Science.gov

Sample records for neutron flux measurement

  1. Apparatus for measuring a flux of neutrons

    DOEpatents

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  2. Cosmic Ray Neutron Flux Measurements

    NASA Astrophysics Data System (ADS)

    Dayananda, Mathes

    2009-11-01

    Cosmic rays are high-energetic particles originating from outer space that bombard the upper atmosphere of the Earth. Almost 90% of cosmic ray particles consist of protons, electrons and heavy ions. When these particles hit the Earth's atmosphere, cascade of secondary particles are formed. The most abundant particles reach to the surface of the Earth are muons, electrons and neutrons. In recent years many research groups are looking into potential applications of the effects of cosmic ray radiation at the surface of the Earth [1, 2]. At Georgia State University we are working on a long-term measurement of cosmic ray flux distribution. This study includes the simultaneous measurement of cosmic ray muons, neutrons and gamma particles at the Earth surface in downtown Atlanta. The initial effort is focusing on the correlation studies of the cosmic ray particle flux distribution and the atmospheric weather conditions. In this presentation, I will talk about the development of a cosmic ray detector using liquid scintillator and the preliminary results. [4pt] [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, ``Radiographic imaging with cosmic-ray muons'', Nature, Vol.422, p.277, Mar.2003[0pt] [2] Svensmark Henrik, Physical Review 81, 3, (1998)

  3. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  4. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  5. A Novel Detector for High Neutron Flux Measurements

    SciTech Connect

    Singo, T. D.; Wyngaardt, S. M.; Papka, P.; Dobson, R. T.

    2010-01-05

    Measuring alpha particles from a neutron induced break-up reaction with a mass spectrometer can be an excellent tool for detecting neutrons in a high neutron flux environment. Break-up reactions of {sup 6}Li and {sup 12}C can be used in the detection of slow and fast neutrons, respectively. A high neutron flux detection system that integrates the neutron energy sensitive material and helium mass spectrometer has been developed. The description of the detector configuration is given and it is soon to be tested at iThemba LABS, South Africa.

  6. High-Energy Neutron Spectra and Flux Measurements Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-03-01

    High-energy neutrons are a ubiquitous and often poorly measured background. Below ground, these neutrons could potentially interfere with antineutrino based reactor monitoring experiments as well as other rare-event neutral particle detectors. We have designed and constructed a transportable fast neutron detection system for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The spectrometer uses a multiplicity technique in order to have a higher effective area than traditional transportable high-energy neutron spectrometers. Transportability ensures a common detector-related systematic bias for future measurements. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. A high-energy neutron may interact in the lead producing many secondary neutrons. The detector records the correlated secondary neutron multiplicity. Over many events, the response can be used to infer the incident neutron energy spectrum and flux. As a validation of the detector response, surface measurements have been performed; results confirm agreement with previous experiments. Below ground measurements have been performed at 3 depths (380, 600, and 1450 m.w.e.); results from these measurements will be presented.

  7. A calorimeter for neutron flux measurement. Final report

    SciTech Connect

    Chupp, T.E.

    1993-04-01

    A calorimeter for absolute neutron flux measurement has been built and tested. The calorimeter measures the heat produced in a 10{degrees}K thick LiPb target when neutrons are captured via the {sup 6}Li(n,{sup 3}H){sup 4}He reaction. The sensitivity achieved was 1.3x10{sup 6} n/s for a 1 hour measurement. Separate flux measurements with the calorimeter and a {sup 238}U fission chamber are in agreement and show that systematic errors are less than 3%. An improved calorimeter has been built which is sensitive to 10{sup 5} n/s for a 1 hour measurement.

  8. Operation TEAPOT. Project 2.2. Neutron Flux Measurements

    DTIC Science & Technology

    1981-01-01

    Shots 9 and 10 and on weapons of essentially new design, -~ Detectors employing gold, sulfur, plutonium, neptunium , and uranium-238 were employed...calibrated in terms of the integrated flux interacting with the sample. Neptunium has a neutron fission threshold in the region of 700 key. Samples are...level. Neptunium -258 hs a 2.1 day half life, which interferes with the measurement of the acti~rity of the fissicu fragments. Uranium-238 has a

  9. Neutron spatial flux profile measurement in compact subcritical system using miniature neutron detectors

    NASA Astrophysics Data System (ADS)

    Shukla, Mayank; Desai, Shraddha S.; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Bajpai, Shefali; Patel, Tarun; Sinha, Amar

    2015-02-01

    A zero power multiplying assembly in subcritical regime serves as a benchmark for validating subcritical reactor physics. The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplying medium requires a well-defined neutron flux to carry out the experiments. For this it is necessary to know the neutron flux profile inside a subcritical system. A compact subcritical assembly BRAHMMA has been developed in India. The experimental channels in this assembly are typically less than 8 mm diameter. This requires use of miniature detectors that can be mounted in these experimental channels. In this article we present the thermal neutron flux profile measurement in a compact subcritical system using indigenously developed miniature gas filled neutron detectors. These detectors were specially designed and fabricated considering the restrictive dimensional requirements of the subcritical core. Detectors of non-standard size with various sensitivities, from 0.4 to 0.001 cps/nv were used for neutron flux of interest ranging from 103 to 107 n-cm-2 s-1. A comparison of measured neutron flux using these detectors and simulated Monte Carlo calculations are also presented in this article.

  10. Measuring fast-neutron flux by track-etch technique

    SciTech Connect

    Not Available

    1981-01-01

    The method covers the measurement of neutron flux by the use of fissionable materials. Fission fragments emitted by the fissionable materials during neutron bombardment penetrate a suitable recording medium, such as plastic, glass, or mica, that is in contact with the fissionable material. Appropriate etching techniques render the path of the fragment in the recording medium visible under an optical microscope. Since measurement of the decay of radioisotopes is not involved in this method, irradiation times are limited only by the maximum number of fission fragment tracks that can be clearly distinguished without pile up: approximately 2 x 10/sup 5//cm/sup 2/. The method includes a discussion of apparatus, reagents and materials, procedure, calculations, precision, and accuracy. (JMT)

  11. "Influence Method" applied to measure a moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-01-01

    The ;Influence Method; is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency. This method exploits the influence of the presence of one detector, in the count rate of another detector when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency. The method and its detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we apply it to the measurement of the moderated neutron flux produced by an 241AmBe neutron source surrounded by a light water sphere, employing a pair of 3He detectors. For this purpose, the method is extended for its application where particles arriving at the detector obey a Poisson distribution and also, for the case when efficiency is not constant over the energy spectrum of interest. Experimental distributions and derived parameters are compared with theoretical predictions of the method and implications concerning the potential application to the absolute calibration of neutron sources are considered.

  12. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    SciTech Connect

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nunez, M.; Tropea, S. E.

    2008-01-21

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  13. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    NASA Astrophysics Data System (ADS)

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nuñez, M.; Tropea, S. E.

    2008-01-01

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  14. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  15. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  16. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    NASA Astrophysics Data System (ADS)

    Haines, E. L.; Metzger, A. E.

    In order to measure the planetary neutron albedo fluxes, a neutron-absorbing shield which emits gamma rays of characteristic energy and serves as a neutron detector, is added to a gamma-ray spectrometer (GRS). The gamma rays representing the neutron flux are observed against interference consisting of cosmic gamma rays, planetary continuum and line emission, and gamma rays arising from the interaction of cosmic rays with the GRS and the spacecraft. The uncertainty and minimum detection limits in neutron albedo fluxes are calculated for two missions, a lunar orbiter and a comet nucleus rendezvous. A GRS on a lunar orbiter at 100 km altitude detects a thermal neutron albedo flux as low as 0.002/sq cm/s and an expected flux of about 0.6/sq cm/s is measured with an uncertainty of 0.001/sq cm/s, for a 100 h observation period. For the comet nucleus, again in a 100 h observing period, a thermal neutron albedo flux is detected at a level of 0.006/sq cm/s and an expected flux of about 0.4/sq cm/s is measured with an uncertainty of 0.004/sq cm/s. The expanded geological capabilities made possible by this technique include improvements in H sensitivity, spatial resolution, and measurement depth; and an improved model of induced gamma-ray emission.

  17. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  18. A scintillating fission detector for neutron flux measurements

    SciTech Connect

    Stange, Sy; Esch, Ernst I; Burgett, Eric A; May, Iain; Muenchausen, Ross E; Taw, Felicia; Tovesson, Fredrik K

    2010-01-01

    Neutron flux monitors are commonly used for a variety of nuclear physics applications. A scintillating neutron detector, consisting of a liquid scintillator loaded with fissionable material, has been developed, characterized, and tested in the beam line at the Los Alamos Neutron Science Center, and shows a significant improvement in neutron sensitivity compared with a conventional fission chamber. Recent research on nanocomposite-based scintillators for gamma-ray detection indicates that this approach can be extended to load nanoparticles of fissionable material into a scintillating matrix, with up to three orders of magnitude higher loading than typical fission chambers. This will result in a rugged, cost-efficient detector with high efficiency, a short signal rise time, and the ability to be used in low neutron-flux environments. Initial efforts to utilize the luminescence of uranyl oxide to eliminate the need for wavelength-shifting dyes were unsuccessful. Excitation of uranyl compounds has been reported at wavelengths ranging from 266 nm to 532 nm. However, neither the 300 nm emission of toluene, nor the 350 nm emission of PPO, nor the 410 nm emission of POPOP resulted in significant excitation of and emission by uranyl oxide. As indicated by UV/visible spectroscopy, light emitted at these wavelengths was absorbed by the colored solution. {sup 235}U remains the most attractive candidate for a fissionable scintillator, due to its high fission cross-section and lack of a threshold fission energy, but all solutions containing molecular uranium compounds will be colored, most more highly than the U{sup 6+} compounds used here. Research is therefore continuing toward the fabrication of uranium nanoparticles, in which, due to Rayleigh scattering, the coloration should be less pronounced. The characterization of the thorium-loaded liquid scintillator and the fabrication of the 100 mL detectors for use at LANSCE demonstrated the feasibility of loading fissionable

  19. Measurement of High-Energy Neutron Flux Above Ground Utilizing a Spallation Based Multiplicity Technique

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-12-01

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Monte Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. These results demonstrate the feasibility of future below ground measurements with MARS.

  20. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE PAGES

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  1. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    SciTech Connect

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; Vetter, Kai

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Monte Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.

  2. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    PubMed

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  3. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Acosta, L.; Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  4. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    SciTech Connect

    Fourmentel, D.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y.; Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J.

    2011-07-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  5. A digital wide range neutron flux measuring system for HL-2A

    NASA Astrophysics Data System (ADS)

    Yuan, Chen; Wu, Jun; Yin, Zejie

    2017-08-01

    To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.

  6. Measurement of the solar diurnal anisotropy of the cosmic-ray albedo neutron flux

    NASA Astrophysics Data System (ADS)

    Ifedili, S. O.

    1982-03-01

    The solar diurnal anisotropy of the cosmic-ray albedo neutron flux has been measured by a neutron detector on board the OGO-6 satellite. On the average the diurnal amplitudes and phases of the cosmic ray albedo neutron flux (less than or equal to 10 MeV) were respectively 0.18 + or - 0.02% and 15 + or - 1 hr LT, though there were substantial fluctuations of a few days' duration which did not depend on the solar sector structure polarity and a 27-day periodicity in the diurnal amplitudes which was associated with the sun's rotation.

  7. Experimental neutron flux measurements with a diamond detector at the QUINTA setup

    NASA Astrophysics Data System (ADS)

    Berlev, A. I.; Rodionov, N. B.; Tyutyunnikov, S. I.; Amosov, V. N.; Meshchaninov, S. A.; Yudin, I. P.

    2016-05-01

    The operational capability of a diamond detector used to measure the neutron spectrum by the response function on the QUINTA setup [1] installed at the proton beam of the phasotron [2] (Laboratory of Nuclear Problems, Joint Institute for Nuclear Research) was demonstrated in the energy interval of 2.1-20 MeV. The neutron-flux count rate was measured. The energy of neutrons was estimated at 7.4-25.7 MeV based on the diamond-detector response spectrum. The dependence of the diamond-detector response spectra on the angle between the proton beam and the line going through the detector and the center of the QUINTA setup was investigated. The angular anisotropy of the neutron flux was demonstrated. Measurements at different distances from the detector to the QUINTA setup were performed.

  8. Measurements of neutron fluxes with energies from thermal to several MeV in near-Earth space: SINP results.

    PubMed

    Shavrin, P I; Kuzhevskij, B M; Kuznetsov, S N; Nechaev, O Yu; Panasyuk, M I; Ryumin, S P; Yushkov, B Yu; Bratolyubova-Tsulukidze, L S; Lyagushin, V I; Germantsev, Yu L

    2002-10-01

    Neutron measurement results obtained at SINP MSU since 1970 are presented. These measurements were made using techniques based on neutron moderation and subsequent detection in a Li6I(Eu) crystal or a He3 coronal counter. The measurements were mainly carried out in orbits with inclination of 52 degrees and altitudes of 200-450 km. The spatial and angular distributions of the measured neutron fluxes were studied. The albedo neutron flux was estimated according to the count rate difference for opposite detector orientations towards Earth and away from it. This flux is comparable to the local neutron flux outside the Brazil anomaly region, where local neutrons dominate. Neutron fluxes, generated by solar protons, were detected during a solar flare on June 6, 1991 for the first time. Their spectrum was estimated as a power law with alpha>2.

  9. Measurement of angular distribution of neutron flux for the 6MeV race-track microtron based pulsed neutron source.

    PubMed

    Patil, B J; Chavan, S T; Pethe, S N; Krishnan, R; Dhole, S D

    2010-09-01

    The 6MeV race track microtron based pulsed neutron source has been designed specifically for the elemental analysis of short lived activation products, where the low neutron flux requirement is desirable. Electrons impinges on a e-gamma target to generate bremsstrahlung radiations, which further produces neutrons by photonuclear reaction in gamma-n target. The optimisation of these targets along with their spectra were estimated using FLUKA code. The measurement of neutron flux was carried out by activation of vanadium at different scattering angles. Angular distribution of neutron flux indicates that the flux decreases with increase in the angle and are in good agreement with the FLUKA simulation.

  10. COMPTEL measurements of the omnidirectional high-energy neutron flux in near-earth orbit.

    PubMed

    Morris, D J; Aarts, H; Bennett, K; Lockwood, J A; McConnell, M L; Ryan, J M; Schonfelder, V; Steinle, H; Weidenspointner, G

    1998-01-01

    On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (> 12.8 MeV) neutron flux near an altitude of 450 km. The D1 modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo.

  11. Neutron flux measurement using activated radioactive isotopes at the Baksan underground scintillation telescope

    NASA Astrophysics Data System (ADS)

    Kochkarov, M. M.; Alikhanov, I. A.; Boliev, M. M.; Dzaparova, I. M.; Novoseltseva, R. V.; Novoseltsev, Yu. F.; Petkov, V. B.; Volchenko, V. I.; Volchenko, G. V.; Yanin, A. F.

    2016-11-01

    Preliminary results of a neutron background measurement at the Baksan underground scintillation telescope (BUST) are presented. The external planes of the BUST are fully covered with standard scintillation detectors shielding the internal planes and suppressing thus background events due to cosmogenic and local radioactivity. The shielded internal planes were used as target for the neutron flux registration. The experimental method is based on the delayed coincidences between signals from any of the BUST counters. It is assumed that the first signal is due to inelastic interaction of a neutron with the organic scintillator, while the second signal comes from the decay of an unstable radioactive isotope formed when the fast neutron interacts with the 12C nuclei. Using the Monte-Carlo method (GEANT4) we also simulated propagation of neutrons through a layer of scintillator. The experimentally found muon induced neutron flux is j =1.3 -0.3 +0.7 ×10-10cm-2s-1 for neutron energies E ≥ 22MeV, which is in a qualitative agreement with similar measurements of other underground laboratories as well as with predictions of the GEANT4.

  12. A novel method to measure low flux ambient thermal neutrons with 3He proportional counters

    NASA Astrophysics Data System (ADS)

    Zeng, Z. M.; Gong, H.; Yue, Q.; Li, J. M.

    2017-09-01

    A pulse shape discrimination method to discriminate neutron events from backgrounds based on the double-pulse effect of 3He proportional counters is proposed and detailed in this paper. We made an ambient thermal neutron measurement system composed of a commercial 3He proportional counter tube and the corresponding readout electronics. The background of the system has been measured and the minimum detectable amount of the 3He proportional counter tube will be reduced by an order of magnitude with this method. The system was applied to measure the ambient thermal neutron flux inside a large neutron shielding structure at a deep underground laboratory and the pulse shape discrimination method proves to be effective.

  13. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  14. Measurement of the High-Energy Neutron Flux Above and Below Ground

    NASA Astrophysics Data System (ADS)

    Roecker, Caleb Daniel

    This dissertation introduces the new multiplicity measurement approach, the MCMC inversion algorithm, the Monte Carlo model and associated calibrations, and presents results from the four measurements. Above ground, the MARS measurement results agree with most of the previous measurements in the energy range between 90 MeV and 250 MeV. Above 250 MeV the MARS results report slightly lower flux than most of the previous measurements, but are still within the spread of all previous measurements. Below ground, no direct comparison can be made to the MARS results at 377 m.w.e. The MARS result at 540 m.w.e. appears to be in rough agreement with one of the previous below ground measurements, at the one measured energy where the results overlap. At 1450 m.w.e., the MARS results shows reasonable agreement with previous simulation predictions. The rough agreement of the MARS results, at all relevant locations, with previous measurements and existing simulation where applicable, provide confidence that all MARS measurements have produced the correct high-energy neutron energy-dependent flux. Above ground, the new independent results strengthen the results of previous measurements. Below ground, the three measurements provide consistent results with minimal detector related bias between measurements due to the transportable nature of MARS, that will be used to produce a depth-dependent model of the high-energy neutron energy-dependent flux. For the rare-event particle and nuclear physics experiments affected by high-energy neutron backgrounds, this model will allow for the prediction of the high-energy neutron background at different measurement locations, a more robust instrumental design, and the ability to estimate the high-energy neutron background contribution in their final measured data; the confidence in the results of these experiments will be improved. (Abstract shortened by ProQuest.).

  15. Neutron lifetime measurement with pulsed beam at J-PARC:Incident Beam Flux

    NASA Astrophysics Data System (ADS)

    Sakakibara, Risa; Shimizu, Hirohiko M.; Kitaguchi, Masaaki; Hirota, Katsuya; Sugino, Tomoaki; Yamashita, Satoru; Katayama, Ryo; Yamada, Takahito; Higashi, Nao; Yokoyama, Harumichi; Sumino, Hirochika; Yoshioka, Tamaki; Otono, Hidetoshi; Tanaka, Genki; Sumi, Naoyuki; Iwashita, Yoshihisa; Kitahara, Ryunosuke; Oide, Hideyuki; Shima, Tatsushi; Ino, Takashi; Mishima, Kenji; Taketani, Kaoru; Seki, Yoshichika; NOP Collaboration

    2014-09-01

    The neutron lifetime is one of the important parameters in the estimation of the abundance of the light elements in the early universe through the Big Bang Nucleosynthesis (BBN). The accuracy of 0.1% is desired in the neutron lifetime to quantitatively discuss the BBN in combination with the observation of the anisotropy of the cosmic microwave. We have started a lifetime measurement with pulsed neutrons at J-PARC/BL05. To measure the lifetime, we detect the decay electrons from the bunched neutrons and the incident neutron flux in the TPC at the same time. By diluting a small amount of 3He gas into the TPC, the incident flux is estimated by counting protons via 3He(n,p)3H reactions. The accuracy of the selection of 3He(n,p)3H events and the influence of the contamination of nitrogen gas are the major systematic errors. In this paper, the estimation of the systematic error in the incident flux is reported.

  16. Measurement of Neutron and Muon Fluxes 100~m Underground with the SciBath Detector

    SciTech Connect

    Garrison, Lance

    2014-01-01

    The SciBath detector is an 80 liter liquid scintillator detector read out by a three dimensional grid of 768 wavelength-shifting fibers. Initially conceived as a fine-grained charged particle detector for neutrino studies that could image charged particle tracks in all directions, it is also sensitive to fast neutrons (15-200 MeV). In fall of 2011 the apparatus performed a three month run to measure cosmic-induced muons and neutrons 100~meters underground in the FNAL MINOS near-detector area. Data from this run has been analyzed and resulted in measurements of the cosmic muon flux as \

  17. The measurement of thermal neutron flux depression for determining the concentration of boron in blood.

    PubMed

    Brooke, S L; Green, S; Charles, M W; Beddoe, A H

    2001-03-01

    Boron neutron capture therapy (BNCT) is a form of targeted radiotherapy that relies on the uptake of the capture element boron by the volume to be treated. The treatment procedure requires the measurement of boron in the patient's blood. The investigation of a simple and inexpensive method for determining the concentration of the capture element 10B in blood is described here. This method, neutron flux depression measurement, involves the determination of the flux depression of thermal neutrons as they pass through a boron-containing sample. It is shown via Monte Carlo calculations and experimental verification that, for a maximum count rate of 1 x 10(4) counts/s measured by the detector, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 32 +/- 2 min. For a source activity of less than 1.11 x 10(11) Bq and a maximum count rate of less than 1 x 10(4) counts/s, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 58 +/- 3 min. It has also been shown that this technique can be applied to the measurement of the concentration of any element with a high thermal neutron cross section such as 157Gd.

  18. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    NASA Astrophysics Data System (ADS)

    Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; Petry, W.; Schöffel, T.; Schreckenbach, K.; Urban, A.; Wildgruber, U.

    2006-05-01

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D 2 cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique "twisted" guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  19. Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica

    SciTech Connect

    Muckenthaler, F.J.

    1984-03-01

    This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data for testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.

  20. The measurement of the solar neutrino flux with the sudbury neutrino observatory's neutron capture detector

    NASA Astrophysics Data System (ADS)

    Jamieson, B.

    2008-06-01

    Phase III of the Sudbury Neutrino Observatory (SNO) experiment began after the installation of the Neutral-Current Detector (NCD) array in the D2O-filled acrylic vessel. This unique phase provides a measurement of the Neutral-Current (NC) flux that can be statistically and systematically separated from the Elastic-Scattering (ES) and Charged-Current (CC) fluxes by simply counting the number of solar-induced dissociated neutrons captured in the NCD array. The measurement with NCDs will provide increased precision on the CC and NC fluxes, and thus on the solar neutrino mixing parameters. This poster presents the status of the analysis of the SNO phase III solar neutrino fluxes.

  1. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  2. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.

    PubMed

    Taheri, Ali; Pazirandeh, Ali

    2016-12-01

    To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10(7) (n/cm(2).s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.

  3. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  4. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    NASA Astrophysics Data System (ADS)

    Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  5. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions.

    PubMed

    Geslot, B; Vermeeren, L; Filliatre, P; Lopez, A Legrand; Barbot, L; Jammes, C; Bréaud, S; Oriol, L; Villard, J-F

    2011-03-01

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 10(20) n∕cm(2). A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  6. New measurement system for on line in core high-energy neutron flux monitoring in materials testing reactor conditions

    SciTech Connect

    Geslot, B.; Filliatre, P.; Barbot, L.; Jammes, C.; Breaud, S.; Oriol, L.; Villard, J.-F.; Lopez, A. Legrand

    2011-03-15

    Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 x 10{sup 20} n/cm{sup 2}. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.

  7. Low-energy neutron flux measurement using a resonance absorption filter surrounding a lithium glass scintillator

    NASA Astrophysics Data System (ADS)

    Ghal-Eh, N.; Koohi-Fayegh, R.; Hamidi, S.

    2007-06-01

    The resonance absorption filter technique has been used to determine the thermal/epithermal neutron flux. The main idea in this technique is to use an element with a high and essentially singular resonance in the neutron absorption cross section as a filter surrounding a miniature-type lithium glass scintillator. The count with and without the filter surrounding the detector gives the number of resonance-energy neutrons. Some preliminary results and a comparison with the MCNP code are shown.

  8. Measuring neutron fluences and gamma/x ray fluxes with CCD cameras

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Smith, G. W.; Zagarino, P.; Thomas, M. C.

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCD's) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4-12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate approx. = .05 V/rad responsivity with greater than or = 1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or 'peaks' binned by area and amplitude as functions of fluence in the 105 to 107 n/cc range indicate smearing over approx. 1 to 10 percent of the CCD array with charge per pixel ranging between noise and saturation levels.

  9. Precision neutron flux measurements and applications using the Alpha Gamma device

    NASA Astrophysics Data System (ADS)

    Anderson, Eamon; Alpha Gamma; BL2 Collaboration

    2015-04-01

    The Alpha Gamma device is a totally-absorbing 10 B neutron detector designed to measure the absolute detection efficiency of a thin-film lithium neutron monitor on a monoenergetic neutron beam. The detector has been shown to measure neutron fluence with an absolute accuracy of 0.06%. This capability has been used to perform the first direct, absolute measurement of the 6Li(n , t) 4He cross section at sub-thermal energy, improve the neutron fluence determination in a past beam neutron lifetime measurement by a factor of five, and is being used to calibrate the neutron monitors for use in the upcoming beam neutron lifetime measurement BL2 (NIST Beam Lifetime 2). The principle of the measurement method will presented and the applications will be discussed. We would like to acknowledge support of this research through the NSF-PHY-1068712 grant as well as the NIST Precision Measurement Grant program.

  10. Precision neutron flux measurements and applications using the Alpha Gamma device

    NASA Astrophysics Data System (ADS)

    Anderson, Eamon

    2016-03-01

    The Alpha Gamma device is a totally-absorbing 10 B neutron detector designed to measure the absolute detection efficiency of a thin-film lithium neutron monitor on a monoenergetic neutron beam. The detector has been shown to measure neutron fluence with an absolute accuracy of 0.06%. This capability has been used to perform the first direct, absolute measurement of the 6Li(n,t) 4He cross section at sub-thermal energy, improve the neutron fluence determination in a past beam neutron lifetime measurement by a factor of five, and is being used to calibrate the neutron monitors for use in the upcoming beam neutron lifetime measurement BL2 (NIST Beam Lifetime 2). The principle of the measurement method will presented and the applications will be discussed. We would like to acknowledge support of this research through the NSF-PHY-1068712 Grant as well as the NIST Precision Measurement Grant program.

  11. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil.

    PubMed

    Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H

    2015-12-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error.

  12. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  13. Energy distribution of the neutron flux measurements at the Chilean Reactor RECH-1 using multi-foil neutron activation and the Expectation Maximization unfolding algorithm.

    PubMed

    Molina, F; Aguilera, P; Romero-Barrientos, J; Arellano, H F; Agramunt, J; Medel, J; Morales, J R; Zambra, M

    2017-11-01

    We present a methodology to obtain the energy distribution of the neutron flux of an experimental nuclear reactor, using multi-foil activation measurements and the Expectation Maximization unfolding algorithm, which is presented as an alternative to well known unfolding methods such as GRAVEL. Self-shielding flux corrections for energy bin groups were obtained using MCNP6 Monte Carlo simulations. We have made studies at the at the Dry Tube of RECH-1 obtaining fluxes of 1.5(4)×10(13)cm(-2)s(-1) for the thermal neutron energy region, 1.9(5)×10(12)cm(-2)s(-1) for the epithermal neutron energy region, and 4.3(11)×10(11)cm(-2)s(-1) for the fast neutron energy region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of a gaseous recoil-proton detector for neutron flux measurements between 0.2 and 2 MeV neutron energy

    NASA Astrophysics Data System (ADS)

    Marini, P.; Mathieu, L.; Aiche, M.; Cheron, T.; Hellmuth, P.; Pedroza, J. L.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I.

    2017-09-01

    Absolute measurements of neutron fluence are an essential prerequisite of neutron-induced cross section measurements, neutron beam lines characterisation and dosimetric investigations. Precise neutron flux measurements can be performed with respect to the H(n,p) elastic cross section. The use of this technique, with silicon proton recoil detectors, is not straightforward below incident neutron energy of 1 MeV, due to a high background in the detected proton spectrum. Experiments carried out at the AIFIRA facility identified its origin. Based on these investigations, a gaseous recoil-proton detector has been designed, with a reduced low energy background. Preliminary results of the first tests of the developed detector are discussed here.

  15. 232Th, 233Pa, and 234U capture cross-section measurements in moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Bringer, O.; Isnard, H.; AlMahamid, I.; Chartier, F.; Letourneau, A.

    2008-07-01

    The Th-U cycle was studied through the evolution of a 100 μg 232Th sample irradiated in a moderated neutron flux of 8.010 14 n/cm 2/s, intensity close to that of a thermal molten salt reactor. After 43 days of irradiation and 6 months of cooling, a precise mass spectrometric analysis, using both TIMS and MC-ICP-MS techniques, was performed, according to a rigorous methodology. The measured thorium and uranium isotopic ratios in the final irradiated sample were then compared with integral simulations based on evaluated data; an overall good agreement was seen. Four important thermal neutron-capture cross-sections were also extracted from the measurements, 232Th (7.34±0.21 b), 233Pa (38.34±1.78 b), 234U (106.12±3.34 b), and 235U (98.15±11.24 b). Our 232Th and 235U results confirmed existing values whereas the cross-sections of 233Pa and 234U (both key parameters) have been redefined.

  16. Method for measuring dose-equivalent in a neutron flux with an unknown energy spectra and means for carrying out that method

    DOEpatents

    Distenfeld, Carl H.

    1978-01-01

    A method for measuring the dose-equivalent for exposure to an unknown and/or time varing neutron flux which comprises simultaneously exposing a plurality of neutron detecting elements of different types to a neutron flux and combining the measured responses of the various detecting elements by means of a function, whose value is an approximate measure of the dose-equivalent, which is substantially independent of the energy spectra of the flux. Also, a personnel neutron dosimeter, which is useful in carrying out the above method, comprising a plurality of various neutron detecting elements in a single housing suitable for personnel to wear while working in a radiation area.

  17. Measurements of high-energy neutron and proton fluxes on-board "Mir-Spectr" orbital complex.

    PubMed

    Kudryavtsev, M I; Bogomolov, A V; Bogomolov, V V; Denisov YuI; Svertilov, S I

    1998-01-01

    The measurements of high-energy neutron (with energies approximately 30-300 MeV) and proton (with energies approximately 1-200 MeV) fluxes are being conducted on-board "Mir-Spectr" orbital complex. Neutrons are detected by the undirected (FOV approximately 4 pi sr) scintillator spectrometer, consisting of 4 identical CsI(T1) detector units (the effective area for neutrons approximately 30 cm2). The gamma-quanta, which can be also detected by this instrument, are separated from neutrons by the analysis of the scintillator output pulse shape. To exclude registration of charged particles an anticoincidence plastic scintillator shield is realized in each detector unit. The proton fluxes are measured by the telescope based on 3 semiconductor detectors with small geometry factor (approximately 1 cm2 x sr). As the first result of the experiment the upper limit of the integral flux of local and albedo neutrons in the equatorial region (L<1. 1) was estimated. The results of this measurements can be useful for the radiation security. Also, the neutrons of solar flares can be detected in this experiment.

  18. Underground low flux neutron background measurements in LSM using a large volume (1m3) spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Savvidis, I.; Giomataris, I.; Bougamont, E.; Irastorza, I.; Aune, S.; Chapelier, M.; Charvin, P. H.; Colas, P.; Derre, J.; Ferrer, E.; Gerbier, G.; Gros, M.; Mangier, P.; Navick, X. F.; Salin, P.; Vergados, J. D.; Zampalo, M.

    2010-01-01

    A large volume (1m3) spherical proportional counter has been developed at CEA/Saclay, for low flux neutron measurements. The high voltage is applied to a small sphere 15mm in diameter, located in the center of the counter and the wall of the counter is grounded. Neutrons can be measured successfully, with high sensitivity, using 3He gas in the detector. The proton and tritium energy deposition in the drift gaseous volume, from the reaction 3He(n,p)3H, can provide the neutron spectra from thermal neutrons up to several MeV. The detector has been installed in the underground laboratory in Modane (LSM) to measure the neutron background. The sphere has been has been filled with gas mixture of Ar + 2% CH4 +3gr He-3, at 275 mbar. The thermal neutron peak is well separated from the cosmic ray and gamma background, permitting of neutron flux calculation. Other potential applications requiring large volume of about 10 m in radius are described in detail in reference

  19. Monte Carlo simulations for high-rate fast neutron flux measurements made at the RAON neutron science facility by using MICROMEGAS

    NASA Astrophysics Data System (ADS)

    Hwang, Dae Hee; Hong, Ser Gi; Kim, Jae Cheon; Kim, Gi Dong; Kim, Yong Kyun

    2015-10-01

    RAON is a Korean heavy-ion accelerator complex that is planned to be built by 2021. Deuterons (53 MeV) and protons (88 MeV) accelerated by using a low-energy driver linac (SCL1) are delivered to the neutron production target in the Neutron Science Facility (NSF) to produce high-energy neutrons in the interval from 1 to 88 MeV with high fluxes of the order of 1012 n/cm2-sec. The repetition rate of the neutron beam ranges from 1 kHz to 1 MHz, and the maximum beam current is ~12 μA at 1 MHz. The beam width is 1 ~ 2 ns. The high-energy and high-rate fast neutrons are used to estimate accurate neutron-induced cross sections for various nuclides at the NSF. A MICROMEGAS (MICRO Mesh Gaseous Structure), which is a gaseous detector initially developed for tracking in high-rate, high-energy physics experiments, is tentatively being considered as a neutron beam monitor. It can be used to measure both the energy distribution and the flux of the neutron beam. In this study, a MICROMEGAS detector for installation at the NSF was designed and investigated. 6Li, 10B, 235U and 238U targets are being considered as neutron/charged particle converters. For the low-energy region, 6Li(n,α)t and 10B(n,α)7Li are used in the energy range from thermal to 1 MeV. 235U(n,f) and 238U(n,f) reactions are used for high-energy region up to 90 MeV. All calculations are performed by using the GEANT4 toolkit.

  20. Operation Sun Beam shots Little Feller I and II, Johnie boy, and Small Boy. Project Officer's report. Project 2. 3. Neutron flux measurements

    SciTech Connect

    Rigotti, D.L.; McNeilly, J.H.; Brady, R.E.; Tarbox, J.L.

    1985-09-01

    The objectives of this project were (1) to measure free-field neutron flux and spectrum as required in support of other projects; (2) to document the neutron flux versus ground range; and (3) to determine the effect of various blast containers and shields on detector activation.

  1. Neutron fluxes in radiotherapy rooms.

    PubMed

    Agosteo, S; Foglio Para, A; Maggioni, B

    1993-01-01

    The spatial distribution of the neutron flux, originated in an electron accelerator therapy room when energies above the threshold of (y,n) and (e,e'n) reactions are employed, is physically due to a direct flux, coming from the accelerator head, and to a flux diffused from the walls. In this work, the flux is described to a high degree of approximation by a set of functions whose spatial behavior is univocally determined by the angular distributions of the neutrons emitted from the shield of the accelerator head and diffused from the walls. The analytical results are verified with an extended series of Monte Carlo simulations obtained with the MCNP code.

  2. Neutron fluxes in test reactors

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  3. STRATIFIED COMPOSITION EFFECTS ON PLANETARY NEUTRON FLUX

    SciTech Connect

    O. GASNAULT; ET AL

    2001-01-01

    All the bodies of the solar system that are directly irradiated by the galactic cosmic rays, emit enough neutrons to allow a measurement from space. These leakage neutron fluxes are indexes of the surface composition, depending on the energy of the neutrons [1]. Recent work propose geochemical interpretations of these fluxes: the thermal energy range is sensitive to iron, titanium, rare earth elements and thorium [2, 3], the epithermal energy range is sensitive to hydrogen, samarium and gadolinium [2] and the fast energy range is representative of the average soil atomic mass [4]. Nevertheless these studies make the hypothesis of a composition uniform within the footprint of the spectrometer and independent of depth. We show in this abstract that a stratified composition could change significantly the flux intensity and complicate the interpretation of the measurements. The neutron leakage flux is a competition between production effects (sensitive at high energy) and diffusion-capture effects (mostly sensitive at low energy). On one hand, it happens to be that the elements which produce the higher number of neutrons in typical lunar compositions are iron and titanium, which have also large cross section of absorption with the neutrons. On the other hand, the maximum of neutron intensity does not occur at the surface but at about 180 g cm{sup {minus}2} in depth. Therefore, if we have an iron- and/or titanium-rich soil (important production of neutrons) with a top layer having less iron and/or titanium (i.e. more transparent to the neutrons), we can expect an enhancement of the flux compared to a uniform composition.

  4. Stratified composition effects on planetary neutron flux

    NASA Astrophysics Data System (ADS)

    Gasnault, O.

    2001-01-01

    All the bodies of the solar system that are directly irradiated by the galactic cosmic rays, emit enough neutrons to allow a measurement from space. These leakage neutron fluxes are indexes of the surface composition, depending on the energy of the neutrons (1). Recent work propose geochemical interpretations of these fluxes: the thermal energy range is sensitive to iron, titanium, rare earth elements and thorium (2, 3), the epithermal energy range is sensitive to hydrogen, samarium and gadolinium (2) and the fast energy range is representative of the average soil atomic mass (4). Nevertheless these studies make the hypothesis of a composition uniform within the footprint of the spectrometer and independent of depth. We show in this abstract that a stratified composition could change significantly the flux intensity and complicate the interpretation of the measurements. The neutron leakage flux is a competition between production effects (sensitive at high energy) and diffusion-capture effects (mostly sensitive at low energy). On one hand, it happens to be that the elements which produce the higher number of neutrons in typical lunar compositions are iron and titanium, which have also large cross section of absorption with the neutrons. On the other hand, the maximum of neutron intensity does not occur at the surface but at about 180 g cm(sup (minus)2) in depth. Therefore, if we have an iron- and/or titanium-rich soil (important production of neutrons) with a top layer having less iron and/or titanium (i.e. more transparent to the neutrons), we can expect an enhancement of the flux compared to a uniform composition.

  5. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  6. Measuring neutron fluences and gamma/x ray fluxes with CCD cameras

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Smith, G. W.; Zagarino, P.; Thomas, M. C.

    Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (16-MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate approximately 0.5 V/rad responsivity with greater than or equal to 1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or 'peaks' binned by area and amplitude as functions of fluence in the 10(exp 5) to 10(exp 7) n/sq cm range indicate smearing over approximately 1 to 10 percent of CCD array with charge per pixel ranging between noise and saturation levels.

  7. Calculation of neutron and gamma fluxes in support to the interpretation of measuring devices irradiated in the core periphery of the OSIRIS Material Testing Reactor

    SciTech Connect

    Malouch, Fadhel

    2015-07-01

    Technological irradiations carried out in material testing reactors (MTRs) are used to study the behavior of materials under irradiation conditions required by different types of nuclear power plants (NPPs). For MTRs, specific instrumentation is required for the experiment monitoring and for the characterization of irradiation conditions, in particular the flux of neutrons and photons. To measure neutron and photon flux in experimental locations, different sensors can be used, such as SPNDs (self-powered neutron detectors), SPGDs (self-powered gamma detectors) and ionization chambers. These sensors involve interactions producing ultimately a measurable electric current. Various sensors have been recently tested in the core periphery of the OSIRIS reactor (located at the CEA-Saclay center) in order to qualify their responses to the neutron and the photon flux. One of the key input data for this qualification is to have a relevant evaluation of neutron and gamma fluxes at the irradiation location. The objective of this work is to evaluate the neutron and the gamma flux in the core periphery of the OSIRIS reactor. With this intention, specific neutron-photonic three-dimensional calculations have been performed and are mainly based on the TRIPOLI-4{sup R} three-dimensional continuous-energy Monte Carlo code, developed by CEA (Saclay Center) and extensively validated against reactor dosimetry benchmarks. In the case of the OSIRIS reactor, TRIPOLI-4{sup R} code has been validated against experimental results based on neutron flux and nuclear heating measurements performed in ex-core and in-core experiments. In this work, simultaneous contribution of neutrons and gamma photons in the core periphery is considered using neutron-photon coupled transport calculations. Contributions of prompt and decay photons have been taken into account for the gamma flux calculation. Specific depletion codes are used upstream to provide the decay-gamma sources required by TRIPOLI-4

  8. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-star Masses and Radii from Thermonuclear X-Ray Bursts. III. Absolute Flux Calibration

    NASA Astrophysics Data System (ADS)

    Güver, Tolga; Özel, Feryal; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Díaz-Trigo, Maria

    2016-09-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.

  9. Measurement of the High Energy Neutron Flux on the Surface of the Natural Uranium Target Assembly QUINTA Irradiated by Deuterons of 4 and 8 GeV Energy

    NASA Astrophysics Data System (ADS)

    Adam, J.; Baldin, A. A.; Chilap, V.; Furman, W.; Katovsky, K.; Khushvaktov, J.; Kumar, V.; Pronskikh, V.; Mar'in, I.; Solnyshkin, A.; Suchopar, M.; Tsupko-Sitnikov, V.; Tyutyunnikov, S.; Vrzalova, J.; Wagner, V.; Zavorka, L.

    Experiments with the natural uranium target assembly "QUINTA" exposed to 4 and 8 GeV deuteron beams of the Nuclotron accelerator at the Joint Institute for Nuclear Research (Dubna) are analyzed. The reaction rates of 27Al(n,y1)24Na, 27Al(n,y2)22Na and 27Al(n,y3)7Be reactions with effective threshold energies of 5, 27, and 119 MeV were measured at both 4 GeV and 8 GeV deuteron beam energies. The average neutron fluxes between the effective threshold energies and the effective ends of the neutron spectra (which are 800 or 1000 MeV for 4 or 8 GeV deuterons) were determined. The evidence for the intensity shift of the neutron spectra to higher neutron energies with the increase of the deuteron energy from 4 GeV to 8 GeV was found from the ratios of the average neutron fluxes. The reaction rates and the average neutron fluxes were calculated with the MCNPX 2.7 code.

  10. Spacecraft-produced neutron fluxes on Skylab

    NASA Technical Reports Server (NTRS)

    Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.

    1977-01-01

    Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.

  11. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  12. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Marshall Clint; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many fronts to make possible high-speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flowfields/plumes. The Optical Plume Anomaly Detector (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDiFiS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Capabilities for real-time processing are being advanced on several fronts, including an effort to hardware encode components of the EDiFiS for health monitoring and management. This paper addresses the OPAD with its tool suites, and discusses what is considered a natural progression: a concept for taking OPAD to the next logical level of high energy physics, incorporating fermion and boson particle analyses in measurement of neutron flux.

  13. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Marshall Clint; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many fronts to make possible high-speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flowfields/plumes. The Optical Plume Anomaly Detector (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDiFiS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Capabilities for real-time processing are being advanced on several fronts, including an effort to hardware encode components of the EDiFiS for health monitoring and management. This paper addresses the OPAD with its tool suites, and discusses what is considered a natural progression: a concept for taking OPAD to the next logical level of high energy physics, incorporating fermion and boson particle analyses in measurement of neutron flux.

  14. Gravitational effects on planetary neutron flux spectra

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Drake, D. M.; O'Dell, R. D.; Brinkley, F. W., Jr.; Anderson, R. C.

    1989-01-01

    The effects of gravity on the planetary neutron flux spectra for planet Mars, and the lifetime of the neutron, were investigated using a modified one-dimensional diffusion accelerated neutral-particle transport code, coupled with a multigroup cross-section library tailored specifically for Mars. The results showed the presence of a qualitatively new feature in planetary neutron leakage spectra in the form of a component of returning neutrons with kinetic energies less than the gravitational binding energy (0.132 eV for Mars). The net effect is an enhancement in flux at the lowest energies that is largest at and above the outermost layer of planetary matter.

  15. Operation REDWING. Project 2.51, Neutron-Flux Measurements. Extracted Version

    DTIC Science & Technology

    1981-05-15

    function of distance from ground zero were measured with the following detectors: gold, plutonium, neptunium , uranium, sulfur. No data were obtained...grbund zero were measured with the following detectors: gold, plutonium, neptunium , uranium, sulfur, No data were obLmincd during Shot Cherokee because of...42 3.8 Gold threshold detector results for Shot Kickapoo -.-.-.------------------ -- 42 3.9 Plutonium, neptunium , and uranium

  16. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  17. Neutron flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  18. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; Harshman, K.; McClanahan, T. P.; Mokrousov, M. I.; Mazarico, E.; Milikh, G.; Neumann, G.; Sagdeev, R.; Smith, D. E.; Starr, R.; Zuber, M. T.

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  19. Neutron Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Nico, J. S.

    2006-11-01

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  20. Neutron Lifetime Measurements

    SciTech Connect

    Nico, J. S.

    2006-11-17

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  1. Beam choppers for neutron reflectometers at steady flux reactors

    NASA Astrophysics Data System (ADS)

    Pleshanov, N. K.

    2017-09-01

    Realizations of the TOF technique for neutron reflectometers at steady flux reactors are compared. Beam choppers for neutron reflectometers divide into choppers of type 1 (Δλ = const) and 2 (Δλ / λ = const) . It follows from Monte-Carlo simulations that choppers of type 1 do not yield to more intricate choppers of type 2, widely used at neutron reflectometers. Because of a very fast drop of neutron reflectivities with the momentum transfer q, non-optimality of measurements with a chopper of type 1 is fully compensated by better statistics at large q, and is not so much essential at small q. To vary the TOF resolution with choppers of type 1, a phasing of two discs and a turning of the system of two discs are suggested. The fluxes of neutrons with wavelengths beyond the working range and the efficiencies of their elimination by means of a bandwidth limiting prechopper are evaluated.

  2. Local Neutron Flux Distribution Measurements by Wire-Dosimetry in the AMMON Experimental Program in the EOLE Reactor

    NASA Astrophysics Data System (ADS)

    Gruel, A.; Di Salvo, J.; Roche, A.; Girard, J.-M.; Philibert, H.; Bonora, J.; Ledoux, J.-F.; Morel, C.; Lecluze, A.; Foucras, A.; Vaglio-Gaudard, C.; Colombier, A.-C.

    2016-02-01

    Dosimetry measurements were carried out during the AMMON experimental program, in the EOLE facility. Al-0.1 wt% Au wires were positioned along curved fuel plates of JHR-type assemblies to investigate the azimuthal and axial gold capture rate profiles, directly linked to the thermal and epithermal flux. After irradiation, wires were cut into small segments (a few mm), and the gold capture rate of each part was measured by gamma spectrometry on the MADERE platform. This paper presents results in the "hafnium" configuration, and more specifically the azimuthal flux profile characterization. The final uncertainty on each measured wire lies below 1% (at 2 standard deviations). Experimental profiles are in a good agreement against Monte Carlo calculations, and the 4% capture rate increase at the plate edge is well observed. The flux dissymmetry due to assembly position in the core is also measured, and shows a 10% discrepancy between the two edges of the plate.

  3. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  4. First In-Core Simultaneous Measurements of Nuclear Heating and Thermal Neutron Flux Obtained With the Innovative Mobile Calorimeter CALMOS Inside the OSIRIS Reactor

    NASA Astrophysics Data System (ADS)

    Carcreff, Hubert; Salmon, Laurent; Bubendorff, Jacques; Lepeltier, Valérie

    2016-10-01

    Nuclear heating inside a MTR reactor has to be known in order to design and run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. Calorimeter working modes, measurement procedures, main modeling and experimental results and expected advantages of this new technique have been already presented in previous papers. However, these first in-core measurements were not performed beyond 6 W · g-1, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 1014 n · cm-2 · s-1 and nuclear heating up to 12 W · g-1. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a comparison is made between results obtained by the probe calibration coefficient and the zero methods. Thermal neutron flux evaluation from SPND signal processing required a specific TRIPOLI-4 Monte Carlo calculation which has been performed with the precise CALMOS cell geometry. In addition, the Finite Element model for temperatures map prediction inside the calorimetric cell has been upgraded with recent experimental data obtained up to 12 W · g-1. Finally, the experience feedback led us to improvement perspectives. A second device is

  5. Distribution of thermal neutron flux around a PET cyclotron.

    PubMed

    Ogata, Yoshimune; Ishigure, Nobuhito; Mochizuki, Shingo; Ito, Kengo; Hatano, Kentaro; Abe, Junichiro; Miyahara, Hiroshi; Masumoto, Kazuyoshi; Nakamura, Hajime

    2011-05-01

    The number of positron emission tomography (PET) examinations has greatly increased world-wide. Since positron emission nuclides for the PET examinations have short half-lives, they are mainly produced using on-site cyclotrons. During the production of the nuclides, significant quantities of neutrons are generated from the cyclotrons. Neutrons have potential to activate the materials around the cyclotrons and cause exposure to the staff. To investigate quantities and distribution of the thermal neutrons, thermal neutron fluxes were measured around a PET cyclotron in a laboratory associating with a hospital. The cyclotron accelerates protons up to 18 MeV, and the mean particle current is 20 μA. The neutron fluxes were measured during both 18F production and C production. Gold foils and thermoluminescent dosimeter (TLD) badges were used to measure the neutron fluxes. The neutron fluxes in the target box averaged 9.3 × 10(6) cm(-2) s(-1) and 1.7 × 10(6) cm(-2) s(-1) during 18F and 11C production, respectively. Those in the cyclotron room averaged 4.1 × 10(5) cm(-2) s(-1) and 1.2 × 10(5) cm(-2) s(-1), respectively. Those outside the concrete wall shielding were estimated as being equal to or less than ∼3 cm s, which corresponded to 0.1 μSv h(-1) in effective dose. The neutron fluxes outside the concrete shielding were confirmed to be quite low compared to the legal limit.

  6. Neutron measurements of the OGO-VI Spacecraft

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.

    1973-01-01

    The neutron measurements with the OGO-6 spacecraft are reported. Topics discussed include: the design and calibration of a neutron monitor for measuring the cosmic ray neutron leakages from the earth's atmosphere, determination of latitude dependence of cosmic ray leakage flux, determination of the angular distribution of neutron leakage flux as deduced by measurements of the altitude dependence, and verification of the solar modulation of the cosmic ray source for the neutron leakage.

  7. Fission converter and metal-oxide-semiconductor field effect transistor study of thermal neutron flux distribution in an epithermal neutron therapy beam.

    PubMed

    Kaplan, G I; Rosenfeld, A B; Allen, B J; Coderre, J A; Liu, H B

    1999-09-01

    The depth distribution of the thermal neutron flux is a major factor in boron neutron capture therapy (BNCT) in determining the efficiency of cell sterilization. In this paper the fission detector method is developed and applied to measure the in-phantom thermal neutron flux depth distribution. Advantages of the fission detector include small size, direct measurement of thermal neutron flux in a mixed radiation field of BNCT beam, self-calibration, and the possibility of on-line measurement. The measurements were performed at epithermal a BNCT facility. The experimental results were compared with the thermal neutron flux calculated by the Monte Carlo method and found to be in good agreement.

  8. Criticality experiments to provide benchmark data on neutron flux traps

    SciTech Connect

    Bierman, S.R.

    1988-06-01

    The experimental measurements covered by this report were designed to provide benchmark type data on water moderated LWR type fuel arrays containing neutron flux traps. The experiments were performed at the US Department of Energy Hanford Critical Mass Laboratory, operated by Pacific Northwest Laboratory. The experimental assemblies consisted of 2 /times/ 2 arrays of 4.31 wt % /sup 235/U enriched UO/sub 2/ fuel rods, uniformly arranged in water on a 1.891 cm square center-to-center spacing. Neutron flux traps were created between the fuel units using metal plates containing varying amounts of boron. Measurements were made to determine the effect that boron loading and distance between the fuel and flux trap had on the amount of fuel required for criticality. Also, measurements were made, using the pulse neutron source technique, to determine the effect of boron loading on the effective neutron multiplications constant. On two assemblies, reaction rate measurements were made using solid state track recorders to determine absolute fission rates in /sup 235/U and /sup 238/U. 14 refs., 12 figs., 7 tabs.

  9. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.

  10. Measurement of neutron scattering lengths using neutron interferometry

    NASA Astrophysics Data System (ADS)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  11. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    SciTech Connect

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L; Kelsey, Charles T; Duran, Michael A; Tovesson, Fredrik K

    2010-01-01

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  12. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    NASA Astrophysics Data System (ADS)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  13. Dissipative mode filtration in a “levitating” neutron flux

    SciTech Connect

    Petelin, M. I. Tai, M. L.

    2015-06-15

    In experiments [1–4], where a flux of neutrons is injected into a horizontal channel, the output flux structure proves to be a nonmonotonic function of the vertical coordinate. This flux evolution is explained by the absorption of neutrons in the floor material.

  14. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  15. Radial Flux Distribution of Low-Energy Neutrons.

    ERIC Educational Resources Information Center

    Higinbotham, J.

    1979-01-01

    Describes an experiment designed to illustrate the basic principle involved in the process of moderation of fast neutrons by water, and the monitoring of the low-energy neutron flux using indium as a probe. (GA)

  16. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations.

  17. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    SciTech Connect

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  18. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    PubMed

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  19. First in-core simultaneous measurements of nuclear heating and thermal neutron flux obtained with the innovative mobile calorimeter CALMOS inside the OSIRIS reactor

    SciTech Connect

    Lepeltier, Valerie; Bubendorff, Jacques; Carcreff, Hubert; Salmon, Laurent

    2015-07-01

    Nuclear heating inside a MTR reactor has to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70 MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. This development required preliminary modelling and irradiation of mock-ups of the calorimetric probe in the ex-core area, where nuclear heating rate does not exceed 2 W.g{sup -1}. The calorimeter working modes, the different measurement procedures allowed with such a new probe, the main modeling and experimental results and expected advantages of this new technique have been already presented. However, these first in-core measurements were not performed beyond 6 W.g{sup -1}, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at the 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 10{sup 14} n.cm{sup -2}.s{sup -1} and nuclear heating up to 12 W.g{sup -1}. A comprehensive measurement campaign carried out from 2013 to 2015 inside all accessible irradiation locations of the core, allowed to qualify definitively this new device, not only in terms of measurement ability but also in terms of reliability. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a systematic comparison is made between results obtained by

  20. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor.

  1. Ultracold neutron detector for neutron lifetime measurements

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Vassiljev, A.; Ivanov, E.; Ilyin, D.; Krivshich, A.; Serebrov, A.

    2017-02-01

    The gas-filled detector of ultracold neutrons has been designed and constructed for the spectrometer of the neutron lifetime measurements at the ILL, Grenoble, France. The detector has been successfully tested and is currently being used at this spectrometer. We could show that minimization of the ;wall; effect is a key factor to ensure efficient background suppression and to maximize the detection efficiency. This effect is primarily related to the composition of the gas mixture, which crucially depends on the neutron velocity spectrum.

  2. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  3. Flux dependence of cluster formation in neutron-irradiated weld material

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Ulbricht, A.; Hein, H.; Kammel, M.

    2008-03-01

    The effect of neutron flux on the formation of irradiation-induced clusters in reactor pressure vessel (RPV) steels is an unresolved issue. Small-angle neutron scattering was measured for a neutron-irradiated RPV weld material containing 0.22 wt% impurity Cu. The experiment was focused on the influence of neutron flux on the formation of irradiation-induced clusters at fixed fluence. The aim was to separate and tentatively interpret the effect of flux on the characteristics of the cluster size distribution. We have observed a pronounced effect of neutron flux on cluster size, whereas the total volume fraction of irradiation-induced clusters is insensitive to the level of flux. The result is compatible with a rate theory model according to which the range of applied fluxes covers the transition from a flux-independent regime at lower fluxes to a regime of decelerating cluster growth. The results are confronted with measured irradiation-induced changes of mechanical properties. Despite the observed flux effect on cluster size, both yield stress increase and transition temperature shift turned out to be independent of flux. This is in agreement with the volume fraction of irradiation-induced clusters being insensitive to the level of flux.

  4. A Concept for the Inclusion of Analytical and Computational Capability in Existing Systems for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Clinton; Cooper, Anita E.; Powers, W. T.

    2005-01-01

    For approximately two decades, efforts have been sponsored by NASA's Marshall Space Flight Center to make possible high-speed, automated classification and quantification of constituent materials in various harsh environments. MSFC, along with the Air Force/Arnold Engineering Development Center, has led the work, developing and implementing systems that employ principles of emission and absorption spectroscopy to monitor molecular and atomic particulates in gas plasma of rocket engine flow fields. One such system identifies species and quantifies mass loss rates in H2/O2 rocket plumes. Other gases have been examined and the physics of their detection under numerous conditions were made a part of the knowledge base for the MSFC/USAF team. Additionally, efforts are being advanced to hardware encode components of the data analysis tools in order to address real-time operational requirements for health monitoring and management. NASA has a significant investment in these systems, warranting a spiral approach that meshes current tools and experience with technological advancements. This paper addresses current systems - the Optical Plume Anomaly Detector (OPAD) and the Engine Diagnostic Filtering System (EDIFIS) - and discusses what is considered a natural progression: a concept for migrating them towards detection of high energy particles, including neutrons and gamma rays. The proposal outlines system development to date, basic concepts for future advancements, and recommendations for accomplishing them.

  5. A Concept for the Inclusion of Analytical and Computational Capability in Existing Systems for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, Clinton; Cooper, Anita E.; Powers, W. T.

    2005-01-01

    For approximately two decades, efforts have been sponsored by NASA's Marshall Space Flight Center to make possible high-speed, automated classification and quantification of constituent materials in various harsh environments. MSFC, along with the Air Force/Arnold Engineering Development Center, has led the work, developing and implementing systems that employ principles of emission and absorption spectroscopy to monitor molecular and atomic particulates in gas plasma of rocket engine flow fields. One such system identifies species and quantifies mass loss rates in H2/O2 rocket plumes. Other gases have been examined and the physics of their detection under numerous conditions were made a part of the knowledge base for the MSFC/USAF team. Additionally, efforts are being advanced to hardware encode components of the data analysis tools in order to address real-time operational requirements for health monitoring and management. NASA has a significant investment in these systems, warranting a spiral approach that meshes current tools and experience with technological advancements. This paper addresses current systems - the Optical Plume Anomaly Detector (OPAD) and the Engine Diagnostic Filtering System (EDIFIS) - and discusses what is considered a natural progression: a concept for migrating them towards detection of high energy particles, including neutrons and gamma rays. The proposal outlines system development to date, basic concepts for future advancements, and recommendations for accomplishing them.

  6. Concept for Inclusion of Analytical and Computational Capability in Optical Plume Anomaly Detection (OPAD) for Measurement of Neutron Flux

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Cooper, Anita E.; Powers, W. T.

    2004-01-01

    Researchers are working on many konts to make possible high speed, automated classification and quantification of constituent materials in numerous environments. NASA's Marshall Space Flight Center has implemented a system for rocket engine flow fields/plumes; the Optical Plume Anomaly Detection (OPAD) system was designed to utilize emission and absorption spectroscopy for monitoring molecular and atomic particulates in gas plasma. An accompanying suite of tools and analytical package designed to utilize information collected by OPAD is known as the Engine Diagnostic Filtering System (EDIFIS). The current combination of these systems identifies atomic and molecular species and quantifies mass loss rates in H2/O2 rocket plumes. Additionally, efforts are being advanced to hardware encode components of the EDIFIS in order to address real-time operational requirements for health monitoring and management. This paper addresses the OPAD with its tool suite, and discusses what is considered a natural progression: a concept for migrating OPAD towards detection of high energy particles, including neutrons and gamma rays. The integration of these tools and capabilities will provide NASA with a systematic approach to monitor space vehicle internal and external environment.

  7. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    PubMed

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  8. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  9. Neutron spectra at different High Flux Isotope Reactor (HFIR) pressure vessel surveillance locations

    SciTech Connect

    Remec, I.; Kam, F.B.

    1993-12-01

    This project addresses the potential problem of radiation embrittlement of reactor pressure vessel (RPV) supports. Surveillance specimens irradiated at the High Flux Isotope Reactor (HFIR) at relatively low neutron flux levels (about 1.5E + 8 cm{sup {minus}2}.s{sup {minus}1}) and low temperatures (about 50{degrees}C) showed embrittlement more rapidly than expected. Commercial power reactors have similar flux levels and temperatures at the level vessel support structures. The purposes of this work are to provide the neutron fluence spectra data that are needed to evaluate previously measured mechanical property changes in the HFIR, to explain the discrepancies in neutron flux levels between the nickel dosimeters and two other dosimeters, neptunium and beryllium, and to address any questions or peculiarities of the HFIR reactor environment. The current work consists of neutron and gamma transport calculations, dosimetry measurements, and least-squares logarithmic adjustment to obtain the best estimates for the neutron spectra and the related neutron exposure parameters. The results indicate that the fission rates in neptunium-237 (Np-237) and uranium-238 (U-238) and the helium production rates in beryllium-9 (Be-9) are dominated by photo-induced reactions. The displacements per atom rate for iron (dpa/s) from gamma rays is five times higher than the dpa/s from neutrons. The neutron fluxes in key 7, position 5 do not show any significant gradient in the surveillance capsule, but key 4 and key 2 showed differences in magnitude as well as in the shape of the spectrum. The stainless steel monitor in the V-notch of the Charpy specimens of the surveillance capsules is adequate to determine the neutron flux above 1.0 MeV at the desired V-notch location. Simultaneous adjustment of neutron and gamma fluxes with the measurements has been demonstrated and should avoid future problems with photo-induced reactions.

  10. Differential neutron energy spectra measured on spacecraft low Earth orbit

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Dudkin, E. V.; Potapov, Yu. V.; Akopova, A. B.; Melkumyan, L. V.

    1995-01-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n.x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  11. Differential neutron energy spectra measured on spacecraft low Earth orbit

    SciTech Connect

    Benton, E.V.; Frank, A.L.; Dudkin, E.V.; Potapov, Yu.V.; Akopova, A.B.; Melkumyan, L.V. |

    1995-03-01

    Two methods for measuring neutrons in the range from thermal energies to dozens of MeV were used. In the first method, alpha-particles emitted from the (sup 6) Li(n,x)T reaction are detected with the help of plastic nuclear track detectors, yielding results on thermal and resonance neutrons. Also, fission foils are used to detect fast neutrons. In the second method, fast neutrons are recorded by nuclear photographic emulsions (NPE). The results of measurements on board various satellites are presented. The neutron flux density does not appear to correlate clearly with orbital parameters. Up to 50% of neutrons are due to albedo neutrons from the atmosphere while the fluxes inside the satellites are 15-20% higher than those on the outside. Estimates show that the neutron contribution to the total equivalent radiation dose reaches 20-30%.

  12. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  13. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    PubMed

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system.

  14. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    NASA Astrophysics Data System (ADS)

    Alekseenko, Victor; Bagrova, Anastasia; Cui, Shuwang; He, Yayun; Li, Bingbing; Ma, Xinhua; Pozdnyakov, Egor; Shchegolev, Oleg; Stenkin, Yuri; Stepanov, Vladimir

    2017-06-01

    Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors) developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  15. Measurements of the atmospheric neutron leakage rate

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The atmospheric neutron leakage rate in the energy range from 0.01 to 10,000,000 eV has been measured as a function of latitude, altitude, and time with a neutron detector on board the Ogo 6 satellite. The latitude dependence of the neutron leakage is in reasonable agreement with that predicted by Lingenfelter (1963) and Light et al. (1973) if the neutron energy spectrum has the shape calculated by Newkirk (1963). The change in the neutron latitude dependence with the cosmic ray modulation agrees with the predictions of Lingenfelter and Light et al. For several solar proton events enhancements were observed in the neutron counting rates at lambda greater than or equal to 70 deg. Such events, however, provide an insignificant injection of protons at E less than or equal to 20 MeV into the radiation belts. An isotropic angular distribution of the neutron leakage in the energy range from 0.1 keV to 10 MeV best fits the observed altitude dependence of the neutron leakage flux.

  16. Neutron-flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, M.K.; Valentine, K.H.

    1981-09-15

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  17. Modeling the Effects of Meteorological Conditions on the Neutron Flux

    DTIC Science & Technology

    2017-05-22

    a statistical model that predicts environmental neutron background as a function of five meteorological variables: inverse barometric pressure...hour, a 20% variation, over five months of data collection with large variation between days. Meteorological data were collected with two commercially...the effects of the meteorological variables on neutron flux while accounting for the correlation among errors at previous time intervals. The dominant

  18. Characteristics of the neutron flux from a D-Li neutron source

    SciTech Connect

    Gomes, I.; Smith, D.L.

    1994-07-01

    A D-Li neutron source produces a high flux of neutrons which can be used for testing fusion materials. The characteristics exhibited by the neutron flux inside the test assembly volume of a D-Li neutron source irradiation facility is a function of several design options, such as deuteron energy, beam current, beam cross sectional area, and lithium target configuration, among others. The influence of each of these parameters on the overall performance of the machine, in terms of best results for irradiation of materials for fusion applications, can be inferred by scoping their impact on the uncollided neutron flux magnitude and distribution. The first part of this paper describes an analysis performed on the uncollided neutron flux (without material inside the test assembly region) for different beam-target configurations for determining the effect of varying the elements of the configuration on the uncollided neutron flux gradient. The second section deals with the neutron energy spectrum from the D-Li reaction and a brief discussion on {open_quotes}fusion reactor spectrum{close_quotes} is also presented. In the third section results from calculations of the volume with uncollided neutron above a threshold value are presented.

  19. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  20. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  1. Neutron dosimetric measurements in shuttle and MIR.

    PubMed

    Reitz, G

    2001-06-01

    Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with

  2. Determination of spallation neutron flux through spectral adjustment techniques

    NASA Astrophysics Data System (ADS)

    Mosby, M. A.; Engle, J. W.; Jackman, K. R.; Nortier, F. M.; Birnbaum, E. R.

    2016-08-01

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed. However, the energy distribution and magnitude of the flux is not well understood. A modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  3. Determination of spallation neutron flux through spectral adjustment techniques

    SciTech Connect

    Mosby, Michelle A.; Engle, Jonathan Ward; Jackman, Kevin Richard; Nortier, Francois Meiring; Birnbaum, Eva R.

    2016-05-30

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed in this paper. However, the energy distribution and magnitude of the flux is not well understood. Finally, a modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  4. Determination of spallation neutron flux through spectral adjustment techniques

    DOE PAGES

    Mosby, Michelle A.; Engle, Jonathan Ward; Jackman, Kevin Richard; ...

    2016-05-30

    The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed in this paper. However, the energy distribution and magnitude of the flux is not well understood. Finally, a modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.

  5. Thermal neutron background measurement in CJPL

    NASA Astrophysics Data System (ADS)

    Zeng, Z. M.; Gong, H.; Yue, Q.; Li, J. M.

    2015-12-01

    This paper describes the measurement of thermal neutron flux in the CJPL underground laboratory in the proximity of the CDEX experiment. A low background thermal neutron detection system is designed which applies a combination of a 3He proportional tube and a 4He proportional tube as the detector. Thermal neutrons can be captured by the 3He proportional tube while the 4He proportional tube is for the purpose of background measurement. The tube wall is made up of oxygen-free copper to reduce the background due to radioactivity of the wall material. The electronics readout system has been developed to store triggered events' waveforms so as to get the amplitude spectrum and monitor the data quality. We observed an average thermal neutron flux of Φ = 4.00 ± 0.08 ×10-6 /cm2 s in the CJPL experiment hall in the proximity of CDEX experiment and the neutron and background events both distribute uniformly along the tube.

  6. Flux and dose transmission through concrete of neutrons from proton induced reactions on various target elements

    NASA Astrophysics Data System (ADS)

    Maiti, Moumita; Nandy, Maitreyee; Roy, S. N.; Sarkar, P. K.

    2004-12-01

    Simple empirical expressions for transmission of flux and dose through concrete are presented for neutrons from proton induced reactions. For this purpose the neutron emission from different targets in proton induced reactions in the energy range 25-200 MeV have been considered. The calculated effective dose outside a concrete shield shows overall good agreement with the effective dose estimated from measured neutron flux in the framework of the Moyer model. The calculated effective attenuation length shows a rising trend with incident proton energy and shield thickness.

  7. Neutron flux reduction programs for reactor pressure vessel

    SciTech Connect

    Yoo, C.S.; Kim, B.C.

    2011-07-01

    The objective of this work is to implement various fast neutron flux reduction programs on the belt-line region of the reactor pressure vessel to reduce the increasing rate of reference temperature for pressurized thermal shock (RT PTS) for Korea Nuclear Unit 1. A pressurized thermal shock (PTS) event is an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. A PTS concern arises if one of these transients acts in the belt-line region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Generally, the RT PTS value is continuously increasing according to the fast neutron irradiation during the reactor operation, and it can reach the screening criterion prior to the expiration of the operating license. To reduce the increasing rate of RT PTS, various neutron flux reduction programs can be implemented, which are focused on license renewal. In this paper, neutron flux reduction programs, such as low leakage loading pattern strategy, loading of neutron absorber rods, and dummy fuel assembly loading are considered for Korea Nuclear Unit 1, of which the RT PTS value of the leading material (circumferential weld) is going to reach the screening criterion in the near future. To evaluate the effects of the neutron flux reduction programs, plant and cycle specific forward neutron transport calculations for the various neutron flux reduction programs were carried out. For the analysis, all transport calculations were carried out by using the DORT 3.1 discrete ordinate code and BUGLE-96 cross-section library. (authors)

  8. NEUTRON MEASURING METHOD AND APPARATUS

    DOEpatents

    Seaborg, G.T.; Friedlander, G.; Gofman, J.W.

    1958-07-29

    A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.

  9. Neutron measurements in near-Earth orbit with COMPTEL

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Lockwood, J. A.; Mcconnell, M. L.; Ryan, J. M.; Schoenfelder, V.; Steinle, H.; Peng, X.

    1995-01-01

    The fast neutron flux in near-Earth orbit has been measured with the COMPTEL instrument on the Compton Gamma Ray Observatory (CGRO). For this measurement one of COMPTEL's seven liquid scintillator modules was used as an uncollimated neutron detector with threshold of 12.8 MeV. The measurements cover a range of 4.8 to 15.5 GV in vertical cutoff rigidity and 3 deg to 177 deg in spacecraft geocenter zenith angle. One of the measurements occurred near the minimum of the deepest Forbush decrease ever observed by ground-level neutron monitors. After correction for solar modulation, the total flux is well fitted by separable functions in rigidity and zenith angle. With the spacecraft pointed near the nadir the flux is consistent with balloon measurements of the atmospheric neutron albedo. The flux varies by about a factor of 4 between the extremes of rigidity and a factor of 2 between the extremes of zenith angle. The effect of the spacecraft mass in shielding the detector from the atmospheric neutron albedo is much more important than its role as a source of additional secondary neutrons. The neutron spectral hardness varies little with rigidity or zenith angle and lies in the range spanned by earlier atmospheric neutron albedo measurements.

  10. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  11. Plastic scintillator detector for pulsed flux measurements

    NASA Astrophysics Data System (ADS)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  12. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  13. Three-dimensional neutron flux calculations for the VVER pressure vessel

    SciTech Connect

    Belousov, S.I.; Ilieva, K.D.; Antonov, S.Y.

    1995-08-01

    The neutron flux values at the sites important for the pressure vessels of the VVER-1000 and VVER-440 reactors have been calculated by the three-dimensional TORT code and the synthesis method approximation. The synthesis method is widely used now for neutron fluence routine calculations in metal embrittlement surveillance. The three-dimensional neutron flux evaluation by the synthesis method is based on the two-dimensional and one-dimensional solutions of the transport equation. The comparison of the results obtained by both methods confirms the good consistency within 3% for integral neutron flux with energy >0.5 MeV, used for metal damage estimation, according to Russian reactor standards. Further investigations on the calculation validity will be based on comparisons with measurements of the threshold detector activities, monitored in the air shell behind the reactor pressure vessels of the Kozloduy nuclear power plant.

  14. On the limit of neutron fluxes in the fission-based pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Ananiev, V. D.; Komyshev, G. G.; Rogov, A. D.; Shabalin, E. P.

    2017-09-01

    The upper limit of the density of the thermal neutron flux from pulsed sources based on the fission reaction is established. Three types of sources for research on ejected beams are considered: a multiplying target of the proton accelerator (a booster), a booster with the reactivity modulation (a superbooster), and a pulsing reactor. Comparison with other high-flux sources is carried out. The investigation has been performed at the Frank Laboratory of Neutron Physics of JINR.

  15. Electronic Reliability and the Environmental Thermal Neutron Flux

    DTIC Science & Technology

    2007-11-02

    several Californium sources of varying strengths. The room is ten by ten by three meters. It is below ground with concrete walls. In a high flux...desirable for calibrating the system. Californium -252 is a self-fissioning fast neutron source, which can be moderated to produce thermal neutrons...NIST has several Californium sources with strengths as high as 200 mrem/h at one meter. The Cf sources are stored below the floor for the safety

  16. Progress toward a new beam measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Hoogerheide, Shannon Fogwell

    2016-09-01

    Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosysnthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method will be performed at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement and the technical improvements will be discussed.

  17. Progress toward a new beam measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Hoogerheide, Shannon Fogwell; BL2 Collaboration

    2017-01-01

    Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosynthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method is underway at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement, its current status, and the technical improvements will be discussed.

  18. Neutronics Modeling of the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Chandler, David; Primm, Trent; Freels, James D; Maldonado, G Ivan

    2011-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

  19. Isotopic characterization and thermal neutron flux determination of a PuBe neutron source.

    PubMed

    Purty, Ravi Ankit; Akanchha; Prasad, Shikha

    2017-07-01

    The Indian Institute of Technology Kanpur (IIT Kanpur) possesses a PuBe neutron source facility with an initial activity of 5 Ci, dated September 1966 (nearly 50 years ago). An understanding of the present activity and the rate of its change will allow implementation of proper radiological safety procedures and future radiological safety planning. Knowing the absolute neutron flux will help us in future neutron activation studies. These details are also important to ensure proper security precautions. In our work, we attempt to identify the isotopic composition to determine the rate of change of the source and the absolute thermal neutron flux of plutonium beryllium (PuBe) sample at IIT Kanpur. We have used gamma-ray spectroscopy for determining the isotopic composition of the PuBe neutron source. After utilizing gamma-ray spectroscopy it is found that the source is composed of (239)Pu and a small amount of (241)Am is present as an impurity. The mass ratio of (241)Am to (239)Pu is found to be approximately 18.1µg/g with an uncertainty of 1.39%. Delayed gamma neutron activation analysis (DGNAA) is used to determine the thermal neutron flux of the same PuBe neutron source using copper, cobalt, nickel and cadmium samples. The average thermal neutron flux as calculated from DGNAA is approximately 1.27×10(3)n/(cm(2)-s) at 1cm above the PuBe neutron source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Altitude and latitude variations in avionics SEU and atmospheric neutron flux

    SciTech Connect

    Normand, E.; Baker, T.J. )

    1993-12-01

    The direct cause of single event upsets in SRAMs at aircraft altitudes by the atmospheric neutrons has previously been documented. The variation of the in-flight SEU rate with latitude is demonstrated by new data over a wide range of geographical locations. New measurements and models of the atmospheric neutron flux are also evaluated to characterize its variation with altitude, latitude and solar activity.

  1. ATW neutron spectrum measurements at LAMPF

    SciTech Connect

    Butler, G.W.; Littleton, P.E.; Morgan, G.L.

    1995-10-01

    Accelerator transmutation of waste (ATW) is a proposal to use a high flux of accelerator-produced thermalized neutrons to transmute both fission product and higher actinide commercial nuclear waste into stable or short-lived radioactive species in order to avoid long-term storage of nuclear waste. At LAMPF the authors recently performed experiments that were designed to measure the spectrum of neutrons produced per incident proton for full-scale proposed ATW targets of lead and lithium. The neutrons produced in such targets have a spectrum of energies that extends up to the energy of the incident proton beam, but the distribution peaks between 1 and 5 MeV. Transmutation reactions and fission of actinides are most efficient when the neutron energy is below a few eV, so the target must be surrounded by a non-absorbing material (blanket) to produce additional neutrons and reduce the energy of high energy neutrons without loss. The experiments with the lead target, 25 cm diameter by 40 cm long, were conducted with 800 MeV protons, while those with the lithium target, 25 cm diameter by 175 cm long, were conducted with 400 MeV protons. The blanket in both sets of experiments was a 60 cm diameter by 200 cm long annulus of lead that surrounded the target. Surrounding the blanket was a steel water tank with dimensions of 250 cm diameter by 300 cm long that simulated the transmutation region. A small sample pipe penetrated the length of the lead blanket and other sample pipes penetrated the length of the water tank at different radii from the beam axis so that the neutron spectra at different locations could be measured by foil activation. After irradiation the activated foil sets were extracted and counted with calibrated high resolution germanium gamma ray detectors at the Los Alamos nuclear chemistry counting facility.

  2. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  3. Measurements of fast neutrons by bubble detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Leal, B.; Martınez, H.; Rangel, J.; Reyes, P. G.

    2013-07-01

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / μSv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ μSv, 0093 b/μSv, 0.14 b/μSv, 0.17 b/μSv, 0051 b/μSv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90° this was done for a certain number of shots. In both cases, the standard response is reported (Dose in μSv) for each of the six detectors representing an energy range, this response is given by the expression Ri = Bi / Si where Bi is the number of bubbles formed in each and the detector sensitivity (Si) is given for each detector in (b / μSv). Also, reported for both cases, the detected neutron flux (n cm-2), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 μSv fields mixed neutron and gamma, and pulsed generated fusion devices.

  4. Measurements of fast neutrons by bubble detectors

    SciTech Connect

    Castillo, F.; Martinez, H.; Leal, B.; Rangel, J.; Reyes, P. G.

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  5. Flux-Vortex Pinning and Neutron Star Evolution

    NASA Astrophysics Data System (ADS)

    Alpar, M. Ali

    2017-09-01

    G. Srinivasan et al. (1990) proposed a simple and elegant explanation for the reduction of the neutron star magnetic dipole moment during binary evolution leading to low mass X-ray binaries and eventually to millisecond pulsars: Quantized vortex lines in the neutron star core superfluid will pin against the quantized flux lines of the proton superconductor. As the neutron star spins down in the wind accretion phase of binary evolution, outward motion of vortex lines will reduce the dipole magnetic moment in proportion to the rotation rate. The presence of a toroidal array of flux lines makes this mechanism inevitable and independent of the angle between the rotation and magnetic axes. The incompressibility of the flux-line array (Abrikosov lattice) determines the epoch when the mechanism will be effective throughout the neutron star. Flux vortex pinning will not be effective during the initial young radio pulsar phase. It will, however, be effective and reduce the dipole moment in proportion with the rotation rate during the epoch of spindown by wind accretion as proposed by Srinivasan et al. The mechanism operates also in the presence of vortex creep.

  6. Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    SciTech Connect

    Serebrov, A. P.; Varlamov, V. E.; Kharitonov, A. G.; Fomin, A. K.; Krasnoschekova, I. A.; Lasakov, M. S.; Taldaev, R. R.; Vassiljev, A. V.; Zherebtsov, O. M.; Pokotilovski, Yu. N.; Geltenbort, P.

    2008-09-15

    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before: the probability of UCN losses from the trap was only 1% of that for neutron {beta} decay. The neutron lifetime obtained, 878.5{+-}0.7{sub stat}{+-}0.3{sub sys} s, is the most accurate experimental measurement to date.

  7. Digital Real-Time Multiple Channel Multiple Mode Neutron Flux Estimation on FPGA-based Device

    NASA Astrophysics Data System (ADS)

    Thevenin, Mathieu; Barbot, Loïc; Corre, Gwénolé; Woo, Romuald; Destouches, Christophe; Normand, Stéphane

    2016-02-01

    This paper presents a complete custom full-digital instrumentation device that was designed for real-time neutron flux estimation, especially for nuclear reactor in-core measurement using subminiature Fission Chambers (FCs). Entire fully functional small-footprint design (about 1714 LUTs) is implemented on FPGA. It enables real-time acquisition and analysis of multiple channels neutron's flux both in counting mode and Campbelling mode. Experimental results obtained from this brand new device are consistent with simulation results and show good agreement within good uncertainty. This device paves the way for new applications perspectives in real-time nuclear reactor monitoring.

  8. Improved monitoring system of neutron flux during boron-neutron capture therapy

    SciTech Connect

    Harasawa, S.; Nakamoto, A.; Hayakawa, Y.; Egawa, J.

    1981-10-01

    Continuous and simultaneous monitoring of neutron flux in the course of a boron-neutron capture operation on a brain tumor has been achieved using a new monitoring system. A silicon surface barrier diode mounted with /sup 6/LiF instead of the previously reported borax is used to sense neutrons. The pulse heights of /sup 3/H and ..cap alpha.. particles from /sup 6/Li(n, ..cap alpha..)/sup 2/H reaction are sufficiently high and well separated from noises due to ..gamma.. rays. The effect of pulse-height reduction due to the radiation damage of the diode thus becomes smaller, permitting continuous monitoring. The relative error of the monitoring is within 2% over 5 hr for a neutron-flux density of 2 x 10/sup 9/ n/cm/sup 2/ sec.

  9. Magnetic field devices for neutron spin transport and manipulation in precise neutron spin rotation measurements

    NASA Astrophysics Data System (ADS)

    Maldonado-Velázquez, M.; Barrón-Palos, L.; Crawford, C.; Snow, W. M.

    2017-05-01

    The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10-7 rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.

  10. Thermal Neutron Radiography using a High-flux Compact Neutron Generator

    NASA Astrophysics Data System (ADS)

    Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross

    A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.

  11. Cosmic-ray neutron simulations and measurements in Taiwan.

    PubMed

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-10-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm(-2) in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 × 10(-3) n cm(-2) s(-1), was suggested.

  12. Bayesian Statistical Analysis Applied to NAA Data for Neutron Flux Spectrum Determination

    NASA Astrophysics Data System (ADS)

    Chiesa, D.; Previtali, E.; Sisti, M.

    2014-04-01

    In this paper, we present a statistical method, based on Bayesian statistics, to evaluate the neutron flux spectrum from the activation data of different isotopes. The experimental data were acquired during a neutron activation analysis (NAA) experiment [A. Borio di Tigliole et al., Absolute flux measurement by NAA at the Pavia University TRIGA Mark II reactor facilities, ENC 2012 - Transactions Research Reactors, ISBN 978-92-95064-14-0, 22 (2012)] performed at the TRIGA Mark II reactor of Pavia University (Italy). In order to evaluate the neutron flux spectrum, subdivided in energy groups, we must solve a system of linear equations containing the grouped cross sections and the activation rate data. We solve this problem with Bayesian statistical analysis, including the uncertainties of the coefficients and the a priori information about the neutron flux. A program for the analysis of Bayesian hierarchical models, based on Markov Chain Monte Carlo (MCMC) simulations, is used to define the problem statistical model and solve it. The energy group fluxes and their uncertainties are then determined with great accuracy and the correlations between the groups are analyzed. Finally, the dependence of the results on the prior distribution choice and on the group cross section data is investigated to confirm the reliability of the analysis.

  13. Seasonal and Lunar Month Periods Observed in Natural Neutron Flux at High Altitude

    NASA Astrophysics Data System (ADS)

    Stenkin, Yuri; Alekseenko, Victor; Cai, Zeyu; Cao, Zhen; Cattaneo, Claudio; Cui, Shuwang; Giroletti, Elio; Gromushkin, Dmitry; Guo, Cong; Guo, Xuewen; He, Huihai; Liu, Ye; Ma, Xinhua; Shchegolev, Oleg; Vallania, Piero; Vigorito, Carlo; Zhao, Jing

    2017-07-01

    Air radon concentration measurement is useful for research on geophysical effects, but it is strongly sensitive to site geology and many geophysical and microclimatic processes such as wind, ventilation, air humidity and so on inducing very big fluctuations on the concentration of radon in air. On the contrary, monitoring the radon concentration in soil by measuring the thermal neutron flux reduces environmental effects. In this paper, we report some experimental results on the natural thermal neutron flux as well as on the concentration of air radon and its variations at 4300 m asl. These results were obtained with unshielded thermal neutron scintillation detectors (en-detectors) and radon monitors located inside the ARGO-YBJ experimental hall. The correlation of these variations with the lunar month and 1-year period is undoubtedly confirmed. A method for earthquake prediction provided by a global net of en-detectors is currently under study.

  14. Neutron flux mapping inside a cubic and a head PMMA phantom using indirect neutron radiography.

    PubMed

    Tsai, Pi-En; Liu, Yuan-Hao; Huang, Chun-Kai; Liu, Hong-Ming; Jiang, Shiang-Huei

    2009-07-01

    This study aims to measure the two-dimensional (2D) neutron spatial distribution inside a cubic and a head PMMA phantom for the purpose of further comparison with the treatment planning. The measurements were made by using the indirect neutron radiography (INR), which utilized a thin copper foil and the imaging plate. The developed image provides satisfactory spatial resolution and very low statistical error (< 1%). As to the time cost, the whole procedure normally takes less than 3 h. The result shows that the indirect neutron radiography can be a quick and reliable method to provide a 2D neutron spatial distribution inside a phantom.

  15. Measuring water content by neutron thermalization

    SciTech Connect

    Buchanan, R.J.

    1992-01-21

    This patent describes an apparatus for measuring water content of a substance. It comprises a vessel for receiving the substance; sensor means for sensing thermalized neutrons; a thermal neutron absorber disposed around the vessel and the sensor means; means for emitting fast neutrons through the thermal neutron absorber into the vessel; and a biological shield encasing the sensor means, the thermal neutron absorber, and the means for emitting and extending around the vessel.

  16. Performance testing of the neutron flux monitors from 10keV to 1MeV developed for BNCT: A preliminary study.

    PubMed

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2017-07-01

    The neutron flux monitors from 10keV to 1MeV designed for boron neutron capture therapy (BNCT) were experimentally tested with prototype monitors in an appropriate neutron field produced at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. The experimental test results and related analysis indicated that the performance of the monitors was good and the neutron fluxes from 10keV to 1MeV of practical BNCT neutron sources can be measured within 10% by the monitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  18. Neutron flux and spectrum variation in a MOX fuel experiment

    SciTech Connect

    Chang, G.S.; Rogers, J.W.; Ryskamp, J.M.

    1999-07-01

    In support of potential licensing of mixed-oxide (MOX) fuel made from weapons-grade (WG) plutonium and depleted uranium for use in US reactors, an experiment containing WG-MOX fuel has been designed and is being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory. A simple, uninstrumented, test assembly containing nine MOX fuel capsules with neutron monitor wires was inserted into the ATR. Important neutronics parameters were computed using novel Monte Carlo methods. The purpose is to show that neutron monitor measurements have validated the new methodology.

  19. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  20. Measurement of neutron diffraction with compact neutron source RANS

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Takamura, M.; Taketani, A.; Sunaga, H.; Otake, Y.; Suzuki, H.; Kumagai, M.; Oba, Y.; Hama, T.

    2016-11-01

    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials.

  1. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    The determination of elemental abundances is one of the highest science objectives of most lunar missions. Such multi-element abundances, ratios, or maps should include results for elements that are diagnostic or important in lunar processes, including heat-producing elements (such as K and Th), important incompatible elements (Th and rare earth elements), H (for polar deposits and regolith maturity), and key variable elements in major lunar provinces (such as Fe and Ti in the maria). Both neutron and gamma-ray spectroscopy can be used to infer elemental abundances; the two complement each other. These elemental abundances need to be determined with high accuracy and precision from measurements such as those made by the gamma-ray spectrometer (GRS) and neutron spectrometers (NS) on Lunar Prospector. As presented here, a series of steps, computer codes, and nuclear databases are needed to properly convert the raw gamma-ray and neutron measurements into good elemental abundances, ratios, and/or maps. Lunar Prospector (LP) is the first planetary mission that has measured neutrons escaping from a planet other than the Earth. The neutron spectrometers on Lunar Prospector measured a wide range of neutron energies. The ability to measure neutrons with thermal (E < 0.1 eV), epithermal (E about equal 0.1 - 1000 eV), and fast (E about 0.1-10 MeV) energies maximizes the scientific return, being especially sensitive to both H (using epithermal neutrons) and thermal-neutron-absorbing elements. Neutrons are made in the lunar surface by the interaction of galactic-cosmic-ray (GCR) particles with the atomic nuclei in the surface. Most neutrons are produced with energies above about 0.1 MeV. The flux of fast neutrons in and escaping from the Moon depends on es the intensity of the cosmic rays (which vary with solar activity) and the elemental composition of the surface. Variations in the elemental composition of the lunar surface can affect the flux of fast neutrons by about 25

  2. Modeling cosmic ray neutron field measurements

    NASA Astrophysics Data System (ADS)

    Andreasen, Mie; Jensen, Karsten H.; Zreda, Marek; Desilets, Darin; Bogena, Heye; Looms, Majken C.

    2016-08-01

    The cosmic ray neutron method was developed for intermediate-scale soil moisture detection, but may potentially be used for other hydrological applications. The neutron signal of different hydrogen pools is poorly understood and separating them is difficult based on neutron measurements alone. Including neutron transport modeling may accommodate this shortcoming. However, measured and modeled neutrons are not directly comparable. Neither the scale nor energy ranges are equivalent, and the exact neutron energy sensitivity of the detectors is unknown. Here a methodology to enable comparability of the measured and modeled neutrons is presented. The usual cosmic ray soil moisture detector measures moderated neutrons by means of a proportional counter surrounded by plastic, making it sensitive to epithermal neutrons. However, that configuration allows for some thermal neutrons to be measured. The thermal contribution can be removed by surrounding the plastic with a layer of cadmium, which absorbs neutrons with energies below 0.5 eV. Likewise, cadmium shielding of a bare detector allows for estimating the epithermal contribution. First, the cadmium difference method is used to determine the fraction of thermal and epithermal neutrons measured by the bare and plastic-shielded detectors, respectively. The cadmium difference method results in linear correction models for measurements by the two detectors, and has the greatest impact on the neutron intensity measured by the moderated detector at the ground surface. Next, conversion factors are obtained relating measured and modeled neutron intensities. Finally, the methodology is tested by modeling the neutron profiles at an agricultural field site and satisfactory agreement to measurements is found.

  3. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  4. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    PubMed

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  5. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  6. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  7. Neutron Measurements for Intensity Modulated Radiation Therapy

    SciTech Connect

    Ipe, Nisy E.

    2000-04-21

    The beam-on time for intensity modulated radiation therapy (IMRT) is increased significantly compared with conventional radiotherapy treatments. Further, the presence of beam modulation devices may potentially affect neutron production. Therefore, neutron measurements were performed for 15 MV photon beams on a Varian Clinac accelerator to determine the impact of IMRT on neutron dose equivalent to the patient.

  8. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    SciTech Connect

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  9. Neutron flux characterization of californium-252 Neutron Research Facility at the University of Texas - Pan American by nuclear analytical technique

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Sanchez, Patrick; Hannan, Mohammad

    2014-03-01

    In the field of nuclear science, neutron flux is an intrinsic property of nuclear reaction facilities that is the basis for experimental irradiation calculations and analysis. In the Rio Grande Valley (Texas), the UTPA Neutron Research Facility (NRF) is currently the only neutron facility available for experimental research purposes. The facility is comprised of a 20-microgram californium-252 neutron source surrounded by a shielding cascade containing different irradiation cavities. Thermal and fast neutron flux values for the UTPA NRF have yet to be fully investigated and may be of particular interest to biomedical studies in low neutron dose applications. Though a variety of techniques exist for the characterization of neutron flux, neutron activation analysis (NAA) of metal and nonmetal foils is a commonly utilized experimental method because of its detection sensitivity and availability. The aim of our current investigation is to employ foil activation in the determination of neutron flux values for the UTPA NSRF for further research purposes. Neutron spectrum unfolding of the acquired experimental data via specialized software and subsequent comparison for consistency with computational models lends confidence to the results.

  10. The study of the thermal neutron flux in the deep underground laboratory DULB-4900

    NASA Astrophysics Data System (ADS)

    Alekseenko, V. V.; Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Dzhappuev, D. D.; Kazalov, V. V.; Kudzhaev, A. U.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2017-01-01

    We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5% of total neutron flux.

  11. Instrumentation for Surface Flux Measurements

    DTIC Science & Technology

    2012-05-10

    National Park , she used the sonic and a Li-Cor C02-H20 analyzer at a height of 3 m to measure the vertical turbulent flux of C02 downwind of...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 3. REPORT TYPE...and subgrid-scale array measurements In summer 2000 we lent 7 of the CSAT3 sonics to the National Center for Atmo- spheric Research (NCAR) for use in

  12. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    PubMed

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method.

  13. Atmospheric Neutron Measurements using a Small Scintillator Based Detector

    NASA Astrophysics Data System (ADS)

    Kole, Merlin; Pearce, Mark; Fukazawa, Yasushi; Fukuda, Kentaro; Ishizu, Sumito; Jackson, Miranda; Kamae, Tune; Kawaguchi, Noriaki; Kawano, Takafumi; Kiss, Mozsi; Moretti, Elena; Yanagida, Takayuki; Chauvin, Maxime; Mikhalev, Victor; Rydstrom, Stefan; Takahashi, Hiromitsu

    PoGOLino is a standalone scintillator-based neutron detector designed for balloon-borne missions. Its main purpose is to provide data of the neutron flux in 2 different energy ranges in the high altitude / high latitude region where the highest neutron flux in the atmosphere is found. Furthermore the influence of the Solar activity upon the neutron environment in this region is relatively strong. As a result both short and long term time fluctuations are strongest in this region. At high altitudes neutrons can form a source of background for balloon-borne scientific measurements. They can furthermore form a major source for single event upsets in electronics. A good understanding of the high altitude / high latitude neutron environment is therefore important. Measurements of the neutron environment in this region are however lacking. PoGOLino contains two 5 mm thick Lithium Calcium Aluminium Fluoride (LiCAF) scintillators used for neutron detection. The LiCAF crystals are sandwiched between 2 Bismuth Germanium Oxide (BGO) scintillating crystals, which serve to veto signals produced by gamma-rays and charged particles. The veto system makes measurements of the neutron flux possible even in high radiation environments. One LiCAF detector is shielded with polyethylene while the second remains unshielded, making the detectors sensitive in different energy ranges. The choice of a scintillator crystals as the detection material ensures a high detection efficiency while keeping the instrument small, robust and light weight. The full standalone cylindrical instrument has a radius of 120 mm, a height of 670 mm and a total mass of 13 kg, making it suitable as a piggy back mission. PoGOLino was successfully launched on March 20th 2013 from the Esrange Space Center in Northern Sweden to an altitude of 30.9 km. A detailed description of the detector design is presented, along with results of of the flight. The neutron flux measured during flight is compared to predictions based

  14. Neutron Distribution in the Nuclear Fuel Cell using Collision Probability Method with Quadratic Flux Approach

    NASA Astrophysics Data System (ADS)

    Shafii, M. A.; Fitriyani, D.; Tongkukut, S. H. J.; Abdullah, A. G.

    2017-03-01

    To solve the integral neutron transport equation using collision probability (CP) method usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function. The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.

  15. Neutron Capture Measurements on Unstable Nuclei at LANSCE

    SciTech Connect

    Ullmann, J.; Haight, R.; Wilhelmy, J.; Fowler, M.; Rundberg, R.; Miller, G.

    1998-11-04

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements.

  16. Neutron capture measurements on unstable nuclei at LANSCE

    SciTech Connect

    Ullmann, J. L.; Haight, R. C.; Fowler, M. M.; Miller, G. G.; Rundberg, R. S.; Wilhelmy, J. B.

    1999-06-10

    Although neutron capture by stable isotopes has been extensively measured, there are very few measurements on unstable isotopes. The intense neutron flux at the Manual Lujan Jr. Neutron Scattering Center at LANSCE enables us to measure capture on targets with masses of about 1 mg over the energy range from 1 eV to 100 keV. These measurements are important not only for understanding the basic physics, but also for calculations of stellar nucleosynthesis and Science-Based Stockpile Stewardship. Preliminary measurements on {sup 169}Tm and {sup 171}Tm have been made with deuterated benzene detectors. A new detector array at the Lujan center and a new radioactive isotope separator will combine to give Los Alamos a unique capability for making these measurements.

  17. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    SciTech Connect

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  18. Neutron radioactivity-Lifetime measurements of neutron-unbound states

    NASA Astrophysics Data System (ADS)

    Kahlbow, J.; Caesar, C.; Aumann, T.; Panin, V.; Paschalis, S.; Scheit, H.; Simon, H.

    2017-09-01

    A new technique to measure the lifetime τ of a neutron-radioactive nucleus that decays in-flight via neutron emission is presented and demonstrated utilizing MonteCarlo simulations. The method is based on the production of the neutron-unbound nucleus in a target, which at the same time slows down the produced nucleus and the residual nucleus after (multi-) neutron emission. The spectrum of the velocity difference of neutron(s) and the residual nucleus has a characteristic shape, that allows to extract the lifetime. If the decay happens outside the target there will be a peak in the spectrum, while events where the decay is in the target show a broad flat distribution due to the continuous slowing down of the residual nucleus. The method itself and the analysis procedure are discussed in detail for the specific candidate 26O. A stack of targets with decreasing target thicknesses can expand the measurable lifetime range and improve the sensitivity by increasing the ratio between decays outside and inside the target. The simulations indicate a lower limit of measurable lifetime τ ∼ 0 . 2 ps for the given conditions.

  19. Neutron Lifetime Measurement Using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.

    2017-01-01

    The neutron beta-decay lifetime is important in both nuclear astrophysics and in understanding weak interactions in the framework of the Standard Model. An experiment based at the NIST Center for Neutron Research was designed to address statistical and systematic limitations of former measurements. In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. Some of the neutrons are subsequently downscattered by single phonons in the helium to low energies (< 100 neV) and those in the appropriate spin state become trapped. The inverse process, upscattering of UCN, is suppressed by the low phonon density in the < 300 mK helium, allowing the neutron to travel undisturbed through the helium. When the neutron decays the energetic electron produces a scintillation signal in the helium that is detected in real time using photomultiplier tubes. The current measurement is limited by larger than expected systematic corrections. We will discuss the result of the latest dataset and comment on the potential of future measurements.

  20. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  1. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    PubMed

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  2. Neutron multiplication error in TRU waste measurements

    SciTech Connect

    Veilleux, John; Stanfield, Sean B; Wachter, Joe; Ceo, Bob

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are

  3. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    PubMed

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  4. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  5. Neodymium neutron cross section measurements.

    PubMed

    Barry, D P; Trbovich, M J; Danon, Y; Block, R C; Slovacek, R E; Leinweber, G; Burke, J A; Drindak, N J

    2005-01-01

    Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Institute LINAC using metallic neodymium samples. The capture measurements were made at the 25-m-long flight station with a 16-segment NaI(Tl) multiplicity detector, and the transmission measurements were performed at 15 and 25 m flight stations with a 6Li glass scintillation detector. After the data were collected and reduced, resonance parameters were determined by simultaneously fitting the transmission and capture data with the multilevel R-matrix Bayesian code SAMMY. The resonance parameters for all naturally occurring neodymium isotopes lie within the energy range of 1.0-500 eV. The resulting resonance parameters were used to calculate the capture resonance integral with this energy region and were compared to calculations obtained when using the resonance parameters from ENDF-B/VI. The RPI parameters gave a resonance integral value of 32 +/- 0.5 b that is approximately 7% lower than that obtained with the ENDF-B/VI parameters. The current measurements significantly reduce the statistical uncertainties on the resonance parameters when compared with previously published parameters.

  6. Neutron flux and power in RTP core-15

    SciTech Connect

    Rabir, Mohamad Hairie Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na’im Syauqi Bin

    2016-01-22

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  7. Neutron flux and power in RTP core-15

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie; Zin, Muhammad Rawi Md; Usang, Mark Dennis; Bayar, Abi Muttaqin Jalal; Hamzah, Na'im Syauqi Bin

    2016-01-01

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core with literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.

  8. Dose measurements around spallation neutron sources.

    PubMed

    Fragopoulou, M; Stoulos, S; Manolopoulou, M; Krivopustov, M; Zamani, M

    2008-01-01

    Neutron dose measurements and calculations around spallation sources appear to be of great importance in shielding research. Two spallation sources were irradiated by high-energy proton beams delivered by the Nuclotron accelerator (JINR), Dubna. Neutrons produced by the spallation sources were measured by using solid-state nuclear track detectors. In addition, neutron dose was calculated after polyethylene and concrete, using a phenomenological model based on empirical relations applied in high-energy physics. The study provides an analytical and experimental neutron benchmark analysis using the transmission factor and a comparison between the experimental results and calculations.

  9. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    SciTech Connect

    Karasiov, A.V.; Greenwood, L.R.

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  10. Expected total counts for the Self-Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    SciTech Connect

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas; Labeau, Pierre-Etienne; Pauly, Nicolas

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in spent fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron counts in the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach in this study consisted in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types were used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the total neutron counts that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of total neutron counts and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the total neutron counts by increasing the detector size. The study shows that the highest total neutron counts are achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the total neutron counts

  11. Measurement of Neutron Yields from UF4

    SciTech Connect

    Bell, Zane W; Ziock, Klaus-Peter; Ohmes, Martin F; Xu, Yunlin; Downar, Thomas J; Pozzi, Sara A

    2010-01-01

    We have performed measurements of neutron production from UF{sub 4} samples using liquid scintillator as the detector material. Neutrons and gamma rays were separated by a multichannel digital pulse shape discriminator, and the neutron pulse-height spectra were unfolded using sequential least-squares optimization with an active set strategy. The unfolded spectra were compared to estimates calculated with the SOURCES 4C code.

  12. The HB-2D Polarized Neutron Development Beamline at the High Flux Isotope Reactor

    NASA Astrophysics Data System (ADS)

    Crow, Lowell; Hamilton, WA; Zhao, JK; Robertson, JL

    2016-09-01

    The Polarized Neutron Development beamline, recently commissioned at the HB-2D position on the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, provides a tool for development and testing of polarizers, polarized neutron devices, and prototyping of polarized neutron techniques. With available monochromators including pyrolytic graphite and polarizing enriched Fe-57 (Si), the instrument has operated at 4.25 and 2.6 Å wavelengths, using crystal, supermirror, or He-3 polarizers and analyzers in various configurations. The Neutron Optics and Development Team has used the beamline for testing of He-3 polarizers for use at other HFIR and Spallation Neutron Source (SNS) instruments, as well as a variety of flipper devices. Recently, we have acquired new supermirror polarizers which have improved the instrument performance. The team and collaborators also have continuing demonstration experiments of spin-echo focusing techniques, and plans to conduct polarized diffraction measurements. The beamline is also used to support a growing use of polarization techniques at present and future instruments at SNS and HFIR.

  13. Monitoring of the time and spatial distribution of neutron-flux spectral density outside the Russian segment of the International Space Station based on data from the BTN-Neutron space experiment

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Mitrofanov, I. G.; Nuzhdin, I. O.; Vostrukhin, A. V.; Golovin, D. V.; Kozyrev, A. S.; Malakhov, A. V.; Mokrousov, M. I.; Sanin, A. B.; Tretyakov, V. I.; Fedosov, F. S.

    2017-03-01

    Results of measurements of neutron-flux spectral density in the vicinity of the International Space Station (ISS) based on BTN-Neutron space experimental data acquired in 2007-2014 have been presented in this paper. It has been shown that, during the flight of the ISS over different regions of the Earth's surface, neutron flux in the energy range of 0.4 eV-15 MeV varies from 0.1 n/sm2/s in equatorial regions to 50 n/sm2/s in the South Atlantic anomaly region. The measurements were used to estimate the contribution of the neutron component to the overall exposure dose rate. The total contribution of fast neutrons is about 0.1-0.4 μ Zv/h above the equator area and more than 50 μ Zv/h above the South Atlantic anomaly region. A data analysis of BTN-Neutron data also showed that the time profile of neutron flux has long-periodic variations. It was found that, under the influence of Galactic cosmic rays (GCRs), modulation during 24th solar cycle neutron flux changed almost twofold (above high latitude regions). Maximum values of neutron flux were observed in January 2010 and minimum values were observed in January 2014.

  14. Measurement of neutron spectra in the experimental reactor LR-0

    SciTech Connect

    Prenosil, Vaclav; Mravec, Filip; Veskrna, Martin; Kostal, Michal; Matej, Zdenek; Cvachovec, Frantisek

    2015-07-01

    The measurement of fast neutron fluxes is important in many areas of nuclear technology. It affects the stability of the reactor structural components, performance of fuel, and also the fuel manner. The experiments performed at the LR-0 reactor were in the past focused on the measurement of neutron field far from the core, in reactor pressure vessel simulator or in biological shielding simulator. In the present the measurement in closer regions to core became more important, especially measurements in structural components like reactor baffle. This importance increases with both reactor power increase and also long term operation. Other important task is an increasing need for the measurement close to the fuel. The spectra near the fuel are aimed due to the planned measurements with the FLIBE salt, in FHR / MSR research, where one of the task is the measurement of the neutron spectra in it. In both types of experiments there is strong demand for high working count rate. The high count rate is caused mainly by high gamma background and by high fluxes. The fluxes in core or in its vicinity are relatively high to ensure safe reactor operation. This request is met in the digital spectroscopic apparatus. All experiments were realized in the LR-0 reactor. It is an extremely flexible light water zero-power research reactor, operated by the Research Center Rez (Czech Republic). (authors)

  15. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    NASA Astrophysics Data System (ADS)

    Strugalska-Gola, Elzbieta; Bielewicz, Marcin; Kilim, Stanislaw; Szuta, Marcin; Tyutyunnikov, Sergey

    2017-03-01

    This work was performed within the international project "Energy plus Transmutation of Radioactive Wastes" (E&T - RAW) for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89) samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  16. Neutron flux parameters at irradiation positions in the new research reactor FRM-II

    NASA Astrophysics Data System (ADS)

    Lin, Xilei; Henkelmann, Richard; Türler, Andreas; Gerstenberg, Heiko; De Corte, Frans

    2006-08-01

    The new research reactor FRM-II in Garching, Germany, was at full power 20 MW for the first time on 24th August, 2004. Since then, highly thermalized neutrons are available also for neutron activation analysis (NAA). In this report, all essential neutron flux parameters needed to calculate neutron induced reaction rates based on the Høgdahl or Westcott convention are presented for all irradiation positions in this reactor.

  17. Flux and Spectrum of Neutrons Generated from 25 Mv Medical X-Ray Therapy Machine

    DTIC Science & Technology

    1989-05-01

    neutron absorption cross section at t. By using this relation in equation (1) the integration is possible over...0 n td f dat) n (it, rpLthprmQJ where 000 is defined as the microscopic neutron absorption cross - section at 2200 m/s, the most probable speed of a... neutron - absorption cross - section of the target as a function of energy O(E) is neutron flux per unit of energy as a function of energy. 1,d is

  18. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  19. Latent Heat in Soil Heat Flux Measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  20. Neutron storage time measurement for the neutron EDM experiment

    NASA Astrophysics Data System (ADS)

    Griffith, W. Clark; Ito, Takeyasu; Ramsey, John; Makela, Mark; Clayton, Steven; Hennings-Yeomans, Raul; Saidur Rahaman, M.; Currie, Scott; Womack, Todd; Sondheim, Walter; Cooper, Martin

    2010-11-01

    A new experiment to search for the neutron electric dipole moment (nEDM) is under development for installation at the Spallation Neutron Source (SNS) at Oakridge National Laboratory. The experiment will use ultra-cold neutrons (UCN) stored in superfluid helium, along with ^3He atoms acting as a neutron spin analyzer and comagnetometer. One crucial factor affecting the ultimate sensitivity of the experiment is the neutron storage time that can be obtained in the acrylic measurement cell. The acrylic cell walls will be coated with deuterated polystyrene (dPS), which is expected to give a wall loss factor of ˜< 10-5 per bounce when cooled below the point where upscattering by hydrogen impurities contribute to UCN losses. We are currently preparing a measurement at Los Alamos to verify that a 10-5 wall loss factor can be achieved in a dPS coated acrylic test cell. The planned measurement will investigate the temperature dependence of the UCN storage time in the dPS coated test cell between room temperature and below 20 K.

  1. Precision Neutron Scattering Length Measurements with Neutron Interferometry

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Arif, M.; Jacobson, D. L.; Pushin, D. A.; Abutaleb, M. O.; Shahi, C. B.; Wietfeldt, F. E.; Black, T. C.

    2011-10-01

    Since its inception, single-crystal neutron interferometry has often been utilized for precise neutron scattering length, b, measurements. Scattering length data of light nuclei is particularly important in the study of few nucleon interactions as b can be predicted by two + three nucleon interaction (NI) models. As such they provide a critical test of the accuracy 2+3 NI models. Nuclear effective field theories also make use of light nuclei b in parameterizing mean-field behavior. The NIST neutron interferometer and optics facility has measured b to less than 0.8% relative uncertainty in polarized 3He and to less than 0.1% relative uncertainty in H, D, and unpolarized 3He. A neutron interferometer consists of a perfect silicon crystal machined such that there are three separate blades on a common base. Neutrons are Bragg diffracted in the blades to produce two spatially separate (yet coherent) beam paths much like an optical Mach-Zehnder interferometer. A gas sample placed in one of the beam paths of the interferometer causes a phase difference between the two paths which is proportional to b. This talk will focus on the latest scattering length measurement for n-4He which ran at NIST in Fall/Winter 2010 and is currently being analyzed.

  2. Neutron background measurements at China Jinping underground laboratory with a Bonner multi-sphere spectrometer

    NASA Astrophysics Data System (ADS)

    Hu, Qingdong; Ma, Hao; Zeng, Zhi; Cheng, Jianping; Chen, Yunhua; He, Shengming; Li, Junli; Shen, Manbin; Wu, Shiyong; Yue, Qian; Yue, Jianfeng; Zhang, Hui

    2017-07-01

    The neutron background spectrum from thermal neutron to 20 MeV fast neutron was measured at the first experimental hall of China Jinping underground laboratory with a Bonner multi-sphere spectrometer. The measurement system was validated by a 252Cf source and inconformity was corrected. Due to micro charge discharge, the dataset was screened and background from the steel of the detectors was estimated by MC simulation. Based on genetic algorithm we obtained the energy distribution of the neutron and the total flux of neutron was (2.69±1.02) ×10-5 cm-2 s-1.

  3. The properties of gamma-radiation and high-energy neutron fluxes in "MIR" station orbit.

    PubMed

    Bogomolov, A V; Bogomolov, V V; Denisov, Yu I; Logachev, Yu I; Svertilov, S I; Kudryavtsev, M I; Lyagushin, V I; Ershova, T V

    2002-10-01

    The study of radiation background components in the near-Earth space is very important for different branches of space research, in particular for space dosimetry and for the planning of gamma-astronomy experiments. Detailed information on the neutral components (gamma-quanta, neutrons) of background radiation was obtained during the Grif-1 experiment onboard Mir orbital station (OS). The measurements of fluxes of 0.05-50 MeV gamma-quanta and >30 MeV neutrons with a large area instrument (approximately 250 cm2 for gamma-quanta, approximately 30 cm2 for neutrons) as well as corresponding charged particle measurements (0.4-1.5 MeV electrons, 1-200 MeV protons) were made during this experiment. The background components induced by the station's own radiation as well as the albedo gamma-rays from the Earth's atmosphere were revealed as the result of data analysis for about 600 h of observation. A mathematical model describing the latitude and energy dependences of atmospheric albedo gamma-rays as well as of those of gamma-quanta produced in the material of the station due to cosmic ray interactions was developed. An analytical approximation of the spectrum of induced gamma-rays from radioactive isotopes stored in the station and instrument's materials is presented. The dynamics of gamma-quantum background fluxes during the geomagnetic disturbances of January 10-11, 1997 are discussed. An analytical representation of the latitude dependence of the integral flux of neutrons with >30 MeV is given.

  4. Neutron flux spectra in the FFTF In-Reactor Thimble

    SciTech Connect

    Wootan, D.W.; Dobbin, K.D.; Schmittroth, F.A.; Roberts, J.H.

    1982-12-01

    Neutron spectra measured in the FFTF In-Reactor Thimble (IRT) by proton recoil proportional counters, proton recoil emulsions, and passive dosimeters have been evaluated and compared with each other and with three-dimensionl diffusion theory calculated spectra for the purpose of validating the passive dosimeter spectrum adjustment technique. The least squares data adjustment code, FERRET, was used to combine measured reaction rates, calculated spectra, and dosimeter cross sections, resulting in adjusted spectra and cross sections with uncertainties and correlations that properly account for uncertainties and correlations on the input parameters.

  5. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    NASA Astrophysics Data System (ADS)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  6. [Forms of histograms constructed from measurements of alpha-decay of 228Ra in Lindau (Germany) and neutron fluxes in Moscow change synchronously according to the local time].

    PubMed

    Zenchenko, K I; Zenchenko, T A; Kuzhevskiĭ, B M; Vilken, B; Axford, Y; Shnol', S E

    2001-01-01

    In joint experiments performed at Max Plank Institute of Aeronomy (Germany) and the Institute of Theoretical and Experimental Biophysics in Pushchino, the main manifestations of the phenomenon of macroscopic fluctuations were confirmed. An increased probability of the similarity in synchronous histograms in independent measurements performed by two installations in one laboratory and in two laboratories separated by a distance of 2000 km was shown. In the latter case, the similarity of histograms is most probable at the same local time.

  7. An investigation of the neutron flux in bone-fluorine phantoms comparing accelerator based in vivo neutron activation analysis and FLUKA simulation data

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Matysiak, W.; Bhatia, C.; Prestwich, W. V.

    2015-01-01

    We have tested the Monte Carlo code FLUKA for its ability to assist in the development of a better system for the in vivo measurement of fluorine. We used it to create a neutron flux map of the inside of the in vivo neutron activation analysis irradiation cavity at the McMaster Accelerator Laboratory. The cavity is used in a system that has been developed for assessment of fluorine levels in the human hand. This study was undertaken to (i) assess the FLUKA code, (ii) find the optimal hand position inside the cavity and assess the effects on precision of a hand being in a non-optimal position and (iii) to determine the best location for our γ-ray detection system within the accelerator beam hall. Simulation estimates were performed using FLUKA. Experimental measurements of the neutron flux were performed using Mn wires. The activation of the wires was measured inside (1) an empty bottle, (2) a bottle containing water, (3) a bottle covered with cadmium and (4) a dry powder-based fluorine phantom. FLUKA was used to simulate the irradiation cavity, and used to estimate the neutron flux in different positions both inside, and external to, the cavity. The experimental results were found to be consistent with the Monte Carlo simulated neutron flux. Both experiment and simulation showed that there is an optimal position in the cavity, but that the effect on the thermal flux of a hand being in a non-optimal position is less than 20%, which will result in a less than 10% effect on the measurement precision. FLUKA appears to be a code that can be useful for modeling of this type of experimental system.

  8. Neutron spectral measurements in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Zobel, W.; Love, T. A.; Delorenzo, J. T.; Mcnew, C. O.

    1972-01-01

    An experiment to measure neutrons in the upper atmosphere was performed on a balloon flight from Palestine, Texas, at an altitude of about 32 km. The experimental arrangement is discussed briefly, and results of a preliminary analysis of the data for neutrons in the energy range 3 to 30 MeV are given.

  9. Measurement of neutron capture on 136Xe

    NASA Astrophysics Data System (ADS)

    Albert, J. B.; Daugherty, S. J.; Johnson, T. N.; O'Conner, T.; Kaufman, L. J.; Couture, A.; Ullmann, J. L.; Krtička, M.

    2016-09-01

    136Xe is a 0 ν β β decay candidate isotope, and is used in multiple experiments searching for this hypothetical decay mode. These experiments require precise information about neutron capture for their background characterization and minimization. Thermal and resonant neutron capture on 136Xe have been measured at the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to greater than 100 keV was incident on a gas cell filled with isotopically pure 136Xe. The relative neutron capture cross sections for neutrons at thermal energies and the first resonance at 2.154 keV have been measured, yielding a new absolute measurement of 0.238 ±0.019 b for the thermal neutron capture cross section. Additionally, the γ cascades for captures at both energies have been measured, and cascade models have been developed which may be used by 0 ν β β experiments using 136Xe.

  10. Undergraduate Measurements of Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Santonil, Z. C.; Crider, B. P.; Peters, E. E.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    Undergraduate students at the University of Dallas have investigated basic properties of nuclei through γ-ray and neutron spectroscopy following neutron scattering. The former has been used primarily for nuclear structure investigations, while the latter has been used to measure neutron scattering cross sections important for fission reactor applications. A series of (n,n') and (n,n'γ) measurements have been made on 54Fe and 56Fe to determine neutron cross sections for scattering to excited levels in these nuclei. The former provides the cross sections directly and the latter are used to deduce inelastic neutron scattering cross sections by measuring the γ-ray production cross sections to states not easily resolved in neutron spectroscopy. All measurements have been completed at the University of Kentucky Accelerator Laboratory using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. Students participate in accelerator operation, experimental setup, data acquisition, and data analyses. An overview of the research program and student contributions is presented.

  11. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  12. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, Jean M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  13. Upper limits to the quiet-time solar neutron flux from 10 to 100 MeV

    NASA Technical Reports Server (NTRS)

    Moon, S.; Simnett, G. M.; White, R. S.

    1975-01-01

    The UCR large area solid-angle double scatter neutron telescope was flown to search for solar neutrons on 3 balloon flights on September 26, 1971, May 14, 1972 and September 19, 1972. The first two flights were launched from Palestine, Texas and the third from Cape Girardeau, Missouri. The float altitude on each flight was at about 5 g/sq cm residual atmosphere. Neutrons from 10 to 100 MeV were measured. No solar flares occurred during the flights. Upper limits to the quiet time solar neutron fluxes at the 95% confidence level are .00028, .00046, .00096 and .00090 neutrons/sq cm-sec in the energy intervals of 10-30, 30-50, 50-100 and 10-100 MeV, respectively.

  14. Upper limits to the quiet-time solar neutron flux from 10 to 100 MeV

    NASA Technical Reports Server (NTRS)

    Moon, S.; Simnett, G. M.; White, R. S.

    1976-01-01

    A large-area solid-angle double-scatter neutron telescope was flown to search for solar neutrons on three balloon flights in 1971 and 1972. The first two flights were launched from Palestine, Texas, and the third from Cape Girardeau, Missouri. The float altitude on each flight was at about 5 g/sq cm residual atmosphere. Neutrons from 10 to 100 MeV were measured. No solar flares occurred during the flights. Upper limits to the quiet-time solar neutron fluxes at the 95-per cent confidence level are 2.8, 4.6, 9.6, and 9.0 x 10 to the -4th power neutron/sq cm/sec in the energy intervals of 10-30, 30-50, 50-100, and 10-100 MeV, respectively.

  15. First Measurement of the Neutron β Asymmetry with Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Pattie, R. W., Jr.; Anaya, J.; Back, H. O.; Boissevain, J. G.; Bowles, T. J.; Broussard, L. J.; Carr, R.; Clark, D. J.; Currie, S.; Du, S.; Filippone, B. W.; Geltenbort, P.; García, A.; Hawari, A.; Hickerson, K. P.; Hill, R.; Hino, M.; Hoedl, S. A.; Hogan, G. E.; Holley, A. T.; Ito, T. M.; Kawai, T.; Kirch, K.; Kitagaki, S.; Lamoreaux, S. K.; Liu, C.-Y.; Liu, J.; Makela, M.; Mammei, R. R.; Martin, J. W.; Melconian, D.; Meier, N.; Mendenhall, M. P.; Morris, C. L.; Mortensen, R.; Pichlmaier, A.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; Sabourov, K.; Sallaska, A. L.; Saunders, A.; Schmid, R.; Seestrom, S.; Servicky, C.; Sjue, S. K. L.; Smith, D.; Sondheim, W. E.; Tatar, E.; Teasdale, W.; Terai, C.; Tipton, B.; Utsuro, M.; Vogelaar, R. B.; Wehring, B. W.; Xu, Y. P.; Young, A. R.; Yuan, J.

    2009-01-01

    We report the first measurement of an angular correlation parameter in neutron β decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for ˜30s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2×2π solenoidal spectrometer. We determine a value for the β-asymmetry parameter A0=-0.1138±0.0046±0.0021.

  16. Analysis of neutron flux distribution for the validation of computational methods for the optimization of research reactor utilization.

    PubMed

    Snoj, L; Trkov, A; Jaćimović, R; Rogan, P; Zerovnik, G; Ravnik, M

    2011-01-01

    In order to verify and validate the computational methods for neutron flux calculation in TRIGA research reactor calculations, a series of experiments has been performed. The neutron activation method was used to verify the calculated neutron flux distribution in the TRIGA reactor. Aluminium (99.9 wt%)-Gold (0.1 wt%) foils (disks of 5mm diameter and 0.2mm thick) were irradiated in 33 locations; 6 in the core and 27 in the carrousel facility in the reflector. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and experimental normalized reaction rates in the core are in very good agreement for both isotopes indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux and reaction rate distribution in the reactor core. In the reflector however, the accuracy of the epithermal and thermal neutron flux distribution and attenuation is lower, mainly due to lack of information about the material properties of the graphite reflector surrounding the core, but the differences between measurements and calculations are within 10%. Since our computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of research reactor utilization.

  17. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    SciTech Connect

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  18. Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Chandler, K. C.; Barish, J.

    1972-01-01

    Calculations have been carried out to determine the neutron flux induced in the earth's atmosphere by galactic protons and alpha particles at solar minimum for a geomagnetic latitude of 42 N. Neutron flux spectra were calculated using Monte Carlo and discrete ordinates methods, and various comparisons with experimental data are presented. The magnitude and shape of the calculated neutron-leakage spectrum at the particular latitude considered support the theory that the cosmic-ray-albedo-neutron-decay mechanism is the source of the protons and electrons trapped in the Van Allen belts.

  19. Monitoring of MNSR operation by measuring subcritical photoneutron flux.

    PubMed

    Haddad, Kh; Alsomel, N

    2011-03-01

    Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as (117)Cd (activation product) and (140)Ba ((140)La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Relating chamber measurements to eddy correlation measurements of methane flux

    Treesearch

    R.J. Clement; S.B. Verma; E.S. Verry

    1995-01-01

    Methane fluxes were measured using eddy correlation and chamber techniques during 1991 and 1997 at a peatland in north central Minnesota. Comparisons of the two techniques were made using averages of methane flux data available during 1-week periods. The seasonal patterns of fluxes measured by the two techniques compared well. Chamber flux, in 1991, was about 1.8 mg m...

  1. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    SciTech Connect

    Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.; Reifarth, R.; Rundberg, R. S.; Bredeweg, T. A.; Fowler, Malcolm M.; Miller, G. G.; Heil, M.; Käppeler, F.; Chamberlin, E. P.

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  2. Detailed flux calculations for the conceptual design of the Advanced Neutron Source Reactor

    SciTech Connect

    Wemple, C.A.

    1995-05-01

    A detailed MCNP model of the Advanced Neutron Source Reactor has been developed. All reactor components inside the reflector tank were included, and all components were highly segmented. Neutron and photon multigroup flux spectra have been calculated for each segment in the model, and thermal-to-fast neutron flux ratios were determined for each component segment. Axial profiles of the spectra are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the group fluxes for all important reflector components have a standard deviation below 10%.

  3. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  4. The Minor Actinide Transmutation-Incineration Potential Studies in High Intensity Neutron Fluxes

    SciTech Connect

    Letourneau, A.; Chabod, S.; Foucher, Y.; Marie, F.; Ridikas, D.; Veyssiere, Ch.; Blandin, Ch.

    2005-05-24

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at CEA/DSM with objectives to determine optimal conditions for transmutation and incineration of Minor Actinides (MA) in high intensity neutron fluxes. Our experimental tools based on alpha- and gamma-spectroscopy of irradiated samples and the development of fission micro-chambers could gather both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. Cross sections of selected actinides (241Am, 242Am, 242Pu, 237Np, 238Np) have already been measured at ILL, showing some discrepancies when compared to evaluated data libraries but in overall good agreement with recent experimental data.

  5. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  6. Neutron nuclear data measurements for criticality safety

    NASA Astrophysics Data System (ADS)

    Guber, Klaus; Paradela, Carlos; Heyse, Jan; Kopecky, Stefan; Schillebeeckx, Peter; Siegler, Peter

    2017-09-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Joint Research Center Site Geel, European Union. Neutron capture and transmission measurements were carried out using metallic natural cerium and vanadium samples. Together with existing data, the measured data will be used for a new evaluation and will be submitted with covariances to the ENDF/B nuclear data library.

  7. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    SciTech Connect

    Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  8. Sources of variability in mercury flux measurements

    NASA Astrophysics Data System (ADS)

    Edwards, G. C.; Rasmussen, P. E.; Schroeder, W. H.; Kemp, R. J.; Dias, G. M.; Fitzgerald-Hubble, C. R.; Wong, E. K.; Halfpenny-Mitchell, L.; Gustin, M. S.

    2001-03-01

    Chamber and micrometeorological mercury flux data collected during the Nevada STORMS intercomparison study were used to identify natural and methodological factors controlling data variability. Micrometeorological and chamber measurements revealed that flux variability at a site is closely related to the Hg concentrations in the substrate, which were found to vary with mineral composition, grain size, and sampling depth. Environmental factors also influenced flux variability. Following two rainfall events, fluxes measured by chamber and micrometeorological methods increased substantially. The micrometeorological flux was enhanced five fold following the rain event. Fluxes measured by both methods were also influenced by net radiation and temperature as evidenced by their tendency to follow the diel cycle in these variables. Daytime fluxes were 6 times greater than nighttime fluxes. Data analysis revealed that interactions between environmental and geochemical variables complicate relationships between the flux and these variables. Understanding the variability at a flux monitoring site is important to establish relationships for scaling up and for the development of consistent sampling protocols that allow comparisons from one study to another and adequately quantify mercury fluxes from natural sites to provide representative emission data that can be used for scaling up to regional and global scales.

  9. The Experimental Determination of Thermal Neutron Flux in the Radiochemistry Curriculum

    ERIC Educational Resources Information Center

    Grant, Patrick M.

    1977-01-01

    Describes an experiment for determining the thermal neutron flux of the light-water nuclear reactor at the University of California, Irvine. The difficulty of the activity can be varied to match the student's level of proficiency. (SL)

  10. The Experimental Determination of Thermal Neutron Flux in the Radiochemistry Curriculum

    ERIC Educational Resources Information Center

    Grant, Patrick M.

    1977-01-01

    Describes an experiment for determining the thermal neutron flux of the light-water nuclear reactor at the University of California, Irvine. The difficulty of the activity can be varied to match the student's level of proficiency. (SL)

  11. Neutron-Induced Failures in Semiconductor Devices

    SciTech Connect

    Wender, Stephen Arthur

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  12. Neutron Energy Measurements in Emergency Response Applications

    SciTech Connect

    Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

    2009-09-11

    We present significant results in recent advances in the measurement of neutron energy. Neutron energy measurements are a small but significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of importance. At the Remote Sensing Laboratory (RSL) of National Security Technologies, LLC, a series of materials, viz., liquid organic scintillator (LOS), Lithium Gadolinium Borate (LGB) or Li6Gd(BO3)3 in a plastic matrix, a recently developed crystal of Cesium Lithium Yttrium Chloride, Cs2LiYCl6: Ce (called CLYC)[1], and normal plastic scintillator (BC-408) with 3He tubes have been used to study their effectiveness as a portable neutron energy spectrometer. Comparisons illustrating the strengths of the various materials will be provided. Of these materials, LGB offers the ability to tailor its response to the neutron spectrum by varying the isotopic composition of the key constituents (Lithium, Gadolinium [Yttrium], and Boron). All three of the constituent elements possess large neutron capture cross section isotopes for highly exothermic reactions. These compounds of composition Li6Gd(Y)(BO3)3 can be activated by Cerium ions Ce3+. CLYC, on the other hand, has a remarkable gamma response in addition to superb neutron discrimination, comparable to that of Europium-doped Lithium Iodide (6LiI: Eu). Comparing these two materials, CLYC has higher light output (4500 phe/MeV) than that from 6LiI: Eu and shows better energy resolution for both gamma and neutron pulse heights. Using CLYC, gamma energy pulses can be discriminated from the neutron signals by simple pulse height separation. For the cases of both LGB and LOS, careful pulse shape discrimination is needed to separate the gamma energy signals from neutron pulses. Both analog and digital

  13. Neutron energy measurements in emergency response applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Guss, Paul; Hornish, Michael; Wilde, Scott; Stampahar, Tom; Reed, Michael

    2009-08-01

    We present significant results in recent advances in the measurement of neutron energy. Neutron energy measurements are a small but significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of importance. At the Remote Sensing Laboratory (RSL) of National Security Technologies, LLC, a series of materials, viz., liquid organic scintillator (LOS), Lithium Gadolinium Borate (LGB) or Li6Gd(BO3)3 in a plastic matrix, a recently developed crystal of Cesium Lithium Yttrium Chloride, Cs2LiYCl6: Ce (called CLYC)[1], and normal plastic scintillator (BC-408) with 3He tubes have been used to study their effectiveness as a portable neutron energy spectrometer. Comparisons illustrating the strengths of the various materials will be provided. Of these materials, LGB offers the ability to tailor its response to the neutron spectrum by varying the isotopic composition of the key constituents (Lithium, Gadolinium [Yttrium], and Boron). All three of the constituent elements possess large neutron capture cross section isotopes for highly exothermic reactions. These compounds of composition Li6Gd(Y)(BO3)3 can be activated by Cerium ions Ce3+. CLYC, on the other hand, has a remarkable gamma response in addition to superb neutron discrimination, comparable to that of Europium-doped Lithium Iodide (6LiI: Eu). Comparing these two materials, CLYC has higher light output (4500 phe/MeV) than that from 6LiI: Eu and shows better energy resolution for both gamma and neutron pulse heights. Using CLYC, gamma energy pulses can be discriminated from the neutron signals by simple pulse height separation. For the cases of both LGB and LOS, careful pulse shape discrimination is needed to separate the gamma energy signals from neutron pulses. Both analog and digital

  14. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  15. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles.

    PubMed

    Feldman, W C; Maurice, S; Binder, A B; Barraclough, B L; Elphic, R C; Lawrence, D J

    1998-09-04

    Maps of epithermal- and fast-neutron fluxes measured by Lunar Prospector were used to search for deposits enriched in hydrogen at both lunar poles. Depressions in epithermal fluxes were observed close to permanently shaded areas at both poles. The peak depression at the North Pole is 4.6 percent below the average epithermal flux intensity at lower latitudes, and that at the South Pole is 3.0 percent below the low-latitude average. No measurable depression in fast neutrons is seen at either pole. These data are consistent with deposits of hydrogen in the form of water ice that are covered by as much as 40 centimeters of desiccated regolith within permanently shaded craters near both poles.

  16. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    NASA Astrophysics Data System (ADS)

    Aguilera, P.; Molina, F.; Romero-Barrientos, J.

    2016-07-01

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work, we present the unfolding results using the EM algorithm.

  17. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    SciTech Connect

    Aguilera, P. Romero-Barrientos, J.; Molina, F.

    2016-07-07

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work, we present the unfolding results using the EM algorithm.

  18. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber.

    PubMed

    Lüdemann, L; Matzen, T; Matzke, M; Schmidt, R; Scobel, W

    1995-11-01

    The thermal neutron distribution in slow and fast neutron beams is usually determined using the foil activation method. In this work a small magnesium walled ionization chamber, in which the inner surface of the wall has been coated with 10B to increase the sensitivity for thermal neutrons, is used to estimate the thermal neutron component of the beam. After calibration and determination of the directional response in a thermal neutron beam a comparison with foil activation at different depths in water was performed to investigate the reliability of the ionization measurements. The chamber was used in a computer controlled water phantom to measure the depth and lateral distribution of the thermal neutron dose. With this arrangement two-dimensional scans of the thermal neutrons could be performed quickly and with high accuracy.

  19. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  20. Boron neutron capture enhancement (BNCE) of fast neutron irradiation for glioblastoma: increase of thermal neutron flux with heavy material collimation, a theoretical evaluation.

    PubMed

    Paquis, P; Pignol, J P; Lonjon, M; Brassart, N; Courdi, A; Chauvel, P; Grellier, P; Chatel, M

    1999-01-01

    Despite the fact that fast neutron irradiation of glioblastoma has shown on autopsies an ability to sterilize tumors, no therapeutic windows have been found for these particles due to their toxicity toward normal brain. Therefore, the Boron Neutron Capture Enhancement (BNCE) of fast neutron beam has been suggested. This paper addresses the problem of fast neutron beam collimation, which induces a dramatic decrease of the thermal neutron flux in the depth of the tissues when smaller irradiation fields are used. Thermoluminescent dosimeter TLD-600 and TLD-700 were used to determine the thermal neutron flux within a Plexiglas phantom irradiated under the Nice Biomedical Cyclotron p(60)+Be(32) fast neutron beam. A BNCE of 4.6% in physical dose was determined for a 10 x 10 cm2 field, and of 10.4% for a 20 x 20 cm2 one. A Dose Modification Factor of 1.19 was calculated for CAL 58 glioblastoma cells irradiated thanks to the larger field. In order to increase the thermal flux in depth while shaping the beam, heavy material collimation was studied with Monte Carlo simulations using coupled FLUKA and MCNP-4A codes. The use of 20 cm width lead blocks allowed a 2 fold thermal neutron flux increase in the depth of the phantom, while shielding the fast neutron beam with a fast neutron dose transmission of 23%. Using the DMF of 1.19, a BNCE of 40% was calculated in the beam axis. This enhancement might be sufficient to open, at least theoretically, a therapeutic window.

  1. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  2. Practical new method of measuring thermal-neutron fluence

    NASA Technical Reports Server (NTRS)

    Siebold, J. R.; Warman, E. A.

    1967-01-01

    Thermoluminescence dosimeter technique measures thermal-neutron fluence by encapsulating lithium flouride phosphor powder and exposing it to a neutron environment. The capsule is heated in a dosimeter reader, which results in light emission proportional to the neutron fluence.

  3. Estimation of low energy neutron flux (En <= 15 MeV) in India-based Neutrino Observatory cavern using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Dokania, N.; Singh, V.; Mathimalar, S.; Garai, A.; Nanal, V.; Pillay, R. G.; Bhushan, K. G.

    2015-12-01

    The neutron flux at low energy (En <= 15 MeV) resulting from the radioactivity of the rock in the underground cavern of the India-based Neutrino Observatory is estimated using Geant4-based Monte Carlo simulations. The neutron production rate due to the spontaneous fission of 235, 238U, 232Th and (α, n) interactions in the rock is determined employing the actual rock composition. It is shown that the total flux is equivalent to a finite size cylindrical rock (D=L=140 cm) element. The energy integrated neutron flux thus obtained at the center of the underground tunnel is 2.76 (0.47) × 10-6 n cm-2 s-1. The estimated neutron flux is of the same order (~10-6 n cm-2 s-1) as measured in other underground laboratories.

  4. Expected count rate for the Self- Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    SciTech Connect

    Rossa, Riccardo; Labeau, Pierre-Etienne; Pauly, Nicolas

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in the fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron flux integrated over the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach considered in this study consists in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types are used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the count rate that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of count rate and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the count rate by increasing the detector size. The study shows that the highest count rate is achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the count rate associated to each detector type

  5. Determining the Magnitude of Neutron and Galactic Cosmic Ray (GCR) Fluxes at the Moon using the Lunar Exploration Neutron Detector during the Historic Space-Age Era of High GCR Flux

    NASA Astrophysics Data System (ADS)

    Chin, G.; Sagdeev, R.; Boynton, W. V.; Mitrofanov, I. G.; Milikh, G. M.; Su, J. J.; Livengood, T. A.; McClanahan, T. P.; Evans, L.; Starr, R. D.; litvak, M. L.; Sanin, A.

    2013-12-01

    The Lunar Reconnaissance Orbiter (LRO) was launched June 18, 2009 during an historic space-age era of minimum solar activity [1]. The lack of solar sunspot activity signaled a complex set of heliospheric phenomena [2,3,4] that also gave rise to a period of unprecedentedly high Galactic Cosmic Ray (GCR) flux [5]. These events coincided with the primary mission of the Lunar Exploration Neutron Detector (LEND, [6]), onboard LRO in a nominal 50-km circular orbit of the Moon [7]. Methods to calculate the emergent neutron albedo population using Monte Carlo techniques [8] rely on an estimate of the GCR flux and spectra calibrated at differing periods of solar activity [9,10,11]. Estimating the actual GCR flux at the Moon during the LEND's initial period of operation requires a correction using a model-dependent heliospheric transport modulation parameter [12] to adjust the GCR flux appropriate to this unique solar cycle. These corrections have inherent uncertainties depending on model details [13]. Precisely determining the absolute neutron and GCR fluxes is especially important in understanding the emergent lunar neutrons measured by LEND and subsequently in estimating the hydrogen/water content in the lunar regolith [6]. LEND is constructed with a set of neutron detectors to meet differing purposes [6]. Specifically there are two sets of detector systems that measure the flux of epithermal neutrons: a) the uncollimated Sensor for Epi-Thermal Neutrons (SETN) and b) the Collimated Sensor for Epi-Thermal Neutrons (CSETN). LEND SETN and CSETN observations form a complementary set of simultaneous measurements that determine the absolute scale of emergent lunar neutron flux in an unambiguous fashion and without the need for correcting to differing solar-cycle conditions. LEND measurements are combined with a detailed understanding of the sources of instrumental back-ground, and the performance of CSETN and SETN. This comparison allows us to calculate a constant scale factor

  6. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  7. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  8. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  9. Diamagnetic flux measurement in Aditya tokamak

    SciTech Connect

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M. V.; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-15

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  10. Diamagnetic flux measurement in Aditya tokamak.

    PubMed

    Kumar, Sameer; Jha, Ratneshwar; Lal, Praveen; Hansaliya, Chandresh; Gopalkrishna, M V; Kulkarni, Sanjay; Mishra, Kishore

    2010-12-01

    Measurements of diamagnetic flux in Aditya tokamak for different discharge conditions are reported for the first time. The measured diamagnetic flux in a typical discharge is less than 0.6 mWb and therefore it has required careful compensation for various kinds of pick-ups. The hardware and software compensations employed in this measurement are described. We introduce compensation of a pick-up due to plasma current of less than 20 kA in short duration discharges, in which plasma pressure gradient is supposed to be negligible. The flux measurement during radio frequency heating is also presented in order to validate compensation.

  11. Neutron measurements onboard the space shuttle.

    PubMed

    Badhwar, G D; Keith, J E; Cleghorn, T F

    2001-06-01

    The radiation environment inside a shielded volume is highly complex, consisting of both charged and neutral particles. Since the inception of human space flights, the charged particle component has received virtually all of the attention. There is however, a significant production of secondary neutrons, particularly from the aluminum structure in low earth orbiting spacecrafts. The interactions of galactic cosmic rays (GCR), and solar energetic particles with the earth's atmosphere produce a non-isotropic distribution of albedo neutrons. Inside any reasonable habitable module, the average radiation quality factor of neutrons is about 4-5 times larger than the corresponding average quality factor of charged particles. The measurement of neutrons and their energy spectra is a difficult problem due the intense sources of charged particles. This paper reviews the results of Shuttle flight experiments (made during both solar maximum and solar minimum) to measure the contribution of neutrons to the dose equivalent, as well as theoretical calculations to estimate the appropriate range of neutron energies that contribute most to the dose equivalent.

  12. Conformity Between LR0 Mock-Ups and Vvers Npp Rpv Neutron Flux Attenuation

    NASA Astrophysics Data System (ADS)

    Belousov, Sergey; Ilieva, Krassimira; Kirilova, Desislava

    2009-08-01

    The conformity of the mock-up results and those for reactor pressure vessel (RPV) of nuclear power plants (NPP) has been evaluated in order to qualify if the mock-ups data could be used for benchmark's purpose only, or/and for simulating of the NPP irradiation conditions. Neutron transport through the vessel has been calculated by the three-dimensional discrete ordinate code TORT with problem oriented multigroup energy neutron cross-section library BGL. Neutron flux/fluence and spectrum shape represented by normalized group neutron fluxes in the multigroup energy structure, for neutrons with energy above 0.5 MeV, have been used for conformity analysis. It has been demonstrated that the relative difference of the attenuation factor as well as the group neutron fluxes did not exceed 10% at all considered positions for VVER-440. For VVER-1000, it has been obtained the same consistency, except for the location behind the RPV. The neutron flux attenuation behind the RPV is 18% higher than the mock-up attenuation. It has been shown that this difference arises from the dissimilarity of the biological shielding. The obtained results have demonstrated that the VVERs' mock-ups are appropriate for simulating the NPP irradiation conditions. The mock-up results for VVER-1000 have to be applied more carefully i.e. taking into account the existing peculiarity of the biological shielding and RPV attenuation azimuthal dependence.

  13. Underground physics and the barometric pumping effect observed for thermal neutron flux underground

    NASA Astrophysics Data System (ADS)

    Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.

    2017-05-01

    It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.

  14. Measurements of activation induced by environmental neutrons using ultra low-level gamma-ray spectrometry.

    PubMed

    Martínez Canet, M J; Hult, M; Köhler, M; Johnston, P N

    2000-03-01

    The flux of environmental neutrons is being studied by activation of metal discs of selected elements. Near the earth's surface the total neutron flux is in the order of 10(-2) cm(-2)s(-1), which gives induced activities of a few mBq in the discs. Initial results from this technique, involving activation at ground level for several materials (W, Au, Ta, In, Re, Sm, Dy and Mn) and ultra low-level gamma-ray spectrometry in an underground laboratory located at 500 m.w.e., are presented. Diffusion of environmental neutrons in water is also measured by activation of gold at different depths.

  15. Measurement of the neutron background at the Canfranc Underground Laboratory LSC

    NASA Astrophysics Data System (ADS)

    Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M. B.; Caballero-Folch, R.; Cortés, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L. M.; Domingo, C.

    2013-02-01

    The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure 3He proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Φ=(3.44±0.35)×10-6 cm-2 s-1.

  16. Measurement of neutron energy spectrum at the radial channel No. 4 of the Dalat reactor.

    PubMed

    Son, Pham Ngoc; Tan, Vuong Huu

    2016-01-01

    Several compositions of neutron filters have been installed at the channel No. 4 of the Dalat research reactor to produce quasi-monoenergetic neutron beams. However, this neutron facility has been proposed to enhance the quality of the experimental instruments, and to characterize the neutron spectrum parameters for new filtered neutron beams of 2 keV, 24 keV, 59 keV and 133 keV. In order to meet the demand of neutron spectrum information for calculation and design of filtered neutron facilities at the Dalat nuclear research reactor (DNRR), the experimental determinations of neutron flux and energy spectrum, up to 8 MeV, has been performed at the inner entrance of the horizontal channel No. 4 from the core of DNRR. The Westcott neutron fluxes as well as the α-parameter that represents the deviation of epithermal neutron distribution from the 1/E law were measured by applying the cadmium ratio and the multi-foils activation methods. The fast neutron spectrum was measured based on the iterative adjustment procedure with threshold reactions. A set of pure metal thin foils with the diameter of 1.27 cm and thickness of 0.125 mm were used as threshold detectors to measure the integrated fluxes, and a calculation procedure on iterative adjustment was implemented to derive the differential neutron energy spectrum from the integrated values. The neutron fluxes and spectrum parameters were characterized with the measured values of 4.80 × 10(9), 1.98 × 10(7), 5.06 × 10(8) cm(-2) s(-1) and 0.0448 for the thermal, epithermal, fast neutron fluxes and the α-shape factor, respectively. The present result has been significantly applied to the input data for the Monte Carlo simulations in the developments of filtered mono-energetic neutron beam facility at the institute.

  17. Neutron lifetime measurement with pulsed beam at J- PARC: TPC and DAQ

    NASA Astrophysics Data System (ADS)

    Yamada, Takahito; Katayama, Ryo; Higashi, Nao; Yokoyama, Harumichi; Sumino, Hirochika; Yamashita, Satoru; Sakakibara, Risa; Sugino, Tomoaki; Kitaguchi, Masaaki; Hirota, Katsuya; Shimizu, Hirohiko M.; Tanaka, Genki; Sumi, Naoyukio; Otono, Hidetoshi; Yoshioka, Tamaki; Kitahara, Ryunosuke; Iwashita, Yoshihisa; Oide, Hideyuki; Shima, Tatsushi; Seki, Yoshichika; Mishima, Kenji; Taketani, Kaoru; Ino, Takashi; NOP Collaboration

    2014-09-01

    The neutron lifetime is an important parameter for Big Bang nucleosynthesis (BBN). The best neutron lifetime measurements have uncertainties at the 0.1% level; however, they differ by 3.8 sigma. In order to resolve this discrepancy, we plan to measure the neutron lifetime using a method originally developed by Kossakowski et al. which is different from the other 0.1% accuracy experiments. In our method, which uses a pulsed cold neutron beam at J-PARC, the electrons from the beta decay of the neutron are detected with a time projection chamber (TPC). A small amount of 3He is added to the gas mixture in order to simultaneously measure the neutron flux. We report on the recent upgrade of the TPC and the Data Acquisition System which were used to take data during the period of February-June 2014.

  18. Russian measurements of neutron energy spectra on the Mir orbital station.

    PubMed

    Lyagushin, V I; Dudkin, V E; Potapov, Y V; Sevastianov, V D

    2001-06-01

    Results of the experiments on neutron energy spectra measurements within broad energy range from 5 x 10(-7) to 2 x 10(2) MeV aboard the Mir orbital station and equivalent neutron dose estimation are presented. Four measurement techniques were used during the experiments. The shape of spectra and their absolute values are in good agreement. According to those experiments, an equivalent neutron dose depends upon effective shielding thickness and spacecraft mass. The neutron dose mentioned is comparable with that of ionizing radiation. Neutron flux levels measured aboard the Mir station have shown that a neutron spectrometer involving broad energy range will be used within the radiation monitoring systems in manned space flights.

  19. Neutron apparatus for measuring strain in composites

    DOEpatents

    Kupperman, David S.; Majumdar, Saurindranath; Faber, Jr., John F.; Singh, J. P.

    1990-01-01

    A method and apparatus for orienting a pulsed neutron source and a multi-angle diffractometer toward a sample of a ceramic-matrix or metal-matrix composite so that the measurement of internal strain (from which stress is calculated) is reduced to uncomplicated time-of-flight measurements.

  20. Validating Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2010-09-01

    Spectral analysis of transient neutron star X-ray emission during bursts and quiescence were both used to estimate the NS radii for different sources. The validities of these methods need to be verified by performing them on the same source respectively. Transient type-I (thermonuclear) X-ray bursters are excellent candidates for testing the consistency between these methods, since they were detected in both bursts and quiescence. Out of 3 candidates: Cen X-4, Aql X-1 and 4U 1608-52, 4U 1608-52 turns out to be the best one due to the lack of archival RXTE burst data for Cen X-4 and the previous reported significant luminosity and temperature variability for Aql X-1 in quiescence. Therefore, we propose a 25 ks Chandra/ACIS-S observation of 4U 1608-52.

  1. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    SciTech Connect

    Bringer, O.; Blandin, C.; Oriol, L.

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  2. Measurement of cold neutron spectrum by multi-foil activation method

    NASA Astrophysics Data System (ADS)

    Kikawa, Tatsuya; Canada-Japan UCN Collaboration

    2016-09-01

    In 2016, we will start commissioning the ultracold neutron (UCN) source at TRIUMF: the proton beamline including the spallation target, as well as the cold neutron moderators will be tested. In order to gain a better understanding of the UCN production, a measurement of the cold neutron flux in the UCN source is needed. However, a measurement with the time-of-flight (TOF) method is not adaptable to our geometry. Thus, we are planning to measure the cold neutron spectrum using multiple neutron activation foils with unfolding technique. We will place special foils in the (empty) UCN production volume to measure the neutron spectrum; their activities will be measured by Ge detectors after the activation. The neutron spectrum is reconstructed from the measured activities by an unfolding analysis. This technique has been conventionally used for the measurement of the fast neutron spectrum. In this presentation, we will explain the application of this technique to the measurement of cold neutron spectrum and the status of preparations for the measurement at TRIUMF.

  3. Neutron science facility for neutron time-of-flight and fission cross-section measurements at RAON

    NASA Astrophysics Data System (ADS)

    Kim, Jae Cheon; Kim, Gi Dong; Son, Jae Bum; Lee, Cheol Woo; Lee, Young-Ouk

    2015-02-01

    In the middle of 2018, a heavy-ion accelerator complex that will be built in South Korea plans to provide the first primary beams into the neutron science facility (NSF) for producing fast neutrons. Deuteron with a maximum energy of 53 MeV and protons with a maximum energy of 88 MeV accelerated by superconducting driver linac (SCL1) will be delivered into the target hall at the NSF. A pulsed neutron beam will be provided for neutron time-of-flight (TOF) and neutron-induced reaction cross-section measurements. At the NSF, white and mono-energetic fast neutrons will be produced when either a deuteron or a proton beam bombards a light nuclei target such as C and Li. Preliminary thermal calculations have been performed with a rotating C (graphite) target and its maximum temperature was about 530 °C, much less than its melting point. For neutron TOF measurements, two flight paths of 5 m and 20 m are considered for high-flux and low-energy neutron beams, respectively. Basically, 0° and 30° neutron collimators will be considered to obtain various neutron energies for the neutron TOF measurements. A clearing magnet is used to deflect the proton beam to a beam dump when it crosses a thin target. In addition, the neutron beam dump will be designed to generate a background due to back-scattered neutrons and photons that should be as low as possible in the TOF area. Fission cross-section measurements with a few percent uncertainties are set to be a short-term ultimate goal after building the neutron TOF facility at the NSF. In order to achieve few-percent fission cross-section measurements at the NSF, we plan to employ a time projection chamber (TPC). It can measure charged particle trajectories in the active volume in three dimensions, as well as the energy deposition, and it can significantly improve the accuracies of the fission cross-section measurements.

  4. Average Soil Water Retention Curves Measured by Neutron Radiography

    SciTech Connect

    Cheng, Chu-Lin; Perfect, Edmund; Kang, Misun; Voisin, Sophie; Bilheux, Hassina Z; Horita, Juske; Hussey, Dan

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  5. Development of detector technologies for neutron beta decay measurements

    NASA Astrophysics Data System (ADS)

    Choi, Jin Ha; Cude-Woods, Chris; Young, Albert; Los Alamos UCN Collaboration Collaboration

    2016-09-01

    In the past year we have developed two detector technologies for neutron beta decay measurements. The first is designed specifically to detect the recoil proton from neutron decay. In particular, the PERKEO III experiments planned for the Institut Laue Langevin require detectors with active area greater than about 600 cm2 area to achieve the targeted statistical sensitivity. We have developed an implementation of transmission foil detectors utilizing free standing foils of roughly 100 nm thickness and 700 cm2 area, coated with LiF converting crystal. These foils are placed in an accelerating electric field geometry to first accelerate the protons to 30 kV and then convert them to an electron shower which can be detected with conventional semiconductor or scintillator detectors. We've also begun development of technology that is designed to detect charged particles from neutron-capture reaction on 10B. The UCNtau experiment at the Los Alamos National Laboratories requires non-magnetic neutron sensors that can be used to measure the density of neutrons in a magnetic trap. We are employing a multilayer surface detector recently developed at Los Alamos for the UCN flux monitoring, adapting it for a compact, 1 cm2 detector and ultralow dark rates. The detector consists of 10B on ZnS scintillating sheet that will be adhered to both faces of an acrylic plate with scintillating optical fibers embedded into it. The optical fibers will be coupled to 2, Hamamatsu micro-PMTs for coincident detection of a neutron event.

  6. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  7. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)

    NASA Astrophysics Data System (ADS)

    Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur

    2017-09-01

    The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  8. Delayed neutron emission measurements from fast fission of U-235 and Np-237

    SciTech Connect

    Charlton, W.S.; Parish, T.A.; Raman, S.; Shinohara, Nubuo; Andoh, Masaki

    1996-09-01

    Experiments have been designed and conducted to measure the periods and yields of delayed neutrons from fast fission of {sup 235}U and {sup 237}Np. These measurements were performed in a pool type reactor using a fast flux in-core irradiation device. The energy dependent neutron flux spectrum within the irradiation device was characterized using a foil activation technique and the SAND-II unfolding code. Five delayed neutron groups were measured. The total yield (sum of the five group yields) for {sup 235}U was found to be 0.0141 {+-} 0. 0009. The total yield for {sup 237}Np was found to be 0.0102 {+-} 0. 0008. The total delayed neutron yield data were found to be in good agreement with previous measurements. The individual group yields reported here are preliminary and are being further refined.

  9. Modeling cosmic ray proton induced terrestrial neutron flux: A look-up table

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew C.; Melott, Adrian L.; Atri, Dimitra

    2013-06-01

    contribute a significant radiation dose at commercial passenger airplane altitudes. With cosmic ray energies > 1 GeV, these effects could, in principle, be propagated to ground level. Under current conditions, the cosmic ray spectrum incident on the Earth is dominated by particles with energies < 1 GeV. Astrophysical shocks from events such as supernovae accelerate high-energy cosmic rays (HECRs) well above this range. The Earth is likely episodically exposed to a greatly increased HECR flux from such events. Solar events of smaller energies are much more common and short lived but still remain a topic of interest due to the ground level enhancements they produce. The air showers produced by cosmic rays (CRs) ionize the atmosphere and produce harmful secondary particles such as muons and neutrons. Although the secondary spectra from current day terrestrial cosmic ray flux are well known, this is not true for spectra produced by many astrophysical events. This work shows the results of Monte Carlo simulations quantifying the neutron flux due to CRs at various primary energies and altitudes. We provide here look-up tables that can be used to determine neutron fluxes from proton primaries with kinetic energies of 1 MeV-1 PeV. By convolution, one can compute the neutron flux for any arbitrary CR spectrum. This contrasts with all other similar works, which are spectrum dependent. Our results demonstrate the difficulty in deducing the nature of primaries from the spectrum of ground level neutron enhancements.

  10. Theory of Ground Ice on Mars and Implications to the Neutron Leakage Flux

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.; Feldman, W. C.; Prettyman, T. H.

    2003-12-01

    Near-surface ground ice (subsurface ice in the upper several meters of the surface) is an important component of the global cycles of water and the behavior of the martian climate. It represents a substantial reservoir of water that can dynamically exchange with the atmosphere on timescales comparable to that of oscillations in the planet's orbit. As the martian obliquity increases or decreases, the global atmospheric humidity also increases or deceases. In response to this and changes in the regolith temperatures, ground ice can undergo cycles of sublimation and condensation, such that the upper meter or two of the martian regolith can become alternately ice-saturated and desiccated. The rate of sublimation and condensation is fast enough to respond to orbital changes, but slow enough that the distribution of ice in one year may not reflect the climate conditions of that year, but instead reflect an average over the previous thousand or so years. Therefore, the present day distribution of ground ice reflects some measure of the longer-term martian climate. In this work we present new calculations of the geographic and depth distribution of ground ice on Mars and draw comparisons with the inferred distribution of ice from Mars Odyssey Neutron Spectrometer observations of the neutron leakage flux. We find that ground ice is stable at relatively shallow depths on Mars, at an ice table such that ice-cemented soil occurs beneath a dry-soil layer, similar to the configuration of ground ice found in the Antarctic Dry Valleys. Predicted ice-table depths vary, but values average around a few centimeters. We also find that the measured geographic distribution of leakage neutrons in the martian southern hemisphere is extremely consistent with a presence of ground ice at a depth in diffusive equilibrium with atmospheric water vapor. The amount of water vapor that best corresponds to the measured neutron flux is near 20 precipitable micrometers, somewhat more water vapor than

  11. A new method for measuring the neutron lifetime using an in situ neutron detector

    DOE PAGES

    Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn; ...

    2017-05-30

    Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.

  12. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    NASA Astrophysics Data System (ADS)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Фth) and epithermal neutron fluxes (Фepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Фth = (2.11 ± 0.05) × 103 n cm-2 s-1, Фepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Фth = (1.49 ± 0.04) × 103 n cm-2 s-1, Фepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  13. A mechanical rotator for neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Thaler, A.; Northen, E.; Aczel, A. A.; MacDougall, G. J.

    2016-12-01

    We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities.

  14. Characterization of a measurement reference standard and neutron fluence determination method in IRSN monoenergetic neutron fields

    NASA Astrophysics Data System (ADS)

    Gressier, V.; Lacoste, V.; Martin, A.; Pepino, M.

    2014-10-01

    The variation in the response of instruments with neutron energy has to be determined in well-characterized monoenergetic neutron fields. The quantities associated with these fields are the neutron fluence and the mean energy of the monoenergetic neutron peak needed to determine the related dosimetric quantities. At the IRSN AMANDE facility, the reference measurement standard for neutron fluence is based on a long counter calibrated in the IRSN reference 252Cf neutron field. In this paper, the final characterization of this device is presented as well as the method used to determine the reference fluence at the calibration point in monoenergetic neutron fields.

  15. Dynamic measurement of temperature using neutron resonance spectroscopy (NRS)

    SciTech Connect

    Funk, D.J.; Asay, B.W.; Bennett, B.I.; Bowman, J.D.; Boat, R.M.; Dickson, P.M.; Henson, B.F.; Hull, L.M.; Idar, D.J.; Laabs, G.W.; London, R.K.; Mace, J.L.; Morgan, G.L.; Murk, D.M.; Rabie, R.L.; Ragan, C.E.; Stacy, H.L.; Yuan, V.W.

    1998-07-01

    Accurate temperature measurements in dynamic systems have been pursued for decades and have usually relied on optical techniques. These approaches are generally hampered by insufficient information regarding the emissivity of the system under study. We are developing NRS techniques to measure temperature in dynamic systems and overcome these limitations. Many neutron resonances have narrow intrinsic Breit-Wigner widths such that the resonance is substantially broadened by the atomic motion even at room temperature. Thus, accurate measurement of the Doppler contribution allows one to infer the material temperature, and for the conditions achieved using standard high explosives, the probe itself is not perturbed by the high temperature and pressure. Experiments are conducted using a pulsed spallation source at LANSCE with time-of-flight measurement of the neutron spectra. In initial experiments, we have demonstrated that measurements with ten percent accuracy are possible. We have fielded dynamic tests, most of which were neutron-flux limited. An overview of the approach and the status of our experimental campaign are discussed. {copyright} {ital 1998 American Institute of Physics.}

  16. Dynamic measurement of temperature using neutron resonance spectroscopy (NRS)

    SciTech Connect

    Funk, D. J.; Asay, B. W.; Bennett, B. I.; Bowman, J. D.; Boat, R. M.; Dickson, P. M.; Henson, B. F.; Hull, L. M.; Idar, D. J.; Laabs, G. W.; London, R. K.; Mace, J. L.; Morgan, G. L.; Murk, D. M.; Rabie, R. L.; Ragan, C. E.; Stacy, H. L.; Yuan, V. W.

    1998-07-10

    Accurate temperature measurements in dynamic systems have been pursued for decades and have usually relied on optical techniques. These approaches are generally hampered by insufficient information regarding the emissivity of the system under study. We are developing NRS techniques to measure temperature in dynamic systems and overcome these limitations. Many neutron resonances have narrow intrinsic Breit-Wigner widths such that the resonance is substantially broadened by the atomic motion even at room temperature. Thus, accurate measurement of the Doppler contribution allows one to infer the material temperature, and for the conditions achieved using standard high explosives, the probe itself is not perturbed by the high temperature and pressure. Experiments are conducted using a pulsed spallation source at LANSCE with time-of-flight measurement of the neutron spectra. In initial experiments, we have demonstrated that measurements with ten percent accuracy are possible. We have fielded dynamic tests, most of which were neutron-flux limited. An overview of the approach and the status of our experimental campaign are discussed.

  17. Dynamic measurement of temperature using neutron resonance spectroscopy (NRS)

    NASA Astrophysics Data System (ADS)

    Funk, D. J.; Asay, B. W.; Bennett, B. I.; Bowman, J. D.; Boat, R. M.; Dickson, P. M.; Henson, B. F.; Hull, L. M.; Idar, D. J.; Laabs, G. W.; London, R. K.; Mace, J. L.; Morgan, G. L.; Murk, D. M.; Rabie, R. L.; Ragan, C. E.; Stacy, H. L.; Yuan, V. W.

    1998-07-01

    Accurate temperature measurements in dynamic systems have been pursued for decades and have usually relied on optical techniques. These approaches are generally hampered by insufficient information regarding the emissivity of the system under study. We are developing NRS techniques to measure temperature in dynamic systems and overcome these limitations. Many neutron resonances have narrow intrinsic Breit-Wigner widths such that the resonance is substantially broadened by the atomic motion even at room temperature. Thus, accurate measurement of the Doppler contribution allows one to infer the material temperature, and for the conditions achieved using standard high explosives, the probe itself is not perturbed by the high temperature and pressure. Experiments are conducted using a pulsed spallation source at LANSCE with time-of-flight measurement of the neutron spectra. In initial experiments, we have demonstrated that measurements with ten percent accuracy are possible. We have fielded dynamic tests, most of which were neutron-flux limited. An overview of the approach and the status of our experimental campaign are discussed.

  18. Dynamic Measurement of Temperature using Neutron Resonance Spectroscopy (NRS)

    NASA Astrophysics Data System (ADS)

    Funk, David J.; Asay, B. W.; Bennett, B. I.; Bowman, J. D.; Boat, R. M.; Henson, B. F.; Hixson, R. S.; Hull, L. M.; Laabs, G. W.; London, R. K.; Mace, J. L.; Morgan, G. L.; Murk, D. M.; Rabie, R. L.; Ragan, C. E.; Stacy, H. L.; Yuan, V. W.

    1997-07-01

    Accurate temperature measurements in dynamic systems have been pursued for decades and have usually relied on optical techniques. These approaches are generally hampered by insufficient information regarding the emissivity of the system under study. We are developing NRS techniques to measure temperature in dynamic systems and overcome these limitations. Many neutron resonances have narrow intrinsic Breit-Wigner widths such that the resonance is substantially broadened by the atomic motion even at room temperature. Thus, accurate measurement of the Doppler contribution allows one to infer the material temperature, and for the conditions achieved using standard high explosives, the probe itself is not perturbed by the high temperature and pressure. Experiments are conducted using a pulsed spallation source at LANSCE with time-of-flight measurement of the neutron spectra. In initial experiments, we have demonstrated that measurements with ten percent accuracy are possible. We have fielded dynamic tests, most of which were neutron-flux limited. An overview of the approach and the status of our experimental campaign will be discussed.

  19. Interplanetary magnetic flux: Measurement and balance

    SciTech Connect

    McComas, D.J.; Gosling, J.T.; Phillips, J.L. )

    1992-01-01

    The authors have developed a new method for determining the approximate magnetic flux content of the various solar wind structures in the ecliptic plane, using single-spacecraft measurements. The two-dimensional magnetic flux in a region of the solar wind is given by the integral of the radial magnetic field component over an arc perpendicular to the radial. Unfortunately, such measurements cannot be achieved with single (or even several) spacecraft in the solar wind. They will show that the desired two-dimensional, ecliptic plane magnetic flux integral, at least for regions with simple magnetic topologies, is equivalent to {phi} = {integral} B{sub y}{vert bar}v{vert bar}dt, where B{sub y} is the ecliptic plane field component perpendicular to the solar wind velocity vector v. Thus {phi} can be determined entirely from measured quantities. In this study they examine variations in the magnetic flux in the ecliptic plane over a 16-year interval. In addition, they address the question of the opening and closing of interplanetary magnetic flux by comparing the ecliptic plane flux content of both coronal mass ejections (CMEs) and heat flux droplets (HFDs). If CMEs remain at least partially attached to the Sun, they would serve to open new magnetic flux to the interplanetary medium. In contrast, flux could be closed off by reconnection across helmet streamers in the corona, leading to the release of U-shaped magnetic structures open to the outer heliosphere at both ends and to the return of closed arches to the Sun.

  20. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  1. Measurements of neutron radiation in aircraft.

    PubMed

    Vuković, B; Poje, M; Varga, M; Radolić, V; Miklavcić, I; Faj, D; Stanić, D; Planinić, J

    2010-12-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21° to 58°; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was Ḣ(n)=5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of Ḣ(f)=1.4 μSv/h.

  2. Heavy and Superheavy Elements Production in High Intensive Neutron Fluxes of Explosive Process

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2015-06-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lesser temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for "Mike", "Par" and "Barbel" experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible when using binary mixture of starting isotopes with the significant addition of heavy components, such as long-lived isotopes of curium, or californium.

  3. A neutronic feasibility study for LEU conversion of the high flux beam reactor (HFBR).

    SciTech Connect

    Pond, R. B.

    1998-01-16

    A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm{sup 3} in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept.

  4. Energy spectrum and flux of 3- to 20-Mev neutrons and 1- to 10-Mev gamma rays in the atmosphere

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lockwood, J. A.; Saint Onge, R. N.; Friling, L. A.

    1973-01-01

    An experiment is described which was designed to measure the neutron and gamma ray energy spectrums and fluxes in the energy intervals 3 to 20 MeV and 1 to 10 MeV, respectively. In addition, from the 3 to 20-MeV proton recoil spectrums it is possible to infer the shape of the neutron energy spectrum from 20 to 50 MeV. The detecting system utilized a separate charged particle rejection scheme and a two-parameter display system for the output from the pulse shape discrimination which separated gamma rays from neutrons (n). Two long-duration flights were made with this detector in 1970 at Palestine, Tex. (P sub c = 4.6 Gv) and at Ft. Churchill, Canada (P sub c = 0.3 Gv).

  5. Simulation of the neutron flux in the irradiation facility at RA-3 reactor.

    PubMed

    Bortolussi, S; Pinto, J M; Thorp, S I; Farias, R O; Soto, M S; Sztejnberg, M; Pozzi, E C C; Gonzalez, S J; Gadan, M A; Bellino, A N; Quintana, J; Altieri, S; Miller, M

    2011-12-01

    A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comisión Nacional de Energía Atómica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Comparison of three-dimensional neutron flux calculations for Maine Yankee

    SciTech Connect

    Urban, W.T.; Crotzer, L.A.; Waters, L.S.; Parsons, D.K.; Alcouffe, R.E.; Spinney, K.B.; Cacciapouti, R.J.

    1996-10-01

    Calculations have been performed on the Maine Yankee Power Plant to obtain three-dimensional neutron fluxes using the spatial synthesis with the two-dimensional discrete ordinates code DORT, the three-dimensional discrete ordinates code THREEDANT and the three-dimensional Monte Carlo code MCNP. Neutron fluxes are compared for energies above 0.1 MeV and 1.0 MeV as well as dpa. Results were obtained at the Yankee dosimetry locations and special test regions within the pressure vessel, in the reactor cavity, and in a shield tank detector well.

  7. Experimental flux measurements on a network scale

    SciTech Connect

    Schwender, J.

    2011-10-11

    Metabolic flux is a fundamental property of living organisms. In recent years, methods for measuring metabolic flux in plants on a network scale have evolved further. One major challenge in studying flux in plants is the complexity of the plant's metabolism. In particular, in the presence of parallel pathways in multiple cellular compartments, the core of plant central metabolism constitutes a complex network. Hence, a common problem with the reliability of the contemporary results of {sup 13}C-Metabolic Flux Analysis in plants is the substantial reduction in complexity that must be included in the simulated networks; this omission partly is due to limitations in computational simulations. Here, I discuss recent emerging strategies that will better address these shortcomings.

  8. Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment

    NASA Astrophysics Data System (ADS)

    Hardgrove, C.; Moersch, J.; Drake, D.

    2011-12-01

    The Dynamic Albedo of Neutrons (DAN) experiment, part of the scientific payload of the Mars Science Laboratory (MSL) rover mission, will have the ability to assess both the abundance and the burial depth of subsurface hydrogen as the rover traverses the Martian surface. DAN will employ a method of measuring neutron fluxes called “neutron die-away” that has not been used in previous planetary exploration missions. This method requires the use of a pulsed neutron generator that supplements neutrons produced via spallation in the subsurface by the cosmic ray background. It is well established in neutron remote sensing that low-energy (thermal) neutrons are sensitive not only to hydrogen content, but also to the macroscopic absorption cross-section of near-surface materials. To better understand the results that will be forthcoming from DAN, we model the effects of varying abundances of high absorption cross-section elements that are likely to be found on the Martian surface (Cl, Fe) on neutron die-away measurements made from a rover platform. Previously, the Mars Exploration Rovers (MER) Spirit and Opportunity found that elevated abundances of these two elements are commonly associated with locales that have experienced some form of aqueous activity in the past, even though hydrogen-rich materials are not necessarily still present. By modeling a suite of H and Cl compositions, we demonstrate that (for abundance ranges reasonable for Mars) both the elements will significantly affect DAN thermal neutron count rates. Additionally, we show that the timing of thermal neutron arrivals at the detector can be used together with the thermal neutron count rates to independently determine the abundances of hydrogen and high neutron absorption cross-section elements (the most important being Cl). Epithermal neutron die-away curves may also be used to separate these two components. We model neutron scattering in actual Martian compositions that were determined by the MER Alpha

  9. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  10. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  11. New precision measurements of free neutron beta decay with cold neutrons

    DOE PAGES

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; ...

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  12. Reducing measurement scale mismatch to improve surface energy flux estimation

    NASA Astrophysics Data System (ADS)

    Iwema, Joost; Rosolem, Rafael; Rahman, Mostaquimur; Blyth, Eleanor; Wagener, Thorsten

    2016-04-01

    Soil moisture importantly controls land surface processes such as energy and water partitioning. A good understanding of these controls is needed especially when recognizing the challenges in providing accurate hyper-resolution hydrometeorological simulations at sub-kilometre scales. Soil moisture controlling factors can, however, differ at distinct scales. In addition, some parameters in land surface models are still often prescribed based on observations obtained at another scale not necessarily employed by such models (e.g., soil properties obtained from lab samples used in regional simulations). To minimize such effects, parameters can be constrained with local data from Eddy-Covariance (EC) towers (i.e., latent and sensible heat fluxes) and Point Scale (PS) soil moisture observations (e.g., TDR). However, measurement scales represented by EC and PS still differ substantially. Here we use the fact that Cosmic-Ray Neutron Sensors (CRNS) estimate soil moisture at horizontal footprint similar to that of EC fluxes to help answer the following question: Does reduced observation scale mismatch yield better soil moisture - surface fluxes representation in land surface models? To answer this question we analysed soil moisture and surface fluxes measurements from twelve COSMOS-Ameriflux sites in the USA characterized by distinct climate, soils and vegetation types. We calibrated model parameters of the Joint UK Land Environment Simulator (JULES) against PS and CRNS soil moisture data, respectively. We analysed the improvement in soil moisture estimation compared to uncalibrated model simulations and then evaluated the degree of improvement in surface fluxes before and after calibration experiments. Preliminary results suggest that a more accurate representation of soil moisture dynamics is achieved when calibrating against observed soil moisture and further improvement obtained with CRNS relative to PS. However, our results also suggest that a more accurate

  13. Experimental and Monte Carlo evaluation of the neutron flux of an assembly with two AmBe sources.

    PubMed

    Filho, Tufic Madi; de Lima, Ruy Barros; Yoriyaz, Hélio; Hernandes, Antonio Carlos

    2005-01-01

    This work aimed to determine the irradiator thermal (under-cadmium) and fast (over-cadmium) neutron fluxes, of the Nuclear Experimental Laboratory of the Nuclear Engineering Center (CNEN-IPEN, São Paulo, Brazil), and the possibility of this irradiator use for Neutron Activation Analysis (NAA), by the absolute method. To establish the facility specifications, the neutron flux values along the irradiator axis were determined experimentally and calculated by Monte Carlo method. The irradiator presents the advantage of supplying a stable neutron flux for a long period, eliminating the need to use standard material (comparative method), so that the process becomes agile, practical and economical.

  14. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    SciTech Connect

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-02

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include {sup 3}He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors.We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  15. Cross-section measurements of neutron threshold reactions in various materials

    NASA Astrophysics Data System (ADS)

    Vrzalová, J.; Svoboda, O.; Kugler, A.; Suchopár, M.; Wagner, V.

    As members of international collaboration "Energy and Transmutation of radioactive Waste" we routinely use (n,xn) threshold reactions in various materials to measure high energy neutron flux from spallation reactions. The cross-sections of many reactions important for our activation detectors are missing. To improve situation, we studied the neutron cross-sections using different quasi-monoenergetic neutron sources based on proton reaction on 7Li target. The measurements were performed in Nuclear Physics Institute of the Academy of Sciences of the Czech Republic in Řež near Prague and in The Svedberg Laboratory in Uppsala (Sweden). We used neutron energies 17, 22, 30 and 35 MeV from the quasi-monoenergetic neutron source in Řež and neutron energies 22, 47 and 94 MeV in Uppsala. The last experiment was carried out in February 2010 in Uppsala using neutron energies 59, 66, 72 and 89 MeV. The study of neutron threshold reactions in yttrium was performed first time during this irradiation. We have developed procedure for the subtraction of contribution of the background neutrons. We studied various materials in the form of thin foils and observed good agreement with the data in EXFOR database and also with the calculations performed in deterministic code TALYS. Many cross-sections were measured in the energy regions where no experimental data are available so far.

  16. Subcanopy Flux Measurements in Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Paul-Limoges, Eugenie; Baldocchi, Dennis

    2017-04-01

    Eddy-covariance measurements of carbon dioxide, water vapour and energy provide direct evidence for the biosphere-atmosphere exchange at the ecosystem scale. Such continuous measurements are typically performed in the atmospheric surface layer above the canopy and integrate fluxes over the entire ecosystem within the footprint. Forest ecosystems, however, have complex vertical structures composed of several layers with different functional properties that are represented to a limited extend by above canopy measurements. Concurrent eddy-covariance measurements below canopy (subcanopy) can provide valuable insights on (1) understory processes, (2) their contributions to total ecosystem fluxes, and (3) the partitioning of component fluxes. Accordingly, there is a large potential for including standardized subcanopy forest measurements into large-scale monitoring networks such as FLUXNET, ICOS or NEON. However, our understanding of the performance and limitations for such measurements is still very limited. To gain a better understanding of subcanopy measurements, we conducted (I) a survey across FLUXNET on their availability, and (II) a literature review on published subcanopy measurements. We will present the results from our survey, summarize the current process understanding (from a literature review), and discuss research priorities for concurrent below and above canopy eddy-covariance measurements.

  17. Preliminary measurements of neutrons from the D-D reaction in the COMPASS tokamak

    SciTech Connect

    Dankowski, J. Kurowski, A.; Twarog, D.; Janky, F.; Stockel, J.

    2014-08-21

    Recent results of measured fast neutrons created in the D-D reaction on the COMPASS tokamak during ohmic discharges are presented in this paper. Two different type detectors were used during experiment. He-3 detectors and bubble detectors as a support. The measurements are an introduction for neutron diagnostic on tokamak COMPASS and monitoring neutrons during discharges with Neutral Beam Injection (NBI). The He-3 counters and bubble detectors were located in two positions near tokamak vacuum chamber at a distance less than 40 cm to the centre of plasma. The neutrons flux was observed in ohmic discharges. However, analysis of our results does not indicate any clear source of neutrons production during ohmic discharges.

  18. Instruments for measuring radiant thermal fluxes

    NASA Technical Reports Server (NTRS)

    Gerashenko, O. A.; Sazhina, S. A.

    1974-01-01

    An absolute two-sided radiometer, designed on the principle of replacing absorbed radiant energy with electrical energy, is described. The sensitive element of the detector is a thermoelectric transducer of thermal flux. The fabrication technology, methods of measurement, technical characteristics, and general operation of the instrument are presented.

  19. Test calculations of the neutron flux on VVER-1000 reactor pressure vessel

    SciTech Connect

    Ilieva, K.D.; Belousov, S.I.; Antonov, S.Y.; Zaritsky, S.M.; Brodkin, E.B.

    1994-12-31

    A three dimensional test for calculation of the neutron fluence onto the VVER-1000 reactor pressure vessel (RPV) is presented. The test is based on the commercial VVER-1000 reactor design data. The flux results obtained by different authors are in good agreement.

  20. Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes

    NASA Technical Reports Server (NTRS)

    Heiser, P. C.; Ricks, L. O.

    1968-01-01

    Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.

  1. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    SciTech Connect

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  2. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    DOEpatents

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  3. Acceleration of deuterons from laser plasma in direct pulsed electron fluxes for generation of neutrons

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2016-12-01

    We report the results of experiments in which laser plasma deuterons are accelerated toward beryllium and deuterated polyethylene targets in a drift tube by means of a direct pulsed flux of electrons accelerated to maximum energy of 250 keV. Neutrons produced as a result of the interaction of deuterons with the targets are detected. The yield of neutrons in some of the experimental series reaches 106 n/pulse. Using a pulsed magnetic field synchronized with the generation of laser plasma is proposed for increasing the neutron yield as a result of electron flux compression. This magnetic field in the drift region of electrons is created by a spiral coil of conical shape.

  4. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOEpatents

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  5. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  6. Atmospheric neutrino flux measurement using upgoing muons

    NASA Astrophysics Data System (ADS)

    Ahlen, S.; Ambrosio, M.; Antolini, R.; Auriemma, G.; Baker, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Celio, P.; Chiarella, V.; Cormack, R.; Corona, A.; Coutu, S.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; Diehl, E.; de Mitri, I.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Green, P.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Hong, J. T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Liu, G.; Liu, R.; Longley, N. P.; Longo, M. J.; Lu, Y.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marin, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Mittelbrunn, M.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Nolty, R.; Nutter, S.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrakis, J.; Petrera, S.; Pignatano, N. D.; Pistilli, P.; Popa, V.; Rainó, A.; Reynoldson, J.; Ronga, F.; Sanzgiri, A.; Sartogo, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlé, G.; Togo, V.; Valente, V.; Walter, C. W.; Webb, R.; Worstell, W.; MACRO Collaboration

    1995-02-01

    We report on the first measurement of the flux of upgoing muons resulting from interactions of atmospheric neutrinos in the rock below MACRO. The ratio of the observed to the expected number of events integrated over all nadir angles is 0.73 ± .09 stat. ± .06 sys. ± .12 theor.. The flux of upgoing muons as a function of nadir angle is presented and compared to Monte Carlo expectations. At the 90% confidence level, the data are consistent with no neutrino oscillations or some possible oscillation hypothese with the parameters suggested by the Kamiokande contained-event analysis.

  7. Interplanetary magnetic flux - Measurement and balance

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.

    1992-01-01

    A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.

  8. Neutron standard data

    SciTech Connect

    Peelle, R.; Conde, H.

    1988-01-01

    The neutron standards are reviewed with emphasis on the evaluation for ENDFB-VI. Also discussed are the neutron spectrum of /sup 252/Cf spontaneous fission, activation cross sections for neutron flux measurement, and standards for neutron energies greater than 20 MeV. Recommendations are made for future work. 21 refs., 6 figs., 3 tabs.

  9. Development of Fast Measurement System of Neutron Emission Profile Using a Digital Signal Processing Technique in JT-60U

    SciTech Connect

    Ishikawa, M.; Shinohara, K.; Itoga, T.; Okuji, T.; Nakhostin, M.; Baba, M.; Nishitani, T.

    2008-03-12

    Neutron emission profiles are routinely measured in JT-60U Tokamak. Stinbene neuron detectors (SNDs), which combine a Stilbene organic crystal scintillation detector (Stilbene detector) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure neutron flux efficiently. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to {approx}1x 10{sup 5} counts/s due to the dead time of the analog PSD circuit. To overcome this issue, a digital signal processing (DSP) system using a Flash-ADC has been developed. In this system, anode signals from the photomultiplier of the Stilbene detector are fed to the Flash ADC and digitized. Then, the PSD between neutrons and gamma-rays are performed using software. The photomultiplier tube is also modified to suppress and correct gain fluctuation of the photomultiplier. The DSP system has been installed in the center channel of the vertical neutron collimator system in JT-60U and applied to measurements of neutron flux in JT-60U experiments. Neutron flux are successfully measured with count rate up to {approx}1x 10{sup 6} counts/s without the effect of pile up of detected pulses. The performance of the DSP system as a neutron detector is demonstrated.

  10. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    SciTech Connect

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  11. Detection systems for short-time stroboscopic neutron imaging and measurements on a rotating engine

    NASA Astrophysics Data System (ADS)

    Schillinger, B.; Abele, H.; Brunner, J.; Frei, G.; Gähler, R.; Gildemeister, A.; Hillenbach, A.; Lehmann, E.; Vontobel, P.

    2005-04-01

    Today's neutron sources do not deliver sufficient flux to examine singular short-time events in the millisecond range by neutron radiography. However, periodic processes can be examined if a triggered accumulating detector collects information of identical time-windows and positions over several cycles of the process. The same problem applies if the source signal itself carries information, like the energy-time dependence in the pulse of a spallation source. Several possible detection methods were considered; measurements were performed at the intense neutron beam H9 of ILL Grenoble, where an electrically driven BMW engine was examined at 1000 rpm with time resolution of 200 μs.

  12. In-situ soil composition and moisture measurement by surface neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Waring, C.; Smith, C.; Marks, A.

    2009-04-01

    Neutron activation analysis is widely known as a laboratory technique dependent upon a nuclear reactor to provide the neutron flux and capable of precise elemental analysis. Less well known in-situ geochemical analysis is possible with isotopic (252Cf & 241Am) or compact accelerator (D-T, D-D fusion reaction) neutron sources. Prompt gamma neutron activation analysis (PGNAA) geophysical borehole logging has been applied to mining issues for >15 years (CSIRO) using isotopic neutron sources and more recently to environmental and hydro-geological applications by ANSTO. Similarly, sophisticated geophysical borehole logging equipment based on inelastic neutron scattering (INS) has been applied in the oil and gas industry by large oilfield services companies to measure oil saturation indices (carbon/oxygen) using accelerator neutron sources. Recent advances in scintillation detector spectral performance has enabled improved precision and detection limits for elements likely to be present in soil profiles (H, Si, Al, Fe, Cl) and possible detection of many minor to trace elements if sufficiently abundant (Na, K, Mg, Ca, S, N, + ). To measure carbon an accelerator neutron source is required to provide fast neutrons above 4.8 MeV. CSIRO and ANSTO propose building a soil geochemical analysis system based on experience gained from building and applying PGNA borehole logging equipment. A soil geochemical analysis system could effectively map the 2D geochemical composition of the top 50cm of soil by dragging the 1D logging equipment across the ground surface. Substituting an isotopic neutron source for a D-T accelerator neutron source would enable the additional measurement of elemental carbon. Many potential ambiguities with other geophysical proxies for soil moisture may be resolved by direct geochemical measurement of H. Many other applications may be possible including time series in-situ measurements of soil moisture for differential drainage, hydrology, land surface

  13. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    SciTech Connect

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B.; Barrón-Palos, L.; Maldonado-Velázquez, M.; Bass, C. D.; Crawford, B. E.; Crawford, C.; Esposito, D.; Gardiner, H.; Gan, K.; Heckel, B. R.; Swanson, H. E. [University of Washington and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10{sup −7} rad/m.

  14. Experimental study of the interaction of pulsations of the neutron flux and the coolant flow in a boiling-water reactor

    SciTech Connect

    Leppik, P.A.

    1984-12-01

    This paper presents results of a study designed to confirm that the interaction of the neutron flux and the coolant flow plays an important role in the mechanism of high-frequency (HF) resonant instability of the VK-50 boiling water reactor. To do this and to check the working model, signals from probes measuring the flow rate of the coolant and the neutron flux were recorded simultaneously (with the help of a magnetograph) in experiments performed in 1981 on driving the VK-50 reactor into the HF reonant instability regimes. Estimates were then obtained for the statistical characteristics of the pulsations of the flow rate and of the neutron flux, including the cross-correlation functions and coherence functions. The basic results of these studies are reported here.

  15. Estimating ground-level neutron-flux enhancements in the extreme cosmic-ray events of the next 100, 1000 and 10 000 years

    NASA Astrophysics Data System (ADS)

    Mason, Paolo

    2015-12-01

    Estimates are proposed of the enhancement in neutron flux which may be experienced at ground level in cosmic-ray events of extreme magnitude over the next century, millennium and ten millennia. The estimates are based on a points-over-threshold analysis of hourly neutron counts measured over the last decades by nine neutron-monitor stations located in Europe, North America and Antarctica. The present results are in good agreement with recent studies of extreme solar events based on the direct observation of flares and the abundance of cosmogenic nuclides in terrestrial and lunar archives.

  16. Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons

    SciTech Connect

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B. Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-15

    The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

  17. Interactive Database of Pulsar Flux Density Measurements

    NASA Astrophysics Data System (ADS)

    Koralewska, O.; Krzeszowski, K.; Kijak, J.; Lewandowski, W.

    2012-12-01

    The number of astronomical observations is steadily growing, giving rise to the need of cataloguing the obtained results. There are a lot of databases, created to store different types of data and serve a variety of purposes, e. g. databases providing basic data for astronomical objects (SIMBAD Astronomical Database), databases devoted to one type of astronomical object (ATNF Pulsar Database) or to a set of values of the specific parameter (Lorimer 1995 - database of flux density measurements for 280 pulsars on the frequencies up to 1606 MHz), etc. We found that creating an online database of pulsar flux measurements, provided with facilities for plotting diagrams and histograms, calculating mean values for a chosen set of data, filtering parameter values and adding new measurements by the registered users, could be useful in further studies on pulsar spectra.

  18. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  19. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  20. Neutron spectrum measurements in the aluminum oxide filtered beam facility at the Brookhaven Medical Research Reactor

    SciTech Connect

    Becker, G.K.; Harker, Y.D.; Miller, L.G.; Anderl, R.A.; Wheeler, F.J. )

    1990-01-01

    Neutron spectrum measurements were performed on the aluminum oxide filter installed in the Brookhaven Medical Research Reactor (BMRR). For these measurements, activation foils were irradiated at the exit port of the beam facility. A technique based on dominant resonances in selected activation reactions was used to measure the epithermal neutron spectrum. The fast and intermediate-energy ranges of the neutron spectrum were measured by threshold reactions and 10B-shielded 235U fission reactions. Neutron spectral data were derived from the activation data by two approaches: (1) a short analysis which yields neutron flux values at the energies of the dominant or primary resonances in the epithermal activation reactions and integral flux data for neutrons above corresponding threshold or pseudo-threshold energies, and (2) the longer analysis which utilized all the activation data in a full-spectrum, unfolding process using the FERRET spectrum adjustment code. This paper gives a brief description of the measurement techniques, analysis methods, and the results obtained.

  1. Study of Scattered Background Neutron in NIF and Time-of Flight (TOF) to Measure Neutron

    SciTech Connect

    Song, P; Moran, M; Phillips, T; Lerche, R; Koch, J; Eder, D

    2005-08-31

    Some of the planned core diagnostics for National Ignition Facility (NIF) will use neutron time-of-flight (TOF) spectroscopy techniques to gather information for primary neutron yield measurement or neutron imaging. This technique has been widely and routinely used at other laser facilities including Nova and Omega. TOF methods will also be used to observe target fuel areal density <{rho}R> (radial integral of density) via measuring the number of primary 14.1 MeV neutrons that are down-scattered to lower energies by nuclear collisions inside the compressed target core. The substantially larger target chamber size and higher neutron yield for NIF raises issues related to the large number of scattered neutrons produced by high yield deuterium-tritium (D-T) shots at NIF. The effect of primary neutrons scattered by the walls of the massive target chamber and structures both inside and outside the chamber will contribute a significant scattered background signal when trying to determine the number of neutrons down-scattered from the target core. The optimum detector locations outside the target chamber or target bay wall will be proposed. Appropriate collimators at the chamber port and the bay wall (between the neutron source at target chamber center (TCC) and detector) that maximize detection of signal neutrons while minimizing the background from scattered neutrons and neutron induced gamma rays will also be presented.

  2. DETECTORS AND EXPERIMENTAL METHODS: Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xin; Zhang, Yi; Wang, Ji-Jin; Hu, Bi-Tao

    2009-02-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial resolution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  3. Measurement of the Neutron Lifetime by Counting Trapped Protons

    PubMed Central

    Wietfeldt, F. E.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fei, X.; Snow, W. M.; Greene, G. L.; Pauwels, J.; Eykens, R.; Lamberty, A.; Van Gestel, J.

    2005-01-01

    We measured the neutron decay lifetime by counting in-beam neutron decay recoil protons trapped in a quasi-Penning trap. The absolute neutron beam fluence was measured by capture in a thin 6LiF foil detector with known efficiency. The combination of these measurements gives the neutron lifetime: τn = (886.8 ± 1.2 ± 3.2) s, where the first (second) uncertainty is statistical (systematic) in nature. This is the most precise neutron lifetime determination to date using an in-beam method. PMID:27308145

  4. Analysis of Neutron Fission Reaction Rate in the Nuclear Fuel Cell Using Collision Probability Method with Non Flat Flux Approach

    NASA Astrophysics Data System (ADS)

    Shafii, Mohammad Ali

    2017-07-01

    Neutron fission reaction rate in the nuclear reactor depends on macroscopic cross section and neutron flux distribution. The macroscopic cross section depends on the type of nuclide, the type of reaction, and the group energy of the neutrons relative to the nuclides. Flux distribution is very important in a nuclear reactor, because it is closely related to power distribution. In general, the integral neutron transport equation is solved using a collision probability (CP) method with a flat flux (FF) approach. Consequently, the CP matrix is also assumed constantly, therefore, the distribution of the neutron flux throughout the cell becomes flat. In the non-flat flux (NFF) approach, the neutron flux is modellled by linear interpolation as a function of mesh in the cylindrical nuclear fuel cell of a fast reactor type. This study uses the CP method with a NFF approach and it is applied to analyze the neutron fission reaction rate of a cylindrical nuclear fuel cell of a fast reactor type. Nuclear data library that is used in this study is JFS-3-J33 which belongs to the SLAROM computer code. Calculation results of the fission reaction rate shows that it is decrease in the high energy region due to the events of elastic collision that caused the neutron easier to lose of energy. The same fission reaction rate pattern occurs in the FF and NFF approaches.

  5. Neutron Imager and Flux Monitor Based on Micro Channel Plates (MCP) in Electrostatic Mirror Configuration

    NASA Astrophysics Data System (ADS)

    Variale, V.

    In this paper, a new high transparency device based on MCP for the monitoring the flux and spatial profile of a neutron beam will be described. The assembly consists of a carbon foil with a 6Li deposit, placed in the beam, and a MCP equipped with a phosphor screen readout viewed by a CCD camera, placed outside the beam. Secondary emitted electrons (SEE) produced in the carbon foil by the alpha-particles and tritons from the 6Li+n reaction, are deflected to the MCP detector by means of an electrostatic mirror, suitably designed to preserve the spatial resolution. The conductive layer on the phosphor can be used for neutron counting, and to obtain time-of-flight information. A peculiar feature of this device is that the use of an electrostatic mirror minimizes the perturbation of the neutron beam, i.e. absorption and scattering. It can be used at existing time-of-flight (TOF) facilities, in particular at the n_TOF facility at CERN, for monitoring the flux and special profile of the neutron beam in the thermal and epithermal region. In this work, the device principle and design will be presented, together with the main features in terms of resolution and neutron detection efficiency.

  6. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  7. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  8. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    SciTech Connect

    Sakurai, Yoshinori Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  9. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-01

    Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the

  10. PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement.

    PubMed

    Zhang, Zizhu; Chong, Yizheng; Chen, Xinru; Jin, Congjun; Yang, Lijun; Liu, Tong

    2015-12-01

    A prompt gamma neutron activation analysis (PGNAA) system has been recently developed at the 30-kW research reactor In-Hospital Neutron Irradiator (IHNI) in Beijing. Neutrons from the specially designed thermal neutron beam were used. The thermal flux of this beam is 3.08×10(6) cm(-2) s(-1) at a full reactor power of 30 kW. The PGNAA system consists of an n-type high-purity germanium (HPGe) detector of 40% efficiency, a digital spectrometer, and a shielding part. For both the detector shielding part and the neutron beam shielding part, the inner layer is composed of (6)Li2CO3 powder and the outer layer lead. The boron-10 sensitivity of the PGNAA system is approximately 2.5 cps/ppm. Two calibration curves were produced for the 1-10 ppm and 10-50 ppm samples. The measurement results of the control samples were in accordance with the inductively coupled plasma atomic emission spectroscopy (ICP-AES) results.

  11. Anthropogenic methane ebullition and continuous flux measurement

    NASA Astrophysics Data System (ADS)

    Alshboul, Zeyad

    2017-04-01

    Keywords: Methane, Wastewater, Effluent, Anaerobic treatment. Municipal wastewater treatment plants (WWTPs) have shown to emit significant amount of methane during treatment processes. While most of studies cover only in-plant diffusive methane flux, magnitude and sources of methane ebullition have not well assessed. Moreover, the reported results of methane emissions from WWTPs are based on low spatial and temporal resolution. Using a continuous measurement approach of methane flux rate for effluent system and secondary clarifier treatment process at one WWTP in Southwest Germany, our results show that high percentage of methane is emitted by ebullition during the anaerobic treatment (clarification pond) with high spatial and temporal variability. Our measurements revealed that no ebullition is occur at the effluent system. The observed high contribution of methane ebullition to the total in-plant methane emission, emphasizes the need for considering in-plant methane emission by ebullition as well as the spatial and temporal variability of these emissions.

  12. Neutron Energy Measurements in Radiological Emergency Response Applications

    SciTech Connect

    Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

    2009-04-30

    We present significant results in recent advances in the determination of neutron energy. Neutron energy measurements are a small but very significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of paramount importance.

  13. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  14. D-D neutron-scatter measurements for a novel explosives-detection technique

    NASA Astrophysics Data System (ADS)

    Lehnert, A. L.; Flaska, M.; Kearfott, K. J.

    2012-11-01

    A series of measurements has been completed that provides a benchmark for Monte Carlo simulations related to an algorithm for explosives detection using active neutron interrogation. The original simulations used in algorithm development, based on land-sea cargo container screening, have been adapted to model active neutron interrogation of smaller targets. These smaller-scale measurements are easily accomplished in a laboratory environment. Benchmarking measurements were completed using a D-D neutron generator, two neutron detectors, as well as a variety of scatter media including the explosives surrogate melamine (C3H6N6). Measurements included 90°, 120°, or 150° neutron scatter geometries and variations in source-detector shielding, target presence, and target identity. Comparisons of measured and simulated neutron fluxes were similar, with correlation coefficients greater than 0.7. The simulated detector responses also matched very closely with the measured photon and neutron pulse height distributions, with correlation coefficients exceeding 0.9. The experiments and simulations also provided insight into potential application of the new method to the problem of explosives detection in small objects such as luggage and small packages.

  15. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  16. Neutron Spectrum Measurements from Irradiations at NCERC

    SciTech Connect

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen; Hutchens, Gregory Joe; White, Morgan Curtis

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  17. DT neutron measurements and experience on TFTR

    SciTech Connect

    Barnes, C.W. |; Duong, H.H. |; Jassby, D.L.

    1995-09-01

    Through semi-independent absolute calibrations of multiply redundant neutron detector systems, the Tokamak Fusion Test Reactor (TFIR) has achieved {+-}7% (one-sigma) accuracy in its fusion power measurements. This has required careful attention to the linearity of detectors up to the present highest fusion power levels achieved on TFTR of over 10 MW. The extended duration of the DT program on TFTR has also tested the stability of the detector systems. These issues of calibration, linearity, and stability are reviewed for the TFTR experience and how it can be applied to plans for ITER.

  18. Determination of the cosmic-ray-induced neutron flux and ambient dose equivalent at flight altitude

    NASA Astrophysics Data System (ADS)

    Pazianotto, M. T.; Cortés-Giraldo, M. A.; Federico, C. A.; Gonçalez, O. L.; Quesada, J. M.; Carlson, B. V.

    2015-07-01

    There is interest in modeling the atmosphere in the South Atlantic Magnetic Anomaly in order to obtain information about the cosmic-ray induced neutron spectrum and angular distribution as functions of altitude. In this work we use the Monte Carlo codes MCNPX and Geant4 to determine the cosmic-ray-induced neutron flux in the atmosphere produced by the cosmic ray protons incident on the top of the atmosphere and to estimate the ambient dose equivalent rate as function of altitude. The results present a reasonable conformity to other codes (QARM and EXPACS) based on other parameterizations.

  19. Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron.

    PubMed

    Fujibuchi, Toshioh; Yamaguchi, Ichiro; Kasahara, Tetsuharu; Iimori, Takashi; Masuda, Yoshitada; Kimura, Ken-ichi; Watanabe, Hiroshi; Isobe, Tomonori; Sakae, Takeji

    2009-07-01

    A medical compact cyclotron produces about 10(15) neutrons per day along with 100 GBq of (18)F. Therefore, it is important to establish radiation safety guidelines on residual radioactivity for routine operation, maintenance work, and decommissioning. Thus, we developed a simple method for measuring the thermal neutrons in a cyclotron room. In order to verify the feasibility of our proposed method, we measured the thermal neutron distribution around a cyclotron by using the activation of (23)Na in salt. We installed 78 salt dosimeters in the cyclotron room with a 50 cm mesh. The photopeak of (24)Na was measured, and the neutron flux distribution was estimated. Monitoring the neutron flux distribution in a cyclotron room appears to be useful for not only obtaining an accurate estimate of the distribution of induced radioactivity, but also optimizing the shield design for radiation safety in preparation for the decommissioning process.

  20. Neutron Measurement Instrumentation Development at KIT for the European ITER TBM

    SciTech Connect

    Klix, A.; Fischer, U.; Raj, P.; Reimann, Th.; Szalkai, D.; Tian, K.; Angelone, M.; Gehre, D.; Lyoussi, A.

    2015-07-01

    Fusion power reactors will rely on the internal production of the fuel tritium from lithium in the tritium breeding blanket. Test Blanket Modules (TBM) will be installed in ITER with the aim to investigate the nuclear performance of different breeding blanket designs. Currently there is no fully qualified nuclear instrumentation available for the measurement of neutron fluxes and tritium production rates which would be able to withstand the harsh environment conditions in the TBM such as high temperature (>400 deg. C) and, depending on the operation scenario, intense radiation levels. As partner of the European Consortium on Nuclear Data and Measurement Techniques in the framework of several F4E specific grants and contracts, KIT and ENEA have jointly studied the possibility to develop and test detectors suitable to operate in ITER-TBMs. Here we present an overview of ongoing work on three types of neutron flux monitors under development for the TBMs with focus on the KIT activities. A neutron activation system (NAS) with pneumatic sample transport could provide absolute neutron flux measurements in selected positions. A test system for investigating activation materials with short half-lives was constructed at the DT neutron generator laboratory of Technical University of Dresden to investigate the neutronics aspects. Several irradiations have been performed with focus on the simultaneous measurement of the extracted activated probes. An engineering assessment of a TBM NAS in the conceptual design phase has been done which considered issues of design requirements and integration. Last but not least, a mechanical test bench is under construction at KIT which will address issues of driving the activation probes, solutions for loading the system etc. experimentally. Self-powered neutron detectors (SPND) are widely applied in fission reactor monitoring, and the commercially available SPNDs are sensitive to thermal neutrons. We are investigating novel materials for

  1. Neutron measurements around an 18 MV linac.

    PubMed

    Sánchez, F; Madurga, G; Arráns, R

    1989-07-01

    An estimate of the neutron production of medical electron accelerators is of interest in order to quantify the radiological risk for the staff operating such machines. First, we used a theoretical procedure, based on the Montecarlo method, in order to get some information about the neutron spectrum. Second, by using the neutron activation of indium foils, we have empirically obtained the neutron fluence at different locations in the accelerator room. Finally, some post-irradiation environmental levels of radiation are given.

  2. Neutron Measurements In Sahand Plasma Focus

    NASA Astrophysics Data System (ADS)

    Sobhanian, S.; Mohammad, M. A.; Golalikhani, M.; Moslehi-Fard, M.; Khorram, S.

    2010-07-01

    Experimental studies of neutron emission from a Filippov type plasma focus machine is reported here for different pressures and voltages in deuterium gas. The calibration method is discussed and time integrated and time resoled neutron signals and also the angular distribution anisotropy are studied in order to clarify the most probable mechanism for neutron production. The results showing the enhancement of neutron yield in the case of some krypton admixture is also presented.

  3. Role of Temperature on Flux Trap Behavior in < 100 > Pb Cylindrical Sample: Polarized Neutron Radiography Investigation

    NASA Astrophysics Data System (ADS)

    Dhiman, Indu; Ebrahimi, O.; Karakas, N.; Höppner, H.; Ziesche, R.; Treimer, Wolfgang

    The evolution of flux trap behavior at low temperature (the intermediate state) in high purity Lead samples, both in single crystal with < 100 > orientation and polycrystalline form, is investigated using field cooled (FC) neutron tomography measurements. Reported measurements are carried out for 0∘ and 90∘ sample axis orientation with respect to the external magnetic field. For both < 100 > Pb single crystal as well as polycrystalline sample development of fringe pattern below T Tc, fringe pattern inside the sample disappears, indicating that the sample attains a normal state. Further comparison of mosaic spread values for < 100 > Pb crystal and our previously reported < 110 > Pb crystal indicate the feeble role played by dislocations and / or defects [Phys. Rev. B 85 184522 (2012)]. Interestingly, not only the field cooled superconducting state appears distinct for each sample, dependent on the crystal structure - single crystal or polycrystalline, but also on the applied magnetic field orientation with respect to the crystallographic sample axis.

  4. Altitude survey of the galactic cosmic ray flux with a Mini Neutron Monitor

    NASA Astrophysics Data System (ADS)

    Lara, A.; Borgazzi, A.; Caballero-Lopez, R.

    2016-10-01

    We present the results of a survey of the galactic cosmic ray (GCR) flux measured at different altitudes, from the sea level, up to ∼4600 m a.s.l. This altitude survey was carried out with a "Mini" Neutron Monitor (MNM), and performed inside a small area of the central part of Mexico (centered around the 19° N and 97° W position) where the geomagnetic cutoff rigidity is ∼7.8 GV. In particular, the latitudinal variation of the survey was less than 1°. making negligible the associated changes in the geomagnetic cutoff rigidity (∼0.4 GV). This is the first time that an altitude survey has been performed using a MNM. This survey allowed us to compute the barometric coefficient β = 0.00732 ± 0.00054mbar-1 and β = 0.00729 ± 0.00055mbar-1 when we correct our data by the differences in the cutoff rigidity. This coefficient may be used to calibrate and correct the data of other cosmic ray detectors. We show that from the sea level up to ∼4600 m the barometric coefficient is constant and does not depend on the altitude as found in previous surveys. For comparison, we also present the counting rates measured by the NM64 located at Mexico City, as well as other observations carried out to determine the stability of the MNM.

  5. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons

    SciTech Connect

    Chilingarian, A.; Daryan, A.; Arakelyan, K.; Hovhannisyan, A.; Mailyan, B.; Melkumyan, L.; Hovsepyan, G.; Chilingaryan, S.; Reymers, A.; Vanyan, L.

    2010-08-15

    The Aragats Space Environmental Center facilities continuously measure fluxes of neutral and charged secondary cosmic ray incidents on the Earth's surface. Since 2003 in the 1-minute time series we have detected more than 100 enhancements in the electron, gamma ray, and neutron fluxes correlated with thunderstorm activities. During the periods of the count rate enhancements, lasting tens of minutes, millions of additional particles were detected. Based on the largest particle event of September 19, 2009, we show that our measurements support the existence of long-lasting particle multiplication and acceleration mechanisms in the thunderstorm atmosphere. For the first time we present the energy spectra of electrons and gamma rays from the particle avalanches produced in the thunderstorm atmosphere, reaching the Earth's surface.

  6. Compositional variability across Mercury's surface revealed by MESSENGER measurements of variations in thermal neutron count rates

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Lawrence, D. J.; Goldsten, J. O.; Nittler, L. R.; Solomon, S. C.

    2013-12-01

    Measurements by MESSENGER's Gamma-Ray and Neutron Spectrometer (GRNS) have revealed variations in the flux of thermal neutrons across Mercury's northern hemisphere. These variations are interpreted to originate from spatial variations in surface elemental composition. In particular, the measurements are sensitive to the near-surface abundances of elements that absorb thermal neutrons, including major rock-forming elements such as Fe and Ti, minor elements such as Mn and Cl, and rare-earth elements such as Gd and Sm. We have constructed a map of thermal neutron variability across the surface and compared it with known variations in elemental composition and with the distribution of geologic units. Development of the map included the derivation of the macroscopic thermal neutron absorption cross section across the surface, a quantity whose value and variability provides useful constraints on the formation and geochemical evolution of Mercury's crust. Finally, by combining the thermal neutron measurements with previously reported elemental measurements from the GRNS and MESSENGER's X-Ray Spectrometer, we have derived constraints on the abundances of neutron-absorbing elements, including previously unreported limits for some minor and rare-earth elements.

  7. Extended use of alanine irradiated in experimental reactor for combined gamma- and neutron-dose assessment by ESR spectroscopy and thermal neutron fluence assessment by measurement of (14)C by LSC.

    PubMed

    Bartoníček, B; Kučera, J; Světlík, I; Viererbl, L; Lahodová, Z; Tomášková, L; Cabalka, M

    2014-11-01

    Gamma- and neutron doses in an experimental reactor were measured using alanine/electron spin resonance (ESR) spectrometry. The absorbed dose in alanine was decomposed into contributions caused by gamma and neutron radiation using neutron kerma factors. To overcome a low sensitivity of the alanine/ESR response to thermal neutrons, a novel method has been proposed for the assessment of a thermal neutron flux using the (14)N(n,p) (14)C reaction on nitrogen present in alanine and subsequent measurement of (14)C by liquid scintillation counting (LSC). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fission neutron spectra measurements at LANSCE - status and plans

    SciTech Connect

    Haight, Robert C; Noda, Shusaku; Nelson, Ronald O; O' Donnell, John M; Devlin, Matt; Chatillon, Audrey; Granier, Thierry; Taieb, Julien; Laurent, Benoit; Belier, Gilbert; Becker, John A; Wu, Ching - Yen

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  9. Glass-fiber-based neutron detectors for high- and low-flux environments

    NASA Astrophysics Data System (ADS)

    Bliss, Mary; Brodzinski, Ronald L.; Craig, Richard A.; Geelhood, Bruce D.; Knopf, Michael A.; Miley, Harry S.; Perkins, Richard W.; Reeder, Paul L.; Sunberg, Debra S.; Warner, Ray A.; Wogman, Ned A.

    1995-09-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers typically have a operational transmission length (e(superscript -1) length) of greater than 2 meters. This permits the fabrication of devices which were not possible to consider. Scintillating fibers permit conformable devices, large-area devices, and extremely small devices; in addition, as the thermal-neutron sensitive elements in a fast neutron detection system, scintillating fibers can be dispersed within moderator, improving neutron economy, over that possible with commercially available (superscript 3)He or BF(subscript 3) proportional counters. These fibers can be used for national-security applications, in medical applications, in the nuclear-power industry, and for personnel protection at experimental facilities. Data are presented for devices based on single fibers and devices made up of ribbons containing many fibers under high-and low-flux conditions.

  10. Flux stabilization in neutron problems with fixed sources

    SciTech Connect

    Tomatis, D.; Dall'Osso, A.

    2012-07-01

    Although critical core calculations are the most common in design and safety analysis, fixed source calculations are needed for specific applications, e.g. to compute ex-core detector response functions, to develop new methodologies for dilution and reload error accidents and more in general for all situations involving sub-critical shut-down states. It is well known that the source problem becomes difficult to be solved with core configuration close to criticality, i.e. with the multiplication factor approaching unity, for the occurrence of numerical ill-conditioning and very high number of iterations, possibly leading to failure in the flux convergence. In this work, the Wielandt Eigen-shift technique used in iterative methods of critical problems is developed for source problems too, in order to stabilize the solution. The mathematical basis and the proof of the convergence are discussed. Compared to the existing methods, this technique allows also more control to avoid singular behavior at inner iterations. Numerical tests with a 1D analytical benchmark are reported to prove the robustness of the technique. (authors)

  11. Thermal neutrons' flux near the Earth's surface as an evidence of the crustal stress

    NASA Astrophysics Data System (ADS)

    Sigaeva, Ekaterina; Nechayev, Oleg; Volodichev, Nikolay; Antonova, Valentina; Kryukov, Sergey; Chubenko, Alexander; Shchepetov, Alexander

    There are some ideas about the Earth’s global seismic activity appearance due to tidal forces. At the same time, the correlations between the big series of the earthquakes and the New and Full Moons and between the New and Full Moons and the increasings of the thermal neutrons’ flux from the Earth’s crust were observed. It is as though there are internal links between these three natural phenomena and the physical reasons for their appearance are the same. The paper presents the results of the ground-based thermal neutrons observations during different time periods characterized with phenomena in the near-Earth space (for instance, the New and Full Moon). Basing on the up-to-date conception of the tidal waves influence on the Earth's crust the authors confirm the role of the Moon in the production of the neutron flux near the Earth's surface.

  12. Mare and Highlands Studies of Correlated Observations of the Moon's Diurnally Modulating Epithermal Neutron Flux using LRO's LEND, Diviner and LOLA instruments.

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.

    2015-12-01

    Several independent observational studies have identified a modulating diurnal signal in the Moon's neutron leakage flux. Those studies show that the diurnally varying neutron flux signal is of global extent, that the phase of the flux modulations are similar, that the flux minima occur at dawn and that the maxima occur at dusk. Two plausible hypotheses suggest differing explanations for the flux modulation. 1) Diurnally variant surface hydration or 2) Regolith temperature variation, which may modulate the neutron leakage flux with temperature. Studies of the high-latitudes found that for the north and south polar regions >75°, the amplitude of the neutron flux modulation was significantly greater for poleward-facing slopes (PFS) as compared to equator-facing slopes (EFS). If regolith temperature alone is driving the neutron flux modulation, then EFS should exhibit the greater diurnal amplitude, opposite the observation. More recently, studies of the neutron leakage flux in the mid-latitudes indicated that the greater amplitude of the neutron flux modulation on EFS was greater than PFS and is consistent with an interpretation that regolith temperature is modulating the neutron flux towards the northern Mare. However, between +/-(65° to 72°) latitude the ratio of the EFS to PFS neutron flux amplitudes inverts, with the PFS maintaining the greater amplitude as compared to the EFS. In this study the lunar mid to upper latitudes +/-(45° to 90°) will be studied in an effort to discriminate the source of the neutron flux modluation. Neutron, temperature and topography observations by the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND), Diviner Radiometer, and Lunar Orbiter Laser Altimiter (LOLA) will be used to investigate the properties of the neutron leakage flux. Correlated studies of these three datasets in Mare and highlands regions will be used to determine the neutron flux characteristics of their respective EFS and PFS.

  13. Neutron tomography experiments for the study of trapped flux distributions in high- T c superconducting ceramics

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Gordeev, G. P.; Toperverg, B. P.; Rekveldt, T.; Roest, W.; Cser, L.; Rosta, L.; Torok, Gy.

    1995-02-01

    We describe a new version of Neutron Spin Echo, for the study of magnetic flux in high- Tc superconductors, which is based on the evolution of the echo group in the specimen which is installed in the third precession region. The polarization of the transmitted beam reflects the spin rotation in the internal field which can be found by Fourier transforming the data. It is required for example, in research on the flux self-organization in the critical state. Experiments on Y sbnd Ba sbnd Cu sbnd O ceramics are discussed.

  14. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    NASA Astrophysics Data System (ADS)

    Winn, B. L.; Robertson, J. L.; Iverson, E. B.; Selby, D. L.

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  15. Radiation Hardness tests with neutron flux on different Silicon photomultiplier devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Cervi, T.; Menegolli, A.; Oddone, M.; Prata, M.; Prata, M. C.; Rossella, M.

    2017-07-01

    Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEG II experiment, at PSI, Switzerland, investigates the forbidden decay μ+ → e+ γ. Exploiting the most intense muon beam of the world. A significant flux of non-thermal neutrons (kinetic energy Ek>= 0.5 MeV) is present in the experimental hall produced along the beam-line and in the hall itself. We present the effects of neutron fluxes comparable to the MEG II expected doses on several Silicon Photomultiplier (SiPMs). The tested models are: AdvanSiD ASD-NUV3S-P50 (used in MEG II experiment), AdvanSiD ASD-NUV3S-P40, AdvanSiD ASD-RGB3S-P40, Hamamatsu and Excelitas C30742-33-050-X. The neutron source is the thermal Sub-critical Multiplication complex (SM1) moderated with water, located at the University of Pavia (Italy). We report the change of SiPMs most important electric parameters: dark current, dark pulse frequency, gain, direct bias resistance, as a function of the integrated neutron fluency.

  16. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    NASA Astrophysics Data System (ADS)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  17. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  18. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    SciTech Connect

    Bryant, Rebecca; Kszos, Lynn A

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  19. The n_TOF facility: Neutron beams for challenging future measurements at CERN

    NASA Astrophysics Data System (ADS)

    Chiaveri, E.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Barbagallo, M.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The CERN n_TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n_TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental program and the range of possible measurements has been expanded with the construction of a second experimental area (EAR-2), located 20 m on the vertical of the n_TOF spallation target. This upgrade, which benefits from a neutron flux 30 times higher than in EAR-1, provides a substantial extension in measurement capabilities, opening the possibility to collect data on neutron cross-section of isotopes with short half-lives or available in very small amounts. This contribution will outline the main characteristics of the n_TOF facility, with special emphasis on the new experimental area. In particular, we will discuss the innovative features of the EAR-2 neutron beam that make possible to perform very challenging measurements on short-lived radioisotopes or sub-mg samples, out of reach up to now at other neutron facilities around the world. Finally, the future perspectives of the facility will be presented.

  20. A Si-PIN-stack detector for 14 MeV pulsed neutrons measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xianpeng; Ouyang, Xiaoping; Chen, Yanli; Zhang, Zhongbing; Tian, Geng; Chen, Liang; Liu, Jinliang

    2012-11-01

    We have developed a high-sensitivity fast neutron stack detector for use in the current mode by introducing a readout circuit that is capable of operating with a single detector's time response, while its neutron sensitivity, statistics, and n-γ sensitivity ratio are greatly improved compared to the single detector. The neutron stack detector sandwiches large-area Si-PIN semiconductor detectors and 2-mm-thick polyethylene disks used as the n-p converter and sensitivity enhancement medium. A neutron stack detector composed of 9 ∅80 mm×0.8 mm Si-PIN detectors has been built and used to measure a pulsed 14 MeV neutron flux of dense plasma focus devices (DPF). We have acquired its sensitivity to 14 MeV neutrons and 1.25 MeV γ-rays, the n-γ sensitivity ratio, and time response experimentally or theoretically. The study shows that this neutron stack detector can be applied for the diagnosis of DPF and neutron tubes. The results of this investigation also suggest a general model for developing high-sensitivity detectors based on a single radiation detector of another type.

  1. Untangling Autophagy Measurements: All Fluxed Up

    PubMed Central

    Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David

    2015-01-01

    Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in in data interpretation, in order to illustrate the challenges. Finally we will discuss methods to assess autophagy in vivo and in patients. PMID:25634973

  2. Absolute beam intensity measurements at the Intense Pulsed Neutron Source

    SciTech Connect

    Iverson, Erik B.; Carpenter, J. M.; Hill, E. J.

    1997-01-01

    The three moderators at the Intense Pulsed Neutron Source are of cryogenic methane (CH4): one of liquid methane at 100 K, and two of solid methane at 30 K. These moderators produce intense beams of both cold and thermal neutrons. The moderators are each of a different physical configuration in order to tailor their performance for the fourteen instruments and test facilities that operate on the twelve neutron beams. IPNS has started a program to enhance the effectiveness of its target/moderator/reflector system. This program involves both Monte Carlo computer modeling of the system and measuring the characteristics of the neutron beams. The measurements reported here provide absolute spectra using foil activation techniques joined with time-of-flight measurements performed with thin beam monitor detectors installed at the neutron scattering instruments. We also outline a codified procedure which we believe will be useful at other pulsed neutron sources to perform equivalent measurements. (auth)

  3. Neutron Detection Improvements for Measurement of Neutron Lifetime

    NASA Astrophysics Data System (ADS)

    Manus, Gregory; Liu, Chen-Yu; Salvat, Daniel; Cude, Christopher; Hanson, Aaron; Sawtelle, Sonya

    2010-11-01

    Ultra Cold Neutrons (UCN) have energies low enough to be confined in material and magnetic traps, yet it makes transmission into typical neutron detectors a nontrivial task. The neutron lifetime experiment at LANL may require improvements to a standard ionization chamber detector or an entirely different approach to UCN detection [1]. We compare Si and Zr ionization chamber windows to their Al counterparts. Si's smooth surface and uniform bulk density reduces the total elastic scattering cross-section. Zr's mechanical strength enables thinner, more transparent detector windows than Al. Also, various geometries of electrode grid planes are simulated in Garfield and built. Furthermore, to minimize time and spectrum dependent systematic errors of collection efficiency, we bypass transporting the UCN from trap to detector by detecting UCN directly in the trap. Here we empty BF3 and Ar into the trap where UCN capture in B releases Li and α particles detected by their ionization of Ar. The B capture also emits a gamma which can be detected. Details and progress will be presented at the conference. [4pt] [1] Nucl Instrum Meth A 599 (2009) 82-92

  4. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  5. On the measurement the neutron lifetime using ultra-cold neutrons in a vacuum quadrupole trap

    SciTech Connect

    Bowman, J. D.; Penttila, S. I.

    2004-01-01

    We present a conceptual design for an experiment to measure the neutron lifetime ({approx}882 s) with an accuracy of 10{sup -4}. The lifetime will be measured by observing the decay rate of a sample of UCNs confined in vacuum in a magnetic trap. The UCN collaboration at LANL has developed a prototype ultra-cold neutron UCN source that is expected to produce a bottled UCN density of more than 100 UCN/cm{sup 3}. The availability of such an intense source makes it possible to approach the measurement of the neutron lifetime in a new way. We argue below that it is possible to measure the neutron lifetime to 10{sup -4} in a vacuum magnetic trap. The measurement involves no new technology beyond the expected UCN density. If even higher densities are available, the experiment can be made better and/or less expensive. We present the design and methodology for the measurement. The slow loss of neutrons that have stable orbits, but are not energetically trapped would produce a systematic error in the measurement. We discuss a new approach, chaotic cleaning, to the elimination of quasi-neutrons from the trap by breaking the rotational symmetry of the quadrupole trap. The neutron orbits take on a chaotic character and mode mixing causes the neutrons on the quasi-bound orbits to leave the trap.

  6. On the Measurement of the Neutron Lifetime Using Ultracold Neutrons in a Vacuum Quadrupole Trap

    PubMed Central

    Bowman, J. David; Penttila, S. I.

    2005-01-01

    We present a conceptual design for an experiment to measure the neutron lifetime (~886 s) with an accuracy of 10−4. The lifetime will be measured by observing the decay rate of a sample of ultracold neutrons (UCN) confined in vacuum in a magnetic trap. The UCN collaboration at Los Alamos National Laboratory has developed a prototype UCN source that is expected to produce a bottled UCN density of more than 100/cm3 [1]. The availability of such an intense source makes it possible to approach the measurement of the neutron lifetime in a new way. We argue below that it is possible to measure the neutron lifetime to 10−4 in a vacuum magnetic trap. The measurement involves no new technology beyond the expected UCN density. If even higher densities are available, the experiment can be made better and/or less expensive. We present the design and methodology for the measurement. The slow loss of neutrons that have stable orbits, but are not energetically trapped would produce a systematic uncertainty in the measurement. We discuss a new approach, chaotic cleaning, to the elimination of quasi-neutrons from the trap by breaking the rotational symmetry of the quadrupole trap. The neutron orbits take on a chaotic character and mode mixing causes the neutrons on the quasi-bound orbits to leave the trap. PMID:27308151

  7. Measurements with the high flux lead slowing-down spectrometer at LANL

    NASA Astrophysics Data System (ADS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R. C.; Wender, S. A.; Vieira, D. J.; Bond, E.; Wilhelmy, J. B.; O'Donnell, J. M.; Michaudon, A.; Bredeweg, T. A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J. A.

    2007-08-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 × 109 n/cm2/s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235U, 236U, 238U and 239Pu. The smallest sample measured was 10 ng of 239Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section measurements

  8. Measurements of Neutron-absorbing Elements on Mercury's Surface with the MESSENGER Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Feldman, William C.; Goldsten, John O.; McCoy, Timothy J.; Blewett, David T.; Boynton, William V.; Evans, Larry G.; Nittler, Larry R.; Rhodes, Edgar A.; Solomon, Sean C.

    2010-05-01

    The Neutron Spectrometer (NS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has made measurements of cosmic-ray-generated thermal neutrons during each of MESSENGER's three Mercury flybys. These thermal neutron data have allowed us to make the first direct measurements of Mercury's surface elemental composition. Specifically, we show that Mercury's surface is enriched in neutron-absorbing elements and has a measured macroscopic neutron absorption cross section of (70-130) × 10^(-4) cm^2/g, which is similar to the neutron absorption of lunar basalts from Mare Fecunditatis. The expected neutron-absorbing elements are Fe and Ti, with possible trace amounts of Gd and Sm. Fe and Ti, in particular, are important for understanding Mercury's formation and how its surface may have changed over time through magmatic processes. With the neutron Doppler filter technique - a neutron energy separation technique based on spacecraft velocity - we demonstrate that Mercury's surface composition cannot be matched by prior models having characteristically low abundances of Fe, Ti, Gd, and Sm. While neutron spectroscopy alone cannot separate the relative contributions of individual neutron-absorbing elements, these results provide strong new constraints on the nature of Mercury's surface materials. For example, if all the measured neutron absorption were due to the presence of a Fe-Ti oxide and that oxide were ilmenite, then Mercury's surface would have an ilmenite content of 14 to 31 wt.%. This result is in agreement with the inference from color imaging and visible-near-infrared spectroscopy that Mercury's overall low reflectance is consistent with a surface composition that is enriched in Fe-Ti oxides. The incorporation of substantial Fe and Ti in oxides would imply that the oxygen fugacity of basalts on Mercury is at the upper range of oxygen fugacity inferred for basalts on the Moon.

  9. High-flux neutron source based on a liquid-lithium target

    SciTech Connect

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  10. Progress towards boron neutron capture therapy at the High Flux Reactor Petten.

    PubMed

    Moss, R L

    1990-01-01

    During 1988 the first positive steps were taken to proceed with the design and construction of a neutron capture therapy facility on the High Flux Reactor (HFR) at Petten. The immediate aim is to realise within a short time (summer 1989), an epithermal neutron beam for radiobiological and filter optimisation studies on one of the 10 small aperture horizontal beam tubes. The following summer, a much larger neutron beam, i.e., in cross section and neutron fluence rate, will be constructed on one of the two large beam tubes that replaced the old thermal column in 1984. This latter beam tube faces one whole side of the reactor vessel, extending from a 50 x 40 cm input aperture to a 35 x 35 cm exit hole. The radiotherapeutic facility will be housed here, with the intention to start clinical trials at the beginning of 1991. This paper describes the present status of the project and includes: a general description of the pertinent characteristics with respect to NCT of the HFR; results of the recently completed preliminary neutron metrology and computer modeling at the input end of the candidate beam tube; the structure and planning of the proposed Work Programme; and the respective direct and indirect participation and collaboration with the Netherlands Cancer Institute and the European Collaboration Group on BNCT.

  11. Enhancement of flux pinning properties in nanosized MgO added Bi-2212 superconductor through neutron irradiation

    NASA Astrophysics Data System (ADS)

    Mohiju, Zaahidah'Atiqah; Hamid, Nasri A.; Abdullah, Yusof

    2017-01-01

    For superconducting material to maintain high critical current density, Jc in any applications, effective flux pinning centers are needed. The addition of small size MgO particles in bulk Bi2Sr2CaCu2O8 (Bi-2212) superconductor has been proven to enhance the effective flux pinning centers in the superconducting material by creating a desired microstructure with appropriate defects. To further enhance the pinning properties, radiation is one of the convenient ways to improve the microstructure of the material that has correlation with basic properties of superconductors. Neutron irradiation is one of the niche techniques that can be used to perform the task. Defects with larger radius have dimension comparable to the coherence length of the material and thus improved its superconducting properties. In this paper, a small amount of nanosized MgO particles was used to create defects in the Bi-2212 superconducting material. The Bi-2212/MgO compounds were heat treated, followed by partial melting and slow cooling. Part of the samples was subjected to neutron irradiation using the TRIGA-MARK-II research reactor at the Malaysian Nuclear Agency. Characterization of non-irradiated and irradiated samples was performed via the temperature dependence on electrical resistance measurements, X-ray Diffraction Patterns (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) analysis. From the analysis, there was changed in the critical current density and transition temperature of samples subjected to neutron irradiation due to formation of point defects in the microstructure. Higher critical current density indicates better flux pinning properties in the Bi-2212/MgO compounds.

  12. Measurements for the JASPER Program Flux Monitor Experiment

    SciTech Connect

    Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L.; Shono, A.

    1993-02-01

    The Flux Monitor Experiment was conducted at the Oak Ridge National Laboratory (ORNL) Tower Shielding Facility (TSF) during the months of May and June 1992, as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) program that was started in 1986. This series of experiments was designed to examine shielding concerns and radiation transport effects pertaining to in-vessel flux monitoring systems (FMS) in current reactor shield designs proposed for both the Advanced Liquid Metal Reactor (ALMR) design and the Japanese loop-type design. The program is a cooperative effort between the United States Department of Energy (US DOE) and the Japanese Power Reactor and Nuclear Fuel Development Corporation (PNC). The Tower Shielding Reactor H (TSR-II) neutron source was altered by the spectrum modifier (SM) used previously in the Axial Shield Experiment, and part of the Japanese Removable Radial Shield (RRS) before reaching the axial shield. In the axial shield were placed six homogeneous boron carbide (B{sub 4}C) hexagons around a center hexagon of aluminum used to represent sodium. Shield designs to be studied were placed beyond the axial shield, each design forming a void directly behind the axial shield. Measurements were made in the void and behind each slab as successive slabs were added.

  13. On formation of the asymptotic spectrum of delayed neutron emitters in measuring the VVER-1000 scram system effectiveness

    NASA Astrophysics Data System (ADS)

    Shishkov, L. K.; Zizin, M. N.

    2014-12-01

    The process of formation of an asymptotic distribution of the neutron flux density in the reactor systems after introducing different negative reactivities is considered. The impact of two factors after the reactivity introduction is evaluated: (1) nonuniformity of perturbation of core properties, on one hand, and (2) a sharp reduction in the density of prompt neutrons, which prevents the appearance of new delayed neutron emitters distributed in accordance with the "new" prompt neutron distribution, on the other hand. The results of calculations show that the errors of measuring the scram system effectiveness using the method of inverse solution of the kinetics equation are caused by the fact that, after the negative reactivity insertion, the sources of prompt and delayed neutrons have different spatial distributions. In the case of high negative reactivities, this difference remains while the system still has neutrons, which can be measured.

  14. On formation of the asymptotic spectrum of delayed neutron emitters in measuring the VVER-1000 scram system effectiveness

    SciTech Connect

    Shishkov, L. K. Zizin, M. N.

    2014-12-15

    The process of formation of an asymptotic distribution of the neutron flux density in the reactor systems after introducing different negative reactivities is considered. The impact of two factors after the reactivity introduction is evaluated: (1) nonuniformity of perturbation of core properties, on one hand, and (2) a sharp reduction in the density of prompt neutrons, which prevents the appearance of new delayed neutron emitters distributed in accordance with the “new” prompt neutron distribution, on the other hand. The results of calculations show that the errors of measuring the scram system effectiveness using the method of inverse solution of the kinetics equation are caused by the fact that, after the negative reactivity insertion, the sources of prompt and delayed neutrons have different spatial distributions. In the case of high negative reactivities, this difference remains while the system still has neutrons, which can be measured.

  15. Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Feldman, William C.; Goldsten, John O.; Maurice, Sylvestre; Peplowski, Patrick N.; Anderson, Brian J.; Bazell, David; McNutt, Ralph L.; Nittler, Larry R.; Prettyman, Thomas H.; Rodgers, Douglas J.; Solomon, Sean C.; Weider, Shoshana Z.

    2013-01-01

    Measurements by the Neutron Spectrometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft show decreases in the flux of epithermal and fast neutrons from Mercury’s north polar region that are consistent with the presence of water ice in permanently shadowed regions. The neutron data indicate that Mercury’s radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 30 cm thick that is less rich in hydrogen. Combined neutron and radar data are best matched if the buried layer consists of nearly pure water ice. The upper layer contains less than 25 weight % water-equivalent hydrogen. The total mass of water at Mercury’s poles is inferred to be 2 × 1016 to 1018 grams and is consistent with delivery by comets or volatile-rich asteroids.

  16. Evidence for water ice near Mercury's north pole from MESSENGER Neutron Spectrometer measurements.

    PubMed

    Lawrence, David J; Feldman, William C; Goldsten, John O; Maurice, Sylvestre; Peplowski, Patrick N; Anderson, Brian J; Bazell, David; McNutt, Ralph L; Nittler, Larry R; Prettyman, Thomas H; Rodgers, Douglas J; Solomon, Sean C; Weider, Shoshana Z

    2013-01-18

    Measurements by the Neutron Spectrometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft show decreases in the flux of epithermal and fast neutrons from Mercury's north polar region that are consistent with the presence of water ice in permanently shadowed regions. The neutron data indicate that Mercury's radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 30 cm thick that is less rich in hydrogen. Combined neutron and radar data are best matched if the buried layer consists of nearly pure water ice. The upper layer contains less than 25 weight % water-equivalent hydrogen. The total mass of water at Mercury's poles is inferred to be 2 × 10(16) to 10(18) grams and is consistent with delivery by comets or volatile-rich asteroids.

  17. FAST NEUTRON DOSIMETER FOR HIGH TEMPERATURE OPERATION BY MEASUREMENT OF THE AMOUNT OF CESIUM 137 FORMED FROM A THORIUM WIRE

    DOEpatents

    McCune, D.A.

    1964-03-17

    A method and device for measurement of integrated fast neutron flux in the presence of a large thermal neutron field are described. The device comprises a thorium wire surrounded by a thermal neutron attenuator that is, in turn, enclosed by heat-resistant material. The method consists of irradiating the device in a neutron field whereby neutrons with energies in excess of 1.1 Mev cause fast fissions in the thorium, then removing the thorium wire, separating the cesium-137 fission product by chemical means from the thorium, and finally counting the radioactivity of the cesium to determine the number of fissions which have occurred so that the integrated fast flux may be obtained. (AEC)

  18. Neutron flux and spectrum characterization in the University of Illinois TRIGA

    SciTech Connect

    Peach, R.O.; Williams, J.G.; Ougouag, A.M.

    1988-07-01

    The principal irradiation facilities at the University of Illinois TRIGA are a central thimble, a pneumatic 'rabbit' tube in the G-hexagon, a forty- position Lazy Susan facility in the reflector, a through-port passing tangentially through the reflector, and a recently installed rotating tube in a three-element cluster position in the F- and G-hexagons. These facilities are used primarily for thermal and epithermal neutron activation, and for radiation damage studies in semiconductor and other materials. Thermal and epithermal neutron fluence rates have recently been measured by means of radiometric monitors in all the core and reflector facilities at a variety of reactor power levels. In addition, the fast neutron fluences have been characterized by means of threshold and non-threshold activation reaction rates measured in those positions used for radiation damage studies. Unfolding of neutron spectra from the measured reaction rates was done by means of the code LSL-M2, which was made available in 1986 from the Radiation Shielding Information Center. This code uses the generalized least squares method and incorporates a full propagation of uncertainties due to errors in measured reaction rates, cross section data, and input neutron spectra. The input spectra, needed in LSL-M2, were taken from the General Atomic report GA4361 which includes 24-group spectra, calculated by the code GAZE, for the center of the core, the F-hexagon and the Lazy Susan. These positions, and some of the material and geometrical specifications, do not correspond exactly with the actual ones at the University of Illinois TRIGA, but the differences in the neutron spectra were found to be small. The unfolded neutron spectra may be used to obtain fast neutron spectrum parameters needed in radiation damage studies and hardness testing. For example, the 1-MeV equivalent fluence rates for displacement damage in silicon, calculated according to the ASTM Standard E722, are reported. (author)

  19. Neutron measurements in search of cold fusion

    SciTech Connect

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T. )

    1991-05-10

    We have conducted a search for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 140 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of the naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also observed to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observed neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior.

  20. Neutron measurements in search of cold fusion

    SciTech Connect

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs.

  1. Evaluation of long term neutron noise measurements

    SciTech Connect

    Lipcsei, S.; Kiss, S.; Kiss, G.

    2006-07-01

    Installation of new neutron noise measurement systems has been started recently at the four VVER-440 reactor units of Paks NPP. The first two systems are already in operation at Units 3 and 4, they were installed December 2005 and July 2006, respectively. These new systeme have some unique features compared to the previously used systems. Making regular measurements on the full signal set allows of compiling comprehensive noise libraries and creating several trends, even posteriorly. Evaluation of long measurements brings new views in the frequency domain on the processes inside the reactor core. A long measurement allows of using a much higher number of averages than usual. The larger the number of averaging, the more the background random noises disappear, and the smaller the effects that can be detected, even between detectors at larger distance than usual. However raising the number of averaging is possible only when the reactor core is in steady-state. The paper contains some examples of these evaluations. (authors)

  2. Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ene, D.; Borcea, C.; Kopecky, S.; Mondelaers, W.; Negret, A.; Plompen, A. J. M.

    2010-06-01

    A comprehensive set of Monte Carlo simulations was performed with the MCNP5 code to provide a generic characterisation of the neutron and photon fluxes for time-of-flight measurements at all flight paths of the GELINA facility. Simulations were performed for the direct flux configuration (DFC, 10 keV-20 MeV) and the moderated flux configuration (MFC, 10 meV-1 MeV). Fluxes and flux energy spectra were obtained for both neutrons and photons. For neutrons, additionally, detailed resolution functions and figures of merit were obtained. The validity of the approach for the photon spectra is shown by comparison with a dedicated measurement. Also, a verification is presented of the validity of the neutron resolution function by comparison with measured capture and transmission data for 103Rh and 56Fe in the incident neutron energy range from 70 eV to 50 keV. This comprehensive overview will facilitate the planning and analysis of measurements at the GELINA facility with an improved knowledge of its physical characteristics.

  3. The Prompt Fission Neutron Spectrum (PFNS) Measurement Program at LANSCE

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; O'Donnell, J. M.; Perdue, B. A.; Fotiades, N.; Devlin, M.; Ullmann, J. L.; Laptev, A.; Bredeweg, T.; Jandel, M.; Nelson, R. O.; Wender, S. A.; White, M. C.; Wu, C. Y.; Kwan, E.; Chyzh, A.; Henderson, R.; Gostic, J.

    2014-05-01

    The prompt neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. A program to measure this spectrum for neutron-induced fission of 239Pu is underway at the Los Alamos Neutron Science Center. The goal is to obtain data on the shape of the spectrum with a small uncertainty over the emitted neutron energy range of 100 keV to 12 MeV with additional data below and above this range. The incident neutron energy range will be from 0.5 to 30 MeV. The status of this program including results of initial experimental measurements is described here.

  4. Characterization of neutron flux spectra in irradiation sites of MNSR reactor using the Westcott-formalism for the k0 neutron activation analysis method.

    PubMed

    Akaho, E H K; Nyarko, B J B

    2002-08-01

    For the general applicability of the k0-NAA method to deal with "non-l/v" (n,gamma) reaction nuclides, the modified spectral index r(alpha) square root (Tn/T0) and g(Tn) factor for monitoring neutron temperature Tn for the inner and outer irradiation sites of the Ghana MNSR reactor (GHARR-1) were measured using the Cd-ratio method. Using the measured Cd ratio for lutetium and the modified spectral index, the reduced resonance integral of lutetium s0,Lu was also calculated. The computed result of 1.64 was in good agreement with the reported value of 1.67. Based on the assumption that the definitions of reaction rates in the Westcott-formalism and in Nisle's unified formulation are equal, a theoretical verification of the accuracy of the measured modified spectral indices for our data and those reported in the literature for other research reactors was carried out. Employing 197Au, 96Zr and 94Zr as "1/v" monitors, the theoretical values which depend on the choice of the monitor, followed the trend for measured values of the sub- to epi-cadmium flux ratio f for nine irradiation sites of four different research reactors. The computed and experimental modified spectral indices for the different flux ratios associated with irradiation sites within the range 18.8-152 fitted well to a simple exponential relationship. Calculated and measured data are in good agreement when appropriate correction factors are used.

  5. Interbasin Flux Measurements Using Simple Methods

    SciTech Connect

    John Watson; Daniel Freeman

    2005-01-13

    The Vertical Transport and Mixing (VTMX) campaign, sponsored by the US Department of Energy, took place in the Salt Lake Valley during October, 2000. The purpose of VTMX was to further understanding of meteorological processes that govern vertical transport and mixing in complex terrain, particularly during nocturnal stable periods and their morning and evening transition periods. These meteorological processes were the subject of numerous sponsored studies during VTMX. The Salt Lake (Salt Lake City) Basin and the Utah Basin to its south are separated by the Traverse Range. Near-surface airflow between the basins is channeled through the Jordan Narrows, also the channel for the Jordan River that flows from the Utah Basin into Salt Lake via the Salt Lake Basin. Jordan Narrows is thus a potentially significant corridor for pollutant transport between the two basins. This paper describes simple and direct pollutant (PM{sub 10}) measurements, with concurrent continuous meteorological monitoring, to characterize pollutant transport between the two basins via low-level stable nocturnal drainage flow, with an emphasis on its vertical variability when mixing is limited. The Jordan Narrows has similarities to other transport corridors where direct in-corridor monitoring of pollutant flux might enhance pollution forecasts during transport conditions. Thus their more general objective is to assess the usefulness of direct methods to characterize pollutant flux in similar environments.

  6. Flux measurements using the BATSE spectroscopic detectors

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1993-01-01

    Among the Compton Gama-Ray Observatory instruments, the BATSE Spectroscopic Detectors (SD) have the distinction of being able to detect photons of energies less than about 20 keV. This is an interesting energy range for the examination of low mass X-ray binaries (LMXB's). In fact, Sco X-1, the prototype LMXB, is easily seen even in the raw BATSE spectroscopic data. The all-sky coverage afforded by these detectors offers a unique opportunity to monitor this source over time periods never before possible. The aim of this investigation was to test a number of ways in which both continous and discrete flux measurements can be obtained using the BATSE spectroscopic datasets. A instrumental description of a SD can be found in the Compton Workshop of Apr. 1989, this report will deal only with methods which can be used to analyze its datasets. Many of the items discussed below, particularly in regard to the earth occultation technique, have been developed, refined, and applied by the BATSE team to the reduction of BATSE LAD data. Code written as part of this project utilizes portions of that work. The following discussions will first address issues related to the reduction of SD datasets using the earth occultation technique. It will then discuss methods for the recovery of the flux history of strong sources while they are above the earth's limb. The report will conclude with recommended reduction procedures.

  7. Measuring the Neutron Detection Efficiency in CLAS12

    NASA Astrophysics Data System (ADS)

    Sherman, Keegan; Gilfoyle, Gerard

    2016-09-01

    One of the central physics goals of Jefferson Lab is to understand how quarks and gluons form nuclei. To that end, one of the approved experiments in Hall B will measure the magnetic form factor of the neutron with the new CLAS12 detector. We will extract the ratio of electron-neutron to electron-proton scattering events from deuterium which requires a measurement of the neutron detection efficiency (NDE). To measure NDE we will take calibration data using a proton target to produce tagged neutrons from the p(e,e'π+)n reaction. We are now simulating this reaction and developing the analysis code to extract the NDE. We use PYTHIA 6.4 to generate p(e,e'π+)n events and simulate the response of CLAS12 with the Geant4-based Monte Carlo code gemc. To tag the neutron, we use the measured, scattered electron, and π+ information to predict the neutron's path. If the path intersects the fiducial volume of the CLAS12 electromagnetic calorimeters, then we search for a hit near that point. The NDE is the ratio of the number of neutrons found in the calorimeters to the number of neutrons predicted to hit the calorimeters. The analysis was done using the CLAS12 Common Tools. We observe a rapid rise in the NDE at low neutron momentum and a plateau above 60%. Work supported by the University of Richmond and the US Department of Energy.

  8. Measured and calculated fast neutron spectra in a depleted uranium and lithium hydride shielded reactor

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.; Mueller, R. A.

    1973-01-01

    Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.

  9. Measurement of the lunar neutron density profile

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1975-01-01

    Relatively small discrepancies between Apollo 17 lunar neutron probe experiment (LNPE) data and theoretical calculations by Lingenfelter, Canfield, and Hampel in the effect of Cd absorption on the neutron density, and in the relative Sm-149 to Gd-157 capture rates reported previously, imply that the true lunar Gd-157 capture rate is about one-half of that derived theoretically.

  10. A Neutron Source Facility for Neutron Cross-Section Measurements on Radioactive Targets at RIA

    SciTech Connect

    Ahle, L E; Bernstein, L; Rusnak, B; Berio, R

    2003-05-20

    The stockpile stewardship program is interested in neutron cross-section measurements on nuclei that are a few nucleons away from stability. Since neutron targets do not exist, radioactive targets are the only way to directly perform these measurements. This requires a facility that can provide high production rates for these short-lived nuclei as well as a source of neutrons. The Rare Isotope Accelerator (RIA) promises theses high production rates. Thus, adding a co-located neutron source facility to the RIA project baseline would allow these neutron cross-section measurements to be made. A conceptual design for such a neutron source has been developed, which would use two accelerators, a Dynamitron and a linac, to create the neutrons through a variety of reactions (d-d, d-t, deuteron break-up, p-Li). This range of reactions is needed in order to provide the desired energy range from 10's of keV to 20 MeV. The facility would also have hot cells to perform chemistry on the radioactive material both before and after neutron irradiation. The present status of this design and direction of future work will be discussed.

  11. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  12. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  13. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  14. Neutrons measure phase behavior in pores at Angstrom size

    SciTech Connect

    Bardoel, Agatha A; Melnichenko, Yuri B

    2012-01-01

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storage for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS

  15. Estimation method of planetary fast neutron flux by a Ge gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hareyama, M.; Fujibayashi, Y.; Yamashita, Y.; Karouji, Y.; Nagaoka, H.; Kobayashi, S.; Reedy, R. C.; Gasnault, O.; Forni, O.; d'Uston, C.; Kim, K. J.; Hasebe, N.

    2016-08-01

    An intensity map of lunar fast neutrons (LFNs) and their temporal variation has been estimated by fitting "sawtooth" peaks in the energy spectra of lunar gamma rays observed by the Kaguya (SELENE) Gamma Ray Spectrometer (GRS) consisting of a high-purity germanium (HPGe) detector with a BGO scintillator. While an ordinary peak in the spectrum is produced by only gamma ray lines, the sawtooth peak is produced by gamma ray lines and recoil nuclei in the detector by Ge(n ,n‧ γ) reaction. We develop a model for the shape of the sawtooth peak and apply it to fit sawtooth peaks together with ordinary peaks in actual observed spectra on the Moon. The temporal variation of LFNs is synchronous with that of galactic cosmic rays (GCRs), and the global distribution of fast neutrons on the lunar surface agrees well with the past observation reported by the Neutron Spectrometer aboard Lunar Prospector. Based on these results, a new method is established to estimate the flux of fast neutrons by fitting sawtooth peaks on the gamma ray spectrum observed by the HPGe detector.

  16. Development and application of CVD diamond detectors to 14 MeV neutron flux monitoring.

    PubMed

    Angelone, M; Pillon, M; Marinelli, M; Milani, E; Paoletti, A; Tucciarone, A; Pucella, G; Verona-Rinati, G

    2004-01-01

    CVD diamond is an interesting material for radiation detection, its atomic number (Z = 6) is close to that of soft tissues (Z = 7.1) and it can also work in harsh environments. Since many years CVD diamond films have been grown at the Faculty of Engineering, Rome 'Tor Vergata' University, and in 1998 a collaboration with ENEA Fusion Division was established to develop fast neutron monitors to be used in fusion tokamak environment. In this paper the first test of a 120 microm thick polycrystalline CVD diamond detector used for monitoring 14.7 MeV neutrons emission produced with the Frascati Neutron Generator (FNG) is reported. The detector operates in air and in pulse mode. The time irradiation profiles recorded with the CVD diamond detector were compared with those recorded by the standard monitors available at FNG (SSD, fission chamber, NE-213). Good stability and capability to operate in neutron flux up to 1.5 x 10(8) n cm(-2) s(-1) was observed. The radiation hardness property was also investigated using a 460 microm thick film and these results are also reported.

  17. Design studies related to an in vivo neutron activation analysis facility for measuring total body nitrogen.

    PubMed

    Stamatelatos, I E; Chettle, D R; Green, S; Scott, M C

    1992-08-01

    Design studies relating to an in vivo prompt capture neutron activation analysis facility measuring total body nitrogen are presented. The basis of the design is a beryllium-graphite neutron collimator and reflector configuration for (alpha, n) type radionuclide neutron sources (238PuBe or 241AmBe), so as to reflect leaking, or out-scattered, neutrons towards the subject. This improves the ratio of thermal neutron flux to dose and the spatial distribution of thermal flux achieved with these sources, whilst retaining their advantage of long half-lives as compared to 252Cf based systems. The common problem of high count-rate at the detector, and therefore high nitrogen region of interest background due to pile-up, is decreased by using a set of smaller (5.1 cm diameter x 10.2 cm long) NaI(Tl) detectors instead of large ones. The facility described presents a relative error of nitrogen measurement of 3.6% and a nitrogen to background ratio of 2.3 for 0.45 mSv skin dose (assuming ten 5.1 cm x 10.2 cm NaI(Tl) detectors).

  18. HERITAGE: the concept of a giant flux neutron reflectometer for the exploration of 3-d structure of free-liquid and solid interfaces in thin films

    NASA Astrophysics Data System (ADS)

    Mattauch, S.; Ioffe, A.; Lott, D.; Bottyán, L.; Daillant, J.; Markó, M.; Menelle, A.; Sajti, S.; Veres, T.

    2017-01-01

    The instrumental concept of HERITAGE - a reflectometer with a horizontal sample geometry - well fitted to the long pulse structure of a neutron source is presented. It is constitutes a new class of reflectometers achieving the unprecedentedly high flux for classical specular reflectometry combined with off-specular reflectometry and grazing incidence small-angle scattering (GISANS), thus resulting in a complete 3-d exploration of lateral and in depth structures in thin films. This is achieved by specially designed neutron guides. In the horizontal direction (perpendicular to the scattering plane) the guide's elliptic shape focusses the neutrons onto the sample. In the vertical direction a multichannel geometry provides a smooth divergence distribution at the sample position while accepting the entire beam from a compact high-brilliance flat moderator. The modular collimation setup of HERITAGE provides extremely high flexibility in respect to sample geometries and environments, including the possibility to study virtually all types of solid and liquid interfaces, statically or kinetically. The use of multiple beam illumination allows for reflectivity and GISANS measurements at liquid interfaces both from above and below without a need to move the sample. This concept assures the delivery of the maximum possible and usable flux to the sample in both reflectivity and GISANS measurement regimes. The presented design outperforms the flux of all present-day and already for the ESS planned reflectometers and GISANS setups in flux and in measuring time for standard samples.

  19. Total body chlorine: calibration of the in vivo neutron activation measurement.

    PubMed

    Ma, R; Yasumura, S; Moore, R I; Zhao, X; Rarback, H M; Lomonte, A F; Vodopia, K A

    1998-01-01

    Total body chlorine (TBCI), used to estimate the extracellular space, is measured by delayed-gamma neutron activation (DGNA) using the reaction 37Cl(n, gamma)38Cl, at Brookhaven National Laboratory. During the calibration process, we noticed that different values were obtained when different amounts of Cl were placed in the phantom. This non-linear relationship is due to the thermal neutron flux suppression by the thermal neutron capture reaction 35Cl(n, gamma)36Cl. Monte Carlo simulations confirm the results of phantom measurements showing an inverse relationship between the Cl content in the phantom and the gamma-ray yield per gram Cl. Thus, it is important to calibrate the DGNA system for TBCl using phantom standards containing an amount of Cl close to that expected in the individual undergoing measurement.

  20. A magneto-gravitational neutron trap for the measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Salvat, Daniel J.

    Neutron decay is the simplest example of nuclear beta-decay. The mean decay lifetime is a key input for predicting the abundance of light elements in the early universe. A precise measurement of the neutron lifetime, when combined with other neutron decay observables, can test for physics beyond the standard model in a way that is complimentary to, and potentially competitive with, results from high energy collider experiments. Many previous measurements of the neutron lifetime used ultracold neutrons (UCN) confined in material bottles. In a material bottle experiment, UCN are loaded into the apparatus, stored for varying times, and the surviving UCN are emptied and counted. These measurements are in poor agreement with experiments that use neutron beams, and new experiments are needed to resolve the discrepancy and precisely determine the lifetime. Here we present an experiment that uses a bowl-shaped array of NdFeB magnets to confine neutrons without material wall interactions. The trap shape is designed to rapidly remove higher energy UCN that might slowly leak from the top of the trap, and can facilitate new techniques to count surviving UCN within the trap. We review the scientific motivation for a precise measurement of the neutron lifetime, and present the commissioning of the trap. Data are presented using a vanadium activation technique to count UCN within the trap, providing an alternative method to emptying neutrons from the trap and into a counter. Potential systematic effects in the experiment are then discussed and estimated using analytical and numerical techniques. We also investigate solid nitrogen-15 as a source of UCN using neutron time-of-flight spectroscopy. We conclude with a discussion of forthcoming research and development for UCN detection and UCN sources.

  1. Latent heat sink in soil heat flux measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  2. Neutron transmission measurement for natural W at nELBE

    NASA Astrophysics Data System (ADS)

    Song, T.-Y.; Kim, J. W.; Kim, H. I.; Yang, S.-C.; Lee, C. W.; Lee, Y.-O.; Junghans, A. R.; Beyer, R.; Kögler, T.; Schwengner, R.; Hannaske, R.; Wagner, L.; Leinhardt, T. P.; Takacs, M. P.; Massarczyk, R.; Müller, S.; Ferrari, A.; Schmidt, K.; Röder, M.; Bemmerer, D.; Szücs, T.; Wagner, A.

    2017-09-01

    Korea has developed a Helium Cooled Ceramic Reflector Test Blanket Module (Ko HCCR TBM) related to the ITER project. Tungsten is considered as a prime candidate for the plasma facing materials in fusion reactors, and for the structure material of Ko HCCR TBM. KAERI (Korea Atomic Energy Research Institute) has been evaluating neutron cross sections of tungsten isotopes for neutron energy of up to 150 MeV based on nuclear reaction codes and available measurement data. New experimental data were measured at nELBE of HZDR (Helmholtz-Zentrum Dresden-Rossendorf) for a comparison with the evaluated and existing measurement data. The neutron source nELBE adopts a 40 MeV superconducting electron linac and a liquid Pb target for time-of-flight measurements. The nELBE neutron source uses no moderator and provides fast neutrons. An electron bunch length of 5 ps and a compact target provide a good neutron energy resolution with a relatively short flight length compared to other time-of-flight neutron sources. Transmission data of a natural tungsten sample were measured with a flight path length of 852.1 cm and a repetition rate of 101.56 kHz. The neutron total cross section of natural tungsten was obtained for an energy range of 100 keV to 10 MeV.

  3. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  4. Neutron lifetime measurement with pulsed beam at JPARC: Overview

    NASA Astrophysics Data System (ADS)

    Mishima, Kenji; Ino, Takashi; Taketani, Kaoru; Yamada, Takahito; Katayama, Ryo; Higashi, Nao; Yokoyama, Harumichi; Sumino, Hirochika; Yamashita, Satoru; Sakakibara, Risa; Sugino, Tomoaki; Kitaguchi, Masaaki; Hirota, Katsuya; Shimizu, Hirohiko M.; Tanaka, Genki; Sumi, Naoyuki; Otono, Hidetoshi; Yoshioka, Tamaki; Kitahara, Ryunosuke; Iwashita, Yoshihisa; Oide, Hideyuki; Shima, Tatsushi; Seki, Yoshichika; NOP Collaboration

    2014-09-01

    The neutron lifetime is an important parameter for a test of the Standard Model of elementary particles, as well for the production of light mass nuclei in big bang nucleosynthesis. There are two principally different approaches to measure the neutron lifetime: In-beam methods and storage of ultracold neutron. At present, there is a discrepancy of 8.4 sec (3.8 sigma) between the two methods. We are performing a new In-beam experiment with an intense pulsed neutron source at J-PARC, which has different systematic uncertainties from the previous experiments. We introduce the overview of the experiment and report present status.

  5. Study of the Neutron Flux and Dpa Attenuation in the Reactor Pressure-Vessel Wall

    SciTech Connect

    Remec, I.

    1999-06-01

    The study of the neutron flux and dpa attenuation in the reactor pressure vessel (PV) wall presented in this work was performed with state-of-the art methods currently used to determine PV fluxes, the BUGLE-96 cross-section library, and the iron displacement cross sections derived from ENDF/B-VI data. The calculations showed that the RG 1.99, Rev. 2, extrapolation formula predicts slower--and therefore conservative--attenuation of the neutron flux (E > 1MeV) in the PV wall. More importantly, the calculations gave slower attenuation of the dpa rate in the PV wall than the attenuation predicted by the formula. The slower dpa rate attenuation was observed for all the cases considered, which included two different PWRs, and several configurations obtained by varying the PV wall thickness and thermal shield thickness. For example, for a PV wall thickness of {approximately}24 cm, the calculated ratio of the dpa rate at 1/4 and 3/4 of the PV wall thickness to the dpa value on the inner PV surface is {approximately}14% and 19% higher, respectively, than predicted by the RG 1.99, Rev. 2, formula.

  6. Comparison of neutron spectra measured with three sizes of organic liquid scintillators using differentiation analysis

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Pierce, C. R.

    1972-01-01

    Proton recoil distributions were obtained by using organic liquid scintillators of different size. The measured distributions are converted to neutron spectra by differentiation analysis for comparison to the unfolded spectra of the largest scintillator. The approximations involved in the differentiation analysis are indicated to have small effects on the precision of neutron spectra measured with the smaller scintillators but introduce significant error for the largest scintillator. In the case of the smallest cylindrical scintillator, nominally 1.2 by 1.3 cm, the efficiency is shown to be insensitive to multiple scattering and to the angular distribution to the incident flux. These characteristics of the smaller scintillator make possible its use to measure scalar flux spectra within media high efficiency is not required.

  7. New neutron small-angle diffraction instrument at the Brookhaven High Flux Beam Reactor

    SciTech Connect

    Schneider, D.K.; Schoenborn, B.P.

    1982-01-01

    The new instrument utilizes cold neutrons emerging from a series of straight neutron guides. A multilayered monochromator is used in combination with a short collimator to obtain a monochromatized beam with a wavelength between 4 and 10 A and a wavelength spread of about 10%. The flux at 5 A exceeds 10/sup 6/ ns/sup -1/ cm/sup -2/ in a typical beam of 6-mm diameter at the sample. The spectrometer itself incorporates provisions for computer-controlled positioning of samples and a two-dimensional detector. At a sample-detector distance between 50 and 200 cm the detector can be centered at scattering angles of up to 45/sup 0/. The beam-defining components, the monochromator, the collimator, and various slits, are easily accessible and exchangeable for alternative devices. These features make the instrument modular and give it flexibility approaching that of standard x-ray equipment.

  8. Influence of neutron flux, frequency and temperature to electrical impedance of nano silica particles

    SciTech Connect

    Huseynov, Elchin E-mail: hus.elchin@gmail.com; Garibov, Adil; Mehdiyeva, Ravan; Andreja, Eršte; Rustamov, Anar

    2014-11-15

    We studied electric impedance of SiO{sub 2} nanomaterial at its initial state and after being exposed to continuous neutron irradiation for up to 20 hours. In doing so we employed a flux of neutrons of 2x10{sup 13} n⋅cm{sup −2}s{sup −1} while the frequency and temperature ranges amounted to 0,09 – 2.3 MHz and 100 – 400 K correspondingly. Analysis in terms of the Cole-Cole expression revealed that with increasing irradiation period the polarization and relaxation times decrease as a result of combination of nanoparticles. Moreover, it is demonstrated that the electric conductivity of samples, on the other hand, increases with the increasing irradiation period. At low temperatures formations of clusters at three distinct states with different energies were resolved.

  9. Sensitivity and uncertainty analysis of the Coupled Fast Reactivity Measurements Facility central flux spectrum

    SciTech Connect

    Ryskamp, J.M.; Andrel, R.A.; Broadhead, B.L.; Ford, W.E.; Lucius, J.L.; Marable, J.H.; Wagschal, J.J.

    1982-04-01

    The Coupled Fast Reactivity Measurements Facility (CFRMF) is a zoned-core critical assembly with a fast neutron spectrum zone in the center of an enriched /sup 235/U, water-moderated thermal driver. The central neutron field is a Cross-Section Evaluation Working Group benchmark for data testing of fission product, actinide, and dosimetry cross sections important to fast reactor technology. The AMPX and FORSS code systems were used to determine a covariance matrix for the CFRMF central neutron spectrum. The covariance matrix accounts for neutron cross section and fission spectrum uncertainties and correlations. Uncertainties in the /sup 238/U inelasticscattering cross sections and in the /sup 235/U fission spectrum were found to contribute most to the standard deviations in the central flux spectrum. The flux-spectrum covariance matrix contains strong correlations. This strongly motivates including the off-diagonal elements in data testing and cross section adjustment applications. The flux spectrum covariance matrix was applied in this work for integral data testing for dosimeter cross sections.

  10. A Numerical Method for Obtaining Monoenergetic Neutron Flux Distributions and Transmissions in Multiple-Region Slabs

    NASA Technical Reports Server (NTRS)

    Schneider, Harold

    1959-01-01

    This method is investigated for semi-infinite multiple-slab configurations of arbitrary width, composition, and source distribution. Isotropic scattering in the laboratory system is assumed. Isotropic scattering implies that the fraction of neutrons scattered in the i(sup th) volume element or subregion that will make their next collision in the j(sup th) volume element or subregion is the same for all collisions. These so-called "transfer probabilities" between subregions are calculated and used to obtain successive-collision densities from which the flux and transmission probabilities directly follow. For a thick slab with little or no absorption, a successive-collisions technique proves impractical because an unreasonably large number of collisions must be followed in order to obtain the flux. Here the appropriate integral equation is converted into a set of linear simultaneous algebraic equations that are solved for the average total flux in each subregion. When ordinary diffusion theory applies with satisfactory precision in a portion of the multiple-slab configuration, the problem is solved by ordinary diffusion theory, but the flux is plotted only in the region of validity. The angular distribution of neutrons entering the remaining portion is determined from the known diffusion flux and the remaining region is solved by higher order theory. Several procedures for applying the numerical method are presented and discussed. To illustrate the calculational procedure, a symmetrical slab ia vacuum is worked by the numerical, Monte Carlo, and P(sub 3) spherical harmonics methods. In addition, an unsymmetrical double-slab problem is solved by the numerical and Monte Carlo methods. The numerical approach proved faster and more accurate in these examples. Adaptation of the method to anisotropic scattering in slabs is indicated, although no example is included in this paper.

  11. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  12. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    NASA Astrophysics Data System (ADS)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  13. Impact of switching to the ICRP-74 neutron flux-to-dose equivalent rate conversion factors at the Sandia National Laboratory Building 818 Neutron Source Range.

    SciTech Connect

    Ward, Dann C.

    2009-03-01

    Sandia National Laboratories (SNL) maintains a neutron calibration facility which supports the calibration, maintenance, and repair of Radiation Protection Instruments. The SNL neutron reference fields are calibrated using the following methodology: Fluence rate is initially established by calculation using the NIST traceable source emission rate (decay corrected). Correction factors for the effects of room return or scatter, and source anisotropy are then developed by using a suitable radiation transport code to model the geometry of the facility. The conventionally true neutron dose rates are then determined using the appropriate fluence-todose equivalent conversion coefficients at several reference positions. This report describes the impact on calculated neutron dose rates of switching from NCRP-38 to CRP-74 neutron flux-todose equivalent rate conversion factors. This switch is driven by recent changes to dosimetry requirements addressed in 10 CFR 835 (Occupational Radiation Protection).

  14. Radioactive waste reality as revealed by neutron measurements

    SciTech Connect

    Schultz, F.J.

    1995-12-31

    To comprehend certain aspects of the contents of a radioactive waste container is not a trivial matter, especially if one is not allowed to open the container and peer inside. One of the suite of tools available to a practioner in the art of nondestructive assay is based upon neutron measurements. Neutrons, both naturally occuring and induced, are penertrating radiations that can be detected external to the waste container. The practioner should be skilled in applying the proper technique(s) to selected waste types. Available techniques include active and passive neutron measurements, each with their own strengths and weaknesses. The waste material itself can compromise the assay results by occluding a portion of the mass of fissile material present, or by multiplying the number of neutrons produced by a spontaneously fissioning mass. This paper will discuss the difficult, but albeit necessary marriage, between radiioactive waste types and alternative neutron measurement techniques.

  15. A Measurement of the Neutron MDM Interaction in Silicon

    NASA Astrophysics Data System (ADS)

    Koetke, Donald; Dombeck, Thomas; Kaiser, Helmut; Peshkin, Murray; Smither, Robert; Stanislaus, Shirvel

    2004-10-01

    We propose to measure the neutron magnetic dipole moment (MDM) with a slotted crystal of silicon. In this technique, polarized neutrons make multiple Bragg reflections as they travel down a slot machined in a crystal of pure silicon. The MDM will be measured by observing the rotation of the neutron spin due to the torque on the moving MDM in the atomic electric field. Although interesting in its own right, this experiment will be conducted as a feasibility study for using this technique to search for a neutron Electric Dipole Moment (EDM). In a previous experiment, multiple Bragg reflections in a slotted silicon crystal were used to measure the neutron reflectivity in silicon.1 Details of the MDM experiment will be given along with anticipated results. 1. T. Dombeck, et al., Phys. Rev. A64, 53607 (2001).

  16. Study of variation of materials patients room's door related of neutron flux iradiation

    NASA Astrophysics Data System (ADS)

    Nirmalasari, Yuliana Dian; Suparmi, A.; Sardjono, Y.

    2017-08-01

    The treatment chamber of patients has been simulating with MCNPX Code. Optimation of simulation design of Irradiation chamber is corresponding to ISO standards for 30 MeV cyclotron generator. The simulation has used the variation of door's materials that was applied at treatment room's door. The variation of materials was Stainless Steel 202 and Pb, the thickness Pb and stainless steel 202 with the thickness were 2 cm, respectively. Neutron flux that was radiated to stainless steel 202 in the sequence was 3.34195 × 105 n . Cm-2 s-1 and 8.41568 × 104 n . Cm-2 s-1, while for Pb was 4.01349 × 105 n . Cm-2 s-1 and 2.58058 × 104 n . Cm-2 s-1. The further, neutron flux that was radiated to Pb and stainless steel 202 with the thickness were 4 cm in sequence was 4.00601 × 105 n . Cm-2 s-1 and 1.71713 × 104 n . Cm-2 s-1 for Pb, while for SS 202 was 3.09925 × 105 n . Cm-2 s-1. From this ratio we concluded that material Pb absorbed higher neutron flux than material Stainless Steel 202. On the other hand, the cost of Pb was more expensive than Stainless Steel 202. In addition, the material Stainless Steel 202 was obtaine more easily than the material Pb. There fore to overcome the economics problem, can try to build the door with stainless still 202 sheet and Pb sheet together. The further, the neutron dose with 2 cm of thickness was 7.69603 × 10-2 Gy and 2.10623 × 10-2 Gy for SS 202, while for Pb was 4.19444 × 10-2 Gy and 1.50581 × 10-2 Gy. While the neutron dose with 4 cm of thickness for SS 202 was 9.39602 × 10-2 Gy and for Pb was 4.46541 × 10-2 Gy and 1.50502 × 10-2 Gy. We recommend that this simulation should be further optimized.

  17. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Blyth, S. C.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Yeh, M.; Zhang, B. J.; Aberdeen Tunnel Experiment Collaboration

    2016-04-01

    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7 ±0.6 )×10-6 cm-2 s-1 sr-1 . The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19 ±0.08 (stat)±0.21 (syst))×10-4 neutrons /(μ .g .cm-2 ) . A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩ 0.76 ±0.03 for liquid-scintillator targets.

  18. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE PAGES

    Yeh, M.; Chan, Y. L.; Chen, X. C.; ...

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depthsmore » gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.« less

  19. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    NASA Astrophysics Data System (ADS)

    Arimoto, Y.; Higashi, N.; Igarashi, Y.; Iwashita, Y.; Ino, T.; Katayama, R.; Kitaguchi, M.; Kitahara, R.; Matsumura, H.; Mishima, K.; Nagakura, N.; Oide, H.; Otono, H.; Sakakibara, R.; Shima, T.; Shimizu, H. M.; Sugino, T.; Sumi, N.; Sumino, H.; Taketani, K.; Tanaka, G.; Tanaka, M.; Tauchi, K.; Toyoda, A.; Tomita, T.; Yamada, T.; Yamashita, S.; Yokoyama, H.; Yoshioka, T.

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with 6Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  20. High precision neutron inelastic cross section measurements

    NASA Astrophysics Data System (ADS)

    Olacel, A.; Belloni, F.; Borcea, C.; Boromiza, M.; Dessagne, Ph.; Henning, G.; Kerveno, M.; Negret, A.; Nyman, M.; Pirovano, E.; Plompen, A.

    2017-06-01

    High precision neutron inelastic scattering cross section data are very important for the development of the new generation of nuclear reactors (Gen IV). Our experiments, performed using the GELINA neutron source and the GAINS spectrometer of the European Commission Joint Research Center, Geel, produce highly reliable and precise cross section data. We will present the details of the setup and the data analysis technique allowing production of such unique results, and we will show examples of two experimental results.

  1. Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model

    NASA Astrophysics Data System (ADS)

    Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.

    2003-06-01

    The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.

  2. High precision flux measurements with ENUBET

    NASA Astrophysics Data System (ADS)

    Pozzato, M.; ENUBET collaboration

    2017-09-01

    The challenges of precision neutrino physics (i.e the study of CP violation) require measurements of absolute ν cross sections at the GeV scale with exquisite (O(1)%) precision. Such precision is presently limited to about 10% by the uncertainties on neutrino flux at the source. A reduction of this uncertainty by one order of magnitude can be achieved monitoring the positron production in the decay tunnel originating from the Ke3 decays of charged kaons in a sign and momentum selected narrow band beam. This novel technique enables the measurement of the most relevant cross-sections for CP violation (νe and {\\displaystyle \\bar{ν }}e) with a precision of 1% and requires a special instrumented beam-line. Such non-conventional beam-line will be developed in the framework of the ENUBET Horizon-2020 Consolidator Grant (PI A. Longhin), recently approved by the European Research Council (grant agreement N° 681647). In this poster, we will present the Project and the early experimental results on ultra-compact calorimeters that can embedded in the instrumented decay tunnel.

  3. AmeriFlux Measurement Component (AMC) Handbook

    SciTech Connect

    Reichl, K.; Biraud, S. C.

    2016-01-01

    An AMC system was installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope Alaska (NSA) Barrow site, also known as NSA C1 at the ARM Data Archive, in August 2012. A second AMC system was installed at the third ARM Mobile Facility deployment at Oliktok Point, also known as NSA M1. This in situ system consists of 12 combination soil temperature and volumetric water content (VWC) reflectometers and one set of upwelling and downwelling PAR sensors, all deployed within the fetch of the Eddy Correlation Flux Measurement System. Soil temperature and VWC sensors placed at two depths (10 and 30 cm below the vegetation layer) at six locations (or microsites) allow soil property inhomogeneity to be monitored across a landscape. The soil VWC and temperature sensors used at NSA C1 are the Campbell Scientific CS650L and the sensors at NSA M1 use the Campbell Scientific CS655. The two sensors are nearly identical in function, and vendor specifications are based on the CS650 unless otherwise stated.

  4. Activities on Nuclear Data Measurements at Pohang Neutron Facility

    NASA Astrophysics Data System (ADS)

    Kim, Guinyun

    2009-03-01

    We report the activities of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and a 12-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to few hundreds eV by using the neutron time-of-flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements of several samples (Ta, Mo) are in general agreement with the evaluated data in ENDF/B-VI. We measured the thermal neutron capture cross-sections and the resonance integrals of the 186W(n,γ)187W reaction and the 98Mo(n,γ)99Mo reaction by the activation method using the 197Au(n,γ)198Au monitor reaction as a single comparator. We also report the isomeric yield ratios for the 44 m, gSc isomeric pairs produced from four different photonuclear reactions 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)52m,gMn, and 103Rh(γ,4n)99m,gRh by using the activation method.

  5. Lunar Prospector Neutron Measurements and TiO2 in Mare Basalt Soils

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Lawrence, D. J.; Maurice, S.; Feldman, W. C.; Barraclough, B. L.; Gasnault, O. M.; Lucey, P. G.; Blewett, D. T.; Binder, A. B.

    2001-05-01

    The TiO2 content in mare basalt soils primarily reflects the abundance of the mineral ilmenite (FeTiO3), and has been used to classify the mare basalts sampled at the landing sites. Titanium is an important elemental indicator in mare basalt petrogenesis, reflecting the composition and state of the partial melt at depth. Consequently it is important to establish the global abundance of titanium in mare basalt soils. Neutron spectrometer data can be used to do this: iron and titanium have large cross sections for thermal neutron absorption compared to other major elements in lunar minerals. The thermal neutron leakage flux of Fe- and Ti-rich mare soils is nearly a factor of three smaller than that of highlands soils. For this reason, Lunar Prospector neutron spectrometer measurements can provide constraints on TiO2 abundance on the lunar surface. Sophisticated Monte Carlo simulations of neutron transport and capture reveal that there is a linear relationship between the epithermal-to-thermal neutron flux ratio and the macroscopic absorption cross section, Σ a. Σ a is a measure of a material's ability to absorb thermal neutrons, in effect a weighted sum of the absorption contributions due to all elements. Using FeO and thorium abundance estimates from Lunar Prospector gamma ray spectrometer we can estimate the contributions of all major elements except titanium to Σ a, as well as the additional absorbing effects of the rare earth elements gadolinium and samarium. Any additional absorption must be due to the presence of titanium. We can thus derive abundance estimates of TiO2 and compare to other estimates derived spectroscopically. Our results show a significantly lower abundance of TiO2 than has been estimated using spectral reflectance techniques with Clementine data. In particular, we find much lower abundances in M. Crisium, M. Fecunditatis, and within M. Serenitatis and northern M. Nubium.

  6. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGES

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  7. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  8. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    NASA Astrophysics Data System (ADS)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  9. MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS

    SciTech Connect

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Rujiwarodom, M.; Tooprakai, P.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.

    2016-01-20

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  10. Monitoring Short-term Cosmic-ray Spectral Variations Using Neutron Monitor Time-delay Measurements

    NASA Astrophysics Data System (ADS)

    Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Rujiwarodom, M.; Tooprakai, P.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.

    2016-01-01

    Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007-2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.

  11. Neutron emission profiles and energy spectra measurements at JET

    NASA Astrophysics Data System (ADS)

    Giacomelli, L.; Conroy, S.; Belli, F.; Gorini, G.; Horton, L.; Joffrin, E.; Lerche, E.; Murari, A.; Popovichev, S.; Riva, M.; Syme, B.; JET EFDA Contributors

    2014-08-01

    The Joint European Toras (JET, Culham, UK) is the largest tokamak in the world. It is devoted to nuclear fusion experiments of magnetic confined Deuterium (D) or Deuterium-Tritium (DT) plasmas. JET has been upgraded over the years and recently it has also become a test facility of the components designed for ITER, the next step fusion machine under construction in Cadarache (France). JET makes use of many different diagnostics to measure the physical quantities of interest in plasma experiments. Concerning D or DT plasmas neutron production, various types of detectors are implemented to provide information upon the neutron total yield, emission profile and energy spectrum. The neutron emission profile emitted from the JET plasma poloidal section is reconstructed using the neutron camera (KN3). In 2010 KN3 was equipped with a new digital data acquisition system capable of high rate neutron measurements (<0.5 MCps). A similar instrument will be implemented on ITER and it is currently in its design phase. Various types of neutron spectrometers with different view lines are also operational on JET. One of them is a new compact spectrometer (KM12) based on organic liquid scintillating material which was installed in 2010 and implements a similar digital data acquisition system as for KN3. This article illustrates the measurement results of KN3 neutron emission profiles and KM 12 neutron energy spectra from the latest JET D experimental campaign C31.

  12. Scaling beta-delayed neutron measurements to large detector areas

    NASA Astrophysics Data System (ADS)

    Sutanto, F.; Nattress, J.; Jovanovic, I.

    2017-08-01

    We explore the performance of a cargo screening system that consists of two large-sized composite scintillation detectors and a high-energy neutron interrogation source by modeling and simulation. The goal of the system is to measure β-delayed neutron emission from an illicit special nuclear material by use of active interrogation. This task is challenging because the β-delayed neutron yield is small in comparison with the yield of the prompt fission secondary products, β-delayed neutrons are emitted with relatively low energies, and high neutron and gamma backgrounds are typically present. Detectors used to measure delayed neutron emission must exhibit high intrinsic efficiency and cover a large solid angle, which also makes them sensitive to background neutron radiation. We present a case study where we attempt to detect the presence of 5 kg-scale quantities of 235U in a standard air-filled cargo container using 14 MeV neutrons as a probe. We find that by using a total measurement time of ˜11.6 s and a dose equivalent of ˜1.7 mrem, the presence of 235U can be detected with false positive and false negative probabilities that are both no larger than 0.1%.

  13. Neutron detection by measuring capture gammas in a calorimetric approach

    NASA Astrophysics Data System (ADS)

    Pausch, Guntram; Herbach, Claus-Michael; Kong, Yong; Lentering, Ralf; Plettner, Cristina; Roemer, Katja; Scherwinski, Falko; Stein, Juergen; Schotanus, Paul; Wilpert, Thomas

    2011-10-01

    The neutron capture detector (NCD) is introduced as a novel detection scheme for thermal and epithermal neutrons that could provide large-area neutron counters by using common detector materials and proven technologies. The NCD is based on the fact that neutron captures are usually followed by prompt gamma cascades, where the sum energy of the gammas equals to the total excitation energy of typically 6-9 MeV. This large sum energy is measured in a calorimetric approach and taken as the signature of a neutron capture event. An NCD consists of a neutron converter, comprising of constituents with large elemental neutron capture cross-section like cadmium or gadolinium, which is embedded in common scintillator material. The scintillator must be large and dense enough to absorb with reasonable probability a portion of the sum energy that exceeds the energy of gammas emitted by common (natural, medical, industrial) radiation sources. An energy window, advantageously complemented with a multiplicity filter, then discriminates neutron capture signals against background. The paper presents experimental results obtained at the cold-neutron beam of the BER II research reactor, Helmholtz-Zentrum Berlin, and at other neutron sources with a prototype NCD, consisting of four BGO crystals with embedded cadmium sheets, and with a benchmark configuration consisting of two separate NaI(Tl) detectors. The detector responses are in excellent agreement with predictions of a simulation model developed for optimizing NCD configurations. NCDs could be deployed as neutron detectors in radiation portal monitors (RPMs). Advanced modular scintillation detector systems could even combine neutron and gamma sensitivity with excellent background suppression at minimum overall expense.

  14. Neutron Flux Interpolation with Finite Element Method in the Nuclear Fuel Cell Calculation using Collision Probability Method

    SciTech Connect

    Shafii, M. Ali; Su'ud, Zaki; Waris, Abdul; Kurniasih, Neny; Ariani, Menik; Yulianti, Yanti

    2010-12-23

    Nuclear reactor design and analysis of next-generation reactors require a comprehensive computing which is better to be executed in a high performance computing. Flat flux (FF) approach is a common approach in solving an integral transport equation with collision probability (CP) method. In fact, the neutron flux distribution is not flat, even though the neutron cross section is assumed to be equal in all regions and the neutron source is uniform throughout the nuclear fuel cell. In non-flat flux (NFF) approach, the distribution of neutrons in each region will be different depending on the desired interpolation model selection. In this study, the linear interpolation using Finite Element Method (FEM) has been carried out to be treated the neutron distribution. The CP method is compatible to solve the neutron transport equation for cylindrical geometry, because the angle integration can be done analytically. Distribution of neutrons in each region of can be explained by the NFF approach with FEM and the calculation results are in a good agreement with the result from the SRAC code. In this study, the effects of the mesh on the k{sub eff} and other parameters are investigated.

  15. In-situ monitoring the realkalisation process by neutron diffraction: Electroosmotic flux and portlandite formation

    SciTech Connect

    Castellote, Marta . E-mail: martaca@ietcc.csic.es; Llorente, Irene; Andrade, Carmen; Turrillas, Xavier; Alonso, Cruz; Campo, Javier

    2006-05-15

    Even though the electroosmotic flux through hardened cementitious materials during laboratory realkalisation trials had been previously noticed, it has never been in-situ monitored, analysing at the same time the establishment of the electroosmotic flux and the microstructure changes in the surroundings of the rebar. In this paper, two series of cement pastes, cast with CEM I and CEM I substituted in a 35% by fly ash, previously carbonated at 100% CO{sub 2}, were submitted to realkalisation treatments followed on line by simultaneous acquisition of neutron diffraction data. As a result, it has been possible to confirm the electroosmosis as the driving force of carbonates towards the rebar and to determine the range of pH in the anolyte in which most of the relevant electroosmotic phenomena takes place. On the other hand, the behaviour of the main crystalline phases involved in the process has been monitored during the treatment, with the precipitation of portlandite as main result.

  16. Neutron multiplicity measurements of Cf and Fm isotopes

    SciTech Connect

    Hoffman, D.C.; Ford, G.P.; Balagna, J.P.; Veeser, L.R.

    1980-02-01

    Prompt neutrons in coincidence with the fission fragments from the spontaneous fission of /sup 250,252,254/Cf and /sup 257/Fm were measured inside a 75-cm-diameter, Gd-loaded liquid scintillation counter having a neutron-detection efficiency of about 78%. Measurements for /sup 256/Fm were done just outside the counter with an efficiency of 31%. The kinetic energies of both fission fragments and the number of neutrons for each fission event were recorded. From these data, the fragment kinetic energies and masses and the neutron multiplicity distributions were determined for /sup 250,252,254/Cf and /sup 257/Fm. Variances of neutron multiplicity distributions as a function of total fragment kinetic energy and the ratio of fragment masses have been calculated and are presented for all the nuclides studied.

  17. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  18. Prompt Neutron Multiplicity Measurements with Portable Detectors

    SciTech Connect

    S. Mukhopadhyay, R. Wolff, R. Maurer, S. Mitchell, E. X. Smith, P. Guss, J. L. Lacy, L. Sun, A. Athanasiades

    2011-09-01

    Mobile detection of kilogram quantities of special nuclear materials (SNM) during maritime transportation is a challenging problem for the U.S. Department of Homeland Security. Counting neutrons emitted by the SNM and partitioning them from background neutrons of multiple origins is the most effective passive means of detecting the SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment is complex due to the presence of spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. This work studied the possibilities of building a prototype neutron detector using boron- 10 (10B) as the converter in a novel form factor called “straws” that would address the above problem by examining multiplicity distributions of neutrons originating from a fissioning source. Currently, commercially manufactured fission meters (FM) are available that separate cosmic neutrons from non-cosmic neutrons and quantitatively determine the strength of a fissioning source; however, these FMs use 3He, which is becoming increasingly difficult to procure; also the size and weight of a commercial FM is not conducive to manual neutron detection operations in a maritime environment. The current project may provide a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to the FM. The prototype detector provides a large-area, efficient, lightweight, more granular neutron responsive detection surface (to facilitate imaging) to ease the application of the new FMs. A novel prototype fission meter is being designed at National Security Technologies, LLC, using a thin uniform coating of 10B as neutron converter (only 1 micron thick) inside a large array of thin (4 mm diameter) copper tubes. The copper tubes are only 2-mil thick, and each holds the stretched anode wire under tension and high voltage. The tubes are filled with

  19. Measurement of the neutrino-spin correlation parameter B neutron decay using ultracold neutrons

    SciTech Connect

    Wilburn, Wesley S

    2009-01-01

    We present a new approach to measuring the neutrino-spin correlation parameter B in neutron decay. The approach combines the technology of large-area ion-implanted silicon detectors being developed for the abBA experiment, with an ultracold neutron source to provide more precise neutron polarimetry. The technique detects both proton and electron from the neutron decay in coincidence. B is determined from an electron-energy-dependent measurement of the proton spin asymmetry. This approach will provide a statistical precision of 1 x 10-4 . The systematic precision is still being evaluated, but is expected to be below 1 x 10-3 , and could approach 1 x 10-4 . A measurement of B with this precision would place constraints on supersymmetric extensions to the Standard Model.

  20. Neutron-induced Cross Section Measurements of Calcium

    NASA Astrophysics Data System (ADS)

    Guber, K.; Kopecky, S.; Schillebeeckx, P.; Kauwenberghs, K.; Siegler, P.

    2014-05-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Institute for Reference Material and Measurements of the Joint Research Centers, European Union. Neutron capture and transmission measurements were carried out using a metallic calcium sample. The measured data will be used for a new calcium evaluation, which will be submitted with covariances to the ENDF/B nuclear data library.

  1. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    SciTech Connect

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan; Maurer, Richard; Mitchell, Stephen; Guss, Paul; Lacy, Jeffrey L.; Sun, Liang; Athanasiades, Athanasios

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and

  2. Measurement of Integrated Low Frequency Flux Noise in Superconducting Flux/Phase Qubits

    SciTech Connect

    Mao Bo; Qiu Wei; Han Siyuan

    2008-11-07

    We measured the integrated low frequency flux noise ({approx}1 m{phi}{sub 0}) of an rf SQUID as a flux qubit by fitting the resonant peaks from photon assistant tunneling (PAT). The energy relaxation time Tl between the ground and first excited states in the same potential well, measured directly in time domain, is 3 ns. From these results we identified low frequency flux noise as the dominant source of decoherence. In addition, we found that the measured values of integrated flux noise in three qubits of various sizes differ more than an order of magnitude.

  3. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  4. Measurements of neutron skin in calcium and lead

    NASA Astrophysics Data System (ADS)

    Michaels, Robert

    2017-01-01

    Measurement of the parity-violating electron scattering asymmetry from 208Pb has demonstrated a new opportunity at Jefferson Lab to measure the weak charge form factor and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on 208Pb and 48Ca respectively. PREX-I ran in 2010, and CREX and a second run of PREX are currently in preparation. These are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter 48Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces. The measuements are a fundamental test of nuclear structure with applications to heavy ion research and neutron stars. Jefferson Science Associates, LLC, which operates Jefferson Lab for the U.S. DOE under U.S. DOE contract DE-AC05-060R23177.

  5. Measurement of Total Cross Sections at Pohang Neutron Facility

    SciTech Connect

    Kim, Guinyun; Meaze, A.K.M.M.H.; Ahmed, Hossain; Son, Dongchul; Lee, Young Seok; Kang, Hengsik; Cho, Moo-Hyun; Ko, In Soo; Namkung, Won; Ro, Tae-Ik.; Chung, Won-Chung; Kim, Young Ae; Yoo, Kun Joong; Chang, Jong Hwa

    2005-05-24

    The Pohang Neutron Facility, which consists of an electron linear accelerator, a water-cooled Ta target with a water moderator, and a time-of-flight path with an 11 m length has been operated since 2000. We report the status activities on the neutron total cross-section measurements in the neutron energy region from 0.01 eV to 100 eV by the neutron time-of-flight method at Pohang Neutron Facility. A 6Li-ZnS(Ag) scintillator with a diameter of 12.5 cm and a thickness of 1.5 cm has been used as a neutron detector. The background level has been determined by using notch-filters of Co, In, and Cd sheets. In order to reduce the gamma rays from Bremsstrahlung and that from neutron capture, we have employed a neutron-gamma separation system based on their different pulse shape. The present measurements for Ag, Hf, and Ta samples are compared with the previous ones and the evaluated data in ENDF/B-VI. The resonance parameters for Ag and Hf samples have been extracted from the transmission data by using the SAMMY code.

  6. METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR

    DOEpatents

    Sturm, W.J.

    1958-12-01

    A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

  7. Measurements of Neutron Capture Cross-Section for Tantalum at the Neutron Filtered Beams

    NASA Astrophysics Data System (ADS)

    Gritzay, Olena; Libman, Volodymyr

    2009-08-01

    The neutron capture cross sections of tantalum have been measured for the neutron energies 2 and 59 keV using the WWR-M Kyiv Research Reactor (KRR) of the Institute for Nuclear Research of the National Academy of Science of Ukraine. The cross sections of 181Ta (n, γ) 182Ta reaction were obtained by the activation method using a gamma-spectrometer with Ge(Li)-detector. The obtained neutron capture cross sections were compared with the known experimental data from database EXFOR/CSISRS and the ENDF libraries.

  8. Phase I measurements for the HTGR bottom reflector and Core Support Block Neutron-Streaming Experiment

    SciTech Connect

    Muckenthaler, F.J.; Holland, L.B.; Hull, J.L.; Manning, J.J.

    1984-07-01

    This report presents the Phase I measurements of the High-Temperature Gas-Cooled Reactor Bottom Reflector and Core Support Neutron Streaming Experiment conducted at the ORNL Tower Shielding Facility during FY-1983. In this phase the first four of eight segments that comprise the full experimental mockup were utilized. These were: (1) an upper boron pin layer (graphite matrix) followed by a boral shroud; (2) a graphite reflector layer; (3) a graphite coolant crossover layer; and (4) a graphite follow-on layer, all containing coolant holes. A collimated beam from the Tower Shielding Reactor II was used as the neutron source. In order to obtain a spectrum of neutrons more nearly like the spectrum expected from the HTGR, an iron and graphite spectrum modifier was inserted in the TSR-II beam ahead of the experimental mockup. The various experimental configurations tested resulted from the successive addition of the four graphite layers to the mockup. Neutron energy spectra were measured behind the spectrum modifier and the boron pin layer and integral neutron fluxes were measured behind the spectrum modifier and behind each of the four layers. The measurements were divided into two Parts, the two parts differing in the composition of the boron pin layer. During part I, a reference pin pattern was used which consisted of a combination of graphite and boronated graphite pins. During part II, a full pattern of boronated graphite pins was used. The experimental data are presented in both tabular and graphical form.

  9. Neutron Yield Measurements via Aluminum Activation

    SciTech Connect

    1999-12-08

    Neutron activation of aluminum may occur by several neutron capture reactions. Four such reactions are described here: {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na, {sup 27}Al(n, 2n){sup 26}Al and {sup 27}Al(n,p){sup 27}Mg. The radioactive nuclei {sup 28}Al, {sup 24}Na, and {sup 27}Mg, which are produced via the {sup 27}Al + n = {sup 28}Al, {sup 27}Al(n,{alpha}){sup 24}Na and {sup 27}Al(n,p){sup 27}Mg neutron reactions, beta decay to excited states of {sup 28}Si, {sup 24}Mg and {sup 27}Al respectively. These excited states then emit gamma rays as the nuclei de-excite to their respective ground states.

  10. Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region (Present and Upgrade Designs)

    SciTech Connect

    Blakeman, E.D.

    2001-01-11

    The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) is currently undergoing an upgrading program, a part of which is to increase the diameters of two of the four radiation beam tubes (HB-2 and HB-4). This change will cause increased neutron and gamma radiation dose rates at and near locations where the tubes penetrate the vessel wall. Consequently, the rate of radiation damage to the reactor vessel wall at those locations will also increase. This report summarizes calculations of the neutron and gamma flux (particles/cm{sup 2}/s) and the dpa rate (displacements/atom/s) in iron at critical locations in the vessel wall. The calculated dpa rate values have been recently incorporated into statistical damage evaluation codes used in the assessment of radiation induced embrittlement. Calculations were performed using models based on the discrete ordinates methodology and utilizing ORNL two-dimensional and three-dimensional discrete ordinates codes. Models for present and proposed beam tube designs are shown and their results are compared. Results show that for HB-2, the dpa rate in the vessel wall where the tube penetrates the vessel will be increased by {approximately}10 by the proposed enlargement. For HB-4, a smaller increase of {approximately}2.6 is calculated.

  11. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  12. Accurate measurement of a fission chamber efficiency using the prompt fission neutron method

    NASA Astrophysics Data System (ADS)

    Mathieu, Ludovic; Aïche, Mourad; Kessedjian, Grégoire; Czajkowski, Serge; Jurado, Beatriz; Marini, Paola; Tsekhanovich, Igor

    2017-09-01

    Fission Chambers (FC) are often used to determine fission cross sections and to measure the neutron beam flux via standard neutron-induced fission reactions. Thus, the fission detection efficiency is a key parameter. Several methods exist to determine this efficiency, with a final accuracy not better than 1%. The detection of prompt fission neutrons allows events related to the fission process to be tagged, and enables the efficiency to be inferred with accuracy of the order of few 0.1%. This method is very robust since it is independent in first order to several factors like geometry, used materials or neutron contour selection. To obtain high accuracy, few corrections have still to be taken into account. In particular, the neutron detectors have to cover several detection angles. In addition, the background contribution of neutrons from cosmic rays or from an accelerator has to be removed. Several experiments based on the use of a 252Cf source are presented to describe all these points.

  13. Some features and results of thermal neutron background measurements with the [ZnS(Ag)+6LiF] scintillation detector

    NASA Astrophysics Data System (ADS)

    Kuzminov, V. V.; Alekseenko, V. V.; Barabanov, I. R.; Etezov, R. A.; Gangapshev, A. M.; Gavrilyuk, Yu. M.; Gezhaev, A. M.; Kazalov, V. V.; Khokonov, A. Kh.; Panasenko, S. I.; Ratkevich, S. S.

    2017-01-01

    Features of a thermal neutron test detector with thin scintillator [ZnS(Ag)+6LiF] are described. Background of the detector and its registration efficiency were defined as a result of measurements. The thermal neutron flux at different locations, and for different conditions around the Baksan Neutrino Observatory are reported.

  14. Ship Effect Measurements With Fiber Optic Neutron Detector

    SciTech Connect

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  15. Pulsed Neutron Measurments With A DT Neutron Generator for an Annular HEU Uranium Metal Casting

    SciTech Connect

    Mihalczo, John T; Archer, Daniel E; Wright, Michael C; Mullens, James Allen

    2007-09-01

    Measurements were performed with a single annular, stainless-steel-canned casting of uranium (93.17 wt% 235U) metal ( ~18 kg) to provide data to verify calculational methods for criticality safety. The measurements used a small portable DT generator with an embedded alpha detector to time and directionally tag the neutrons from the generator. The center of the time and directional tagged neutron beam was perpendicular to the axis of the casting. The radiation detectors were 1x1x6 in plastic scintillators encased in 0.635-cm-thick lead shields that were sensitive to neutrons above 1 MeV in energy. The detector lead shields were adjacent to the casting and the target spot of the generator was about 3.8 cm from the casting at the vertical center. The time distribution of the fission induced radiation was measured with respect to the source event by a fast (1GHz) processor. The measurements described in this paper also include time correlation measurements with a time tagged spontaneously fissioning 252Cf neutron source, both on the axis and on the surface of the casting. Measurements with both types of sources are compared. Measurements with the DT generator closely coupled with the HEU provide no more additional information than those with the Cf source closely coupled with the HEU and are complicated by the time and directionally tagged neutrons from the generator scattering between the walls and floor of the measurements room and the casting while still above detection thresholds.

  16. Higher Resolution Neutron Velocity Spectrometer Measurements of Enriched Uranium

    DOE R&D Accomplishments Database

    Rainwater, L. J.; Havens, W. W. Jr.

    1950-08-09

    The slow neutron transmission of a sample of enriched U containing 3.193 gm/cm2 was investigated with a resolution width of 1 microsec/m. Results of transmission measurements are shown graphically. (B.J.H.)

  17. Calibration technique for the neutron surface moisture measurement system

    SciTech Connect

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined.

  18. Measurement of internal conversion electrons from Gd neutron capture

    NASA Astrophysics Data System (ADS)

    Kandlakunta, P.; Cao, L. R.; Mulligan, P.

    2013-03-01

    Gadolinium (Gd) is a suitable material for neutron conversion because of its superior neutron absorption cross-section. However, the principal secondary particles that generate electron-hole pairs in a semiconductor detector after Gd neutron capture are low-energy internal conversion (IC) electrons. We measured the IC electron spectrum due to Gd neutron capture by using a thermal neutron beam and a digitizer-based multidetector spectroscopy. We also discussed the effective use of the IC electrons in the context of a twin-detector design and the associated gamma-ray rejection issues. Extensive simulations of the spectra of IC electrons and gamma rays agreed well with the experimental results; both types of results support the feasibility of the proposed n-γ separation method.

  19. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    NASA Astrophysics Data System (ADS)

    Iyengar, A.; Beach, M.; Newby, R. J.; Fabris, L.; Heilbronn, L. H.; Hayward, J. P.

    2015-02-01

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee, USA. The 0.5 m2 system, consisting of eight EJ-301 liquid scintillation detectors, was used to collect neutron background measurements in order to better understand the systematic variations in background that depend solely on the street-level measurement position in a downtown area. Data was collected along 5 different streets, and the measurements were found to be repeatable. Using 10-min measurements, the fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10% to 50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the net shielding of the cosmic ray neutron flux by adjacent buildings. For reference, the building structure as observed at street level is quantified in part here by a measured angle-of-open-sky metric.

  20. Neutron-Induced Cross Sections Measurements of Calcium

    SciTech Connect

    Guber, Klaus H; Kopecky, S.; Schillebeeckx, P.; Kauwenberghs, K.; Siegler, P.

    2013-01-01

    To support the US Department of Energy Nuclear Criticality Safety Program neutron induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Institute for Reference Material and Measurements of the Joint Research Centers, European Union. Neutron capture and transmission measurements were carried out using a metallic calcium sample. The obtained data will be used for a new calcium evaluation, which will be submitted with its covariances to the ENDBF/B nuclear data base.

  1. Dynamic temperature and velocity measurements using neutron resonance spectroscopy

    SciTech Connect

    Yuan, V.W.; Asay, B.W.; Boat, R.

    1997-08-01

    The use of Doppler broadening in neutron resonances as a quantitative way to measure temperatures has been proposed and investigated for cases of static or quasi-static temperature measurements. Neutrons are temperature probes that can penetrate a sample to view its interior. At the same time products that may shield a sample optically are not opaque to neutrons so that temperature measurements can be made in their presence. When neutrons are attenuated by a sample material, the time-of-flight (TOF) spectrum of the transmitted neutrons exhibits a series of characteristic dips or resonances. These resonances appear when neutrons are captured from the beam in the formation of excited states in the A + 1 nucleus (n + A {ge} (A + 1){sup *}). Subsequent de-excitation of these states, by gamma emission or particle emission into 4{pi} steradians, effectively eliminates the captured neutrons from the transmitted beam. The resonance locations and lineshapes which appear in the TOF spectrum are unique to each isotopic element, and temperature determinations can be localized through the positioning of resonant tags.

  2. Measurement of the Neutron Spectrum of a DD Electronic Neutron Generator

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-08-01

    A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3? to 92.7? with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  3. Measurement Of The Neutron Spectrum Of A DD Electronic Neutron Generator

    NASA Astrophysics Data System (ADS)

    Chichester, David L.; Johnson, James T.; Seabury, Edward H.

    2011-06-01

    A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3° to 92.7° with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  4. Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement

    SciTech Connect

    Wang, G. B.; Wang, K.; Liu, H. G.; Li, R. D.

    2013-07-01

    A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

  5. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    NASA Astrophysics Data System (ADS)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  6. Ultra Low Level Environmental Neutron Measurements Using Superheated Droplet Detectors

    SciTech Connect

    Fernandes, A.C.; Felizardo, M.; Girard, T.A.; Kling, A.; Ramos, A.R.; Marques, J.G.; Prudencio, M.I.; Marques, R.; Carvalho, F.P.

    2015-07-01

    Through the application of superheated droplet detectors (SDDs), the SIMPLE project for the direct search for dark matter (DM) reached the most restrictive limits on the spin-dependent sector to date. The experiment is based on the detection of recoils following WIMP-nuclei interaction, mimicking those from neutron scattering. The thermodynamic operation conditions yield the SDDs intrinsically insensitive to radiations with linear energy transfer below ∼150 keVμm{sup -1} such as photons, electrons, muons and neutrons with energies below ∼40 keV. Underground facilities are increasingly employed for measurements in a low-level radiation background (DM search, gamma-spectroscopy, intrinsic soft-error rate measurements, etc.), where the rock overburden shields against cosmic radiation. In this environment the SDDs are sensitive only to α-particles and neutrons naturally emitted from the surrounding materials. Recently developed signal analysis techniques allow discrimination between neutron and α-induced signals. SDDs are therefore a promising instrument for low-level neutron and α measurements, namely environmental neutron measurements and α-contamination assays. In this work neutron measurements performed in the challenging conditions of the latest SIMPLE experiment (1500 mwe depth with 50-75 cm water shield) are reported. The results are compared with those obtained by detailed Monte Carlo simulations of the neutron background induced by {sup 238}U and {sup 232}Th traces in the facility, shielding and detector materials. Calculations of the neutron energy distribution yield the following neutron fluence rates (in 10{sup -8} cm{sup -2}s{sup -1}): thermal (<0.5 eV): 2.5; epithermal (0.5 eV-100 keV): 2.2; fast (>1 MeV): 3.9. Signal rates were derived using standard cross sections and codes routinely employed in reactor dosimetry. The measured and calculated neutron count rates per unit of active mass were 0.15 ct/kgd and 0.33 ct/kg-d respectively. As the major

  7. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    SciTech Connect

    Kang, Misun; Bilheux, Hassina Z; Voisin, Sophie; Cheng, Chu-lin; Perfect, Edmund; Horita, Juske; Warren, Jeffrey

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  8. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    NASA Astrophysics Data System (ADS)

    Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; Warren, J. M.

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  9. Analysis of a link of embrittlement mechanisms and neutron flux effect as applied to reactor pressure vessel materials of WWER

    NASA Astrophysics Data System (ADS)

    Margolin, B. Z.; Yurchenko, E. V.; Morozov, A. M.; Pirogova, N. E.; Brumovsky, M.

    2013-03-01

    The effect of neutron flux on embrittlement of WWER RPV materials is analyzed for cases when different radiation defects prevail. Data bases on the ductile-brittle transition temperature shifts obtained in the surveillance specimens programs and the research programs are used. The material embrittlement mechanisms for which the flux effect is practically absent and for which the flux effect is remarkable are determined. For case when the phosphorus segregation mechanism dominates the theoretical justification of the absence of the flux effect is performed on the basis of the theory of radiation-enhanced diffusion.

  10. Setup for polarized neutron imaging using in situ 3He cells at the Oak Ridge National Laboratory High Flux Isotope Reactor CG-1D beamline

    NASA Astrophysics Data System (ADS)

    Dhiman, I.; Ziesche, Ralf; Wang, Tianhao; Bilheux, Hassina; Santodonato, Lou; Tong, X.; Jiang, C. Y.; Manke, Ingo; Treimer, Wolfgang; Chatterji, Tapan; Kardjilov, Nikolay

    2017-09-01

    In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ 3He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the Fe3Pt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ 3He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.

  11. A New Approach to Measuring the Neutron Decay Correlations with Cold Neutrons at LANSCE

    SciTech Connect

    Wilburn, W.S.; Bowman, J.D.; Greene, G.L.; Jones, G.L.; Kapustinsky, J.S.; Penttila, S.I.

    1999-06-08

    Precision measurements of the neutron beta-decay correlations A, B, a, and b provide important tests of the standard model of electroweak interactions: a test of the unitarity of the first row of the CKM matrix, a search for new weak interactions, a test of the theory of nuclear beta decays, and a test of the conserved-vector-current hypothesis. The authors are designing an experiment at the LANSCE short-pulse spallation source to measure all four correlations to an order of magnitude better accuracy than the existing measurements. The accuracy of the previous measurements was limited by systematics. The design of the proposed experiment makes use of the pulsed nature of the LANSCE source to reduce systematic errors associated with the measurement of the neutron polarization as well as other systematic errors. In addition, the authors are developing silicon strip detectors for detecting both the proton and electron from the neutron decay.

  12. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    DOE PAGES

    Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; ...

    2015-11-12

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction inmore » background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.« less

  13. Systematic measurement of fast neutron background fluctuations in an urban area using a mobile detection system

    SciTech Connect

    Iyengar, Anagha; Beach, Matthew; Newby, Robert J.; Fabris, Lorenzo; Heilbronn, Lawrence H.; Hayward, Jason P.

    2015-11-12

    Neutron background measurements using a mobile trailer-based system were conducted in Knoxville, Tennessee. The 0.5 m2 system consisting of 8 EJ-301 liquid scintillation detectors was used to collect neutron background measurements in order to better understand the systematic background variations that depend solely on the street-level measurement position in a local, downtown area. Data was collected along 5 different streets in the downtown Knoxville area, and the measurements were found to be repeatable. Using 10-min measurements, fractional uncertainty in each measured data point was <2%. Compared with fast neutron background count rates measured away from downtown Knoxville, a reduction in background count rates ranging from 10-50% was observed in the downtown area, sometimes varying substantially over distances of tens of meters. These reductions are attributed to the shielding of adjacent buildings, quantified in part here by the metric angle-of-open-sky. The adjacent buildings may serve to shield cosmic ray neutron flux.

  14. Measuring fluence of fast neutrons with planar silicon detectors

    NASA Astrophysics Data System (ADS)

    Zamyatin, N. I.; Cheremukhin, A. E.; Shafronovskaya, A. I.

    2017-09-01

    The results of measurements of 1-MeV (Si) equivalent fast neutron fluence with silicon planar detectors are reported. The measurement method is based on the linear dependence of the reverse detector current increment on the neutron fluence: ΔI = α I × Φ × V. This technique provides an opportunity to measure the equivalent fluence in a wide dynamic range from 108 to 1016 cm-2 with an unknown neutron energy spectrum and without detector calibration. The proposed method was used for monitoring in radiation resistance tests of different detector types at channel no. 3 of IBR-2 and for determining the fluence of fission and leakage neutrons at the KVINTA setup.

  15. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  16. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  17. Neutron diffraction measurements at the INES diffractometer using a neutron radiative capture based counting technique

    NASA Astrophysics Data System (ADS)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.

    2011-10-01

    The global shortage of 3He gas is an issue to be addressed in neutron detection. In the context of the research and development activity related to the replacement of 3He for neutron counting systems, neutron diffraction measurements performed on the INES beam line at the ISIS pulsed spallation neutron source are presented. For these measurements two different neutron counting devices have been used: a 20 bar pressure squashed 3He tube and a Yttrium-Aluminum-Perovskite scintillation detector. The scintillation detector was coupled to a cadmium sheet that registers the prompt radiative capture gamma rays generated by the ( n, γ) nuclear reactions occurring in cadmium. The assessment of the scintillator based counting system was done by performing a Rietveld refinement analysis on the diffraction pattern from an ancient Japanese blade and comparing the results with those obtained by a 3He tube placed at the same angular position. The results obtained demonstrate the considerable potential of the proposed counting approach based on the radiative capture gamma rays at spallation neutron sources.

  18. Solid state neutron detector array

    DOEpatents

    Seidel, John G.; Ruddy, Frank H.; Brandt, Charles D.; Dulloo, Abdul R.; Lott, Randy G.; Sirianni, Ernest; Wilson, Randall O.

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  19. Solid state neutron detector array

    DOEpatents

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  20. Solid state neutron detector array

    SciTech Connect

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  1. Nickel Foil as Transmutation Detector for Neutron Fluence Measurements

    NASA Astrophysics Data System (ADS)

    Klupák, Vít; Viererbl, Ladislav; Lahodová, Zdena; Šoltés, Jaroslav; Tomandl, Ivo; Kudějová, Petra

    2016-02-01

    Activation detectors are very often used for determination of the neutron fluence in reactor dosimetry. However, there are few disadvantages concerning these detectors; it is the demand of the knowledge of the irradiation history and a loss of information due to a radioactive decay in time. Transmutation detectors TMD could be a solution in this case. The transmutation detectors are materials in which stable or long-lived nuclides are produced by nuclear reactions with neutrons. From a measurement of concentration of these nuclides, neutron fluence can be evaluated regardless of the cooling time.

  2. Spin measurement and neutron resonance spectroscopy for ^155Gd

    NASA Astrophysics Data System (ADS)

    Baramsai, Bayarbadrakh; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Wouters, J. M.; Ullmann, J. L.; Viera, D. J.; Agvaanluvsan, U.; Becvar, F.; Krticka, M.

    2009-05-01

    The ^155Gd(n,γ) reaction has been measured with the DANCE calorimeter at Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture γ - rays. With this information the spins of the neutron capture resonances have been determined. The improved sensitivity of this method allowed the determination of the spins of even weak and unresolved resonances. With these new spin assignments as well as previously determined resonance parameters, level spacings and neutron strength functions are determined separately for s-wave resonances with J = 1 and 2.

  3. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    PubMed

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings.

  4. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  5. Analysis of the neutron component at high altitude mountains using active and passive measurement devices

    NASA Astrophysics Data System (ADS)

    Hajek, M.; Berger, T.; Schöner, W.; Vana, N.

    2002-01-01

    The European Council directive 96/29/Euratom requires dosimetric precautions if the effective dose exceeds 1 mSv/a. On an average, this value is exceeded by aircrew members. Roughly half of the radiation exposure at flight altitudes is caused by cosmic ray-induced neutrons. Active ( 6LiI(Eu)-scintillator) and passive (TLDs) Bonner sphere spectrometers were used to determine the neutron energy spectra atop Mt. Sonnblick (3105 m) and Mt. Kitzsteinhorn (3029 m). Further measurements in a mixed radiation field at CERN as well as in a proton beam of 62 MeV at Paul Scherrer Institute, Switzerland, confirmed that not only neutrons but also charged particles contribute to the readings of active detectors, whereas TLD-600 and TLD-700 in pair allow the determination of the thermal neutron flux. Unfolding of the detector data obtained atop both mountains shows two relative maxima around 1 MeV and 85 MeV, which have to be considered for the assessment of the biologically relevant dose equivalent. By convoluting the spectra with appropriate conversion functions the neutron dose equivalent rate was determined to be 150±15 nSv/h. The total dose equivalent rate determined by the HTR-method was 210±15 nSv/h. The results are in good agreement with LET-spectrometer and Sievert counter measurements carried out simultaneously.

  6. Measurements of neutron dose rates with a balloon in Japan.

    PubMed

    Nagaoka, K; Hiraide, I; Sato, K; Yamagami, T; Nakamura, T; Yabutani, T

    2007-01-01

    Measurements of cosmic-ray neutron dose rates with a balloon in Sanriku, Japan (geographic location: 39 degrees N, 142 degrees E; corresponding geomagnetic latitude: 30 degrees N) were conducted at an altitude from 0.2 to 25 km on 25-26 August 2004 when solar activity was at an average level. Neutron dose rates given as ambient dose equivalent rates (H(10)) were measured with high-sensitive neutron dose equivalent counters and electronic silicon personal dosimeters (EPDs). The neutron dose rates increased with increasing altitude, but they were saturated around 15-20 km and decreased with increasing altitude beyond 20 km. The neutron ambient dose equivalent rate was 1.5 microSv/h(- 1) at 20 km. Measured values were corrected for the deviation of the energy response of the dose equivalent counter from the fluence-to-ambient dose equivalent conversion coefficient, and the corrected values were very close to the calculated values with EPCARD. On the other hand, neutron measurements by the EPDs gave about 10 times overestimation because of the high sensitivity to cosmic-ray protons.

  7. Neutron dose and energy spectra measurements at Savannah River Plant

    SciTech Connect

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers,/sup 3/He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs.

  8. Deuterated Liquid Scintillators: A New Tool for Neutron Measurements

    SciTech Connect

    Ojaruega, M.; Becchetti, F. D.; Torres-Isea, R.; Villano, A. N.; Roberts, A.; Kolata, J. J.; Lawrence, C. C.; Pozzi, S. A.; Flaska, M.; Clarke, S. D.

    2011-12-13

    The response of large (4x6) deuterated liquid scintillators (up to 10 cm diameter by 15 cm) to neutrons in the energy range from 0.5 MeV to 20 MeV has been studied using several nuclear reactions, including d(d,n), and {sup 12}C(d,n){sup 13}N, at the University of Notre Dame FN tandem accelerator. The latter two reactions utilized 9 MeV and 16 MeV deuteron beams, including a pulsed beam that also permitted time-of-flight (ToF) measurements. Combining pulse-shape discrimination and (ToF) allows gating on specific neutron energy groups to determine the detector response to specific neutron energies. Newly-obtained and optimized pulse shape discrimination using digitized pulse analysis from these detectors will be presented in this paper. These measurements confirmed the ability of these detectors to provide useful neutron spectra without ToF.

  9. Comparison of HEU and LEU Fuel Neutron Spectrum for ATR Fuel Element and ATR Flux-Trap Positions

    SciTech Connect

    G. S. Chang

    2008-10-01

    The Advanced Test Reactor (ATR) is a high power and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the high total core power and high neutron flux, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. An optimized low-enriched uranium (LEU) (U-10Mo) core conversion case, which can meet the project requirements, has been selected. However, LEU contains a significant quantity of high density U-238 (80.3 wt.%), which will harden the neutron spectrum in the core region. Based on the reference ATR HEU and the optimized LEU full core plate-by-plate (PBP) models, the present work investigates and compares the neutron spectra differences in the fuel element (FE), Northeast flux trap (NEFT), Southeast flux trap (SEFT), and East flux trap (EFT) positions. A detailed PBP MCNP ATR core model was developed and validated for fuel cycle burnup comparison analysis. The current ATR core with HEU U 235 enrichment of 93.0wt.% was used as the reference model. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm (20 mil). In this work, an optimized LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.330 mm (13 mil) and the U-235 enrichment of 19.7 wt.% was used to calculate the impact of the neutron spectrum in FE and FT positions. MCNP-calculated results show that the neutron spectrum in the LEU FE is slightly harder than in the HEU FE, as expected. However, when neutrons transport through water coolant and beryllium (Be), the neutrons are thermalized to an equilibrium neutron spectrum as a function of water volume fraction in the investigated FT positions. As a result, the neutron spectrum differences of the HEU and LEU in the NEFT, SEFT, and EFT are negligible. To demonstrate that the LEU core fuel cycle performance can meet the

  10. Precision Measurement of 56Fe(n,n γ) Cross Sections Using 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Koltick, David

    2016-03-01

    Integral production cross sections for 846.8 keV and 1238.3 keV prompt gamma rays from 14.1 MeV neutrons interactions on 56Fe are reported. The experimental technique takes advantage of the 1.5 nanosecond coincidence timing resolution between the neutron production time and the gamma ray detection time to reject noise, together with the large 30% solid angle gamma ray coverage. The scattering angle coverage with respect to the neutron beam direction extends from 60 degrees to 120 degrees. The neutron flux is measured using the detected associated alpha-particle from the D-T fusion reaction produced using an associated particle neutron generator. Present cross section measurements using other techniques with limited timing resolution and solid angle coverage are in agreement at neutron energies lower than 6 MeV. At higher neutron energies reported results can disagree by more than 20%. The more accurate technique used in these measurements can distinguish between the differences in the present reported results at higher neutron energies. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  11. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  12. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  13. Heat flux measurement in SSME turbine blade tester

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1990-01-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  14. Heat flux measurement in SSME turbine blade tester

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1990-01-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  15. From the similarities between neutrons and radon to advanced radon-detection and improved cold fusion neutron-measurements

    NASA Astrophysics Data System (ADS)

    Tommasino, L.; Espinosa, G.

    2014-07-01

    Neutrons and radon are both ubiquitous in the earth's crust. The neutrons of terrestrial origin are strongly related to radon since they originate mainly from the interactions between the alpha particles from the decays of radioactive-gas (namely Radon and Thoron) and the light nuclei. Since the early studies in the field of neutrons, the radon gas was used to produce neutrons by (α, n) reactions in beryllium. Another important similarity between radon and neutrons is that they can be detected only through the radiations produced respectively by decays or by nuclear reactions. These charged particles from the two distinct nuclear processes are often the same (namely alpha-particles). A typical neutron detector is based on a radiator facing a alpha-particle detector, such as in the case of a neutron film badge. Based on the similarity between neutrons and radon, a film badge for radon has been recently proposed. The radon film badge, in addition to be similar, may be even identical to the neutron film badge. For these reasons, neutron measurements can be easily affected by the presence of unpredictable large radon concentration. In several cold fusion experiments, the CR-39 plastic films (typically used in radon and neutron film-badges), have been the detectors of choice for measuring neutrons. In this paper, attempts will be made to prove that most of these neutron-measurements might have been affected by the presence of large radon concentrations.

  16. Incoherent Neutron Scattering Measurements of Hydrogen-Charged Zircaloy-4

    SciTech Connect

    Garlea, Elena; Choo, Hahn; Garlea, Vasile O; Liaw, Peter K; Hubbard, Camden R

    2007-01-01

    Qualitative and quantitative phase measurements were conducted on Zircaloy-4 round bars using neutron scattering techniques. The mapping through the thickness of the specimens using neutron diffraction showed the presence of the face-centered-cubic delta zirconium hydride ({delta}-ZrH{sub 2}) phase on the surface. To determine the relative amount of hydrogen in the Zircaloy-4 samples, the increase of the incoherent scattering with the hydrogen content was calibrated using standard samples for which the hydrogen content was known.

  17. An ultracold neutron storage bottle for UCN density measurements

    NASA Astrophysics Data System (ADS)

    Bison, G.; Burri, F.; Daum, M.; Kirch, K.; Krempel, J.; Lauss, B.; Meier, M.; Ries, D.; Schmidt-Wellenburg, P.; Zsigmond, G.

    2016-09-01

    We have developed a storage bottle for ultracold neutrons (UCNs) in order to measure the UCN density at the beamports of the Paul Scherrer Institute's (PSI) UCN source. This paper describes the design, construction and commissioning of the robust and mobile storage bottle with a volume comparable to typical storage experiments (32 L) e.g. searching for an electric dipole moment of the neutron.

  18. Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA

    SciTech Connect

    Winters, R. R.

    2000-08-25

    This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + {sup 88}Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model.

  19. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-98

    SciTech Connect

    Jammes, C.; Filliatre, P.; De Izarra, G.; Elter, Zs.; Pazsit, I.; Verma, V.; Hellesen, C.; Jacobsson, S.; Hamrita, H.; Bakkali, M.; Chapoutier, N.; Scholer, A-C.; Verrier, D.; Cantonnet, B.; Nappe, J-C.; Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E.; Jadot, F.

    2015-07-01

    The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)

  20. SPECTRON, a neutron noise measurement system in frequency domain.

    PubMed

    de Izarra, G; Jammes, C; Geslot, B; Di Salvo, J; Destouches, C

    2015-11-01

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the β(eff) parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON.