Science.gov

Sample records for neutron generator production

  1. Pathways to agility in the production of neutron generators

    SciTech Connect

    Stoltz, R.E.; Beavis, L.C.; Cutchen, J.T.; Garcia, P.; Gurule, G.A.; Harris, R.N.; McKey, P.C.; Williams, D.W.

    1994-02-01

    This report is the result of a study team commissioned to explore pathways for increased agility in the manufacture of neutron generators. As a part of Sandia`s new responsibility for generator production, the goal of the study was to identify opportunities to reduce costs and increase flexibility in the manufacturing operation. Four parallel approaches (or pathways) were recommended: (1) Know the goal, (2) Use design leverage effectively, (3) Value simplicity, and (4) Configure for flexibility. Agility in neutron generator production can be enhanced if all of these pathways are followed. The key role of the workforce in achieving agility was also noted, with emphasis on ownership, continuous learning, and a supportive environment.

  2. Neutron generator production mission in a national laboratory.

    SciTech Connect

    Pope, Larry E.

    2007-08-01

    In the late 1980's the Department of Energy (DOE) faced a future budget shortfall. By the spring of 1991, the DOE had decided to manage this problem by closing three production plants and moving production capabilities to other existing DOE sites. As part of these closings, the mission assignment for fabrication of War Reserve (WR) neutron generators (NGs) was transferred from the Pinellas Plant (PP) in Florida to Sandia National Laboratories, New Mexico (SNL/NM). The DOE directive called for the last WR NG to be fabricated at the PP before the end of September 1994 and the first WR NG to be in bonded stores at SNL/NM by October 1999. Sandia National Laboratories successfully managed three significant changes to project scope and schedule and completed their portion of the Reconfiguration Project on time and within budget. The PP was closed in October 1995. War Reserve NGs produced at SNL/NM were in bonded stores by October 1999. The costs of the move were recovered in just less than five years of NG production at SNL/NM, and the annual savings today (in 1995 dollars) is $47 million.

  3. Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products

    NASA Astrophysics Data System (ADS)

    Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula

    2015-10-01

    The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation

    SciTech Connect

    Maksimchuk, A.; Raymond, A.; Yu, F.; Dollar, F.; Willingale, L.; Zulick, C.; Krushelnick, K.; Petrov, G. M.; Davis, J.

    2013-05-13

    Experiments on the interaction of an ultra-short pulse laser with heavy-water, ice-covered copper targets, at an intensity of 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, were performed demonstrating the generation of a 'pure' deuteron beam with a divergence of 20 Degree-Sign , maximum energy of 8 MeV, and a total of 3 Multiplication-Sign 10{sup 11} deuterons with energy above 1 MeV-equivalent to a conversion efficiency of 1.5%{+-} 0.2%. Subsequent experiments on irradiation of a {sup 10}B sample with deuterons and neutron generation from d-d reactions in a pitcher-catcher geometry, resulted in the production of {approx}10{sup 6} atoms of the positron emitter {sup 11}C and a neutron flux of (4{+-}1) Multiplication-Sign 10{sup 5} neutrons/sterad, respectively.

  7. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  10. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  11. Use of Aria to simulate laser weld pool dynamics for neutron generator production.

    SciTech Connect

    Noble, David R.; Notz, Patrick K.; Martinez, Mario J.; Kraynik, Andrew Michael

    2007-09-01

    This report documents the results for the FY07 ASC Integrated Codes Level 2 Milestone number 2354. The description for this milestone is, 'Demonstrate level set free surface tracking capabilities in ARIA to simulate the dynamics of the formation and time evolution of a weld pool in laser welding applications for neutron generator production'. The specialized boundary conditions and material properties for the laser welding application were implemented and verified by comparison with existing, two-dimensional applications. Analyses of stationary spot welds and traveling line welds were performed and the accuracy of the three-dimensional (3D) level set algorithm is assessed by comparison with 3D moving mesh calculations.

  12. Thermal-to-fusion neutron convertor and Monte Carlo coupled simulation of deuteron/triton transport and secondary products generation

    NASA Astrophysics Data System (ADS)

    Wang, Guan-bo; Liu, Han-gang; Wang, Kan; Yang, Xin; Feng, Qi-jie

    2012-09-01

    Thermal-to-fusion neutron convertor has being studied in China Academy of Engineering Physics (CAEP). Current Monte Carlo codes, such as MCNP and GEANT, are inadequate when applied in this multi-step reactions problems. A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) has been developed to simulate such coupled problem, from neutron absorption, to charged particle ionization and secondary neutron generation. "Forced particle production" variance reduction technique has been implemented to improve the calculation speed distinctly by making deuteron/triton induced secondary product plays a major role. Nuclear data is handled from ENDF or TENDL, and stopping power from SRIM, which described better for low energy deuteron/triton interactions. As a validation, accelerator driven mono-energy 14 MeV fusion neutron source is employed, which has been deeply studied and includes deuteron transport and secondary neutron generation. Various parameters, including fusion neutron angle distribution, average neutron energy at different emission directions, differential and integral energy distributions, are calculated with our tool and traditional deterministic method as references. As a result, we present the calculation results of convertor with RSMC, including conversion ratio of 1 mm 6LiD with a typical thermal neutron (Maxwell spectrum) incidence, and fusion neutron spectrum, which will be used for our experiment.

  13. Neutron Production from Z-pinch Plasmas at the 1 MA Zebra Generator

    NASA Astrophysics Data System (ADS)

    McKee, Erik Scott

    Neutrons produced deuterium Z-pinch plasmas are widely acknowledged to be a consequence of highly accelerated deuterons undergoing nuclear fusion with relatively stationary deuterons. The acceleration is thought to occur in intense fields created in the MHD instabilities that punctuate the plasma column. Interestingly, the energies of the accelerated ions exceed the applied voltage across the electrode gap. We use the 1 MA Zebra pulsed-power generator at the Nevada Terawatt Facility (NTF) to explore this poorly understood fast neutron production mechanism by creating deuterium Z-pinches in three distinct types of target loads. The loads are a cylindrical shell of deuterium gas, the far less explored deuterided palladium wire arrays, and a deuterium-carbon ablated laser plume target, which is unique to the NTF. The pinch dynamics vary considerably in these three targets and provide the opportunity to explore the ion acceleration mechanism. We infer the characteristics of the accelerating fields from a wide range of diagnostic data including the neutron yield, energy spectrum and angular distribution, and the properties of the matching electron beams that are accelerated in the same field, and the energetic X-rays they produce on stopping. The plasma and the instabilities were recorded on several high-speed imaging diagnostics along with time-integrated soft (<10 keV) X-ray pinhole images. The three load types produced total neutron yields in the 108-1010 n/pulse range. The synchronization we observe between the ion and electron beams and the development of instabilities leads us to conrm the acceleration hypothesis. We also present the characteristics of the fields and ion beams in these varied pinches.

  14. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  15. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  16. Report of tritide study at the Responsive Neutron Generator Product Deployment Center.

    SciTech Connect

    Burkhart, Robert; Coffey, Jaime

    2008-11-01

    This report documents a study of sample counting results for wipes from routine surface area monitoring conducted at the Responsive Neutron Generator Product Deployment Center (RNGPDC) at Sandia National Laboratories (SNL). The study was initiated in November 2006, with two samples suspected of containing erbium tritide, after some samples were found to exhibit higher tritium counting rates upon recount at a later time. The main goal of the study was to determine whether the current practice of analyzing tritium wipe samples once, within a few days of sample collection, is adequate to accurately quantify the amount of tritium on the sample when tritides may be present. Recommendations are made toward routine recounting of vials suspected of containing particulate forms of tritium.

  17. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  18. Surface Mounted Neutron Generators

    NASA Astrophysics Data System (ADS)

    Elizondo-Decanini, Juan M.

    2012-10-01

    A deuterium-tritium (DT) base reaction pulsed neutron generator packaged in a flat computer chip shape of 1.54 cm (0.600 in) wide by 3.175 cm (1.25 in) length and 0.3 cm (0.120 in) thick has been successfully demonstrated to produce 14 MeV neutrons at a rate of 10^9 neutrons per second. The neutron generator is based on a deuterium ion beam accelerated to impact a tritium loaded target. The accelerating voltage is in the 15 to 20 kV in a 3 mm (0.120 in) gap, the ion beam is shaped by using a lens design to produce a flat ion beam that conforms to the flat rectangular target. The ion source is a simple surface mounted deuterium filled titanium film with a fused gap that operates at a current-voltage design to release the deuterium during a pulse length of about 1 μs. We present the general description of the working prototypes, which we have labeled the ``NEUTRISTOR.''[4pt] Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. Work funded by the LDRD office.

  19. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  20. Short pulse neutron generator

    SciTech Connect

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  1. Hot deuteron generation and neutron production in deuterated nanowire array irradiated at relativistic intensity

    NASA Astrophysics Data System (ADS)

    Curtis, Alden; Calvi, Chase; Tinsley, Jim; Hollinger, Reed; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Buss, Conrad; Shlyaptsev, Vyacheslav; Kaymak, V.; Pukhov, Alexander; Rocca, Jorge

    2016-10-01

    Irradiation of arrays of aligned high aspect ratio nanowires with high contrast femtosecond laser pulses of relativistic intensity was recently shown to volumetrically heat near solid density plasmas to multi-KeV energy. Using aligned arrays of deuterated polyethylene nanowires (CD2) irradiated at laser intensities of up to 1 ×1020 W/cm2 we are able to generate near solid density plasmas in which the tail of the deuteron distribution was measured to reach energies of up to 3 MeV, in agreement with particle-in-cell simulations. Comparative measurements conducted using flat CD2 targets irradiated by the same laser pulses show the maximum deuteron energies are sub-MeV. We also observed a 100x increase in the number of neutrons produced as compared to flat CD2 targets irradiated at the same conditions, with the highest yield shots producing above 106 neutrons per Joule of laser energy. Work supported by AFOSR Award FA9560-14-10232 and NSTec SDRD program.

  2. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-10

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 10{sup 10} n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  3. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  4. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  5. Monte Carlo modelling of distributions of the d-d and d-t reaction products in a dedicated measuring chamber at the fast neutron generator

    NASA Astrophysics Data System (ADS)

    Wiącek, U.; Dankowski, J.

    2015-04-01

    A fast neutron generator with a tritium target can be used to generate d-d and d-t reaction products corresponding to thermonuclear reactions in tokamaks or stellarators. In this way, convenient laboratory conditions for tests of spectrometric detectors - prior to their installation at the big fusion devices - can be achieved. Distributions of the alpha particles, protons, deuterons, and tritons generated by the fast neutron generator operating at the Institute of Nuclear Physics PAN in Cracow, Poland, were calculated by means of the Monte Carlo (MC) codes. Results of this MC modelling are presented.

  6. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  7. High Voltage Piezoelectric System for Generating Neutrons

    DTIC Science & Technology

    2013-06-01

    Piezoelectric transformer structural modeling - a review,” Ultrasonics , Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp...1 High Voltage Piezoelectric System for Generating Neutrons Brady Gall, Student Member, IEEE, Scott D. Kovaleski, Senior Member, IEEE, James A...Compact electrical neutron generators are a desir- able alternative to radioisotope neutron sources. A piezoelectric transformer system is presented

  8. Laser generated neutron source for neutron resonance spectroscopy

    SciTech Connect

    Higginson, D. P.; Bartal, T.; McNaney, J. M.; Swift, D. C.; Hey, D. S.; Le Pape, S.; Mackinnon, A.; Kodama, R.; Tanaka, K. A.; Mariscal, D.; Beg, F. N.; Nakamura, H.; Nakanii, N.

    2010-10-15

    A neutron source for neutron resonance spectroscopy has been developed using high-intensity, short-pulse lasers. This technique will allow robust measurement of interior ion temperature of laser-shocked materials and provide insight into material equation of state. The neutron generation technique uses laser-accelerated protons to create neutrons in LiF through (p,n) reactions. The incident proton beam has been diagnosed using radiochromic film. This distribution is used as the input for a (p,n) neutron prediction code which is validated with experimentally measured neutron yields. The calculation infers a total fluence of 1.8x10{sup 9} neutrons, which are expected to be sufficient for neutron resonance spectroscopy temperature measurements.

  9. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  10. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  11. Characterization of Deuteron-Deuteron Neutron Generators

    NASA Astrophysics Data System (ADS)

    Waltz, Cory Scott

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil

  12. Development of a sealed-accelerator-tube neutron generator

    PubMed

    Verbeke; Leung; Vujic

    2000-10-01

    Sealed-accelerator-tube neutron generators are being developed in Lawrence Berkeley National Laboratory (LBNL) for applications ranging from neutron radiography to boron neutron capture therapy and neutron activation analysis. The new generation of high-output neutron generators is based on the D-T fusion reaction, producing 14.1-MeV neutrons. The main components of the neutron tube--the ion source, the accelerator and the target--are all housed in a sealed metal container without external pumping. Thick-target neutron yield computations are performed in this paper to estimate the neutron yield of titanium and scandium targets. With an average deuteron beam current of 1 A and an energy of 120 keV, a time-averaged neutron production of approximately 10(14) n/s can be estimated for a tritiated target, for both pulsed and cw operations. In mixed deuteron/triton beam operation, a beam current of 2 A at 150 keV is required for the same neutron output. Recent experimental results on ion sources and accelerator columns are presented and discussed.

  13. NEUTRON AND PHOTON DOSE MAPPING OF A DD NEUTRON GENERATOR.

    PubMed

    Metwally, Walid A; Taqatqa, Osama A; Ballaith, Mohammed M; Chen, Allan X; Piestrup, Melvin A

    2017-02-16

    Neutron generators are an excellent tool that can be effectively utilized in educational institutions for applications such as neutron activation analysis, neutron radiography, and profiling and irradiation effects. For safety purposes, it is imperative that appropriate measures are taken in order to minimize the radiation dose from such devices to the operators, students and the public. This work presents the simulation and measurement results for the neutron and photon dose rates in the vicinity of the neutron generator installed at the University of Sharjah. A very good agreement is found between the simulated and measured dose rates. All of the public dose constraints were found to be met. The occupational dose constraint was also met after imposing a 200 cm no entry zone around the generator room. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  15. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  16. Neutron Generators for Spent Fuel Assay

    SciTech Connect

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  17. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  18. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    PubMed

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10(6)n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Hard error generation by thermal neutrons

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Block, R.C.

    1987-01-01

    The generation of hard errors in MNOS dielectric structures has been observed at thermal neutron fluence levels of 3.6 x 10/sup 13/ n/cm/sup 2/. Fission fragments from neutron induced fission of /sup 235/U contamination in ceramic lids have been shown to be responsible.

  20. High-Yield D-T Neutron Generator

    SciTech Connect

    Ludewigt, B.A.; Wells, R.P.; Reijonen, J.

    2006-11-15

    A high-yield D-T neutron generator has been developed for neutron interrogation in homeland security applications such as cargo screening. The generator has been designed as a sealed tube with a performance goal of producing 5 {center_dot} 10{sup 11} n/s over a long lifetime. The key generator components developed are a radio-frequency (RF) driven ion source and a beam-loaded neutron production target that can handle a beam power of 10 kW. The ion source can provide a 100 mA D{sup +}/T{sup +} beam current with a high fraction of atomic species and can be pulsed up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D operation has been started.

  1. High yield neutron generators using the DD reaction

    SciTech Connect

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  2. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  3. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in a...

  4. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in a...

  5. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in a...

  6. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in a...

  7. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in a...

  8. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  9. Neutron generator (HIRRAC) and dosimetry study.

    PubMed

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  10. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  11. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  12. Sustaining knowledge in the neutron generator community and benchmarking study.

    SciTech Connect

    Barrentine, Tameka C.; Kennedy, Bryan C.; Saba, Anthony W.; Turgeon, Jennifer L.; Schneider, Julia Teresa; Stubblefield, William Anthony; Baldonado, Esther

    2008-03-01

    In 2004, the Responsive Neutron Generator Product Deployment department embarked upon a partnership with the Systems Engineering and Analysis knowledge management (KM) team to develop knowledge management systems for the neutron generator (NG) community. This partnership continues today. The most recent challenge was to improve the current KM system (KMS) development approach by identifying a process that will allow staff members to capture knowledge as they learn it. This 'as-you-go' approach will lead to a sustainable KM process for the NG community. This paper presents a historical overview of NG KMSs, as well as research conducted to move toward sustainable KM.

  13. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  15. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  16. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  17. X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator

    SciTech Connect

    E.H. Seabury; D.L. Chichester; A.J. Caffrey; J. Simpson; M. Lemchak; C.J. Wharton

    2001-08-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.

  18. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect

    Simpson, J. D.; Chichester, D. L.

    2011-12-13

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations was run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  19. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect

    James Simpson; David Chichester

    2011-06-01

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  20. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    NASA Astrophysics Data System (ADS)

    Simpson, J. D.; Chichester, D. L.

    2011-12-01

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations was run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  1. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    SciTech Connect

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  2. Intense neutron pulse generation in dense Z-pinch

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Glusko, Yu. A.; Mesyats, G. A.; Ratakhin, N. A.

    1989-12-01

    The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot (Te≂1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target. The generation of HPDB and ZP formation takes place at the same terawatt accelerator, by using in series with the ZP a plasma opening switch (POS), which is at the same time the Ion Plasma Filled Diode (IPFD). During the front of the current pulse the stable z-pinch implosion heats the ZP up to the keV temperature range with several kJ of energy input. Near the end of the current front the energy flow is being switched to HPDB generation due to the opening of the POS. The HPDB is focused ballistically at the axis of the ZP and transported along it in the azimutal magnetic field, producing a neutron burst. The analysis of ZP formation and heating, HPDB generation, its transport and neutron production is given.

  3. D-D neutron generator development at LBNL.

    PubMed

    Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N

    2005-01-01

    The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article.

  4. Compact D-D/D-T neutron generators and their applications

    SciTech Connect

    Lou, Tak Pui

    2003-01-01

    Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and

  5. Development of fast neutron radiography system based on portable neutron generator

    NASA Astrophysics Data System (ADS)

    Yi, Chia Jia; Nilsuwankosit, Sunchai

    2016-01-01

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  6. Development of fast neutron radiography system based on portable neutron generator

    SciTech Connect

    Yi, Chia Jia Nilsuwankosit, Sunchai

    2016-01-22

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. The raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.

  7. Carbon Nanotube Based Deuterium Ion Source for Improved Neutron Generators

    SciTech Connect

    Fink, R. L.; Jiang, N.; Thuesen, L.; Leung, K. N.; Antolak, A. J.

    2009-03-10

    Field ionization uses high electric fields to cause the ionization and emission of ions from the surface of a sharp electrode. We are developing a novel field ionization neutron generator using carbon nanotubes (CNT) to produce the deuterium ion current. The generator consists of three major components: a deuterium ion source made of carbon nanotubes, a smooth negatively-biased target electrode, and a secondary electron suppression system. When a negative high voltage is applied on the target electrode, a high gradient electric field is formed at the tips of the carbon nanotubes. This field is sufficiently strong to create deuterium (D) ions at or near the nanotubes which are accelerated to the target causing D-D reactions to occur and the production of neutrons. A cross magnetic field is used to suppress secondary emission electrons generated on the target surface. We have demonstrated field ionization currents of 70 nA (1 {mu}A/cm{sup 2}) at hydrogen gas pressure of 10 mTorr. We have found that the current scales proportionally with CNT area and also with the gas pressure in the range of 1 mTorr to 10 mTorr. We have demonstrated pulse cut-off times as short as 2 {mu}sec. Finally, we have shown the feasibility of generating neutrons using deuterium gas.

  8. Fast neutron activation analysis by means of low voltage neutron generator

    NASA Astrophysics Data System (ADS)

    Medhat, M. E.

    A description of D-T neutron generator (NG) is presented. This machine can be used for fast neutron activation analysis applied to determine some selected elements, especially light elements, in different materials. Procedure of neutron flux determination and efficiency calculation is described. Examples of testing some Egyptian natural cosmetics are given.

  9. Pulsed thermal neutron source at the fast neutron generator.

    PubMed

    Tracz, Grzegorz; Drozdowicz, Krzysztof; Gabańska, Barbara; Krynicka, Ewa

    2009-06-01

    A small pulsed thermal neutron source has been designed based on results of the MCNP simulations of the thermalization of 14 MeV neutrons in a cluster-moderator which consists of small moderating cells decoupled by an absorber. Optimum dimensions of the single cell and of the whole cluster have been selected, considering the thermal neutron intensity and the short decay time of the thermal neutron flux. The source has been built and the test experiments have been performed. To ensure the response is not due to the choice of target for the experiments, calculations have been done to demonstrate the response is valid regardless of the thermalization properties of the target.

  10. Generation of nanosecond neutron pulses in vacuum accelerating tubes

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.

    2014-06-01

    The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.

  11. Analysis of the neutron generation from a D-Li neutron source

    SciTech Connect

    Gomes, I.

    1994-02-01

    The study of the neutron generation from the D-Li reaction is an important issue to define the optimum combination of the intervening parameters during the design phase of a D-Li neutron source irradiation facility. The major players in defining the neutron yield from the D-Li reaction are the deuteron incident energy and the beam current, provided that the lithium target is thick enough to stop all incident deuterons. The incident deuteron energy also plays a role on the angular distribution of the generated neutrons, on the energy distribution of the generated neutrons, and on the maximum possible energy of the neutrons. The D-Li reaction produces neutrons with energies ranging from eV`s to several MeV`s. The angular distribution of these neutrons is dependent on the energy of both, incident deuterons and generated neutrons. The deuterons lose energy interacting with the lithium target material in such a way that the energy of the deuterons inside the lithium target varies from the incident deuteron energy to essentially zero. The first part of this study focuses in analyzing the neutron generation rate from the D-Li reaction as a function of the intervening parameters, in defining the source term, in terms of the energy and angular distributions of the generated neutrons, and finally in providing some insights of the impact of varying input parameters on the generation rate and correlated distributions. In the second part an analytical description of the Monte Carlo sampling procedure of the neutron from the D-Li reaction is provided with the aim at further Monte Carlo transport of the D-Li neutrons.

  12. Tandem mirrors for neutron production

    SciTech Connect

    Doggett, J.N.

    1983-03-31

    Two mirror machine concepts are being studied as early-time, low-cost, neutron-producing devices for testing and demonstrating reactor-relevant fusion technology. The first of these concepts is for a new, small, driven, steady-state, D-T reactor, called the Technology Demonstration Facility (TDF). The second concept is for upgrades to the MFTF-B machine that burn tritium and run for pulse lengths of some hours. Both devices operate in the Kelley mode in order to provide high-wall loadings of 14-MeV neutrons, thereby providing a valuable test bed for reactor-relevant hardware and subsystems. Either one of these devices could be running in the early 1990's with first wall fluxes between 1.4 and 2.0 MW m/sup -2/.

  13. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  14. Thermal Neutron Radiography using a High-flux Compact Neutron Generator

    NASA Astrophysics Data System (ADS)

    Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross

    A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.

  15. Radiation environment in the region of thunderstorm neutrons generation

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Grigoriev, A. V.; Malyshkin, Y.

    2011-12-01

    There exist a number of experimental data favoring the idea of the connection between thunderstorm activity and rises of neutron count rate, registered in on-ground [1,2] as well as space experiments [3]. Recent investigations in this area showed that the observation of thunderstorm neutrons onboard low-orbiting satellites is in principal possible [4]. The current view on the problem of thunderstorm neutrons origin assumes their generation in photonuclear reactions of the TGF radiation and atmosphere components [5]. Such neutron radiation has almost no effect on the dosimetric environment in low orbits due to dispersion in the atmosphere [6]. However it could be of considerable importance in the region of the neutrons generation (on altitudes of 10 - 20 km). The indicated values match altitudes of aviation flights so that, taking into account high penetration power of neutron radiation, one may expect some connected hazard. In the present study we perform a numerical simulation of the thunderstorm neutron radiation near the generation area. The modeling includes generation of the neutrons from TGF and further propagation with account of interaction with background nuclei. On the basis of modeling results we obtain estimates of the absorbed dose for various configurations and altitudes of the neutrons source.

  16. Negative ion-driven associated particle neutron generator

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2016-01-01

    An associated particle neutron generator is described that employs a negative ion source to produce high neutron flux from a small source size. Negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). The neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to ~108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  17. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  18. Negative ion-driven associated particle neutron generator

    SciTech Connect

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  19. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    NASA Astrophysics Data System (ADS)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  20. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    SciTech Connect

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  1. BL3: A Next Generation Beam Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Wietfeldt, F. E.; Fomin, N.; Greene, G. L.; Snow, W. M.; Liu, C.-Y.; Crawford, C. B.; Korsch, W.; Plaster, B.; Jones, G. L.; Collett, B.; Dewey, M. S.

    2016-09-01

    BL3 (Beam Lifetime 3) is a proposed next generation neutron lifetime experiment using the beam method. It continues a program, spanning more than three decades, of experiments at the ILL (France) and the NIST Center for Neutron Research that achieved the most precise beam method neutron lifetime measurements to date. A collimated cold neutron beam passes through a quasi-Penning trap where recoil protons from neutron decay are trapped. Periodically the trap is opened and these protons follow a bend in the magnetic field to a silicon detector. The same neutron beam passes through a thin-foil neutron counter that measures the neutron density. The ratio of neutron and proton count rates, along with efficiency factors, gives the neutron lifetime. The main goal of BL3 is to thoroughly investigate and test systematic effects in the beam method in an effort to address the current 4 σ discrepancy between the beam and bottle methods. It will employ a much larger, higher flux neutron beam, a large area position-sensitive proton detector, and an improved magnet design, with a proton trapping rate 100 times higher than past experiments. National Science Foundation, U.S. Dept. of Energy Office of Science.

  2. Fast and thermal neutron radiographies based on a compact neutron generator

    NASA Astrophysics Data System (ADS)

    Fantidis, Jacob G.; Dimitrios, Bandekas V.; Constantinos, Potolias; Nick, Vordos

    2012-09-01

    Fast neutrons that are produced via compact neutron generators have been used for thermal and fast neutron radiographies. In order to investigate objects with different sizes and produce radiographs of variable qualities, the proposed facility has been considered with a wide range of values for the parameters characterizing the thermal and fast neutron radiographies. The proposed system is designed according to article 4 of the Restriction of Hazardous Substances Directive 2002/95/EC, hence, excluded the use of cadmium and lead, and has been simulated using the MCNP4B code. The Monte Carlo calculations were carried out using three different neutron sources: deuterium-deuterium, deuterium-tritium, and tritium-tritium neutron generators.

  3. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  4. Hard error generation by neutron irradiation

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-01-01

    We have observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal nitride-oxidenonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup 2/ moving at an angle of 30/sup 0/ or less from the electric field in the high-field, gate region of the memory transistor and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, we observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide-semiconductor (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. We have mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. Our concentration measurements are in excellent agreement with others' measurements of uranium concentration in ceramic lids. Our Monte Carlo analyses also agree closely with our measurements of hard error probability in MNOS NVRAMs. 15 refs., 13 figs., 8 tabs.

  5. Physics of Solar Neutron Production: Questionable Detection of Neutrons from the 2007 December 31 Flare

    DTIC Science & Technology

    2010-07-14

    Energy Neutron Production in Solar Flares Neutrons are produced in solar flares when accelerated ions interact in the chromosphere . There are a variety of...produce the neutron- capture line, unless the neutrons were produced well above the chromosphere in which case they could not efficiently be captured

  6. Generation of Radioisotopes with Accelerator Neutrons by Deuterons

    NASA Astrophysics Data System (ADS)

    Nagai, Yasuki; Hashimoto, Kazuyuki; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Sato, Nozomi; Kawabata, Masako; Harada, Hideo; Kin, Tadahiro; Tsukada, Kazuaki; Sato, Tetsuya K.; Minato, Futoshi; Iwamoto, Osamu; Iwamoto, Nobuyuki; Seki, Yohji; Yokoyama, Kenji; Shiina, Takehiko; Ohta, Akio; Takeuchi, Nobuhiro; Kawauchi, Yukimasa; Sato, Norihito; Yamabayashi, Hisamichi; Adachi, Yoshitsugu; Kikuchi, Yuji; Mitsumoto, Toshinori; Igarashi, Takashi

    2013-06-01

    A new system proposed for the generation of radioisotopes with accelerator neutrons by deuterons (GRAND) is described by mainly discussing the production of 99Mo used for nuclear medicine diagnosis. A prototype facility of this system consists of a cyclotron to produce intense accelerator neutrons from the \\text{natC(d,n) reaction with 40 MeV 2 mA deuteron beams, and a sublimation system to separate \\text{99mTc from an irradiated 100MoO3 sample. About 8.1 TBq/week of 99Mo is produced by repeating irradiation on an enriched 100Mo sample (251 g) with accelerator neutrons for two days three times. It meets about 10% of the 99Mo demand in Japan. The characteristic feature of the system lies in its capability to reliably produce a wide variety of high-quality, carrier-free, carrier-added radioisotopes with a minimum level of radioactive waste without using uranium. The system is compact in size, and easy to operate; therefore it could be used worldwide to produce radioisotopes for medical, research, and industrial applications.

  7. Radiation fields from neutron generators shielded with different materials

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  8. Average neutronic properties of prompt fission products

    SciTech Connect

    Foster, D.G. Jr.; Arthur, E.D.

    1982-02-01

    Calculations of the average neutronic properties of the ensemble of fission products producted by fast-neutron fission of /sup 235/U and /sup 239/Pu, where the properties are determined before the first beta decay of any of the fragments, are described. For each case we approximate the ensemble by a weighted average over 10 selected nuclides, whose properties we calculate using nuclear-model parameters deduced from the systematic properties of other isotopes of the same elements as the fission fragments. The calculations were performed primarily with the COMNUC and GNASH statistical-model codes. The results, available in ENDF/B format, include cross sections, angular distributions of neutrons, and spectra of neutrons and photons, for incident-neutron energies between 10/sup -5/ eV and 20 MeV. Over most of this energy range, we find that the capture cross section of /sup 239/Pu fission fragments is systematically a factor of two to five greater than for /sup 235/U fission fragments.

  9. A neutron dynamic therapy with a boron tracedrug UTX-51 using a compact neutron generator.

    PubMed

    Hori, Hitoshi; Tada, Ryu; Uto, Yoshihiro; Nakata, Eiji; Morii, Takashi; Masuda, Kai

    2014-08-01

    We are developing a neutron dynamic therapy (NDT) with boron tracedrugs for a new mechanical-clearance treatment of pathotoxic misfolded, aggregated, and self-propagating prion-associated disease proteins. We present a compact neutron generator-based NDT using a boron tracedrug UTX-51. Our NDT is based on the weak thermal neutron-bombarded destructive action of UTX-51 on bovine serum albumin (BSA) using the neutron beams produced from a compact inertial electrostatic confinement fusion (IECF) neutron generator. BSA as an NDT molecular target was subjected to thermal neutron irradiation for eight hours using a compact neutron generator. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern showed no protein band when 2 nmoles of BSA were irradiated with more than 100 nmoles of UTX-51, while BSA was not affected when irradiated without UTX-51. For the first time, we have succeeded in the molecular destruction of a prion-disease model protein, BSA, by NDT with a boron tracedrug, UTX-51, using a compact neutron generator. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Understanding neutron production in the deuterium dense plasma focus

    SciTech Connect

    Appelbe, Brian E-mail: j.chittenden@imperial.ac.uk; Chittenden, Jeremy E-mail: j.chittenden@imperial.ac.uk

    2014-12-15

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  11. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  12. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    NASA Astrophysics Data System (ADS)

    Banks, James C.; Walla, Lisa A.; Walsh, David S.; Doyle, Barney L.

    2009-03-01

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT2) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT2 Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He++ beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within ±2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  13. Spectral fluence of neutrons generated by radiotherapeutic linacs.

    PubMed

    Králík, Miloslav; Šolc, Jaroslav; Vondráček, Vladimir; Šmoldasová, Jana; Farkašová, Estera; Tichá, Ivana

    2015-02-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac.

  14. Production of heavy and superheavy neutron-rich nuclei in neutron capture processes

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2011-10-01

    The neutron capture process is considered as an alternative method for production of superheavy (SH) nuclei. Strong neutron fluxes might be provided by nuclear reactors and nuclear explosions in the laboratory frame and by supernova explosions in nature. All these cases are discussed in the paper. There are two gaps of short-lived nuclei (one is the well-known fermium gap and the other one is located in the region of Z=106-108 and N˜170) which impede the formation of SH nuclei by rather weak neutron fluxes realized at available nuclear reactors. We find that in the course of multiple (rather “soft”) nuclear explosions these gaps may be easily bypassed, and thus, a measurable amount of the neutron-rich long-living SH nuclei located at the island of stability may be synthesized. Existing pulsed reactors do not allow one to bypass these gaps. We formulate requirements for the pulsed reactors of the next generation that could be used for production of long-living SH nuclei. Natural formation of SH nuclei (in supernova explosions) is also discussed. The yield of SH nuclei relative to lead is estimated to be about 10-12, which is not beyond the experimental sensitivity for a search of SH elements in cosmic rays.

  15. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  16. The Design of a Compact Rfq Neutron Generator

    NASA Astrophysics Data System (ADS)

    Hamm, R. W.; Becker, R.

    2014-02-01

    The output and target lifetime of a conventional electrostatic neutron generator are limited by the voltage stand-off capability and the acceleration of molecular species from the ion source. As an alternative, we suggest that the deuterium beam achievable from a compact high intensity ECR source can be injected directly into a compact RFQ to produce a more efficient compact neutron production system. Only the d+ ions are accelerated by the RFQ, which can also produce much higher output energies than electrostatic systems, resulting in a higher neutron output with a longer target lifetime. The direct injection of the beam makes the system more compact than the multielement, electrostatic systems typically used for extraction of the beam and subsequent transport and matching into the RFQ. We have designed and optimized a combined extraction/matching system for a compact high current deuterium ECR ion source injected into a high frequency RFQ structure, allowing a beam of about 12 mA of d+ ions to be injected at a modest ion source voltage of 25 kV. The end wall of the RFQ resonator serves as the ground electrode for the ion source, resembling DPI (direct plasma injection). For this design, we used the features of the code IGUN to take into account the electrostatic field between the ion source and the RFQ end wall, the stray magnetic field of the ECR source, the defocusing space charge of the low energy deuteron beam, and the rf focusing in the fringe field between the RFQ vanes and the RFQ flange.

  17. Neutron productions in the fragmentation of relativistic heavy nuclei and formation of a beam of high-energy neutrons

    SciTech Connect

    Yurevich, V. I.

    2016-03-15

    The production of quasimonoenergetic high-energy neutrons at zero angle (0°) in the spallation of relativistic heavy nuclei is discussed by considering the example of the interaction of lead nuclei with light target nuclei. It is shown that this process can be used to generate a beam of high-energy neutrons at existing heavy ion accelerators. At the same time, itmay lead to the appearance of a parasitic neutron beam because of the interaction of the heavy-ion beam used with beam line and experimental setup materials.

  18. Production of Molybdenum-99 using Neutron Capture Methods

    SciTech Connect

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  19. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  20. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  1. Pulsed Neutron Measurments With A DT Neutron Generator for an Annular HEU Uranium Metal Casting

    SciTech Connect

    Mihalczo, John T; Archer, Daniel E; Wright, Michael C; Mullens, James Allen

    2007-09-01

    Measurements were performed with a single annular, stainless-steel-canned casting of uranium (93.17 wt% 235U) metal ( ~18 kg) to provide data to verify calculational methods for criticality safety. The measurements used a small portable DT generator with an embedded alpha detector to time and directionally tag the neutrons from the generator. The center of the time and directional tagged neutron beam was perpendicular to the axis of the casting. The radiation detectors were 1x1x6 in plastic scintillators encased in 0.635-cm-thick lead shields that were sensitive to neutrons above 1 MeV in energy. The detector lead shields were adjacent to the casting and the target spot of the generator was about 3.8 cm from the casting at the vertical center. The time distribution of the fission induced radiation was measured with respect to the source event by a fast (1GHz) processor. The measurements described in this paper also include time correlation measurements with a time tagged spontaneously fissioning 252Cf neutron source, both on the axis and on the surface of the casting. Measurements with both types of sources are compared. Measurements with the DT generator closely coupled with the HEU provide no more additional information than those with the Cf source closely coupled with the HEU and are complicated by the time and directionally tagged neutrons from the generator scattering between the walls and floor of the measurements room and the casting while still above detection thresholds.

  2. A pulsed neutron generator for in vivo body composition studies

    NASA Astrophysics Data System (ADS)

    Weinlein, J. H.; O'Neal, M. L.; Bacon, F. M.

    1991-05-01

    A neutron generator system utilizing two Zetatron neutron tubes has been designed and delivered to the U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University for use in clinical measurements of body carbon by neutron inelastic scattering. Each neutron tube is capable of delivering 10 3-10 4 14-MeV neutrons in a 7-μs pulse at repetition rates of 4 or 8 kHz, and can be operated independently as well as in a master-slave mode. The neutron tubes are gas filled with a mixture of deuterium and tritium; the target of the tube is operated at - 30 to - 60 kV dc and the ion source is operated with a 2.5-kV, 7-μs pulse. The tube gas pressure is monitored and controlled by measuring the total current in the high voltage circuit and feeding it back to the gas-reservoir drive circuit. Neutrons were measured with a plastic scintillator and photomultiplier tube.

  3. Pyroelectric crystal D-D and D-T neutron generators

    NASA Astrophysics Data System (ADS)

    Danon, Y.

    2012-04-01

    Pyroelectric neutron generators are a recent development utilizing the pyroelectric effect to produce an accelerating electric field and thus enabling creation of small electron and ion accelerators without external high voltage power supply. The principle of operation includes a pyroelectric crystal (LiTaO3 for example) placed in vacuum and simple heating (or cooling) of the crystal to cause a change in polarization. The change in polarization creates free charges on the faces of the clyndrical z-cut crystal and due to its small capacitance this creates a high potential between one crystal face to the other which is placed at ground potential. To produce neutrons the crystal is placed in low pressure deuterium gas and when the crystal is heated or cooled it ionizes the gas and accelerates deuterium ions towards a deuterated or tritated target. A configuration with two crystals can double the acceleration potential and thus increase neutron production. When operating such a device x-rays with energy over 200 keV about 105 neutrons per heating cycle can be produced. Research is focused on improving the neutron yield, the emission reproducibility, and shortening the heating cycle. Neutron generators based on this technology can be made small portable and relatively cheap compared to sealed tube technology. Further development is needed in order to increase the neutron yield closer to the theoretical limit for a specific crystals size.

  4. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  5. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    NASA Astrophysics Data System (ADS)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  6. Neutron production from polyethylene and common spacecraft materials.

    PubMed

    Maurer, R H; Roth, D R; Kinnison, J D; Jordan, T M; Heilbronn, L H; Miller, J; Zeitlin, C J

    2001-12-01

    We report experimental measurements of neutron production from collisions of neutron beams with polyethylene blocks simulating tissue at the Los Alamos National Laboratory Neutron Science Center and 1 GeV/amu iron nuclei with spacecraft shielding materials at the Brookhaven National Laboratory AGS.

  7. ITEP Subcritical Neutron Generator driven by charged particle accelerator

    SciTech Connect

    Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V.

    1995-10-01

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  8. Neutron Generation Simulations of Collisionless Shock Experiments on NIF

    NASA Astrophysics Data System (ADS)

    Wilks, S. C.; Higginson, D. P.; Weber, S. V.; Ryutov, D. D.; Ross, J. S.; Park, H.-S.; Fiuza, F.

    2015-11-01

    A series of simulations that model recent collisionless shock experiments at the NIF will be presented. In these experiments, two opposing CD plasmas flow into each other, both plasmas arising from lasers hitting planar CD targets separated by 6, 8, and 10mm. Where the plasma flows overlap, a symmetric peak of neutron generation was observed about the mid-plane. When one of the CD foils was replaced by CH, neutron generation was still observed, but with an asymmetry about the mid-plane. The hybrid PIC code LSP is used to model this interaction. Neutron yields, temporal profiles and burn widths obtained from simulation compare favorably with experimental measurements from NTOF and PTOF diagnostics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675193.

  9. Neutron generator at Hiroshima University for use in radiobiology study.

    PubMed

    Endo, S; Hoshi, M; Tauchi, H; Takeoka, S; Kitagawa, K; Suga, S; Maeda, N; Komatsu, K; Sawada, S; Iwamoto, E

    1995-06-01

    A neutron generator (HIRRAC) for use in radiobiology study has been constructed at the Research Institute for Radiation Biology and Medicine, Hiroshima University (RIRBM). Monoenergetic neutrons of which energy is less than 1.3 MeV are generated by the 7Li(p,n)7 Be reaction at proton energies up to 3 MeV. The protons are accelerated by a Schenkel-type-accelerator and are bombared onto the 7Li-target. An apparatus for the irradiation of biological material such as mice, cultured cells and so on, was designed and will be manufactured. Neutron and gamma-ray dose rates were measured by paired (TE-TE and C-CO2) ionization chambers. Contamination of the gamma ray was less than about 6% when using 10-microns-thick 7Li as a target. Maximum dose rates for the tissue equivalent materials was 40 cGy/min at a distance of 10 cm from the target. Energy distributions of the obtained neutrons have been measured by a 3He-gas proportional counter. The monoenergetic neutrons within an energy region from 0.1 to 1.3 MeV produced by thin 7Li or 7LiF targets had a small energy spread of about 50 keV (1 sigma width of gaussian). The energy spread of neutrons was about 10% or less at an incident proton energy of 2.3 MeV. We found that HIRRAC produces small energy spread neutrons and at sufficient dose rates for use in radiobiology studies.

  10. Measurement of the Neutron Spectrum of a DD Electronic Neutron Generator

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-08-01

    A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3? to 92.7? with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  11. Measurement Of The Neutron Spectrum Of A DD Electronic Neutron Generator

    NASA Astrophysics Data System (ADS)

    Chichester, David L.; Johnson, James T.; Seabury, Edward H.

    2011-06-01

    A Cuttler-Shalev (C-S) 3He proportional counter has been used to measure the energy spectrum of neutrons from a portable deuterium-deuterium electronic neutron generator. To improve the analysis of results from the C-S detector digital pulse shape analysis techniques have been used to eliminate neutron recoil artifacts in the recorded data. Data was collected using a 8-GHz, 10-bit waveform digitizer with its full scale corresponding to approximately 6-MeV neutrons. The measurements were made with the detector axis perpendicular to the direction of ions in the ENG in a plane 0.5-m to the side of the ENG, measuring neutrons emitted at an angle from 87.3° to 92.7° with respect to the path of ions in the ENG. The system demonstrated an energy resolution of approximately 0.040 MeV for the thermal peak and approximately 0.13 MeV at the DD neutron energy. In order to achieve the ultimate resolution capable with this type of detector it is clear that a higher-precision digitizer will be needed.

  12. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  13. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    SciTech Connect

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    2012-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  14. High-fidelity MCNP modeling of a D-T neutron generator for active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Katalenich, Jeff; Flaska, Marek; Pozzi, Sara A.; Hartman, Michael R.

    2011-10-01

    Fast and robust methods for interrogation of special nuclear material (SNM) are of interest to many agencies and institutions in the United States. It is well known that passive interrogation methods are typically sufficient for plutonium identification because of a relatively high neutron production rate from 240Pu [1]. On the other hand, identification of shielded uranium requires active methods using neutron or photon sources [2]. Deuterium-deuterium (2.45 MeV) and deuterium-tritium (14.1 MeV) neutron-generator sources have been previously tested and proven to be relatively reliable instruments for active interrogation of nuclear materials [3,4]. In addition, the newest generators of this type are small enough for applications requiring portable interrogation systems. Active interrogation techniques using high-energy neutrons are being investigated as a method to detect hidden SNM in shielded containers [4,5]. Due to the thickness of some containers, penetrating radiation such as high-energy neutrons can provide a potential means of probing shielded SNM. In an effort to develop the capability to assess the signal seen from various forms of shielded nuclear materials, the University of Michigan Neutron Science Laboratory's D-T neutron generator and its shielding were accurately modeled in MCNP. The generator, while operating at nominal power, produces approximately 1×10 10 neutrons/s, a source intensity which requires a large amount of shielding to minimize the dose rates around the generator. For this reason, the existing shielding completely encompasses the generator and does not include beam ports. Therefore, several MCNP simulations were performed to estimate the yield of uncollided 14.1-MeV neutrons from the generator for active interrogation experiments. Beam port diameters of 5, 10, 15, 20, and 25 cm were modeled to assess the resulting neutron fluxes. The neutron flux outside the beam ports was estimated to be approximately 2×10 4 n/cm 2 s.

  15. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  16. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  17. MEASUREMENT OF SECONDARY NEUTRONS GENERATED DURING PROTON THERAPY.

    PubMed

    Vykydal, Z; Andrlík, M; Bártová, H; Králík, M; Šolc, J; Vondráček, V

    2016-12-01

    Measurements described in this article were carried out with the aim of evaluating risks of the patient exposure to secondary neutrons during treatment at the Proton Therapy Centre Prague. The neutron spectral fluence was measured by means of the extended Bonner sphere spectrometer (EBS). The article presents secondary neutron spectral fluences obtained by the EBS with passive thermoluminescent detectors, i.e. pairs of (6)LiF and (7)LiF chips. Measurements were performed in two positions: the first one behind the Nylon 6 phantom, and the second one close to the range shifter to evaluate their contribution to the generation of neutrons. Both the Nylon 6 phantom and the range shifter were irradiated with a pencil beam of protons 4 mm in diameter and the energy of 200 MeV. The results are supplemented with the values of effective dose derived from neutron spectral fluences. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Simulation of neutron production using MCNPX+MCUNED.

    PubMed

    Erhard, M; Sauvan, P; Nolte, R

    2014-10-01

    In standard MCNPX, the production of neutrons by ions cannot be modelled efficiently. The MCUNED patch applied to MCNPX 2.7.0 allows to model the production of neutrons by light ions down to energies of a few kiloelectron volts. This is crucial for the simulation of neutron reference fields. The influence of target properties, such as the diffusion of reactive isotopes into the target backing or the effect of energy and angular straggling, can be studied efficiently. In this work, MCNPX/MCUNED calculations are compared with results obtained with the TARGET code for simulating neutron production. Furthermore, MCUNED incorporates more effective variance reduction techniques and a coincidence counting tally. This allows the simulation of a TCAP experiment being developed at PTB. In this experiment, 14.7-MeV neutrons will be produced by the reaction T(d,n)(4)He. The neutron fluence is determined by counting alpha particles, independently of the reaction cross section.

  19. Neutron monitor generated data distributions in quantum variational Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kussainov, A. S.; Pya, N.

    2016-08-01

    We have assessed the potential applications of the neutron monitor hardware as random number generator for normal and uniform distributions. The data tables from the acquisition channels with no extreme changes in the signal level were chosen as the retrospective model. The stochastic component was extracted by fitting the raw data with splines and then subtracting the fit. Scaling the extracted data to zero mean and variance of one is sufficient to obtain a stable standard normal random variate. Distributions under consideration pass all available normality tests. Inverse transform sampling is suggested to use as a source of the uniform random numbers. Variational Monte Carlo method for quantum harmonic oscillator was used to test the quality of our random numbers. If the data delivery rate is of importance and the conventional one minute resolution neutron count is insufficient, we could always settle for an efficient seed generator to feed into the faster algorithmic random number generator or create a buffer.

  20. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  1. A Proposal for a Next Generation European Neutron Source

    NASA Astrophysics Data System (ADS)

    Andersen, K. H.; Carlile, C. J.

    2016-09-01

    We argue that it is not too early to begin the planning process for a next generation neutron source for Europe, even as the European Spallation Source is being constructed. We put forward three main arguments. Firstly, nowadays the period between the first scientific concept of a new facility being proposed and its actual realisation is approaching half a century. We show evidence for this. Secondly, there is a straightforward development of the short pulse/long pulse spallation concepts that will deliver gains in neutron brightness of more than a factor 30 over what the ESS will soon deliver and provide the optimum balance between resolution and intensity. We describe our concept, which is a spallation source where the proton pulse length is matched to the moderating time of slow neutrons. Thirdly, when we look at our colleagues in astronomy and high energy physics, we see that they have a totally different, more global and more ambitious approach to the coming generations of large facilities. We argue that it is time for the neutron community not simply to rest upon its laurels and take what is given but to be proactive..

  2. Compact Permanent Magnet Microwave-Driven Neutron Generator

    SciTech Connect

    Ji Qing

    2011-06-01

    Permanent magnet microwave-driven neutron generators have been developed at Lawrence Berkeley National Laboratory. The 2.45 GHz microwave signal is directly coupled into the plasma chamber via a microwave window. Plasma is confined in an axial magnetic field produced by the permanent magnets surrounding the plasma chamber. The source chamber is made of aluminum with a diameter of 4 cm and length of 5 cm. A stack of five alumina discs, which are 3 cm in diameter and total length of 3 cm, works as microwave window. Three permanent ring magnets are used to generate the axial magnetic field required for the microwave ion source. Both hydrogen and deuterium plasma have been successfully ignited. With 330W of microwave power, source chamber pressure of 5 mTorr, and an extraction aperture of 2 mm in diameter, the deuterium ion beam measured on the target was approximately 2.5 mA. Over 90% of the ions are atomic. With the ion source at ground potential and titanium target at -40 kV, the analysis of the activated gold foil and calibrated neutron dose monitor both indicated that roughly 10{sup 7} n/s of D-D neutrons have been produced. The D-D neutron yield can be easily scaled up to 10{sup 8} n/s when the titanium target is biased at -100 kV.

  3. Improved safety fast reactor with “reservoir” for delayed neutrons generating

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Apse, V. A.; Shmelev, A. N.; Kulikov, E. G.

    2017-01-01

    The paper considers the possibility to improve safety of fast reactors by using weak neutron absorber with large atomic weight as a material for external neutron reflector and for internal cavity in the reactor core (the neutron “reservoir”) where generation of some additional “delayed” neutron takes place. The effects produced by the external neutron reflector and the internal neutron “reservoir” on kinetic behavior of fast reactors are inter-compared. It is demonstrated that neutron kinetics of fast reactors with such external and internal zones becomes the quieter as compared with neutron kinetics of thermal reactors.

  4. METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Simon, A.; Mackin, R.J. Jr.

    1961-01-24

    A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.

  5. On the angular and energy distribution of solar neutrons generated in P-P reactions

    NASA Technical Reports Server (NTRS)

    Efimov, Y. E.; Kocharov, G. E.

    1985-01-01

    The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.

  6. Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE

    SciTech Connect

    Ferres, Laurent

    2016-08-03

    Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutron source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.

  7. A liquid hydrocarbon deuteron source for neutron generators

    NASA Astrophysics Data System (ADS)

    Schwoebel, P. R.

    2017-06-01

    Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.

  8. Medical Isotope Production using High Intensity Accelerator Neutrons

    NASA Astrophysics Data System (ADS)

    Nagai, Yasuki

    We proposed aprototype facility for the generation of radioisotopes with accelerator neutrons by deuterons. The neutrons are producedbynatC(d,n) with 40MeV 2 mA deuteron beams, and about 8.1 TBq/week of 99Mois produced by irradiating an enriched 100Mo sample with the neutrons.High-quality 99mTc can be separatedfrom an irradiated 100MoO3 sample by thermo-chromatographic separation.In this contribution we present the system to produce medical radioisotopes, such as 99Mo, 90Y, and 67Cu, and experimental studies on 99Mo and 67Cu produced by using accelerator neutrons.

  9. Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    NASA Astrophysics Data System (ADS)

    Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.

    2017-05-01

    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

  10. The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.

    2014-12-01

    The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.

  11. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  12. Neutron production in several americium compounds

    SciTech Connect

    Shores, E. F.

    2004-01-01

    Americium, like other alpha emitting actinides, may indirectly produce neutrons when combined with light target materials. These (alpha,n) reaction neutrons, along with well known photon lines, have been an advantage of the {sup 241}Am isotope for diverse applications such as radiography, thickness gauges, neutron sources, and even common household smoke detectors. To characterize these sources, the SOURCES code was used to calculate neutron yields and spectra from {sup 241}Am metal, americium oxide, and americium aluminum alloys. Such information may be used as source terms for future transport problems (e.g. shielding calculations). Table 1 contains neutron yields for six americium configurations. The metal, oxides, and alloys were run as homogeneous problems while the interface case was run in both two- and three-region interface modes.

  13. Experimental studies of the medical radioisotopes production in neutron spectra generated by 660 MeV protons and 1-8 GeV deuterons in massive uranium target

    NASA Astrophysics Data System (ADS)

    Zhadan, A.; Sotnikov, V.; Adam, J.; Solnyshkin, A.; Tyutyunnikov, S.; Voronko, V.; Zhivkov, P.; Zavorka, L.

    2017-06-01

    The possibility of medical radionuclide 64,67Cu production in spallation neutron spectrum induced by proton and deuteron beams has been studied. Experiments were performed on a massive natural uranium target at the accelerators Phasotron and Nuclotron JINR, Dubna. The main disadvantage of this method is a high 64Cu/67Cu ratio in the final product at EOB. Significantly reduce 64Cu/67Cu ratio is only possible if you use zinc target enriched with 68Zn or 67Zn. The MCNPX simulation of 67,64Cu production and definition of the theoretical limit of the specific activity of 67,64Cu by irradiation of natural zinc and zinc enriched by the 68 isotope were performed. The neutron flux density shouldnot be less than 5.1013 n/cm2/s if we want to obtain high specific activity (>200 GBq/mg) of 67Cu.

  14. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    PubMed

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  15. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    SciTech Connect

    Andersson, P. Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  16. Compact Neutron Generators for Medical Home Land Security andPlanetary Exploration

    SciTech Connect

    Reijonen, J.

    2005-05-11

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented.

  17. Neutron Generators Developed at LBNL for Homeland Security andImaging Applications

    SciTech Connect

    Reijonen, Jani

    2006-08-13

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented.

  18. NEUTRON GENERATOR FACILITY AT SFU: GEANT4 DOSE RATE PREDICTION AND VERIFICATION.

    PubMed

    Williams, J; Chester, A; Domingo, T; Rizwan, U; Starosta, K; Voss, P

    2016-11-01

    Detailed dose rate maps for a neutron generator facility at Simon Fraser University were produced via the GEANT4 Monte Carlo framework. Predicted neutron dose rates throughout the facility were compared with radiation survey measurements made during the facility commissioning process. When accounting for thermal neutrons, the prediction and measurement agree within a factor of 2 or better in most survey locations, and within 10 % inside the vault housing the neutron generator.

  19. Elemental analysis of combustion products by neutron activation

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification. (DLC)

  20. Production of neutrons from interactions of GCR-like particles

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Frankel, K.; Holabird, K.; Zeitlin, C.; McMahan, M. A.; Rathbun, W.; Cronqvist, M.; Gong, W.; Madey, R.; Htun, M.; Elaasar, M.; Anderson, B. D.; Baldwin, A. R.; Jiang, J.; Keane, D.; Scott, A.; Shao, Y.; Watson, J. W.; Zhang, W. M.; Galonsky, A.; Ronningen, R.; Zecher, P.; Kruse, J.; Wang, J.; Miller, J. (Principal Investigator)

    1998-01-01

    In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.

  1. Production of neutrons from interactions of GCR-like particles

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Frankel, K.; Holabird, K.; Zeitlin, C.; McMahan, M. A.; Rathbun, W.; Cronqvist, M.; Gong, W.; Madey, R.; Htun, M.; hide

    1998-01-01

    In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.

  2. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  3. Pulsed neutron generators based on the sealed chambers of plasma focus design with D and DT fillings

    NASA Astrophysics Data System (ADS)

    Yurkov, D. I.; Dulatov, A. K.; Lemeshko, B. D.; Golikov, A. V.; Andreev, D. A.; Mikhailov, Yu V.; Prokuratov, I. A.; Selifanov, A. N.

    2015-11-01

    Development of neutron generators using plasma focus (PF) chambers is being conducted in the All-Russia Scientific Research Institute of Automatics (VNIIA) during more than 25 years. PF is a source of soft and hard x-rays and neutrons 2.5 MeV (D) or 14 MeV (DT). Pulses of x-rays and neutrons have a duration of about several tens of nanoseconds, which defines the scope of such generators—the study of ultrafast processes. VNIIA has developed a series of pulse neutron generators covering the range of outputs 107-1012 n/pulse with resources on the order of 103-104 switches, depending on purposes. Generators have weights in the range of 30-700 kg, which allows referring them to the class of transportable generators. Generators include sealed PF chambers, whose manufacture was mastered by VNIIA vacuum tube production plant. A number of optimized PF chambers, designed for use in generators with a certain yield of neutrons has been developed. The use of gas generator based on gas absorber of hydrogen isotopes, enabled to increase the self-life and resource of PF chambers. Currently, the PF chambers withstand up to 1000 switches and have the safety of not less than 5 years. Using a generator with a gas heater, significantly increased security of PF chambers, because deuterium-tritium mixture is released only during work, other times it is in a bound state in the working element of the gas generator.

  4. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  5. Generation and detection of neutron beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry A.; Barankov, Roman A.; Clark, Charles W.; Huber, Michael G.; Arif, Muhammad; Cory, David G.

    2015-05-01

    Orbital angular momentum (OAM) states of light, in which photons carry lℏ units of angular momentum along their direction of propagation, are of interest in a variety of applications. The Schrödinger equation for massive particles also supports OAM solutions, and OAM states have been demonstrated with ultracold atoms and electrons. Here we report the first generation and detection of OAM states of neutrons, with l up to 7. These are made using spiral phase plates (SPP), milled out of 6061 aluminum alloy dowels with a high-resolution computer-controlled milling machine. When a SPP is placed in one arm of a Mach-Zehnder neutron interferometer, the interferogram reveals the characteristic patterns of OAM states. Addition of angular momenta is effected by concatenation of SPPs with different values of l; we have found the experimental result 1 + 2 = 3 , in reasonable agreement with theory. The advent of OAM provides an additional, quantized, degree of freedom to neutron interferometry, enlarging the qubit structure available for tests of quantum information processing and foundations of quantum physics.

  6. Production rates of neon xenon isotopes by energetic neutrons

    NASA Technical Reports Server (NTRS)

    Leich, D. A.; Borg, R. J.; Lanier, V. B.

    1986-01-01

    As a first step in an experimental program to study the behavior of noble gases produced in situ in minerals, a suite of minerals and pure chemicals were irradiated with 14.5 MeV neutrons at LLNL's Rotating Target Neutron Source (RTNS-II) and production rates for noble gases were determined. While neutron effects in meteorites and lunar samples are dominated by low-energy neutron capture, more energetic cosmic-ray secondary neutrons can provide significant depth-dependent contributions to production of cosmogenic nuclides through endothermic reactions such as (n,2n), (n,np), (n,d) and (n,alpha). Production rates for nuclides produced by cosmic-ray secondary neutrons are therefore useful in interpreting shielding histories from the relative abundances of cosmogenic nuclides. Absolute production cross sections were calculated from isotope dilution analyses of NaCl, Mg, CsCl, and Ba(NO3)2 samples, assuming purity, stoichiometry, and quantitative noble gas retention and extraction. Relative production cross sections determined from neon isotopic ratios in the mineral samples were also considered in evaluating the neon production cross sections. Results are presented.

  7. Materials-based process tolerances for neutron generator encapsulation.

    SciTech Connect

    Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

    2007-10-01

    Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.

  8. Comparison of bulk and pitcher-catcher targets for laser-driven neutron production

    NASA Astrophysics Data System (ADS)

    Willingale, L.; Petrov, G. M.; Maksimchuk, A.; Davis, J.; Freeman, R. R.; Joglekar, A. S.; Matsuoka, T.; Murphy, C. D.; Ovchinnikov, V. M.; Thomas, A. G. R.; Van Woerkom, L.; Krushelnick, K.

    2011-08-01

    Laser-driven d(d, n)-3He beam-target fusion neutron production from bulk deuterated plastic (CD) targets is compared with a pitcher-catcher target scheme using an identical laser and detector arrangement. For laser intensities in the range of (1-3) × 1019 W cm-2, it was found that the bulk targets produced a high yield (5 × 104 neutrons per steradian) beamed preferentially in the laser propagation direction. Numerical modeling shows the importance of considering the temperature adjusted stopping powers to correctly model the neutron production. The bulk CD targets have a high background target temperature leading to a reduced stopping power for the deuterons, which increases the probability of generating neutrons by fusion. Neutron production from the pitcher-catcher targets was not as efficient since it does not benefit from the reduced stopping power in the cold catcher target. Also, the inhibition of the deuteron acceleration by a proton rich contamination layer significantly reduces the pitcher-catcher neutron production.

  9. Production, distribution and applications of californium-252 neutron sources.

    PubMed

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations.

  10. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2016-11-24

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety.

  11. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator

    SciTech Connect

    Reijonen, J.; Leung, K.-N.; Firestone, R.B.; English, J.A.; Perry, D.L.; Smith, A.; Gicquel, F.; Sun, M.; Bandong, B.; Garabedian, G.; Revay, Zs.; Szentmiklosi, L.; Molnar, G.

    2003-05-13

    Various types of neutron generator systems have been designed and tested at the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory. These generators are based on a D-D fusion reaction. These high power D-D neutron generators can provide neutron fluxes in excess of the current state of the art D-T neutron generators, without the use of pre-loaded targets or radioactive tritium gas. Safe and reliable long-life operations are the typical features of these D-D generators. All of the neutron generators developed in the Plasma and Ion Source Technology Group are utilizing powerful RF-induction discharge to generate the deuterium plasma. One of the advantages of using the RF-induction discharge is it's ability to generate high fraction of atomic ions from molecular gases, and the ability to generate high plasma densities for high extractable ion current from relatively small discharge volume.

  12. Cosmogenic Neutron Production at the Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Mitchell, I.; Daya Bay Collaboration

    2017-09-01

    Neutrons are an important background for underground experiments studying neutrino oscillations, neutrino-less double-beta decay, dark matter, and other rare-event signals. The poster will present the status of a study of neutron production by cosmogenic muons at the Daya Bay Reactor Neutrino Experiment. The experiments configuration of multiple identical detectors at varying depths gives us the ability to measure neutron yield for different values of average muon energy within the same experiment. The current status of our study and future prospects will be discussed.

  13. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work.

  14. Leading neutron production at HERA in the color dipole approach

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Gonçalves, V. P.; Spiering, D.; Navarra, F. S.

    2016-03-01

    In this work we study leading neutron production in e + p → e + n + X collisions at high energies and calculate the Feynman xL distribution of these neutrons. The differential cross section is written in terms of the pion flux and of the photon-pion total cross section. We describe this process using the color dipole formalism and, assuming the validity of the additive quark model, we relate the dipole-pion with the well determined dipoleproton cross section. In this formalism we can estimate the impact of the QCD dynamics at high energies as well as the contribution of gluon saturation effects to leading neutron production. With the parameters constrained by other phenomenological information, we are able to reproduce the basic features of the recently released H1 leading neutron spectra.

  15. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  16. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOEpatents

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  17. Calibration Of A 14 MeV Neutron Generator With Reference To NBS-1

    SciTech Connect

    Heimbach, Craig R.

    2011-06-01

    NBS-1 is the US national neutron reference source. It has a neutron emission rate (June 1961) of 1.257x10{sup 6} n/s{sup 1,2,3} with an uncertainty of 0.85%(k = 1). Neutron emission-rate calibrations performed at the National Institute of Standards and Technology (NIST) are made in comparison to this source, either directly or indirectly. To calibrate a commercial 14 MeV neutron generator, NIST performed a set of comparison measurements to evaluate the neutron output relative to NBS-1. The neutron output of the generator was determined with an uncertainty of about 7%(k = 1). The 15-hour half-life of one of the reactions used also makes possible off-site measurements. Consideration is given to similar calibrations for a 2.5 MeV neutron generator.

  18. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  19. Neutron-induced gamma-ray production

    SciTech Connect

    Nelson, R.O.; Drake, D.M.; Haight, R.C.; Laymon, C.M.; Wender, S.A.; Young, P.G. ); Drosg, M.; Pavlik, A.; Vonach, H. . Inst. fuer Radiumforschung und Kernphysik); Larson, D.C. )

    1990-01-01

    High resolution Ge detectors coupled with the WNR high-intensity, high-energy, pulsed neutron source at LAMPF recently have been used to measure a variety of reactions including (n,xn) for 1 {le} x {le} 11, (n,n{alpha}), (n,np), etc. The reactions are identified by the known gamma-ray energies of prompt transitions between the low lying states in the final nuclei. With our spallation neutron source cross section data are obtained at all neutron energies from a few MeV to over 200 MeV. Applications of the data range from assisting the interpretation of the planned Mars Observer mission to map the elemental composition of the martian surface, to providing data for nuclear model verification and understanding reaction mechanisms. For example, a study of the Pb(n,xn) reactions for 2 {le} x {le} 11 populating the first excited states of the even Pb isotopes is underway. These data will be used to test preequilibrium and other reaction models. 9 refs., 5 figs.

  20. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  1. Radioisotope Productions for Medical Use with Accelerator Neutrons

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Nagai, Yasuki; Iwamoto, Nobuyuki; Iwamoto, Osamu

    2014-09-01

    Various kinds of radioactive isotopes (RIs) are widely used in nuclear medicine for diagnostics and therapy. Since the RIs are not usually present in the nature, they must be produced by nuclear reactors and accelerators. For instance, 99mTc, which is the most common RI used in diagnosis, is mainly produced by fission of highly enriched 235U (HEU) in nuclear reactors. However, use of the HEU is unfavorable in terms of nuclear security. Therefore, many methods without 235U have been studied in order to produce RIs for medical use; for example, thermal neutron capture, gamma disintegration, and proton induced reactions. We also have proposed an alternative method using accelerator neutrons besides the above methods. Technique producing high intense accelerator neutron beam as much as 1015 n/s is being developed and RI productions with the accelerator neutron have been done recently. The major advantages of the use of accelerator neutron are followings. 1) A wide variety of carrier-added and carrier-free radioisotopes can be produced using the neutrons, because a charge exchange reaction of a sample nucleus has a sizable cross section of 50 to 500 mb. 2) High transparency of neutron allows us to use a large amount of sample to co-produce other RIs by putting other samples behind the main sample in the beam direction. In this talk, we will show the features of RI productions with accelerator neutron which we have ever investigated and found, along with numerical results of RI yields calculated with Japanese Evaluated Nuclear Data Library (JENDL-4.0).

  2. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    SciTech Connect

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  3. Chlorine detection in fly ash concrete using a portable neutron generator.

    PubMed

    Naqvi, A A; Kalakada, Zameer; Al-Matouq, Faris A; Maslehuddin, M; Al-Amoudi, O S B

    2012-08-01

    The chlorine concentration in chloride-contaminated FA cement concrete specimens was measured using a portable neutron generator based prompt gamma-ray neutron activation (PGNAA) setup with the neutron generator and the gamma-ray detector placed side-by-side on one side of the concrete sample. The minimum detectable concentration of chlorine in FA cement concrete measured in the present study was comparable with previous results for larger accelerator based PGNAA setup. It shows the successful application of a portable neutron generator in concrete corrosion studies.

  4. A neutron monitor for D-T neutron generator in the PGNAA-based online measurement system

    NASA Astrophysics Data System (ADS)

    Shan, Qing; Shengnan, Chu; Yongsheng, Ling; Pingkun, Cai; Wenbao, Jia

    2017-06-01

    A new type of neutron detector, which consists of polyethylene, an EJ200 plastic scintillator and fused silica, was proposed and optimized by the GEANT4 Monte Carlo simulation toolkit in our previous studies. The calculation method was also described for calculating the neutron flux in the preset condition. This paper reports the manufacturing of the prototype detector. Experiments are conducted to validate the feasibility of this detector. A D-T neutron generator and a 60Co gamma-ray source are used in the experiments. The designed detector and a He-3 proportional counter are simultaneously used to monitor the yield of the D-T neutron generator. A more universal calculation method is developed to enable the application of this detector to common conditions. The experimental results show that the performance of the designed detector is comparable to that of the He-3 proportional counter. The relative deviations between their normalized counts are less than 5%.

  5. A tritium safety-system for the intense neutron generator INGE-1

    NASA Astrophysics Data System (ADS)

    Gohs, U.; Seeliger, D.

    1989-10-01

    The present paper briefly describes a simple tritium safety-system to be used at the intense neutron generator INGE-1 of the TU Dresden. The general scheme of the tritium safety-system is discussed and some results of a test of the tritium adsorption system are presented. Finally, conclusions are drawn concerning precautions for the use of solid state tritium targets in DT-neutron generators with intensities ranging between 10 11 and 10 12 neutrons per second.

  6. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-07

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  7. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Murakami, T.; Iwase, H.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2006-02-15

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.

  8. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  9. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    SciTech Connect

    Morgan, G.; Butler, G.; Cappiello, M.

    1995-10-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  10. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    NASA Astrophysics Data System (ADS)

    Morgan, G.; Butler, G.; Cappiello, M.; Carius, S.; Daemen, L.; DeVolder, B.; Frehaut, J.; Goulding, C.; Grace, R.; Green, R.; Lisowski, P.; Littleton, P.; King, J.; King, N.; Prael, R.; Stratton, T.; Turner, S.; Ullmann, J.; Venneri, F.; Yates, M.

    1995-09-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  11. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  12. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    USDA-ARS?s Scientific Manuscript database

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  13. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    USDA-ARS?s Scientific Manuscript database

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  14. Use of a high repetition rate neutron generator for in vivo body composition measurements via neutron inelastic scattering

    SciTech Connect

    Kehayias, J.J.; Ellis, K.J.; Cohn, S.H.; Weinlein, J.H.

    1986-01-01

    A small D-T neutron generator with a high pulse rate is used for the in vivo measurement of body carbon, oxygen and hydrogen. The core of the neutron generator is a 13 cm-long Zetatron tube pulsed at a rate of 10 kHz delivering 10/sup 3/ to 10/sup 4/ neutrons per pulse. A target-current feedback system regulates the source of the accelerator to assure constant neutron output. Carbon is measured by detecting the 4.44 MeV ..gamma..-rays from inelastic scattering. The short half-life of the 4.44 MeV state of carbon requires detection of the ..gamma..-rays during the 10 ..mu..s neutron pulse. Generators with low pulsing rate were found inappropriate for carbon measurements because of their low duty-cycle (high neutron output during the pulse). In vivo measurements were performed with normal volunteers using a scanning bed facility for a dose less than 25 mrem. This technique offers medical as well as general bulk analysis applications. 8 refs., 5 figs.

  15. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  16. High energy neutron and gamma-radiation generated during the solar flares

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1985-01-01

    The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.

  17. D-T neutron generator development for cancer therapy. 1980 annual progress report

    SciTech Connect

    Bacon, F.M.; Walko, R.J.; Bickes, R.W. Jr.; Cowgill, D.F.; Riedel, A.A.; O'Hagan, J.B.

    1980-05-01

    This report summarizes the work completed during the first year of a two-year grant by NCI/HEW to investigate the feasibility of developing a D-T neutron generator for use in cancer therapy. Experiments have continued on the Target Test Facility (TTF) developed during a previous grant to investigate high-temperature metal hydrides for use as target materials. The high voltage reliability of the TTF has been improved so that 200 kV, 200 mA operation is now routine. In recent target tests, the D-D neutron production rate was measured to be > 1 x 10/sup 11//s, a rate that corresponds to a D-T neutron production rate of > 1 x 10/sup 13//s - the desired rate for use in cancer therapy. Deuterium concentration depth profiles in the target, measured during intense ion beam bombardment, show that deuterium is depleted near the surface of the target due to impurities implanted by the ion beam. Recent modifications of the duopigatron ion source to reduce secondary electron damage to the electrodes also improved the ion source efficiency by about 40%. An ultra high vacuum version of the TTF is now being constructed to determine if improved vacuum conditions will reduce ion source impurities to a sufficiently low level that the deuterium near the surface of the target is not depleted. Testing will begin in June 1980.

  18. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received.

  19. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  20. Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ananeev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E. D.; Korolev, V. D.; Ustroev, G. I.

    2009-01-21

    Fusion neutron measurements were carried out on the S-300 generator (Kurchatov Institute, Moscow). We tried deuterated fibers, various types of wire arrays imploding onto a deuterated fiber, and deuterium gas puffs as Z-pinch loads. On the current level of 2 MA, the peak neutron yield of 10{sup 10} was achieved with a deuterium gas-puff. The neutron and deuteron energy spectra were quite similar in various types of Z-pinch configurations. The broad width of radial neutron spectra implied a high radial component of deuteron velocity. On the basis of neutron measurements, we concluded that neutron production mechanism is connected with the study of plasma voltage. It means that the acceleration of fast deuterons is not a secondary process but it reflects the global dynamics of Z-pinch plasmas. For this reason it is useful to add deuterium as a 'tracer' in Z-pinch loads more often. For instance, it seems attractive to prepare wire-arrays from deuterated metal wires such as Pd.

  1. Isotope identification as a part of the decommissioning of San Diego State University`s Texas Nuclear neutron generator

    SciTech Connect

    Taylor, D.

    1997-07-01

    The Department of Physics at San Diego State University has maintained a Neutron Generator facility in room P-32C since the mid 1960`s. This facility has provided students and faculty with a resource for the study of neutron interactions with matter, such as activation analysis, flux determinations, cross section determinations and shielding studies. The model 9500 was built by Texas Nuclear Research in the early 1960`s, and could be used for either photon or neutron generation, depending on the source ions introduced into the accelerator`s plasma bottle and the target material. In February of 1988, the Texas Nuclear Research neutron generator was replaced by a unit manufactured by Kaman Sciences Corporation. The Texas Nuclear unit was then removed and stored for later disassembly and disposal. In the summer of 1993, the neutron generator was disassembled into three large sections consisting of the titanium-tritide target, the oil diffusion pump and the corona shield/accelerator tube assembly. The target was packaged and stored in room P-33A and the other 2 assemblies were wrapped in plastic for storage. In June of 1995 the neutron generator was further disassembled to enable storage in 55 gallon drums and thoroughly surveyed for loose surface contamination. Openings on the disassembled hardware components were closed off using either duct tape or bolted stainless steel flanges to prevent the possible spread of contamination. Significant levels of removable surface contamination could be found on system internal and some external surfaces, up to five hundred thousand disintegrations per minute. Initial analysis of the removable contamination using aluminum absorbers and a Geiger-Meuller tube indicated beta particle or possibly photon emitters with an energy of approximately 180 keV. This apparent radiation energy conflicted with what one would be expected to find, given knowledge of the source material and the possible neutron activated products that would be

  2. MCNP modeling of a neutron generator and its shielding at Missouri University of Science and Technology

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji Babatunde; Liu, Xin

    2014-12-01

    The shielding of a neutron generator producing fast neutrons should be sufficient to limit the dose rates to the prescribed values. A deuterium-deuterium neutron generator has been installed in the Nuclear Engineering Department at Missouri University of Science and Technology (Missouri S&T). The generator produces fast neutrons with an approximate energy of 2.5 MeV. The generator is currently shielded with different materials like lead, high-density polyethylene, and borated polyethylene. An MCNP transport simulation has been performed to estimate the dose rates at various places in and around the facility. The simulations incorporated the geometric and composition information of these shielding materials to determine neutron and photon dose rates at three central planes passing through the neutron source. Neutron and photon dose rate contour plots at these planes were provided using a MATLAB program. Furthermore, the maximum dose rates in the vicinity of the facility were used to estimate the annual limit for the generator's hours of operation. A successful operation of this generator will provide a convenient neutron source for basic and applied research at the Nuclear Engineering Department of Missouri S&T.

  3. Neutron Production via a Pyroelectric Crystal without a Tip

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Shafroth, S. M.; Brownridge, J. D.

    2007-04-01

    Recently, Naranjo et al.^1 and Geuther et al.^2 reported on the production of neutrons via the ^2H(d,n)^3He reaction using a pyroelectric crystal with a tungsten tip attached. Here we report that neutrons can also be produced with a simpler version. Our accelerator consisted of a 2.54 cm dia x 2.54 cm LiTaO3 crystal placed in D2 gas of 2 mTorr without a tip and without a deuterated foil. The D2 provided the projectiles and target atoms for the ^2H(d,n)^3He reaction. When the heated (by a Peltier heater/cooler) crystal was allowed to cool to room temperature, our 12.5 cm dia x 5 cm liquid scintillator based neutron detector equipped with neutron-gamma-ray pulse-shape discrimination electronics counted 6 neutrons per minute compared to a background rate of 2 events per minute. The neutron detector was shielded by about 6 mm of Pb from the very intense X-ray radiation (˜100 mR/h). The maximum ion energy and current were 200 keV and 3 nA, respectively. When H2 was substituted for D2, no neutron counts above background were detected. ^1B. Naranjo, J.K. Gimzewski, and S. Putterman, Nature 434, 115 (2005) ^2J. Geuther, Y. Danon, and F. Saglime, Phy. Rev. Lett. 96, 054803 (2006) *This work was supported in part by DOE grant DE-FG02-97ER41033.

  4. Neutron production from 200-500 MeV proton interaction with spacecraft materials.

    PubMed

    Maurer, Richard H; Kinnison, James D; Roth, David R

    2005-01-01

    We report on detailed energy spectra of neutron production > 14 MeV from collisions of 200-500 MeV protons with combinations of aluminium, graphite and polyethylene. Comparisons of normalised neutron spectra are made with respect to incident proton energy, angle of neutron production and material. In general, carbon (graphite) or polyethylene (by itself or in combination with aluminium) reduce secondary neutron production > 14 MeV relative to the production from interactions in aluminium.

  5. Time extended production of neutrons during a solar flare

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Vestrand, W. T.; Dubrunner, H.; Flueckiger, E. O.; Cooper, J. F.; Kanbach, G.; Reppin, C.; Share, G. H.

    1985-01-01

    The most energetic neutral emissions expected from solar flares are gamma rays (10 MeV) from relativistic primary and secondary electron bremsstrahlung,from approx 0 meson decay, and from neutrons ( 50 MeV). Bremsstrahlung photon energies extend to that of the highest energy electron present, but the shape of the pi sup 0 gamma ray spectrum, peaking at 69 MeV, does not depend strongly on the proton spectrum above threshold, which is approx. 292 MeV for meson production on protons. The highest energy neutrons observed indicate directly the highest energy ions which interact at the Sun, and the presence or absence of anergy cutoff in the acceleration process. The high-energy proton spectrum shape can be determined from the neutron spectrum.

  6. Switchable radioactive neutron source device

    DOEpatents

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  7. Switchable radioactive neutron source device

    DOEpatents

    Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.

    1989-01-01

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  8. Neutron production by cosmic-ray muons in various materials

    NASA Astrophysics Data System (ADS)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-01

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.

  9. Neutron production by cosmic-ray muons in various materials

    SciTech Connect

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-15

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth’s surface.

  10. Small, Portable, Lightweight DT Neutron Generator for Use with NMIS

    SciTech Connect

    J. Reichardt; J. T. Mihalczo; R. B. Oberer; L.G. Chiang; J. K. Mattingly

    2001-06-18

    The advantages of 14.1 MeV DT neutrons as an alternate source for the Nuclear Materials Identification System (NMIS) are mainly increased sensitivity and accuracy which will extend applications considerably as well as result in shorter measurement times for present applications. Since NMIS requires a neutron source of {approximately} 5 {center_dot} 10{sup 6} n/sec, a small, lightweight (<30 lbs. including the power supply and is 3-in.-OD pipe, {approximately} 4-ft. long) is under development at MF Physics Corporation for the Oak Ridge National Laboratory (ORNL). By associated particle (alpha) detectors, a cone of neutrons can be defined which is particularly useful for active neutron interrogation of fissile materials in containers. After final test at ORNL, this DT neutron source will be useful at the Y-12 National Security Complex for routine use with NMIS.

  11. Hard error generation by neutron-induced fission fragments

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-12-01

    The authors observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal-nitride-oxide nonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup **2/ moving at an angle of 30 degrees or less from the electric field in the high-field, gate region of the memory transistor, and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, they observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. They mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. The authors' concentration measurements are in excellent agreement with other's measurement of uranium concentration in ceramic lids. The authors' Monte Carlo analyses also agree closely with their measurements of hard error probability in MNOS NVRAMs.

  12. Secondary photon fields produced in accelerator-based sources for neutron generation.

    PubMed

    Agosteo, S; Cesana, A; Garlati, L; Pola, A; Terrani, M

    2005-01-01

    Neutrons can be produced with low-energy ion accelerators for many applications, such as the characterisation of neutron detectors, the irradiation of biological samples and the study of the radiation damage in electronic devices. Moreover, accelerator-based neutron sources are under development for boron neutron capture therapy (BNCT). Thin targets are used for generating monoenergetic neutrons, while thick targets are usually employed for producing more intense neutron fields. The associated photon field produced by the target nuclei may have a strong influence on the application under study. For instance, these photons can play a fundamental role in the design of an accelerator-based neutron source for BNCT. This work focuses on the measurement of the photon field associated with neutrons that are produced by 4.0-6.8 MeV protons striking both a thin 7LiF target (for generating monoenergetic neutrons) and a thick beryllium target. In both cases, very intense photon fields are generated with energy distribution extending up to several MeV.

  13. Neutron production using a pyroelectric driven target coupled with a gated field ionization source

    SciTech Connect

    Ellsworth, J. L.; Tang, V.; Falabella, S.; Naranjo, B.; Putterman, S.

    2013-04-19

    A palm sized, portable neutron source would be useful for widespread implementation of detection systems for shielded, special nuclear material. We present progress towards the development of the components for an ultracompact neutron generator using a pulsed, meso-scale field ionization source, a deuterated (or tritiated) titanium target driven by a negative high voltage lithium tantalate crystal. Neutron production from integrated tests using an ion source with a single, biased tungsten tip and a 3 Multiplication-Sign 1 cm, vacuum insulated crystal with a plastic deuterated target are presented. Component testing of the ion source with a single tip produces up to 3 nA of current. Dielectric insulation of the lithium tantalate crystals appears to reduce flashover, which should improve the robustness. The field emission losses from a 3 cm diameter crystal with a plastic target and 6 cm diameter crystal with a metal target are compared.

  14. A Novel Neutron Imaging Calibration System Using a Neutron Generating Accelerator Tube

    SciTech Connect

    Ali, Z., Davis, B., Tinsley, J. R., Miller, E. K.

    2009-09-04

    Neutron Imaging is a key diagnostic for use in inertial confinement fusion (ICF) experiments, and has been fielded on experiments at Omega and Z. It will also be a key diagnostics at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) and eventually at the Laser Megajoule in France. Most systems are based on a neutron pinhole array placed at the target chamber while it is imaged by a scintillating fiber block. The light output of this scintillator is coupled via a reducer to a fiber bundle which transports the image to a CCD camera. Alternatively some systems use optical lens assemblies to focus the light onto a camera.For ICF applications the neutron imaging systems will primarily look at 14.2 MeV neutrons. However, 2.2 MeV and 20+ MeV neutrons will also be present and will potentially provide key information.

  15. Forward Neutron Production at the Fermilab Main Injector

    SciTech Connect

    Nigmanov, T.S.; Rajaram, D.; Longo, M.J.; Akgun, U.; Aydin, G.; Baker, W.; Barnes, P.D., Jr.; Bergfeld, T.; Bujak, A.; Carey, D.; Dukes, E.C.; /Virginia U. /Iowa U.

    2010-10-01

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as A{sup a} where a is 0.46 {+-} 0.06 for a beam momentum of 58 GeV/c and 0.54 {+-} 0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo. The MIPP (Main Injector Particle Production) experiment (FNAL E907) [1] acquired data in the Meson Center beam line at Fermilab. The primary purposes of the experiment were to investigate scaling laws in hadron fragmentation [2], to obtain hadron production data for the NuMI (Neutrinos at the Main Injector [3]) target to be used for calculating neutrino fluxes, and to obtain inclusive pion, neutron, and photon production data to facilitate proton radiography [4]. While there is considerable data available on inclusive charged particle production [5], there is little data on neutron production. In this article we present results for forward neutron production using proton beams of 58 GeV/c, 84 GeV/c, and 120 GeV/c on hydrogen, beryllium, carbon, bismuth, and uranium targets, and compare these data with predictions from Monte Carlo simulations.

  16. DT neutron generator as a source for a thermal neutron activation system for confirmatory land mine detection

    NASA Astrophysics Data System (ADS)

    Haslip, Dean S.; Cousins, Thomas; Andrews, H. Robert; Chen, Jing; Clifford, Edward T. H.; Ing, Harry; McFee, John E.

    2001-12-01

    A DT neutron generator has been integrated into the Canadian Improved Landmine Detection Program's Thermal Neutron Activation sensor. The generator has been redesigned from a commercial version, and the moderator structure around the generator has been completely redesigned. These developments allow the DT generator and its moderator structure to be placed interchangeably into the location currently occupied by a 252Cf source and its moderator structure. Experimental and calculational studies have helped to define the optimal operating parameters for the neutron generator in this application. Performance comparisons between the old californium-based system and the new DT-generator-based system have demonstrated that the new system out-performs the old in all tested scenarios, particularly when the mine is deeply buried or when the source is not directly over the explosive. This is in excellent agreement with calculations performed in the design phase of this system. Combined with the myriad other benefits associated with DT generators over isotopic sources, these results demonstrate the desirability of using a DT generator in a TNA land mine detection system.

  17. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    USDA-ARS?s Scientific Manuscript database

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  18. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    SciTech Connect

    Schall, Michael; Cooper, Gary Wayne; Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  19. Neutron Productions from thin Be target irradiated by 50 MeV/u 238U beam

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Seock; Oh, Joo-Hee; Jung, Nam-Suk; Oranj, Leila Mokhtari; Nakao, Noriaki; Uwamino, Yoshitomo

    2017-09-01

    Neutrons generated from thin beryllium target by 50 MeV/u 238U beam were measured using activation analysis at 15, 30, 45, and 90 degrees from the beam direction. A 0.085 mm-thick Be stripper of RIBF was used as the neutron generating target. Activation detectors of bismuth, cobalt, and aluminum were placed out of the stripper chamber. The threshold reactions of 209Bi(n, xn)210-xBi(x=4 8), 59Co(n, xn)60-xCO(x=2 5), 59Co(n, 2nα)54Mn, 27Al(n, α)24Na, and 27Al(n,2nα)22Na were applied to measure the production rates of radionuclides. The neutron spectra were obtained using an unfolding method with the SAND-II code. All of production rates and neutron spectra were compared with the calculated results using Monte Carlo codes, the PHITS and the FLUKA. The FLUKA results showed better agreement with the measurements than the PHITS. The discrepancy between the measurements and the calculations were discussed.

  20. Leading neutron production in e+p collisions at HERA

    NASA Astrophysics Data System (ADS)

    Chekanov, S.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Aghuzumtsyan, G.; Bartsch, D.; Brock, I.; Crittenden, J.; Goers, S.; Hartmann, H.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U. F.; Kerger, R.; Kind, O.; Paul, E.; Rautenberg, J.; Renner, R.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K. C.; Weber, A.; Bailey, D. S.; Brook, N. H.; Cole, J. E.; Foster, B.; Heath, G. P.; Heath, H. F.; Robins, S.; Rodrigues, E.; Scott, J.; Tapper, R. J.; Wing, M.; Capua, M.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Kim, Y. K.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Helbich, M.; Liu, X.; Mellado, B.; Paganis, S.; Schmidke, W. B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Olkiewicz, K.; Przybycień, M. B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Grabowska-Bold, I.; Jeleń, K.; Kisielewska, D.; Kowal, A. M.; Kowal, M.; Kowalski, T.; Mindur, B.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Szuba, D.; Szuba, J.; Kotański, A.; Słomiński, W.; Bauerdick, L. A. T.; Behrens, U.; Borras, K.; Chiochia, V.; Dannheim, D.; Derrick, M.; Drews, G.; Fourletova, J.; Fox-Murphy, A.; Fricke, U.; Geiser, A.; Goebel, F.; Göttlicher, P.; Gutsche, O.; Haas, T.; Hain, W.; Hartner, G. F.; Hillert, S.; Kötz, U.; Kowalski, H.; Labes, H.; Lelas, D.; Löhr, B.; Mankel, R.; Martínez, M.; Moritz, M.; Notz, D.; Pellmann, I.-A.; Petrucci, M. C.; Polini, A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Wessoleck, H.; Wichmann, R.; Wolf, G.; Youngman, C.; Zeuner, W.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Genta, C.; Pelfer, P. G.; Bamberger, A.; Benen, A.; Coppola, N.; Markun, P.; Raach, H.; Wölfle, S.; Bell, M.; Bussey, P. J.; Doyle, A. T.; Glasman, C.; Hanlon, S.; Lee, S. W.; Lupi, A.; McCance, G. J.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Bodmann, B.; Carli, T.; Holm, U.; Klimek, K.; Krumnack, N.; Lohrmann, E.; Milite, M.; Salehi, H.; Stonjek, S.; Wick, K.; Ziegler, A.; Ziegler, Ar; Collins-Tooth, C.; Foudas, C.; Gonçalo, R.; Long, K. R.; Metlica, F.; Miller, D. B.; Tapper, A. D.; Walker, R.; Cloth, P.; Filges, D.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Lim, H.; Son, D.; Barreiro, F.; González, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terrón, J.; Vázquez, M.; Barbi, M.; Bertolin, A.; Corriveau, F.; Ochs, A.; Padhi, S.; Stairs, D. G.; St-Laurent, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, P.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Golubkov, Yu. A.; Katkov, I. I.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu; Proskuryakov, A. S.; Shcheglova, L. M.; Vlasov, N. N.; Zotkin, S. A.; Bokel, C.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Maddox, E.; Schagen, S.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J. J.; Wiggers, L.; de Wolf, E.; Brümmer, N.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Boogert, S.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Grzelak, G.; Matsushita, T.; Rigby, M.; Ruske, O.; Sutton, M. R.; Walczak, R.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Parenti, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Heaphy, E. A.; Oh, B. Y.; Saull, P. R. B.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J. C.; McCubbin, N. A.; Heusch, C.; Park, I. H.; Pavel, N.; Abramowicz, H.; Dagan, S.; Gabareen, A.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Martin, J. F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J. M.; Gwenlan, C.; Hall-Wilton, R.; Jones, T. W.; Lane, J. B.; Lightwood, M. S.; Loizides, J. H.; West, B. J.; Ciborowski, J.; Ciesielski, R.; Nowak, R. J.; Pawlak, J. M.; Smalska, B.; Sztuk, J.; Tymieniecka, T.; Ukleja, A.; Ukleja, J.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Plucinski, P.; Eisenberg, Y.; Gladilin, L. K.; Hochman, D.; Karshon, U.; Kçira, D.; Lammers, S.; Li, L.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Straub, P. B.; Bhadra, S.; Catterall, C. D.; Fourletov, S.; Khakzad, M.; Menary, S.; Soares, M.; Standage, J.; ZEUS Collaboration

    2002-08-01

    The production of neutrons carrying at least 20% of the proton beam energy ( x L> 0.2 ) in e+p collisions has been studied with the ZEUS detector at HERA for a wide range of Q2, the photon virtuality, from photoproduction to deep inelastic scattering. The neutron-tagged cross section, ep→ e' Xn, is measured relative to the inclusive cross section, ep→ e' X, thereby reducing the systematic uncertainties. For xL> 0.3, the rate of neutrons in photoproduction is about half of that measured in hadroproduction, which constitutes a clear breaking of factorisation. There is about a 20% rise in the neutron rate between photoproduction and deep inelastic scattering, which may be attributed to absorptive rescattering in the γp system. For 0.64< xL<0.82, the rate of neutrons is almost independent of the Bjorken scaling variable x and Q2. However, at lower and higher xL values, there is a clear but weak dependence on these variables, thus demonstrating the breaking of limiting fragmentation. The neutron-tagged structure function, FLN(3)2( x, Q2, xL), rises at low values of x in a way similar to that of the inclusive F2( x, Q2) of the proton. The total γπ cross section and the structure function of the pion, Fπ2( xπ, Q2) where xπ= x/(1- xL), have been determined using a one-pion-exchange model, up to uncertainties in the normalisation due to the poorly understood pion flux. At fixed Q2, Fπ2 has approximately the same x dependence as F2 of the proton.

  1. Linear induction accelerators for fusion and neutron production

    SciTech Connect

    Barletta, W.A. |

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs.

  2. Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications

    SciTech Connect

    Rhodes, E.; Peters, C.W.

    1991-12-01

    With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, can detect nuclear warheads by their characteristic strong gamma-ray absorption, or can count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. 5 refs., 12 figs.

  3. Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications

    SciTech Connect

    Rhodes, E. ); Peters, C.W. . Advanced Systems Div.)

    1991-01-01

    With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, can detect nuclear warheads by their characteristic strong gamma-ray absorption, or can count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. 5 refs., 12 figs.

  4. Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications

    NASA Astrophysics Data System (ADS)

    Rhodes, E.; Peters, C. W.

    With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, detect nuclear warheads by their characteristic strong gamma-ray absorption, or count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material.

  5. Development of High Intensity D-T fusion NEutron Generator (HINEG)

    NASA Astrophysics Data System (ADS)

    Wu, Yican; Liu, Chao; Song, Gang; Wang, Yongfeng; Li, Taosheng; Jiang, Jieqiong; Song, Yong; Ji, Xiang

    2017-09-01

    A high intensity D-T fusion neutron generator (HINEG) is keenly needed for the research and development (R&D) of nuclear technology and safety of the advanced nuclear energy system, especially for the radiation protection and shielding. The R&D of HINEG includes two phases: HINEG-I and HINEG-II. HINEG-I is designed to have both the steady beam and pulsed beam. The neutron yield of the steady beam is up to 1012 n/s. The width of pulse neutron beam is less than 1.5 ns. HINEG-I is used for the basic neutronics study, such as measurement of nuclear data, validation of neutronics methods and software, validation of radiation protection and so on. HINEG-II aims to generate a high neutron yield of 1013 n/s neutrons by adopting high speed rotating tritium target system integrated with jet/spray array enhanced cooling techniques, and can further upgrade to obtain neutron yield of 1014 1015n/s by using of accelerators-array in a later stage. HINEG-II can be used for fundamentals research of nuclear technology including mechanism of materials radiation damage and neutronics performance of components, radiation shielding as well as other nuclear technology applications.

  6. Pulsed D-D Neutron Generator Measurements of HEU Oxide Fuel Pins

    SciTech Connect

    McConchie, Seth; Hausladen, Paul; Mihalczo, John; Blackburn, Brandon; Chichester, David

    2009-03-10

    Pulsed neutron interrogation measurements have been performed on highly enriched uranium (HEU) oxide fuel pins and depleted uranium (DU) metal using a D-D neutron generator (2x10{sup 6} neutrons-s{sup -1}) and moderated {sup 3}He tubes at the Idaho National Laboratory Power Burst Facility. These measurements demonstrate the ability to distinguish HEU from DU by coincidence counting using a pulsed source. The amount of HEU measured was 8 kg in a sealed 55-gallon drum compared to 31 kg of DU. Neutron events were counted during and after the pulse with the Nuclear Materials Identification System (NMIS) and used to calculate the neutron coincidence time distributions. Passive measurements were also performed for comparison with the pulsed measurements. This paper presents the neutron coincidence time distribution and Feynman variance results from the measurements.

  7. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    PubMed

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA.

  8. Progress on using deuteron-deuteron fusion generated neutrons for 40Ar/39Ar sample irradiation

    NASA Astrophysics Data System (ADS)

    Rutte, Daniel; Renne, Paul R.; Becker, Tim; Waltz, Cory; Ayllon Unzueta, Mauricio; Zimmerman, Susan; Hidy, Alan; Finkel, Robert; Bauer, Joseph D.; Bernstein, Lee; van Bibber, Karl

    2017-04-01

    We present progress on the development and proof of concept of a deuteron-deuteron fusion based neutron generator for 40Ar/39Ar sample irradiation. Irradiation with deuteron-deuteron fusion neutrons is anticipated to reduce Ar recoil and Ar production from interfering reactions. This will allow dating of smaller grains and increase accuracy and precision of the method. The instrument currently achieves neutron fluxes of ˜9×107 cm-2s-1 as determined by irradiation of indium foils and use of the activation reaction 115In(n,n')115mIn. Multiple foils and simulations were used to determine flux gradients in the sample chamber. A first experiment quantifying the loss of 39Ar is underway and will likely be available at the time of the presentation of this abstract. In ancillary experiments via irradiation of K salts and subsequent mass spectrometric analysis we determined the cross-sections of the 39K(n,p)39Ar reaction at ˜2.8 MeV to be 160 ± 35 mb (1σ). This result is in good agreement with bracketing cross-section data of ˜96 mb at ˜2.45 MeV and ˜270 mb at ˜4 MeV [Johnson et al., 1967; Dixon and Aitken, 1961 and Bass et al. 1964]. Our data disfavor a much lower value of ˜45 mb at 2.59 MeV [Lindström & Neuer, 1958]. In another ancillary experiment the cross section for 39K(n,α)36Cl at ˜2.8 MeV was determined as 11.7 ± 0.5 mb (1σ), which is significant for 40Ar/39Ar geochronology due to subsequent decay to 36Ar as well as for the determination of production rates of cosmogenic 36Cl. Additional experiments resolving the cross section functions on 39K between 1.5 and 3.6 MeV are on their way using the LICORNE neutron source of the IPN Orsay tandem accelerator. Results will likely be available at the time of the presentation of this abstract. While the neutron generator is designed for fluxes of ˜109 cm-2s-1, arcing in the sample chamber currently limits the power—straightforwardly correlated to the neutron flux—the generator can safely be run at. Further

  9. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    SciTech Connect

    Jongen, Y.

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  10. Neutron Generation through Ultra-Intense Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zulick, C.; Dollar, F.; Willingale, L.; Chvykov, V.; Kalintchenko, G.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.; Glebov, V.; Nilson, P. M.; Sangster, T. C.; Stoeckl, C.; Craxton, R. S.; Norreys, P. A.; Cobble, J.; Chen, H.

    2012-10-01

    Fast neutrons ( 1 MeV) have important applications in biological imaging, materials testing, and active interrogation for homeland security. Experiments at the HERUCLES laser facility produced neutrons with energies up to 12 MeV in directional beams utilizing ^73Li(p,n)^74Be, and ^73Li(d,n)^84Be reactions. The neutrons were produced in a two-stage pitcher-catcher configuration by accelerating protons and deuterons from micron scale solid targets into bulk LiF. The neutron yield was measured to be up to 2.3 (±1.4) x10^7 neutrons/sr with a flux 6 times higher in the forward direction than at 90^o. Additionally, the kilojoule short-pulse OMEGA EP laser was used to investigate ^21D(d,n)^32He reactions from an underdense deuterated plastic plume. Fast neutron spectra were observed via time-of-flight measurements as a result of deuteron acceleration during the channel formation.

  11. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  12. Revision and product generation software

    USGS Publications Warehouse

    ,

    1997-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data on-screen, and to produce plots and color-separated files for use in printing maps.

  13. Revision and Product Generation Software

    USGS Publications Warehouse

    ,

    1999-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data onscreen, and to produce plots and color-separated files for use in printing maps.

  14. Compact Intense Neutron Generators Based on Inertial Electrostatic Confinement of D-D Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Inoue, K.; Kajiwara, T.; Nakamatsu, R.

    2015-10-01

    A neutron generator based on inertial electrostatic confinement (IEC) of fusion plasmas is being developed for a non-destructive inspection system of special nuclear materials hidden in sea containers. The new IEC device is equipped with a multistage feedthrough which was designed aiming at both capability of a high bias voltage and enhancement of ion recirculation by modification of electric fields in the IEC device. Experimental comparison was made with a conventional single-stage IEC device developed in an earlier work. As the results, both the increase in the applied voltage and the modified field symmetry by the new multistage scheme showed significant enhancement in the neutron output. As a consequence, neutron output per input discharge current was enhanced drastically by a factor of ~30 in total. Also, the first pulsing experiments of the newly developed IEC neutron generator showed pulsed neutron output with a rapid pulse fall-off of ~ 1 μsec successfully.

  15. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    SciTech Connect

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-02

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include {sup 3}He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors.We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  16. Determination of neutron fracture functions from a global QCD analysis of the leading neutron production at HERA

    NASA Astrophysics Data System (ADS)

    Shoeibi, Samira; Khanpour, Hamzeh; Taghavi-Shahri, F.; Javidan, Kurosh

    2017-04-01

    In this article, we present our global QCD analysis of leading neutron production in deep inelastic scattering at H1 and ZEUS collaborations. The analysis is performed in the framework of a perturbative QCD description for semi-inclusive processes, which is based on the fracture functions approach. Modeling the nonperturbative part of the fragmentation process at the input scale Q02, we analyze the Q2 dependence of the leading neutron structure functions and obtain the neutron fracture functions (neutron FFs) from next-to-leading order global QCD fit to data. We have also performed a careful estimation of the uncertainties using the "Hessian method" for the neutron FFs and corresponding observables originating from experimental errors. The predictions based on the obtained neutron FFs are in good agreement with all data analyzed, at small and large longitudinal momentum fraction xL as well as the scaled fractional momentum variable β .

  17. Neutron shielding of the GDT (Novosibirsk) neutron generator project -- A feasibility study

    SciTech Connect

    Robouch, B.V.; Ingrosso, L.; Brzosko, J.S.

    1995-12-31

    The paper presents results of extensive neutronic studies of the neutron source test facility based on the Novosibirsk Gas Dynamic Trap (GDT). The facility is to provide 10{sup 18} SDT-neutrons/s (over a continuous 10-year period) for material-test studies. The paper examines the protective-shield capacity to ensure survival of GDT vital parts and suggests design modifications when survival is in jeopardy. The numerical studies used the 3D-AMC-VINIA Monte Carlo code with a precise computer representation of the sensitive parts of the facility. Intensity maps were plotted for neutron fluences, displacements, heat deposition, etc. Shielding feasibility has been ascertained, and the lifetime of consumable components ensured beyond the recommended values. A modification is suggested to extend the irradiation space at HARD neutron energy spectra to increase the volume to 1 m{sup 3} with damage gradients <5%/cm. The design achieves neutron fluences close to 10{sup 14} n/cm{sup 2}s (3.10{sup 22} n/cm{sup 2} end-of-life) in a >100 {ell} test space.

  18. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator with enhanced spatial resolution

    NASA Astrophysics Data System (ADS)

    Sy, Amy Vong

    The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrates such capabilities in the characterization of fissile material configurations and greatly benefits from improvements to existing neutron generator systems. Increased neutron yields and improved spatial resolution can enhance the capabilities of imaging methods utilizing the API technique. The work presented in this dissertation focused on the development of components for use within an API neutron generator with enhanced system spatial resolution. The major focus areas were the ion source development for plasma generation, and passive ion beam focusing techniques for the small ion beam widths necessary for the enhanced spatial resolution. The ion source development focused on exploring methods for improvement of Penning-type ion sources that are used in conventional API neutron generator systems, while the passive beam focusing techniques explored both ion beam collimation and ion guiding with tapered dielectric capillaries for reduced beam widths at the neutron production target.

  19. Time dependent worldwide distribution of atmospheric neutrons and of their products. I, II, III.

    NASA Technical Reports Server (NTRS)

    Merker, M.; Light, E. S.; Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1973-01-01

    Review of the experimental results obtained in a series of measurements of the fast neutron cosmic ray spectrum by means of high-altitude balloons and aircraft. These results serve as a basis for checking a Monte Carlo calculation of the entire neutron distribution and its products. A calculation of neutron production and transport in the earth's atmosphere is then discussed for the purpose of providing a detailed description of the morphology of secondary neutron components. Finally, an analysis of neutron observations during solar particle events is presented. The Monte Carlo output is used to estimate the contribution of flare particles to fluctuations in the steady state neutron distributions.

  20. Measurement of prompt neutron generation time at the VIR-2M pulsed nuclear reactor

    NASA Astrophysics Data System (ADS)

    Glukhov, L. Yu.; Kotkov, S. P.; Kuznetsov, M. S.; Chursin, S. S.

    2016-12-01

    The prompt neutron generation time is measured in the core of the VIR-2M research nuclear reactor. The measurements are performed using the Babala method while the reactor is in the subcritical state. The VIR-2M reactor and the relevant experimental equipment are briefly described, and the experimental procedure and data processing technique are presented. It is shown that the prompt neutron generation time with empty experimental channels is 35 ± 1 μs.

  1. Measurement of prompt neutron generation time at the VIR-2M pulsed nuclear reactor

    SciTech Connect

    Glukhov, L. Yu.; Kotkov, S. P.; Kuznetsov, M. S.; Chursin, S. S.

    2016-12-15

    The prompt neutron generation time is measured in the core of the VIR-2M research nuclear reactor. The measurements are performed using the Babala method while the reactor is in the subcritical state. The VIR-2M reactor and the relevant experimental equipment are briefly described, and the experimental procedure and data processing technique are presented. It is shown that the prompt neutron generation time with empty experimental channels is 35 ± 1 μs.

  2. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  3. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.

    PubMed

    Facure, A; da Silva, A X; da Rosa, L A R; Cardoso, S C; Rezende, G F S

    2008-07-01

    When space limitations are primary constraints, laminated barriers with metals can be an option to provide sufficient shielding for a radiotherapy treatment room. However, if a photon clinical beam with end point energy of 10 MeV or higher interacts with the metal inside the barriers neutrons are ejected and can result in an exposure problem inside and outside the vault. The empirical formulae existing in the literature to estimate neutron dose equivalents beyond laminated barriers do not take into account neutron production for spectra below 15 MV. In this work, the Monte Carlo code MCNP was used to simulate the production and transport of photoneutrons across primary barriers of 10 MV accelerator treatment rooms containing lead or steel, in order to obtain the ambient dose equivalents produced by these particles outside the room and in the patient plane. It was found that the neutron doses produced are insignificant when steel is present in the primary barriers of 10 MV medical accelerators. On the other hand, the results show that, in all cases where lead sheets are positioned in the primary barriers, the neutron ambient dose equivalents outside the room generally exceed the shielding design goal of 20 μSv/week for uncontrolled areas, even when the lead sheets are positioned inside the treatment room. Moreover, for laminated barriers, the photoneutrons produced in the metals are summed with the particles generated in the accelerator head shielding and can represent a significant component of additional dose to the patients. In this work, it was found that once lead sheets are positioned inside the room, the neutron ambient dose equivalents can reach the value of 75 μSv per Gray of photon absorbed dose at the isocenter. However, for all simulated cases, a tendency in the reduction of neutron doses with increasing lead thickness can be observed. This trend can imply in higher neutron ambient dose equivalents outside the room for thinner lead sheets

  4. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.

    PubMed

    Facure, A; da Silva, A X; da Rosa, L A R; Cardoso, S C; Rezende, G F S

    2008-07-01

    When space limitations are primary constraints, laminated barriers with metals can be an option to provide sufficient shielding for a radiotherapy treatment room. However, if a photon clinical beam with end point energy of 10 MeV or higher interacts with the metal inside the barriers neutrons are ejected and can result in an exposure problem inside and outside the vault. The empirical formulae existing in the literature to estimate neutron dose equivalents beyond laminated barriers do not take into account neutron production for spectra below 15 MV. In this work, the Monte Carlo code MCNP was used to simulate the production and transport of photoneutrons across primary barriers of 10 MV accelerator treatment rooms containing lead or steel, in order to obtain the ambient dose equivalents produced by these particles outside the room and in the patient plane. It was found that the neutron doses produced are insignificant when steel is present in the primary barriers of 10 MV medical accelerators. On the other hand, the results show that, in all cases where lead sheets are positioned in the primary barriers, the neutron ambient dose equivalents outside the room generally exceed the shielding design goal of 20 microSv/week for uncontrolled areas, even when the lead sheets are positioned inside the treatment room. Moreover, for laminated barriers, the photoneutrons produced in the metals are summed with the particles generated in the accelerator head shielding and can represent a significant component of additional dose to the patients. In this work, it was found that once lead sheets are positioned inside the room, the neutron ambient dose equivalents can reach the value of 75 microSv per Gray of photon absorbed dose at the isocenter. However, for all simulated cases, a tendency in the reduction of neutron doses with increasing lead thickness can be observed. This trend can imply in higher neutron ambient dose equivalents outside the room for thinner lead sheets

  5. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms

    SciTech Connect

    Facure, A.; Silva, A. X. da; Rosa, L. A. R. da; Cardoso, S. C.; Rezende, G. F. S.

    2008-07-15

    When space limitations are primary constraints, laminated barriers with metals can be an option to provide sufficient shielding for a radiotherapy treatment room. However, if a photon clinical beam with end point energy of 10 MeV or higher interacts with the metal inside the barriers neutrons are ejected and can result in an exposure problem inside and outside the vault. The empirical formulae existing in the literature to estimate neutron dose equivalents beyond laminated barriers do not take into account neutron production for spectra below 15 MV. In this work, the Monte Carlo code MCNP was used to simulate the production and transport of photoneutrons across primary barriers of 10 MV accelerator treatment rooms containing lead or steel, in order to obtain the ambient dose equivalents produced by these particles outside the room and in the patient plane. It was found that the neutron doses produced are insignificant when steel is present in the primary barriers of 10 MV medical accelerators. On the other hand, the results show that, in all cases where lead sheets are positioned in the primary barriers, the neutron ambient dose equivalents outside the room generally exceed the shielding design goal of 20 {mu}Sv/week for uncontrolled areas, even when the lead sheets are positioned inside the treatment room. Moreover, for laminated barriers, the photoneutrons produced in the metals are summed with the particles generated in the accelerator head shielding and can represent a significant component of additional dose to the patients. In this work, it was found that once lead sheets are positioned inside the room, the neutron ambient dose equivalents can reach the value of 75 {mu}Sv per Gray of photon absorbed dose at the isocenter. However, for all simulated cases, a tendency in the reduction of neutron doses with increasing lead thickness can be observed. This trend can imply in higher neutron ambient dose equivalents outside the room for thinner lead sheets

  6. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Zhong-Shuai; Chi, Qian; Liu, Lin-Mao

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 108 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  7. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  8. Analysis of a shield design for a DT neutron generator test facility.

    PubMed

    Chichester, D L; Pierce, G D

    2007-10-01

    Independent numerical simulations have been performed using the MCNP5 and SCALE5 radiation transport codes to evaluate the effectiveness of a concrete facility designed to shield personnel from neutron radiation emitted from DT neutron generators. The analysis considered radiation source terms of 14.1 MeV monoenergetic neutrons located at three discrete locations within the two test vaults in the facility, calculating neutron and photon dose rates at 44 locations around the facility using both codes. In addition, dose rate contours were established throughout the facility using the MCNP5 mesh tally feature. Neutron dose rates calculated outside of the facility are predicted to be below 0.01 mrem/h at all locations when all neutron generator source terms are operating within the facility. Similarly, the neutron dose rate in one empty test vault when the adjacent test vault is being utilized is also less then 0.01 mrem/h. For most calculation locations outside the facility the photon dose rates were less then the neutron dose rates by a factor of 10 or more.

  9. INITIAL EVALUATION OF A PULSED WHITE SPECTRUM NEUTRON GENERATOR FOR EXPLOSIVE DETECTION

    SciTech Connect

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel,, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-06-02

    Successful explosive material detection in luggage and similar sized containers is acritical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designedand fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set ofparallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80 - 120 kV. First experiments demonstrated ion source operation and successful beam pulsing.

  10. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.

    2015-04-01

    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

  11. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  12. Neutron Generation from Laser-Accelerated Ion Beams: Use of Alternative Deuteron-Rich Targets for Improved Neutron Yield and Control of Neutron Spectra

    NASA Astrophysics Data System (ADS)

    Albright, B. J.; Yin, L.; Favalli, A.

    2016-10-01

    Laser-ion-beam generation in the break-out afterburner (BOA) acceleration regime has been modeled for several deuteron-rich solid-density targets using the VPIC particle-in-cell code. Monte Carlo modeling of the transport of these beams in a beryllium converter in a pitcher-catcher neutron source configuration shows significant increases in neutron yields may be achievable through judicious choices of laser target material. Additionally, species-separation dynamics in some target materials during the BOA ion acceleration phase can be exploited to control the shapes of the neutron spectra. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  13. Development and characterization of a D-D fast neutron generator for imaging applications.

    PubMed

    Adams, Robert; Bort, Lorenz; Zboray, Robert; Prasser, Horst-Michael

    2015-02-01

    The experimental characterization of a pulsed D-D fast neutron generator designed for fan-beam tomography applications is presented. Using Monte Carlo simulations the response of an LB6411 neutron probe was related to the neutron generator output. The yield was measured to be up to ∼10(7) neutrons/s. An aluminum block was moved stepwise between the source and a BC400 plastic scintillator detector in order to measure an edge response. This edge response was related to the neutron emitting spot size using Monte Carlo simulations and a simplified geometry-based model. The experimentally determined spot size of 2.2 mm agreed well with the simulated value of 1.5 mm. The time-dependence of pulsed output for various operating conditions was also measured. The neutron generator was found to satisfy design requirements for a planned fast neutron tomography arrangement based on a plastic scintillator detector array which is expected to be capable of producing 2D tomograms with a resolution of ∼1.5 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Neutron Cross Section Covariances for Structural Materials and Fission Products

    NASA Astrophysics Data System (ADS)

    Hoblit, S.; Cho, Y.-S.; Herman, M.; Mattoon, C. M.; Mughabghab, S. F.; Obložinský, P.; Pigni, M. T.; Sonzogni, A. A.

    2011-12-01

    We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-VII.1. Neutron incident energies cover full range from 10 eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also 23Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS.

  15. Use of the Zetatron D-T neutron generator for the simultaneous measurement of carbon, oxygen, and hydrogen in vivo in humans

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.; Zhuang, H.

    1993-06-01

    A small sealed D-T neutron generator is used for the pulsed (4-8 kHz) production of fast neutrons. Carbon and oxygen are detected in vivo by counting the 4.44 and 6.13 MeV gamma rays resulting from the inelastic scattering of the fast neutrons. Hydrogen is detected by thermal neutron capture. BGO detectors (127 mm diameter × 76 mm thick) were found more tolerant to neutron exposure and improved the signal to background ratio for the carbon detection by a factor of 6, compared to 152 × 152 mm NaI(Tl). The elemental analysis of the body is used to study the changes of body composition with aging. We investigate the causes of depletion of lean body mass and the development of ways of maintaining functional capacity and quality of life of the elderly.

  16. Tests of the space gamma spectrometer prototype at the JINR experimental facility with different types of neutron generators

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Vostrukhin, A. A.; Golovin, D. V.; Dubasov, P. V.; Zontikov, A. O.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Mitrofanov, I. G.; Mokrousov, M. I.; Repkin, A. N.; Timoshenko, G. N.; Udovichenko, K. V.; Shvetsov, V. N.

    2017-07-01

    The results of the tests of the HPGe gamma spectrometer performed with a planetary soil model and different types of pulse neutron generators are presented. All measurements have been performed at the experimental nuclear planetary science facility (Joint Institute for Nuclear Research) for the physical calibration of active gamma and neutron spectrometers. The aim of the study is to model a space experiment on determining the elemental composition of Martian planetary matter by neutron-induced gamma spectroscopy. The advantages and disadvantages of a gas-filled neutron generator in comparison with a vacuum-tube neutron generator are examined.

  17. Compact deuterium-tritium neutron generator using a novel field ionization source

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Sanchez, J.; Tang, V.; Wang, H.

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  18. Assessment of the importance of neutron multiplication for tritium production

    NASA Astrophysics Data System (ADS)

    Chiovaro, P.; Di Maio, P. A.

    2017-01-01

    One of the major requirements for a fusion power plant in the future is tritium self-sufficiency. For this reason the scientific community has dedicated a lot of effort to research activity on reactor tritium breeding blankets. In the framework of the international project DEMO, many concepts of breeding blanket have been taken into account and some of them will be tested in the experimental reactor ITER by means of appropriate test blanket modules (TBMs). All the breeding blanket concepts rely on the adoption of binary systems composed of a material acting as neutronic multiplier and another as a breeder. This paper addresses a neutronic feature of these kinds of systems. In particular, attention has been focused on the assessment of the importance of neutrons coming from multiplication reactions for the production of tritium. A theoretical framework has been set up and a procedure to evaluate the performance of the multiplier-breeder systems, under the aforementioned point of view, has been developed. Moreover, the model set up has been applied to helium cooled lithium lead and helium cooled pebble bad TBMs under irradiation in ITER and the results have been critically discussed.

  19. Gluon saturation and Feynman scaling in leading neutron production

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Gonçalves, V. P.; Spiering, D.; Navarra, F. S.

    2016-01-01

    In this paper we extend the color dipole formalism for the study of leading neutron production in e + p → e + n + X collisions at high energies and estimate the related observables which were measured at HERA and could be analyzed in future electron-proton (ep) colliders. In particular, we calculate the Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the photon-pion total cross section. In the color dipole formalism, the photon-pion cross section is described in terms of the dipole-pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate the recently released H1 leading neutron spectra can be described using the color dipole formalism and that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.

  20. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Numerical Simulations of Cosmogenic Neutron Production and Transport in Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Kim, Kyeong J.; Drake, Darrell M.; Reedy, Robert C.

    2003-01-01

    The numerical simulation code MCNPX was used to calculate the production and transport of cosmic-ray-produced neutrons in Mars and meteorites. These calculations help to understand the processes involved and the parameters that control the neutron fluxes. Results are presented here for neutrons in Mars and for the distribution of cosmic-ray neutrons and protons in a 50 cm-radius L-chondrite.

  2. Project of the borehole neutron generator for the direct determination of oxygen and carbon by activation method

    NASA Astrophysics Data System (ADS)

    Bogdanovich, B. Yu; Vovchenko, E. D.; Iliinskiy, A. V.; Isaev, A. A.; Kozlovskiy, K. I.; Nesterovich, A. V.; Senyukov, V. A.; Shikanov, A. E.

    2016-09-01

    The paper deals with application features of borehole neutron generator (BNG) based on the vacuum accelerating tube (AT) with laser-plasma ion source for determination of oxygen isotope 16O and carbon isotope 12C by direct activation. The project of pulsed BNG for realization of an activation method in the conditions of natural presence of productive hydrocarbons is offered. The diode system with radial acceleration, magnetic electron insulation and laser-plasma source of deuterons at the anode in a sealed-off vacuum accelerating tube is applied. The permanent NdFeB magnet with induction about 0.5 T for produce the insulating magnetic field in the diode gap is proposed. In the experiments on the model of BNG with the accelerating voltage source (≈350 kV), performed by the scheme of Arkadiev-Marx generator, the output of (d, d) neutrons was ∼107 pulse-1.

  3. Pyroelectric neutron generator for calibration of neutrino and dark matter detectors

    NASA Astrophysics Data System (ADS)

    Chepurnov, A. S.; Ionidi, V. Y.; Ivashchuk, O. O.; Kubankin, A. S.; Oleinik, A. N.; Shchagin, A. V.

    2016-02-01

    Pyroelectric crystals, such as LiNbO3 or LiTaO3 being under influence of a temperature gradient can produce an electric field up to 105 kV/cm. It was experimentally confirmed that a crystal installed in a chamber with a residual gas pressure of about 1 mTorr could be used to generate X-Ray radiation with an energy up to 100 keV The same setup could be used to generate s 2.45 MeV neutrons if the target is deuterated and residual gas is D2. Due to such properties as On/Off mode of operation and the absence of radioactive materials, pyroelectric neutron generators seem to be a promising tool for calibration of neutrino and dark matter and other low background detectors. We propose the application of the controlled pyroelectric neutron generator for calibration of such detectors.

  4. Forward neutron production at the Fermilab Main Injector

    SciTech Connect

    Nigmanov, T. S.; Rajaram, D.; Longo, M. J.; Gustafson, H. R.; Park, H. K.; Akgun, U.; Aydin, G.; Duru, F.; Guelmez, E.; Guenaydin, Y. O.; Onel, Y.; Penzo, A.; Baker, W.; Carey, D.; Johnstone, C.; Kostin, M.; Raja, R.; Barnes, P. D. Jr.; Hartouni, E.; Heffner, M.

    2011-01-01

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58, 84, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as A{sup {alpha}}, where {alpha} is 0.46{+-}0.06 for a beam momentum of 58 GeV/c and 0.54{+-}0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.

  5. A Deuteron-Deuteron Neutron Generator for 40Ar/39Ar Geochronology

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Leung, K.; Becker, T.; Cassata, W. S.; Chen, A. X.; Jones, G.

    2010-12-01

    Neutron irradiation of samples for 40Ar/39Ar dating conventionally uses 235U fission reactors whose broad neutron energy spectra engender recoil phenomena, interfering reactions and radiological issues. An alternative source of neutrons with a nearly monoenergetic energy distribution can be obtained via the deuteron-deuteron (D-D) fusion process by which 2 deuterium (D) atoms are fused to create 3He and a neutron with 2.45 MeV energy. Existing neutron generators of this type have produced as much as ~109 n/s, insufficient to provide an alternative to fission reactors. We are building a novel D-D neutron generator aimed at achieving 1012-1013 n/s, featuring a toroidal deuterium plasma ion source that extracts radially inward focused D+ ion beams at 120 kV. The high energy D+ ion beam continuously loads a cylindrical titanium target to form TiD2 at the surface. Subsequent D+ ions then interact with the deuterated titanium to produce the forward biased neutrons that irradiate samples located concentrically inside the cylindrical target. The main limitation on neutron flux is posed by the challenge of cooling the target to prevent outgassing of deuterium from the titanium surface, hence a fluid-cooled Cu-backing is employed. The D-D neutrons to be produced will (1) dramatically reduce the energy (hence displacement) spectrum of recoiling activated 39Ar and 37Ar nuclides, (2) virtually eliminate unwanted interfering reactions on Ca, K, and Cl, and (3) significantly ameliorate radiological concerns due to e.g. collateral activation of Al in sample vessels and samples themselves. Reduction of recoil distances enables fine-grained materials such as clay minerals to be dated more reliably, and the reduction of interfering reactions will reduce the accuracy penalties for over- or under-irradiating samples as well as extending the viability shelf-life of irradiated samples.This project is supported by NSF.

  6. Long-duration neutron production by nonflaring transients in the solar corona

    NASA Astrophysics Data System (ADS)

    Feldman, William C.; Lawrence, David J.; Vestrand, W. Thomas; Baker, Daniel N.; Peplowski, Patrick N.; Rodgers, Douglas J.

    2015-10-01

    The purpose of this work is to study neutron enhancements observed using the Neutron Spectrometer aboard MESSENGER in order to identify events that may have been generated at/or near the Sun by solar transients. To securely establish an origin of the observed neutrons that is nonlocal to the MESSENGER spacecraft, a measurement of the energetic ion environment local to MESSENGER is needed. For this purpose, we use energetic ion spectrometers on several spacecraft at 1 AU when they were magnetically connected to MESSENGER during an event. We report strong evidence that for six neutron events studied in detail, the detected neutrons do not likely have a local spacecraft origin. By implication, most of the detected neutrons for these six events may have originated near the Sun, generated by many moderate-level solar eruptive events that produce an extended solar exosphere of moderate-energy neutrons, protons, and electrons.

  7. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  8. Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging.

    PubMed

    Wu, Y; Hurley, J P; Ji, Q; Kwan, J W; Leung, K N

    2010-02-01

    We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling.

  9. NEXT GENERATION NEUTRON SCINTILLATORS BASED ON SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Cai-Lin Wang

    2008-06-30

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/{sup 6}LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and {sup 6}Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/{sup 6}LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional {sup 6}Li-glass and ZnS/{sup 6}LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag{sup +}, Eu{sup 3+} or Ce{sup 3+} QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  10. A compact neutron generator using a field ionization source.

    PubMed

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  11. A compact neutron generator using a field ionization source

    SciTech Connect

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  12. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Brown, J.; Adroja, D. T.; Manuel, P.; Kouzmenko, G.; Bewley, R. I.; Wotherspoon, R.

    2012-12-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  13. Passive neutron dosimetry on cruise missile tests

    SciTech Connect

    Ewing, R.I.

    1980-01-01

    One of the components exercised during development tests of cruise missiles is the neutron generator that supplies the burst of neutrons needed to initiate a nuclear explosion. The subject of this report is a method of verifying the production of neutrons using a passive neutron activation technique that is sufficiently sensitive to detect a decay rate of a few atoms per hour.

  14. Calculations of long-lived isomer production in neutron reactions

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1991-01-01

    We present theoretical calculations for the production of the long-lived isomers: {sup 121m}Sn (11/2-, 55 yr), {sup 166m}Ho(7-, 1200 yr), {sup 184m}Re(8+, 165 d), {sup 186m}Re(8+, 2{times}10{sup 5} yr), {sup 178m}Hf(16+, 31 yr), {sup 179m}Hf(25/2-, 25 d), {sup 192m}Ir(9+, 241 yr), all which pose potential radiation activation problems in nuclear fusion reactors if produced in 14-MeV neutron-induced reactions. We consider mainly (n,2n) production modes, but also (n,n{sup {prime}}) and (n,{gamma}) where necessary, and compare our results both with experimental data (where available) and systematics. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. 16 refs., 9 figs., 6 tabs.

  15. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    NASA Astrophysics Data System (ADS)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  16. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  17. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  18. Fission Product Yields from 232Th, 238U, and 235U Using 14 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Pierson, B. D.; Greenwood, L. R.; Flaska, M.; Pozzi, S. A.

    2017-01-01

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets-thorium-oxide, depleted uranium metal, and highly enriched uranium metal-at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields of short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for 89Kr, -90, and -92 and 138Xe, -139, and -140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were -10.2%, 4.5%, and -12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from 84As to 146La are presented.

  19. Neutron Production in Black Hole Coronae and Proton Loading of Jets

    NASA Astrophysics Data System (ADS)

    Vila, Gabriela S.; Vieyro, Florencia L.; Romero, Gustavo E.

    2014-03-01

    We study the production of neutrons in the corona of an accreting black hole through the interaction of locally accelerated protons with matter and radiation. A fraction of these neutrons may escape and penetrate into the base of the jet, later decaying into protons. This is a possible mechanism for loading Poynting-dominated outflows with baryons. We characterize the spatial and energy distribution of neutrons in the corona and that of the protons injected in the jet by neutron decay. We assess the contribution of these protons to the radiative spectrum of the jet. We also investigate the fate of the neutrons that escape the corona into the external medium.

  20. Study of the anatomy of the X-ray and neutron production scaling laws in the plasma focus

    NASA Astrophysics Data System (ADS)

    Nardi, V.; Prior, W.

    1980-05-01

    This report investigates the correlation between the neutron (and X-ray) emission intensity and the intensity of the particle beams generated in a plasma focus discharge in deuterium as an extension of our previous work on scaling laws of X-ray and neutron production. The structure of dense plasmoids which emit MeV ions has been recorded by ion imaging with pinhole camera and contact print techniques. The plasmoids are generated in the same region in which particle beams, neutron and X-ray emission reach a maximum of intensity. Sharply defined boundaries of the ion-beam source and of plasmoids have been obtained by ion track etching on plastic material CR-39.

  1. Production and applications of neutrons using particle accelerators

    SciTech Connect

    Chichester, David L.

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  2. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  3. Small-size plasma diode with a transparent internal cathode for neutron generation

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2015-01-01

    A discharge plasma system for neutron generation based on the concept of inertial electrostatic confinement is considered. The system is made in the form of a gas-filled (1-60 Pa) diode with a composite hollow cathode placed at its center symmetrically to an embracing hollow cylindrical anode. Preionization of the discharge gap and an original design of the electrode system with a transparent central part make it possible to initiate a pulse high-voltage (100-150 kV) volume discharge in the ion oscillation mode. Estimates of the neutron emission in such a deuterium-filled diode show the feasibility of generating a pulse with a neutron yield on the order of 105 in the reaction D( d, n)3He, which is confirmed in experiments with an optimized geometry of the electrodes.

  4. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A. (Inventor)

    1971-01-01

    An apparatus for generating combustion products at a predetermined fixed rate, mixing the combustion products with air to achieve a given concentration, and distributing the resultant mixture to an area or device to be tested is described. The apparatus is comprised of blowers, a holder for the combustion product generating materials (which burn at a predictable and controlled rate), a mixing plenum chamber, and a means for distributing the air combustion product mixture.

  5. The Transmutation of Nuclear Waste in the Two-Zone Subcritical System Driven by High- Intensity Neutron Generator - 12098

    SciTech Connect

    Babenko, V.O.; Gulik, V.I.; Pavlovych, V.M.

    2012-07-01

    The main problems of transmutation of high-level radioactive waste (minor actinides and long-lived fission products) are considered in our work. The range of radioactive waste of nuclear power is analyzed. The conditions under which the transmutation of radioactive waste will be most effective are analyzed too. The modeling results of a transmutation of the main radioactive isotopes are presented and discussed. The transmutation of minor actinides and long-lived fission products are modeled in our work (minor actinides - Np-237, Am-241, Am-242, Am-243, Cm-244, Cm-245; long-lived fission products - I-129, Tc-99). The two-zone subcritical system is calculated with help of different neutron-physical codes (MCNP, Scale, Montebarn, Origen). The ENDF/B-VI nuclear data library used in above calculations. Thus, radioactive wastes can be divided into two main groups that need to be transmuted. The minor actinides form the first group and the long-lived fission products form the second one. For the purpose of effective transmutation these isotopes must be extracted from the spent nuclear fuel with the help of either PUREX technology or pyrometallurgical technology. The two-zone reactor system with fast and thermal regions is more effective for nuclear waste transmutation than the one-zone reactor. Modeling results show that nearly all radioactive wastes can be transmuted in the two-zone subcritical system driven by a high-intensity neutron generator with the external neutron source strength of 1.10{sup 13} n/sec. Obviously, transmutation rate will increase with a rise of the external neutron source strength. From the results above we can also see that the initial loading of radioactive isotopes into the reactor system should exceed by mass those isotopes that are finally produced. (authors)

  6. A neutron booster for spallation sources—application to accelerator driven systems and isotope production

    NASA Astrophysics Data System (ADS)

    Galy, J.; Magill, J.; Van Dam, H.; Valko, J.

    2002-06-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the μm-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology—for example in the design neutron amplifiers for medical applications and "fast" islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module could be developed for spallation targets foreseen in the MYRRHA (L. Van Den Durpel, H. Aı̈t Abderrahim, P. D'hondt, G. Minsart, J.L. Bellefontaine, S. Bodart, B. Ponsard, F. Vermeersch, W. Wacquier. A prototype accelerator driven system in Belgium: the Myrrha project, Technical Committee Meeting on Feasibility and Motivation for Hybrid concepts for Nuclear Energy generation and Transmutation, Madrid, Spain, September 17-19, 1997 [1]). or MEGAPIE (M. Salvatores, G.S. Bauer, G. Heusener. The MEGAPIE initiative: executive outline and status as per November 1999, MPO-1-GB-6/0_GB, 1999 [2]) projects. With a neutron multiplication factor of the booster unit in the range 10-20 (i.e. with a keff of 0.9-0.95), considerably less powerful accelerators would be required to obtain the desired neutron flux. Instead of the powerful accelerators with proton energies of 1 GeV and currents of 10 mA foreseen for accelerator driven systems, similar neutron fluxes can be obtained

  7. Lifetime Increased Cancer Risk in Mice Following Exposure to Clinical Proton Beam–Generated Neutrons

    SciTech Connect

    Gerweck, Leo E. Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-05-01

    Purpose: To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Methods and Materials: Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Results: Exposure of mice to a dose of 600 Gy of proton beam–generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions: Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates.

  8. Lifetime increased cancer risk in mice following exposure to clinical proton beam-generated neutrons.

    PubMed

    Gerweck, Leo E; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-05-01

    To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Exposure of mice to a dose of 600 Gy of proton beam-generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons

    PubMed Central

    Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-01-01

    Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699

  10. Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator

    NASA Astrophysics Data System (ADS)

    Necsoiu Rosencranz, Daniela

    The developments of nuclear medicine lead to an increasing demand for the production of radioisotopes with suitable nuclear and chemical properties. Furthermore, from the literature it is evident that the production of radioisotopes using charged-particle accelerators instead of nuclear reactors is gaining increasing popularity. The main advantages of producing medical isotopes with accelerators are carrier free radionuclides of short lived isotopes, improved handling, reduction of the radioactive waste, and lower cost of isotope fabrication. Proton-rich isotopes are the result of nuclear interactions between enriched stable isotopes and energetic protons. An interesting observation is that during the production of proton-rich isotopes, fast and intermediately fast neutrons from nuclear reactions such as (p,xn) are also produced as a by-product in the nuclear reactions. This observation suggests that it is perhaps possible to use these neutrons to activate secondary targets for the production of neutron-rich isotopes. The study of secondary radioisotope production with fast neutrons from (p,xn) reactions using a particle accelerator is the main goal of the research in this thesis. Yttrium-90 (90Y) is a good example of an isotope that can be made in combination with proton-rich isotope production. Traditionally, 90Y is obtained from a 90Sr/90Y generator. In order to produce a carrier free isotope, a chemical separation of 90Sr must be performed. The main disadvantage of 90Sr is a high toxicity level. 90Sr is well known to cause bone marrow suppressions, and it has a long half-life of 28.78 y. Therefore, special waste handling and storage conditions are required. In this study, 90Y has been produced with (p,xn) fast neutrons using the 90Zr(n,p)90Y reaction. Fast neutrons for the activation process were produced during proton irradiation of natural tungsten targets. The proton beam used was produced by a 33 MeV linear accelerator (LINAC). Since 90Y is a pure beta

  11. Design specification for the European Spallation Source neutron generating target element

    NASA Astrophysics Data System (ADS)

    Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J. M.; Martinez, J. L.; Bermejo, F. J.

    2017-06-01

    The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.

  12. Scintillating glass fiber neutron sensors: 1, Production and optical characterization

    SciTech Connect

    Abel, K.H.; Arthur, R.J.; Bliss, M.

    1993-10-01

    The production and optical characterization of cerium-doped lithium silicate scintillating fibers used as thermal neutron detectors are discussed. The bulk glass continuing enriched {sup 6}Li is produced starting from high-purity commercial materials which are further purified at Pacific Northwest Laboratory (PNL). The fibers are drawn at PNL in a hot down-draw process. The fibers are coated with a silicone polymer that serves as both an optical cladding and a physical buffer coat. Optical characterization has included measurements of light output as a function of glass composition, optical attenuation lengths, and fluorescence lifetimes. Fibers have been prepared in our laboratory with as-drawn attenuation lengths (l/e distance) in excess of 2 meters over sub-meter distances.

  13. Generation and anisotropy of neutron emission from a condensed Z-pinch

    NASA Astrophysics Data System (ADS)

    Bakshaev, Yu. L.; Bryzgunov, V. A.; Vikhrev, V. V.; Volobuev, I. V.; Dan'ko, S. A.; Kazakov, E. D.; Korolev, V. D.; Klír, D.; Mironenko-Marenkov, A. D.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.

    2014-06-01

    The paper presents results of measurements of neutron emission generated in the constriction of a fast Z-pinch at the S-300 facility (2 MA, 100 ns). An increased energy concentration was achieved by using a combined load the central part of which was a microporous deuterated polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1-1.5 mm. The neck was placed between two 5-mm-diameter agar-agar cylinders. The characteristics of neutron emission in two axial and two radial directions were measured by the time-of-flight method. The neutron spectrum was recovered from the measured neutron signals by the Monte Carlo method. In all experiments, the spatiotemporal characteristics of plasma in the Z-pinch constriction were measured by means of the diagnostic complex of the S-300 facility, which includes frame photography in the optical, VUV, and soft X-ray (SXR) spectral regions; optical streak imaging; SXR detection; and time-integrated SXR photography. The formation of hot dense plasma in the Z-pinch constriction was accompanied by the generation of hard X-ray (with photon energies E > 30 keV), SXR (with photon energies E > 1 keV and duration of 2-4 ns), and neutron emission. Anisotropy of the neutron energy distribution in the axial direction was revealed. The mean neutron energies measured in four directions at angles of 0° (above the anode), 90°, 180° (under the cathode), and 270° with respect to the load axis were found to be of 2.1 ± 0.1, 2.5 ± 0.1, 2.6 ± 0.2, and 2.4 ± 0.1 MeV, respectively. For a 1-mm-diameter neck, the maximum integral neutron yield was 6 × 109 neutrons. The anisotropy of neutron emission for a Z-pinch with a power-law distribution of high-energy ions is calculated.

  14. Sustaining knowledge in the neutron generator community and benchmarking study. Phase II.

    SciTech Connect

    Huff, Tameka B.; Stubblefield, William Anthony; Cole, Benjamin Holland, II; Baldonado, Esther

    2010-08-01

    This report documents the second phase of work under the Sustainable Knowledge Management (SKM) project for the Neutron Generator organization at Sandia National Laboratories. Previous work under this project is documented in SAND2008-1777, Sustaining Knowledge in the Neutron Generator Community and Benchmarking Study. Knowledge management (KM) systems are necessary to preserve critical knowledge within organizations. A successful KM program should focus on people and the process for sharing, capturing, and applying knowledge. The Neutron Generator organization is developing KM systems to ensure knowledge is not lost. A benchmarking study involving site visits to outside industry plus additional resource research was conducted during this phase of the SKM project. The findings presented in this report are recommendations for making an SKM program successful. The recommendations are activities that promote sharing, capturing, and applying knowledge. The benchmarking effort, including the site visits to Toyota and Halliburton, provided valuable information on how the SEA KM team could incorporate a KM solution for not just the neutron generators (NG) community but the entire laboratory. The laboratory needs a KM program that allows members of the workforce to access, share, analyze, manage, and apply knowledge. KM activities, such as communities of practice (COP) and sharing best practices, provide a solution towards creating an enabling environment for KM. As more and more people leave organizations through retirement and job transfer, the need to preserve knowledge is essential. Creating an environment for the effective use of knowledge is vital to achieving the laboratory's mission.

  15. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    NASA Astrophysics Data System (ADS)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  16. On the Development of a Miniature Neutron Generator for the Brachytherapy Treatment of Cancer

    SciTech Connect

    Forman, L.

    2009-03-10

    Brachytherapy refers to application of an irradiation source within a tumor. {sup 252}Cf needles used in brachytherapy have been successfully applied to treatment of some of the most virulent cancers but it is doubtful that it will be widely used because of difficulty in dealing with unwanted dose (source cannot be turned off) and in adhering to stringent NRC regulations that have been exacerbated in our post 911 environment. We have been working on the development of a miniature neutron generator with the reaction target placed at the end of a needle (tube) for brachytherapy applications. Orifice geometries are most amenable, e.g. rectum and cervix, but interstitial use is possible with microsurgery. This paper dicusses the results of a 30 watt DD neutron generator SBU project that demonstrates that sufficient hydrogen isotope current can be delivered down a small diameter needle required for a DT neutron treatment device, and, will summarize the progress of building a commercial device pursued by the All Russian Institute for Automatics (VNIIA) supported by the DOE's Industrial Proliferation Prevention Program (IPP). It is known that most of the fast neutron (FN) beam cancer treatment facilities have been closed down. It appears that the major limitation in the use of FN beams has been damage to healthy tissue, which is relatively insensitive to photons, but this problem is alleviated by brachytherapy. Moreover, recent clinical results indicate that fast neutrons in the boost mode are most highly effective in treating large, hypoxic, and rapidly repopulating diseases. It appears that early boost application of FN may halt angiogenesis (development and repair of tumor vascular system) and shrink the tumor resulting in lower hypoxia. The boost brachytherapy application of a small, low cost neutron generator holds promise of significant contribution to the treatment of cancer.

  17. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  18. The use of a small D-T neutron generator for the simultaneous detection of carbon, oxygen, hydrogen and nitrogen in vivo in humans

    SciTech Connect

    Kehayias, J.; Zhuang, H.

    1993-04-01

    A sealed D-T neutron generator is used for the pulsed (4-8 KHz) production of fast neutrons. Carbon and oxygen are detected in vivo by counting the 4.44 and 6.13 MeV gamma rays resulting from the inelastic scattering of fast neutrons from the {sup 12}C and {sup 16}O nuclei respectively. Hydrogen is measured by thermal neutron capture, and nitrogen by the (n,2n) reaction leading to a positron emitter. BGO detectors (127mm dia x 76mm thick) are used for gamma-ray detection during the 10 {mu}s neutron burst. The elemental analysis of the body is used to evaluate energy stores and lean tissue and to study the changes of body composition with aging. The project addresses the causes of depletion of lean body mass and the development of ways to maintain physical function and quality of life of the elderly. Similar compact neutron generator-based instruments are being evaluated for the assay of nuclear waste and for the detection of hidden explosives.

  19. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  20. SU-E-T-21: A D-D Based Neutron Generator System for Boron Neutron Capture Therapy: A Feasibility Study

    SciTech Connect

    Hsieh, M; Liu, Y; Nie, L

    2015-06-15

    Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30 ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.

  1. Production cross sections of neutron-rich No-263261 isotopes

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Li, Cheng; Zhang, Gen; Zhu, Long; Liu, Zhong; Zhang, Feng-Shou

    2017-05-01

    The fusion excitation functions of No-263249 are studied by using various reaction systems based on the dinuclear system model. The neutron-rich radioactive beam 22O is used to produce neutron-rich nobelium isotopes, and the new neutron-rich isotopes No-263261 are synthesized by 242Pu(22O,3 n )261No , 244Pu(22O,4 n )262No , and 244Pu(22O,3 n )263No reactions, respectively. The corresponding maximum evaporation residue cross sections are 0.628, 4.649, and 1.638 μ b , respectively. The effects of the three processes (capture, fusion, and survival) in the complete fusion reaction are also analyzed. From investigation, a neutron-rich radioactive beam as the projectile and neutron-rich actinide as the target could be a new selection of the projectile-target combination to produce a neutron-rich heavy nuclide.

  2. Acceleration of deuterons from laser plasma in direct pulsed electron fluxes for generation of neutrons

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Shatokhin, V. L.

    2016-12-01

    We report the results of experiments in which laser plasma deuterons are accelerated toward beryllium and deuterated polyethylene targets in a drift tube by means of a direct pulsed flux of electrons accelerated to maximum energy of 250 keV. Neutrons produced as a result of the interaction of deuterons with the targets are detected. The yield of neutrons in some of the experimental series reaches 106 n/pulse. Using a pulsed magnetic field synchronized with the generation of laser plasma is proposed for increasing the neutron yield as a result of electron flux compression. This magnetic field in the drift region of electrons is created by a spiral coil of conical shape.

  3. Generating and Evaluating Software Product Ideas.

    ERIC Educational Resources Information Center

    Coyne, John P.

    1989-01-01

    Ten ways to evaluate new software product ideas are presented, such as talking with computer user groups and advertising the product before development to determine consumer interest. Ten methods for generating new product ideas are also offered, including reading material on the fringe of one's work and soliciting opinions of potential clients.…

  4. Generating functions for tensor product decomposition

    NASA Astrophysics Data System (ADS)

    Fuksa, Jan; Pošta, Severin

    2013-11-01

    The paper deals with the tensor product decomposition problem. Tensor product decompositions are of great importance in the quantum physics. A short outline of the state of the art for the of semisimple Lie groups is mentioned. The generality of generating functions is used to solve tensor products. The corresponding generating function is rational. The feature of this technique lies in the fact that the decompositions of all tensor products of all irreducible representations are solved simultaneously. Obtaining the generating function is a difficult task in general. We propose some changes to an algorithm using Patera-Sharp character generators to find this generating function, which simplifies the whole problem to simple operations over rational functions.

  5. Restart of the chemical preparation process for the fabrication of ZnO varistors for ferroelectric neutron generator power supplies.

    SciTech Connect

    Lockwood, Steven John

    2005-03-01

    To date, all varistors used in ferroelectric neutron generators have been supplied from a single, proprietary source, General Electric Corporate Research and Development (GE CR&D). To protect against the vulnerability of a single source, Sandia initiated a program in the early 1980's to develop a second source for this material. A chemical preparation process for making homogeneous, high purity ZnO-based varistor powder was generated, scaled to production quantities, and transferred to external suppliers. In 1992, the chem-prep varistor program was suspended when it appeared there was sufficient inventory of GE CR&D material to supply ferroelectric neutron generator production for many years. In 1999, neutron generator production schedules increased substantially, resulting in a predicted exhaustion of the existing supply of varistor material within five years. The chem-prep program was restarted in January, 2000. The goals of the program were to (1) duplicate the chem-prep powder synthesis process that had been qualified for WR production, (2) demonstrate sintered billets from the chem-prep powder met requirements, (3) develop a process for rod fabrication and demonstrate that all component specifications could be met, and (4) optimize the process from powder synthesis through component fabrication for full-scale production. The first three of these goals have been met and are discussed in this report. A facility for the fabrication of production quantities of chem-prep powder has been established. All batches since the restart have met compositional requirements, but differences in sintering behavior between the original process and the restarted process were noted. Investigation into the equipment, precipitant stoichiometry, and powder processing procedures were not able to resolve the discrepancies. It was determined that the restarted process, which incorporated Na doping for electrical stability (a process that was not introduced until the end of the initial

  6. Nuclear products commensurate with energy generated during D{sub 2}O electrolysis at palladium cathodes; quantitative analysis

    SciTech Connect

    Bush, B.F.; Lagowski, J.J.; Miles, M.H.

    1995-12-01

    It is well known that the Pons & Fleischmann effect does not produce the same kind of nuclear products that would be expected during plasma hot fusion experiments indeed neutron and {gamma}-ray fluxes commensurate to excess heat generated have not been observed. We report the generation of helium quantitatively commensurate to the amount of excess energy generated as heat during electrochemical calorimetric experiments.

  7. Calculations of long-lived isomer production in neutron reactions

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1991-01-01

    We have carried out theoretical calculations for the production of the long-lived isomers {sup 93m}Nb({1/2}{sup {minus}}, 16y), {sup 121m}Sn(11/2{minus}, 55 yr), {sup 166m}Ho(7-, 1200 yr), {sup 184m}Re(8+, 165 d), {sup 186m}Re(8+, 2{times}10{sup 5} yr), {sup 178m}Hf(16+, 31 yr), {sup 179m}Hf(25/2-, 25 d), {sup 192m}Ir(9+, 241 yr), all of which pose potential radiation activation problems in nuclear fusion reactors. We consider (n, 2n), (n,n{prime}), and (n, {gamma}) production modes and compare our results both with experimental data (where available) and systematic. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. 16 refs., 8 figs.

  8. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    used to calculate regionwise spectra in the 1-D ANISN portion, all internally to reflect the 1-D transport correction. The regionwise spectra are then used to generate mutigroup regionwise neutron constants. The 1-D neutron transport can be performed up to three stages, e.g., from a TRISO fuel to PEBBLE to 1-D full core wedge. In addition, COMBINE7.1 has now the capability of adjoint flux calculation through the 1-D ANISN transport. Photon transport capability is also added. For this, a photon production and photo-atomic cross section library, MATNG.LIB, was generated in MATXS format through NJOY code. The photon production cross section matrix is of 167 neutron - 18 photon groups. Photo-atomic cross sections, including heating, are in 18 energy groups.

  9. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  10. Production and utilization of cold neutrons for elemental analysis

    SciTech Connect

    Clark, D.D.

    1994-12-31

    Until recently cold neutrons have been used only sporadically for elemental analysis (e.g., Henkelmann and Born). Currently, however, there are a number of new facilities in operation or under construction, e.g., at the National Institute of Standards and Technology, Kernforschungsanlage Juelich, Japan Atomic Energy Research Institute Cornell University, and the University of Texas at Austin. Some of the reasons for this growth of interest are new approaches to cold moderator designs that permit their introduction at intermediate reactors, improvements in neutron guides such as supermirrors and neutron focusing devices, advances in detectors and electronics, and a renewed realization of the sensitivity of prompt gammaray neutron activation analysis (PGNAA). This paper describes these new developments, using primarily the program at Cornell for illustration. Omitted are uses of cold neutrons for studies of solids, which, though very important and a major part of the experimental programs with cold neutrons at high-flux reactors, do not come under the classification of chemical analysis. Applications such as neutron depth profiling and neutron radiography are mentioned only briefly.

  11. Beam-induced back-streaming electron suppression analysis for an accelerator type neutron generator designed for (40)Ar/(39)Ar geochronology.

    PubMed

    Waltz, Cory; Ayllon, Mauricio; Becker, Tim; Bernstein, Lee; Leung, Ka-Ngo; Kirsch, Leo; Renne, Paul; Bibber, Karl Van

    2017-07-01

    A facility based on a next-generation, high-flux D-D neutron generator has been commissioned and it is now operational at the University of California, Berkeley. The current generator designed for (40)Ar/(39)Ar dating of geological materials produces nearly monoenergetic 2.45MeV neutrons at outputs of 10(8)n/s. The narrow energy range is advantageous relative to the (235)U fission spectrum neutrons due to (i) reduced (39)Ar recoil energy, (ii) minimized production of interfering argon isotopes from K, Ca, and Cl, and (iii) reduced total activity for radiological safety and waste generation. Calculations provided show that future conditioning at higher currents and voltages will allow for a neutron output of over 10(10)n/s, which is a necessary requirement for production of measurable quantities of (39)Ar through the reaction (39)K(n,p)(39)Ar. A significant problem encountered with increasing deuteron current was beam-induced electron backstreaming. Two methods of suppressing secondary electrons resulting from the deuterium beam striking the target were tested: the application of static electric and magnetic fields. Computational simulations of both techniques were done using a finite element analysis in COMSOL Multiphysics(®). Experimental tests verified these simulations. The most reliable suppression was achieved via the implementation of an electrostatic shroud with a voltage offset of -800V relative to the target. Copyright © 2017. Published by Elsevier Ltd.

  12. Long-Duration Neutron Production in Solar Eruptive Events Detected with the MESSENGER Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Lawrence, D. J.; Vestrand, W. T.; Peplowski, P. N.

    2014-12-01

    Nine long-duration neutron solar eruptive events (SEEs) between 31 December 2007 and 16 March 2013 appear to be excellent candidates for detection of fast neutrons from the Sun by the MESSENGER Neutron Spectrometer (NS). One event (on 4 June 2011) is the cleanest example, because it was not accompanied by energetic ions at MESSENGER having energies greater than 50±10 MeV/nuc. The purpose of this study is to assemble a set of conditions common to all events that can help identify the physical conditions at their origin. We classified the nine events into three categories: (1) those having tight magnetic connection to the Sun as well as to spacecraft at 1 AU that can separately measure the energetic proton, alpha particle, and electron flux spectra, (2) those with sufficiently close connection that the energetic flux spectra can be compared, (3) those that have only marginal connections, and (4) those that are also seen at Earth. Four events fall into category (1), three into category (2), two into category (3), and parts of four events overlapped neutron events also seen by the scintillation FIBer solar neutron telescope (FIB) detector placed on the International Space Station in 2009. Seven of the nine events that have either tight or marginal magnetic connection have alpha particle abundances less than 2%. For each event, we modeled expected fast neutron count rates from the 1 AU ion spectrum, a process that accounts for the transport of the neutrons through the spacecraft to the NS. The ratios of measured to predicted fast-neutron counts range between 2.0 and 12.1.

  13. A Covariance Generation Methodology for Fission Product Yields

    NASA Astrophysics Data System (ADS)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  14. Generative inspection process planner for integrated production

    SciTech Connect

    Brown, C.W. . Kansas City Div.); Gyorog, D.A. . Dept. of Mechanical Engineering)

    1990-04-01

    This work describes the design prototype development of a generative process planning system for dimensional inspection. The system, IPPEX (Inspection Process Planning EXpert), is a rule-based expert system for integrated production. Using as advanced product modeler, relational databases, and artificial intelligence techniques, IPPEX generates the process plan and part program for the dimensional inspection of products using CMMs. Through an application interface, the IPPEX system software accesses product definition from the product modeler. The modeler is a solid geometric modeler coupled with a dimension and tolerance modeler. Resource data regarding the machines, probes, and fixtures are queried from databases. IPPEX represents inspection process knowledge as production rules and incorporates an embedded inference engine to perform decision making. The IPPEX system, its functional architecture, system architecture, system approach, product modeling environment, inspection features, inspection knowledge, hierarchical planning strategy, user interface formats, and other fundamental issues related to inspection planning and part programming for CMMs are described. 27 refs., 16 figs., 4 tabs.

  15. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  16. Software For Generation Of ASTER Data Products

    NASA Technical Reports Server (NTRS)

    Murray, Alexander T.; Eng, Bjorn T.; Voge, Charles C.

    1996-01-01

    Software functioning in EOS-DIS computing environment developed to generate data products from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Processes high-resolution image data from visible and near infrared (VNIR), short-wavelength infrared (SWIR), and thermal infrared (TIR) radiometric readings to generate data on radiative and thermal properties of atmosphere and surface of Earth.

  17. Analysis of a laboratory experiment on neutron generation by discharges in the open atmosphere

    NASA Astrophysics Data System (ADS)

    Babich, L. P.

    2015-10-01

    A recently reported laboratory experiment with a high-voltage long discharge in the open atmosphere producing neutrons "…up to energies above 10 MeV…" [Agafonov et al., Phys. Rev. Lett. 111, 115003 (2013), 10.1103/PhysRevLett.111.115003] is critically analyzed. Known elementary processes, namely, nuclear synthesis 2H(2H,n )3He and 2H(14N,n )15O , photonuclear, electrodisintegration Anm(e-,n )mprescripts>m n -1 and opposite to the β-decay e-(p+,n ) νe reactions, as well as unconventional mechanisms and the hypothetical increase in the nuclear synthesis cross sections are not capable of accounting for the neutron generation under conditions of the experiment analyzed. In particular, total energy yields of reactions 2H(2H,n )3He and 2H(14N,n )15O are less than the claimed neutron energy above 10 MeV. Trustworthiness of the neutron measurements on the basis of the available study of the C-39 track detectors behavior carried out by Faccini et al. [Eur. Phys. J. C 74, 2894 (2014), 10.1140/epjc/s10052-014-2894-3] in connection with claimed observations of neutron emission in electrolytic cells is discussed. Real-time measurements of x-ray and neutron pulses by Agafonov et al. are commented on using the thorough study of the x-ray emissions by discharges under similar conditions [Kochkin et al., J. Phys. D: Appl. Phys. 45, 425202 (2012), 10.1088/0022-3727/45/42/425202].

  18. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    PubMed

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer.

  19. Neutron induced pion production on C, Al, Cu, and W at neutron energies of 200--600 MeV

    SciTech Connect

    Brooks, M.L.

    1991-10-01

    Inclusive double differential neutron induced {pi}{sup +} and {pi}{sup {minus}} production cross sections were measured for four separate targets: C, Al, Cu and W. The neutron energy range was 200--600 MeV and the pion angular range was 25{degrees}--125{degrees}. The charge, scattering angle and energy of the pions were measured using a magnetic spectrometer. The measurements are compared with intranuclear cascade (INC) calculations and a previous experiment that measured the sum of the {pi}{sup +} and {pi}{sup {minus}} cross sections. Our data agree with the measured data, but the INC calculations give only moderate agreement with the double differential cross sections as well as with angular distributions and total cross sections as a function of neutron energy. The ratio of {pi}{sup {minus}}:{pi}{sup +} was found to increase rapidly with decreasing neutron energy and the pion production was found to increase approximately as A{sup 2/3} for the different targets. 31 refs., 55 figs., 6 tabs.

  20. The API 120: A portable neutron generator for the associated particle technique

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Lemchak, M.; Simpson, J. D.

    2005-12-01

    The API 120 is a lightweight, portable neutron generator for active neutron interrogation (ANI) field work exploiting the associated particle technique. It incorporates a small sealed-tube accelerator, an all digital control system with smart on-board diagnostics, a simple platform-independent control interface and a comprehensive safety interlock philosophy with provisions for wireless control. The generator operates in a continuous output mode using either the D-D or D-T fusion reactions. To register the helium ion associated with fusion, the system incorporates a high resolution fiber optic imaging plate that may be coated with one of several different phosphors. The ion beam on the target measures less than 2 mm in diameter, thus making the system suitable for multi-dimensional imaging. The system is rated at 1E7 n/s for over 1000 h although higher yields are possible. The overall weight is 12 kg; power consumption is less than 50 W.

  1. Investigations of the performance and nondestructive assay applications of the EMR/Schlumberger neutron generator

    SciTech Connect

    Pickrell, M.M.; Mahdavi, M.; Pfutzner, H.

    1993-08-01

    Los Alamos and EMR/Schlumberger, are jointly investigating nondestructive assay applications using the EMR neutron generator system. This system is based on the instrument fielded by Schlumberger for oil well logging. This technology has been adapted into a complete system and package, which is intended for a variety of above-ground applications such as basic research, nuclear waste assay, activation analysis, and nuclear material analysis in both field and laboratory. The system has certain features, which have made it attractive for applications in the Los Alamos safeguards program. We will describe the neutron generator system and the over-all experimental equipment that will be used to explore some of these applications. We will also describe the general performance and some specific performance tests conducted at Los Alamos.

  2. Monochromatic neutron beam production at Brazilian nuclear research reactors

    NASA Astrophysics Data System (ADS)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  3. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  4. Abrasion-ablation model for neutron production in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Townsend, L. W.

    1997-01-01

    In intermediate energy nucleus-nucleus collisions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, we use the Glauber model and include effects of final-state interactions. We then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  5. Neutron Production Measurements Relevant to Shielding forSpace-Related Activities

    SciTech Connect

    Heilbronn, Lawrence; Iwata, Yoshiyuki; Murakami, Takeshi; Iwase,Hiroshi; Nakamura, Takashi; Sato, Hisaki; Ronningen, Reginald

    2002-04-09

    Neutron production cross sections have been measured from290 MeV/nucleon C and 600 MeV/nucleon Ne interacting in a slab ofsimulated Martian regolith/polyethylene composite, and from 400MeV/nucleon Ne interacting in a section of wall materials from theInternational Space Station. Neutron spectra were measured at 7 anglesbetween 5 degrees and 80 degrees, and for neutron energies 5 MeV andgreater. Spectra at forward angles are dominated by the breakup of theprojectile, whereas spectra at back angles show the typical exponentialfalloff with energy that is indicative of decay from the overlap regionand the target remnant. The measured total neutron production crosssections indicate that the regolith/polyethylene composite may be a moreeffective shielding material than the ISS wall materials, in terms of thenumber of neutrons produced.

  6. Neutron diffraction measurements of time-dependent residual stresses generated by severe thermomechanical deformation

    SciTech Connect

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; Hubbard, Camden R

    2009-01-01

    Residual stresses were generated by severe thermomechanical deformation in an aluminum alloy plate. The evolution of the residual stresses during natural aging was investigated by neutron diffraction up to 10,000h. A data reduction method was developed to eliminate microstructure influences (solute variations) on the lattice spacing changes, thereby allowing the determination of the long-range macroscopic residual stresses. The residual stress decreased ({approx}25MPa) with time due to the microstructural modification within the deformed region during natural aging.

  7. Thermal analysis of titanium drive-in target for D-D neutron generation.

    PubMed

    Jung, N S; Kim, I J; Kim, S J; Choi, H D

    2010-01-01

    Thermal analysis was performed for a titanium drive-in target of a D-D neutron generator. Computational fluid dynamics code CFX-5 was used in this study. To define the heat flux term for the thermal analysis, beam current profile was measured. Temperature of the target was calculated at some of the operating conditions. The cooling performance of the target was evaluated by means of the comparison of the calculated maximum target temperature and the critical temperature of titanium.

  8. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production

    NASA Astrophysics Data System (ADS)

    Bessho, K.; Matsumura, H.; Miura, T.; Wang, Q.; Masumoto, K.; Hagura, H.; Nagashima, Y.; Seki, R.; Takahashi, T.; Sasa, K.; Sueki, K.; Matsuhiro, T.; Tosaki, Y.

    2007-06-01

    The thermal neutron fluence that poured into the shielding concrete of proton accelerator facilities was estimated from the in situ production of 36Cl. The thermal neutron fluences at concrete surfaces during 10-30 years of operation were in the range of 1012-1014 n/cm2. The maxima in thermal neutron fluences were observed at ≈5-15 cm in the depths analyzed for 36Cl/35Cl by AMS. These characteristics imply that thermalization of neutrons occurred inside the concrete. Compared to the several tens of MeV cyclotrons, secondary neutrons penetrate deeper into the concrete at the high-energy accelerators possessing acceleration energies of 400 MeV and 12 GeV. The attenuation length of neutrons reflects the energy spectra of secondary neutrons emitted by the nuclear reaction at the beam-loss points. Increasing the energy of secondary neutrons shifts the maximum in the thermal neutron fluences to deeper positions. The data obtained in this study will be useful for the radioactive waste management at accelerator facilities.

  9. Tritium generation and neutron measurements in Pd-Si under high deuterium gas pressure

    SciTech Connect

    Claytor, T.N.; Tuggle, D.G.; Menlove, H.O.

    1991-01-01

    This paper summarizes some of the methods applicable for low level tritium detection needed in the search for anomalous fusion in metal hydrides. It is also intended to further detail our tritium and neutron results that have been obtained with the Pd-Si-D system, originally presented at earlier workshops. A measure of reproducibility that was not evident in our previous work has been achieved partially due to the better detection sensitivity afforded by the use of low tritium deuterium and partially from the fact that the foil-wafer cells can be made with nearly identical electrical characteristics. This reproducibility has allowed us to narrow the optimum conditions for the experiment. While this experiment is rather different from the standard'' electrolytic cell or the Ti gas hydride experiment, similarities exist in that non equilibrium conditions are sought and the tritium generation levels are low and neutron emission is extremely weak. In contrast to many electrochemical cell experiments, the system used in these experiments is completely sealed during operation and uses no electrolyte. The major improvements to the experiment have been the use of vary low tritium deuterium for the hydriding and the replacement of the aluminum neutron counter tubes with ones of stainless steel. These changes have resulted in pronounced improvements to the detection systems since the background tritium level in the gas has been reduced by a factor of 300 and the neutron background has been decreased by a factor of 14. 16 refs., 8 figs., 1 tab.

  10. Overview of secondary neutron production relevant to shielding inspace

    SciTech Connect

    Heilbronn, L.; Nakamura, T.; Iwata, Y.; Kurosawa, T.; Iwase, H.; Townsend, L.W.

    2004-12-03

    An overview of experimental secondary neutron measurements relevant to space-related activities is presented. Stopping target yields and cross section measurements conducted at particle accelerators using heavy ions with energies >100 MeV per nucleon are discussed.

  11. Towards an automated intelligence product generation capability

    NASA Astrophysics Data System (ADS)

    Smith, Alison M.; Hawes, Timothy W.; Nolan, James J.

    2015-05-01

    Creating intelligence information products is a time consuming and difficult process for analysts faced with identifying key pieces of information relevant to a complex set of information requirements. Complicating matters, these key pieces of information exist in multiple modalities scattered across data stores, buried in huge volumes of data. This results in the current predicament analysts find themselves; information retrieval and management consumes huge amounts of time that could be better spent performing analysis. The persistent growth in data accumulation rates will only increase the amount of time spent on these tasks without a significant advance in automated solutions for information product generation. We present a product generation tool, Automated PrOduct Generation and Enrichment (APOGEE), which aims to automate the information product creation process in order to shift the bulk of the analysts' effort from data discovery and management to analysis. APOGEE discovers relevant text, imagery, video, and audio for inclusion in information products using semantic and statistical models of unstructured content. APOGEEs mixed-initiative interface, supported by highly responsive backend mechanisms, allows analysts to dynamically control the product generation process ensuring a maximally relevant result. The combination of these capabilities results in significant reductions in the time it takes analysts to produce information products while helping to increase the overall coverage. Through evaluation with a domain expert, APOGEE has been shown the potential to cut down the time for product generation by 20x. The result is a flexible end-to-end system that can be rapidly deployed in new operational settings.

  12. Neutron Spin Echo Spectrometers of the Next Generation - Where Are the Limits?

    NASA Astrophysics Data System (ADS)

    Monkenbusch, M.

    The perspectives and conditions to reach the highest possible resolution - in terms of large Fourier times - in the next generation of neutron spin echo (NSE) spectrometers is discussed. In particluar the new aspects imposed by the next generation of pulsed spallation sources (i.e. SNS, JNS, ESS) are considered. The generic IN11 principle combined with modern design and add-ons still seems to be the best choice for ultimate resolution. However the physical boundary conditions and current technical abilities will probably not allow to enhance the maximum Fourier time beyond a few microseconds.

  13. Identification of lithium hydride and its hydrolysis products with neutron imaging

    NASA Astrophysics Data System (ADS)

    Garlea, E.; King, M. O.; Galloway, E. C.; Boyd, T. L.; Smyrl, N. R.; Bilheux, H. Z.; Santodonato, L. J.; Morrell, J. S.; Leckey, J. H.

    2017-03-01

    In this study, lithium hydride (LiH) and its hydrolysis products were investigated non-destructively with neutron radiography and neutron computed tomography. Relative neutron transmission intensities (I /I0) were measured for LiOH, Li2O and LiH, and their linear attenuation coefficients calculated from this data. We show that 7Li is necessary for creating large differences in I /I0 for facile identification of these compounds. The thermal decomposition of LiOH to Li2O was also observed with neutron radiography. Computed tomography shows that the samples were fairly homogeneous, with very few macroscopic defects. The results shown here demonstrate the feasibility of observing LiH hydrolysis with neutron imaging techniques in real time.

  14. Identification of lithium hydride and its hydrolysis products with neutron imaging

    SciTech Connect

    Garlea, Elena; King, Martin O.; Galloway, E. C.; Boyd, T. L.; Smyrl, N. R.; Bilheux, H. Z.; Santodonato, L. J.; Morrell, J. S.; Leckey, J. H.

    2016-12-24

    In this study, lithium hydride (LiH) and its hydrolysis products were investigated non-destructively with neutron radiography and neutron computed tomography. Relative neutron transmission intensities (I/I0) were measured for LiOH, Li2O and LiH, and their linear attenuation coefficients calculated from this data. We show that 7Li is necessary for creating large differences in I/I0 for facile identification of these compounds. The thermal decomposition of LiOH to Li2O was also observed with neutron radiography. Computed tomography shows that the samples were fairly homogeneous, with very few macroscopic defects. Lastly, the results shown here demonstrate the feasibility of observing LiH hydrolysis with neutron imaging techniques in real time.

  15. LOW-FIDELITY CROSS SECTION COVARIANCES FOR 219 FISSION PRODUCTS IN THE FIRST NEUTRON REGION.

    SciTech Connect

    PIGNI,M.T.; HERMAN, M.; OBLOZINSKY, P.; ROCHMAN, D.

    2007-04-27

    An extensive set of covariances for neutron cross sections in the energy range 5 keV-20 MeV has been developed to provide initial, low-fidelity but consistent uncertainty data for nuclear criticality safety applications. The methodology for the determination of such covariances combines the nuclear reaction model code EMPIRE, which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN to propagate uncertainty of the model parameters to cross sections. Taking into account the large scale of the project (219 fission products), only partial reference to experimental data has been made. Therefore, the covariances are, to a large extent, derived from the perturbation of several critical model parameters selected through the sensitivity analysis. These parameters define optical potential, level densities and pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a scale.

  16. Novel methods for improvement of a Penning ion source for neutron generator applications.

    PubMed

    Sy, A; Ji, Q; Persaud, A; Waldmann, O; Schenkel, T

    2012-02-01

    Penning ion source performance for neutron generator applications is characterized by the atomic ion fraction and beam current density, providing two paths by which source performance can be improved for increased neutron yields. We have fabricated a Penning ion source to investigate novel methods for improving source performance, including optimization of wall materials and electrode geometry, advanced magnetic confinement, and integration of field emitter arrays for electron injection. Effects of several electrode geometries on discharge characteristics and extracted ion current were studied. Additional magnetic confinement resulted in a factor of two increase in beam current density. First results indicate unchanged proton fraction and increased beam current density due to electron injection from carbon nanofiber arrays.

  17. Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.

    PubMed

    Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C

    2017-04-01

    Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.

  18. Measurement of the 64 Zn, 47 Ti(n,p) cross sections using a DD neutron generator for medical isotope studies

    DOE PAGES

    Voyles, A. S.; Basunia, M. S.; Batchelder, J. C.; ...

    2017-09-07

    Cross sections for the 47Ti(n,p)47Sc and 64Zn(n,p)64Cu reactions have been measured for quasi-monoenergetic DD neutrons produced by the UC Berkeley High Flux Neutron Generator (HFNG). The HFNG is a compact neutron generator designed as a “flux-trap” that maximizes the probability that a neutron will interact with a sample loaded into a specific, central location. Our study was motivated by interest in the production of 47Sc and 64Cu as emerging medical isotopes. The cross sections were measured in ratio to the 113In(n,n')113mIn and 115In(n,n')115mIn inelastic scattering reactions on co-irradiated indium samples. Post-irradiation counting using an HPGe and LEPS detectors allowed for cross section determination to within 5% uncertainty. The 64Zn(n,p)64Cu cross section formore » $$+0.01\\atop{-0.02}$$ MeV neutrons is reported as 49.3 ± 2.6 mb (relative to 113In) or 46.4 ± 1.7 mb (relative to 115In), and the 47Ti(n,p)47Sc cross section is reported as 26.26 ± 0.82 mb. The measured cross sections are found to be in good agreement with existing measured values but with lower uncertainty (<5%), and also in agreement with theoretical values. Ultimately, this work highlights the utility of compact, flux-trap DD-based neutron sources for nuclear data measurements and potentially the production of radionuclides for medical applications.« less

  19. Beyond Californium-A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

    PubMed

    Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K

    2017-09-01

    Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is

  20. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    PubMed

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10(5)  nepi /cm(2) -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10(-13)  Gy-cm(2) /φepi , and photon dose per epithermal was 2.4 × 10(-13)  Gy-cm(2) /φepi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10(-3)  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to

  1. Laser induced neutron production by explosion of the deuterium clusters

    SciTech Connect

    Holkundkar, Amol R.; Mishra, Gaurav Gupta, N. K.

    2014-01-15

    The high energy deuterium ions serve as compact source of neutrons when fused with either deuterium or tritium atoms. In view of this, the explosion of the deuterium clusters under the influence of the laser pulse with intensity ranging from 10{sup 15} to 10{sup 19} W/cm{sup 2} is being studied along with the effect of the cluster radius and inter-cluster distance. The objective of this article is to study the efficiency of the deuterium cluster as a compact source of neutrons under various laser and cluster parameters. It is being observed that the cluster density (number of clusters per unit volume) is quite important to gain high neutron yield.

  2. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  3. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  4. On the possibility of neutron generation in an imploding TiD{sub 2} puff Z pinch

    SciTech Connect

    Baksht, Rina B.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.

    2013-08-15

    Simulation of implosion of a TiD{sub 2} puff Z pinch is reported. The Z pinch is supposed to be produced by the plasma flow generated by a vacuum arc, as described by Rousskikh et al.[Phys. Plasmas 18, 092707 (2011)]. To simulate the implosion, a one-dimensional two-temperature radiative magnetohydrodynamics code was used. The simulation has shown that neutrons are generated during the implosion of a TiD{sub 2} puff Z pinch due to thermalization of the pinch plasma stagnated on axis. It has been shown that the necessary condition for neutron generation is that the ion temperature must be substantially higher than the electron temperature. For a pinch current of 1 MA, the predicted yield of 'thermal' neutrons is 2.5 × 10{sup 9} neutrons/shot.

  5. The second generation superthermal Ultra-Cold Neutron Source at RCNP

    NASA Astrophysics Data System (ADS)

    Pierre, Edgard; Masuda, Yasuhiro; Kawasaki, Shinsuke; Jeong, Sun Chan; Watanabe, Yutaka; Hatanaka, Kichiji; Matsumiya, Ryohei; Shin, Yun Chang; Matsuta, Kensaku; Mihara, Mototsugu

    2014-09-01

    The project of a second generation superthermal ultra-cold neutron (UCN) source is currently going on at RCNP, Osaka University, Japan. It is aiming to produce the world's highest density of polarized UCNs using down-scattering of spallation-produced and moderated cold neutrons in superfluid helium (He-II) at 0.6 K. This project is developed in collaboration between KEK (Tsukuba, Japan) and RCNP. The first generation UCN source was using a vertical extraction and was optimized from 2002 to 2012 to increase its density of UCN from 0.7 UCN/cc to 26 UCN/cc. We have built a second generation UCN source which use a horizontal extraction system thanks to the energy boost induced by the field of a superconducting polarizer magnet (SCM). The SCM allows only one spin state to pass through, which make our UCN source a source of polarized UCN. Polarization is kept thanks to new UCN guides. The first experimental results, the performances and the future improvements of this second generation source will be presented in this talk.

  6. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2011-03-31

    A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5*1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2-0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm^2 was obtained at moderate microwave power levels of 400 W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.

  7. Characterization of a Thermo Scientific D711 D-T neutron generator located in a low-scatter facility

    SciTech Connect

    Hayes, John W.; Finn, Erin; Greenwood, Larry; Wittman, Rick

    2014-03-01

    A dosimetry experiment used to measure the neutron flux and spectrum of a D-T neutron generator is presented. The D-T generator at Pacific Northwest National Laboratory is installed in the middle of a large room to minimize scatter of neutrons back to the sample. The efficacy of maintaining a pure fast neutron field for the sample is investigated. Twenty-one positions within 13 cm of the neutron source contained foils or wires of Fe, Ni, Al with additional Au, and In monitors at some locations. Spectral adjustment of the neutron flux at each position based on measured reaction rates and theoretical Monte Carlo calculations show that at least 99.1% of the spectrum lies above 110 keV for all measured positions, and neutrons above 14 MeV can account for as much as 91% at locations along the axis of the generator and close to the source. The 14 MeV component drops to 77% in radial positions far from the source. The largest total flux observed was 8.29E+08 n/cm2-s (±1.4%) in the center of the cooling cap, although additional experiments have shown this value could be as high as 1.20E+09 n/cm2-s.

  8. Production of neutron-rich transcalifornium nuclei in 238U-induced transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2016-11-01

    In order to produce more unknown neutron-rich transcalifornium nuclei, the collisions of 238U with the targets 248Cm, 249Cf, and 250Cm are investigated within the framework of the dinuclear system model. The production cross sections of unknown neutron-rich nuclei with Z =99 -104 in these reactions are predicted. The influences of N /Z ratios and charge numbers of the targets on the production cross sections are studied. It is found that high N /Z ratios of 248Cm and 250Cm targets enhance the production cross sections of neutron-rich transcalifornium nuclei. However, due to high charge number of the target 249Cf the predicted production cross sections of unknown neutron-rich nuclei with Z =104 in the reaction 238U+249Cf are higher than those in 238U+248Cm . We also have studied the entrance angular momentum effects on production probabilities of transfer products in the reaction 238U+248Cm . It is found that the formation probabilities of the final neutron-rich products increase first and then decrease with the increasing J .

  9. New accurate measurements of neutron emission probabilities for relevant fission products

    NASA Astrophysics Data System (ADS)

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Caballero-Folch, R.; Calviño, F.; Cortes, G.; Dillmann, I.; Eronen, T.; Garcia, A. R.; Ganioglu, E.; Gelletly, W.; Gorelov, D.; Guadilla, V.; Hakala, H.; Jokinen, A.; Kankainen, A.; Montaner, A.; Marta, M.; Mendoza, E.; Moore, I.; Nobs, C.; Orrigo, S.; Penttila, H.; Reponen, M.; Rinta-Antila, S.; Riego, A.; Rubio, B.; Saastamoinen, A.; Salvador-Castiñeira, P.; Tarifeño-Saldivia, A.; Tolosa, A.; Valencia, E.

    2017-09-01

    We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations.

  10. The GOES-R Product Generation Architecture

    NASA Astrophysics Data System (ADS)

    Dittberner, G. J.; Kalluri, S.; Hansen, D.; Weiner, A.; Tarpley, A.; Marley, S.

    2011-12-01

    The GOES-R system will substantially improve users' ability to succeed in their work by providing data with significantly enhanced instruments, higher resolution, much shorter relook times, and an increased number and diversity of products. The Product Generation architecture is designed to provide the computer and memory resources necessary to achieve the necessary latency and availability for these products. Over time, new and updated algorithms are expected to be added and old ones removed as science advances and new products are developed. The GOES-R GS architecture is being planned to maintain functionality so that when such changes are implemented, operational product generation will continue without interruption. The primary parts of the PG infrastructure are the Service Based Architecture (SBA) and the Data Fabric (DF). SBA is the middleware that encapsulates and manages science algorithms that generate products. It is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DF to provide this data communication layer between algorithms. The DF provides an abstract interface over a distributed and persistent multi-layered storage system (e.g., memory based caching above disk-based storage) and an event management system that allows event-driven algorithm services to know when instrument data are available and where they reside. Together, the SBA and the DF provide a

  11. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side

    SciTech Connect

    Klir, D.; Krasa, J.; Velyhan, A.; Cikhardt, J.; Rezac, K.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Skala, J.; Ullschmied, J.; Sila, O.

    2015-09-15

    Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 10{sup 8} at the peak intensity of ≈3 × 10{sup 16 }W/cm{sup 2}. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the {sup 2}H(d,n){sup 3}He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 10{sup 9} with the peak neutron fluence of (2.5 ± 0.5) × 10{sup 8 }n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 10{sup 14} deuterons in the 0.5–2.0 MeV energy range. The neutron yield of 2 × 10{sup 9} at the laser energy of 600 J implied the production efficiency of 3 × 10{sup 6 }n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 10{sup 16 }W/cm{sup 2}. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.

  12. Hot solid-state aluminum plasmas, positrons, and neutrons generated with the garching laser facility ATLAS

    NASA Astrophysics Data System (ADS)

    Witte, Klaus J.; Andiel, Ulrich; Eidmann, Klaus; Gahn, Christoph; Hakel, Peter; Karsch, Stefan; Mancini, Roberto; Tsakiris, George

    2002-04-01

    We report on time-integrated and time-resolved measurements of the K-shell emission from aluminum plasmas at solid-state density isochorically heated with 2-ω ATLAS pulse of high contrast. We compare the measured spectra with simulated ones. We investigate both plane aluminum and layered targets. The latter consist of a top carbon layer upon an aluminum layer of variable thickness deposited on a sigradur (glass:like carbon) substrate. The layered targets are well suited to study electron beam transport through an overdense plasma. In a different type of experiment, we have produced 106 positrons per laser shot by the interaction of an MeV-electron jet emerging from a relativistically self-focused laser channel in an underdense helium plasma whose density is close to the critical one using a 2-mm thick lead disk. We report about details of the measurement and discuss the propsects of this new table-top positron source for a variety of applications when near-future laser systems are envisaged as a driver. For the neutron generation, we used 790-nm/130-fs/1-J ATLAS pulses focused onto fully deuterated polyethylene targets at intensities of up to 1019 W/cm2. We observe neutron yields of up to 105 per shot. We discuss how the measured neutron spectra can be related to the ion energy distribution. .

  13. Heavy and Superheavy Elements Production in High Intensive Neutron Fluxes of Explosive Process

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2015-06-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lesser temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for "Mike", "Par" and "Barbel" experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible when using binary mixture of starting isotopes with the significant addition of heavy components, such as long-lived isotopes of curium, or californium.

  14. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka

    2014-03-01

    The quantum-number projected generator coordinate method (GCM) is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  15. Production of High-purity Radium-223 from Legacy Actinium-Beryllium Neutron Sources

    SciTech Connect

    Z. Soderquist, Chuck; K. McNamara, Bruce; R. Fisher, Darrell

    2012-06-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclides with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing 223Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity 223Ra from 227Ac. We obtained 227Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity 223Ra. We extracted 223Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free 223Ra product, and does not disturb the 227Ac/227Th equilibrium. A high purity, carrier-free 227Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of 223Ra for research and new alpha-emitter radiopharmaceutical development.

  16. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    PubMed

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development.

  17. Efficient neutron production from a novel configuration of deuterium gas-puff z-pinch.

    PubMed

    Klir, D; Kubes, P; Rezac, K; Cikhardt, J; Kravarik, J; Sila, O; Shishlov, A V; Kovalchuk, B M; Ratakhin, N A; Kokshenev, V A; Labetsky, A Yu; Cherdizov, R K; Fursov, F I; Kurmaev, N E; Dudkin, G N; Nechaev, B A; Padalko, V N; Orcikova, H; Turek, K

    2014-03-07

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 ± 0.3) × 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 × 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  18. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  19. On the production of cosmogenic nuclides by low-energy neutrons

    NASA Astrophysics Data System (ADS)

    Fanenbruck, O.; Lange, H.-J.; Michel, R.

    1994-07-01

    Monte Carlo codes describing the propagation and interaction of medium-energy particles in matter, in combination with experimental and theoretical cross sections of the underlying nuclear reactions, were successfully applied in model calculations of cosmogenic nuclide production rates. We extended these calculations to reactions of low-energy neutrons in order to allow a consistent interpretation of the entire regime of nuclear reactions involved in galactic cosmic ray (GCR) interactions. Low-energy neutron spectra were calculated for stony meteoroids and lunar surface materials by Monte Carlo techniques using the MORSE code, Emmett (1975), within the HERMES code system. Depth- and size-dependent production rates for the production of Cl-36, Ca-41, Co-60, Ni-59, Kr-80, and Kr-82 by neutron capture were derived by folding these spectra with group cross sections calculated from microscopic neutron-capture data of the evaluated neutron data file ENDF/B VI by the code NJOY. The calculations were validated by modeling the Co-60 production in an artificial stony meteoroid irradiated isotropically by 1.6 GeV protons. The new theoretical production rates were compared with earlier calculations of low-energy neutron capture by Eberhardt et al. and by Spergel et al. (n,gamma)-produced cosmogenic nuclides are sensitive indicators of meteoroid sizes. The extension of the model calculations to longlived and stable (n,gamma) products frees this method from the uncertainties caused by the short-term GCR variations that significantly affect Co-60 production rates. The new production rates are applied to the interpretation of the existing experimental data of (n,gamma) products in lunar drill cores and in meteorites.

  20. Production of ultracold neutrons from a cold neutron beam on a {sup 2}H{sub 2} target

    SciTech Connect

    Atchison, F.; Brandt, B. van den; Brys, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Konter, J.A.; Michels, A.; Pichlmaier, A.; Wohlmuther, M.; Wokaun, A.; Bodek, K.; Szerer, U.; Geltenbort, P.; Zmeskal, J.; Pokotilovskiy, Y.

    2005-05-01

    The production rates of ultracold neutrons (UCN) from cold neutrons on gaseous, liquid, and solid deuterium targets have been measured. The comparison of the measured and calculated UCN production on gaseous {sup 2}H{sub 2} is used to calibrate the simulated target extraction and transport efficiencies of the experimental apparatus. The production cross section in solid {sup 2}H{sub 2} at 8 K for UCN with energies between 0 and 250 neV is R{sub solid,8K}={sigma}{sub solid,8K}{sup CN{yields}}U{sup CN} {rho}=(1.11{+-}0.23)x10{sup -8} cm{sup -1}. This value is consistent with other experiments in which UCN had been extracted from {sup 2}H{sub 2}. The value also agrees with calculations using the incoherent approximation and a simple Debye model and corroborates predictions for UCN densities expected at the high-intensity UCN source at the Paul Scherrer Institut. The temperature dependence of the UCN production in solid {sup 2}H{sub 2} down to 8 K can be explained within the same model when multiple-phonon excitation is included.

  1. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described.

  2. An aerial radiological survey of the neutron products company and surrounding area

    SciTech Connect

    Vojtech, R.J.

    1994-12-01

    An aerial radiological survey was conducted from November 1-10, 1993, over the Neutron Products Company and neighboring areas. The company, located in Dickerson, Maryland, has two major operations involving the radioisotope cobalt-60 ({sup 60}Co)-the manufacture of commercial {sup 60}Co sources and the sterilization of medical products by exposure to radiation. The sterilization facility consists of two {sup 60}Co sources with activities of approximately 500,000 and 1,500,000 Ci, respectively. The purpose of the aerial survey was to detect and document any anomalous gamma-emitting radionuclides in the environment which may have resulted from operations of the Neutron Products Company. The survey covered two areas: the first was a 6.5- by 6.5-kilometer area centered over the Neutron Products facility; the second area was a 2- by 2.5-kilometer region surrounding a waste pumping station on Muddy Branch in Gaithersburg, Maryland. This site is approximately fifteen kilometers southeast of the Neutron Products facility and was included because sanitary and other liquid waste materials from the plant site are being disposed of at the pumping station. Contour maps showing gamma radiation exposure rates at 1 meter above ground level, overlaid on an aerial photo of the area, were constructed from the data measured during the flights. The exposure rates measured within the survey regions were generally uniform and typical of rates resulting from natural background radiation. Only one area showed an enhanced exposure rate not attributable to natural background. This area, located directly over the Neutron Products facility, was analyzed and identified as {sup 60}Co, the radioisotope used in the irradiation and source production operations conducted at the Neutron Products Company. The measurements over the Muddy Branch area in Gaithersburg were typical of natural background radiation and showed no evidence of {sup 60}Co or any other man-made radionuclide.

  3. Neutron and antineutron production in accretion onto compact objects

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.; Ramaty, Reuven

    1986-01-01

    Nuclear reactions in the hot accretion plasma surrounding a collapsed star are a source of neutrons, primarily through spallation and pion-producing reactions, and antineutrons, principally through the reaction p+p yields p+p+n+anti-n. We calculate spectra of neutrons and antineutrons produced by a variety of nonthermal energetic particle distributions in which the target particles are either at rest or in motion. If only neutral particles are free to escape the interaction site, a component of the proton and antiproton fluxes in the cosmic radiation results from the neutrons and antineutrons which leave the accretion plasma and subsequently decay in the interstellar medium. This additional antiproton component could account for the enhanced flux of antiprotons in the cosmic radiation, compared to values expected from the standard leaky-box model of cosmic-ray propagation and confinement. Moreover, the low-energy antiproton flux measured by Buffington et al. (1981) could result from target-particle motion in the accretion plasma. This model for the origin of antiprotons predicts a narrow 2.223 MeV line which could be observable.

  4. MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS

    SciTech Connect

    Zrake, Jonathan; MacFadyen, Andrew I.

    2013-06-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would greatly aid in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level ({approx}> 10{sup 16} G) fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger timescale. Since turbulent magnetic energy dissipates through reconnection events that accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10{sup -4} of the {approx}10{sup 53} erg of orbital kinetic available gets processed through reconnection and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10{sup -7} erg cm{sup -2}, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT.

  5. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture.

    PubMed

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-05-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture

    PubMed Central

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-01-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm. PMID:25653418

  7. A computer code for predicting gamma production cross sections by neutron inelastic scattering from light nuclei

    NASA Technical Reports Server (NTRS)

    George, M. C.

    1972-01-01

    Gamma-ray production cross section by the inelastic scattering of neutrons from light nuclei are considered. The applicability of optical model potential is discussed. Based on experimental data, a cascade approach is developed to calculate the inelastic gamma production cross sections. In the case of O-16 using computer code LINGAP in conjunction with ABACUS-2; results are compared with reported values.

  8. Informing the improvement of forest products durability using small angle neutron scattering

    Treesearch

    Nayomi Plaza-Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  9. Pulsed ultra-cold neutron production using a Doppler shifter at J-PARC

    NASA Astrophysics Data System (ADS)

    Imajo, S.; Mishima, K.; Kitaguchi, M.; Iwashia, Y.; Yamada, N. L.; Hino, M.; Oda, T.; Ino, T.; Shimizu, H. M.; Yamashita, S.; Katayama, R.

    2016-01-01

    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility of the Japan Proton Accelerator Research Complex. Very cold neutrons (VCNs) with 136 m s^{-1} velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on an m=10 wide-band multilayer mirror, yielding pulsed UCNs. The mirror is fixed to the tip of a 2000 rpm rotating arm moving with 68 m s^{-1} velocity in the same direction as the VCNs. The repetition frequency of the pulsed UCNs is 8.33 Hz and the time width of the pulse at production is 4.4 ms. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The 1 MW-equivalent count rate of the output neutrons with longitudinal wavelengths longer than 58 nm is 1.6 × 102 cps, while that of the true UCNs is 80 cps. The spatial density at production is 1.4 UCN cm^{-3}. This new UCN source enables us to research and develop apparatuses necessary for the investigation of the neutron electric dipole moment.

  10. Identification of lithium hydride and its hydrolysis products with neutron imaging

    DOE PAGES

    Garlea, Elena; King, Martin O.; Galloway, E. C.; ...

    2016-12-24

    In this study, lithium hydride (LiH) and its hydrolysis products were investigated non-destructively with neutron radiography and neutron computed tomography. Relative neutron transmission intensities (I/I0) were measured for LiOH, Li2O and LiH, and their linear attenuation coefficients calculated from this data. We show that 7Li is necessary for creating large differences in I/I0 for facile identification of these compounds. The thermal decomposition of LiOH to Li2O was also observed with neutron radiography. Computed tomography shows that the samples were fairly homogeneous, with very few macroscopic defects. Lastly, the results shown here demonstrate the feasibility of observing LiH hydrolysis with neutronmore » imaging techniques in real time.« less

  11. Neutron production in the interaction of 2-GeV protons with nuclei

    SciTech Connect

    Yurevich, V. I.; Yakovlev, R. M.; Lyapin, V. G.

    2011-02-15

    The double-differential cross sections for neutron production in the interactions of 2-GeV protons with Be, Al, Cu, Cd, and Pb nuclei were measured by the time-of-flight method in the region of angles larger than 30 Degree-Sign . The respective experimental data are analyzed within the phenomenological model of four moving sources, including those associated with neutron emission in primary nucleon-nucleon collisions, the decay of a hot source (fireball), the multifragmentation process, and the deexcitation of nuclear fragments via neutron evaporation. Temperature-parameter values are universal for all sources and are virtually independent of the target nucleus and of the projectile energy in the region above 0.5 GeV. It is found that, for all of the above reactions, the relative contribution to the mean neutron multiplicity from the decay of a hot source and multifragmentation is about 41%.

  12. Fast neutron thermalization and capture gamma-ray generation in soils

    SciTech Connect

    Shue, S.L.; Faw, R.E.; Shultis, J.K.

    1996-12-31

    The penetration of 14-MeV neutrons into five representative soils is investigated with two independent neutron transport calculational procedures. From Monte Carlo and discrete-ordinates codes, the spatial distribution of the thermal fluence and the capture of neutrons in the soils is determined for two neutron source geometries. Finally, empirical approximations of the thermal neutron fluence in the soil are presented for use in PGNAA of contaminants in the soil.

  13. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  14. Characterisation of Residual Stresses Generated by Laser Shock Peening by Neutron and Synchrotron Diffraction

    NASA Astrophysics Data System (ADS)

    Evans, Alexander Dominic; King, Andrew; Pirling, Thilo; Peyre, Patrice; Withers, Phillip John

    The fatigue behaviour of engineering alloys can be significantly improved through the application of mechanical surface treatments. These processes generate significant compressive residual stresses near surface by inhomogeneous plastic deformation. In the case of mechanical surface treatments such as laser shock peening, certain burnishing and rolling techniques and ultrasonic impact treatment (UIT), the compressive residual stress layer can extend to a depth of the order of millimeters, with balancing tensile stresses located deeper. Techniques to characterise the residual stresses generated by such mechanical surface treatments non-destructively are mainly limited to diffraction methods using penetrating neutron and synchrotron X-ray radiations. The application of these radiation sources is illustrated here by the characterisation of residual strain distributions in a two types of specimens treated with laser shock peening (LSP). Analyses of diffraction peak broadening provide qualitative information concerning the depth to which the plastic deformation of the treatments extends. Two case studies of laser shock peening of titanium and aluminium alloys is presented to demonstrate the capabilities of neutron and synchrotron diffraction techniques in the field of residual stress characterisation of surface engineered material non-destructively.

  15. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  16. Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications

    SciTech Connect

    Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

    1998-12-01

    A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

  17. Effect of Anode Impurity on the Neutron Production in a Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Yousefi, H. R.; Masugata, K.

    2011-12-01

    In this study, neutron production characteristics were investigated by employing three different anode designs. Previously, Takao et al. in Plasma Sour Sci Technol 12:407, (2003) studied the effect of anode design on the production of impurity ions in a dense plasma focus (DPF) device. It was found that rod type anodes led to large quantities of impurity ions, resulting in an ion purity of only 25%. In contrast, in hollow type anodes the quantities of impurity ions is strongly reduced, resulting in an enhanced ion purity of 91%. These impurities in the DPF system originate partly from residual gas in the vacuum system, but also from vaporization of the anode, which produces metallic ions such as copper. In the present work, we extend previous investigations Takao et al. in Plasma Sour Sci Technol 12:407, (2003) of the effects of anode shape (A—long hollow, B—short hollow and C—rod type) on neutron production. Here we focus specifically on the effects of anode impurity on neutron production. It was found that in anode type C, the neutron intensity and neutron yield is lower than in type A or B.

  18. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D-D neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion

  19. NPOESS Interface Data Processing Segment Product Generation

    NASA Astrophysics Data System (ADS)

    Grant, K. D.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. The IDPS processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. The IDPS will process environmental data products beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system. Within the overall NPOESS processing environment, the IDPS must process a data volume nearly 1000 times the size of current systems -- in one-quarter of the time. Further, it must support the calibration, validation, and data quality improvement initiatives of the NPOESS program to ensure the production of atmospheric and environmental products that meet strict requirements for accuracy and precision. This paper will describe the architecture approach that is necessary to meet these challenging, and seemingly exclusive, NPOESS IDPS design requirements, with a focus on the processing relationships required to generate the NPP products.

  20. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    SciTech Connect

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  1. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  2. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  3. SU-E-T-195: Commissioning the Neutron Production of a Varian TrueBeam Linac

    SciTech Connect

    Irazola, L; Brualla, L; Rosello, J; Terron, JA; Sanchez-Nieto, B; Bedogni, R; Sanchez-Doblado, F

    2015-06-15

    Purpose: The purpose of this work is the characterization of a new Varian TrueBeam™ facility in terms of neutron production, in order to estimate neutron equivalent dose in organs during radiotherapy treatments. Methods: The existing methodology [1] was used with the reference SRAMnd detector, calibrated in terms of thermal neutron fluence at the reference field operated by PTB (Physikalisch-Technische-Bundesanstalt) at the GeNF (Geesthacht-Neutron-Facility) with the GKSS reactor FRG-1 [2]. Thermal neutron fluence for the 5 available possibilities was evaluated: 15 MV and 10&6 MV with and without Flattening Filter (FF and FFF, respectively). Irradiation conditions are as described in [3]. In addition, three different collimator-MLC configurations were studied for 15 MV: (a) collimator of 10×10 cm{sup 2} and MLC fully retracted (reference), (b) field sizes of 20×20 cm{sup 2} and 10×10 cm{sup 2} for collimator and MLC respectively, and (c) collimator and MLC aperture of 10×10 cm{sup 2}. Results: Thermal fluence rate at the “reference point” [3], as a consequence of the neutron production, obtained for (a) conformation in 15 MV is (1.45±0.11) x10{sup 4} n•cm{sup 2}/MU. Configurations (b) and (c) gave fluences of 96.6% and 97.8% of the reference (a). Neutron production decreases up to 8.6% and 5.7% for the 10 MV FF and FFF beams, respectively. Finally, it decreases up to 2.8% and 0.1% for the 6 MV FF and FFF modes, respectively. Conclusion: This work evaluates thermal neutron production of Varian TrueBeam™ system for organ equivalent dose estimation. The small difference in collimator-MLC configuration shows the universality of the methodology [3]. A decrease in this production is shown when decreasing energy from 15 to 10 MV and an almost negligible production was found for 6 MV. Moreover, a lower neutron contribution is observed for the FFF modes.[1]Phys Med Biol,2012;57:6167–6191.[2]Radiat Meas,2010;45:1513–1517.[3]Med Phys,2015;42:276–281.

  4. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    NASA Astrophysics Data System (ADS)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  5. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  6. Inclusive Neutron Production by 790 Mev/nucleon Neon Ions on Lead and Sodium Fluoride

    NASA Astrophysics Data System (ADS)

    Baldwin, Alan Richard

    The inclusive double-differential cross sections for neutron production were measured at angles of 0, 15, 30, 50, 70, 90, 120, and 160 degrees. The neutrons were produced by 790 MeV/nucleon Neon ions bombarding targets of Pb and NaF. A striking peak in the zero degree spectra at a neutron energy slightly below the beam energy per nucleon is suggested to be particle evaporation superimposed on the broader fragmentation process predicted by statistical models. The Lorentz-invariant cross section at 0 degrees in the rest frame of the projectile are interpreted to include three processes of neutron emission: (1) the excitation and evaporative decay of the projectile spectator provides an estimate for the temperature of 3.5 +/- 0.7 and 3.4 +/- 0.7 MeV/k for Ne-Pb and Ne-NaF collisions, (2) the fragmentation of a neutron from the projectile yielded a Fermi momentum of 295 +/- 22 and 259 +/- 22 MeV/c for the Neon ion in the Ne-Pb and Ne-NaF collisions respectively, and (3) the high-energy tail may be explained by backscattering of a neutron in the target from a cluster of nucleons in the projectile with an average cluster size of about 1.2 nucleons.

  7. Neutron production from puffing deuterium in plasma focus device

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Kortanek, J.; Batobolotova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Paduch, M.; Zielinska, E.; Surala, W.; Sadowski, M. J.; Scholz, M.; Karpinski, L.

    2014-08-15

    The current research has continued on the PF-1000 plasma focus device at the current of 2 MA by comparison of the shots with and without injected deuterium. The increase of the total neutron yield at the level of 10{sup 10}–10{sup 11} per shot was achieved after the compression of about 10 μg/cm of the deuterium from the gas-valve by about 46 μg/cm of the neon or deuterium plasma sheath. It increases five times at the decrease of the puffing deuterium mass to one-half. In shots with neon in the chamber and with puffing deuterium, a considerable decrease was confirmed of the soft X-ray emission in comparison with shots without deuterium injection. This decrease can be explained by the absence of the neon in the region of the compressed and hot plasma. The deuterium plasma from the gas-puff should then be confined in the internal structures both in the phase of implosion as well as during their formation and transformation. In shots with puffing deuterium, the evolution of instabilities in the plasma column was suppressed. The deuterium plasma has a higher conductance and better ability to form expressive and dense plasmoids and to transport the internal current in comparison with neon plasma. Neutrons were produced both at the initial phase of stagnation, as well as at a later time at the evolution of the constrictions and dense plasmoids.

  8. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    PubMed

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226.

  9. The Next Generation of HLA Image Products

    NASA Astrophysics Data System (ADS)

    Gaffney, N. I.; Casertano, S.; Ferguson, B.

    2012-09-01

    We present the re-engineered pipeline based on existing and improved algorithms with the aim of improving processing quality, cross-instrument portability, data flow management, and software maintenance. The Hubble Legacy Archive (HLA) is a project to add value to the Hubble Space Telescope data archive by producing and delivering science-ready drizzled data products and source lists derived from these products. Initially, ACS, NICMOS, and WFCP2 data were combined using instrument-specific pipelines based on scripts developed to process the ACS GOODS data and a separate set of scripts to generate source extractor and DAOPhot source lists. The new pipeline, initially designed for WFC3 data, isolates instrument-specific processing and is easily extendable to other instruments and to generating wide-area mosaics. Significant improvements have been made in image combination using improved alignment, source detection, and background equalization routines. It integrates improved alignment procedures, better noise model, and source list generation within a single code base. Wherever practical, PyRAF based routines have been replaced with non-IRAF based python libraries (e.g. NumPy and PyFITS). The data formats have been modified to handle better and more consistent propagation of information from individual exposures to the combined products. A new exposure layer stores the effective exposure time for each pixel in the sky which is key in properly interpreting combined images from diverse data that were not initially planned to be mosaiced. We worked to improve the validity of the metadata within our FITS headers for these products relative to standard IRAF/PyRAF processing. Any keywords that pertain to individual exposures have been removed from the primary and extension headers and placed in a table extension for more direct and efficient perusal. This mechanism also allows for more detailed information on the processing of individual images to be stored and propagated

  10. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    NASA Astrophysics Data System (ADS)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  11. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  12. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  13. Neutron measurements of the fuel remaining in the TMI II once-through steam generators (OTSG'S)

    SciTech Connect

    Geelhood, B.D.; Abel, K.H.

    1989-02-01

    Polypropylene tubes containing a string of 18 copper rods were inserted into the lower head region and each J-leg of the two once-through steam generators (OTSG) of the unit two reactor at Three Mile Island. The object was to measure the neutron flux present in those regions and estimate the amount of residual fuel remaining in each OTSG. The neutron flux from any residual fuel induces a radioisotope, /sup 64/Cu, in the copper coupons. The /sup 64/Cu activity is detected by coincidence counting the two 511-keV gamma rays produced by the annihilation of the positron emitted in the decay of /sup 64/Cu. The copper coupons were placed between two 6-inch diameter, 6-inch long NaI(Tl) crystals and the electronics produced a coincidence count whenever the two gamma rays were uniquely detected. The net coincidence count is proportional to the amount of /sup 64/Cu activity in the coupon. This document discusses calculation methods, statistical methods, and results of this research. 3 figs., 30 tabs.

  14. First demonstration of laser engagement of 1-Hz-injected flying pellets and neutron generation

    PubMed Central

    Komeda, Osamu; Nishimura, Yasuhiko; Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Nakayama, Suisei; Kitagawa, Yoneyoshi; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke

    2013-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. Numerous studies have been conducted on target suppliers, injectors, and tracking systems for flying pellet engagement. Here we for the first time demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength, and the intensity are 0.63 J per beam, 104 fs, and 811 nm, 4.7 × 1018 W/cm2, respectively. The irradiated pellets produce D(d,n)3He-reacted neutrons with a maximum yield of 9.5 × 104/4π sr/shot. Moreover, the laser is found out to bore a straight channel with 10 μm-diameter through the 1-mm-diameter beads. The results indicate potentially useful technologies and findings for the next step in realizing inertial fusion energy. PMID:24008696

  15. Experimental and numerical investigations of radiation characteristics of Russian portable/compact pulsed neutron generators: ING-031, ING-07, ING-06 and ING-10-20-120

    NASA Astrophysics Data System (ADS)

    Chernikova, D.; Romodanov, V. L.; Belevitin, A. G.; Afanas`ev, V. V.; Sakharov, V. K.; Bogolubov, E. P.; Ryzhkov, V. I.; Khasaev, T. O.; Sladkov, A. A.; Bitulev, A. A.

    2014-05-01

    The present paper discusses results of full-scale experimental and numerical investigations of influence of construction materials of portable pulsed neutron generators ING-031, ING-07, ING-06 and ING-10-20-120 (VNIIA, Russia) to their radiation characteristics formed during and after an operation (shutdown period). In particular, it is shown that an original monoenergetic isotropic angular distribution of neutrons emitted by TiT target changes into the significantly anisotropic angular distribution with a broad energy spectrum stretching to the thermal region. Along with the low-energetic neutron part, a significant amount of photons appears during the operation of generators. In the pulse mode of operation of neutron generator, a presence of the construction materials leads to the "tailing" of the original neutron pulse and the appearance of an accompanying photon pulse at ~ 3 ns after the instant neutron pulse. In addition to that, reactions of neutron capture and inelastic scattering lead to the creation of radioactive nuclides, such as 58Co, 62Cu, 64Cu and 18F, which form the so-called activation radiation. Thus, the selection of a portable neutron generator for a particular type of application has to be done considering radiation characteristics of the generator itself. This paper will be of interest to users of neutron generators, providing them with valuable information about limitations of a specific generator and with recommendations for improving the design and performance of the generator as a whole.

  16. Laser-driven neutron production from bulk and pitcher-catcher targets

    NASA Astrophysics Data System (ADS)

    Maksimchuk, Anatoly; Willingale, L.; Matsuoka, T.; Thomas, A. G. R.; Krushelnick, K.; Petrov, G. M.; Davis, J.; Ovchinnikov, V. M.; Freeman, R. R.; Joglekar, A.; Murphy, C. D.; Woerkom, L. Van

    2010-11-01

    As an important step in the development of the highly directional compact neutron source from the reaction ^7Li(d,xn) [1] we have studied the laser-driven fusion neutron production d(d,n)^3He from bulk deuterated plastic targets and compared it to a pitcher-catcher target method using the same laser and detector arrangement. For laser intensities of up to I = 3.10^19 Wcm^2 it was found that the bulk targets produced a high yield (5.10^4 neutrons/steradian) beamed preferentially in the laser propagation direction. The inhibition of the deuteron acceleration by a proton rich contamination layer is likely to significantly reduce the pitcher-catcher neutron production. Two-dimensional particle-in-cell simulations were performed to model the deuteron beam acceleration, the results of which were coupled to a Monte Carlo code to calculate the expected neutron beam properties. Numerical analysis suggests the pitcher-catcher targets would become more efficient at higher laser intensities. This work was supported by DTRA and the NRL. [1] J. Davis et al., PPCF 52, 045015 (2010).

  17. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  18. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, G.W.; Leeper, R.J.

    1984-08-16

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating a nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a /sup 7/Li(p,..gamma..)/sup 8/Be reaction to produce 16.5 MeV gamma emission.

  19. A compact DD neutron generator-based NAA system to quantify manganese (Mn) in bone in vivo.

    PubMed

    Liu, Yingzi; Byrne, Patrick; Wang, Haoyu; Koltick, David; Zheng, Wei; Nie, Linda H

    2014-09-01

    A deuterium-deuterium (DD) neutron generator-based neutron activation analysis (NAA) system has been developed to quantify metals, including manganese (Mn), in bone in vivo. A DD neutron generator with a flux of up to 3*10(9) neutrons s(-1) was set up in our lab for this purpose. Optimized settings, including moderator, reflector, and shielding material and thickness, were selected based on Monte Carlo (MC) simulations conducted in our previous work. Hand phantoms doped with different Mn concentrations were irradiated using the optimized DD neutron generator irradiation system. The Mn characteristic γ-rays were collected by an HPGe detector system with 100% relative efficiency. The calibration line of the Mn/calcium (Ca) count ratio versus bone Mn concentration was obtained (R(2) = 0.99) using the hand phantoms. The detection limit (DL) was calculated to be about 1.05 μg g(-1) dry bone (ppm) with an equivalent dose of 85.4 mSv to the hand. The DL can be reduced to 0.74 ppm by using two 100% HPGe detectors. The whole body effective dose delivered to the irradiated subject was calculated to be about 17 μSv. Given the average normal bone Mn concentration of 1 ppm in the general population, this system is promising for in vivo bone Mn quantification in humans.

  20. Flux and Spectrum of Neutrons Generated from 25 Mv Medical X-Ray Therapy Machine

    DTIC Science & Technology

    1989-05-01

    neutron absorption cross section at t. By using this relation in equation (1) the integration is possible over...0 n td f dat) n (it, rpLthprmQJ where 000 is defined as the microscopic neutron absorption cross - section at 2200 m/s, the most probable speed of a... neutron - absorption cross - section of the target as a function of energy O(E) is neutron flux per unit of energy as a function of energy. 1,d is

  1. Promises and Challenges of Two-Step Targets for Production of Neutron-rich RIBs

    SciTech Connect

    Talbert, W.L.; Drake, D.M.; Hsu, H.-H.; Wilson, M.T.

    2003-08-26

    Development of a prototype two-step target to produce neutron-rich RIBs is presented, with particular emphasis on thermal analysis under high-power operation. The two-step target is an attractive concept for production of fission-product activities without interference by high-energy spallation reactions which occur in direct production targets. In this concept, a high-energy production beam interacts with a primary target of refractory metal, depositing beam energy in the primary target and producing low-energy neutrons that cause fissions in a surrounding secondary target of mixed UC2 and excess C. Thermal analysis of the composite target presents challenges in cooling the primary target while maintaining the secondary target at temperatures suitable for release of the fission products. The effects of fission energy deposition in the secondary target are discussed, along with the complexities resulting from the thermally insulating character of the secondary target material.

  2. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    SciTech Connect

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-26

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  3. Neutrino-driven explosions of ultra-stripped Type Ic supernovae generating binary neutron stars

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai; Yoshida, Takashi; Shibata, Masaru; Umeda, Hideyuki; Takahashi, Koh

    2015-12-01

    We study explosion characteristics of ultra-stripped supernovae (SNe), which are candidates of SNe generating binary neutron stars (NSs). As a first step, we perform stellar evolutionary simulations of bare carbon-oxygen cores of mass from 1.45 to 2.0 M⊙ until the iron cores become unstable and start collapsing. We then perform axisymmetric hydrodynamics simulations with spectral neutrino transport using these stellar evolution outcomes as initial conditions. All models exhibit successful explosions driven by neutrino heating. The diagnostic explosion energy, ejecta mass, Ni mass, and NS mass are typically ˜1050 erg, ˜0.1 M⊙, ˜0.01 M⊙, and ≈1.3 M⊙, which are compatible with observations of rapidly evolving and luminous transient such as SN 2005ek. We also find that the ultra-stripped SN is a candidate for producing the secondary low-mass NS in the observed compact binary NSs like PSR J0737-3039.

  4. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products

    NASA Astrophysics Data System (ADS)

    Doan, T. C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2015-05-01

    Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10-7 cm2/V for electrons and holes, which is comparable to the value of about 10-7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.

  5. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    PubMed

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging.

  6. ATR neutron spectral characterization

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  7. The A-711 high yield neutron generator and automated pneumatic transfer system for fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Simpson, James D.; Chichester, D. L.; Hill, J. R.

    2005-12-01

    To make fast neutron activation analysis (FNAA) of samples with short half-lives easier, Thermo Electron has updated and modernized its automatic pneumatic transfer system for activation laboratories. For example, with a separation of 10 m from the counting station and a transit speed of 15 m/s, oxygen can be analyzed with improved accuracy. The fast transit time is needed due to the short half-lives of 16N and 19O, 7 s and 27 s respectively, and oxygen-free polyethylene sample bottles are used to allow prompt counting and decrease background counts. Incorporating a dual-axis rotator at the irradiation station for sample and standard, the transfer system also incorporates stations for sample loading, disposal and counting as well as a station to incorporate a chemical neutron source such as Cf-252.

  8. D-D Neutron Generator Calibrations and Hardware in the LUX-ZEPLIN Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Will; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) dark matter search experiment will be a two-phase liquid/gas xenon time projection chamber with 7 tonnes of active liquid xenon (LXe) located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. LZ will utilize an in-situ, absolute calibration of nuclear recoils (NR) in LXe using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used in the LUX detector to measured the NR charge yield in LXe (Qy) to 0.7 keV recoil energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keV - both of which were the lowest energy measurements achieved in the field. These absolute, ultra-low energy calibrations of the NR signal yields in LXe provide clear measurements of the detector response used for the WIMP search analysis. The improvements made for LZ will include shorter neutron pulse times, multiple neutron conduit configurations, and lower energy neutrons. The upgrades allow for even lower energy measurements of the nuclear recoil response in LXe and an independent measurement of Ly, as well as providing less uncertainty in energy reconstruction. In addition to discussing the physics of the neutron calibrations, I will describe the hardware systems used to implement them.

  9. METHOD OF INITIATING AND SUSTAINING AN ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Mackin, R.J. Jr.; Simon, A.

    1961-08-22

    A method for producing an energetic plasma for neutron production and for faeling this plasma once it is formed is described. The plasma is initially fonmed as set forth in U. S. Patent No. 2,969,308. After the plasma is formed, cold neutral particles with an energy of at least 1 Kev are injected in a radial directinn and transverse to the axis of the device. These cold particles are substituted for the molecular ion injection and are used for fueling the plasma device on a continuous regulated basis in order to maintain a reaction temperature of about 60 Kev for producing neutrons. (AE C)

  10. Solar neutron and proton production during the 1990 May 24 cosmic-ray flare increases

    NASA Astrophysics Data System (ADS)

    Debrunner, H.; Lockwood, J. A.; Ryan, J. M.

    1993-06-01

    A detailed analysis of the solar cosmic-ray event on 1990 May 24 has now led us to conclude that the first increase was due to direct solar neutrons and the second increase was produced by solar protons presumably accelerated by an extended coronal shock. The first increase due to solar neutrons lasted about 25 minutes, had an integrated neutron flux at the Earth of 2.5 x 10 exp 4 neutrons/sq cm for En equal to or greater than 100 MeV, and was produced by a time-extended neutron production mechanism at the sun which had approximately the amplitude-time profile of the 79.5-109.6 MeV gamma-ray emission. The second increase starting at about 2102.5 UT was observed by many neutron monitors around the world. It had a duration of about 6 hr and was caused by a highly anisotropic flux of solar protons with a rigidity spectrum proportional to P exp -5.5 at the time of maximum intensity (2115-2125 UT). We concluded that these solar protons were accelerated for about 60 minutes by a diffusive coronal shock, and the total integrated number of protons with P greater than 0.25 GV (Ep equal to or greater than 30 MeV) at the sun was estimated to be equal to or greater than 2 x 10 exp 34. This is less than 10 percent of the total number of protons required at the sun to produce the observed solar neutron fluence of 2.5 x 10 exp 4/sq cm at the Earth. These results are discussed in the context of recent calculations by Ryan & Lee (1991).

  11. APSTNG: Associated particle sealed-tube neutron generator studies for arms control. Final report on NN-20 Project ST220

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; Brunner, T.; Hess, A.; Tylinski, S.

    1994-12-01

    Argonne National Laboratory has performed research and development on the use of Associated Particle Sealed-Tube Neutron Generator (APSTNG) technology for treaty verification and non-proliferation applications, under funding from the DOE Office of Nonproliferation and National Security. Results indicate that this technology has significant potential for nondestructively detecting elemental compositions inside inspected objects or volumes. The final phase of this project was placement of an order for commercial procurement of an advanced sealed tube, with its high-voltage supply and control systems. Procurement specifications reflected lessons learned during the study. The APSTNG interrogates a volume with a continuous 14-MeV neutron flux. Each neutron is emitted coincident with an {open_quotes}associated{close_quotes} alpha-particle emitted in the opposite direction. Thus detection of an alpha-particle marks the emission of a neutron in a cone opposite to that defined by the alpha detector. Detection of a gamma ray coincident with the alpha indicates that the gamma was emitted from a neutron-induced reaction inside the neutron cone: the gamma spectra can be used to identify fissionable materials and many isotopes having an atomic number larger than that of boron. The differences in gamma-ray and alpha-particle detection times yield a coarse measurement of the distance along the cone axis from the APSTNG emitter to each region containing the identified nuclide. A position-sensitive alpha detector would permit construction of coarse three-dimensional images. The source and emission-detection systems can be located on the same side of the interrogated volume. The neutrons and gamma rays are highly penetrating. A relatively high signal-to-background ratio allows the use of a relatively small neutron source and conventional electronics.

  12. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al 2O 3:C

    NASA Astrophysics Data System (ADS)

    Mittani, J. C. R.; da Silva, A. A. R.; Vanhavere, F.; Akselrod, M. S.; Yukihara, E. G.

    2007-07-01

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al 2O 3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li ( 6LiF), lithium carbonate 95% enriched with 6Li ( 6Li 2CO 3), boric acid enriched with 99% of 10B (H310BO) and gadolinium oxide (Gd 2O 3). The proportion of Al 2O 3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ( 6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al 2O 3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al 2O 3:C.

  13. Calculation of Neutron Production Rates and Spectra from Compounds of Actinides and Light Elements

    NASA Astrophysics Data System (ADS)

    Vlaskin, Gennady; Khomiakov, Yuriy

    2017-09-01

    The code NEDIS allows the calculation of neutron production rate and continuous energy spectra due to (α,n) reaction on Li, Be, B, C, O, F, Ne, Na Mg, Al, Si, P, S, Cl, Ar, K, and Ca. It accounts for anisotropic angular distribution of neutrons of (α,n) reaction in centre-of- mass system and dimensions of alpha emitting source material particles. Spontaneous fission spectra are calculated with evaluated half-life, spontaneous fission branching, ν- averaged per fission, and Watt spectrum parameters. The results of calculations by NEDIS can be used as input for Monte Carlo simulation for materials that will be used in radiation shielding and for underground neutron experiments

  14. Measurements Of Spin Observables In Pseudoscalar-Meson Photo-Production Using Polarized Neutrons In Solid HD

    SciTech Connect

    Kageya, Tsuneo

    2014-01-01

    Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an efficient neutron target. Preliminary E asymmetries for the exclusive reaction, gamma + n(p)--> pi- + p(p), selecting quasi free neutron kinematics are discussed.

  15. Efficiency of generation of optical centers in KS-4V and KU-1 quartz glasses at neutron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Islamov, A. Kh.; Salikhbaev, U. S.; Ibragimova, E. M.; Nuritdinov, I.; Fayzullaev, B. S.; Vukolov, K. Yu.; Orlovskiy, I.

    2013-11-01

    Pure quartz glasses of KS-4V and KU-1 types are candidates for optical plasma diagnostic system in ITER. The purpose of experiment was to study the efficiency of defect production in these glasses under irradiation with 60Со γ-quanta (5.7 Gy/s) dose range of 102-107 Gy and the fission reactor neutrons in the fluency range of 1020-1023 n/m2 and gammas simulating the plasma influence. In KU-1 (1000 ppm OH) the accumulation kinetics of E‧-(5.75 eV) and NBO-(1.9 eV) centers at γ-doses⩾5×105 Gy and neutron fluencies <1021 n/m2 is faster, than that in KS-4V glasses (<0.1 ppm OH) that is caused by rupture of hydrogen bonds. At fluencies >1021 n/m2 the NBO accumulation kinetics is slower in KU-1 than in KS-4B, because highly mobile hydrogen atoms access to the generated NBO centers. In KS-4V irradiated to γ-doses102-5 × 103 Gy a new unstable absorption band at 1.8 eV was found, which is caused by the glass synthesis conditions and alkali metal impurities. The transparency at 3.5-6.2 eV at fluencies 1020-5 × 1021 n/m2 is higher in KS-4V than KU-1. However at fluencies >1021 n/m2 in KS-4V the photoluminescence band at 2.7 eV is more intensive and distorts a diagnosed signal. The transparency in 3.5-1.2 eV at fluencies >1021 n/m2 is higher in KU-1 than KS-4V.

  16. Chem-prep PZT 95/5 for neutron generator applicatios : powder preparation characterization utilizing design of experiments.

    SciTech Connect

    Lockwood, Steven John; Rodman-Gonzales, Emily Diane; Voigt, James A.; Moore, Diana Lynn

    2003-07-01

    Niobium doped PZT 95/5 (lead zirconate-lead titanate) is the material used in voltage bars for all ferroelectric neutron generator power supplies. In June of 1999, the transfer and scale-up of the Sandia Process from Department 1846 to Department 14192 was initiated. The laboratory-scale process of 1.6 kg has been successfully scaled to a production batch quantity of 10 kg. This report documents efforts to characterize and optimize the production-scale process utilizing Design of Experiments methodology. Of the 34 factors identified in the powder preparation sub-process, 11 were initially selected for the screening design. Additional experiments and safety analysis subsequently reduced the screening design to six factors. Three of the six factors (Milling Time, Media Size, and Pyrolysis Air Flow) were identified as statistically significant for one or more responses and were further investigated through a full factorial interaction design. Analysis of the interaction design resulted in developing models for Powder Bulk Density, Powder Tap Density, and +20 Mesh Fraction. Subsequent batches validated the models. The initial baseline powder preparation conditions were modified, resulting in improved powder yield by significantly reducing the +20 mesh waste fraction. Response variation analysis indicated additional investigation of the powder preparation sub-process steps was necessary to identify and reduce the sources of variation to further optimize the process.

  17. New isotope {sup 44}Si and systematics of the production cross sections of the most neutron-rich nuclei

    SciTech Connect

    Tarasov, O. B.; Baumann, T.; Bazin, D.; III, C. M. Folden; Ginter, T. N.; Hausmann, M.; Matos, M.; Portillo, M.; Schiller, A.; Stolz, A.; Amthor, A. M.; Gade, A.; Nettleton, A.; Sherrill, B. M.; Thoennessen, M.; Morrissey, D. J.

    2007-06-15

    The results of measurements of the production of neutron-rich nuclei by the fragmentation of a {sup 48}Ca beam at 142 MeV/nucleon are presented. Evidence was found for the production of a new isotope that is the most neutron-rich silicon nuclide, {sup 44}Si, in a net neutron pickup process. A simple systematic framework was found to describe the production cross sections based on thermal evaporation from excited prefragments that allows extrapolation to other weak reaction products.

  18. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.

    PubMed

    Khorshidi, Abdollah

    2015-10-01

    A feasibility study was performed to design thermal and epithermal neutron sources for radioisotope production and boron neutron capture therapy (BNCT) by moderating fast neutrons. The neutrons were emitted from the reaction between (9)Be, (181)Ta, and (184)W targets and 30 MeV protons accelerated by a small cyclotron at 300 μA. In this study, the adiabatic resonance crossing (ARC) method was investigated by means of (207)Pb and (208)Pb moderators, graphite reflector, and boron absorber around the moderator region. Thermal/epithermal flux, energy, and cross section of accumulated neutrons in the activator were examined through diverse thicknesses of the specified regions. Simulation results revealed that the (181)Ta target had the highest neutron yield, and also tungsten was found to have the highest values in both surface and volumetric flux ratio. Transmutation in the (98)Mo sample through radiative capture was investigated for the natural lead moderator. When the sample radial distance from the target was increased inside the graphite region, the production yield had the greatest value of activity. The potential of the ARC method is a replacement or complements the current reactor-based supply sources of BNCT purposes.

  19. Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Sanzen, Yukimasa; Kamida, Masaki; Watanabe, Yukinobu; Itoh, Masatoshi

    2017-09-01

    We have proposed a new method of producing medical radioisotope 92Y as a candidate of alternatives of 111In bioscan prior to 90Y ibritumomab tiuxetan treatment. The 92Y isotope is produced via the 92Zr (n,p) reaction using accelerator neutrons generated by the interaction of deuteron beams with carbon. A feasibility experiment was performed at Cyclotron and Radioisotope Center, Tohoku University. A carbon thick target was irradiated by 20-MeV deuterons to produce accelerator neutrons. The thick target neutron yield (TTNY) was measured by using the multiple foils activation method. The foils were made of Al, Fe, Co, Ni, Zn, Zr, Nb, and Au. The production amount of 92Y and induced impurities were estimated by simulation with the measured TTNY and the JENDL-4.0 nuclear data.

  20. Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs

    SciTech Connect

    Ayman Hawari

    2008-06-20

    The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

  1. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  2. Integrated doses calculation in evacuation scenarios of the neutron generator facility at Missouri S&T

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji B.

    2016-08-01

    Any source of ionizing radiations could lead to considerable dose acquisition to individuals in a nuclear facility. Evacuation may be required when elevated levels of radiation is detected within a facility. In this situation, individuals are more likely to take the closest exit. This may not be the most expedient decision as it may lead to higher dose acquisition. The strategy followed in preventing large dose acquisitions should be predicated on the path that offers least dose acquisition. In this work, the neutron generator facility at Missouri University of Science and Technology was analyzed. The Monte Carlo N-Particle (MCNP) radiation transport code was used to model the entire floor of the generator's building. The simulated dose rates in the hallways were used to estimate the integrated doses for different paths leading to exits. It was shown that shortest path did not always lead to minimum dose acquisition and the approach was successful in predicting the expedient path as opposed to the approach of taking the nearest exit.

  3. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  4. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  5. Production of neutron-rich nuclei with Z =60 -73 in reactions induced by Xe isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Zhang, Feng-Shou; Wen, Pei-Wei; Su, Jun; Xie, Wen-Jie

    2017-08-01

    The multinucleon transfer reactions 124,136,144Xe +238U , Xe,144136+160Gd , Xe,144136+170Er , and Xe,144136+186W are investigated within the framework of the dinuclear system model. The charge equilibration effects on the production cross sections of exotic nuclei are studied. The neutron-deficient projectile 124Xe is favorable to produce transtarget neutron-deficient nuclei, while Xe,144136 shows great advantages of cross sections for producing neutron-rich nuclei in the proton pick-up channel. Furthermore, the influence of entrance angular momentum on the charge equilibration process is investigated. It is found that in a low angular momentum channel the more profound reconstruction of initial nuclei is noticed rather than peripheral collisions. We predict the production cross sections of several neutron-rich nuclei in the reactions Xe,144136+160Gd , Xe,144136+170Er , and Xe,144136+186W . It is found that many unknown nuclei can be produced at the level of μ b to mb.

  6. Light-Ion Production in the Interaction of 96 MeV Neutrons with Silicon

    NASA Astrophysics Data System (ADS)

    Tippawan, U.; Pomp, S.; Atac, A.; Bergenwall, B.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Österlund, M.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A. V.; Renberg, P.-U.; Nadel-Turonski, P.; Corcalciuc, V.; Watanabe, Y.; Koning, A. J.

    2005-05-01

    Radiation effects induced by terrestrial cosmic rays in microelectronics, on board aircrafts as well as at sea level, have recently attracted much attention. The most important particle radiation is due to spallation neutrons, created in the atmosphere by cosmic-ray protons. When, e.g., an electronic memory circuit is exposed to neutron radiation, charged particles can be produced in a nuclear reaction. The charge released by ionization can cause a flip of the memory content in a bit, which is called a single-event upset (SEU). This induces no hardware damage to the circuit, but unwanted re-programming of memories, CPUs, etc., can have consequences for the reliability, and ultimately also for the safety of the system. Data on energy and angular distributions of the secondary particles produced by neutrons in silicon nuclei are essential input for analyses and calculation of SEU rate. In this work, double-differential cross sections of inclusive light-ion (p, d, t, 3He and α) production in silicon, induced by 96 MeV neutrons, are presented. Energy distributions are measured at eight laboratory angles from 20° to 160° in steps of 20°. Deduced energy-differential and production cross sections are reported as well. Experimental cross sections are compared to theoretical reaction model calculations and existing experimental data in the literature.

  7. Theoretical predictions on production of neutron-deficient nuclei with Z ≥ 93 in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2017-08-01

    Within the framework of dinuclear system model, the transfer reactions 58Ni + 233U, 58Ni + 238U, and 64Ni + 238U are investigated. The influences of projectile and target neutron numbers on cross sections of producing neutron-deficient actinide nuclei in transfer reactions are studied. It is found that the system 58Ni + 233U with smaller neutron excess is favorable to produce neutron-deficient nuclei. We predict the production cross sections of neutron-deficient nuclei with Z = 93- 98 in transfer reactions 58Ni + 233U and 40Ca + 245Cm with different incident energies. We find the transfer reactions 58Ni + 233U and 40Ca + 245Cm are feasible for producing neutron-deficient actinide nuclei in future experiments.

  8. Structures of the fractional spaces generated by the difference neutron transport operator

    SciTech Connect

    Ashyralyev, Allaberen; Taskin, Abdulgafur

    2015-09-18

    The initial boundary value problem for the neutron transport equation is considered. The first, second and third order of accuracy difference schemes for the approximate solution of this problem are presented. Highly accurate difference schemes for neutron transport equation based on Padé approximation are constructed. In applications, stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained.The positivity of the neutron transport operator in Slobodeckij spaces is proved. Numerical techniques are developed and algorithms are tested on an example in MATLAB.

  9. Demonstrating the feasibility of probing the neutron-star equation of state with second-generation gravitational-wave detectors.

    PubMed

    Del Pozzo, Walter; Li, Tjonnie G F; Agathos, Michalis; Van Den Broeck, Chris; Vitale, Salvatore

    2013-08-16

    Fisher matrix and related studies have suggested that, with second-generation gravitational-wave detectors, it may be possible to infer the equation of state of neutron stars using tidal effects in a binary inspiral. Here, we present the first fully Bayesian investigation of this problem. We simulate a realistic data analysis setting by performing a series of numerical experiments of binary neutron-star signals hidden in detector noise, assuming the projected final design sensitivity of the Advanced LIGO-Virgo network. With an astrophysical distribution of events (in particular, uniform in comoving volume), we find that only a few tens of detections will be required to arrive at strong constraints, even for some of the softest equations of state in the literature. Thus, direct gravitational-wave detection will provide a unique probe of neutron-star structure.

  10. Monte Carlo Evaluation of the Improvements in Nuclear Materials Identification System (NMIS) Resulting From a DT Neutron Generator

    SciTech Connect

    Pozzi, S. A.; Mihalczo, J. T.

    2002-05-16

    Nuclear safeguards active measurements that rely on the time correlation between fast neutrons and gamma rays from the same fission are a promising technique. Previous studies have shown the feasibility of this method, in conjunction with the use of artificial neural networks, to estimate the mass and enrichment of fissile samples enclosed in special, sealed containers. This paper evaluates the use of the associated particle sealed tube neutron generator (APSTNG) as the interrogation source in correlation measurements. The results show that its use is of particular importance when floor reflections are present. The Nuclear Materials Identification System (NMIS) presently uses {sup 252}Cf ionization chambers as interrogation sources for the time-dependent coincidence measurements. Because triggers from this source are associated with neutrons emitted in any direction, adjacent materials such as the floor and nearby containers could affect the measurements and should be accounted for. Conversely, the APSTNG, together with an alpha particle detector, defines a cone of neutrons that can be aimed at the item under verification, thus removing the effects of nearby materials from the time-dependent coincidence distributions. Monte Carlo calculations were performed using MCNP-POLIMI, a modified version of the standard MCNP code. The code attempts to calculate more correctly quantities that depend on the second moment of the neutron and gamma distributions. The simulations quantified the sensitivity enhancements and removal of the effects of nearby materials by substituting the traditional {sup 252}Cf source with the APSTNG.

  11. Characterisation of the secondary neutron field generated by a compact PET cyclotron with MCNP6 and experimental measurements.

    PubMed

    Alloni, D; Prata, M

    2017-10-01

    The production of the most common used PET radioisotope Fluorine-18 with commercial cyclotrons is obtained from the (18)O(p,n)(18)F nuclear reaction when (18)O-enriched water is bombarded with a proton beam. We present the characterization of the secondary neutron field spectra produced by this reaction in different locations around the cyclotron, through a comparison between MCNP6 Monte Carlo simulation results and experimental data obtained with Neutron Activation Analysis (NAA) of thin target foils of different materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Neutron capture production rates of cosmogenic 60Co, 59Ni and 36Cl in stony meteorites

    NASA Technical Reports Server (NTRS)

    Spergel, M. S.; Reedy, R. C.; Lazareth, O. W.; Levy, P. W.

    1986-01-01

    Results for neutron flux calculations in stony meteoroids (of various radii and compositions) and production rates for Cl-36, Ni-59, and Co-60 are reported. The Ni-59/Co-60 ratio is nearly constant with depth in most meteorites: this effect is consistent with the neutron flux and capture cross section properties. The shape of the neutron flux energy spectrum, varies little with depth in a meteorite. The size of the parent meteorite can be determined from one of its fragments, using the Ni-59/Co-60 ratios, if the parent meteorite was less than 75 g/cm(2) in radius. If the parent meteorite was larger, a lower limit on the size of the parent meteorite can be determined from a fragment. In C3 chondrites this is not possible. In stony meteorites with R less than 50 g/cm(2) the calculated Co-60 production rates (mass less than 4 kg), are below 1 atom/min g-Co. The highest Co-60 production rates occur in stony meteorites with radius about 250 g/cm(2) (1.4 m across). In meteorites with radii greater than 400 g/cm(2), the maximum Co-60 production rate occurs at a depth of about 175 g/cm(2) in L-chondrite, 125 g/cm(2) in C3 chrondrite, and 190 g/cm(2) in aubrites.

  13. Production of very neutron-rich nuclei with a {sup 76}Ge beam

    SciTech Connect

    Tarasov, O. B.; Portillo, M.; Baumann, T.; Bazin, D.; Ginter, T. N.; Hausmann, M.; Pereira, J.; Stolz, A.; Amthor, A. M.; Gade, A.; Nettleton, A.; Sherrill, B. M.; Thoennessen, M.; Inabe, N.; Kubo, T.; Morrissey, D. J.

    2009-09-15

    Production cross sections for neutron-rich nuclei from the fragmentation of a {sup 76}Ge beam at 132 MeV/u were measured. The longitudinal momentum distributions of 34 neutron-rich isotopes of elements 13{<=}Z{<=}27 were scanned using a novel experimental approach of varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei, including 15 isotopes first observed in this work. These are the most neutron-rich nuclides of the elements 17{<=}Z{<=}25 ({sup 50}Cl, {sup 53}Ar, {sup 55,56}K, {sup 57,58}Ca, {sup 59,60,61}Sc, {sup 62,63}Ti, {sup 65,66}V, {sup 68}Cr, and {sup 70}Mn). A one-body Q{sub g} systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. Some of the fragments near {sup 58}Ca show anomalously large production cross sections.

  14. Measurement of pion induced neutron-production double-differential cross sections on Fe and Pb at 870 MeV and 2.1 GeV

    NASA Astrophysics Data System (ADS)

    Iwamoto, Y.; Shigyo, N.; Satoh, D.; Kunieda, S.; Watanabe, T.; Ishimoto, S.; Tenzou, H.; Maehata, K.; Ishibashi, K.; Nakamoto, T.; Numajiri, M.; Meigo, S.; Takada, H.

    2004-08-01

    Neutron-production double-differential cross sections for 870 MeV π+ and π- and 2.1 GeV π+ mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120, and 150° . The typical flight path length was 1.5 m . Neutron detection efficiencies were evaluated by calculation results of SCINFUL and CECIL codes. The experimental results were compared with JAERI quantum molecular dynamics code. For the meson incident reactions, adoption of NN in-medium effects was slightly useful for reproducing 870 MeV π+ -incident neutron yields at neutron energies of 10 30 MeV , as was the case for proton incident reactions. The π- incident reaction generates more neutrons than π+ incidence as the number of nucleons in targets decrease.

  15. Surprisingly Large Generation and Retention of Helium and Hydrogen in Pure Nickel Irradiated at High Temperatures and High Neutron Exposures

    SciTech Connect

    Greenwood, Lawrence R.; Garner, Francis A.; Oliver, Brian M.; Grossbeck, Martin L.; Wolfer, W. G.

    2004-04-01

    Hydrogen and helium measurements in pure nickel irradiated to 100 dpa in HFIR at temperatures between 300 and 600C show higher gas concentrations than predicted from fast-neutron reactions and the two-step 58Ni(n,g)59Ni(n,p and n,a) reactions. This additional gas production suggests previously unidentified nuclear sources of helium and possibly hydrogen that assert themselves at very high neutron exposure. The elevated hydrogen measurements are especially surprising since it is generally accepted that hydrogen is very mobile in nickel at elevated temperatures and therefore is easily lost, never reaching large concentrations. However, it appears that relatively large hydrogen concentrations can be reached and retained for many years after irradiation at reactor-relevant temperatures. These new effects may have a significant impact on the performance of nickel-bearing alloys at high neutron fluences in both fission and fusion reactor irradiations.

  16. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  17. The effect of neutron skin on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies

    NASA Astrophysics Data System (ADS)

    De, Somnath

    2017-04-01

    Recent experiments on lead ({{{Pb}}}82208) nuclei have observed the celebrated phenomenon of the neutron skin thickness of low energy nuclear physics. Skin thickness provides a measure of the extension of the spatial distribution of neutrons inside the atomic nucleus than protons. We have studied the effect of neutron skin thickness on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies. We have calculated the ‘central-to-peripheral ratio’ ({R}{cp}) of prompt photon production with and without accounting for the neutron skin effect. The neutron skin causes a characteristic enhancement of the ratio, in particular at forward rapidity, which is distinguishable in our calculation. However, a very precise direct photon measurement up to large transverse momenta would be necessary to constrain the feature in experiment.

  18. A search for cosmogenic production of β-neutron emitting radionuclides in water

    NASA Astrophysics Data System (ADS)

    Dazeley, S.; Askins, M.; Bergevin, M.; Bernstein, A.; Bowden, N. S.; Shokair, T. M.; Jaffke, P.; Rountree, S. D.; Sweany, M.

    2016-06-01

    Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of β-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the β-neutron measurement, we also provide a first look at isolating single-β producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over 207 live days indicates a 9Li production yield upper limit of 1.9 ×10-7μ-1g-1cm2 at ~400 m water equivalent (m.w.e.) overburden at the 90% confidence level. In this work the 9Li signal in WATCHBOY was used as a proxy for the combined search for 9Li and 8He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.

  19. Calculation of energy deposition, photon and neutron production in proton therapy of thyroid gland using MCNPX.

    PubMed

    Mowlavi, Ali Asghar; Fornasie, Maria Rosa; de Denaro, Mario

    2011-01-01

    In this study, the MCNPX code has been used to simulate a proton therapy in thyroid gland, in order to calculate the proton energy deposition in the target region. As well as, we have calculated the photon and neutron production spectra due to proton interactions with the tissue. We have considered all the layers of tissue, from the skin to the thyroid gland, and an incident high energy pencil proton beam. The results of the simulation show that the best proton energy interval, to cover completely the thyroid tissue, is from 42 to 54 MeV, assuming that the thyroid gland has a 14 mm thickness and is located 11.2mm under the skin surface. The most percentage of deposited energy (78%) is related to the 54 MeV proton energy beam. Total photon and neutron production are linear and polynomial second order functions of the proton energy, respectively.

  20. Proton linac for hospital-based fast neutron therapy and radioisotope production

    SciTech Connect

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.; Rush Univ., Chicago, IL; Science Applications International Corp., Princeton, NJ; Fermi National Accelerator Lab., Batavia, IL )

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab.

  1. Constraints on binary neutron star merger product from short GRB observations

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2016-02-01

    Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.

  2. ACHIEVING THE REQUIRED COOLANT FLOW DISTRIBUTION FOR THE ACCELERATOR PRODUCTION OF TRITIUM (APT) TUNGSTEN NEUTRON SOURCE

    SciTech Connect

    D. SIEBE; K. PASAMEHMETOGLU

    2000-11-01

    The Accelerator Production of Tritium neutron source consists of clad tungsten targets, which are concentric cylinders with a center rod. These targets are arranged in a matrix of tubes, producing a large number of parallel coolant paths. The coolant flow required to meet thermal-hydraulic design criteria varies with location. This paper describes the work performed to ensure an adequate coolant flow for each target for normal operation and residual heat-removal conditions.

  3. Development of compact size penning ion source for compact neutron generator

    SciTech Connect

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-15

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  4. Modeling heat generation and flow in the Advanced Neutron Source Corrosion Test Loop specimen

    SciTech Connect

    Pawel, R.E.; Yarbrough, D.W.

    1988-01-01

    A finite difference computer code HEATING5 was used to model heat generation and flow in a typical experiment envisioned for the Advanced Neutron Source Corrosion Test Loop. The electrical resistivity and thermal conductivity of the test specimen were allowed to vary with local temperature, and the corrosion layer thickness was assigned along the length of the specimen in the manner predicted by the Griess Correlation. The computer solved the two-dimensional transport problem for a given total power dissipated in the specimen and stipulated coolant temperatures and water-side heat-transfer coefficients. The computed specimen temperatures were compared with those calculated on the basis of approximate analytical equations involving the total power dissipation and the assignment of the physical properties based on temperatures at single axial points on the specimen. The comparisons indicate that when temperature variations are large along the axis of the specimen, the variation in local heat flux should not be overlooked when using approximate equations or models. The approximate equations are most accurate near the center of the specimen where the heat flux remains closest to the average value, and in that region the calculated quantities agree closely with the results of the computer code. 4 figs., 1 tab.

  5. Second-Generation Thermal Neutron Activation Sensor for Confirmatory Land-Mine Detection

    SciTech Connect

    Edward Clifford; Harry Ing; John McFee; H. Robert Andrews; Tom Cousins

    2000-06-04

    This paper describes the development of the Improved Land-Mine Detector System (ILDS), a vehicle-mounted nonmetallic land-mine detector. The ILDS consists of a custom teleoperated vehicle carrying an infrared imager, an electromagnetic induction detector, and a ground probing radar-which scan the ground in front of the vehicle. Custom navigation and data fusion software combine information from scanning sensors and navigation systems to detect and automatically track suspect targets until the confirmation detector at the rear of the system is positioned to within 30 cm of the target location. The confirmation detector, using thermal neutron activation (TNA) to detect bulk nitrogen in explosives, then dwells over the target for 10 to 120 s. In U.S. government tests (summer 1998), the ILDS advanced development model (ADM) placed first or second out of five competitors on every test. The construction of the second-generation TNA detector and preliminary testing should be complete by March 2000. Testing on real mines is expected to start in summer 2000.

  6. New Insights into Pore Characteristics and Hydrocarbon Generation of Shale Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2014-12-01

    Pore size, distribution, connectivity, and shape as well as hydrocarbon saturation and composition reflect the history of hydrocarbon maturation and migration. However, characterization of the underlying factors and processes controlling hydrocarbons behavior in tight rocks is extremely limited, especially lacking of direct experimental observations. We have studied the pore characteristics of marine and lacustrine shale from the Erdos basin, China during laboratory pyrolysis using small-angle neutron scattering (SANS). Our SANS results show that scattering intensity of smaller pores (< 20 nm)/larger Q values of shale samples increase systematically as temperature increase during pyrolysis from 250 oC to 600oC (Fig.1a). These results in combination with hydrocarbon fractions measurements during the same process (Fig. 1b) provide a quantitative relation between pore characteristics and hydrocarbons generation. Our results indicate that hydrocarbon expulsion primarily causes the observed changes in smaller pores. They also demonstrate that due to its sensitivity to hydrogen, SANS locates all pores whether the pore is filled or not with hydrocarbons. Thus, SANS is particularly suited for probing hydrocarbon behavior in tight shale reservoirs and the factors that impact their pore dynamics for the petroleum industry.

  7. Development of compact size penning ion source for compact neutron generator.

    PubMed

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-01

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  8. Generation of nonvernal-obligate, faster-cycling Noccaea caerulescens lines through fast neutron mutagenesis.

    PubMed

    Lochlainn, Seosamh O; Fray, Rupert G; Hammond, John P; King, Graham J; White, Philip J; Young, Scott D; Broadley, Martin R

    2011-01-01

    Noccaea caerulescens (formerly Thlaspi caerulescens) is a widely studied metal hyperaccumulator. However, molecular genetic studies are challenging in this species because of its vernal-obligate biennial life cycle of 7-9months. Here, we describe the development of genetically stable, faster cycling lines of N. caerulescens which are nonvernal-obligate. A total of 5500 M(0) seeds from Saint Laurent Le Minier (France) were subjected to fast neutron mutagenesis. Following vernalization of young plants, 79% of plants survived to maturity. In all, 80,000 M(2) lines were screened for flowering in the absence of vernalization. Floral initials were observed in 35 lines, with nine flowering in <12wk. Two lines (A2 and A7) were selfed to the M(4) generation. Floral initials were observed 66 and 87d after sowing (DAS) in A2 and A7, respectively. Silicle development occurred for all A2 and for most A7 at 92 and 123 DAS, respectively. Floral or silicle development was not observed in wild-type (WT) plants. Leaf zinc (Zn) concentration was similar in WT, A2 and A7 lines. These lines should facilitate future genetic studies of this remarkable species. Seed is publicly available through the European Arabidopsis Stock Centre (NASC). © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  9. Neutron production in tissue-like media and shielding materials irradiated with high-energy ion beams.

    PubMed

    Gudowska, I; Kopec, M; Sobolevsky, N

    2007-01-01

    Secondary neutrons produced in high-energy therapeutic ion beams require special attention since they contribute to the dose delivered to patient, both to tumour and to the healthy tissues. Moreover, monitoring of neutron production in the beam line elements and the patient is of importance for radiation protection aspects around ion therapy facility. Monte Carlo simulations of light ion transport in the tissue-like media (water, A-150, PMMA) and materials of interest for shielding devices (graphite, steel and Pb) were performed using the SHIELD-HIT and MCNPX codes. The capability of the codes to reproduce the experimental data on neutron spectra differential both in energy and angle is demonstrated for neutron yield from the thick targets. Both codes show satisfactory agreement with the experimental data. The absorbed dose due to neutrons produced in the water and A-150 phantoms is calculated for proton (200 MeV) and carbon (390 MeV/u) beams. Secondary neutron dose contribution is approximately 0.6% of the total dose delivered to the phantoms by proton beam and at the similar level for both materials. For carbon beam the neutron dose contribution is approximately 1.0 and 1.2% for the water and A-150 phantoms, respectively. The neutron ambient dose equivalent, H(10), was determined for neutrons leaving different shielding materials after irradiation with ions of various energies.

  10. Are Scaling Models for Production of Cosmogenic Nuclides Isotope Specific? - Implications from Secondary Cosmic Ray Neutron Spectra Measurements

    NASA Astrophysics Data System (ADS)

    Wilcken, K.

    2015-12-01

    A necessary requirement in studies using in-situ cosmogenic isotopes is to convert the measured isotope concentrations to exposure ages or geomorphic process rates. This involves using an accepted reference production rate, derived experimentally at a calibration site that has independent age control, and applying scaling factors for latitude and altitude in order to calculate a site-specific production rate. Throughout the development of the in-situ cosmogenic dating method, although reference production rates are necessarily nuclide specific, the scaling factors were not. The first atmospheric scaling model by Lal and Peters [1967] and others that followed, were based on the principle that as the cosmic ray particle flux attenuates with depth, the energy spectrum of nucleons of energy below 400 MeV becomes invariant at atmospheric depths greater than 200 g/cm2(altitude < 12 km). Hence scaling factors would thus be isotope independent resulting in production rate ratios of different isotopes to be invariant as a function of altitude. However, recent models by Argento et al. [2012, 2015] and Lifton et al. [2014] suggest that the energy spectrum is not invariant and scaling factors should in fact be isotope specific. The essential feature of the new models is that the focus is on generating the energy spectrum of cosmic-ray nucleons that is then converted into scaling factors with known cross sections. To benchmark the new scaling models I have collated secondary cosmic-ray neutron spectra measurements from the last 20 years and utilised these to calculate site-specific production rates. When using both ground-based and airborne neutron spectra measurements, the result follows the general trend predicted by the new models requiring isotope specific scaling. In contrast, using only the ground-based measurements, which range from sea-level to ~4000 m in altitude, no evidence for isotope specific scaling is apparent.

  11. Characteristics of high-energy neutrons estimated using the radioactive spallation products of Au at the 500-MeV neutron irradiation facility of KENS.

    PubMed

    Matsumura, Hiroshi; Masumoto, Kazuyoshi; Nakao, Noriaki; Wang, Qingbin; Toyoda, Akihiro; Kawai, Masayoshi; Aze, Takahiro; Fujimura, Masatsugu

    2005-01-01

    We carried out a shielding experiment of high-energy neutrons, generated from a tungsten target bombarded with primary 500-MeV protons at KENS, which penetrated through a concrete shield in the zero-degree direction. We propose a new method to evaluate the spectra of high-energy neutrons ranging from 8 to 500 MeV. Au foils were set in a concrete shield, and the reaction rates for 13 radionuclides produced by the spallation reactions on the Au targets were measured by radiochemical techniques. The experimental results were compared with those obtained by the MARS14 Monte-Carlo code. A good agreement (between them) was found for energies beyond 100 MeV. The profile of the neutron spectrum, ranging from 8 to 500 MeV, does not depend on the thickness of the concrete shield.

  12. Analysis of the radial potential structure and neutron production rate in the spherical inertial electrostatic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Ramzanpour, M. A.; Pahlavani, M. R.

    2017-01-01

    The radial dependent potential and neutron production rate in spherical inertial electrostatic confinement fusion (IECF) devices is investigated. The electrostatic potential is determined by solving the Poisson equation for various deuteron and electron distribution functions. The fusion reaction rates are determined using energy distribution function. Also, dependence of potential structure and neutron production rate on some important parameters as the ion and electron convergence, working pressure, kinetic energy of the secondary electrons emitted from the cathode and the fraction of secondary electrons drawn inside the cathode are studied. Total produced neutrons as a function of input power at different working conditions are also obtained.

  13. Gamma ray production cross section from energetic neutron inelastic scattering for methodical improvements in planetary gamma-ray spectroscopy

    SciTech Connect

    Castaneda, C.M.; Gearhart, R.; Sanii, B.; Englert, P.A.J.; Drake, D.M.; Reedy, R.C.

    1991-12-31

    Planetary Gamma ray spectroscopy can be used to chemically analyze the top soil from planets in future planetary missions. The production from inelastic neutron interaction plays an effective role in the determination on the C and H at the surface. The gamma ray production cross section from the strongest lines excited in the neutron bombardment of Fe have been measured by the use of a time analyzed quasi-mono-energetic neutron beam and a high purity germanium detector. The results from En=6.5, 32, 43, and 65 MeV are presented.

  14. Investigation of Low-Energy Neutrons and Their Reaction Products in Planetary Objects

    NASA Astrophysics Data System (ADS)

    Masarik, J.; Reedy, R. C.

    1995-09-01

    High precision W, Nd, and Sm isotopic analyses [1,2] used for precise age determination of the earliest episodes of planetary differentiation require an understanding of possible contributions from neutron-capture reactions to the production of the investigated isotopes. Low-energy neutrons can also be used to study the surface composition of the planets [3,4]. Neutron-capture production profiles, which are very different from those for tracks or from nuclides made by energetic cosmic ray particles, can be used for unfolding the cosmic-ray exposure history of meteorites [5]. We did Monte Carlo numerical simulations of the influence of chemical composition, temperature and water content on neutron fluxes and production of cosmogenic isotopes. The LAHET Code System [6] was used to numerically simulate the irradiation of various objects by galactic-cosmic-ray particles and to calculate neutron fluxes and production rates of various W, Sm, Nd, Gd isotopes and 59Ni, 60Co, 36Cl, 41Ca, 80Kr and 82Kr. The advantage of these calculations is that the physical model applied to the investigation of particle production and transport uses only basic physical quantities and parameters without including any free parameters and assumptions about the neutron source term, as was necessary in older approaches [7,8]. Our simulations started by selecting the energy and direction of the primary particle that starts the particle cascade. As neutrons produced in the cascade are followed down to the thermal energies, we are able to determine the main sources of observed differences in capture rates. The calculations were validated by modeling [9] ^(60)Co [10] and 41Ca [11] measured in lunar samples. For the surface temperature variations during the lunar day, which range from about 120 K to 400 K, we found that the effect on production rates is very small. Temperature influences only relative capture rates of isotopes whose thermal capture cross sections differ from a 1/v dependence. For

  15. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    SciTech Connect

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  16. Subterranean production of neutrons, 39Ar and 21Ne: Rates and uncertainties

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Stevens, Lauren; McDonough, William F.; Mukhopadhyay, Sujoy; Peterson, R. J.

    2017-01-01

    Accurate understanding of the subsurface production rate of the radionuclide 39Ar is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, 21Ne , and 39Ar take advantage of the state-of-the-art reliable tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, 21Ne , and 39Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of 107-1010 α particles are produced in one kilogram of rock per year (order of 1-103 kg-1 s-1); the number of produced neutrons is lower by ∼ 6 orders of magnitude, 21Ne production rate drops by an additional factor of 15-20, and another one order of magnitude or more is dropped in production of 39Ar. Our calculation yields a nucleogenic 21Ne /4He production ratio of (4.6 ± 0.6) ×10-8 in Continental Crust and (4.2 ± 0.5) ×10-8 in Oceanic Crust and Depleted Mantle. Calculated 39Ar production rates span a great range from 29 ± 9 atoms kg-rock-1 yr-1 in the K-Th-U-enriched Upper Continental Crust to (2.6 ± 0.8) × 10-4 atoms kg-rock-1 yr-1 in Depleted Upper Mantle. Nucleogenic 39Ar production exceeds the cosmogenic production below ∼700 m depth and thus, affects radiometric ages of groundwater. The 39Ar chronometer, which fills in a gap between 3H and 14C , is particularly important given the need to tap deep reservoirs of ancient drinking water.

  17. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  18. Geant4 simulations of the neutron production and transport in the n_TOF spallation target

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.

    2016-11-01

    The neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with Geant4. The results obtained with the different hadronic Physics Lists provided by Geant4 have been compared with the experimental neutron flux in n_TOF-EAR1. The best overall agreement in both the absolute value and the energy dependence of the flux from thermal to 1GeV, is obtained with the INCL++ model coupled with the Fritiof Model(FTFP). This Physics List has been thus used to simulate and study the main features of the new n_TOF-EAR2 beam line, currently in its commissioning phase.

  19. Comparison of Pd/D co-deposition and DT neutron generated triple tracks observed in CR-39 detectors

    SciTech Connect

    Mosier-Boss, P. A.; Dea, J. Y.; Forsley, L. P. G.; Morey, M. S.; Tinsley, J. R.; Hurley, J. P.; Gordon, F. E.

    2010-08-01

    Solid state nuclear track detectors (SSNTDs), such as CR-39, have been used to detect energetic charged particles and neutrons. Of the neutron and charged particle interactions that can occur in CR-39, the one that is the most easily identifiable is the carbon breakup reaction. The observation of a triple track, which appears as three alpha particle tracks breaking away from a center point, is diagnostic of the 12C(n, n')3α carbon breakup reaction. Such triple tracks have been observed in CR-39 detectors that have been used in Pd/D co-deposition experiments. In this communication, triple tracks in CR-39 detectors observed in Pd/D co-deposition experiments are compared with those generated upon exposure to a DT neutron source. It was found that both sets of tracks were indistinguishable. Both symmetric and asymmetric tracks were observed. Using linear energy transfer (LET) curves and track modeling, the energy of the neutron that created the triple track can be estimated.

  20. The Use of the Photofission of 238U for a Neutron-Rich Radioactive Ion Beams Generation

    NASA Astrophysics Data System (ADS)

    Szöllős, O.; Kliman, J.

    2003-10-01

    The fission fragments yield for photofission of 238U, induced by bremsstrahlung photons with endpoint energies of 25 and 50MeV was evaluated to estimate the possibility of producing the neutron-rich nuclei. The systematics coming from A.C. Wahl's Zp model 1 for charge distribution of fission fragments were used. Results for xenon and krypton isotopes are compared with experimental data 2 obtained on the DRIBs 3 (Dubna Radioactive Ion Beams) facility for neutron-rich nuclei production in Flerov Laboratory. The fission rate and fission density in production target for metallic uranium and UCx compounds were simulated with Geant4 4 simulation toolkit to design the target geometry, The fission rate dependence on material of the electron stopping target was examined, At nominal beam values on microtron MT-25 (Ie = 20μA, Ee = 25MeV) up to 2.1011 fissions/s could be achieved. Then the production rate of neutron-rich isotopes reaching order of 109s-1. The induced activity in the production target depending on an irradiation time was calculated for radiation protection purposes and target safety estimation. The cumulation of actinide nuclei was also calculated.

  1. Neutron production during the interaction of monoenergetic electrons with a Tungsten foil in the radiotherapeutic energy range

    NASA Astrophysics Data System (ADS)

    Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene

    2017-10-01

    The electron, photon, and neutron spectra produced during the interaction between monoenergetic electron beams (8, 10, 12, 15, and 18 MeV) and a 0.05 cm-thick tungsten scattering foil were estimated using Monte Carlo method. Incoming electrons is a pencil beam that after collide with the foil acquires a broader distribution peaked in the same direction of the incoming electrons. Electron spectra show the influence of the binding energy of electrons in the tungsten shells and the increase of the electron fluence. In the interaction between the electrons in the beam and the tungsten atoms in the foil, bremsstrahlung and characteristic photons are produced. These photons are also peaked in the same direction of the incoming beam, and the electron fluence increases as the energy of the electron beam raises. The electron and photon spectra have particles whose energy is larger than the binding energy of neutron in the nucleus. Thus neutron production was noticed for 10, 12, 15, and 18 MeV electron beam. The neutron fluence becomes larger as the energy of the electron beam increases, the neutron spectra are mainly evaporation neutrons for 10 and 12 MeV, and for 15 and 18 MeV knock-on neutrons are also produced. Neutrons are produced in the foil volume having a quasi-isotropic distribution.

  2. Experimental Neutron Source Facility Based on Accelerator Driven System

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry

    2010-06-01

    An experimental neutron source facility has been developed for producing medical isotopes, training young nuclear professionals, providing capability for performing reactor physics, material research, and basic science experiments. It uses a driven subcritical assembly with an electron accelerator. The neutrons driving the subcritical assembly were generated from the electron interactions with a target assembly. Tungsten or uranium target material is used for the neutron production through photonuclear reactions. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  3. High-power liquid-lithium jet target for neutron production

    SciTech Connect

    Halfon, S.; Feinberg, G.; Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I.; Paul, M.; Friedman, M.; Tessler, M.

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  4. Programming Productivity Enhancement by the use of Application Generators by the Use of Application Generators.

    DTIC Science & Technology

    2014-09-26

    RD-Ai58 598 PROGRAMMING PRODUCTIVITY ENHANCEMIENT BY THE USE-O F APPLICATION GENERATORS.. (U) UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF...for Grant No. AFOSR-82-0232 I Programming Productivity Enhancement by the Use of Application Generators June 1, 1982 - May 31, 1985 by Ellis Horowitz...area of Application Generators. Systems such as RAMS, NOMAD and FOCUS had all proven * to be versatile at improving programmer productivity in the

  5. Determination of Long-Lived Neutron Activation Products in Reactor Shielding Concrete Samples

    SciTech Connect

    Zagar, Tomaz; Ravnik, Matjaz

    2002-10-15

    The results of activation studies of TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete were irradiated in the reactor to simulate neutron activation in the shielding concrete. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides were measured in the samples with a high-purity germanium detector. The most active long-lived radioactive nuclides in the ordinary concrete samples were found to be {sup 60}Co and {sup 152}Eu. In the barytes concrete samples, the most active long-lived radioactive nuclides were {sup 60}Co, {sup 133}Ba, and {sup 152}Eu. Activation in the concrete was also calculated using the ORIGEN2 code and compared to experimental results. Simple radioactive nuclide generation and depletion calculation using one-group cross-section libraries provided together with the ORIGEN2 code did not give conservative results. Significant discrepancies were observed for some nuclides. For accurate long-lived radioactive nuclide generation in reactor shielding, material-specific cross-section libraries should be generated and verified by measurement.

  6. Generation and application of LET calibration curve for neutron dosimetry using CR-39 detector and microwave induced chemical etching.

    PubMed

    Tripathy, S P; Sahoo, G S; Paul, S; Kumar, P; Sharma, S D; Santra, S; Pal, A; Kundu, A; Bandyopadhyay, T; Avasthi, D K

    2017-06-01

    Microwave induced chemical etching (MICE) has been established as a faster and improved technique compared to other contemporary etching techniques for the development of tracks in a CR-39 detector. However, the methodology could not be applied for LET (linear energy transfer) spectrometry due to lack of a calibration curve using this method. For this purpose, a new LET calibration curve in the range of 12 keV/μm-799 keV/μm was generated considering different ions such as H, Li, C, O, and F on CR-39 having different LETs in water. An empirical relation was established from the obtained calibration curve for determining the value of LET (in water) from the value of V, the ratio of track etch rate to bulk etch rate. For application of this calibration curve in neutron dosimetry, CR-39 detectors were irradiated to neutrons generated from 120 and 142 MeV (16)O+(27)Al systems followed by a similar MICE procedure. The absorbed dose (DLET) and the dose equivalent (HLET) were obtained from the LET spectra and were found to be 13% and 10% higher for 142 MeV (16)O+(27)Al system than those for 120 MeV (16)O+(27)Al system, respectively. The outcome of the study demonstrates the possibility of using the MICE technique for neutron dose estimation by CR-39 via LET spectrometry.

  7. Generation and application of LET calibration curve for neutron dosimetry using CR-39 detector and microwave induced chemical etching

    NASA Astrophysics Data System (ADS)

    Tripathy, S. P.; Sahoo, G. S.; Paul, S.; Kumar, P.; Sharma, S. D.; Santra, S.; Pal, A.; Kundu, A.; Bandyopadhyay, T.; Avasthi, D. K.

    2017-06-01

    Microwave induced chemical etching (MICE) has been established as a faster and improved technique compared to other contemporary etching techniques for the development of tracks in a CR-39 detector. However, the methodology could not be applied for LET (linear energy transfer) spectrometry due to lack of a calibration curve using this method. For this purpose, a new LET calibration curve in the range of 12 keV/μm-799 keV/μm was generated considering different ions such as H, Li, C, O, and F on CR-39 having different LETs in water. An empirical relation was established from the obtained calibration curve for determining the value of LET (in water) from the value of V, the ratio of track etch rate to bulk etch rate. For application of this calibration curve in neutron dosimetry, CR-39 detectors were irradiated to neutrons generated from 120 and 142 MeV 16O+27Al systems followed by a similar MICE procedure. The absorbed dose (DLET) and the dose equivalent (HLET) were obtained from the LET spectra and were found to be 13% and 10% higher for 142 MeV 16O+27Al system than those for 120 MeV 16O+27Al system, respectively. The outcome of the study demonstrates the possibility of using the MICE technique for neutron dose estimation by CR-39 via LET spectrometry.

  8. Gamma-ray production cross sections from neutron interactions with iron.

    SciTech Connect

    Nelson, R. O.; Laymon, C. M.; Wender, S. A.; Drake, D. M.; Drosg, Manfred; Bobias, S. G.; McGrath, C. A.

    2002-01-01

    The initial purpose of this experiment was to provide a consistent data base of neutron-induced gamma-ray production cross sections over a large energy range for use in estimating elemental composition of the martian surface by observing gamma rays produced by cosmic ray interactions on the planet's surface [Bo02]. However, these data should be useful for other projects such as oil-well logging, accelerator transmutation of nuclear waste, shielding calculations, gamma-ray heating for nuclear reactors and verification of nuclear model calculations and databases. The goal of the measurements was to collect data on the strongest gamma rays from many samples of interest. Because of the available beam time this meant that many of the measurcments were rather short. Despite the short running time the large samples used and the good beam intensity resulted in very satisfactory results. The samples, chosen mainly as common constituents of rock and soil and measured in the same few week period, include: B&, BN, C, Al, Mg, Si, S, Cay Ti, Cr, Mn, and Fe. Be was also used as a neutron scatterer that only produces one gamma ray (478 keV from 7Li) with appreciable intensity. Thus Be can serve as a measure of neutron-induced backgrounds. In this first paper we present results for Fe.

  9. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  10. Fast-neutron interaction with the fission product {sup 103}Rh

    SciTech Connect

    Smith, A.B. |; Guenther, P.T.

    1993-09-01

    Neutron total and differential elastic- and inelastic-scattering cross sections of {sup 103}Rh are measured from {approximately} 0.7 to 4.5 MeV (totals) and from {approximately} 1.5 to 10 MeV (scattering) with sufficient detail to define the energy-averaged behavior of the neutron processes. Neutrons corresponding to excitations of groups of levels at 334 {plus_minus} 13, 536 {plus_minus} 10, 648 {plus_minus} 25, 796 {plus_minus} 20, 864 {plus_minus} 22, 1120 {plus_minus} 22, 1279 {plus_minus} 60, 1481 {plus_minus} 27 and 1683 {plus_minus} 39 keV were observed. Additional groups at 1840 {plus_minus} 79 and 1991 {plus_minus} 71 key were tentatively identified. Assuming the target is a collective nucleus reasonably approximated by a simple one-phonon vibrator, spherical-optical, dispersive-optical, and coupled-channels models were developed from the data base with attention to the parameterization of the large inelastic-scattering cross sections. The physical properties of these models are compared with theoretical predictions and the systematics of similar model parameterizations in this mass region. In particular, it is shown that the inelastic-scattering cross section of the {sup 103}Rh fission product is large at the relatively low energies of applied interest.

  11. Neutron production in coincidence with fragments from the 40Ca + H reaction at Elab=357A and 565A MeV

    NASA Astrophysics Data System (ADS)

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Knott, C. N.; Insolia, A.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1999-01-01

    Neutron production, in coincidence with fragments emitted in the 40Ca+H reaction at Elab=357A and 565A MeV, has been measured using a 3-module version of the multifunctional neutron spectrometer MUFFINS. The mean neutron multiplicities for neutrons detected in the angular range covered by MUFFINS (0°-3.2°) have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a preequilibrium emission of prompt neutrons in superposition to a ``slower'' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in inclusive rapidity distributions. The energy dependence of the inclusive neutron production cross sections, measured in a previous work, is here interpreted as due to the stronger neutron focusing in the forward direction at the higher energy. Comparison with a BNV+phase space coalescence model is discussed.

  12. Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  13. ACCELERATOR BASED CONTINUOUS NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; RUGGIERO,A.G.; LUDEWIG,H.

    2003-03-25

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate protons impinging on a heavy metal target. There do not appear to be any major technical challenges to the building of such a facility since a continuous spallation source has been operating in Switzerland for several years.

  14. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A.

    1974-01-01

    Device simulates incipient fire conditions in closely-controlled adjustable manner, to give predetermined degree of intensity at selected locations throughout area, and to verify that detection system will respond. Device can be used with and for cross calibration and experimentation in conjunction with commercially available products of combustion analyzing meters.

  15. Production of the neutron-induced isotope, 73Ga, at the Davis Campus of the Sanford Underground Research Facility with the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Chu, Pinghan; Majorana Demonstrator Collaboration

    2016-09-01

    We report a study of the production of the neutron-induced isotope, 73Ga, in the MAJORANA DEMONSTRATOR array at the underground Davis Campus of the Sanford Underground Research Facility 4850 ft level. This isotope has a half-life time of 4.86 hours and can be generated through interactions between fast neutrons and germanium isotopes. Using its unique decay signature, we have identified three candidate events of 73Ga in the commissioning data of MAJORANA DEMONSTRATOR. Based on these three events, we estimate the corresponding neutron energy spectrum and the radioactive background generated by neutron-induced isotopes. The background from neutron-induced isotopes has been also calculated in the Region of Interest for 76Ge neutrinoless double beta decays. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program. U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DE-AC02-05CH11231, DE-AC52-06NA25396, DE-FG02-97ER41041, DE-FG02-97ER41033, DE-FG02-97ER41042, DE-SC0012612, DE-FG02-10ER41715, DE-SC0010254, and DE-FG02-97ER4102.

  16. Measurements of Spin Observables in Single Pion Photo-Production from Polarized Quasi-Free Neutrons in Solid HD

    NASA Astrophysics Data System (ADS)

    Kageya, Tsuneo

    Abstract Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an effective neutron target using D in HD. Preliminary E and Σ asymmetries for the exclusive reaction, γ + n(p) → π- + p(p), are discussed.

  17. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. The Geostationary Operational Environmental Satellite (GOES) Product Generation System

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.

    2004-01-01

    The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

  19. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  20. Probing the neutron-skin thickness by photon production from reactions induced by intermediate-energy protons

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng

    2015-07-01

    The photon from neutron-proton bremsstrahlung in p +Pb reactions is examined as a potential probe of the neutron-skin thickness in different centralities and at different proton incident energies. It is shown that the best choice of reaction environment is about 140 MeV for the incident proton and the 95%-100% centrality for the reaction system since the incident proton mainly interacts with neutrons inside the skin of the target and thus leads to different photon production to a maximal extent. Moreover, considering two main uncertainties from both photon production probability and nucleon-nucleon cross section in the reaction, I propose to use the ratio of photon production from two reactions to measure the neutron-skin thickness because of its cancellation effects on these uncertainties simultaneously, but preserved about 13%-15% sensitivities on the varied neutron-skin thickness from 0.1 to 0.3 fm within the current experimental uncertainty range of the neutron-skin size in 208Pb.

  1. First Generation ASCI Production Visualization Environments

    SciTech Connect

    Heermann, P.D.

    1999-04-08

    The delivery of the first one tera-operations/sec computer has significantly impacted production data visualization, affecting data transfer, post processing, and rendering. Terascale computing has motivated a need to consider the entire data visualization system; improving a single algorithm is not sufficient. This paper presents a systems approach to decrease by a factor of four the time required to prepare large data sets for visualization.For daily production use, all stages in the processing pipeline from physics simulation code to pixels on a screen, must be balanced to yield good overall performance. Also, to complete the data path from screen to the analyst's eye, user display systems for individuals and teams are examined. Performance of the initial visualization system is compared with recent improvements. Lessons learned from the coordinated deployment of improved algorithms are also discussed, including the need for 64 bit addressing and a fully parallel data visualization pipeline.

  2. Gamma-ray spectroscopy of neutron-rich products of heavy-ion collisions

    SciTech Connect

    Carpenter, M.P.; Janssens, R.V.F.; Ahmad, I.

    1995-08-01

    Thick-target {gamma}{gamma} coincidence techniques are being used to explore the spectroscopy of otherwise hard-to-reach neutron-rich products of deep-inelastic heavy ion reactions. Extensive {gamma}{gamma} coincidence measurements were performed at ATLAS using pulsed beams of {sup 80}Se, {sup 136}Xe, and {sup 238}U on lead-backed {sup 122,124}Sn targets with energies 10-15% above the Coulomb barrier. Gamma-ray coincidence intensities were used to map out yield distributions with A and Z for even-even product nuclei around the target and around the projectile. The main features of the yield patterns are understandable in terms of N/Z equilibration. We had the most success in studying the decays of yrast isomers. Thus far, more than thirty new {mu}s isomers in the Z = 50 region were found and characterized. Making isotopic assignments for previously unknown {gamma}-ray cascades proves to be one of the biggest problems. Our assignments were based (a) on rare overlaps with radioactivity data, (b) on the relative yields with different beams, and (c) on observed cross-coincidences between {gamma} rays from light and heavy reaction partners. However, the primary products of deep inelastic collisions often are sufficiently excited for subsequent neutron evaporation, so {gamma}{gamma} cross-coincidence results require careful interpretation.

  3. Examination of experimental conditions for the production of proton-rich and neutron-rich hypernuclei

    NASA Astrophysics Data System (ADS)

    Rappold, C.; López-Fidalgo, J.

    2016-10-01

    After the demonstration of the feasibility of hypernuclear spectroscopy with heavy-ion beams, the HypHI Collaboration will next focus on the study of proton- and neutron-rich hypernuclei. The use of a fragment separator for the production and separation of rare-isotope beams is a crucial aspect to producing hypernuclei far from the stability line. Precise spectroscopy of exotic hypernuclei is planned to be carried out at the GSI and later at the FAIR facility with the FRS and Super-FRS fragment separators. A systematic study and an optimization analysis were performed to determine optimal experimental conditions for producing hypernuclei with high isospin. The optimal conditions are obtained based on theoretical models for the heavy-ion induced reaction and hypernuclei production. Experimental efficiencies for the production of exotic secondary beams were also taken into account via Monte Carlo simulations of the fragment separator. The developed methodology is presented to deduce the expected yields of Be8Λ and subsequently other proton-rich and neutron-rich hypernuclei.

  4. High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, J.; Petrov, G. M.; Nees, J. A.; He, Z.-H.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2016-10-01

    Using several-mJ energy pulses from a high-repetition rate (1/2 kHz), ultrashort (35 fs) pulsed laser interacting with a ˜ 10 μm diameter stream of free-flowing heavy water (D2O), we demonstrate a 2.45 MeV neutron flux of 105/s. Operating at high intensity (of order 1019 W/cm2), laser pulse energy is efficiently absorbed in the pre-plasma, generating energetic deuterons. These collide with deuterium nuclei in both the bulk target and the large volume of low density D2O vapor surrounding the target to generate neutrons through d ( d , n ) 3 He reactions. The neutron flux, as measured by a calibrated neutron bubble detector, increases as the laser pulse energy is increased from 6 mJ to 12 mJ. A quantitative comparison between the measured flux and the results derived from 2D-particle-in-cell simulations shows comparable neutron fluxes for laser characteristics similar to the experiment. The simulations reveal that there are two groups of deuterons. Forward moving deuterons generate deuterium-deuterium fusion reactions in the D2O stream and act as a point source of neutrons, while backward moving deuterons propagate through the low-density D2O vapor filled chamber and yield a volumetric source of neutrons.

  5. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  6. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  7. Analysis of neutron and gamma-ray streaming along the maze of NRCAM thallium production target room.

    PubMed

    Raisali, G; Hajiloo, N; Hamidi, S; Aslani, G

    2006-08-01

    Study of the shield performance of a thallium-203 production target room has been investigated in this work. Neutron and gamma-ray equivalent dose rates at various points of the maze are calculated by simulating the transport of streaming neutrons, and photons using Monte Carlo method. For determination of neutron and gamma-ray source intensities and their energy spectrum, we have applied SRIM 2003 and ALICE91 computer codes to Tl target and its Cu substrate for a 145 microA of 28.5 MeV protons beam. The MCNP/4C code has been applied with neutron source term in mode n p to consider both prompt neutrons and secondary gamma-rays. Then the code is applied for the prompt gamma-rays as the source term. The neutron-flux energy spectrum and equivalent dose rates for neutron and gamma-rays in various positions in the maze have been calculated. It has been found that the deviation between calculated and measured dose values along the maze is less than 20%.

  8. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    SciTech Connect

    Freeman, Corey R; Geist, William H

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF{sub 6} spins at high velocities in centrifuges to separate the molecules containing {sup 238}U from those containing the lighter {sup 235}U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF{sub 6} gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  9. Long life neutron generator target using deuterium pass-through structure

    NASA Technical Reports Server (NTRS)

    Alger, D. L.

    1974-01-01

    Target structure permits all deuterons, except the one-in-a-million that interacts with tritium atom to produce a neutron, to pass completely through target structure and be returned to vacuum system. Since tritium atoms are not displaced as in conventional targets, tritium population will remain unchanged while under deuteron bombardment.

  10. Method and system based on pulsed neutron generator for fissile material detection in luggage

    NASA Astrophysics Data System (ADS)

    Bogolubov, Ye. P.; Korotkov, S. A.; Korytko, L. A.; Morukov, V. G.; Nazarov, V. I.; Polkanov, Yu. G.; Khasaev, T. O.

    2004-01-01

    The paper discusses the problem of fissile material (FM) detection in passenger luggage. Different methods of control of unauthorized FM movement were analyzed. Application of differential die-away technique was substantiated. Experimental prototype with sensitivity of uranium-235 detection equal to 5 g during 5 s was described. A method for revealing deliberate FM masking by neutron-absorbing shields is suggested.

  11. Generation of the neutron response function of an NE213 scintillator for fusion applications

    NASA Astrophysics Data System (ADS)

    Binda, F.; Eriksson, J.; Ericsson, G.; Hellesen, C.; Conroy, S.; Nocente, M.; Sundén, E. Andersson; JET Contributors

    2017-09-01

    In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gamma-rays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results.

  12. A search for cosmogenic production of β-neutron emitting radionuclides in water

    DOE PAGES

    Dazeley, S.; Askins, M.; Bergevin, M.; ...

    2016-03-08

    In this study, we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of β-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the β-neutron measurement, we also provide a first look at isolating single-β producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over 207 live days indicates a 9Li production yield upper limit of 1.88 × 10–7μ–1g–1cm2 at ~300 m water equivalent (m.w.e.) overburden at the 90% confidence level. In this work the 9Li signal in WATCHBOY was usedmore » as a proxy for the combined search for 9Li and 8He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.« less

  13. A search for cosmogenic production of β-neutron emitting radionuclides in water

    SciTech Connect

    Dazeley, S.; Askins, M.; Bergevin, M.; Bernstein, A.; Bowden, N. S.; Shokair, T. M.; Jaffke, P.; Rountree, S. D.; Sweany, M.

    2016-03-08

    Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of β-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the β-neutron measurement, we also provide a first look at isolating single-β producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over 207 live days indicates a 9Li production yield upper limit of $1.9\\times10^{-7}\\mu^{-1}g^{-1}\\mathrm{cm}^2$ at $\\sim400$ meters water equivalent (m.w.e.) overburden at the 90% confidence level. In this work the 9Li signal in WATCHBOY was used as a proxy for the combined search for 9Li and 8He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.

  14. Pair production and annihilation in strong magnetic fields. [of neutron stars and pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    Electromagnetic phenomena occurring in the presence of strong magnetic fields are currently of great interest in high-energy astrophysics. In particular, the process of pair production by single photons in the presence of fields of order 10 to the 12th power Gauss is of importance in cascade models of pulsar gamma ray emission, and may also become significant in theories of other radiation phenomena whose sources may be neutron stars (e.g., gamma ray bursts). In addition to pair production, the inverse process of pair annihilation is greatly affected by the presence of superstrong magnetic fields. The most significant departures from annihilation processes in free space are a reduction in the total rate for annihilation into two photons, a broadening of the familiar 511-keV line for annihilation at rest, and the possibility for annihilation into a single photon which dominates the two-photon annihilation for B (10 to 13th power Gauss) The physics of these pair conversion processes, which is reviewed briefly, can become quite complex in the teragauss regime, and can involve calculations which are technically difficult to incorporate into models of emission mechanisms in neutron star magnetospheres. However, theoretical work, especially the case of pair annihilation, also suggests potential techniques for more direct measurements of field strengths near the stellar surface.

  15. A search for cosmogenic production of β-neutron emitting radionuclides in water

    DOE PAGES

    Dazeley, S.; Askins, M.; Bergevin, M.; ...

    2016-03-08

    Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of β-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the β-neutron measurement, we also provide a first look at isolating single-β producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over 207 live days indicates a 9Li production yield upper limit ofmore » $$1.9\\times10^{-7}\\mu^{-1}g^{-1}\\mathrm{cm}^2$$ at $$\\sim400$$ meters water equivalent (m.w.e.) overburden at the 90% confidence level. In this work the 9Li signal in WATCHBOY was used as a proxy for the combined search for 9Li and 8He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.« less

  16. Chem-Prep PZT 95/5 for neutron generator applications : development of laboratory-scale powder processing operations.

    SciTech Connect

    Montoya, Ted V.; Moore, Roger Howard; Spindle, Thomas Lewis Jr.

    2003-12-01

    Chemical synthesis methods are being developed as a future source of PZT 95/5 powder for neutron generator voltage bar applications. Laboratory-scale powder processes were established to produce PZT billets from these powders. The interactions between calcining temperature, sintering temperature, and pore former content were studied to identify the conditions necessary to produce PZT billets of the desired density and grain size. Several binder systems and pressing aids were evaluated for producing uniform sintered billets with low open porosity. The development of these processes supported the powder synthesis efforts and enabled comparisons between different chem-prep routes.

  17. Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator

    NASA Astrophysics Data System (ADS)

    Sabo-Napadensky, I.; Weiss-Babai, R.; Gayer, A.; Vartsky, D.; Bar, D.; Mor, I.; Chacham-Zada, R.; Cohen, M.; Tamim, N.

    2012-06-01

    One of the main problems in neutron imaging is the scattered radiation that accompanies the direct neutrons that reach the imaging detectors and affect the image quality. We have developed a dedicated collimator for 14.2 MeV fast neutrons. The collimator optimizes the amount of scattered radiation to primary neutrons that arrive at the imaging plane. We have used different materials within the collimator in order to lower the scattered radiation that arrives at the scanned object. The image quality and the signal to noise ratios that are measured show that a mixture of BORAX (Na2B4O7ṡ10H2O) and water in the experimental beam collimator give the best results. We have used GEANT4 to simulate the collimator performance, the simulations predict the optimized material looking on the ratios of the scattered to primary neutrons that contribute in the detector. We present our experimental setup, report the results of the experimental and related simulation studies with neutrons beam generated by a 14.2 MeV D-T neutron generator.

  18. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations.

  19. Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Biasetto, L.; Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Carturan, S.; Prete, G.; Zanonato, P.; Stracener, D. W.

    2011-03-01

    In the framework of the R&D program for the SPES (Selective Production of Exotic Species) project of the Istituto Nazionale di Fisica Nucleare (INFN), production yields of neutron-rich isotopes have been measured at the Holifield Radioactive Ion Beam Facility (HRIBF, Oak Ridge National Laboratory, USA). This experiment makes use of the multi-foil SPES target prototype composed of 7 uranium carbide discs, with excess of graphite (ratio C/ U = 4 . 77 isotopes of medium mass (between 72 and 141amu), produced via proton-induced fission of uranium using a 40MeV proton beam, have been collected and analyzed for the target heated at 2000 ° C target temperature.

  20. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  1. Gamma-ray bursts generated from phase transition of neutron stars to quark stars

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi

    2017-02-01

    The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.

  2. Estimation of the activity generated by neutron activation in control rods of a BWR.

    PubMed

    Ródenas, José; Gallardo, Sergio; Abarca, Agustín; Juan, Violeta

    2010-01-01

    Control rods are activated by neutron reactions into the reactor. The activation is produced mainly in stainless steel and its impurities. The dose produced by this activity is not important inside the reactor, but it has to be taken into account when the rod is withdrawn from the reactor. Activation reactions produced have been modelled by the MCNP5 code based on the Monte Carlo method. The code gives the number of reactions that can be converted into activity.

  3. Development of an Efficient Approach to Perform Neutronics Simulations for Plutonium-238 Production

    SciTech Connect

    Chandler, David; Ellis, Ronald James

    2016-01-01

    Conversion of 238Pu decay heat into usable electricity is imperative to power National Aeronautics and Space Administration (NASA) deep space exploration missions; however, the current stockpile of 238Pu is diminishing and the quality is less than ideal. In response, the US Department of Energy and NASA have undertaken a program to reestablish a domestic 238Pu production program and a technology demonstration sub-project has been initiated. Neutronics simulations for 238Pu production play a vital role in this project because the results guide reactor safety-basis, target design and optimization, and post-irradiation examination activities. A new, efficient neutronics simulation tool written in Python was developed to evaluate, with the highest fidelity possible with approved tools, the time-dependent nuclide evolution and heat deposition rates in 238Pu production targets irradiated in the High Flux Isotope Reactor (HFIR). The Python Activation and Heat Deposition Script (PAHDS) was developed specifically for experiment analysis in HFIR and couples the MCNP5 and SCALE 6.1.3 software quality assured tools to take advantage of an existing high-fidelity MCNP HFIR model, the most up-to-date ORIGEN code, and the most up-to-date nuclear data. Three cycle simulations were performed with PAHDS implementing ENDF/B-VII.0, ENDF/B-VII.1, and the Hybrid Library GPD-Rev0 cross-section libraries. The 238Pu production results were benchmarked against VESTA-obtained results and the impact of various cross-section libraries on the calculated metrics were assessed.

  4. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  5. LePaProGen—lepton pair production generator

    NASA Astrophysics Data System (ADS)

    Dydyshka, Ya. V.; Yermolchyk, V. L.; Suarez, J. H.; Shumeiko, N. M.

    2017-09-01

    A Monte Carlo generator "LePaProGen" for simulation of lepton pair production at hadron colliders is presented. Higher order electroweak radiative effects are implemented. A new algorithm for selection of the optimal phase space parameterization is applied.

  6. Prompt γ-ray production in neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2013-04-01

    Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.

  7. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  8. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  9. Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2010-12-15

    The production cross sections of neutron-rich isotopes {sup 52,54,56,58,60}Ca, {sup 136,138,140,142}Sn, and {sup 146,148,150,152}Xe are predicted for future experiments in the diffusive multinucleon transfer reactions {sup 86,90,92,94}Kr, {sup 124,130,132,134}Sn, {sup 136,140,142,146}Xe, and {sup 138,144,146}Ba+{sup 48}Ca with stable and radioactive beams at incident energies close to the Coulomb barrier. Because of the small cross sections, the production of neutron-rich isotopes requires the optimal choice of projectile-target combinations and bombarding energies.

  10. Neutron production with mixture of deuterium and krypton in Sahand Filippov type plasma focus facility

    NASA Astrophysics Data System (ADS)

    Mohammadi, M. A.; Sobhanian, S.; Rawat, R. S.

    2011-08-01

    This Letter reports the order of magnitude enhancement in neutron yield from Sahand plasma focus device with krypton seeded deuterium operation. The highest average neutron yield of 2.2×10 neutrons per shot was achieved at 1.00 Torr deuterium with 3% krypton which is higher than the best average neutron yield of 3.18×10 neutrons per shot for pure deuterium operation. Estimation of average neutron energy showed that the maximum and minimum average energies are 2.98±0.6 MeV at 16 kV in 0.25 Torr deuterium with 3% Kr and 2.07±0.2 MeV at 18 kV operation in 0.5 Torr deuterium with 3% Kr, respectively. The anisotropy of neutron emission from Sahand DPF showed that the neutrons are produced mainly by beam-target mechanisms.

  11. Generation of Distortion Product Otoacoustic Emissions in the Gerbil Cochlea

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Olson, Elizabeth S.

    2011-11-01

    Simultaneous measurements of intracochlear and ear canal pressure responses to two-tone stimulation with fixed f2/f1 ratio allowed us to probe the physical generation sites of distortion product otoacoustic emissions (DPOAEs) in the cochlea. Our results were consistent with the notion that DPOAE emerges primarily from the generator region, where the two primaries overlap.

  12. High Repetition-Rate Neutron Generation by Several-mJ, 35 fs pulses interacting with Free-Flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, Jungmoo; Petrov, George; Nees, John; He, Zhaohan; Hammig, Mark; Krushelnick, Karl; Thomas, Alexander

    2016-10-01

    Recent advance in ultra-high power laser technology allows a development of laser-based neutron sources. Here we demonstrate heavy-water based neutron source. Using several-mJ energy pulses from a high-repetition rate (½kHz), ultrashort (35 fs) pulsed laser interacting with a 10 μm diameter stream of free-flowing heavy water (D2O), we get a 2.45 MeV neutron flux of 105/s. In the intentionally generated pre-plasma, laser pulse energy is efficiently absorbed, and energetic deuterons are generated. As a convertor, the bulk heavy water stream target and the large volume of low density D2O vapor near the target are collided with accelerated deuterons, generating neutron through d(d,n)3He reactions. As laser pulse energy increased from 6mJ to 12mJ, the neutron flux increased. From the 2D particle-in-cell simulation, comparable neutron fluxes are shown at the similar laser characteristics to the experiment. Also, simulation shows forward and backward moving deuterons, which are main distributing ions impinging upon D2O stream and vapor, respectively. This material is based upon work supported by the Air Force Office of Scien- tific Research under Award Numbers FA9550-12-1-0310 (Young Investigator Program) and FA9550-14-1-0282.

  13. Neutron Dosimetry on the Full-Core First Generation VVER-440 Aimed at Reactor Support Structure Load Evaluation

    NASA Astrophysics Data System (ADS)

    Borodkin, P.; Borodkin, G.; Khrennikov, N.; Konheiser, J.; Noack, K.

    2009-08-01

    Reactor support structures (RSS), especially the ferritic steel wall of the water tank, of first-generation VVER-440 are non-restorable reactor equipment, and their lifetime may restrict plant-life. All operated Russian first generation VVER-440 have a reduced core with dummy assemblies except Unit 4 of Novovoronezh nuclear power plant (NPP). In comparison with other reactors, the full-core loading scheme of this reactor provides the highest neutron fluence on the reactor pressure vessel (RPV) and RSS accumulated over design service-life and its prolongation. The radiation load parameters on the RPV and RSS that have resulted from this core loading scheme should be evaluated by means of precise calculations and validated by ex-vessel neutron dosimetry to provide the reliable assessment of embrittlement parameters of these reactor components. The results of different types of calculations and their comparison with measured data have been analyzed in this paper. The calculational analysis of RSS fluence rate variation in dependence on the core loading scheme, including the standard and low leakage core as well as the introduction of dummy assemblies, is presented in this paper.

  14. Neutron Emission Generated in the Collision of Plasma Flows in the Presence of an External Magnetic Field

    SciTech Connect

    Dudkin, G.N.; Nechaev, B.A.; Padalko, V.N.; Bystritsky, V.M.; Gerasimov, V.V.; Kublikov, R.V.; Parzhitsky, S.S.; Stolupin, V.L.; Vozniak, J.; Veretel'nik, V.I.; Furman, E.G.

    2005-12-15

    Results are presented from experimental studies of the neutron emission generated in the collision of deuterium plasma flows produced in discharges in crossed E x H fields and propagating in opposite directions in a neutral gas across an external magnetic field. It is shown that the interaction of oppositely propagating deuterium plasma flows gives rise to the generation of soft X-ray emission and neutron emission from the dd reaction (dd {yields} {sup 3}He + n) and is accompanied by an almost complete depolarization of the flows and rapid variations in the magnetic field (at a rate of {approx}10{sup 11} G/s). The measurements were performed at energies and velocities of the flows of up to 600 J and 3.5 x 10{sup 7} cm/s, respectively. The plasma density in each flow was {approx}10{sup 15} cm{sup -3}. The upper estimates for the astrophysical S factor and the effective cross sections of the dd reaction obtained from our measurements are compared to theoretical calculations and to the results of experiments performed in the MIG high-current accelerator (Institute of High-Current Electronics, Russian Academy of Sciences, Tomsk)

  15. New neutron-rich isotope production in 154Sm+160Gd

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Guo, Lu

    2016-09-01

    Deep inelastic scattering in 154Sm+160Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD) model and time dependent Hartree-Fock (TDHF) theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI) for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with 58 ≤ Z ≤ 76 are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

  16. Neutron production by a 13C thick target irradiated by 20 90 MeV protons

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Malkiewicz, T.; Vakhtin, D.; Plokhoi, V.; Alyakrinskiy, O.; Barbui, M.; Brandenburg, S.; Dendooven, P.; Cinausero, M.; Kandiev, Ya.; Kettunen, H.; Khlebnikov, S.; Lyapin, V.; Penttilä, H.; Prete, G.; Rizzi, V.; Samarin, S.; Tecchio, L. B.; Trzaska, W. H.; Tyurin, G.

    2008-10-01

    Neutron production using an enriched 13C carbon converter has been measured during the design study of the italian RIB facility SPES. Energy and angular distributions of neutrons emitted by bombarding a 13C target of stopping length with protons in the range of 20 to 90 MeV have been measured by time-of-flight and activation and compared with the prediction of a Monte Carlo code developed at Snezhinsk. At the proton energy of 100 MeV, firstly envisaged for SPES, the gain with respect to a natural C target is less than a factor of two, while yields still compare well with those for 40 MeV deuterons on natural carbon adopted by SPIRAL-II. At energies near 30 MeV the 13C thick target is definitely more prolific than the target of natural carbon, but both yields with protons are clearly lower than the one with deuterons. At the energy of 20 MeV envisaged for a first stage of SPES it might be more efficient to irradiate the uranium target with protons rather than using the two-stage method with converter.

  17. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    PubMed

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. © 2015 Elsevier Inc. and UT-Battelle, LLC, Contract no. DE-AC05-00OR22725. All rights reserved.

  18. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method.

  19. Neutronic and thermal-hydraulic analysis of fission molybdenum-99 production at Tehran Research Reactor using LEU plate targets.

    PubMed

    Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi

    2016-12-01

    Efficient and safe production of molybdenum-99 ((99)Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced (99)Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient (99)Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    NASA Astrophysics Data System (ADS)

    Selby, H. D.; Mac Innes, M. R.; Barr, D. W.; Keksis, A. L.; Meade, R. A.; Burns, C. J.; Chadwick, M. B.; Wallstrom, T. C.

    2010-12-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99Mo, 95Zr, 137Cs, 140Ba, 141,143Ce, and 147Nd. Modest incident-energy dependence exists for the 147Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ˜5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for 99Mo