addition, while neutron diffraction, μSR and NMR data indicate a unique TN=24 K for L a2LiRu O6 , the situation for L a2LiOs O6 is more complex, with heat capacity, neutron diffraction, and μSR indicating two ordering events at 30 and 37 K, similar to the cases of cubic B a2YRu O6 and monoclinic S r2YRu O6 .
Magnetic dimers and trimers in the disordered S =3/2 spin system BaTi1/2Mn1/2O3
NASA Astrophysics Data System (ADS)
Garcia, F. A.; Kaneko, U. F.; Granado, E.; Sichelschmidt, J.; Hölzel, M.; Duque, J. G. S.; Nunes, C. A. J.; Amaral, R. P.; Marques-Ferreira, P.; Lora-Serrano, R.
2015-06-01
We report a structural-magnetic investigation by x-ray absorption spectroscopy (XAS), neutron diffraction, dc susceptibility (χdc), and electron spin resonance (ESR) of the 12R-type perovskite BaTi1/2Mn1/2O3 . Our structural analysis by neutron diffraction supports the existence of structural trimers with chemically disordered occupancy of Mn4+ and Ti4+ ions, with the valence of the Mn ions confirmed by the XAS measurements. The magnetic properties are explored by combining dc-susceptibility and X -band (9.4 GHz) electron spin resonance, both in the temperature interval of 2 ≤T ≤1000 K. A scenario is presented under which the magnetism is explained by considering magnetic dimers and trimers, with exchange constants Ja/kB=200 (2 ) K and Jb/kB=130 (10 ) K, and orphan spins. Thus, BaTi1/2Mn1/2O3 is proposed as a rare case of an intrinsically disordered S =3/2 spin gap system with a frustrated ground state.
The solvation structure of alprazolam.
Sridhar, Akshay; Johnston, Andrew J; Varathan, Luxmmi; McLain, Sylvia E; Biggin, Philip C
2016-08-10
Alprazolam is a benzodiazepine that is commonly prescribed for the treatment of anxiety and other related disorders. Like other benzodiazepines, it is thought to exert its effect through interaction with GABAA receptors. However, it has also been described as a potent and selective protein interaction inhibitor of bromodomain and extra-terminal (BET) proteins. Indeed, the only crystal structure of alprazolam bound to a protein is a complex between alprazolam and the BRD4 bromodomain. The structure shows that the complex also involves many water interactions that mediate contacts between the drug and the protein, a scenario that exists in many drug-protein complexes. How such waters relate to solvation patterns of small molecules may improve our understanding of what dictates their appearance or absence in bridging positions within complexes and thus will be important in terms of future rational drug-design. Here, we use neutron diffraction in conjunction with molecular dynamics simulations to provide a detailed analysis of how water molecules interact with alprazolam in methanol/water mixtures. The agreement between the neutron diffraction and the molecular dynamics is extremely good. We discuss the results in the context of drug design.
NASA Astrophysics Data System (ADS)
Ata-Allah, S. S.; Balagurov, A. M.; Hashhash, A.; Bobrikov, I. A.; Hamdy, Sh.
2016-01-01
The parent NiFe2O4 and Zn/Ga substituted spinel ferrite powders have been prepared by solid state reaction technique. As a typical example, the Ni0.7Zn0.3Fe1.5Ga0.5O4 sample has been prepared by sol-gel auto combustion method with the nano-scale crystallites size. X-ray and Mössbauer studies were carried out for the prepared samples. Structure and microstructure properties were investigated using the time-of-flight HRFD instrument at the IBR-2 pulsed reactor, at a temperatures range 15-473 K. The Rietveld refinement of the neutron diffraction data revealed that all samples possess cubic symmetry corresponding to the space group Fd3m. Cations distribution show that Ni2+ is a complete inverse spinel ion, while Ga3+ equally distributed between the two A and B-sublattices. The level of microstrains in bulk samples was estimated as very small while the size of coherently scattered domains is quite large. For nano-structured sample the domain size is around 120 Å.
Hess, Nancy J; Schenter, Gregory K; Hartman, Michael R; Daemen, Luc L; Proffen, Thomas; Kathmann, Shawn M; Mundy, Christopher J; Hartl, Monika; Heldebrant, David J; Stowe, Ashley C; Autrey, Tom
2009-05-14
The structural behavior of (11)B-, (2)H-enriched ammonia borane, ND(3)(11)BD(3), over the temperature range from 15 to 340 K was investigated using a combination of neutron powder diffraction and ab initio molecular dynamics simulations. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the amine group was observed leading to the alignment of the B-N bond near parallel to the c-axis. The orthorhombic to tetragonal structural phase transition at 225 K is marked by dramatic change in the dynamics of both the amine and borane group. The resulting hydrogen disorder is problematic to extract from the metrics provided by Rietveld refinement but is readily apparent in molecular dynamics simulation and in difference Fourier transform maps. At the phase transition, Rietveld refinement does indicate a disruption of one of two dihydrogen bonds that link adjacent ammonia borane molecules. Metrics determined by Rietveld refinement are in excellent agreement with those determined from molecular simulation. This study highlights the valuable insights added by coupled experimental and computational studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.
The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less
NASA Astrophysics Data System (ADS)
Andersen, N. H.; Lebech, B.; Poulsen, H. F.
1990-12-01
An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa 2Cu 3O 6+ x under equilibrium conditions in an extended part of ( x, T)-phase (0.15< x<0.92 and 25° C< T<725°C). Our experimental observations lend strong support to a recent two-dimensional anisotropic next-nearest-neighbour Ising model calculation (the ASYNNNI model) of the basal plane oxygen ordering based of first principle interaction parameters. Simultaneous measurements of the oxygen equilibrium partial pressure show anomalies, one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms in the basal plane of tetragonal YBCO. Our pressure data also indicate that x=0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr.
Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe 3-xGeTe 2
May, Andrew F.; Calder, Stuart A.; Cantoni, Claudia; ...
2016-01-08
The magnetic structure and phase diagram of the layered ferromagnetic compound Fe 3GeTe 2 have been investigated by a combination of synthesis, x-ray and neutron diffraction, high-resolution microscopy, and magnetization measurements. Single crystals were synthesized by self-flux reactions, and single-crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)μ B/Fe aligned along the c axis at 4 K. These flux-grown crystals have a lower Curie temperature T c ≈ 150 K than crystals previously grown by vapor transport (T c = 220 K). The difference is a reduced Fe content in the flux-grown crystals, as illustrated by the behavior observedmore » in a series of polycrystalline samples. As Fe content decreases, so do the Curie temperature, magnetic anisotropy, and net magnetization. Furthermore, Hall-effect and thermoelectric measurements on flux-grown crystals suggest that multiple carrier types contribute to electrical transport in Fe 3–xGeTe 2 and structurally similar Ni 3–xGeTe 2.« less
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Alexander, Malcolm; Cranswick, Lachlan M. D.; Swainson, Ian P.
2007-12-01
The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic Pmifmmodeexpandafterbarelseexpandafter\\=fi{3}m structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a - a - c + . With decreasing temperature the antiphase tilt ( a -) increases from 14.24° to 15.39°, whereas the in-phase tilt ( c + ) remains effectively constant at ˜10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.
The structure of MgO-SiO2 glasses at elevated pressure.
Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G
2012-06-06
The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.
NASA Astrophysics Data System (ADS)
Long, Fei
Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion irradiated hot-rolled Zr-2.5Nb alloy is described, providing evidence for the interaction between moving dislocations and irradiation induced loops. Chapter 8 gives the effect on the dislocation structure of different levels of compressive strains along two directions in the hot-rolled Zr-2.5Nb alloy. By using high resolution neutron diffraction and TEM observations, the evolution of type and dislocation densities, as well as changes of dislocation microstructure with plastic strain were characterized.
NASA Astrophysics Data System (ADS)
Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N. J.; Andreani, C.; Fernandez-Alonso, F.
2017-09-01
The VESUVIO spectrometer at the ISIS pulsed neutron and muon source is a unique instrument amongst those available at neutron facilities. This is the only inverted-geometry neutron spectrometer accessing values of energy and wavevector transfer above tens of eV and {\\mathringA}-1 , respectively, and where deep inelastic neutron scattering experiments are routinely performed. As such, the procedure at the base of the technique has been previously described in an article published by this journal (Mayers and Reiter 2012 Meas. Sci. Technol. 23 045902). The instrument has recently witnessed an upsurge of interest due to a new trend to accommodate, within a single experiment, neutron diffraction and transmission measurements in addition to deep inelastic neutron scattering. This work presents a broader description of the instrument following these recent developments. In particular, we assess the absolute intensity and two-dimensional profile of the incident neutron beam and the capabilities of the backscattering diffraction banks. All results are discussed in the light of recent changes to the moderator viewed by the instrument. We find that VESUVIO has to be considered a high-resolution diffractometer as much as other diffractometers at ISIS, with a resolution as high as 2× 10-3 in backscattering. Also, we describe the extension of the wavelength range of the instrument to include lower neutron energies for diffraction measurements, an upgrade that could be readily applied to other neutron instruments as well.
High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms
Li, Fankang; Feng, Hao; Thaler, Alexander N.; ...
2017-04-13
The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. Our experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. Here, we conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup canmore » be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. Furthermore, the use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.« less
Short range structure of 0.35Sb2O3-0.65(Li2O-P2O5) glass: A neutron diffraction study
NASA Astrophysics Data System (ADS)
Shinde, A. B.; Krishna, P. S. R.
2018-04-01
Neutron diffraction studies on Li2O-P2O5 and 0.35Sb2O3-0.65(Li2O-P2O5) glass are performed up to a Qmax of 15 Å-1 on the High-Q diffractometer, Dhruva. MCGR method is used to find pair correlation functions (g(r)) functions from experimentally obtained S(Q). We found that the Li-O and first Sb-O correlations to be around 2.04 Å & 2.15 Å. The O-O correlation from Phosphate & Antimony networks are found to be around 2.7 Å. The short range order of Sb is similar to its crystalline polymorph of valentinite instead of senarmonite. The short range order and network connectivity in this glass implies a structure composed of chains of corner sharing SbO3 pyramidal units connected to PO4 tetrahedra while Li acts as a modifier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hempel, Nico; Bunn, Jeffrey R; Nitschke-Pagel, Thomas
This paper is dedicated to the thorough experimental analysis of the residual stresses in the vicinity of tubular welds and the mechanisms involved in their formation. Pipes made of a ferritic-pearlitic structural steel and an austenitic stainless steel are investigated in this study. The pipes feature a similar geometry and are MAG welded with two passes and comparable parameters. Residual strain mappings are carried out using X-ray and neutron diffraction. The combined use of both techniques permits both near-surface and through-wall analyses of the residual stresses. The findings allow for a consistent interpretation of the mechanisms accounting for the formationmore » of the residual stress fields due to the welding process. Since the results are similar for both materials, it can be concluded that residual stresses induced by phase transformations, which can occur in the structural steel, play a minor role in this regard.« less
NASA Astrophysics Data System (ADS)
Levy, Davide; Pastero, Linda; Hoser, Andreas; Viscovo, Gabriele
2015-01-01
MnFe2O4 is a low-cost and stable magnetic spinel ferrite. In this phase, the influence of the inversion degree on the magnetic properties is still not well understood. To understand this relationship, Mn-ferrite was synthesized by a chemical co-precipitation method modified in our laboratory and studied by using the Neutron Powder Diffraction from 1.6 K to 1243 K. A full refinement of both crystal and magnetic structures was performed in order to correlate the high-temperature cation partitioning, the Curie transition and the structure changes of the Mn-ferrite. In this work three main temperature intervals are detected, characterized by different Mn-ferrite behaviors: first, ranging from 1.6 K to 573 K, where MnFe2O4 is magnetic; second, from 573 K to 623 K, where MnFe2O4 becomes paramagnetic without cation partitioning; and lastly, from 673 K to 1243 K, where cation partitioning occurs.
Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalevsky, A.Y.; Fisher, S.Z.; Seaver, S.
2010-08-18
Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 {angstrom} resolution using a home source, to 1.6 {angstrom} resolution on NE-CAT at the Advanced Photon Source and to 2.0 {angstrom} resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from thismore » site in the low-temperature structure.« less
Monoclinic crystal structure of α - RuCl 3 and the zigzag antiferromagnetic ground state
Johnson, R. D.; Williams, S. C.; Haghighirad, A. A.; ...
2015-12-10
We have proposed the layered honeycomb magnet α - RuCl 3 as a candidate to realize a Kitaev spin model with strongly frustrated, bond-dependent, anisotropic interactions between spin-orbit entangled j eff = 1/2 Ru 3 + magnetic moments. We report a detailed study of the three-dimensional crystal structure using x-ray diffraction on untwinned crystals combined with structural relaxation calculations. We consider several models for the stacking of honeycomb layers and find evidence for a parent crystal structure with a monoclinic unit cell corresponding to a stacking of layers with a unidirectional in-plane offset, with occasional in-plane sliding stacking faults, inmore » contrast with the currently assumed trigonal three-layer stacking periodicity. We also report electronic band-structure calculations for the monoclinic structure, which find support for the applicability of the j eff = 1/2 picture once spin-orbit coupling and electron correlations are included. Of the three nearest-neighbor Ru-Ru bonds that comprise the honeycomb lattice, the monoclinic structure makes the bond parallel to the b axis nonequivalent to the other two, and we propose that the resulting differences in the magnitude of the anisotropic exchange along these bonds could provide a natural mechanism to explain the previously reported spin gap in powder inelastic neutron scattering measurements, in contrast to spin models based on the three-fold symmetric trigonal structure, which predict a gapless spectrum within linear spin wave theory. Our susceptibility measurements on both powders and stacked crystals, as well as magnetic neutron powder diffraction, show a single magnetic transition upon cooling below T N ≈ 13 K. Our analysis of our neutron powder diffraction data provides evidence for zigzag magnetic order in the honeycomb layers with an antiferromagnetic stacking between layers. Magnetization measurements on stacked single crystals in pulsed field up to 60 T show a single transition around 8 T for in-plane fields followed by a gradual, asymptotic approach to magnetization saturation, as characteristic of strongly anisotropic exchange interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brad C.; Meilleur, Flora; Myles, Dean A A
2005-01-01
The contribution of H atoms in noncovalent interactions and enzymatic reactions underlies virtually all aspects of biology at the molecular level, yet their 'visualization' is quite difficult. To better understand the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR), a neutron diffraction study is under way to directly determine the accurate positions of H atoms within its active site. Despite exhaustive investigation of the catalytic mechanism of DHFR, controversy persists over the exact pathway associated with proton donation in reduction of the substrate, dihydrofolate. As the initial step in a proof-of-principle experiment which will identify ligand and residue protonation statesmore » as well as precise solvent structures, a neutron diffraction data set has been collected on a 0.3 mm{sup 3} D{sub 2}O-soaked crystal of ecDHFR bound to the anticancer drug methotrexate (MTX) using the LADI instrument at ILL. The completeness in individual resolution shells dropped to below 50% between 3.11 and 3.48 {angstrom} and the I/{sigma}(I) in individual shells dropped to below 2 at around 2.46 {angstrom}. However, reflections with I/{sigma}(I) greater than 2 were observed beyond these limits (as far out as 2.2 {angstrom}). To our knowledge, these crystals possess one of the largest primitive unit cells (P6{sub 1}, a = b = 92, c = 73 {angstrom}) and one of the smallest crystal volumes so far tested successfully with neutrons.« less
Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments
NASA Technical Reports Server (NTRS)
Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)
2002-01-01
A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.
Thermal defect annealing of swift heavy ion irradiated ThO 2
Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; ...
2017-05-19
Neutron total scattering and Raman spectroscopy were used to characterize the structural recovery of irradiated polycrystalline ThO 2 (2.2 GeV Au, = 1 x 10 13 ions/cm 2) during isochronal annealing. Here, neutron diffraction patterns showed that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275$-$425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon
2016-10-18
This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffractionmore » data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to the process and analysis can be made, and neutron diffraction can become a viable and efficient technique for gamma/alpha phase composition determination for nuclear fuels.« less
Comparative study of the magnetic properties of La3Ni2B‧O9 for B‧ = Nb, Taor Sb
NASA Astrophysics Data System (ADS)
Chin, Chun-Mann; Battle, Peter D.; Blundell, Stephen J.; Hunter, Emily; Lang, Franz; Hendrickx, Mylène; Paria Sena, Robert; Hadermann, Joke
2018-02-01
Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (μSR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B‧ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B‧O9 (B‧ = Nb or Ta) at 5 K although in each case μSR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2TaO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
Wu, Wei; An, Ke; Liaw, Peter K.
2014-12-23
In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less
NASA Astrophysics Data System (ADS)
Dönni, A.; Ehlers, G.; Maletta, H.; Fischer, P.; Kitazawa, H.; Zolliker, M.
1996-12-01
The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group 0953-8984/8/50/043/img8) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below 0953-8984/8/50/043/img9 with an incommensurate antiferromagnetic propagation vector 0953-8984/8/50/043/img10, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry.
Xiong, Jie; Yan, Jiaqiang; Aczel, Adam A.; ...
2017-12-02
The structural, electrical, and magnetic properties of the double perovskite Ba 2LuReO 6 have been examined in this paper. It is an insulator whose temperature dependent conductivity is consistent with variable range hopping electrical transport. A transition to an antiferromagnet state with type I order occurs below T N = 31 K. High resolution time-of-flight neutron powder diffraction measurements show that it retains the cubic double perovskite structure down to 10 K. High intensity, low resolution neutron powder diffraction measurements confirm the antiferromagnetic order and indicate that cubic symmetry is still observed at 1.5 K. The small ordered moment ofmore » 0.34(4)μ B per Re is comparable to estimates of moments on 5d 2 ions in other antiferromagnetically ordered cubic double perovskites. Finally, comparisons with related double perovskites containing 5d 2 ions, such as Os 6+ and Re 5+, reveal that subtle changes in structure or electron configuration of the diamagnetic octahedral cations can have a large impact on the magnetic ground state, the size of the ordered moment, and the Néel temperature.« less
Structure of high alumina content Al2O3-SiO2 composition glasses.
Weber, Richard; Sen, Sabyasachi; Youngman, Randall E; Hart, Robert T; Benmore, Chris J
2008-12-25
The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution 27Al NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of approximately 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively.
Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...
2016-01-01
Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr 64Ni 36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauro, N. A., E-mail: namauro@noctrl.edu; Vogt, A. J.; Derendorf, K. S.
2016-01-15
Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)« less
The discovery of robust magnetism in a technetium oxide: The structure of CaTcO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdeev, Maxim; Thorogood, Gordon J.; Carter, Melody L.
The technetium perovskite CaTcO{sub 3} has been synthesized. Combining synchrotron X-ray and neutron diffraction, we found that CaTcO{sub 3} is an antiferromagnetic with a surprisingly high Neel temperature of 800 K. The transition to the magnetic state does not involve a structural change, but there is obvious magnetostriction. Electronic structure calculations confirm the experimental results.
NASA Astrophysics Data System (ADS)
Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai
2013-09-01
Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).
Beryllium, zinc and lead single crystals as a thermal neutron monochromators
NASA Astrophysics Data System (ADS)
Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.
2015-03-01
The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in "FORTRAN-77", has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm.
"XANSONS for COD": a new small BOINC project in crystallography
NASA Astrophysics Data System (ADS)
Neverov, Vladislav S.; Khrapov, Nikolay P.
2018-04-01
"XANSONS for COD" (http://xansons4cod.com) is a new BOINC project aimed at creating the open-access database of simulated x-ray and neutron powder diffraction patterns for nanocrystalline phase of materials from the collection of the Crystallography Open Database (COD). The project uses original open-source software XaNSoNS to simulate diffraction patterns on CPU and GPU. This paper describes the scientific problem this project solves, the project's internal structure, its operation principles and organization of the final database.
Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase
2013-01-01
Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572
Troitzsch, Raphael Z.; Tulip, Paul R.; Crain, Jason; Martyna, Glenn J.
2008-01-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data. PMID:18790850
Troitzsch, Raphael Z; Tulip, Paul R; Crain, Jason; Martyna, Glenn J
2008-12-01
Aqueous proline solutions are deceptively simple as they can take on complex roles such as protein chaperones, cryoprotectants, and hydrotropic agents in biological processes. Here, a molecular level picture of proline/water mixtures is developed. Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations of aqueous proline amino acid at the B-LYP level of theory, performed using IBM's Blue Gene/L supercomputer and massively parallel software, reveal hydrogen-bonding propensities that are at odds with the predictions of the CHARMM22 empirical force field but are in better agreement with results of recent neutron diffraction experiments. In general, the CPAIMD (B-LYP) simulations predict a simplified structural model of proline/water mixtures consisting of fewer distinct local motifs. Comparisons of simulation results to experiment are made by direct evaluation of the neutron static structure factor S(Q) from CPAIMD (B-LYP) trajectories as well as to the results of the empirical potential structure refinement reverse Monte Carlo procedure applied to the neutron data.
High temperature neutron powder diffraction study of the Cu12Sb4S13 and Cu4Sn7S16 phases
NASA Astrophysics Data System (ADS)
Lemoine, Pierric; Bourgès, Cédric; Barbier, Tristan; Nassif, Vivian; Cordier, Stéphane; Guilmeau, Emmanuel
2017-03-01
Ternary copper-containing sulfides Cu12Sb4S13 and Cu4Sn7S16 have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu12Sb4S13 and Cu4Sn7S16 phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu12Sb4S13 decomposes above ≈792 K into Cu3SbS3, and (ii) Cu4Sn7S16 decomposes above ≈891 K into Sn2S3 and a copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu3SnS4 stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu12Sb4S13 are in fair agreement with recent published data, the decomposition behavior of Cu4Sn7S16 differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu4Sn7S16 and tetrahedrite Cu12Sb4S13 phases at 300 K, and for the high temperature form of skinnerite Cu3SbS3 at 843 K.
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; ...
2017-02-23
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co 1–xFe x) yAs 2, 0 ≤ x ≤ 1, 1.86 ≤ y ≤ 2, are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲ 0.12(1). The antiferromagnetic order is smoothly suppressed with increasing x, with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤ 0.25, nor does ferromagnetic order for x up to at least x = 0.104, and a smooth crossover from the collapsed-tetragonal (cT)more » phase of CaCo 1.86As 2 to the tetragonal (T) phase of CaFe 2As 2 occurs. Furthermore, these results suggest that hole doping CaCo 1.86As 2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.« less
Bodenheimer, Annette M; O'Dell, William B; Stanley, Christopher B; Meilleur, Flora
2017-08-07
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.; ...
2017-03-04
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less
New test of the dynamic theory of neutron diffraction by a moving grating
NASA Astrophysics Data System (ADS)
Zakharov, Maxim; Frank, Alexander; Kulin, German; Goryunov, Semyon
2018-04-01
Recently, multiwave dynamical theory of neutron diffraction by a moving grating was developed. The theory predicts that at a certain height of the grating profile a significant suppression of the zero-order diffraction may occur. The experiment to confirm predictions of this theory was performed. The resulting diffracted UCNs spectra were measured using time-of-flight Fourier diffractometer. The experimental data were compared with the results of numerical simulation and were found in a good agreement with theoretical predictions.
Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries
NASA Astrophysics Data System (ADS)
Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard
Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.
The A{sup 2+}Mn{sub 5}(SO{sub 4}){sub 6} family of triangular lattice, ferrimagnetic sulfates
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, D.V., E-mail: barelytone@gmail.co; McQueen, T.M.; Posen, I.D.
2009-06-15
A new family of anhydrous sulfates, A{sup 2+}Mn{sub 5}(SO{sub 4}){sub 6} (A=Pb, Ba, Sr) is reported. The crystal structures of PbMn{sub 5}(SO{sub 4}){sub 6} and SrMn{sub 5}(SO{sub 4}){sub 6} are solved by powder X-ray and neutron diffraction. BaMn{sub 5}(SO{sub 4}){sub 6} is isostructural. PbMn{sub 5}(SO{sub 4}){sub 6} crystallizes with P3-bar symmetry and unit cell parameters of a=14.551(1) A and c=7.535(1) A. The structure has rich features, including dimers of face-sharing MnO{sub 6} octahedra, and two complementary triangular layers of Mn atoms. All compounds undergo a magnetic ordering transition at 10 K, below which, the magnetic susceptibility of the compounds variesmore » systematically with the radius of the non-magnetic cation. Low temperature neutron diffraction shows that the complementary triangular layers result in a ferrimagnet with a net moment corresponding to one high spin Mn{sup 2+} per unit cell, correlating well with the magnetization data. The non-magnetic variant PbMg{sub 5}(SO{sub 4}){sub 6} is also reported. - Graphical abstract: A new family sulfates, A{sup 2+}Mn{sub 5}(SO{sub 4}){sub 6} (A=Pb, Ba, Sr) is reported. Structures are solved by powder neutron diffraction. PbMn{sub 5}(SO{sub 4}){sub 6} is trigonal with lattice parameters of a=14.551(1) A and c=7.535(1) A. The structure has dimers of face-sharing MnO{sub 6} octahedra, and two complementary triangular layers of Mn atoms that result in a ferrimagnet. All compounds magnetically order at 10 K. Low field susceptibility varies systematically with non-magnetic cation radius.« less
Sprouster, D. J.; Sinsheimer, J.; Dooryhee, E.; ...
2015-10-21
Here, massive, thick-walled pressure vessels are permanent nuclear reactor structures that are exposed to a damaging flux of neutrons from the adjacent core. The neutrons cause embrittlement of the vessel steel that increases with dose (fluence or service time), as manifested by an increasing temperature transition from ductile-to-brittle fracture. Moreover, extending reactor life requires demonstrating that large safety margins against brittle fracture are maintained at the higher neutron fluence associated with 60 to 80 years of service. Here synchrotron-based x-ray diffraction and small angle x-ray scattering measurements are used to characterize a new class of highly embrittling nm-scale Mn-Ni-Si precipitatesmore » that develop in the irradiated steels at high fluence. Furthermore, these precipitates can lead to severe embrittlement that is not accounted for in current regulatory models. Application of the complementarity techniques has, for the very first time, successfully characterized the crystal structures of the nanoprecipitates, while also yielding self-consistent compositions, volume fractions and size distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.
Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.
Belo, Ezequiel A.; Pereira, Jose E. M.; Freire, Paulo T. C.; ...
2018-01-01
Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of D-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of D-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of D-alanine compared with L-alanine.
NASA Astrophysics Data System (ADS)
Cordeiro, João M. M.; Soper, Alan K.
2013-01-01
The solvation of N-methylformamide (NMF) by dimethylsulfoxide (DMSO) in a 20% NMF/DMSO liquid mixture is investigated using a combination of neutron diffraction augmented with isotopic substitution and Monte Carlo simulations. The aim is to investigate the solute-solvent interactions and the structure of the solution. The results point to the formation of a hydrogen bond (H-bond) between the H bonded to the N of the amine group of NMF and the O of DMSO particularly strong when compared with other H-bonded liquids. Moreover, a second cooperative H-bond is identified with the S atom of DMSO. As a consequence of these H-bonds, molecules of NMF and DMSO are rather rigidly connected, establishing very stable dimmers in the mixture and very well organized first and second solvation shells.
Synthesis and characterization of Ca-doped LaMnAsO
NASA Astrophysics Data System (ADS)
Liu, Yong; Straszheim, Warren E.; Das, Pinaki; Islam, Farhan; Heitmann, Thomas W.; McQueeney, Robert J.; Vaknin, David
2018-05-01
We report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La3 + site by Ca2 +. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La1 -xCax)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤0.01 . Magnetic susceptibility of the parent and the x =0.002 (xnom=0.04 ) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of both the tetragonal (P 4 /n m m ) structure upon doping and the antiferromagnetic ordering temperature, TN=355 ±5 K.
Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos santos-Garcia, A.J., E-mail: adossant@quim.ucm.es; Climent-Pascual, E.; Gallardo-Amores, J.M.
The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagneticmore » interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet. Black-Right-Pointing-Pointer The paper will be a great contribution in the study of 3d-4f magnetic interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousse, Gwenaelle; Ahouari, Hania; Pomjakushin, Vladimir
We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ~320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed tomore » two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly “monodentate”, forming one short (2.14 Å) and one long (3.01 Å) Mn–O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.« less
Neutron measurements of stresses in a test artifact produced by laser-based additive manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnäupel-Herold, Thomas; Slotwinski, John; Moylan, Shawn
2014-02-18
A stainless steel test artifact produced by Direct Metal Laser Sintering and similar to a proposed standardized test artifact was examined using neutron diffraction. The artifact contained a number of structures with different aspect ratios pertaining to wall thickness, height above base plate, and side length. Through spatial resolutions of the order of one millimeter the volumetric distribution of stresses in several was measured. It was found that the stresses peak in the tensile region around 500 MPa near the top surface, with balancing compressive stresses in the interior. The presence of a support structure (a one millimeter high, thinmore » walled, hence weaker, lattice structure deposited on the base plate, followed by a fully dense AM structure) has only minor effects on the stresses.« less
Different structures of monoclinic martensitic phases in titanium nickelide
NASA Astrophysics Data System (ADS)
Voronin, V. I.; Naish, V. E.; Novoselova, T. V.; Pushin, V. G.; Sagaradze, I. V.
2000-03-01
The detailed theoretical and experimental analysis has been undertaken to bring to light the true structure of the monoclinic phase in titanium nickelide (NiTi). Theoretical models for such a phase have been proposed to describe the experimental data. In addition to the well-known B19‧ phase two more structures - new monoclinic M phase with Cm space group and triclinic phase with P1 space group - have been produced and analyzed in detail. Diffraction patterns have been obtained from different NiTi samples by using the neutron diffractometer IVV2 at different temperatures. From the refinement by DBWS-9411 program all these neutron patterns have been decoded successfully. The proposed new structures and stereotype B19‧ one agree with correspondent experimental data and the agreement is quite good.
Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; ...
2015-08-03
The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less
Quantitative analysis of thoria phase in Th-U alloys using diffraction studies
NASA Astrophysics Data System (ADS)
Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.
2017-05-01
In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.
In situ investigation of deformation mechanisms in magnesium-based metal matrix composites
NASA Astrophysics Data System (ADS)
Farkas, Gergely; Choe, Heeman; Máthis, Kristián; Száraz, Zoltán; Noh, Yoonsook; Trojanová, Zuzanka; Minárik, Peter
2015-07-01
We studied the effect of short fibers on the mechanical properties of a magnesium alloy. In particular, deformation mechanisms in a Mg-Al-Sr alloy reinforced with short alumina fibers were studied in situ using neutron diffraction and acoustic emission methods. The fibers' plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. Furthermore, the twinning activity was much more significant in samples with parallel fiber plane orientation, which was confirmed by both acoustic emission and electron backscattering diffraction results. Neutron diffraction was also used to assist in analyzing the acoustic emission and electron backscattering diffraction results. The simultaneous application of the two in situ methods, neutron diffraction and acoustic emission, was found to be beneficial for obtaining complementary datasets about the twinning and dislocation slip in the magnesium alloys and composites used in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Amber M.; Wilfong, Brandon; Moetakef, Pouya
A metal–insulator transition tuned by application of an external magnetic field occurs in the quasi-one dimensional system Bi1.7V8O16, which contains a mix of S = 1 and S = 1/2 vanadium cations. Unlike all other known vanadates, the magnetic susceptibility of Bi1.7V8O16 diverges in its insulating state, although no long-range magnetic ordering is observed from neutron diffraction measurements, possibly due to the frustrated geometry of the triangular ladders. Magnetotransport measurements reveal that the transition temperature is suppressed upon application of an external magnetic field, from 62.5 K at zero field to 40 K at 8 T. This behavior is bothmore » hysteretic and anisotropic, suggesting t2g orbital ordering of the V3+ and V4+ cations drives a first-order structural transition. Single crystal X-ray diffraction reveals a charge density wave of Bi3+ cations with a propagation vector of 0.846c*, which runs parallel to the triangular chain direction. Neutron powder diffraction measurements show a first-order structural transition, characterized by the coexistence of two tetragonal phases near the metal–insulator transition. Finally, we discuss the likelihood that ferromagnetic V–V dimers coexist with a majority spin-singlet state below the transition in Bi1.7V8O16.« less
In Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries.
Sharma, Neeraj; Pang, Wei Kong; Guo, Zaiping; Peterson, Vanessa K
2015-09-07
The ability to directly track the charge carrier in a battery as it inserts/extracts from an electrode during charge/discharge provides unparalleled insight for researchers into the working mechanism of the device. This crystallographic-electrochemical information can be used to design new materials or modify electrochemical conditions to improve battery performance characteristics, such as lifetime. Critical to collecting operando data used to obtain such information in situ while a battery functions are X-ray and neutron diffractometers with sufficient spatial and temporal resolution to capture complex and subtle structural changes. The number of operando battery experiments has dramatically increased in recent years, particularly those involving neutron powder diffraction. Herein, the importance of structure-property relationships to understanding battery function, why in situ experimentation is critical to this, and the types of experiments and electrochemical cells required to obtain such information are described. For each battery type, selected research that showcases the power of in situ and operando diffraction experiments to understand battery function is highlighted and future opportunities for such experiments are discussed. The intention is to encourage researchers to use in situ and operando techniques and to provide a concise overview of this area of research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki; ...
2017-02-24
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
Neutron Powder Diffraction Study on the Magnetic Structure of NdPd 5 Al 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki
The magnetic structure of NdPd 5Al 2 has been studied by neutron powder diffraction. Here, we observed the magnetic reflections with the modulation vector q=(1/2,0,0)q=(1/2,0,0) below the ordering temperature T N. We also found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++-- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group P anma). This “stripe”-like modulation is very similar to that in CePd 5Al 2 with q=(0.235,0.235,0)q=(0.235,0.235,0) with themore » Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.« less
Gukasov, A; Brown, P J
2010-12-22
Polarized neutron diffraction can provide information about the atomic site susceptibility tensor χ(ij) characterizing the magnetic response of individual atoms to an external magnetic field (Gukasov and Brown 2002 J. Phys.: Condens. Mater. 14 8831). The six independent atomic susceptibility parameters (ASPs) can be determined from polarized neutron flipping ratio measurements on single crystals and visualized as magnetic ellipsoids which are analogous to the thermal ellipsoids obtained from atomic displacement parameters (ADPs). We demonstrate now that the information about local magnetic susceptibility at different magnetic sites in a crystal can also be obtained from polarized and unpolarized neutron diffraction measurements on magnetized powder samples. The validity of the method is illustrated by the results of such measurements on a polycrystalline sample of Tb(2)Sn(2)O(7).
In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material
Ren, Fei; Schmidt, Robert; Keum, Jong K.; ...
2016-08-24
Introducing nanostructural second phases has been proved to be an effective approach to reduce the lattice thermal conductivity and thus enhance the figure of merit for many thermoelectric materials. Furthermore studies of the formation and evolution of these second phases are central to understanding temperature dependent material behavior, improving thermal stabilities, as well as designing new materials. We examined powder samples of PbTe-PbS thermoelectric material using in situ neutron diffraction and small angle neutron scattering (SANS) techniques from room temperature to elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size of themore » second phase. Neutron diffraction data showed the as-milled powder was primarily solid solution before heat treatment. During heating, PbS second phase precipitated out of the PbTe matrix around 480 K, while re-dissolution started around 570 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger nanostructure remained unchanged. Our study demonstrated that in situ neutron techniques are effective means to obtain quantitative information to study temperature dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.« less
Local Structures of High-Entropy Alloys (HEAs) on Atomic Scales: An Overview
Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; ...
2015-08-29
The high-entropy alloys (HEAs), containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on atomic level are essential to understand the mechanical behaviors and related mechanisms. In this paper, the local structure and stress on the atomic level are reviewed by the pair-distribution function (PDF) of neutron-diffraction data, ab-initio-molecular-dynamics (AIMD) simulations, and atomic-probe microscopy (APT).
NASA Astrophysics Data System (ADS)
Gao, S.; Guratinder, K.; Stuhr, U.; White, J. S.; Mansson, M.; Roessli, B.; Fennell, T.; Tsurkan, V.; Loidl, A.; Ciomaga Hatnean, M.; Balakrishnan, G.; Raymond, S.; Chapon, L.; Garlea, V. O.; Savici, A. T.; Cervellino, A.; Bombardi, A.; Chernyshov, D.; Rüegg, Ch.; Haraldsen, J. T.; Zaharko, O.
2018-04-01
In spinels A Cr2O4(A =Mg, Zn), realization of the classical pyrochlore Heisenberg antiferromagnet model is complicated by a strong spin-lattice coupling: the extensive degeneracy of the ground state is lifted by a magneto-structural transition at TN=12.5 K. We study the resulting low-temperature low-symmetry crystal structure by synchrotron x-ray diffraction. The consistent features of x-ray low-temperature patterns are explained by the tetragonal model of Ehrenberg et al. [Pow. Diff. 17, 230 (2002), 10.1154/1.1479738], while other features depend on sample or cooling protocol. A complex, partially ordered magnetic state is studied by neutron diffraction and spherical neutron polarimetry. Multiple magnetic domains of configuration arms of the propagation vectors k1=(1/2 1/2 0 ) ,k2=(1 0 1/2 ) appear. The ordered moment reaches 1.94(3) μB/Cr3 + for k1 and 2.08(3) μB/Cr3 + for k2, if equal amount of the k1 and k2 phases is assumed. The magnetic arrangements have the dominant components along the [110] and [1 -10 ] diagonals and a smaller c component. We use inelastic neutron scattering to investigate the spin excitations, which comprise a mixture of dispersive spin waves propagating from the magnetic Bragg peaks and resonance modes centered at equal energy steps of 4.5 meV. We interpret these as acoustic and optical spin wave branches, but show that the neutron scattering cross sections of transitions within a unit of two corner-sharing tetrahedra match the observed intensity distribution of the resonances. The distinctive fingerprint of clusterlike excitations in the optical spin wave branches suggests that propagating excitations are localized by the complex crystal structure and magnetic orders.
Medium range order and structural relaxation in As–Se network glasses through FSDP analysis
Golovchak, R.; Lucas, P.; Oelgoetz, J.; ...
2015-01-13
We performed synchrotron X-ray diffraction and neutron scattering studies on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. Furthermore, the comparison of structural information shows that density fluctuations, which were thought previously to havemore » a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules.« less
The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering
Szala‐Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T.
2017-01-01
Abstract Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. PMID:28672104
High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3
NASA Astrophysics Data System (ADS)
Kyono, A.; Kato, M.; Sano-Furukawa, A.; Machida, S. I.; Hattori, T.
2016-12-01
High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3, was investigated using single-crystal synchrotron x-ray diffraction, Raman spectroscopic, and neutron diffraction analyses. The high-pressure single-crystal synchrotron x-ray diffraction was performed at BL10A, Photon Factory, KEK, Japan. With compression, the a lattice parameter decreased continuously from 12.565 (1) Å to 12.226 (3) Å up to 7.1 GPa. A fit to the Birch-Murnaghan equation of state (EoS) based on the P-V data gives K0 = 56.0 (6) GPa, K' = 4.3 (1), and V0 = 1984.2 (5) Å3, which were consistent with the previous study by Lager et al. (2002). Weak reflections forbidden by the systematic absence of hk0 with k, l = 2n were observed at 5.5 GPa and their intensities became stronger as increasing pressure. The pattern change of systematic absence implies phase transformation from space group Ia-3d to its non-centrosymmetric space group I-43d. High-pressure Raman spectroscopic study was performed up to 8.3 GPa at room temperature. The pressure dependence of lattice modes showed a positive pressure shifts, whereas that of OH stretching vibration mode was changed negative above 5.1 GPa. The change indicates that the strength of hydrogen bonding turns to increase above 5.1 GPa. High-pressure and high-temperature neutron diffraction study was performed with six-axis large volume press, ATSUHIME, at BL11 (PLANET), J-PARC, Japan. At a pressure of approximately 8 GPa, the a lattice parameter increased with temperature, but neither thermal decomposition nor dehydroxylation process occurred up to 1123 K. The crystal structure of katoite was determined by Rietveld method using neutron diffraction data with the space group I-43d. The volume of dodecahedral site containing Ca cations and that of octahedral site occupied by Al cations remained almost constant with temperature, but two crystallographically inequivalent tetrahedral sites which were caused by phase transformation behaved differently from each other. The volume of T2 site was continuously increased, but that of T1 site was constantly decreased, resulting from anisotropic expansion of the dodecahedral site. Consequently, these anisotropic modifications of coordination polyhedra seem to induce the thermal decomposition of katoite at 1123 K and 8 GPa.
Dynamic theory of neutron diffraction from a moving grating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushuev, V. A., E-mail: vabushuev@yandex.ru; Frank, A. I.; Kulin, G. V.
2016-01-15
A multiwave dynamic theory of diffraction of ultracold neutrons from a moving phase grating has been developed in the approximation of coupled slowly varying amplitudes of wavefunctions. The effect of the velocity, period, and height of grooves of the grating, as well as the spectral angular distribution of the intensity of incident neurons, on the discrete energy spectrum and the intensity of diffraction reflections of various orders has been analyzed.
NASA Astrophysics Data System (ADS)
Pietropaolo, A.; Claps, G.; Fedrigo, A.; Grazzi, F.; Höglund, C.; Murtas, F.; Scherillo, A.; Schmidt, S.; Schooneveld, E. M.
2018-03-01
The upgraded version of the GEM side-on thermal neutron detector was successfully tested in a neutron diffraction experiment on a reference sample using the INES diffractometer at the ISIS spallation neutron source, UK. The performance of the new 10B4C-based detector is compared to that of a standard 3He tube, operating at the instrument as a part of the detectors assembly. The results show that the upgraded detector has a better resolution and an efficiency of the same order of magnitude of a 3He-based detector.
Monte Carlo analysis of neutron diffuse scattering data
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Heerdegen, A. P.; Welberry, T. R.; Gutmann, M. J.
2006-11-01
This paper presents a discussion of a technique developed for the analysis of neutron diffuse scattering data. The technique involves processing the data into reciprocal space sections and modelling the diffuse scattering in these sections. A Monte Carlo modelling approach is used in which the crystal energy is a function of interatomic distances between molecules and torsional rotations within molecules. The parameters of the model are the spring constants governing the interactions, as they determine the correlations which evolve when the model crystal structure is relaxed at finite temperature. When the model crystal has reached equilibrium its diffraction pattern is calculated and a χ2 goodness-of-fit test between observed and calculated data slices is performed. This allows a least-squares refinement of the fit parameters and so automated refinement can proceed. The first application of this methodology to neutron, rather than X-ray, data is outlined. The sample studied was deuterated benzil, d-benzil, C14D10O2, for which data was collected using time-of-flight Laue diffraction on SXD at ISIS.
Thermal defect annealing of swift heavy ion irradiated ThO2
NASA Astrophysics Data System (ADS)
Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik
2017-08-01
Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.
A comparison of choline:urea and choline:oxalic acid deep eutectic solvents at 338 K
NASA Astrophysics Data System (ADS)
Gilmore, Mark; Moura, Leila M.; Turner, Adam H.; Swadźba-Kwaśny, Małgorzata; Callear, Samantha K.; McCune, Jade A.; Scherman, Oren A.; Holbrey, John D.
2018-05-01
1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl- and choline-OH⋯hydrogen-bond acceptor correlations.
Synthesis and structure of synthetically pure and deuterated amorphous (basic) calcium carbonates
Wang, Hsiu-Wen; Daemen, Luke L.; Cheshire, Michael C.; ...
2017-02-17
It is generally believed that H 2O and OH - are the key species stabilizing and controlling amorphous calcium carbonate “polyamorph” forms, and may in turn control the ultimate crystallization products during synthesis and in natural systems. Yet, the locations and hydrogen-bonding network of these species in ACC have never been measured directly using neutron diffraction. In this paper, we report a synthesis route that overcomes the existing challenges with respect to yield quantities and deuteration, both of which are critically necessary for high quality neutron studies.
Modulated magnetic structure of ScFe 4Al 8 by X-ray, neutron powder diffraction and Mössbauer effect
NASA Astrophysics Data System (ADS)
Reċko, Katarzyna; Hauback, Bjørn C.; Dobrzy nski, Ludwik; Szymański, Krzysztof; Satula, Dariusz; Kotur, B. Yu.; Suski, Wojciech
2004-05-01
ScFe 4Al 8 alloy belongs to the extensively investigated ThMn 12-type family. The results of Mössbauer experiments are compared with the neutrons data. ScFe 4Al 8 alloy orders around 250 K by forming antiferromagnetic spiral iron sublattice, within the tetragonal basis plane ab and magnetic iron moments close to 1 μ B at 8 K. The spins are rotating in a plane parallel to the wave vector q=( qx, qx,0).
Lattice strain measurements on sandstones under load using neutron diffraction
NASA Astrophysics Data System (ADS)
Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.
2000-11-01
Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delacotte, C.; Bréard, Y.; Caignaert, V.
2017-03-15
Magnetic structure of CaFe{sub 5}O{sub 7} ferrite has been studied jointly from neutron powder diffraction data and spectroscopic Mössbauer measurements in the thermal range from 5 to 500 K. This coupled work highlights three distinct magnetic domains around two specific temperatures: T{sub M}=125 K and T{sub N}=360 K. The latter corroborates the structural monoclinic-orthorhombic transition previously reported by transmission electron microscopy techniques and X-ray thermodiffractometry. Complementary heat capacity measurements have confirmed this first order transition with a sharp peak at 360 K. Interestingly, this large study has revealed a second magnetic transition associated to a spin rotation at 125 Kmore » similar to this one reported by Morin in α-Fe{sub 2}O{sub 3} hematite at T{sub M}=260 K. - Graphical abstract: Magnetic structure of CaFe{sub 5}O{sub 7} ferrite has been studied jointly from neutron powder diffraction data and spectroscopic Mössbauer measurements in the thermal range from 5 to 500 K. This coupled work highlights three distinct magnetic domains around two specific temperatures: T{sub M}=125 K and T{sub N}=360 K. Interestingly, this large study has revealed a magnetic transition associated to a spin rotation at 125 K similar to this one reported by Morin in α-Fe{sub 2}O{sub 3} hematite at T{sub M}=260 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadlamani, Bhaskar S; An, Ke; Jagannathan, M.
2014-01-01
The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell hasmore » also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.« less
Neutron Diffraction Structure of Melampodin: Its Role in the Reclassification of the Germacranolides
Watkins, Steven F.; Fischer, Nikolaus H.; Bernal, Ivan
1973-01-01
The precise crystal and molecular structure of melampodin, C21H24O9, was determined from three-dimensional neutron diffraction data collected by counter techniques and phases by direct statistical methods. Crystals are orthorhombic, P212121, a = 8,990(9), b = 14.352(14), c = 16.294(16) Å, V = 2102 Å3, d(calc.) = 1.328 g·cm-3, Z = 4 molecules per unit cell. The structural model was refined by full matrix least-squares of 2303 observed independent reflections, with all 54 atoms treated anisotropically, to R(F) = 5.0%. Hydrogen bonds link melampodin molecules together in the solid state. The conformation of the cyclodeca-1,5-diene ring is such that one intraannular hydrogen atom interacts strongly with one double bond, but there is little or no transannular interaction between double bonds. Strain in the ten-membered ring and in the trans-fused lactone ring is discussed, as are chemical implications of the unsymmetric epoxide in the epoxyangelic acid side chain. The previously suggested reclassification of germacranolide sesquiterpene lactones into four subgroups is supported, and a new convention for configurational representations of the four subgroups is proposed. PMID:16592106
Partially ordered state of ice XV
Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H.
2016-01-01
Most ice polymorphs have order–disorder “pairs” in terms of hydrogen positions, which contributes to the rich variety of ice polymorphs; in fact, three recently discovered polymorphs— ices XIII, XIV, and XV—are ordered counter forms to already identified disordered phases. Despite the considerable effort to understand order–disorder transition in ice crystals, there is an inconsistency among the various experiments and calculations for ice XV, the ordered counter form of ice VI, i.e., neutron diffraction observations suggest antiferroelectrically ordered structures, which disagree with dielectric measurement and theoretical studies, implying ferroelectrically ordered structures. Here we investigate in-situ neutron diffraction measurements and density functional theory calculations to revisit the structure and stability of ice XV. We find that none of the completely ordered configurations are particular favored; instead, partially ordered states are established as a mixture of ordered domains in disordered ice VI. This scenario in which several kinds of ordered configuration coexist dispels the contradictions in previous studies. It means that the order–disorder pairs in ice polymorphs are not one-to-one correspondent pairs but rather have one-to-n correspondence, where there are n possible configurations at finite temperature. PMID:27375120
Ok, Kang Min; Lee, Dong Woo; Smith, Ronald I; O'Hare, Dermot
2012-10-31
In the first in situ neutron powder diffraction study of a supercritical hydrothermal synthesis, the crystallization of KTiOPO(4) (KTP) at 450 °C and 380 bar has been investigated. The time-resolved diffraction data suggest that the crystallization of KTP occurs by the reaction between dissolved K(+)(aq), PO(4)(3-)(aq), and [Ti(OH)(x)]((4-x)+)(aq) species.
Phase diagram of multiferroic KCu3As2O7(OD ) 3
NASA Astrophysics Data System (ADS)
Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji
2017-06-01
The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .
Mott localization in a pure stripe antiferromagnet Rb 1 - δ Fe 1.5 - σ S 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Meng; Yi, Ming; Cao, Huibo
A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb 1-δFe 1.5-σS 2 is reported. A neutron diffraction experiment on a powder sample shows that a 98% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb 0.66Fe 1.36S 2, and that only 2% of the sample is in the block antiferromagnetic phase with √5×√5 iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with themore » refined composition of Rb 0.78Fe 1.35S 2, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra 10% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.« less
A neutron diffraction study of the magnetic phases of CsCuCl3 for in-plane fields up to 17 T
NASA Astrophysics Data System (ADS)
Stüßer, N.; Schotte, U.; Hoser, A.; Meschke, M.; Meißner, M.; Wosnitza, J.
2002-05-01
Neutron diffraction investigations have been performed to study the magnetization process of CsCuCl3 with the magnetic field aligned within the ab-plane. In zero field the stacked, triangular-lattice antiferromagnet (TLA) CsCuCl3 has a helical structure incommensurate in the chain direction normal to the ab-plane. The magnetic phase diagram was investigated from 2 K up to TN in fields up to 17 T. The phase line for the expected incommensurate-commensurate (IC-C) phase transition could be determined throughout the whole phase diagram. At low temperature the IC-C transition is roughly at half the saturation field HS. The neutron diffraction patterns were found to be well described by a sinusoidally modulated spiral in fields up to HS/3. The initial increase of the scattering intensity in rising field indicates a continuous reduction of the spin frustration on the triangular lattice. Between HS/3 and HS/2 a new phase occurs where the spiral vector has a plateau in its field dependence. Close to the IC-C transition a growing asymmetry of magnetic satellite-peak intensities indicates domain effects which are related to the lifting of the chiral degeneracy in the ab-plane in rising field. The phase diagram obtained has some similarities with those calculated for stacked TLAs by considering the effects of quantum and thermal fluctuations.
Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Lekh; May, Andrew F.; Koehler, Michael R.
2016-11-30
In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less
Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine
2014-12-01
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.
NASA Astrophysics Data System (ADS)
Gukasov, A.; Brown, P. J.
2010-12-01
Polarized neutron diffraction can provide information about the atomic site susceptibility tensor χij characterizing the magnetic response of individual atoms to an external magnetic field (Gukasov and Brown 2002 J. Phys.: Condens. Mater. 14 8831). The six independent atomic susceptibility parameters (ASPs) can be determined from polarized neutron flipping ratio measurements on single crystals and visualized as magnetic ellipsoids which are analogous to the thermal ellipsoids obtained from atomic displacement parameters (ADPs). We demonstrate now that the information about local magnetic susceptibility at different magnetic sites in a crystal can also be obtained from polarized and unpolarized neutron diffraction measurements on magnetized powder samples. The validity of the method is illustrated by the results of such measurements on a polycrystalline sample of Tb2Sn2O7.
Synthesis and structural characterization of the hexagonal anti-perovskite Na{sub 2}CaVO{sub 4}F
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Robert L., E-mail: rgreen@flpoly.org; Avdeev, Maxim; School of Chemistry, The University of Sydney, Sydney, NSW 2006
The structural details of the ordered hexagonal oxyfluoride Na{sub 2}CaVO{sub 4}F prepared by solid-state synthesis using stoichiometric amounts of V{sub 2}O{sub 5}, CaCO{sub 3}, Na{sub 2}CO{sub 3} and NaF were characterized using high-resolution neutron powder diffraction. The structural changes between 25 °C and 750 °C revealed that the two structural subunits in this material behave different when heated: there is an expansion of the face-shared FNa{sub 4}Ca{sub 2} octahedra while the VO{sub 4} tetrahedra due to increased thermal disorder reveal marginal bond contractions. Bond valences and the global instability index point to significant structural disorder at 750 °C. - Graphicalmore » abstract: The structure of the novel oxyfluoride Na{sub 2}CaVO{sub 4}F is studied at room temperature and high-temperatures. The structure can be viewed as layers of compression and elongation of polyhedral subunits, which change as a function of temperature. - Highlights: • The novel oxyfluoride, Na{sub 2}CaVO{sub 4}F, is synthesized via solid-state method. • High-resolution neutron diffraction data is used to analyze the structure of Na{sub 2}CaVO{sub 4}F. • Structural subunits exhibit expansion and contraction with increasing temperature. • Higher temperatures increase instability within the structure of Na{sub 2}CaVO{sub 4}F.« less
NASA Astrophysics Data System (ADS)
Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.
2016-04-01
Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .
Synthesis and characterization of Ca-doped LaMnAsO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Straszheim, Warren E.; Das, Pinaki
Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less
Neutron diffraction studies of amphipathic helices in phospholipid bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.
The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt tomore » investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.« less
Nuclear techniques in studies of condensed matter
NASA Technical Reports Server (NTRS)
Singh, Jag J.
1987-01-01
Nuclear techniques have played an important role in the studies of materials over the past several decades. For example, X-ray diffraction, neutron diffraction, neutron activation, and particle- or photon-induced X-ray emission techniques have been used extensively for the elucidation of structural and compositional details of materials. Several new techniques have been developed recently. Four such techniques are briefly reviewed which have great potential in the study and development of new materials. Of these four, Mossbauer spectroscopy, muon spin rotation, and positron annihilation spectroscopy techniques exploit their great sensitivity to the local atomic environments in the test materials. Interest in synchrotron radiation, on the other hand, stems from its special properties, such as high intensity, high degree of polarization, and high monochromaticity. It is hoped that this brief review will stimulate interest in the exploitation of these newer techniques for the development of improved materials.
Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.
Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue
2016-03-14
We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and characterization of Ca-doped LaMnAsO
Liu, Yong; Straszheim, Warren E.; Das, Pinaki; ...
2018-05-18
Here, we report on our attempt to hole-dope the antiferromagnetic semiconductor LaMnAsO by substitution of the La 3+ site by Ca 2+. We use neutron and x-ray diffraction, magnetic susceptibility, and transport techniques to characterize polycrystalline (La 1–xCa x)MnAsO samples prepared by solid-state reaction and find that the parent compound is highly resistant to substitution with an upper limit x ≤ 0.01. Magnetic susceptibility of the parent and the x = 0.002(x nom = 0.04) compounds indicate a negligible presence of magnetic impurities (i.e., MnO or MnAs). Rietveld analysis of neutron and x-ray diffraction data shows the preservation of bothmore » the tetragonal (P4/nmm) structure upon doping and the antiferromagnetic ordering temperature, T N = 355 ± 5 K.« less
Nakamura, Akihiko; Ishida, Takuya; Kusaka, Katsuhiro; Yamada, Taro; Fushinobu, Shinya; Tanaka, Ichiro; Kaneko, Satoshi; Ohta, Kazunori; Tanaka, Hiroaki; Inaka, Koji; Higuchi, Yoshiki; Niimura, Nobuo; Samejima, Masahiro; Igarashi, Kiyohiko
2015-08-01
Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the "Newton's cradle"-like proton relay pathway of the catalytic cycle. Amide-imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.
Han, Xue; Mihailescu, Mihaela; Hristova, Kalina
2006-01-01
Achondroplasia, the most common form of human dwarfism, is due to a G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) in >97% of the studied cases. While the molecular mechanism of pathology induction is under debate, the structural consequences of the mutation have not been studied. Here we use neutron diffraction to determine the disposition of FGFR3 transmembrane domain in fluid lipid bilayers, and investigate whether the G380R mutation affects the topology of the protein in the bilayer. Our results demonstrate that, in a model system, the G380R mutation induces a shift in the segment that is embedded in the membrane. The center of the hydrocarbon core-embedded segment in the mutant is close to the midpoint between R380 and R397, supporting previous measurements of arginine insertion energetics into the endoplasmic reticulum. The presented results further our knowledge about basic amino-acid insertion into bilayers, and may lead to new insights into the mechanism of pathogenesis in achondroplasia. PMID:16950849
Bazin, Dominique; André, Gilles; Weil, Raphael; Matzen, Guy; Emmanuel, Veron; Carpentier, Xavier; Daudon, M
2012-04-01
Bacterial imprints are always observed on highly carbonated apatite kidney stones but not struvite kidney stones. Struvite and carbonated apatite stones with a high CO(3)(2-)/PO(4)(3-) rate are believed to develop from infections, but their structural differences at the mesoscopic scale lack explanation. We investigated 17 urinary calculi composed mainly of struvite or carbonated apatite by Fourier transform infrared, scanning electron microscopy, and powder neutron diffraction techniques. Carbonated apatite but not struvite stones showed bacterial imprints. If the same stone contained both carbonated apatite and struvite components, bacterial imprints were observed on the carbonated apatite but not the struvite part. Moreover, neutron powder diffraction experiments revealed the crystal size of struvite stones were larger than that of carbonated apatite stones (250 ± 50 vs 50 nm). Bacterial imprints may appear more easily on kidney stones with small nanocrystals, such as carbonated apatite than with large nanocrystals, such as struvite. This approach may help identify bacteria contributing to stone formation, perhaps with negative results of urine culture. Copyright © 2012 Elsevier Inc. All rights reserved.
The magnetic structure of EuCu 2Sb 2
Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; ...
2015-05-06
Antiferromagnetic ordering of EuCu 2Sb 2 which forms in the tetragonal CaBe 2Ge 2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (B hf) reaches 28.7(2) T at 2.1 K, indicating a full Eu 2+ magnetic moment. B hf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μ B which is the full free-ion moment expected for the Eu 2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less
Lee, M.; Choi, E. S.; Huang, X.; ...
2014-12-01
Here we have performed magnetic, electric, thermal and neutron powder diffraction (NPD) experiments as well as density functional theory (DFT) calculations on Ba 3MnNb 2 O 9. All results suggest that Ba 3MnNb 2 O 9 is a spin-5/2 triangular lattice antiferromagnet (TLAF) with weak easy-axis anisotropy. At zero field, we observed a narrow two-step transition at T N1 = 3.4 K and T N2 = 3.0 K. The neutron diffraction measurement and the DFT calculation indicate a 120 spin structure in ab plane with out-of-plane canting at low temperatures. With increasing magnetic field, the 120 spin structure evolves intomore » up-up-down (uud) and oblique phases showing successive magnetic phase transitions, which fits well to the theoretical prediction for the 2D Heisenberg TLAF with classical spins. Ultimately, multiferroicity is observed when the spins are not collinear but suppressed in the uud and oblique phases.« less
Variation of Ionic Conductivity with Annealing Temperature in Argyrodite Solid Electrolytes
NASA Astrophysics Data System (ADS)
Rao, R. Prasada; Chen, Maohua; Adams, Stefan
2013-07-01
In situ neutron diffraction studies of argyrodite-type Li6PS5X (X = Cl, Br, I) were conducted for mechanically milled sample to reveal the formation and growth of crystalline phases. These studies indicated the formation of crystals in all the compounds started from as low as 80°C. The Rietveld refinements of the resulting crystalline phases at 150°C indicate the formation of the argyrodite structure. Structure refinements using high-intensity neutron diffraction provide insight into the influence of disorder on the fast ionic conductivity. Besides the disorder in the lithium distribution, it is the disorder in the S2-/Cl- or S2-/Br- distribution that we find to promote ion mobility. Among the samples studied Li6PS5Br, annealed at 250°C, exhibited the highest ionic conductivity, 1.05 × 10-3 S/cm at room temperature. An all solid state battery with Li4Ti5O12/Li6PS5Br/Li exhibited 57 mAh/g first discharge capacity at 75°C with 91% coulombic efficiency after 60 cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijeyesekera, S.D.; Corbett, J.D.
1986-12-17
The structures of the isomorphous Zr/sub 2/Br/sub 2/D and Zr/sub 2/Br/sub 2/H have been solved and refined by using Rietveld techniques on pulsed neutron diffraction data obtained from the powdered samples at 14 K (C2/m, a = 19.437 (3) A, b = 3.5253 (4) A, c = 5.9036 (6) A, ..beta.. = 100.98 (1)/sup 0/, R(profile)/R(expected) = 2.44 for the deuteride). The structure consists of layers sequenced Br-Zr-H-H-Zr-Br and arranged such that hydride lies in zigzag chains of distorted metal tetrahedra (or butterflies) (d(Zr-D) = 2.03-2.20 A; d(D-D) = 2.93 A). The structure is intermediate between ZrBr (ccp) and ZrBrHmore » (hcp heavy atoms, double H in trigonal-antiprismatic interstices) and can be generated by concerted intraslab slippage from either. The hemihydride effectively retains most of the strong Zr-Zr bonding of the ZrBr parent while tetrahedral bonding of hydrogen to metal is gained that is absent in ZrBrH. The energetics associated with the contrasting structures of YClH/sub x/ (ZrBr type) and ZrBrH are considered in terms of the results of extended-Hueckel band calculations. 25 references, 7 figures, 3 tables.« less
NASA Astrophysics Data System (ADS)
Magelschots, I.; Andersen, N. H.; Lebech, B.; Wisniewski, A.; Jacobsen, C. S.
1992-12-01
An experimental study of superconducting and non-superconducting Nd 1.85Ce 0.15CuO 4+ y, including structure determination by neutron powder diffraction, recording of oxygen changes by gas volumetry, and susceptibility and thermoelectric measurements, is reported. Difference neutron diffraction patterns from samples prepared on-line at the spectrometer show that the structures of superconducting and non-superconducting samples are identical within the limits set by the statistical errors of our data. Simultaneous gas volumetric measurements reveal that Δy<0.03 (1) when the sample is oxidized from the superconducting to the non-superconducting state. Structural refinements confirm that Nd 1.85Ce 0.15CuO 4+ y has the T‧-type tetragonal structure reported in the literature, but additional oxygen may be located on the apical O(3) oxygen site of the T-type structure, with a total oxygen content of 4+ y=4.03 (5). Consistent with this result, we find very small values of the thermoelectric power indicating that Nd 1.85Ce 0.15CuO 4+ y is close to the formal threshold, yc=0.075, between electron and hole conduction, but surprisingly, the thermoelectric power of the superconducting sample is positive, while it is negative in the non-superconducting sample below 210 K.
Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...
2016-05-16
Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less
NASA Astrophysics Data System (ADS)
Andonov, P.; Fischer, H. E.; Palleau, P.; Kimura, S.
2001-05-01
The structure of liquid LiNbO3 has been investigated by neutron diffraction using samples with different isotopic composition of lithium. The intensity scattered by these samples has been measured for momentum transfers 0.4 Å-1 T> 1500 K, which include the undercooling domain. From an analysis of the correlation functions Gij(r) of the atomic pairs Li-Li, Li-Nb, Li-O and their structural evolutions, given by Δ Gi-j (r) = Gi-j(r)1500 -Gi-j(r)1550 made with reference to the crystalline LiNbO3 ferroelectric structure, it was possible to confirm a local ordering similar to that of the crystal. The presence of clusters (groupings of NbO3 octahedra) is confirmed. Both regular and irregular N b06 octahedra are observed in the liquid near solidification. With its high mobility in the melt, the Li atom plays an important role in the clustering: the Li-O and Li-Nb bonds make possible the staking of four octahedra groups into clusters of eight octahedra or more. The Li-Li bonds join these groups. The diameter of the clusters is a least 22 Å in the undercooling regime.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Kennedy, Brendan J.; Knight, Kevin S.
2018-01-01
Refinement of time-of-flight high-resolution neutron powder diffraction data for lueshite (Na, Ca)(Nb, Ta, Ti)O3, the natural analogue of synthetic NaNbO3, demonstrates that lueshite at room temperature (298 K) adopts an orthorhombic structure with a 2 a p × 2 a p × 4 a p superlattice described by space group Pmmn [#59: a = 7.8032(4) Å; b = 7.8193(4) Å; c = 15.6156(9) Å]. This structure is analogous to that of phase S of synthetic NaNbO3 observed at 753-783 K (480-510 °C). In common with synthetic NaNbO3, lueshite exhibits a series of phase transitions with decreasing temperature from a cubic (Pm\\bar{3}m) aristotype through tetragonal ( P4/ mbm) and orthorhombic ( Cmcm) structures. However, the further sequence of phase transitions differs in that for lueshite the series terminates with the room temperature S ( Pmmn) phase, and the R ( Pmmn or Pnma) and P ( Pbcm) phases of NaNbO3 are not observed. The appearance of the S phase in lueshite at a lower temperature, relative to that of NaNbO3, is attributable to the effects of solid solution of Ti, Ta and Ca in lueshite.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.;
2002-01-01
Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.
2017-11-01
Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.
Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2014-01-01
As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and subsequent shape recovery experiments. Neutron diffraction techniques are also being applied to the investigation of novel high temperature SMAs with the objective of designing alloys with better stability, higher transition temperatures and ultimately superior durability.
Liu, Jue; Whitfield, Pamela S; Saccomanno, Michael R; Bo, Shou-Hang; Hu, Enyuan; Yu, Xiqian; Bai, Jianming; Grey, Clare P; Yang, Xiao-Qing; Khalifah, Peter G
2017-07-12
Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li 2 Mg 2 P 3 O 9 N was synthesized by ion exchange from a Na 2 Mg 2 P 3 O 9 N precursor. Impedance spectroscopy measurements indicate that Li 2 Mg 2 P 3 O 9 N has a room temperature Li-ion conductivity of about 10 -6 S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na 2 Mg 2 P 3 O 9 N at this temperature. The structure of Li 2 Mg 2 P 3 O 9 N was determined from ex situ synchrotron and time-of-flight neutron diffraction data to retain the P2 1 3 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na 2 Mg 2 P 3 O 9 N. The two Li-ion sites are found to be very substantially displaced (∼0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li 2 Mg 2 P 3 O 9 N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li + /Na + ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na 2-x Li x Mg 2 P 3 O 9 N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li 2 Mg 2 P 3 O 9 N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. In addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemoine, Pierric, E-mail: pierric.lemoine@univ-rennes1.fr; Bourgès, Cédric; Barbier, Tristan
Ternary copper-containing sulfides Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} have attracted considerable interest since few years due to their high-efficiency conversion as absorbers for solar energy and promising thermoelectric materials. We report therein on the decomposition study of Cu{sub 12}Sb{sub 4}S{sub 13} and Cu{sub 4}Sn{sub 7}S{sub 16} phases using high temperature in situ neutron powder diffraction. Our results obtained at a heating rate of 2.5 K/min indicate that: (i) Cu{sub 12}Sb{sub 4}S{sub 13} decomposes above ≈792 K into Cu{sub 3}SbS{sub 3}, and (ii) Cu{sub 4}Sn{sub 7}S{sub 16} decomposes above ≈891 K into Sn{sub 2}S{sub 3} and amore » copper-rich sulfide phase of sphalerite ZnS-type structure with an assumed Cu{sub 3}SnS{sub 4} stoichiometry. Both phase decompositions are associated to a sulfur volatilization. While the results on Cu{sub 12}Sb{sub 4}S{sub 13} are in fair agreement with recent published data, the decomposition behavior of Cu{sub 4}Sn{sub 7}S{sub 16} differs from other studies in terms of decomposition temperature, thermal stability and products of reaction. Finally, the crystal structure refinements from neutron powder diffraction data are reported and discussed for the Cu{sub 4}Sn{sub 7}S{sub 16} and tetrahedrite Cu{sub 12}Sb{sub 4}S{sub 13} phases at 300 K, and for the high temperature form of skinnerite Cu{sub 3}SbS{sub 3} at 843 K. - Graphical abstract: In situ neutron powder diffraction data (heating rate of 2.5 K/min) indicates that (i) the ternary Cu{sub 12}Sb{sub 4}S{sub 13} phase is stable up to 792 K and decomposes at higher temperature into Cu{sub 3}SbS{sub 3} and Cu{sub 1.5}Sb{sub 0.5}S{sub 2}, and (ii) the Cu{sub 4}Sn{sub 7}S{sub 16} phase is stable up to 891 K and decomposes at higher temperature into Sn{sub 2}S{sub 3} and a cubic phase of sphalerite ZnS-type structure. Sulfur volatilization likely occurs in order to balance the overall stoichiometry.« less
Study of residual stresses in CT test specimens welded by electron beam
NASA Astrophysics Data System (ADS)
Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.
2018-03-01
The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.
40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction
NASA Astrophysics Data System (ADS)
Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J. E.; Lelièvre-Berna, E.; Frings, P.; Regnault, L.-P.
2018-05-01
We present the first long-duration and high duty cycle 40-T pulsed-field cryomagnet addressed to single crystal neutron diffraction experiments at temperatures down to 2 K. The magnet produces a horizontal field in a bi-conical geometry, ±15° and ±30° upstream and downstream of the sample, respectively. Using a 1.15 MJ mobile generator, magnetic field pulses of 100 ms length are generated in the magnet, with a rise time of 23 ms and a repetition rate of 6-7 pulses per hour at 40 T. The setup was validated for neutron diffraction on the CEA-CRG three-axis spectrometer IN22 at the Institut Laue Langevin.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
NASA Technical Reports Server (NTRS)
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
NASA Astrophysics Data System (ADS)
Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.
1990-02-01
Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klooster, W.T.; Koetzle, T.F.; Jia, G.
1994-08-24
The H-H distance of the dihydrogen ligand in [Ru(H....H)(C{sub 5}Me{sub 5})(dppm)]BF{sub 4} is 1.08(3) A as determined by neutron diffraction on a crystal of volume 3.2 mm{sup 3} at 15 K: monoclinic, space group P2{sub 1}, a = 10.833(3), b = 15.045(4), c = 10.781(2) A, {beta} = 114.47(2){degree}, V = 1599.3(7) A{sup 3}, and D{sub c} = 1.473 g cm{sup -3} for Z = 2; R(F) = 0.071, R(F{sup 2}) = 0.151, R{sub w}(F{sup 2}) = 0.099 for 4198 reflections. The H-H distance, when corrected for the effects of thermal motion, lengthens slightly from 1.08(3) to 1.10(3) A. Themore » complex contains an elongated dihydrogen ligand which is symmetrically, side-on bonded to the ruthenium as one leg of a three-legged piano stool structure. The H{sub 2} ligand lies parallel to the C{sub 5}Me{sub 5} ligand plane, an orientation where {pi}-overlap with an orbital on the metal is optimum. The T{sub 1} NMR method gives an H H distance of 1.10(1) A for the case of restricted rotation. The present structure provides a model for coordinated H{sub 2} at an intermediate stage of oxidative addition. The {sup 1}J(H, D) coupling in the Ru(H-D) isotopomer increases with decreasing temperature: this is interpreted as a slight shortening of the H-D distance. The structural and {sup 1}H NMR data are compared for dihydrogen complexes which have been studied by single crystal neutron diffraction. 34 refs., 3 figs., 4 tabs.« less
Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan
2014-09-01
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.
Capelli, Silvia C.; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan
2014-01-01
Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu’s), all other structural parameters agree within less than 2 csu’s. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å. PMID:25295177
The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering.
Szala-Bilnik, Joanna; Falkowska, Marta; Bowron, Daniel T; Hardacre, Christopher; Youngs, Tristan G A
2017-09-20
Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and spectroscopic studies of a commercial glassy carbon
NASA Astrophysics Data System (ADS)
Parker, Stewart F.; Imberti, Silvia; Callear, Samantha K.; Albers, Peter W.
2013-12-01
Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.
In situ high-pressure measurement of crystal solubility by using neutron diffraction
NASA Astrophysics Data System (ADS)
Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun
2018-05-01
Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Durgesh K.; Sharma, Veerendra K.; Anunciado, Divina
The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer’s disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1–40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer’s response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to themore » highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn’t penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes.« less
Wood, Mary H; Browning, Kathryn L; Barker, Robert D; Clarke, Stuart M
2016-06-23
Neutron reflectometry has been successfully used to study adsorption on a stainless steel surface by means of depositing a thin steel film on silicon. The film was characterized using XPS (X-ray photoelectron spectroscopy), TOF-SIMS (time-of-flight secondary ion mass spectrometry), and GIXRD (grazing incidence X-ray diffraction), demonstrating the retention both of the austenitic phase and of the required composition for 316L stainless steel. The adsorption of fibrinogen from a physiologically-relevant solution onto the steel surface was studied using neutron reflectometry and QCM (quartz crystal microbalance) and compared to that on a deposited chromium oxide surface. It was found that the protein forms an irreversibly bound layer at low concentrations, with maximum protein concentration a distance of around 20 Å from the surface. Evidence for a further diffuse reversibly-bound layer forming at higher concentrations was also observed. Both the structure of the layer revealed by the neutron reflectometry data and the high water retention predicted by the QCM data suggest that there is a significant extent of protein unfolding upon adsorption. A lower extent of adsorption was seen on the chromium surfaces, although the adsorbed layer structures were similar, suggesting comparable adsorption mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...
2018-11-21
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christien, F., E-mail: frederic.christien@univ-nantes.fr; Telling, M.T.F.; Department of Materials, University of Oxford, Parks Road, Oxford
2013-08-15
Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction datamore » has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)« less
Texture analysis of Napoleonic War Era copper bolts
NASA Astrophysics Data System (ADS)
Malamud, Florencia; Northover, Shirley; James, Jon; Northover, Peter; Kelleher, Joe
2016-04-01
Neutron diffraction techniques are suitable for volume texture analyses due to high penetration of thermal neutrons in most materials. We have implemented a new data analysis methodology that employed the spatial resolution achievable by a time-of-flight neutron strain scanner to non-destructively determine the crystallographic texture at selected locations within a macroscopic sample. The method is based on defining the orientation distribution function of the crystallites from several incomplete pole figures, and it has been implemented on ENGIN-X, a neutron strain scanner at the Isis Facility in the UK. Here, we demonstrate the application of this new texture analysis methodology in determining the crystallographic texture at selected locations within museum quality archaeological objects up to 1 m in length. The results were verified using samples of similar, but less valuable, objects by comparing the results of applying this method with those obtained using both electron backscatter diffraction and X-ray diffraction on their cross sections.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna
2010-12-01
The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.
Neutron residual stress measurements on rail sections for different production conditions
DOT National Transportation Integrated Search
2004-11-13
Rail sectioning with subsequent neutron diffraction experiments has been used to assess residual stresses in the rails. In this study we present the results of neutron stress : measurements performed at the NIST Center for Neutron Research (NCNR) on ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messous, M.Y.; Belhorma, B.; Labrim, H.
2015-07-01
Neutrons are used for the study of condensed matter. A neutron beam can indeed easily penetrate the solid material and undergo diffraction phenomena. Analysis of the diffused neutrons allows studying the atomic structure of crossed material. Their neutral electric charge makes them nondestructive probe of a great interest. In general, the size of the powder samples is very small and therefore the centering of the beam on these is very crucial. It is in this context we proceed to test a portable neutron monitor for centering and checking beam leak around the shielding to be installed around the diffractometer inmore » TRIGA Mark II of CENM. It's consisting of a scintillation neutron detector NE426 ({sup 6}LiF + ZnS (Ag)) with electronic module and data acquisition system. The effect of radiation from radioactive neutrons source {sup 252}Cf is shown. Sensitivity and differential linearity are also performed. This study indicates several advantages of this detector with very good detection sensitivity and excellent stability during the counting time. (authors)« less
Harrelson, Thomas F.; Cheng, Yongqiang Q.; Li, Jun; ...
2017-03-07
The greatest advantage of organic materials is the ability to synthetically tune desired properties. However, structural heterogeneity often obfuscates the relationship between chemical structure and functional properties. Inelastic neutron scattering (INS) is sensitive to both local structure and chemical environment and provides atomic level details that cannot be obtained through other spectroscopic or diffraction methods. INS data are composed of a density of vibrational states with no selection rules, which means that every structural configuration is equally weighted in the spectrum. This allows the INS spectrum to be quantitatively decomposed into different structural motifs. Here in this paper we presentmore » INS measurements of the semiconducting polymer P3HT doped with F4TCNQ supported by density functional theory calculations to identify two dominant families of undoped crystalline structures and one dominant doped structural motif, in spite of considerable heterogeneity. The differences between the undoped and doped structures indicate that P3HT side chains flatten upon doping.« less
In situ neutron scattering study of nanoscale phase evolution in PbTe-PbS thermoelectric material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fei, E-mail: renfei@temple.edu, E-mail: kean@ornl.gov; Qian, Bosen; Schmidt, Robert
2016-08-22
Introducing nanostructural second phases has proved to be an effective approach to reduce the lattice thermal conductivity and thus enhances the figure of merit for many thermoelectric materials. Studies of the formation and evolution of these second phases are essential to understanding material temperature dependent behaviors, improving thermal stabilities, as well as designing new materials. In this study, powder samples of the PbTe-PbS thermoelectric material were examined using in situ neutron diffraction and small angle neutron scattering (SANS) techniques between room temperature and elevated temperature up to 663 K, to explore quantitative information on the structure, weight fraction, and size ofmore » the second phase. Neutron diffraction data showed that the as-milled powder was primarily a solid solution prior to heat treatment. During heating, a PbS second phase precipitated out of the PbTe matrix around 500 K, while re-dissolution started around 600 K. The second phase remained separated from the matrix upon cooling. Furthermore, SANS data indicated that there are two populations of nanostructures. The size of the smaller nanostructure increased from initially 5 nm to approximately 25 nm after annealing at 650 K, while the size of the larger one remained unchanged. This study demonstrated that in situ neutron techniques are effective means to obtain quantitative information on temperature-dependent nanostructural behavior of thermoelectrics and likely other high-temperature materials.« less
A neutron diffraction and imaging study of ancient iron tie rods
NASA Astrophysics Data System (ADS)
Di Martino, D.; Bellanova, M.; Perelli Cippo, E.; Felicetti, R.; Scherillo, A.; Kelleher, J.; Kis, Z.; Gorini, G.
2018-05-01
Milan Cathedral is one of the biggest and widest churches ever built among the other coeval architectures. It had a very long and complex construction history, which started in 1386 and lasted more than four centuries. The dominant style is the European gothic but the lombard tradition has strongly influenced the composition. Gothic cathedrals were diffusely built in Europe during the Middle Age, and each region developed its own local interpretation. However, a common feature of the style was the presence of slender pillars and of many elements able to reduce the horizontal thrusts of the vaults, such as spires, buttresesses, flying buttresesses and tie rods. In Milan Cathedral, tie rods have a fundamental role due to the specific characteristics of the structural system and its complex history. In 2012, a broken tie rod was found and it was substituted with a new one. Therefore, a multidisciplinary research on these elements started, aiming at a deeper material characterization and an in-situ identification of local defects. Among non-destructive techniques, several neutron analyses were performed on different samples. We will report on neutron diffraction measurements and neutron resonant capture analysis on part of the original broken tie rod. Moreover, neutron imaging was recorded on other iron tie rods (from an external spire). Results will be useful for an independent assessment and validation of models and of new on-site monitoring techniques, since no other conventional non-destructive technique will allow the same characterization.
Magnetic structure of the ferromagnetic new ternary silicide Nd5CoSi2.
Mayer, C; Gaudin, E; Gorsse, S; Porcher, F; André, G; Chevalier, B
2012-04-04
Nd(5)CoSi(2) was obtained from the elements by arc-melting followed by annealing at 883 K. Its investigation by single-crystal x-ray and neutron powder diffraction shows that this ternary silicide crystallizes as Nd(5)Si(3) in a tetragonal structure deriving from the Cr(5)B(3)-type (I4/mcm space group; a = 7.7472(2) and c = 13.5981(5) Å as unit cell parameters). The structural refinements confirm the mixed occupancy on the 8h site between Si and Co atoms, as already observed for Gd(5)CoSi(2). Magnetization and specific heat measurements reveal a ferromagnetic behavior below T(C) = 55 K for Nd(5)CoSi(2). This magnetic ordering is further evidenced by neutron powder diffraction investigation revealing between 1.8 K and T(C) a canted ferromagnetic structure in the direction of the c-axis described by a propagation vector k = (0 0 0). At 1.8 K, the two Nd(3+) ions carry ordered magnetic moments equal respectively to 1.67(7) and 2.37(7) μ(B) for Nd1 and Nd2; these two moments exhibit a canting angle of θ = 4.3(6)°. This magnetic structure presents some similarities with that reported for Nd(5)Si(3). © 2012 IOP Publishing Ltd
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...
2018-04-30
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less
POWTEX - A new High-Intensity Powder and Texture Diffractometer at FRM II, Garching Germany
NASA Astrophysics Data System (ADS)
Walter, J. M.; Brückel, T.; Dronskowski, R.; Hansen, B. T.; Houben, A.; Klein, H.; Leiss, B.; Vollbrecht, A.; Sowa, H.
2009-05-01
In recent years, neutron diffraction has become a routine tool in Geoscience for experimental high-field (HP/HT/HH) powder diffraction and for the quantitative analysis of the crystallographic preferred orientation (CPO). Quantitative texture analysis is e.g. involved in the research fields of fabric development in mono- and polyphase rocks, deformation histories and kinematics during mountain building processes and the characterization of flow kinematics in lava flows. Secondly the quantitative characterization of anisotropic physical properties of both rock and analogue materials is conducted by bulk texture measurements of sometimes larger sample volumes. This is easily achievable by neutron diffraction due to the high penetration capabilities of the neutrons. The resulting geoscientific need for increased measuring time at neutron diffraction facilities with the corresponding technical characteristics and equipment will in future be satisfied by this high-intensity diffractometer at the neutron research reactor FRM II in Garching, Germany. It will be built by a consortium of groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen, who will also operate the instrument. The diffractometer will be optimized to high intensities (flux) with an equivalent sufficient resolution for polyphase rocks. Furthermore a broad range of d-values (0.5 to 15 Å) will be measurable. The uniqueness of this instrument is the geoscientific focus on different sample environments for in situ-static and deformation experiments (stress, strain and annealing/recrystallisation) and (U)HP/(U)HT experiments. A LP/LT or atmospheric-P deformation rig for in situ-deformation experiments on ice, halite or rock analogue materials is planned, to allow in situ-measurements of the texture development during deformation and annealing. Additionally a uniaxial HT/MP deformation apparatus for salt deformation experiments and an adapted Griggs- type deformation rig are also designated. Furthermore an uniaxial stress frame for in situ stress investigations is planned to conduct simultaneous measurements of stress, elastic or plastic deformation and texture. Other sample environments for geoscientific application will be HP/HT furnaces and pressure cells for powder diffraction investigations. Furthermore the diffractometer will be built in combination with a high-pressure multi anvil up to 25 GPa and 2500 K built by the University of Bayreuth at the same beam line. The detector concept allows single shot texture measurements and therefore the measurement of larger geological sample series as necessary for the investigations of complete geological structures. This concept is complementary to the geoscience neutron texture diffractometer in Dubna, Russia and the stress diffractometer STRESS-SPEC located also at the Garching research reactor. For powder diffraction the diffractometer will be complementary to the existing high-resolution powder diffractometer SPODI at the FRM-II. It will offer the possibility of short, high-intensity parametric powder diffraction measurements in dependency of temperature, electrical, magnetic and stress fields due to the higher flux at the sample. The optimization to high-intensities and therefore short measuring times will also allow time-resolved measurements of kinetic reactions even of small sample volumes.
Hydration of Caffeine at High Temperature by Neutron Scattering and Simulation Studies.
Tavagnacco, L; Brady, J W; Bruni, F; Callear, S; Ricci, M A; Saboungi, M L; Cesàro, A
2015-10-22
The solvation of caffeine in water is examined with neutron diffraction experiments at 353 K. The experimental data, obtained by taking advantage of isotopic H/D substitution in water, were analyzed by empirical potential structure refinement (EPSR) in order to extract partial structure factors and site-site radial distribution functions. In parallel, molecular dynamics (MD) simulations were carried out to interpret the data and gain insight into the intermolecular interactions in the solutions and the solvation process. The results obtained with the two approaches evidence differences in the individual radial distribution functions, although both confirm the presence of caffeine stacks at this temperature. The two approaches point to different accessibility of water to the caffeine sites due to different stacking configurations.
Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4
NASA Astrophysics Data System (ADS)
Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.
2017-10-01
We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.
Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan; ...
2017-05-17
Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Qingge; Liang, Jiangtao; Stoica, Alexandru Dan
Grain orientation dependent behavior during tension-compression type of fatigue loading in a TWIP steel was studied using in-situ neutron diffraction. Orientation zones with dominant behavior of (1) twinning-de-twinning, (2) twinning-re-twinning followed by twinning-de-twinning, (3) twinning followed by dislocation slip and (4) dislocation slip were identified. Jumps of the orientation density were evidenced in neutron diffraction peaks which explains the macroscopic asymmetric behavior. The asymmetric behavior in early stage of fatigue loading is mainly due to small volume fraction of twins in comparison with that at later stage. As a result, easy activation of the de-twin makes the macroscopically unloading behaviormore » nonlinear.« less
Chen, Yan; Bei, Hongbin; Dela Cruz, Clarina R; ...
2016-05-07
Annealing plays an important role in modifying structures and properties of ferromagnetic shape memory alloys (FSMAs). The annealing effect on the structures and magnetic properties of off-stoichiometric Fe 45Mn 26Ga 29 FSMA has been investigated at different elevated temperatures. Rietveld refinements of neutron diffraction patterns display that the formation of the γ phase in Fe 45Mn 26Ga 29 annealed at 1073 K increases the martensitic transformation temperature and reduces the thermal hysteresis in comparison to the homogenized sample. The phase segregation of a Fe-rich cubic phase and a Ga-rich cubic phase occurs at the annealing temperature of 773 K. Themore » atomic occupancies of the alloys are determined thanks to the neutron's capability of differentiating transition metals. The annealing effects at different temperatures introduce a different magnetic characteristic that is associated with distinctive structural changes in the crystal.« less
Huang, Gilbert Y.; Gerlits, Oksana O.; Blakeley, Matthew P.; ...
2014-10-01
High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). Finally, the XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted,more » explaining its low affinity for cAMP.« less
Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide
NASA Astrophysics Data System (ADS)
Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine
2018-03-01
Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.
NASA Astrophysics Data System (ADS)
de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.
A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.
Spin dynamics and magnetoelectric coupling mechanism of C o4N b2O9
NASA Astrophysics Data System (ADS)
Deng, Guochu; Cao, Yiming; Ren, Wei; Cao, Shixun; Studer, Andrew J.; Gauthier, Nicolas; Kenzelmann, Michel; Davidson, Gene; Rule, Kirrily C.; Gardner, Jason S.; Imperia, Paolo; Ulrich, Clemens; McIntyre, Garry J.
2018-02-01
Neutron powder diffraction experiments reveal that C o4N b2O9 forms a noncollinear in-plane magnetic structure with C o2 + moments lying in the a b plane. The spin-wave excitations of this magnet were measured by using inelastic neutron scattering and soundly simulated by a dynamic model involving nearest- and next-nearest-neighbor exchange interactions, in-plane anisotropy, and the Dzyaloshinskii-Moriya interaction. The in-plane magnetic structure of C o4N b2O9 is attributed to the large in-plane anisotropy, while the noncollinearity of the spin configuration is attributed to the Dzyaloshinskii-Moriya interaction. The high magnetoelectric coupling effect of C o4N b2O9 in fields can be explained by its special in-plane magnetic structure.
Sesselmann, Andreas; Klobes, Benedikt; Dasgupta, Titas; ...
2015-09-25
The thermoelectric properties on polycrystalline single (In) and double filled (Ce, In) skutterudites are characterized between 300 and 700 K. Powder neutron diffraction measurements of the skutterudite compositions In xCo 4Sb 12 (x= 0.05, 0.2) and Ce 0.05In 0.1Co 4Sb 12 as a function of temperature (12- 300 K) were carried out, which gives more insight into the structural data of single and double-filled skutterudites. Our results show that due to the annealing treatment, a Sb deficiency is detectable and thus verifies defects at the Sb lattice site of the skutterudite. Furthermore, we show by electron microprobe analysis that amore » considerable amount of indium is lost during synthesis and post-processing for the single indium filled samples, but not for the double cerium and indium skutterudite sample. The double-filled skutterudite is superior to the single-filled skutterudite composition due to a higher charge carrier density, a comparable lattice thermal resistivity, and a higher density of states effective mass in our experiment. Finally, we obtained a significantly higher Einstein temperature for the double-filled skutterudite composition in comparison to the single-filled species, which reflects the high sensitivity due to filling of the void lattice position within the skutterudite crystal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanick, Abhijit, E-mail: apramani@cityu.edu.hk; Stoica, Alexandru D.; An, Ke
2016-08-29
In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. It is observed that only ∼25% of domains undergo reorientation or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve complex mesoscale phenomena in other functional materials.
Pramanick, Abhijit; Stoica, Alexandru D.; An, Ke
2016-09-02
In-situ measurement of fine-structure of neutron Bragg diffraction peaks from a relaxor single-crystal using a time-of-flight instrument reveals highly heterogeneous mesoscale domain transformation behavior under applied electric fields. We observed that only 25% of domains undergo reorienta- tion or phase transition contributing to large average strains, while at least 40% remain invariant and exhibit microstrains. Such insights could be central for designing new relaxor materials with better performance and longevity. The current experimental technique can also be applied to resolve com- plex mesoscale phenomena in other functional materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abughayada, C.; Dabrowski, B.; Kolesnik, S.
2015-09-22
Single-phase polycrystalline samples of stoichiometric RMnO3+delta (R = Er, Y, and Ho) were achieved in the hexagonal P6(3)cm structure through solid state reaction at, similar to 1300 degrees C. Thermogravimetric measurements in oxygen atmospheres demonstrated that samples with the larger Ho and Y show rapid and reversible incorporation of large amounts of excess oxygen (0.3 > delta> 0) at an unusually low temperature range of similar to 190-325 degrees C, indicating the industrial usefulness of RMnO3+delta materials for lower cost thermal swing adsorption processes for oxygen separation from air. Further increase of the excess oxygen intake to delta similar tomore » 0.38 was achieved for all the investigated materials when annealed under high pressures of oxygen. The formation of three oxygen stable phases with 6 = 0, 0.28, and 0.38 was confirmed by thermogravimetric measurements, synchrotron X-rays, and neutron diffraction. In situ synchrotron diffraction proved the thermal stability of these single phases and the regions of their creation and coexistence, and demonstrated that the stability of the delta = 0.28 phase increases with the ionic size of the R ion. Structural modeling using neutron powder diffraction for oxygen excess phases describes the formation and details of a large R3c superstructure observed for HoMnO3.28 by tripling the c-axis of the original parent unit cell. Modeling of the RMnO3.38 (R = Y and Er) oxygen-loaded phase converged on a structural model consistent with the symmetry of Pca2(1).« less
Fortes, A Dominic; Alfè, Dario; Hernández, Eduardo R; Gutmann, Matthias J
2015-06-01
The complete structure of MgSeO4·9H2O has been refined from neutron single-crystal diffraction data obtained at 5, 100, 175 and 250 K. It is monoclinic, space group P2₁/c, Z = 4, with unit-cell parameters a = 7.222 (2), b = 10.484 (3), c = 17.327 (4) Å, β = 109.57 (2)°, and V = 1236.1 (6) Å(3) [ρ(calc) = 1770 (1) kg m(-3)] at 5 K. The structure consists of isolated [Mg(H2O)6](2+) octahedra, [SeO4](2-) tetrahedra and three interstitial lattice water molecules, all on sites of symmetry 1. The positions of the H atoms agree well with those inferred on the basis of geometrical considerations in the prior X-ray powder diffraction structure determination: no evidence of orientational disorder of the water molecules is apparent in the temperature range studied. Six of the nine water molecules are hydrogen bonded to one another to form a unique centrosymmetric dodecamer, (H2O)12. Raman spectra have been acquired in the range 170-4000 cm(-1) at 259 and 78 K; ab initio calculations, using density functional theory, have been carried out in order to aid in the analysis of the Raman spectrum as well as providing additional insights into the geometry and thermodynamics of the hydrogen bonds. Complementary information concerning the thermal expansion, crystal morphology and the solubility are also presented.
NASA Astrophysics Data System (ADS)
Maynard-Casely, H. E.; Avdeev, M.; Brand, H.; Wallwork, K.
2013-12-01
Sulfuric acid hydrates have been proposed to be abundant on the surface of Europa [1], and hence would be important planetary forming materials for this moon and its companions Ganymede and Callisto. Understanding of the surface features and subsurface of these moons could be advanced by firmer knowledge of the icy materials that comprise them [2], insight into which can be drawn from firmer knowledge of physical properties and phase behaviour of the candidate materials. We wish to present results from a study that started with the question ';What form of sulfuric acid hydrate would form on the surface of Europa'. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction and utilization of the large scattering cross section with neutron diffraction. We have used the Powder Diffraction beamline at Australian synchrotron [4] and the Echidna (High-resolution neutron powder diffraction) instrument of the Australian Nuclear Science and Technology Organization, [5] to obtain an number of new insights into the crystalline phases formed from sulfruic acid and water mixtures. These instruments have enabled the discovery a new water-rich sulfuric acid hydrate form [6], improved structural characterisation of existing forms [7] and a charting the phase diagram of this fundamental binary system [8]. This has revealed exciting potential for understanding more about the surface of Europa from space, perhaps even providing a window into its past. [1] Carlson, R.W., R.E. Johnson, and M.S. Anderson, Science, 1999. 286(5437): p. 97-99. [2] Fortes, A.D. and M. Choukroun. Space Sci Rev, 2010. 153(1-4): p. 185-218. [3] Blake, D., et al., Space Sci Rev,, 2012. 170(1-4): p. 341-399. [4] Wallwork, K.S., Kennedy B. J. and Wang, D., AIP Conf Proc, 2007. 879: p. 879-882. [5] Liss, K.D., et al., Phys B-Cond Mat, 2006. 385-86: p. 1010-1012. [6] Maynard-Casely, H.E., K.S. Wallwork, and M. Avdeev, (In review). [7] Maynard-Casely, H.E., H.E.A. Brand, and K.S. Wallwork, J.of App.Cryst, 2012. 45: p.1198-1207. [8] Maynard-Casely, H.E., K.S. Wallwork, and H.E.A. Brand, (In Preparation). Stages of the crystal structure determination of sulfruic acid octahydrate a) the oxygen and sulfur postions were determined from the synchrotron x-ray data b) Once neutron diffraction data was collected Fourier difference methods were used to locate hydrogen positions to determine c) the full structure of sulfuric acid octahydrate.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Rai, Durgesh K.; Sharma, Veerendra K.; Anunciado, Divina; ...
2016-08-09
The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer’s disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1–40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer’s response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to themore » highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn’t penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes.« less
Study of the B-site ion behaviour in the multiferroic perovskite bismuth iron chromium oxide
NASA Astrophysics Data System (ADS)
McBride, Bethany R.; Lieschke, Jonathon; Berlie, Adam; Cortie, David L.; Playford, Helen Y.; Lu, Teng; Narayanan, Narendirakumar; Withers, Ray L.; Yu, Dehong; Liu, Yun
2018-04-01
A simple, near-ambient pressure solid-state method was developed to nominally synthesize BiFe0.5Cr0.5O3. The procedure allowed the gram-scale production of multiferroic samples with appreciable purity and large amounts of Cr incorporation that were suitable for systematic structural investigation by neutron, X-ray, and electron diffraction in tandem with physical characterization of magnetic and ferroelectric properties. The rhombohedrally distorted perovskite phase was assigned to the space group R3c by way of X-ray and neutron powder diffraction analysis. Through a combination of magnetometry and muon spin relaxation, it is evident that there is magnetic ordering in the BFCO phase consistent with G-type antiferromagnetism and a TN ˜ 400 K. There is no clear evidence for chemical ordering of Fe and Cr in the B-site of the perovskite structure and this result is rationalized by density functional theory and bond valence simulations that show a lowered energy associated with a B-site disordered structure. We believe that our contribution of a new, low-complexity method for the synthesis of BFO type samples, and dialogue about realising certain types of ordering in oxide perovskite systems, will assist in the further development of multiferroics for next-generation devices.
NASA Astrophysics Data System (ADS)
Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.
2017-12-01
A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.
Soper, Alan K
2015-07-23
A disordered atom molecular potential (DAMP) for water is described that accurately accounts for the observed neutron interference differential scattering cross sections for light water, heavy water, and two different mixtures of these liquids (x = 0.5 and x = 0.64, where x is the mole fraction of light water in the mixtures) at T = 283 K. This potential, when used in a NVT Monte Carlo computer simulation, produces an intermolecular pressure of ∼0 kbar and a configurational energy of approximately -50 kJ/mol, close to the values found in the ambient liquid at this temperature. The same potential is used as the reference potential in an empirical potential structure refinement of ice diffraction data at T = 258 K measured at the same time as the water data and under the same conditions. Particularly intriguing is the finding that the O···O-H angle in ice, which would be 0° for a linear hydrogen bond, is actually more disordered in ice than in the liquid. A rationalization of these findings is presented. It remains to be seen whether this potential has any value other than simply as a description of the ambient liquid structure.
NASA Astrophysics Data System (ADS)
Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas
2017-09-01
A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.
2015-09-07
The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structuremore » also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.« less
Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction
NASA Astrophysics Data System (ADS)
Chatterji, Tapan; Iles, Gail N.; Ouladdiaf, Bachir; Hansen, Thomas C.
2010-08-01
We have investigated the magnetoelastic effects in MF2 (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature TN by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μB, 4.05 ± 0.05 μB and 1.99 ± 0.05 μB per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF2 (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.
Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction.
Chatterji, Tapan; Iles, Gail N; Ouladdiaf, Bachir; Hansen, Thomas C
2010-08-11
We have investigated the magnetoelastic effects in MF(2) (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature T(N) by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μ(B), 4.05 ± 0.05 μ(B) and 1.99 ± 0.05 μ(B) per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF(2) (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.
Hunter, N J R; Wilson, C J L; Luzin, V
2017-02-01
Three techniques are used to measure crystallographic preferred orientations (CPO) in a naturally deformed quartz mylonite: transmitted light cross-polarized microscopy using an automated fabric analyser, electron backscatter diffraction (EBSD) and neutron diffraction. Pole figure densities attributable to crystal-plastic deformation are variably recognizable across the techniques, particularly between fabric analyser and diffraction instruments. Although fabric analyser techniques offer rapid acquisition with minimal sample preparation, difficulties may exist when gathering orientation data parallel with the incident beam. Overall, we have found that EBSD and fabric analyser techniques are best suited for studying CPO distributions at the grain scale, where individual orientations can be linked to their source grain or nearest neighbours. Neutron diffraction serves as the best qualitative and quantitative means of estimating the bulk CPO, due to its three-dimensional data acquisition, greater sample area coverage, and larger sample size. However, a number of sampling methods can be applied to FA and EBSD data to make similar approximations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Purevjav, N.; Okuchi, T.; Tomioka, N.; Wang, X.; Hoffmann, C.
2016-12-01
Evidences from seismological and mineralogical studies increasingly indicates that water has been transported from the oceans into the Earth's deep mantle, where the mantle transition zone is believed to be the largest reservoir of this transported water. Wadsleyite and ringwoodite are the major constituents and the most important host minerals absorbing this type of water in the transition zone. These minerals are capable of storing the entire mass of the oceans as a hidden reservoirs. In order to understand the effects of such water on the physical properties and chemical evolution of the Earth's interior, it is essential to determine where in the crystal structure the hydration occurs, and which chemical bonds are altered and weakened after hydration. Here we show the result of a neutron single-crystal Laue diffraction study of hydrous wadsleyite. A crystal of homogenously-hydrated wadsleyite involving 1.4 wt. % of H2O was synthesized by our recently-established slow cooling method, which was an effective way to grow high quality large single crystals [1]. By analyzing this crystal using pulsed neutron beam, we demonstrated that the hydrogen atoms exchange only with Mg2+ at the one of the specific octahedron sites (M3) in wadsleyite. We also determined hydrogen's bonding distances and bonding angle. The results unambiguously demonstrated the unique mechanism of hydrogen incorporation into the wadsleyite crystal structure. We previously found that the hydrogen atoms exchanged with both Mg2+ and Si4+ sites simultaneously in the crystal structure of hydrous ringwoodite [2]. Therefore, the current results show that hydration mechanisms are qualitatively different between the upper and the lower transition zones in the wet mantle. The difference is a vital clue towards understanding why these mantle transition zone minerals show different sensitivity for water in their softening behaviors. In addition, we demonstrated that maximum water concentration in wadsleyite is strictly constrained by its full capacity into M3 site. Also, by this study we demonstrated that single-crystal neutron diffraction is a useful tool for quantitative analysis of H2O concentrations in nominally anhydrous minerals. [1] Okuchi et al., Amer. Miner., 2015; [2] Purevjav et al., Geophys. Res. Lett., 2014.
Spallation radiation effects in materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansur, L.K.; Farrell, K.; Wechsler, M.S.
1996-06-01
Spallation refers to the process whereby particles (chiefly neutrons) are ejected from nuclei upon bombardment by high-energy protons. Spallation neutron sources (SNS`s) use these neutrons for neutron scattering and diffraction research, and SNS`s are proposed as the basis for systems for tritium production and transmutation of nuclear waste. Materials in SNS`s are exposed to the incident proton beam (energies typically about 1000 MeV) and to the spallation neutrons (spectrum of energies extending up to about 1000 MeV). By contrast the fission neutrons in nuclear reactors have an average energy of only about 2 MeV, and the neutrons in fusion reactorsmore » would have energies below about 14 MeV. Furthermore, the protons and neutrons in SNS`s for scattering and diffraction research are pulsed at frequencies of about 10 to 60 Hz, from which significant changes in the kinetics of point and extended defects may be expected. In addition, much higher transmutation rates occur in SNS-irradiated materials, On the whole, then, significant differences in microstructural development and macroscopic properties may result upon exposure in SNS systems, as compared with fission and fusion irradiations. In a more general sense, subjecting materials to new radiation environments has almost routinely led to new discoveries. To the extent that data are avaiable, however, the spallation environment appears to increase the degree of damage without introducing totally new effects. The first part of this presentation is an overview of radiation effects in materials, outlining essential concepts and property changes and their physical bases. This background is followed by a description of SNS irradiation environments and the effects on materials of exposure to these environments. A special discussion is given of the selection of target (e.g., liquid mercury), container (e.g., austenitic stainless steel or ferritic/martensitic steel), and structural materials in SNS systems.« less
Song, Gian; Lee, Chanho; Hong, Sung Hwan; ...
2017-06-27
Here, CuZr-based bulk-metallic-glass (BMG) composites reinforced by a B2-type CuZr crystalline-phase (CP) have been widely studied, and exhibit that the plastic deformation of the CP induces martensitic transformation from the B2 to B19', which plays a dominant role in the deformation behavior and mechanical properties. In the present study, 2.0% Co containing CuZr-based BMG composites were investigated using in-situ neutron-diffraction technique. The in-situ neutron-diffraction results reveal the continuous load transfer from the glass matrix to B2 CP and martensitic transformation from the B2 CP to B19' during the deformation of the composite. Moreover, it was found that the martensitic transformationmore » is initiated at the applied stress higher than 1500 MPa, and is significantly suppressed during the deformation, as compared to other 0.5% Co-containing CuZr-based BMG composites. Based on these in-situ neutron-diffraction results, the martensitic transformation is strongly affected by the amount of the addition of Co, which determines the mechanical properties of CP-reinforced BMG composites, such as ductility and hardening capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gian; Lee, Chanho; Hong, Sung Hwan
Here, CuZr-based bulk-metallic-glass (BMG) composites reinforced by a B2-type CuZr crystalline-phase (CP) have been widely studied, and exhibit that the plastic deformation of the CP induces martensitic transformation from the B2 to B19', which plays a dominant role in the deformation behavior and mechanical properties. In the present study, 2.0% Co containing CuZr-based BMG composites were investigated using in-situ neutron-diffraction technique. The in-situ neutron-diffraction results reveal the continuous load transfer from the glass matrix to B2 CP and martensitic transformation from the B2 CP to B19' during the deformation of the composite. Moreover, it was found that the martensitic transformationmore » is initiated at the applied stress higher than 1500 MPa, and is significantly suppressed during the deformation, as compared to other 0.5% Co-containing CuZr-based BMG composites. Based on these in-situ neutron-diffraction results, the martensitic transformation is strongly affected by the amount of the addition of Co, which determines the mechanical properties of CP-reinforced BMG composites, such as ductility and hardening capability.« less
Neutron and X-Ray Diffraction Studies of Advanced Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong
2010-01-01
The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternativemore » probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It is predicted that the application of these techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future, which will contribute to the development of materials technology and industrial innovation. Specifically, the use of these techniques provides bulk material properties that further augment new characterization tools including the increased use of atom probe tomography and high-resolution transmission electron microscopy systems. The combination of these techniques greatly assists the material property models that address multi-length-scale mechanisms. Different applications of diffuse scattering for understanding the fundamental materials properties are illustrated in the articles of Welberry et al., Goossens and Welberry, Campbell, Abe et al., Gilles et al., and Zhang et al. Analysis of thin films and two-dimensional structures is described in the articles of Gramlich et al., Brock et al., Vigliante et al., Kuzel et al., and Davydok et al. Recent advances in the line profile analysis are represented by the the articles of Scardi et al., Ungar et al., and Woo et al. Characterization of modern alloys is presented by the articles of Wollmershauser et al., Eidenberger et al., Garlea et al., Jia et al., Soulami et al., Wilson et al., and Wang et al. The collected articles are written by different scientific X-ray and neutron research groups. They represent a general trend in the development and application of diffraction techniques all over the world.« less
NASA Astrophysics Data System (ADS)
Sakurai, Kenji
2010-12-01
This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as updates on recent progress and global trends in the field. We planned to cover quite a wide area of surface and buried interface science with x-rays and neutrons. Following a great deal of discussion during the editing process, we have decided to change direction. As we intend to publish similar special issues on a frequent basis, we will not insist on editing this issue as systematic and complete collections of research. Many authors decided to write an ordinary research paper rather than an article including systematic accounts. Due to this change in policy, some authors declined to contribute, and the number of papers is now just 12. However, readers will find that the special issue gives an interesting collection of new original research in surface and buried interface studies with x-rays and neutrons. The 12 papers cover the following research topics: (1) polymer analysis by diffuse scattering; (2) discussion of the electrochemical solid--liquid interface by synchrotron x-ray diffraction; (3) analysis of capped nanodots by grazing incidence small-angle x-ray scattering (GISAXS); (4) discussion of the strain distribution in silicon by high-resolution x-ray diffraction; (5) study of mesoporous structures by a combination of x-ray reflectivity and GISAXS; (6) discussion of energy-dispersive x-ray reflectometry and its applications; (7) neutron reflectivity studies on hydrogen terminated silicon interface; (8) the fabrication and performance of a special mirror for water windows; (9) depth selective analysis by total-reflection x-ray diffraction; (10) nanoparticle thin films prepared by a gas deposition technique; (11) discussion of crystal truncation rod (CTR) scattering of semiconductor nanostructures; (12) magnetic structure analysis of thin films by polarized neutron reflectivity. While not discussed in the present special issue, x-ray and neutron techniques have made great progress. The most important steps forward have been in 2D/3D real-space imaging, and realtime measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki Awaji, Toyoo Miyajima, Shuuichi Doi and Kenji Nomura
Synthesis, crystal structure and ionic conductivity of the Ba3Mo1-xWxNbO8.5 solid solution
NASA Astrophysics Data System (ADS)
Bernasconi, Andrea; Tealdi, Cristina; Mühlbauer, Martin; Malavasi, Lorenzo
2018-02-01
Ba3MoNbO8.5 compound has been recently discovered as novel oxide ionic conductor with a structure that is a hybrid between 9R hexagonal perovskite and palmierite. In this work, the full substitution of Mo with W has been demonstrated as possible, without altering significantly the conductivity of the material. The crystal structure of the Ba3Mo1-xWxNbO8.5 solid solution (with x equals 0, 0.25, 0.5, 0.75 and 1) has been investigated by X-ray powder diffraction, showing a reduction of the unit cell by increasing the molybdenum content, despite the larger size of tungsten compared to molybdenum. Neutron powder diffraction measurements have been performed, indicating different levels of contribution of 9R polytype and of palmierite to the hybrid structure of the material as a function of the W-content.
Nagle, J F; Wiener, M C
1989-01-01
Three relations are derived that connect low angle diffraction/scattering results obtained from lipid bilayers to other structural quantities of interest. The first relates the area along the surface of the bilayer, the measured specific volume, and the zeroth order structure factor, F(0). The second relates the size of the trough in the center of the electron density profile, the volume of the terminal methyl groups, and the volume of the methylene groups in the fatty acid chains. The third relates the size of the headgroup electron density peak, the volume of the headgroup, and the volumes of water and hydrocarbon in the headgroup region. These relations, which are easily modified for neutron diffraction, are useful for obtaining structural quantities from electron density profiles obtained by fitting model profiles to measured low angle x-ray intensities. PMID:2713444
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less
Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...
2014-12-24
This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less
NASA Technical Reports Server (NTRS)
Stelmakh, S.; Grzanka, E.; Zhao, Y.; Palosz, W.; Palosz, B.
2004-01-01
Thermal atomic motions of nanocrystalline Sic were characterized by two temperature atomic factors B(sub core), and B(sub shell). With the use of wide angle neutron diffraction data it was shown that at the diffraction vector above 15A(exp -1) the Wilson plots gives directly the temperature factor of the grain interior (B(sub core)). At lower Q values the slope of the Wilson plot provides information on the relative amplitudes of vibrations of the core and shell atoms.
Large-volume protein crystal growth for neutron macromolecular crystallography.
Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay
2015-04-01
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.
Orthodontic archwire composition and phase analyses by neutron spectroscopy.
Tian, Kun V; Festa, Giulia; Basoli, Francesco; Laganà, Giuseppina; Scherillo, Antonella; Andreani, Carla; Bollero, Patrizio; Licoccia, Silvia; Senesi, Roberto; Cozza, Paola
2017-05-31
Quantitative metallurgical and phase analyses employing neutron diffraction technique were conducted on two as-received commercial rectangular austenitic stainless steel orthodontic archwires, G&H and Azdent, 0.43×0.64 mm (0.017×0.025 inch). Results showed a bi-phase structure containing martensitic phase (45.67% for G&H and 6.62% for Azdent) in addition to the expected metastable austenite. The former may be a strain-induced phase-transformation arising during the cold working process of wire fabrication. Further neutron resonance capture analysis determinations provided atomic and isotopic compositions, including alloying elements in each sample, complementary to the results of traditional energy dispersive X-ray spectroscopy. Together, these results assist in relating commercial alloying recipes and processing histories with mechanical performance, strength and ductility in particular.
Pb 2MnTeO 6 Double Perovskite: An Antipolar Anti-ferromagnet
Retuerto, Maria; Skiadopoulou, Stella; Li, Man-Rong; ...
2016-04-08
Pb 2MnTeO 6, a new double perovskite, has been synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction.Pb 2MnTeO 6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to ~120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s 2 lone-pair electrons, together with a surprising off-centering of Mn 2+ (d 5) magnetic cations. This strong first-order phasemore » transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below T N ≈ 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near ~150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb 2MnTeO 6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb 2MnTeO 6.« less
Holographic Gratings for Slow-Neutron Optics
Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin
2012-01-01
Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.
Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach
NASA Astrophysics Data System (ADS)
Fajoui, Jamal; Gloaguen, David; Legrand, Vincent; Oum, Guy; Kelleher, Joe; Kockelmann, Winfried
2016-05-01
The generation of internal stresses/strains arising from mechanical deformations in single-phase engineering materials was studied. Neutron diffraction measurements were performed to study the evolution of intergranular strains in austenitic steel during sequential loadings. Intergranular strains expand due to incompatibilities between grains and also resulting from single-crystal elastic and plastic anisotropy. A two-level homogenization approach was adopted in order to predict the mechanical state of deformed polycrystals in relation to the microstructure during Bauschinger tests. A mechanical description of the grain was developed through a micro-meso transition based on the Kröner model. The meso-macro transition using a self-consistent approach was applied to deduce the global behavior. Mechanical tests and neutron diffraction measurements were used to validate and assess the model.
Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sooyeol; Barabash, Rozaliya; Chung, Jin-Seok
2008-01-01
An in-situ neutron diffraction technique was used to investigate the lattice-strain distributions and plastic deformation around a crack tip after overload. The lattice-strain profiles around a crack tip were measured as a function of the applied load during the tensile loading cycles after overload. Dislocation densities calculated from the diffraction peak broadening were presented as a function of the distance from the crack tip. Furthermore, the crystallographic orientation variations were examined near a crack tip using polychromatic X-ray microdiffraction combined with differential aperture microscopy. Crystallographic tilts are considerably observed beneath the surface around a crack tip, and these are consistentmore » with the high dislocation densities near the crack tip measured by neutron peak broadening.« less
2014-11-26
zeolite and showed that a step in the Ar isotherm coincides with a change in the neutron diffraction pattern. Using grand canonical Monte Carlo...the stepped Ar isotherm at 77 K for a MFI zeolite . More recently, Mallon et al. surmised that the hysteresis of the Ar 87 K adsorption isotherm of
Su, Xiao; Bromberg, Lev; Martis, Vladimir; Simeon, Fritz; Huq, Ashfia; Hatton, T Alan
2017-03-29
Postsynthetic functionalization of magnesium 2,5-dihydroxyterephthalate (Mg-MOF-74) with tetraethylenepentamine (TEPA) resulted in improved CO 2 adsorption performance under dry and humid conditions. XPS, elemental analysis, and neutron powder diffraction studies indicated that TEPA was incorporated throughout the MOF particle, although it coordinated preferentially with the unsaturated metal sites located in the immediate proximity to the surface. Neutron and X-ray powder diffraction analyses showed that the MOF structure was preserved after amine incorporation, with slight changes in the lattice parameters. The adsorption capacity of the functionalized amino-Mg-MOF-74 (TEPA-MOF) for CO 2 was as high as 26.9 wt % versus 23.4 wt % for the original MOF due to the extra binding sites provided by the multiunit amines. The degree of functionalization with the amines was found to be important in enhancing CO 2 adsorption, as the optimal surface coverage improved performance and stability under both pure CO 2 and CO 2 /H 2 O coadsorption, and with partially saturated surface coverage, optimal CO 2 capacity could be achieved under both wet and dry conditions by a synergistic binding of CO 2 to the amines as well as metal centers.
NASA Astrophysics Data System (ADS)
Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.
2017-03-01
M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, S. C.; Hartig, C.; Brissier, T. D.
2005-01-01
In situ deformation studies by diffraction allow studying of deformation mechanisms and provide valuable data to validate and improve deformation models. In particular, deformation studies using time-of-flight neutrons provide averages over large numbers of grains and allow to probing the response of lattice planes parallel and perpendicular to the applied load simultaneously. In this paper we describe the load-frame CRATES, designed for the HIPPO neutron time-of-flight diffractometer at LANSCE. The HIPPO/CRATES combination allows probing up to 20 diffraction vectors simultaneously and provides rotation of the sample in the beam while under load. With this, deformation texture, i.e. the change ofmore » grain orientation due to plastic deformation, or strain pole figures may be measured. We report initial results of a validation experiment, comparing deformation of a Zircaloy specimen measured using the NPD neutron diffractometer with results obtained for the same material using HIPPO/CRATES.« less
Reciprocal-space and real-space neutron investigation of nanostructured Mo 2C and WC
NASA Astrophysics Data System (ADS)
Page, Katharine; Li, Jun; Savinelli, Robert; Szumila, Holly N.; Zhang, Jinping; Stalick, Judith K.; Proffen, Thomas; Scott, Susannah L.; Seshadri, Ram
2008-11-01
As possible substitute materials for platinum group metal heterogeneous catalysts, high surface area carbides of the early transition metals Mo and W are of great interest. Here we report nanostructured, high surface area Mo 2C and WC prepared by decomposing and carburizing ammonium paramolybdate [(NH 4) 6Mo 7O 24·4H 2O] and ammonium paratungstate [(NH 4) 10W 12O 41·5H 2O] in flowing 50%CH 4/50%H 2. Surface areas as high as 52 m 2/g for Mo 2C and 24 m 2/g for WC were obtained, with both structures crystallizing in structures appropriate for catalytic activity. We have studied these materials using a combination of neutron diffraction Rietveld refinement, X-ray photoelectron spectroscopy, surface area measurements, and scanning transmission electron microscopy. In addition, we have used pair-distribution function (PDF) analysis of the neutron total scattering data as a means of establishing the presence of graphitic carbon in the as-prepared materials.
NASA Astrophysics Data System (ADS)
Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Shamoto, S.
2010-11-01
Magnetic and local structures in an antiperovskite system, Mn3Cu1-xGexN, with a giant negative thermal expansion have been studied by neutron powder diffraction measurement. We discuss (1) an importance of an averaged cubic crystal structure and a ΓG5g antiferromagnetic spin structure for the large magneto-volume effect (MVE) in this itinerant electron system, (2) an unique role of a local lattice distortion well described by the low temperature tetragonal structure of Mn3GeN for the broadening of MVE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI
2000-07-13
The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decompositionmore » and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.« less
Optimization of {sup 6}LiF:ZnS(Ag) Scintillator Light Yield Using Geant4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yehuda-Zada, Y.; Ben-Gurion University; Pritchard, K.
2015-07-01
Neutrons provide an effective tool to probe materials structure. Neutron diffraction is a method to determine the atomic and magnetic structure of a material based on neutron scattering. By this method a collimated incident beam of thermal neutrons heat the examined sample and based on the obtained diffraction pattern information on the structure of the material is provided. Research for developing a novel cold neutron detector for Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is underway at the NIST center for neutron research. The system unique design is aimed to provide over ten times fold faster analysis of materials thanmore » conventional system. In order to achieve the fast analysis a large number of neutron detectors is required. A key design constraint for this detector is the thickness of the neutron sensitive element. This is met using {sup 6}LiF:ZnS(Ag) scintillation material with embedded wavelength shifting (WLS) fibers conducting scintillation light to silicon photomultiplier photo-sensors. The detector sensitivity is determined by both the neutron capture probability ({sup 6}Li density) and the detectable light output produced by the ZnS(Ag) ionization, the latter of which is hindered by the fluorescence absorption of the scintillation light by the ZnS. Tradeoffs between the neutron capture probability, stimulated light production and light attenuation for determining the optimal stoichiometry of the {sup 6}LiF and ZnS(Ag) as well as the volume ratio of scintillator and fiber. Simulations performed using the GEANT4 Monte Carlo package were made in order to optimize the detector design. GEANT4 enables the investigation of the neutron interaction with the detector, the ionization process and the light transfer process following the nuclear process. The series of conversions required for this detector were modelled: - A cold neutron enters the sensor and is captured by {sup 6}Li in the scintillator mixture ({sup 6}Li (n,α) {sup 3}H reaction). The study of investigating the capture process probability for neutron energy of 5.1 meV to 2.27 meV (4 - 6 A) is presented. - Alpha particles and tritons travel for a few microns in the scintillation material (α ∼0.007 mm, T ∼0.04 mm) losing energy and ionizing the ZnS. The mean free path of the two particles in each of the component materials and the complete compound was investigated. - The ionization of the ZnS(Ag) scintillation material produces blue light photons with luminescence wavelength of 450 nm. The amount of light output produced for different grain sizes of ZnS is discussed. - A large portion of the scintillation photons are reabsorbed during their passage through the scintillation material. - The blue photons that reach the WLS fibers are absorbed by fluorescent dye and are re-emitted as green photons, conducted by the fiber to the SiPM photo-sensor. This work presents the CANDOR unique design and its design constrains, the results measured by the ultra-thin {sup 6}LiF:ZnS(Ag)-based neutron detector versus the simulation results for several binder concentrations. The light measurement attenuation results along with the measured stopping power were utilized to predict the sensitivity results of configuration with different ZnS grain size, weight ratios and fibers geometry (number and location). The simulations enable to optimize the final sensor design. This design successfully achieved both the high gamma rejection with a sensitive and accurate neutron event detection of 80 percent. (authors)« less
Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings
NASA Technical Reports Server (NTRS)
Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.
1984-01-01
ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.
Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...
2017-05-16
This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S
2018-01-01
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.
Morin-like spin canting in the magnetic CaFe5O7 ferrite: A combined neutron and Mössbauer study
NASA Astrophysics Data System (ADS)
Delacotte, C.; Bréard, Y.; Caignaert, V.; Hardy, V.; Greneche, J. M.; Hébert, S.; Suard, E.; Pelloquin, D.
2017-03-01
Magnetic structure of CaFe5O7 ferrite has been studied jointly from neutron powder diffraction data and spectroscopic Mössbauer measurements in the thermal range from 5 to 500 K. This coupled work highlights three distinct magnetic domains around two specific temperatures: TM=125 K and TN=360 K. The latter corroborates the structural monoclinic-orthorhombic transition previously reported by transmission electron microscopy techniques and X-ray thermodiffractometry. Complementary heat capacity measurements have confirmed this first order transition with a sharp peak at 360 K. Interestingly, this large study has revealed a second magnetic transition associated to a spin rotation at 125 K similar to this one reported by Morin in α-Fe2O3 hematite at TM=260 K.
Distribution of Drug Molecules in Lipid Membranes: Neutron Diffraction and MD Simulations.
NASA Astrophysics Data System (ADS)
Boggara, Mohan; Mihailescu, Ella; Krishnamoorti, Ramanan
2009-03-01
Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. In this study, using neutron diffraction, the DOPC lipid bilayer structure (with and without drug) as well as the distribution of a model NSAID (Ibuprofen) as a function of its position along the membrane normal was obtained at sub-nanometer resolution. It was found that the bilayer thickness reduces as the drug is added. Further, the results are successfully compared with atomistic Molecular Dynamics simulations. Based on this successful comparison and motivated by atomic details from MD, quasi-molecular modeling of the lipid membrane is being carried out and will be presented. The above study is expected to provide an effective methodology to design drug delivery nanoparticles based on a variety of soft condensed matter such as lipids or polymers.
Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics
Li, C. W.; Ma, J.; Cao, H. B.; ...
2014-12-29
The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less
NASA Astrophysics Data System (ADS)
Paul-Boncour, V.; Filipek, S. M.; Dorogova, M.; Bourée, F.; André, G.; Marchuk, I.; Percheron-Guégan, A.; Liu, R. S.
2005-01-01
A new phase YMn 2D 6 was synthesized by submitting YMn 2 to 1.7 kbar deuterium pressure at 473 K. According to X-ray and neutron powder diffraction experiments, YMn 2D 6 crystallizes in the Fm3¯m space group with a=6.709(1) Å at 300 K. The Y and half of the Mn atoms occupy statistically the 8 c site whereas the other Mn atoms are located in 4 a site and surrounded by 6 D atoms (24 e). This corresponds to a K 2PtCl 6-type structure with a partially disordered substructure which can be written as [YMn]MnH 6. No ordered magnetic moment is observed in the NPD patterns and the magnetization measurements display a paramagnetic behavior. The study of the thermal stability by Differential Scanning Calorimetry and XRD experiments indicates that this phase decomposes in YD 2 and Mn at 625 K, and is more stable than YMn 2H 4.5.
NASA Astrophysics Data System (ADS)
Dityatyev, Oleg A.; Smidt, Peer; Stefanovich, Sergey Yu; Lightfoot, Philip; Dolgikh, Valery A.; Opperman, Heinrich
2004-09-01
Phase equilibria in the Bi 2TeO 5Bi 2SeO 5 system were studied by X-ray, DTA and second harmonic generation (SHG). The samples were synthesized by solid state reactions of the Bi, Te and Se oxides. The phase diagram is interpreted as a quasibinary peritectic one with wide ranges of solid solutions on the basis of both compounds. The SHG study showed Bi 2SeO 5 to undergo a phase transition at about 250 °C. Neutron diffraction (25-650 °C) showed no major changes in the structure of Bi 2SeO 5 at high temperatures. However, the analysis of the oxygen atom thermal factors and site occupancies suggested that the mechanism of the phase transformation is an order-disorder transition involving reorientation of the SeO 3 group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.
2009-12-15
Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less
Pulsed Neutron Powder Diffraction for Materials Science
NASA Astrophysics Data System (ADS)
Kamiyama, T.
2008-03-01
The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1
La{sup 3+} doping of the Sr{sub 2}CoWO{sub 6} double perovskite: A structural and magnetic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, C.A.; Viola, M.C.; Pedregosa, J.C.
2008-11-15
La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in air in polycrystalline form by solid-state reaction. These materials have been studied by X-ray powder diffraction (XRPD), neutron powder diffraction (NPD) and magnetic susceptibility. The structural refinement was performed from combined XRPD and NPD data (D2B instrument, {lambda}=1.594 A). At room temperature, the replacement of Sr{sup 2+} by La{sup 3+} induces a change of the tetragonal structure, space group I4/m of the undoped Sr{sub 2}CoWO{sub 6} into the distorted monoclinic crystal structure, space group P2{sub 1}/n, Z=2. The structure of La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra,more » almost fully ordered. On the other hand, the replacement of Sr{sup 2+} by La{sup 3+} induces a partial replacement of W{sup 6+} by Co{sup 2+} into the B sites, i.e. Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4) with segregation of SrWO{sub 4}. Magnetic and neutron diffraction measurements indicate an antiferromagnetic ordering below T{sub N}=24 K independently of the La-substitution. - Graphical abstract: La-doped Sr{sub 2}CoWO{sub 6} double perovskites have been prepared in polycrystalline form by solid-state reaction. The general formula of these compounds is Sr{sub 2-x}La{sub x}CoW{sub 1-y}Co{sub y}O{sub 6} (y=x/4). XRPD, NPD and magnetic susceptibility studies were performed. The structure of monoclinic La-doped phases contains alternating CoO{sub 6} and (Co/W)O{sub 6} octahedra, almost fully ordered. NPD and magnetic measurements indicate an antiferromagnetic ordering at low temperature.« less
Structure of semiconducting versus fast-ion conducting glasses in the Ag-Ge-Se system.
Zeidler, Anita; Salmon, Philip S; Whittaker, Dean A J; Piarristeguy, Andrea; Pradel, Annie; Fischer, Henry E; Benmore, Chris J; Gulbiten, Ozgur
2018-01-01
The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge 0.25 Se 0.75 ) (100- x ) tie line (0≤ x ≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x =5 and x =25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x =5 to 3.3(2) at x =25. For x =25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge 0.25 Se 0.75 base glass, and the limit of glass-formation at x ≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.
Structure of semiconducting versus fast-ion conducting glasses in the Ag–Ge–Se system
2018-01-01
The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Agx(Ge0.25Se0.75)(100−x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag–Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag–Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag–Ag partial pair-distribution function gives 1.9(2) Ag–Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se–Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se–Se homopolar bonds as silver is added to the base glass. PMID:29410843
Probing multiscale transport and inhomogeneity in a lithium-ion cells using in-situ neutron methods
Zhou, Hui; An, Ke; Allu, Srikanth; ...
2016-01-01
Here, we demonstrate for the first time the lithiation process in graphitic anodes using insitu neutron radiography in a pouch cell format. The neutron absorption contrast shows a direct correlation between degree of lithiation and the discharge voltage plateau. Furthermore, we provide a semi-quantitative comparison between the observed spatial variations of neutron attenuation line profile across the graphite electrode and the calculated lithium concentration profiles computed under similar electrochemical discharge conditions. In conjunction, in situ neutron diffraction of a similar pouch cell under identical test protocol was carried to obtain information about the local phase changes upon lithiation. Combined in-situmore » radiography and diffraction opens up a powerful nondestructive method to understand the multi-scale nature of lithium transport and degradation in practical lithium-ion cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel
Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less
NASA Astrophysics Data System (ADS)
Majkrzak, Charles F.; Metting, Christopher; Maranville, Brian B.; Dura, Joseph A.; Satija, Sushil; Udovic, Terrence; Berk, Norman F.
2014-03-01
The primary purpose of this investigation is to determine the effective coherent extent of the neutron wave packet transverse to its mean propagation vector k when it is prepared in a typical instrument used to study the structure of materials in thin film form via specular reflection. There are two principal reasons for doing so. One has to do with the fundamental physical interest in the characteristics of a free neutron as a quantum object, while the other is of a more practical nature, relating to the understanding of how to interpret elastic scattering data when the neutron is employed as a probe of condensed-matter structure on an atomic or nanometer scale. Knowing such a basic physical characteristic as the neutron's effective transverse coherence can dictate how to properly analyze specular reflectivity data obtained for material film structures possessing some amount of in-plane inhomogeneity. In this study we describe a means of measuring the effective transverse coherence length of the neutron wave packet by specular reflection from a series of diffraction gratings of different spacings. Complementary nonspecular measurements of the widths of grating reflections were also performed, which corroborate the specular results. (This paper principally describes measurements interpreted according to the theoretical picture presented in a companion paper.) Each grating was fabricated by lift-off photolithography patterning of a nickel film (approximately 1000 Å thick) formed by physical vapor deposition on a flat silicon crystal surface. The grating periods ranged from 10 μm (5 μm Ni stripe, 5 μm intervening space) to several hundred microns. The transverse coherence length, modeled as the width of the wave packet, was determined from an analysis of the specular reflectivity curves of the set of gratings.
Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel; ...
2016-09-02
Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less
A Neutron View of Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
White, Stephen
2012-02-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.
NASA Astrophysics Data System (ADS)
Keen, David A.; Keeble, Dean S.; Bennett, Thomas D.
2018-04-01
The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O-H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O-D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O-D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.
Low Temperature and Neutron Physics Studies: Final Progress Report, March 1, 1986--May 31, 1987
DOE R&D Accomplishments Database
Shull, C.G.
1989-07-27
A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation.
High-resolution neutron-diffraction measurements to 8 kbar
NASA Astrophysics Data System (ADS)
Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.
2017-10-01
We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.
Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses
NASA Astrophysics Data System (ADS)
Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng
2018-05-01
The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu; ...
2018-02-06
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt, Drew; Frontzek, Matthias D.; Zhao, Yu
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H 2O/D 2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability asmore » an instrument suitable for the study of aligned lipid multi-bilayers.« less
Effect of high intensity ultrasound on the mesostructure of hydrated zirconia
NASA Astrophysics Data System (ADS)
Kopitsa, G. P.; Baranchikov, A. E.; Ivanova, O. S.; Yapryntsev, A. D.; Grigoriev, S. V.; Pranzas, P. Klaus; Ivanov, V. K.
2012-02-01
We report structural changes in amorphous hydrated zirconia caused by high intensity ultrasonic treatment studied by means of small-angle neutron scattering (SANS) and X-ray diffraction (XRD). It was established that sonication affects the mesostructure of ZrO2×xH2O gels (i.e. decreases their homogeneity, increases surface fractal dimension and the size of monomer particles). Ultrasound induced structural changes in hydrated zirconia governs its thermal behaviour, namely decreases the rate of tetragonal to monoclinic zirconia phase transition.
Effect of doping with nickel ions on the structural state of a zinc oxide crystal
NASA Astrophysics Data System (ADS)
Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Maksimov, V. I.; Gruzdev, N. B.
2009-10-01
The fine structure of a hexagonal zinc oxide crystal doped with nickel ions of the composition Zn1 - x Ni x O has been studied using neutron diffraction and magnetic measurements. It is established that even at very low doping levels ( x = 0.0004), the crystal undergoes local distortions in basal planes of the initial hexagonal lattice. The local distortions are assumed to be sources of the formation of ferromagnetism in compounds of this class.
In-situ neutron diffraction characterization of temperature dependence deformation in α-uranium
NASA Astrophysics Data System (ADS)
Calhoun, C. A.; Garlea, E.; Sisneros, T. A.; Agnew, S. R.
2018-04-01
In-situ strain neutron diffraction measurements were conducted at temperature on specimens coming from a clock-rolled α-uranium plate, and Elasto-Plastic Self-Consistent (EPSC) modeling was employed to interpret the findings. The modeling revealed that the active slip systems exhibit a thermally activated response, while deformation twinning remains athermal over the temperature ranges explored (25-150 °C). The modeling also allowed assessment of the effects of thermal residual stresses on the mechanical response during compression. These results are consistent with those from a prior study of room-temperature deformation, indicating that the thermal residual stresses strongly influence the internal strain evolution of grain families, as monitored with neutron diffraction, even though accounting for these residual stresses has little effect on the macroscopic flow curve, except in the elasto-plastic transition.
NASA Astrophysics Data System (ADS)
Feng, Hai L.; Reehuis, Manfred; Adler, Peter; Hu, Zhiwei; Nicklas, Michael; Hoser, Andreas; Weng, Shih-Chang; Felser, Claudia; Jansen, Martin
2018-05-01
The nonstoichiometric double perovskite oxide L a2N i1.19O s0.81O6 was synthesized by solid-state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. L a2N i1.19O s0.81O6 crystallizes in the monoclinic double perovskite structure (general formula A2B B'O6 ) with space group P 21/n , where the B site is fully occupied by Ni and the B ' site by 19% Ni and 81% Os atoms. Using x-ray absorption spectroscopy an O s4.5 + oxidation state was established, suggesting the presence of about 50% paramagnetic O s5 + (5 d3 , S =3 /2 ) and 50% nonmagnetic O s4 + (5 d4 , Jeff=0 ) ions at the B ' sites. Magnetization and neutron diffraction measurements on L a2N i1.19O s0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear N i2 + -spin chains extending along the c axis but a noncollinear spin alignment within the a b plane. The magnetization curve of L a2N i1.19O s0.81O6 features a hysteresis with a very high coercive field, HC=41 kOe , at T =5 K , which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder. Our results are encouraging to search for rare-earth-free hard magnets in the class of double perovskite oxides.
Exotic magnetic structures in high-pressure synthesized perovskites
NASA Astrophysics Data System (ADS)
Manuel, Pascal; Khalyavin, Dmitry; Ding, Lei; Yi, Wei; Kumagai, Yu; Oba, Fumiyasu; Orlandi, Fabio; Belik, Alexei
We present a neutron powder diffraction study of the crystal and magnetic structures of the high-pressure stabilized perovskite phases of TlMnO3, ScCrO3, InCrO3 and TlCrO3. These compounds exhibit original magnetic structures compared to other members of their respective manganite and orthochromite families with TlMnO3 also displaying unusual orbital ordering pattern. For both systems, we rationalise the structures through a combination of group theory and first principle calculations. We also highlight the dominant mechanism controlling the spin direction as being the single ion anisotropy.
Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS
Zaliznyak, Igor A.; Savici, Andrei T.; Ovidiu Garlea, V.; ...
2017-06-20
Here, we describe some of the first polarized neutron scattering measurements performed at HYSPEC [1-4] spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. Furthermore, we discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...
2018-01-24
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
Large-volume protein crystal growth for neutron macromolecular crystallography
Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...
2015-03-30
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less
Large-volume protein crystal growth for neutron macromolecular crystallography
Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay
2015-01-01
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493
Large-volume protein crystal growth for neutron macromolecular crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Joseph D.; Baird, James K.; Coates, Leighton
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less
Magnetic order and interactions in ferrimagnetic Mn 3 Si 2 Te 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, Andrew F.; Liu, Yaohua; Calder, Stuart
2017-05-01
The magnetism in Mn 3Si 2Te 6 has been investigated using thermodynamic measurements, first principles calculations, neutron diffraction and diffuse neutron scattering on single crystals. These data con rm that Mn3Si2Te6 is a ferrimagnet below T C 78 K. The magnetism is anisotropic, with magnetization and neutron diffraction demonstrating that the moments lie within the basal plane of the trigonal structure. The saturation magnetization of 1.6 B/Mn at 5K originates from the different multiplicities of the two antiferromagnetically-aligned Mn sites. First principles calculations reveal antiferromagnetic exchange for the three nearest Mn-Mn pairs, which leads to a competition between the ferrimagneticmore » ground state and three other magnetic configurations. The ferrimagnetic state results from the energy associated with the third-nearest neighbor interaction, and thus long- range interactions are essential for the observed behavior. Di use magnetic scattering is observed around the 002 Bragg reflection at 120 K, which indicates the presence of strong spin correlations well above T C . These are promoted by the competing ground states that result in a relative suppression of T C , and may be associated with a small ferromagnetic component that produces anisotropic magnetism below ≈ 330 K.« less
Illuminating the Past: The Neutron as a Tool in Archaeology
ERIC Educational Resources Information Center
Kockelmann, W.; Kirfel, A.; Siano, S.; Frost, C. D.
2004-01-01
Neutrons can be produced in nuclear reactions and used as very versatile probes for condensed matter research. Since their introduction in the 1950s neutron scattering techniques have evolved to be very powerful tools for investigating the properties of condensed matter. Here we present the concept of neutron diffraction and how this technique can…
Structural and magnetic phase transitions in Cs2[FeCl5(H2O)].
Fröhlich, Tobias; Stein, Jonas; Bohatý, Ladislav; Becker, Petra; Gukasov, Arsen; Braden, Markus
2018-06-05
The compound [Formula: see text] is magnetoelectric but not multiferroic with an erythrosiderite-related structure. We present a comprehensive investigation of its structural and antiferromagnetic phase transitions by polarization microscopy, pyroelectric measurements, x-ray diffraction and neutron diffraction. At about [Formula: see text] K, the compound changes its symmetry from Cmcm to I2/c, with a doubling of the original c-axis. This transformation is associated with rotations of the [Formula: see text] octahedra and corresponds to an ordering of the [Formula: see text] molecules and of the related [Formula: see text] bonds. A significant ferroelectric polarization can be excluded for this transition by precise pyrocurrent measurements. The antiferromagnetic phase transition occurring at [Formula: see text] results in the magnetic space group [Formula: see text], which perfectly agrees with previous measurements of the linear magnetoelectric effect and magnetization.
In-situ High-energy X-ray Diffraction Study of the Local Structure of Supercooled Liquid Si
NASA Technical Reports Server (NTRS)
Lee, G. W.; Kim, T. H.; Sieve, B.; Gangopadhyay, A. K.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, D. S.; Kelton, K. F.; Goldman, A. I.
2005-01-01
While changes in the coordination number for liquid silicon upon supercooling, signaling an underlying liquid-liquid phase transition, have been predicted, x-ray and neutron measurements have produced conflicting reports. In particular some studies have found an increase in the first shell coordination as temperature decreases in the supercooled regime, while others have reported increases in the coordination number with decreasing temperature. Employing the technique of electrostatic levitation coupled with high energy x-ray diffraction (125 keV), and rapid data acquisition (100ms collection times) using an area detector, we have obtained high quality structural data more deeply into the supercooled regime than has been possible before. No change in coordination number is observed in this temperature region, calling into question previous experimental claims of structural evidence for the existence of a liquid-liquid phase transition.
NASA Astrophysics Data System (ADS)
Pokharel, G.; May, A. F.; Parker, D. S.; Calder, S.; Ehlers, G.; Huq, A.; Kimber, S. A. J.; Arachchige, H. Suriya; Poudel, L.; McGuire, M. A.; Mandrus, D.; Christianson, A. D.
2018-04-01
The physical properties of the spinel LiGaCr4S8 have been studied with neutron diffraction, x-ray diffraction, magnetic susceptibility, and heat capacity measurements. The neutron diffraction and synchrotron x-ray diffraction data reveal negative thermal expansion (NTE) below 111(4) K. The magnetic susceptibility deviates from Curie-Weiss behavior with the onset of NTE. At low temperature a broad peak in the magnetic susceptibility at 10.3(3) K is accompanied by the return of normal thermal expansion. First-principles calculations find a strong coupling between the lattice and the simulated magnetic ground state. These results indicate strong magnetoelastic coupling in LiGaCr4S8 .
Cesium vacancy ordering in phase-separated C s x F e 2 - y S e 2
Taddei, Keith M.; Sturza, M.; Chung, Duck -Yung; ...
2015-09-14
By simultaneously displaying magnetism and superconductivity in a single phase, the iron-based superconductors provide a model system for the study of magnetism's role in superconductivity. The class of intercalated iron selenide superconductors is unique among these in having the additional property of phase separation and coexistence of two distinct phases—one majority phase with iron vacancy ordering and strong antiferromagnetism, and the other a poorly understood minority microscopic phase with a contested structure. Adding to the intrigue, the majority phase has never been found to show superconductivity on its own while the minority phase has never been successfully synthesized separate frommore » the majority phase. In order to better understand this minority phase, a series of high-quality Cs xFe 2–ySe 2 single crystals with (0.8 ≤ x ≤ 1;0 ≤ y ≤ 0.3) were grown and studied. Neutron and x-ray powder diffraction performed on ground crystals show that the average I4/mmm structure of the minority phase is distinctly different from the high-temperature I4/mmm parent structure. Moreover, single-crystal diffraction reveals the presence of discrete superlattice reflections that remove the degeneracy of the Cs sites in both the majority and minority phases and reduce their structural symmetries from body centered to primitive. Group theoretical analysis in conjunction with structural modeling shows that the observed superlattice reflections originate from three-dimensional Cs vacancy ordering. This model predicts a 25% vacancy of the Cs site in the minority phase which is consistent with the site's refined occupancy. Magnetization measurements performed in tandem with neutron single-crystal diffraction provide evidence that the minority phase is the host of superconductivity. Lastly, our results also reveal a superconducting dome in which the superconducting transition temperature varies as a function of the nominal valence of iron.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goracci, G., E-mail: sckgorag@ehu.es; Arbe, A.; Alegría, A.
2016-04-21
We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering, differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly (2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but withoutmore » evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structural relaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to the lack of cooperativity effects in the relaxation of these molecules within the polymeric matrix.« less
NASA Astrophysics Data System (ADS)
Ogawa, Masaru
2014-12-01
In order to assure structural integrity for operating welded structures, it is necessary to evaluate crack growth rate and crack propagation direction for each observed crack non-destructively. Here, three dimensional (3D) welding residual stresses must be evaluated to predict crack propagation. Today, X-ray diffraction is used and the ultrasonic method has been proposed as non-destructive method to measure residual stresses. However, it is impossible to determine residual stress distributions in the thickness direction. Although residual stresses through a depth of several tens of millimeters can be evaluated non-destructively by neutron diffraction, it cannot be used as an on-site measurement technique. This is because neutron diffraction is only available in special irradiation facilities. Author pays attention to the bead flush method based on the eigenstrain methodology. In this method, 3D welding residual stresses are calculated by an elastic Finite Element Method (FEM) analysis from eigenstrains which are evaluated by an inverse analysis from released strains by strain gauges in the removal of the reinforcement of the weld. Here, the removal of the excess metal can be regarded as non-destructive treatment because toe of weld which may become crack starters can be eliminated. The effectiveness of the method has been proven for welded plates and pipes even with relatively lower bead height. In actual measurements, stress evaluation accuracy becomes poorer because measured values of strain gauges are affected by processing strains on the machined surface. In the previous studies, the author has developed the bead flush method that is free from the influence of the affecting strains by using residual strains on surface by X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation accuracy of residual stresses in this method is formulated, and it is shown numerically that inner welding residual stresses can be estimated accurately from the residual strains measured by X-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.
2015-11-15
High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less
Structural differences between single crystal and polycrystalline UBe 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia
Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less
Structural differences between single crystal and polycrystalline UBe 13
Volz, Heather Michelle; Vogel, Sven C.; Smith, Alice Iulia; ...
2018-05-16
Here, we report on observations of structural and chemical differences between samples of UBe 13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in themore » flux-grown single crystal (0.803 wt%), and small amounts (~0.2 wt%) of thorium were detected in the UBe 13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe 13 is significant.« less
Structural and physical property study of sol-gel synthesized CoFe2-xHoxO4 nano ferrites
NASA Astrophysics Data System (ADS)
Patankar, K. K.; Ghone, D. M.; Mathe, V. L.; Kaushik, S. D.
2018-05-01
CoFe2-xHoxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) ferrites were prepared by the suitably modified Sol-Gel technique. X-ray diffraction (XRD) analysis revealed that the substituted samples show phase pure formation till 10% substitution, which is far higher phase pure than the earlier reports. Upon further substitution an inevitable secondary phase of HoFeO3 along with the spinel phase despite regulating synthesis parameters in the sol-gel reaction route. These results are further corroborated more convincingly by room temperature neutron diffraction. Morphological features of the ferrites were studied by Scanning Electron Microscopy (SEM). The magnetic parameters viz. the saturation magnetization (Ms), coercivity (Hc) and remanence (Mr) were determined from room temperature isothermal magnetization. These parameters were found to decrease with increase in Ho substitution. The decrease in magnetization is analyzed in the light of exchange interactions between rare earth and transition metal ions. Magnetostriction measurements revealed interesting results and the presence of a secondary phase was found to be responsible for decreased measu-red magnetostriction values. The solubility limit of Ho in CoFe2O4 lattice is also reflected from the X-ray and neutron diffraction analysis and magnetostriction studies.
NASA Astrophysics Data System (ADS)
Piccoli, Paula M. B.; Cowan, John A.; Schultz, Arthur J.; Koetzle, Thomas F.; Yap, Glenn P. A.; Trofimenko, Swiatoslaw
2008-11-01
The structures of four dihydrobis(pyrazol-1-yl)borate (Bp) complexes of molybdenum have been determined at low temperature by single crystal neutron diffraction in order to accurately characterize the three-center B sbnd H sbnd Mo agostic bonding. The B sbnd H1A (agostic) distance is found to be elongated by about 0.05-0.08 Å compared to the B sbnd H1B distance (not agostically bound to the metal center). This systematic study of a series of molecules with different substituents on the Bp ligand permits us to examine the effects of electronic and steric factors on the overall structure and bonding, and particularly on the agostic bond. It is observed that a closer approach of H1A to Mo leads to a longer trans-Mo sbnd CO bond distance, analogous to the trans hydride structural effect in hydride complexes. In addition Fenske-Hall calculations were performed on these complexes, and the results are reported herein.
Redetermination of the borax structure from laboratory X-ray data at 145 K
Gainsford, Graeme J.; Kemmitt, Tim; Higham, Caleb
2008-01-01
The title compound, sodium tetraborate decahydrate (mineral name: borax), Na2[B4O5(OH)4]·8H2O, has been studied previously using X-ray [Morimoto (1956). Miner. J. 2, 1–18] and neutron [Levy & Lisensky (1978). Acta Cryst. B34, 3502–3510] diffraction data. The structure contains tetraborate anions [B4O5(OH)4]2− with twofold rotation symmetry, which form hydrogen-bonded chains, and [Na(H2O)6] octahedra that form zigzag chains [Na(H2O)4/2(H2O)2/1]. The O—H bond distances obtained from the present redetermination at 145 K are shorter than those in the neutron study by an average of 0.127 (19) Å. PMID:21202161
NASA Astrophysics Data System (ADS)
Feng, Lei-hao; Hu, Qi-wei; Lei, Li; Fang, Lei-ming; Qi, Lei; Zhang, Lei-lei; Pu, Mei-fang; Kou, Zi-li; Peng, Fang; Chen, Xi-ping; Xia, Yuan-hua; Kojima, Yohei; Ohfuji, Hiroaki; He, Duan-wei; Chen, Bo; Irifune, Tetsuo
2018-02-01
Not Available Project supported by the Research Foundation of Key Laboratory of Neutron Physics (Grant No. 2015BB03), the National Natural Science Foundation of China (Grant Nos. 11774247), the Science Foundation for Excellent Youth Scholars of Sichuan University (Grant No. 2015SCU04A04), and the Joint Usage/Research Center PRIUS (Ehime University, Japan) and Chinese Academy of Sciences (Grant No. 2017-BEPC-PT-000568).