Science.gov

Sample records for neutron generator production

  1. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  2. Neutron generator production mission in a national laboratory.

    SciTech Connect

    Pope, Larry E.

    2007-08-01

    In the late 1980's the Department of Energy (DOE) faced a future budget shortfall. By the spring of 1991, the DOE had decided to manage this problem by closing three production plants and moving production capabilities to other existing DOE sites. As part of these closings, the mission assignment for fabrication of War Reserve (WR) neutron generators (NGs) was transferred from the Pinellas Plant (PP) in Florida to Sandia National Laboratories, New Mexico (SNL/NM). The DOE directive called for the last WR NG to be fabricated at the PP before the end of September 1994 and the first WR NG to be in bonded stores at SNL/NM by October 1999. Sandia National Laboratories successfully managed three significant changes to project scope and schedule and completed their portion of the Reconfiguration Project on time and within budget. The PP was closed in October 1995. War Reserve NGs produced at SNL/NM were in bonded stores by October 1999. The costs of the move were recovered in just less than five years of NG production at SNL/NM, and the annual savings today (in 1995 dollars) is $47 million.

  3. Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products

    NASA Astrophysics Data System (ADS)

    Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula

    2015-10-01

    The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  6. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation

    SciTech Connect

    Maksimchuk, A.; Raymond, A.; Yu, F.; Dollar, F.; Willingale, L.; Zulick, C.; Krushelnick, K.; Petrov, G. M.; Davis, J.

    2013-05-13

    Experiments on the interaction of an ultra-short pulse laser with heavy-water, ice-covered copper targets, at an intensity of 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, were performed demonstrating the generation of a 'pure' deuteron beam with a divergence of 20 Degree-Sign , maximum energy of 8 MeV, and a total of 3 Multiplication-Sign 10{sup 11} deuterons with energy above 1 MeV-equivalent to a conversion efficiency of 1.5%{+-} 0.2%. Subsequent experiments on irradiation of a {sup 10}B sample with deuterons and neutron generation from d-d reactions in a pitcher-catcher geometry, resulted in the production of {approx}10{sup 6} atoms of the positron emitter {sup 11}C and a neutron flux of (4{+-}1) Multiplication-Sign 10{sup 5} neutrons/sterad, respectively.

  7. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  10. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  11. Use of Aria to simulate laser weld pool dynamics for neutron generator production.

    SciTech Connect

    Noble, David R.; Notz, Patrick K.; Martinez, Mario J.; Kraynik, Andrew Michael

    2007-09-01

    This report documents the results for the FY07 ASC Integrated Codes Level 2 Milestone number 2354. The description for this milestone is, 'Demonstrate level set free surface tracking capabilities in ARIA to simulate the dynamics of the formation and time evolution of a weld pool in laser welding applications for neutron generator production'. The specialized boundary conditions and material properties for the laser welding application were implemented and verified by comparison with existing, two-dimensional applications. Analyses of stationary spot welds and traveling line welds were performed and the accuracy of the three-dimensional (3D) level set algorithm is assessed by comparison with 3D moving mesh calculations.

  12. Report of tritide study at the Responsive Neutron Generator Product Deployment Center.

    SciTech Connect

    Burkhart, Robert; Coffey, Jaime

    2008-11-01

    This report documents a study of sample counting results for wipes from routine surface area monitoring conducted at the Responsive Neutron Generator Product Deployment Center (RNGPDC) at Sandia National Laboratories (SNL). The study was initiated in November 2006, with two samples suspected of containing erbium tritide, after some samples were found to exhibit higher tritium counting rates upon recount at a later time. The main goal of the study was to determine whether the current practice of analyzing tritium wipe samples once, within a few days of sample collection, is adequate to accurately quantify the amount of tritium on the sample when tritides may be present. Recommendations are made toward routine recounting of vials suspected of containing particulate forms of tritium.

  13. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  14. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  15. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  16. Surface Mounted Neutron Generators

    NASA Astrophysics Data System (ADS)

    Elizondo-Decanini, Juan M.

    2012-10-01

    A deuterium-tritium (DT) base reaction pulsed neutron generator packaged in a flat computer chip shape of 1.54 cm (0.600 in) wide by 3.175 cm (1.25 in) length and 0.3 cm (0.120 in) thick has been successfully demonstrated to produce 14 MeV neutrons at a rate of 10^9 neutrons per second. The neutron generator is based on a deuterium ion beam accelerated to impact a tritium loaded target. The accelerating voltage is in the 15 to 20 kV in a 3 mm (0.120 in) gap, the ion beam is shaped by using a lens design to produce a flat ion beam that conforms to the flat rectangular target. The ion source is a simple surface mounted deuterium filled titanium film with a fused gap that operates at a current-voltage design to release the deuterium during a pulse length of about 1 μs. We present the general description of the working prototypes, which we have labeled the ``NEUTRISTOR.''[4pt] Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. Work funded by the LDRD office.

  17. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  18. Short pulse neutron generator

    DOEpatents

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  19. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  20. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  1. Chem-Prep PZT 95/5 for Neutron Generator Applications: Powder Fractionation Study of Production-Scale Powders

    SciTech Connect

    MOORE, DIANA L.; VOIGT, JAMES A.; WATSON, CHAD S.; MCKENZIE, BONNIE B.; MOORE, ROGER H.; HUTCHINSON, MICHAEL A.; LOCKWOOD, STEVEN J.; RODMAN-GONZALES, EMILY D.

    2003-06-01

    The Materials Chemistry Department 1846 has developed a lab-scale chem-prep process for the synthesis of PNZT 95/5, referred to as the ''SP'' process (Sandia Process). This process (TSP) has been successfully transferred to and scaled-up by Department 14192 (Ceramics and Glass Department), producing the larger quantities of PZT powder required to meet the future supply needs of Sandia for neutron generator production. The particle size distributions of TSP powders routinely have been found to contain a large particle size fraction that was absent in development (SP) powders. This SAND report documents experimental studies focused on characterizing these particles and assessing their potential impact on material performance. To characterize these larger particles, fractionation of several TSP powders was performed. The ''large particle size fractions'' obtained were characterized by particle size analysis, SEM, and ICP analysis and incorporated into compacts and sintered. Large particles were found to be very similar in structure and composition as the bulk of the powder. Studies showed that the large-size fractions of the powders behave similarly to the non-fractionated powder with respect to the types of microstructural features once sintered. Powders were also compared that were prepared using different post-synthesis processing (i.e. differences in precipitate drying). Results showed that these powders contained different amounts and sizes of porous inclusions when sintered. How this affects the functional performance of the PZT 95/5 material is the subject of future investigations.

  2. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  3. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  4. Neutron Generators for Spent Fuel Assay

    SciTech Connect

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  5. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  6. Chem-Prep PZT 95/5 for Neutron Generator Applications: Particle Size Distribution Comparison of Development and Production-Scale Powders

    SciTech Connect

    SIPOLA, DIANA L.; VOIGT, JAMES A.; LOCKWOOD, STEVEN J.; RODMAN-GONZALES, EMILY D.

    2002-07-01

    The Materials Chemistry Department 1846 has developed a lab-scale chem-prep process for the synthesis of PNZT 95/5, a ferroelectric material that is used in neutron generator power supplies. This process (Sandia Process, or SP) has been successfully transferred to and scaled by Department 14192 (Ceramics and Glass Department), (Transferred Sandia Process, or TSP), to meet the future supply needs of Sandia for its neutron generator production responsibilities. In going from the development-size SP batch (1.6 kg/batch) to the production-scale TSP powder batch size (10 kg/batch), it was important that it be determined if the scaling process caused any ''performance-critical'' changes in the PNZT 95/5 being produced. One area where a difference was found was in the particle size distributions of the calcined PNZT powders. Documented in this SAND report are the results of an experimental study to determine the origin of the differences in the particle size distribution of the SP and TSP powders.

  7. High-Yield D-T Neutron Generator

    SciTech Connect

    Ludewigt, B.A.; Wells, R.P.; Reijonen, J.

    2006-11-15

    A high-yield D-T neutron generator has been developed for neutron interrogation in homeland security applications such as cargo screening. The generator has been designed as a sealed tube with a performance goal of producing 5 {center_dot} 10{sup 11} n/s over a long lifetime. The key generator components developed are a radio-frequency (RF) driven ion source and a beam-loaded neutron production target that can handle a beam power of 10 kW. The ion source can provide a 100 mA D{sup +}/T{sup +} beam current with a high fraction of atomic species and can be pulsed up to frequencies of several kHz for pulsed neutron generator operation. Testing in D-D operation has been started.

  8. CRC handbook of fast neutron generators

    SciTech Connect

    Csikai, G.J.

    1987-01-01

    This handbook reviews those problems and methods of science and technology where the neutrons produced in the /sup 3/H/d, n//sup 4/He and /sup 2/H/d, N//sup 3/He reactions play the main role. It also discusses possible applications of these small generators as thermal neutron sources, addresses the small accelerators as charged particle and X-ray sources, enables suitable topics to be selected for education and training and provides a wide range of experiments with the detection of neutrons and charged particles, including the study of shielding and the generator technology itself.

  9. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  10. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  11. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  12. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  13. 10 CFR 39.55 - Tritium neutron generator target sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target...) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg or in...

  14. Field ion source development for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.

  15. Field Ion Source Development for Neutron Generators

    SciTech Connect

    B. Bargsten Johnson; P. R. Schwoebel; C. E. Holland; P. J. Resnick; K. L. Hertz; D. L. Chichester

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  16. Plasma driven neutron/gamma generator

    SciTech Connect

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  17. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  18. Sustaining knowledge in the neutron generator community and benchmarking study.

    SciTech Connect

    Barrentine, Tameka C.; Kennedy, Bryan C.; Saba, Anthony W.; Turgeon, Jennifer L.; Schneider, Julia Teresa; Stubblefield, William Anthony; Baldonado, Esther

    2008-03-01

    In 2004, the Responsive Neutron Generator Product Deployment department embarked upon a partnership with the Systems Engineering and Analysis knowledge management (KM) team to develop knowledge management systems for the neutron generator (NG) community. This partnership continues today. The most recent challenge was to improve the current KM system (KMS) development approach by identifying a process that will allow staff members to capture knowledge as they learn it. This 'as-you-go' approach will lead to a sustainable KM process for the NG community. This paper presents a historical overview of NG KMSs, as well as research conducted to move toward sustainable KM.

  19. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  20. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  1. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection.

  2. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  3. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  4. Neutrons in the moon. [neutron flux and production rate calculations

    NASA Technical Reports Server (NTRS)

    Kornblum, J. J.; Fireman, E. L.; Levine, M.; Aronson, A.

    1973-01-01

    Neutron fluxes for energies between 15 MeV and thermal at depths of 0 to 300 g/sq cm in the moon are calculated by the discrete ordinate mathod with the ANISN code. With the energy spectrum of Lingenfelter et al. (1972). A total neutron-production rate for the moon of 26 plus or minus neutrons/sq cm sec is determined from the Ar-37 activity measurements in the Apollo 16 drill string, which are found to have a depth dependence in accordance with a neutron source function that decreases exponentially with an attenuation length of 155 g/sq cm.

  5. Tagged Neutron Production with a Storage Ring

    SciTech Connect

    Peterson, Todd; TNT Collaboration

    2000-12-31

    We describe the ongoing development of TNT, the T-region Neutron Tagger. As a way of overcoming the problem of normalization in neutron scattering experiments, we are developing a facility to tag the production of neutrons on an event-by-event basis. The neutrons are produced using the reaction p + d {yields} n + 2p with a 200-MeV circulating proton beam incident on a deuterium gas jet target in the Indiana Cooler. The tagging of a neutron is accomplished via the detection of the two low-energy recoil protons in an array of double-sided silicon strip detectors. A tagged neutron beam makes possible absolute neutron cross section measurements, and the first experiment that will be done using this tagged neutron facility is a measurement of the np backscattering cross section. Some other possible experiments using tagged neutrons are also presented.

  6. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect

    James Simpson; David Chichester

    2011-06-01

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations were run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  7. Tailoring the Neutron Spectrum from a 14-MeV Neutron Generator to Approximate a Spontaneous-Fission Spectrum

    SciTech Connect

    Simpson, J. D.; Chichester, D. L.

    2011-12-13

    Many applications of neutrons for non-invasive measurements began with isotopic sources such as AmBe or Cf-252. Political factors have rendered AmBe undesirable in the United States and other countries, and the supply of Cf-252 is limited and significantly increasing in price every few years. Compact and low-power deuterium-tritium (DT) electronic neutron generators can often provide sufficient flux, but the 14-MeV neutron spectrum is much more energetic (harder) than an isotopic neutron source. A series of MCNP simulations was run to examine the extent to which the 14-MeV DT neutron spectrum could be softened through the use of high-Z and low-Z materials. Some potential concepts of operation require a portable neutron generator system, so the additional weight of extra materials is also a trade-off parameter. Using a reference distance of 30 cm from the source, the average neutron energy can be lowered to be less than that of either AmBe or Cf-252, while obtaining an increase in flux at the reference distance compared to a bare neutron generator. This paper discusses the types and amounts of materials used, the resulting neutron spectra, neutron flux levels, and associated photon production.

  8. D-D neutron generator development at LBNL.

    PubMed

    Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N

    2005-01-01

    The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article.

  9. Heat generation and neutron beam characteristics in a high power pulsed spallation neutron source

    SciTech Connect

    Jerng, D.W.; Carpenter, J.M.

    1996-11-01

    In the course of conceptual design of a high power pulsed spallation source, a Monte Carlo model was developed for heat generation and neutronics studies. In this paper, we present two sets of results. The first set of calculations was performed with a simple target model to investigate general characteristics of power distribution and neutron production with various proton energies ranging from 0.8 to 12 GeV. The second set was performed with a realistic target model including major components of the target system to provide basic parameters for engineering design of a high power pulsed spallation source. Calculated results generally confirm that higher proton energy provides and advantage in target cooling system requirements and yet somewhat lower neutron beam intensity as a counter effect. The heat generation in the systems surrounding the target was investigated in detail and found to have important variation with position and according to proton beam energy. Calculations of the neutron currents from the moderators showed that the neutron beam intensity from moderators in the front region of the target decreased fro higher proton energy while that from moderators in the back region of the target remained almost unchanged.

  10. Compact D-D/D-T neutron generators and their applications

    SciTech Connect

    Lou, Tak Pui

    2003-05-01

    Neutron generators based on the {sup 2}H(d,n){sup 3}He and {sup 3}H(d,n){sup 4}He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >10{sup 9} n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 10{sup 14} n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 10{sup 5} n/cm{sup 2}s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The

  11. Compact D-D/D-T neutron generators and their applications

    NASA Astrophysics Data System (ADS)

    Lou, Tak Pui

    2003-10-01

    Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production

  12. A Microfabricated Deuterium Ion Source for Compact Neutron Generators

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Bargsten

    Active neutron interrogation is generally accepted as a reliable means of detecting the illicit transportation of special nuclear materials, in particular highly enriched uranium. The development of portable active neutron interrogation systems for field detection applications could be facilitated by the use of a new deuterium ion source which has the potential to advance many of the performance limiting aspects of exiting compact, accelerator-driven neutron generators. The ion source being investigated is a gated array of sharp metal tips that uses high electric fields to generate deuterium ion currents through the physical processes of field ionization and field desorption. The deuterium ions produced by the source are extracted and used to drive a D-D (or D-T) fusion reaction to create neutrons. The basic microstructure for the ion source array is derived from modern semiconductor microfabrication technology for field emitter arrays, though many structural modifications have been made in an attempt to reach the required operating fields of the ion generation processes. Pulsed (field desorption) and d.c. (field ionization) tests conducted with each array design type developed thus far indicate a steady improvement in array tip operating fields. Field ionization studies were conducted with arrays at source temperatures of 77 K and 293 K. Newly developed arrays have demonstrated field ionization currents upwards of ˜50 nA, which is roughly 50% of the maximum ion production possible, as presently fabricated. Neutron production by field ionization was demonstrated for the first time from the microfabricated arrays. A maximum neutron yield of 95 n/s (6300 n/s/cm2 of array active area) was observed from a 1.5 mm2 array using a D-D fusion reaction at -90 kV. Field desorption studies at 77 K and 293 K were conducted in parallel with field ionization testing. To date, the arrays have consistently demonstrated the field desorption of deuterium ions from array tip surfaces

  13. Thermal neutron analysis (TNA) explosive detection based on electronic neutron generators

    SciTech Connect

    Lee, W.; Mahood, D.B.; Ryge, P.

    1994-12-31

    Thermal neutron analysis explosive detection systems have been developed and demonstrated for inspection of checked airline baggage and for detection of buried land mines. Thermal neutrons from a moderated neutron source impinge on the inspected object and the resulting capture gamma ray signatures provide detection information. Isotopic neutron sources, e.g. {sup 252}Cf, are compact, economical and reliable, but they are subject to the licensing requirements, safety concerns and public perception problems associated with radioactive material. These are mitigated by use of an electronic neutron generator - an ion accelerator with a target producing neutrons by a nuclear reaction such as D(d,n){sup 3}He or {sup 9}Be(d,n){sup 10}B. With suitable moderator designs based on neutron transport codes, operational explosive detection systems can be build and would provide effective alternatives to radioactive neutron sources. Calculations as well as laboratory and field experience with three generator types will be presented.

  14. Neutron production enhancements for the Intense Pulsed Neutron Source.

    SciTech Connect

    Iverson, E. B.

    1999-01-04

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  15. Tandem mirrors for neutron production

    SciTech Connect

    Doggett, J.N.

    1983-03-31

    Two mirror machine concepts are being studied as early-time, low-cost, neutron-producing devices for testing and demonstrating reactor-relevant fusion technology. The first of these concepts is for a new, small, driven, steady-state, D-T reactor, called the Technology Demonstration Facility (TDF). The second concept is for upgrades to the MFTF-B machine that burn tritium and run for pulse lengths of some hours. Both devices operate in the Kelley mode in order to provide high-wall loadings of 14-MeV neutrons, thereby providing a valuable test bed for reactor-relevant hardware and subsystems. Either one of these devices could be running in the early 1990's with first wall fluxes between 1.4 and 2.0 MW m/sup -2/.

  16. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    NASA Astrophysics Data System (ADS)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  17. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  18. Negative ion-driven associated particle neutron generator

    DOE PAGESBeta

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  19. Negative ion-driven associated particle neutron generator

    SciTech Connect

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  20. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    NASA Astrophysics Data System (ADS)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  1. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    SciTech Connect

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-06-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  2. Generation of Radioisotopes with Accelerator Neutrons by Deuterons

    NASA Astrophysics Data System (ADS)

    Nagai, Yasuki; Hashimoto, Kazuyuki; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Sato, Nozomi; Kawabata, Masako; Harada, Hideo; Kin, Tadahiro; Tsukada, Kazuaki; Sato, Tetsuya K.; Minato, Futoshi; Iwamoto, Osamu; Iwamoto, Nobuyuki; Seki, Yohji; Yokoyama, Kenji; Shiina, Takehiko; Ohta, Akio; Takeuchi, Nobuhiro; Kawauchi, Yukimasa; Sato, Norihito; Yamabayashi, Hisamichi; Adachi, Yoshitsugu; Kikuchi, Yuji; Mitsumoto, Toshinori; Igarashi, Takashi

    2013-06-01

    A new system proposed for the generation of radioisotopes with accelerator neutrons by deuterons (GRAND) is described by mainly discussing the production of 99Mo used for nuclear medicine diagnosis. A prototype facility of this system consists of a cyclotron to produce intense accelerator neutrons from the \\text{natC(d,n) reaction with 40 MeV 2 mA deuteron beams, and a sublimation system to separate \\text{99mTc from an irradiated 100MoO3 sample. About 8.1 TBq/week of 99Mo is produced by repeating irradiation on an enriched 100Mo sample (251 g) with accelerator neutrons for two days three times. It meets about 10% of the 99Mo demand in Japan. The characteristic feature of the system lies in its capability to reliably produce a wide variety of high-quality, carrier-free, carrier-added radioisotopes with a minimum level of radioactive waste without using uranium. The system is compact in size, and easy to operate; therefore it could be used worldwide to produce radioisotopes for medical, research, and industrial applications.

  3. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  4. Understanding neutron production in the deuterium dense plasma focus

    SciTech Connect

    Appelbe, Brian E-mail: j.chittenden@imperial.ac.uk; Chittenden, Jeremy E-mail: j.chittenden@imperial.ac.uk

    2014-12-15

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  5. Understanding neutron production in the deuterium dense plasma focus

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2014-12-01

    The deuterium Dense Plasma Focus (DPF) can produce copious amounts of MeV neutrons and can be used as an efficient neutron source. However, the mechanism by which neutrons are produced within the DPF is poorly understood and this limits our ability to optimize the device. In this paper we present results from a computational study aimed at understanding how neutron production occurs in DPFs with a current between 70 kA and 500 kA and which parameters can affect it. A combination of MHD and kinetic tools are used to model the different stages of the DPF implosion. It is shown that the anode shape can significantly affect the structure of the imploding plasma and that instabilities in the implosion lead to the generation of large electric fields at stagnation. These electric fields can accelerate deuterium ions within the stagnating plasma to large (>100 keV) energies leading to reactions with ions in the cold dense plasma. It is shown that the electromagnetic fields present can significantly affect the trajectories of the accelerated ions and the resulting neutron production.

  6. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  7. Spectral fluence of neutrons generated by radiotherapeutic linacs.

    PubMed

    Králík, Miloslav; Šolc, Jaroslav; Vondráček, Vladimir; Šmoldasová, Jana; Farkašová, Estera; Tichá, Ivana

    2015-02-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac.

  8. A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture Therapy Application

    SciTech Connect

    Leung, K.-N.; Leung, K.N.; Lee, Y.; Verbeke, J.M.; Vurjic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-06-01

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator applications. By using a 2.5-cm-diameter RF-driven multicusp source and a computer designed 100 keV accelerator column, peak extractable hydrogen current exceeding 1 A from a 3-mm-diameter aperture, together with H{sup +} yields over 94% have been achieved. These experimental findings together with recent moderator design will enable one to develop compact 14 MeV neutron generators based on the D-T fusion reaction. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without pumping. With a 120 keV and 1 A deuteron beam, it is estimated that a treatment time of {approx} 45 minutes is needed for boron neutron capture therapy.

  9. The Design of a Compact Rfq Neutron Generator

    NASA Astrophysics Data System (ADS)

    Hamm, R. W.; Becker, R.

    2014-02-01

    The output and target lifetime of a conventional electrostatic neutron generator are limited by the voltage stand-off capability and the acceleration of molecular species from the ion source. As an alternative, we suggest that the deuterium beam achievable from a compact high intensity ECR source can be injected directly into a compact RFQ to produce a more efficient compact neutron production system. Only the d+ ions are accelerated by the RFQ, which can also produce much higher output energies than electrostatic systems, resulting in a higher neutron output with a longer target lifetime. The direct injection of the beam makes the system more compact than the multielement, electrostatic systems typically used for extraction of the beam and subsequent transport and matching into the RFQ. We have designed and optimized a combined extraction/matching system for a compact high current deuterium ECR ion source injected into a high frequency RFQ structure, allowing a beam of about 12 mA of d+ ions to be injected at a modest ion source voltage of 25 kV. The end wall of the RFQ resonator serves as the ground electrode for the ion source, resembling DPI (direct plasma injection). For this design, we used the features of the code IGUN to take into account the electrostatic field between the ion source and the RFQ end wall, the stray magnetic field of the ECR source, the defocusing space charge of the low energy deuteron beam, and the rf focusing in the fringe field between the RFQ vanes and the RFQ flange.

  10. Production of heavy and superheavy neutron-rich nuclei in neutron capture processes

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2011-10-01

    The neutron capture process is considered as an alternative method for production of superheavy (SH) nuclei. Strong neutron fluxes might be provided by nuclear reactors and nuclear explosions in the laboratory frame and by supernova explosions in nature. All these cases are discussed in the paper. There are two gaps of short-lived nuclei (one is the well-known fermium gap and the other one is located in the region of Z=106-108 and N˜170) which impede the formation of SH nuclei by rather weak neutron fluxes realized at available nuclear reactors. We find that in the course of multiple (rather “soft”) nuclear explosions these gaps may be easily bypassed, and thus, a measurable amount of the neutron-rich long-living SH nuclei located at the island of stability may be synthesized. Existing pulsed reactors do not allow one to bypass these gaps. We formulate requirements for the pulsed reactors of the next generation that could be used for production of long-living SH nuclei. Natural formation of SH nuclei (in supernova explosions) is also discussed. The yield of SH nuclei relative to lead is estimated to be about 10-12, which is not beyond the experimental sensitivity for a search of SH elements in cosmic rays.

  11. General Point-Depletion and Fission Product Code System and Four-Group Fission Product Neutron Absorption Chain Data Library Generated from ENDF/B-IV for Thermal Reactors

    1981-12-01

    EPRI-CINDER calculates, for any specified initial fuel (actinide) description and flux or power history, the fuel and fission-product nuclide concentrations and associated properties. Other nuclide chains can also be computed with user-supplied libraries. The EPRI-CINDER Data Library (incorporating ENDF/B-IV fission-product processed 4-group cross sections, decay constants, absorption and decay branching fractions, and effective fission yields) is used in each constant-flux time step calculation and in time step summaries of nuclide decay rates and macroscopic absorptionmore » and barns-per-fission (b/f) absorption cross sections (by neutron group). User-supplied nuclide decay energy and multigroup-spectra data libraries may be attached to permit decay heating and decay-spectra calculations. An additional 12-chain library, explicitly including 27 major fission-product neutron absorbers and 4 fictitious nuclides, may be used to accurately calculate the aggregate macroscopic absorption buildup in fission products.« less

  12. Production of Molybdenum-99 using Neutron Capture Methods

    SciTech Connect

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  13. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population. PMID:26509624

  14. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  15. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  16. Pyroelectric crystal D-D and D-T neutron generators

    NASA Astrophysics Data System (ADS)

    Danon, Y.

    2012-04-01

    Pyroelectric neutron generators are a recent development utilizing the pyroelectric effect to produce an accelerating electric field and thus enabling creation of small electron and ion accelerators without external high voltage power supply. The principle of operation includes a pyroelectric crystal (LiTaO3 for example) placed in vacuum and simple heating (or cooling) of the crystal to cause a change in polarization. The change in polarization creates free charges on the faces of the clyndrical z-cut crystal and due to its small capacitance this creates a high potential between one crystal face to the other which is placed at ground potential. To produce neutrons the crystal is placed in low pressure deuterium gas and when the crystal is heated or cooled it ionizes the gas and accelerates deuterium ions towards a deuterated or tritated target. A configuration with two crystals can double the acceleration potential and thus increase neutron production. When operating such a device x-rays with energy over 200 keV about 105 neutrons per heating cycle can be produced. Research is focused on improving the neutron yield, the emission reproducibility, and shortening the heating cycle. Neutron generators based on this technology can be made small portable and relatively cheap compared to sealed tube technology. Further development is needed in order to increase the neutron yield closer to the theoretical limit for a specific crystals size.

  17. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  18. Characterization of neutron yield and x-ray spectra of a High Flux Neutron Generator (HFNG)

    NASA Astrophysics Data System (ADS)

    Nnamani, Nnaemeka; HFNG Collaboration

    2015-04-01

    The High Flux Neutron Generator (HFNG) is a DD plasma-based source, with a self-loading target intended for fundamental science and engineering applications, including 40 Ar/39 Ar geochronology, neutron cross section measurements, and radiation hardness testing of electronics. Our first estimate of the neutron yield, based on the population of the 4.486 hour 115 In isomer gave a neutron yield of the order 108 n/sec; optimization is ongoing to achieve the design target of 1011 n/sec. Preliminary x-ray spectra showed prominent energy peaks which are likely due to atomic line-emission from back-streaming electrons accelerated up to 100 keV impinging on various components of the HFNG chamber. Our x-ray and neutron diagnostics will aid us as we continue to evolve the design to suppress back-streaming electrons, necessary to achieve higher plasma beam currents, and thus higher neutron flux. This talk will focus on the characterization of the neutron yield and x-ray spectra during our tests. A collimation system is being installed near one of the chamber ports for improved observation of the x-ray spectra. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and the UC Office of the President Award 12-LR-238745.

  19. The 14 MeV Frascati neutron generator

    NASA Astrophysics Data System (ADS)

    Martone, M.; Angelone, M.; Pillon, M.

    1994-09-01

    The 14-MeV Frascati neutron generator (FNG) uses the T(d, n)α fusion reaction to produce 5.0 × 10 11 n/s. In FNG a beam of deuterons is accelerated up to 300 keV by means of a linear electrostatic tube and directed onto a tritiated-titanium target containing 37 × 10 10 Bq of tritium. This paper describes the FNG facility and its auxiliary apparatus as well as the neutron source calibration performed using the associated α-particle method.

  20. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    Chichester, D. L.; Seabury, E. H.

    2009-03-10

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  1. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  2. Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout

    NASA Astrophysics Data System (ADS)

    Preston, R. M.; Eberhardt, J. E.; Tickner, J. R.

    2013-12-01

    An EJ-299-34 plastic scintillator with silicon photomultiplier (SiPM) readout was used to measure the fast neutron output of a pulsed Thermo-Fisher A-325 Deuterium-Tritium sealed tube neutron generator (STNG). The SiPM signals were handled by a prototype digital pulse processing system, based on a free-running analogue to digital converter feeding a digital signal processor (DSP). Pulse shape discrimination was used to distinguish between detected fast-neutrons and gammas. Pulse detection, timing, energy and shape were all processed by the DSP in real-time. The time-dependency of the neutron output of the STNG was measured for various pulsing schemes. The switch-on characteristics of the tube strongly depended on the operating settings, with the delay between pulse turn-on and the production of neutrons ranging between 13 μs to 74 μs for the tested pulse rates and duty cycles. This work will facilitate the optimization and modeling of apparatus that use the neutron generator's pulsing abilities.

  3. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  4. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  5. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  6. Neutron monitor generated data distributions in quantum variational Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kussainov, A. S.; Pya, N.

    2016-08-01

    We have assessed the potential applications of the neutron monitor hardware as random number generator for normal and uniform distributions. The data tables from the acquisition channels with no extreme changes in the signal level were chosen as the retrospective model. The stochastic component was extracted by fitting the raw data with splines and then subtracting the fit. Scaling the extracted data to zero mean and variance of one is sufficient to obtain a stable standard normal random variate. Distributions under consideration pass all available normality tests. Inverse transform sampling is suggested to use as a source of the uniform random numbers. Variational Monte Carlo method for quantum harmonic oscillator was used to test the quality of our random numbers. If the data delivery rate is of importance and the conventional one minute resolution neutron count is insufficient, we could always settle for an efficient seed generator to feed into the faster algorithmic random number generator or create a buffer.

  7. SEARCH FOR SUBTHRESHOLD NEUTRON PRODUCTION IN BE

    SciTech Connect

    CHRIEN,R.E.; ALBURGER,D.E.; SUTTER,R.J.; WISHART,J,F,

    2004-09-27

    We have searched for neutrons from the 3-body photon-induced reaction {sup 9}Be + {gamma} {yields} {alpha} + {alpha} + n using bremsstrahlung produced by electrons from a 2-MV Van de Graaff. The target was located within a block of beryllium surrounded by an array of {sup 3}He proportional counters embedded in paraffin. Based on energy and intensity calibrations of the accelerator and detector using the {sup 9}Be + {gamma} {yields} {sup 8}Be + n reaction, an upper limit of 93 nb (4{sigma}) was placed on the cross section for neutron production between the 3-body and 2-body thresholds. This value is substantially below a previously experimental result using photoexcitation by a {sup 142}Pr gamma source and also below an earlier theoretical estimate. We suggest that bremsstrahlung due to beta rays between 1665 keV and the 2160-keV end-point of the {sup 142}Pr beta-ray spectrum could account for the photoneutron yield in the 3-body region that had previously been attributed to {sup 142}Pr gamma rays.

  8. Development of neutron/gamma generators and a polymer semiconductor detector for homeland security applications

    NASA Astrophysics Data System (ADS)

    King, Michael Joseph

    Instrumentation development is essential to the advancement and success of homeland security systems. Active interrogation techniques that scan luggage and cargo containers for shielded special nuclear materials or explosives hold great potential in halting further terrorist attacks. The development of more economical, compact and efficient source and radiation detection devices will facilitate scanning of all containers and luggage while maintaining high-throughput and low-false alarms Innovative ion sources were developed for two novel, specialized neutron generating devices and initial generator tests were performed. In addition, a low-energy acceleration gamma generator was developed and its performance characterized. Finally, an organic semiconductor was investigated for direct fast neutron detection. A main part of the thesis work was the development of ion sources, crucial components of the neutron/gamma generator development. The use of an externally-driven radio-frequency antenna allows the ion source to generate high beam currents with high, mono-atomic species fractions while maintaining low operating pressures, advantageous parameters for neutron generators. A dual "S" shaped induction antenna was developed to satisfy the high current and large extraction area requirements of the high-intensity neutron generator. The dual antenna arrangement generated a suitable current density of 28 mA/cm2 at practical RF power levels. The stringent requirements of the Pulsed Fast Neutron Transmission Spectroscopy neutron generator necessitated the development of a specialized ten window ion source of toroidal shape with a narrow neutron production target at its center. An innovative ten antenna arrangement with parallel capacitors was developed for driving the multi-antenna arrangement and uniform coupling of RF power to all ten antennas was achieved. To address the desire for low-impact, low-radiation dose active interrogation systems, research was performed on mono

  9. Compact Permanent Magnet Microwave-Driven Neutron Generator

    SciTech Connect

    Ji Qing

    2011-06-01

    Permanent magnet microwave-driven neutron generators have been developed at Lawrence Berkeley National Laboratory. The 2.45 GHz microwave signal is directly coupled into the plasma chamber via a microwave window. Plasma is confined in an axial magnetic field produced by the permanent magnets surrounding the plasma chamber. The source chamber is made of aluminum with a diameter of 4 cm and length of 5 cm. A stack of five alumina discs, which are 3 cm in diameter and total length of 3 cm, works as microwave window. Three permanent ring magnets are used to generate the axial magnetic field required for the microwave ion source. Both hydrogen and deuterium plasma have been successfully ignited. With 330W of microwave power, source chamber pressure of 5 mTorr, and an extraction aperture of 2 mm in diameter, the deuterium ion beam measured on the target was approximately 2.5 mA. Over 90% of the ions are atomic. With the ion source at ground potential and titanium target at -40 kV, the analysis of the activated gold foil and calibrated neutron dose monitor both indicated that roughly 10{sup 7} n/s of D-D neutrons have been produced. The D-D neutron yield can be easily scaled up to 10{sup 8} n/s when the titanium target is biased at -100 kV.

  10. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  11. METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Simon, A.; Mackin, R.J. Jr.

    1961-01-24

    A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.

  12. On the angular and energy distribution of solar neutrons generated in P-P reactions

    NASA Technical Reports Server (NTRS)

    Efimov, Y. E.; Kocharov, G. E.

    1985-01-01

    The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.

  13. Superheavy Elements Production in High Intensive Neutron Fluxes

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2013-06-01

    The possibility of superheavy elements production in high intensive neutron fluxes is being studied. A model of the transuranium isotopes production under conditions of pulse nucleosynthesis in a neutron flux with densities of up to ~1025 neutron/cm2 is considered. The pulse process allows us to divide it in time into two stages: the process of multiple neutron captures (with t < 10-6 s) and the subsequent β-decay of neutron-rich nuclei. The modeling of the transuranium yields takes into account the adiabatic character of the process, the probability of delayed fission, and the emission of delayed neutrons. A target with a binary composition of 238U and 239Pu, 248Cm, and 251Cf isotopes is used to predict the yields of heavy and superheavy isotopes.

  14. Fast slit-beam extraction and chopping for neutron generator

    NASA Astrophysics Data System (ADS)

    Kalvas, T.; Hahto, S. K.; Gicquel, F.; King, M.; Vainionpää, J. H.; Reijonen, J.; Leung, K. N.; Miller, T. G.

    2006-03-01

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1A. The beam chopping is done at 30keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5ns width can be achieved with a 15ns rise/fall time ±1500V sweep on the chopper plates. The neutrons are produced at 120keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50ns ion beam pulses from the system.

  15. Fast slit-beam extraction and chopping for neutron generator

    SciTech Connect

    Kalvas, T.; Hahto, S.K.; Gicquel, F.; King, M.; Vainionpaeae, J.H.; Reijonen, J.; Leung, K.N.; Miller, T.G.

    2006-03-15

    High-intensity fast white neutron pulses are needed for pulsed fast neutron transmission spectroscopy (PFNTS). A compact tritium-tritium fusion reaction neutron generator with an integrated ion beam chopping system has been designed, simulated, and tested for PFNTS. The design consists of a toroidal plasma chamber with 20 extraction slits, concentric cylindrical electrodes, chopper plates, and a central titanium-coated beam target. The total ion beam current is 1 A. The beam chopping is done at 30 keV energy with a parallel-plate deflector integrated with an Einzel lens. Beam pulses with 5 ns width can be achieved with a 15 ns rise/fall time {+-}1500 V sweep on the chopper plates. The neutrons are produced at 120 keV energy. A three-dimensional simulation code based on Vlasov iteration was developed for simulating the ion optics of this system. The results with this code were found to be consistent with other simulation codes. So far we have measured 50 ns ion beam pulses from the system.

  16. A clean, bright, and versatile source of neutron decay products

    NASA Astrophysics Data System (ADS)

    Dubbers, D.; Abele, H.; Baeßler, S.; Märkisch, B.; Schumann, M.; Soldner, T.; Zimmer, O.

    2008-11-01

    We present a case study on a new type of beam station for the measurement of angular correlations in the β-decay of free neutrons. This beam station, called proton and electron radiation channel (PERC), is a cold-neutron guide that delivers at its open end, instead of neutrons, a beam of electrons and protons from neutron decays that take place far inside the guide. These charged neutron-decay products are magnetically guided to the end of the neutron guide, where they are separated from the cold-neutron beam. In this way, a general-purpose source of neutron decay products is obtained which can be operated as a user facility for a variety of different experiments in neutron decay correlation spectroscopy that may be installed at this beam station. The angular distribution of the emitted charged particles depends on the magnetic field configuration and can be chosen freely, according to the need of the experiment being carried out. A gain in phase space density of several orders of magnitude can be achieved with PERC, as compared to existing neutron decay spectrometers. Detailed calculations show that the spectra and angular distributions of the emerging electrons and protons will be distortion- and background-free on the level of 10 -4, more than 10 times better than that achieved today.

  17. The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.

    2014-12-01

    The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.

  18. Neutron production in several americium compounds

    SciTech Connect

    Shores, E. F.

    2004-01-01

    Americium, like other alpha emitting actinides, may indirectly produce neutrons when combined with light target materials. These (alpha,n) reaction neutrons, along with well known photon lines, have been an advantage of the {sup 241}Am isotope for diverse applications such as radiography, thickness gauges, neutron sources, and even common household smoke detectors. To characterize these sources, the SOURCES code was used to calculate neutron yields and spectra from {sup 241}Am metal, americium oxide, and americium aluminum alloys. Such information may be used as source terms for future transport problems (e.g. shielding calculations). Table 1 contains neutron yields for six americium configurations. The metal, oxides, and alloys were run as homogeneous problems while the interface case was run in both two- and three-region interface modes.

  19. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  20. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    PubMed

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  1. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator.

    PubMed

    Andersson, P; Andersson-Sunden, E; Sjöstrand, H; Jacobsson-Svärd, S

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm(-1), solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  2. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm-1, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful indication

  3. Neutron tomography of axially symmetric objects using 14 MeV neutrons from a portable neutron generator

    SciTech Connect

    Andersson, P. Andersson-Sunden, E.; Sjöstrand, H.; Jacobsson-Svärd, S.

    2014-08-01

    In nuclear boiling water reactor cores, the distribution of water and steam (void) is essential for both safety and efficiency reasons. In order to enhance predictive capabilities, void distribution assessment is performed in two-phase test-loops under reactor-relevant conditions. This article proposes the novel technique of fast-neutron tomography using a portable deuterium-tritium neutron generator to determine the time-averaged void distribution in these loops. Fast neutrons have the advantage of high transmission through the metallic structures and pipes typically concealing a thermal-hydraulic test loop, while still being fairly sensitive to the water/void content. However, commercially available fast-neutron generators also have the disadvantage of a relatively low yield and fast-neutron detection also suffers from relatively low detection efficiency. Fortunately, some loops are axially symmetric, a property which can be exploited to reduce the amount of data needed for tomographic measurement, thus limiting the interrogation time needed. In this article, three axially symmetric test objects depicting a thermal-hydraulic test loop have been examined; steel pipes with outer diameter 24 mm, thickness 1.5 mm, and with three different distributions of the plastic material POM inside the pipes. Data recorded with the FANTOM fast-neutron tomography instrument have been used to perform tomographic reconstructions to assess their radial material distribution. Here, a dedicated tomographic algorithm that exploits the symmetry of these objects has been applied, which is described in the paper. Results are demonstrated in 20 rixel (radial pixel) reconstructions of the interior constitution and 2D visualization of the pipe interior is demonstrated. The local POM attenuation coefficients in the rixels were measured with errors (RMS) of 0.025, 0.020, and 0.022 cm{sup −1}, solid POM attenuation coefficient. The accuracy and precision is high enough to provide a useful

  4. Compact Neutron Generators for Medical Home Land Security andPlanetary Exploration

    SciTech Connect

    Reijonen, J.

    2005-05-11

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented.

  5. Neutron Generators Developed at LBNL for Homeland Security andImaging Applications

    SciTech Connect

    Reijonen, Jani

    2006-08-13

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented.

  6. Pulsed neutron generators based on the sealed chambers of plasma focus design with D and DT fillings

    NASA Astrophysics Data System (ADS)

    Yurkov, D. I.; Dulatov, A. K.; Lemeshko, B. D.; Golikov, A. V.; Andreev, D. A.; Mikhailov, Yu V.; Prokuratov, I. A.; Selifanov, A. N.

    2015-11-01

    Development of neutron generators using plasma focus (PF) chambers is being conducted in the All-Russia Scientific Research Institute of Automatics (VNIIA) during more than 25 years. PF is a source of soft and hard x-rays and neutrons 2.5 MeV (D) or 14 MeV (DT). Pulses of x-rays and neutrons have a duration of about several tens of nanoseconds, which defines the scope of such generators—the study of ultrafast processes. VNIIA has developed a series of pulse neutron generators covering the range of outputs 107-1012 n/pulse with resources on the order of 103-104 switches, depending on purposes. Generators have weights in the range of 30-700 kg, which allows referring them to the class of transportable generators. Generators include sealed PF chambers, whose manufacture was mastered by VNIIA vacuum tube production plant. A number of optimized PF chambers, designed for use in generators with a certain yield of neutrons has been developed. The use of gas generator based on gas absorber of hydrogen isotopes, enabled to increase the self-life and resource of PF chambers. Currently, the PF chambers withstand up to 1000 switches and have the safety of not less than 5 years. Using a generator with a gas heater, significantly increased security of PF chambers, because deuterium-tritium mixture is released only during work, other times it is in a bound state in the working element of the gas generator.

  7. Generation and detection of neutron beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry A.; Barankov, Roman A.; Clark, Charles W.; Huber, Michael G.; Arif, Muhammad; Cory, David G.

    2015-05-01

    Orbital angular momentum (OAM) states of light, in which photons carry lℏ units of angular momentum along their direction of propagation, are of interest in a variety of applications. The Schrödinger equation for massive particles also supports OAM solutions, and OAM states have been demonstrated with ultracold atoms and electrons. Here we report the first generation and detection of OAM states of neutrons, with l up to 7. These are made using spiral phase plates (SPP), milled out of 6061 aluminum alloy dowels with a high-resolution computer-controlled milling machine. When a SPP is placed in one arm of a Mach-Zehnder neutron interferometer, the interferogram reveals the characteristic patterns of OAM states. Addition of angular momenta is effected by concatenation of SPPs with different values of l; we have found the experimental result 1 + 2 = 3 , in reasonable agreement with theory. The advent of OAM provides an additional, quantized, degree of freedom to neutron interferometry, enlarging the qubit structure available for tests of quantum information processing and foundations of quantum physics.

  8. Materials-based process tolerances for neutron generator encapsulation.

    SciTech Connect

    Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

    2007-10-01

    Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.

  9. A field evaporation deuterium ion source for neutron generators

    SciTech Connect

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 10{sup 9}-10{sup 10} n/cm{sup 2} of tip array area.

  10. A field evaporation deuterium ion source for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 109-1010 n/cm2 of tip array area.

  11. Calculates Neutron Production in Canisters of High-level Waste

    1993-01-15

    ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less

  12. Production of neutrons from interactions of GCR-like particles

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Frankel, K.; Holabird, K.; Zeitlin, C.; McMahan, M. A.; Rathbun, W.; Cronqvist, M.; Gong, W.; Madey, R.; Htun, M.; Elaasar, M.; Anderson, B. D.; Baldwin, A. R.; Jiang, J.; Keane, D.; Scott, A.; Shao, Y.; Watson, J. W.; Zhang, W. M.; Galonsky, A.; Ronningen, R.; Zecher, P.; Kruse, J.; Wang, J.; Miller, J. (Principal Investigator)

    1998-01-01

    In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.

  13. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  14. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  15. Production rates of neon xenon isotopes by energetic neutrons

    NASA Technical Reports Server (NTRS)

    Leich, D. A.; Borg, R. J.; Lanier, V. B.

    1986-01-01

    As a first step in an experimental program to study the behavior of noble gases produced in situ in minerals, a suite of minerals and pure chemicals were irradiated with 14.5 MeV neutrons at LLNL's Rotating Target Neutron Source (RTNS-II) and production rates for noble gases were determined. While neutron effects in meteorites and lunar samples are dominated by low-energy neutron capture, more energetic cosmic-ray secondary neutrons can provide significant depth-dependent contributions to production of cosmogenic nuclides through endothermic reactions such as (n,2n), (n,np), (n,d) and (n,alpha). Production rates for nuclides produced by cosmic-ray secondary neutrons are therefore useful in interpreting shielding histories from the relative abundances of cosmogenic nuclides. Absolute production cross sections were calculated from isotope dilution analyses of NaCl, Mg, CsCl, and Ba(NO3)2 samples, assuming purity, stoichiometry, and quantitative noble gas retention and extraction. Relative production cross sections determined from neon isotopic ratios in the mineral samples were also considered in evaluating the neon production cross sections. Results are presented.

  16. First PGAA and NAA experimental results from a compact high intensity D-D neutron generator

    SciTech Connect

    Reijonen, J.; Leung, K.-N.; Firestone, R.B.; English, J.A.; Perry, D.L.; Smith, A.; Gicquel, F.; Sun, M.; Bandong, B.; Garabedian, G.; Revay, Zs.; Szentmiklosi, L.; Molnar, G.

    2003-05-13

    Various types of neutron generator systems have been designed and tested at the Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory. These generators are based on a D-D fusion reaction. These high power D-D neutron generators can provide neutron fluxes in excess of the current state of the art D-T neutron generators, without the use of pre-loaded targets or radioactive tritium gas. Safe and reliable long-life operations are the typical features of these D-D generators. All of the neutron generators developed in the Plasma and Ion Source Technology Group are utilizing powerful RF-induction discharge to generate the deuterium plasma. One of the advantages of using the RF-induction discharge is it's ability to generate high fraction of atomic ions from molecular gases, and the ability to generate high plasma densities for high extractable ion current from relatively small discharge volume.

  17. Production, distribution and applications of californium-252 neutron sources.

    PubMed

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations.

  18. Neutron-induced hydrogen and helium production in iron

    SciTech Connect

    Haight, Robert C.

    2004-01-01

    In support of the Advanced Fuel Cycle Initiative, cross sections for hydrogen and helium production by neutrons are being investigated on structural materials from threshold to 100 MeV with the continuous-in-energy spallation neutron source at the Los Alamos Neutron Science Center (LANSCE). The present measurements are for elemental iron. The results are compared with values from the ENDF/B-VI library and its extension with LA150 evaluations. For designs in the Advanced Fuel Cycle Initiative, structural materials will be subjected to very large fluences of neutrons, and the selection of these materials will be guided by their resistance to radiation damage. The macroscopic effects of radiation damage result both from displacement of atoms in the materials as well as nuclear transmutation. We are studying the production of hydrogen and helium by neutrons, because these gases can lead to significant changes in materials properties such as embrittlement and swelling. Our experiments span the full range from threshold to 100 MeV. The lower neutron energies are those characteristic of fission neutrons, whereas the higher energies are relevant for accelerator-based irradiation test facilities. Results for the nickel isotopes, {sup 58,60}Ni, have been reported previously. The present studies are on natural iron.

  19. Neutron Production by Muon Spallation I: Theory

    SciTech Connect

    Luu, T; Hagmann, C

    2006-11-13

    We describe the physics and codes developed in the Muon Physics Package. This package is a self-contained Fortran90 module that is intended to be used with the Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation.

  20. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOEpatents

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  1. Neutron spectra due (13)N production in a PET cyclotron.

    PubMed

    Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A

    2015-05-01

    Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work.

  2. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  3. MCNPX characterization of the secondary neutron flux at the Los Alamos Isotope Production Facility

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; James, Michael R.; Mashnik, Stepan G.; Kelsey, Charles T.; Wolfsberg, Laura E.; Reass, David A.; Connors, Michael A.; Bach, Hong T.; Fassbender, Michael E.; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2014-08-01

    The spallation neutron flux produced from proton irradiation of rubidium chloride and gallium targets at the Los Alamos National Laboratory (LANL) Isotope Production Facility (IPF) was investigated using the activation foil technique and computational simulation. Routine irradiations have been found to produce fluxes as high as 1012 n cm-2 s-1, with approximately 50% of the total flux having energy in excess of 1 MeV. Measurements of activation foils are compared with the predicted radionuclide yield using nuclear excitation functions from MCNPX event generators, evaluated nuclear data, and the TALYS nuclear code. Practical application of the secondary neutron flux in the realm of radioisotope production is considered.

  4. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  5. Helium and hydrogen generation in pure metals irradiated with high-energy protons and spallation neutrons in LANSCE

    NASA Astrophysics Data System (ADS)

    Oliver, B. M.; James, M. R.; Garner, F. A.; Maloy, S. A.

    2002-12-01

    High-power spallation neutron sources will require accurate estimates of cross-sections for generation of He and H in structural materials. At high-proton energies, very high levels of gas atoms are generated in all constituents of typical iron-based and nickel-based structural alloys, with He typically ˜150 appm/dpa and H at levels ˜3-5 times higher. Improved estimates of these cross-sections have been derived from a series of irradiations conducted at relatively low temperatures (<100 °C) in the Los Alamos Neutron Science Center as part of a test program supporting the Accelerator Production of Tritium Program. Pure metal dosimetry foils were irradiated in two different spectra ranging from ˜800 MeV protons to a mixed distribution of both protons and spallation neutrons. Most of the gas production was due to spallation reactions with the proton beam, although gas and especially damage production from lower-energy spallation neutrons became more significant at the mixed proton/neutron location. The measured He concentrations are similar to those derived in other proton environments, but larger by about a factor of two than those calculated using the LAHET/MCNPX code system. Unlike He, the measured H retention levels are affected by diffusional losses, but H is still retained at rather high concentrations, allowing a lower bound estimate of the H generation cross-sections.

  6. High electric field deuterium ion sources for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and

  7. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    SciTech Connect

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  8. Revision and product generation software

    USGS Publications Warehouse

    ,

    1997-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data on-screen, and to produce plots and color-separated files for use in printing maps.

  9. Revision and Product Generation Software

    USGS Publications Warehouse

    ,

    1999-01-01

    The U.S. Geological Survey (USGS) developed revision and product generation (RevPG) software for updating digital line graph (DLG) data and producing maps from such data. This software is based on ARC/INFO, a geographic information system from Environmental Systems Resource Institute (ESRI). RevPG consists of ARC/INFO Arc Macro Language (AML) programs, C routines, and interface menus that permit operators to collect vector data using aerial images, to symbolize the data onscreen, and to produce plots and color-separated files for use in printing maps.

  10. Field ionization characteristics of an ion source array for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  11. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    B. Bargsten Johnson; P. R. Schwoebel; P. J. Resnick; C. E. Holland; L. Hertz; D. L. Chichester

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77?K and 293?K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293?K was demonstrated for the first time from microfabricated array structures with integrated gates.

  12. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-07

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  13. Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA

    NASA Astrophysics Data System (ADS)

    Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.

    2015-11-01

    Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.

  14. Effect of long term target changes on the neutron yield from a low intensity (d, t) neutron generator

    NASA Astrophysics Data System (ADS)

    Dalton, A. W.

    1987-12-01

    Experimental and theoretical techniques have been developed to determine the accuracy with which the integrated neutron output from a low-intensity (d, t) neutron source can be measured during a prolonged irradiation. The experiments involved a neutron generator in which a fixed solid titanium-tritium target and an unanalysed beam of deuterium ions was used. The analysis was based on differential and integral measurements of both the deuterium beam current and the energy spectra of the charged particles emitted from the multiple nuclear interactions in the target during beam bombardment. The overlapping signals produced by the latter are interpreted using an iterative analysis developed at the Lucas Heights Laboratories.

  15. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  16. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  17. High energy neutron and gamma-radiation generated during the solar flares

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Mandzhavidze, N. Z.

    1985-01-01

    The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.

  18. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  19. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  20. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  1. D-T neutron generator development for cancer therapy. 1980 annual progress report

    SciTech Connect

    Bacon, F.M.; Walko, R.J.; Bickes, R.W. Jr.; Cowgill, D.F.; Riedel, A.A.; O'Hagan, J.B.

    1980-05-01

    This report summarizes the work completed during the first year of a two-year grant by NCI/HEW to investigate the feasibility of developing a D-T neutron generator for use in cancer therapy. Experiments have continued on the Target Test Facility (TTF) developed during a previous grant to investigate high-temperature metal hydrides for use as target materials. The high voltage reliability of the TTF has been improved so that 200 kV, 200 mA operation is now routine. In recent target tests, the D-D neutron production rate was measured to be > 1 x 10/sup 11//s, a rate that corresponds to a D-T neutron production rate of > 1 x 10/sup 13//s - the desired rate for use in cancer therapy. Deuterium concentration depth profiles in the target, measured during intense ion beam bombardment, show that deuterium is depleted near the surface of the target due to impurities implanted by the ion beam. Recent modifications of the duopigatron ion source to reduce secondary electron damage to the electrodes also improved the ion source efficiency by about 40%. An ultra high vacuum version of the TTF is now being constructed to determine if improved vacuum conditions will reduce ion source impurities to a sufficiently low level that the deuterium near the surface of the target is not depleted. Testing will begin in June 1980.

  2. Neutron production by fast protons from ultraintense laser-plasma interactions

    SciTech Connect

    Yang, J.M.; McKenna, P.; Ledingham, K.W.D.; McCanny, T.; Robson, L.; Shimizu, S.; Singhal, R.P.; Wei, M.S.; Krushelnick, K.; Clarke, R.J.; Neely, D.; Norreys, P.A.

    2004-12-01

    Tens of MeV proton beams have been generated by interactions of the VULCAN petawatt laser with foil targets and used to induce nuclear reactions in zinc and boron samples. The numbers of {sup 11}C, {sup 66}Ga, {sup 67}Ga, {sup 68}Ga, {sup 61}Cu, {sup 62}Zn, {sup 63}Zn, and {sup 69m}Zn nuclei have been measured and used to determine the proton energy spectrum. It is known that (p,n) reactions provide an important method for producing neutron sources and in the present experiment up to {approx}10{sup 9} neutrons sr{sup -1} have been generated via {sup 11}B(p,n){sup 11}C reactions. Using experimentally determined proton energy spectra, the production of neutrons via (p,n) reactions in various targets has been simulated, to quantify neutron pulse intensities and energy spectra. It has been shown that as high as 4x10{sup 9} neutrons sr{sup -1} per laser pulse can be generated via {sup 7}Li(p,n){sup 7}B reactions using the present VULCAN petawatt laser-pulse conditions.

  3. Isotope identification as a part of the decommissioning of San Diego State University`s Texas Nuclear neutron generator

    SciTech Connect

    Taylor, D.

    1997-07-01

    The Department of Physics at San Diego State University has maintained a Neutron Generator facility in room P-32C since the mid 1960`s. This facility has provided students and faculty with a resource for the study of neutron interactions with matter, such as activation analysis, flux determinations, cross section determinations and shielding studies. The model 9500 was built by Texas Nuclear Research in the early 1960`s, and could be used for either photon or neutron generation, depending on the source ions introduced into the accelerator`s plasma bottle and the target material. In February of 1988, the Texas Nuclear Research neutron generator was replaced by a unit manufactured by Kaman Sciences Corporation. The Texas Nuclear unit was then removed and stored for later disassembly and disposal. In the summer of 1993, the neutron generator was disassembled into three large sections consisting of the titanium-tritide target, the oil diffusion pump and the corona shield/accelerator tube assembly. The target was packaged and stored in room P-33A and the other 2 assemblies were wrapped in plastic for storage. In June of 1995 the neutron generator was further disassembled to enable storage in 55 gallon drums and thoroughly surveyed for loose surface contamination. Openings on the disassembled hardware components were closed off using either duct tape or bolted stainless steel flanges to prevent the possible spread of contamination. Significant levels of removable surface contamination could be found on system internal and some external surfaces, up to five hundred thousand disintegrations per minute. Initial analysis of the removable contamination using aluminum absorbers and a Geiger-Meuller tube indicated beta particle or possibly photon emitters with an energy of approximately 180 keV. This apparent radiation energy conflicted with what one would be expected to find, given knowledge of the source material and the possible neutron activated products that would be

  4. MCNP modeling of a neutron generator and its shielding at Missouri University of Science and Technology

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji Babatunde; Liu, Xin

    2014-12-01

    The shielding of a neutron generator producing fast neutrons should be sufficient to limit the dose rates to the prescribed values. A deuterium-deuterium neutron generator has been installed in the Nuclear Engineering Department at Missouri University of Science and Technology (Missouri S&T). The generator produces fast neutrons with an approximate energy of 2.5 MeV. The generator is currently shielded with different materials like lead, high-density polyethylene, and borated polyethylene. An MCNP transport simulation has been performed to estimate the dose rates at various places in and around the facility. The simulations incorporated the geometric and composition information of these shielding materials to determine neutron and photon dose rates at three central planes passing through the neutron source. Neutron and photon dose rate contour plots at these planes were provided using a MATLAB program. Furthermore, the maximum dose rates in the vicinity of the facility were used to estimate the annual limit for the generator's hours of operation. A successful operation of this generator will provide a convenient neutron source for basic and applied research at the Nuclear Engineering Department of Missouri S&T.

  5. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received.

  6. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.

    PubMed

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-11-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  7. Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC

    PubMed Central

    Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath

    2015-01-01

    A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661

  8. Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ananeev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E. D.; Korolev, V. D.; Ustroev, G. I.

    2009-01-21

    Fusion neutron measurements were carried out on the S-300 generator (Kurchatov Institute, Moscow). We tried deuterated fibers, various types of wire arrays imploding onto a deuterated fiber, and deuterium gas puffs as Z-pinch loads. On the current level of 2 MA, the peak neutron yield of 10{sup 10} was achieved with a deuterium gas-puff. The neutron and deuteron energy spectra were quite similar in various types of Z-pinch configurations. The broad width of radial neutron spectra implied a high radial component of deuteron velocity. On the basis of neutron measurements, we concluded that neutron production mechanism is connected with the study of plasma voltage. It means that the acceleration of fast deuterons is not a secondary process but it reflects the global dynamics of Z-pinch plasmas. For this reason it is useful to add deuterium as a 'tracer' in Z-pinch loads more often. For instance, it seems attractive to prepare wire-arrays from deuterated metal wires such as Pd.

  9. Search for neutron flux generation in a plasma discharge electrolytic cell

    NASA Astrophysics Data System (ADS)

    Faccini, R.; Pilloni, A.; Polosa, A. D.; Angelone, M.; Castagna, E.; Lecci, S.; Pietropaolo, A.; Pillon, M.; Sansovini, M.; Sarto, F.; Violante, V.; Bedogni, R.; Esposito, A.

    2014-06-01

    Following some recent unexpected hints of neutron production in high-voltage atmospheric discharges, we present a measurement of the neutron flux in plasma discharges in electrolytic cells. We use two different types of neutron detectors, polyallyl diglycol carbonate (PADC, aka CR-39) tracers and indium disks. At 95 % C.L. we provide an upper limit of 1.5 neutrons cm s for the thermal neutron flux at cm from the center of the cell. Allowing for a higher energy neutron component, the largest allowed flux is 64 neutrons cm s. This upper limit is two orders of magnitude smaller than the signal previously claimed in an electrolytic cell plasma discharge experiment. Furthermore the behavior of the CR-39 is discussed to point out possible sources of spurious signals.

  10. Time extended production of neutrons during a solar flare

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.; Forrest, D. J.; Vestrand, W. T.; Dubrunner, H.; Flueckiger, E. O.; Cooper, J. F.; Kanbach, G.; Reppin, C.; Share, G. H.

    1985-01-01

    The most energetic neutral emissions expected from solar flares are gamma rays (10 MeV) from relativistic primary and secondary electron bremsstrahlung,from approx 0 meson decay, and from neutrons ( 50 MeV). Bremsstrahlung photon energies extend to that of the highest energy electron present, but the shape of the pi sup 0 gamma ray spectrum, peaking at 69 MeV, does not depend strongly on the proton spectrum above threshold, which is approx. 292 MeV for meson production on protons. The highest energy neutrons observed indicate directly the highest energy ions which interact at the Sun, and the presence or absence of anergy cutoff in the acceleration process. The high-energy proton spectrum shape can be determined from the neutron spectrum.

  11. Neutron production by cosmic-ray muons in various materials

    NASA Astrophysics Data System (ADS)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-01

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.

  12. Forward Neutron Production at the Fermilab Main Injector

    SciTech Connect

    Nigmanov, T.S.; Rajaram, D.; Longo, M.J.; Akgun, U.; Aydin, G.; Baker, W.; Barnes, P.D., Jr.; Bergfeld, T.; Bujak, A.; Carey, D.; Dukes, E.C.; /Virginia U. /Iowa U.

    2010-10-01

    We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as A{sup a} where a is 0.46 {+-} 0.06 for a beam momentum of 58 GeV/c and 0.54 {+-} 0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo. The MIPP (Main Injector Particle Production) experiment (FNAL E907) [1] acquired data in the Meson Center beam line at Fermilab. The primary purposes of the experiment were to investigate scaling laws in hadron fragmentation [2], to obtain hadron production data for the NuMI (Neutrinos at the Main Injector [3]) target to be used for calculating neutrino fluxes, and to obtain inclusive pion, neutron, and photon production data to facilitate proton radiography [4]. While there is considerable data available on inclusive charged particle production [5], there is little data on neutron production. In this article we present results for forward neutron production using proton beams of 58 GeV/c, 84 GeV/c, and 120 GeV/c on hydrogen, beryllium, carbon, bismuth, and uranium targets, and compare these data with predictions from Monte Carlo simulations.

  13. Neutron production using a pyroelectric driven target coupled with a gated field ionization source

    SciTech Connect

    Ellsworth, J. L.; Tang, V.; Falabella, S.; Naranjo, B.; Putterman, S.

    2013-04-19

    A palm sized, portable neutron source would be useful for widespread implementation of detection systems for shielded, special nuclear material. We present progress towards the development of the components for an ultracompact neutron generator using a pulsed, meso-scale field ionization source, a deuterated (or tritiated) titanium target driven by a negative high voltage lithium tantalate crystal. Neutron production from integrated tests using an ion source with a single, biased tungsten tip and a 3 Multiplication-Sign 1 cm, vacuum insulated crystal with a plastic deuterated target are presented. Component testing of the ion source with a single tip produces up to 3 nA of current. Dielectric insulation of the lithium tantalate crystals appears to reduce flashover, which should improve the robustness. The field emission losses from a 3 cm diameter crystal with a plastic target and 6 cm diameter crystal with a metal target are compared.

  14. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  15. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    SciTech Connect

    Schall, Michael; Cooper, Gary Wayne; Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  16. A Novel Neutron Imaging Calibration System Using a Neutron Generating Accelerator Tube

    SciTech Connect

    Ali, Z., Davis, B., Tinsley, J. R., Miller, E. K.

    2009-09-04

    Neutron Imaging is a key diagnostic for use in inertial confinement fusion (ICF) experiments, and has been fielded on experiments at Omega and Z. It will also be a key diagnostics at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) and eventually at the Laser Megajoule in France. Most systems are based on a neutron pinhole array placed at the target chamber while it is imaged by a scintillating fiber block. The light output of this scintillator is coupled via a reducer to a fiber bundle which transports the image to a CCD camera. Alternatively some systems use optical lens assemblies to focus the light onto a camera.For ICF applications the neutron imaging systems will primarily look at 14.2 MeV neutrons. However, 2.2 MeV and 20+ MeV neutrons will also be present and will potentially provide key information.

  17. Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications

    NASA Astrophysics Data System (ADS)

    Rhodes, E.; Peters, C. W.

    With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, detect nuclear warheads by their characteristic strong gamma-ray absorption, or count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material.

  18. Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications

    SciTech Connect

    Rhodes, E.; Peters, C.W.

    1991-12-01

    With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, can detect nuclear warheads by their characteristic strong gamma-ray absorption, or can count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. 5 refs., 12 figs.

  19. Associated-particle sealed-tube neutron generators and hodoscopes for NDA applications

    SciTech Connect

    Rhodes, E. ); Peters, C.W. . Advanced Systems Div.)

    1991-01-01

    With radioisotope sources, gamma-ray transmission hodoscopes can inspect canisters and railcars to monitor rocket motors, can detect nuclear warheads by their characteristic strong gamma-ray absorption, or can count nuclear warheads inside a missile by low-resolution tomography. Intrinsic gamma-ray radiation from warheads can also be detected in a passive mode. Neutron hodoscopes can use neutron transmission, intrinsic neutron emission, or reactions stimulated by a neutron source, in treaty verification roles. Gamma-ray and neutron hodoscopes can be combined with a recently developed neutron diagnostic probe system, based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons, and that uses flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. 5 refs., 12 figs.

  20. Switchable radioactive neutron source device

    DOEpatents

    Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.

    1989-01-01

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  1. Switchable radioactive neutron source device

    DOEpatents

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  2. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  3. Guiding New Product Idea Generation

    ERIC Educational Resources Information Center

    Park, Y.

    2003-01-01

    The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…

  4. Production of new neutron-rich heavy nuclei

    SciTech Connect

    Zagrebaev, Valery; Greiner, Walter

    2009-03-04

    A new way is found to discover and examine unknown neutron-rich heavy nuclei at the 'north-east' part of the nuclear map. This 'blank spot' of the nuclear map can be reached neither in fusion--fission reactions nor in fragmentation processes. The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126(to the east of the stability line) is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleogenesis. A novel idea is proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions with stable beams. The estimated yields of neutron-rich nuclei are found to be rather high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of {sup 136}Xe with {sup 208}Pb. This finding may spur new studies at heavy-ion facilities and should have significant impact on future experiments.

  5. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  6. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  7. Loss of the associated α-particles in the tagged neutron generators

    NASA Astrophysics Data System (ADS)

    Sudac, D.; Nad, K.; Obhodas, J.; Bystritsky, V. M.; Valkovic, V.

    2015-09-01

    The reported loss of α-particles in the 14 MeV tagged neutron generators has been investigated using two neutron generators equipped with α-particle counters and two neutron detectors. One neutron detector was put right in the middle of the tagged neutron cone and another one was put outside the cone. By measuring the difference between double (neutron-neutron) and triple (α-neutron-neutron) coincidences it is possible to deduce the α-particle loss since the number of triple coincidences should be equal to the number of double coincidences. In all measurements performed a deficit of triple with respect to double coincidences has been observed. This deficit was smallest for the threshold of α-particle Constant Fraction Discriminator (αCFD) being 0 and maximum allowed voltage of α-particle detector being -1.7 kV. The smallest measured deficit value was equal to 13±1%. From the observed results it was concluded that the deficit was due to a number of non-detected α-particles that loose sufficient quantity of energy while traveling to the detector because of collisions with particles present in the neutron tube and/or in the tritium target. These α-particles will not be detected as they fall under the threshold of αCFD discriminator. Magnetic fields present in the system worsen the situation since they are forcing α-particles to travel larger distances because of toroidal movement and undergoing additional collisions. Tagged neutron technique has many kind of applications and it is particularly important for high accuracy nuclear cross-sections measurements when α-particles losses must be carefully assessed.

  8. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.

    2015-04-01

    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

  9. INITIAL EVALUATION OF A PULSED WHITE SPECTRUM NEUTRON GENERATOR FOR EXPLOSIVE DETECTION

    SciTech Connect

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel,, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-06-02

    Successful explosive material detection in luggage and similar sized containers is acritical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designedand fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set ofparallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80 - 120 kV. First experiments demonstrated ion source operation and successful beam pulsing.

  10. Development and characterization of a D-D fast neutron generator for imaging applications.

    PubMed

    Adams, Robert; Bort, Lorenz; Zboray, Robert; Prasser, Horst-Michael

    2015-02-01

    The experimental characterization of a pulsed D-D fast neutron generator designed for fan-beam tomography applications is presented. Using Monte Carlo simulations the response of an LB6411 neutron probe was related to the neutron generator output. The yield was measured to be up to ∼10(7) neutrons/s. An aluminum block was moved stepwise between the source and a BC400 plastic scintillator detector in order to measure an edge response. This edge response was related to the neutron emitting spot size using Monte Carlo simulations and a simplified geometry-based model. The experimentally determined spot size of 2.2 mm agreed well with the simulated value of 1.5 mm. The time-dependence of pulsed output for various operating conditions was also measured. The neutron generator was found to satisfy design requirements for a planned fast neutron tomography arrangement based on a plastic scintillator detector array which is expected to be capable of producing 2D tomograms with a resolution of ∼1.5 mm. PMID:25481677

  11. Development and characterization of a D-D fast neutron generator for imaging applications.

    PubMed

    Adams, Robert; Bort, Lorenz; Zboray, Robert; Prasser, Horst-Michael

    2015-02-01

    The experimental characterization of a pulsed D-D fast neutron generator designed for fan-beam tomography applications is presented. Using Monte Carlo simulations the response of an LB6411 neutron probe was related to the neutron generator output. The yield was measured to be up to ∼10(7) neutrons/s. An aluminum block was moved stepwise between the source and a BC400 plastic scintillator detector in order to measure an edge response. This edge response was related to the neutron emitting spot size using Monte Carlo simulations and a simplified geometry-based model. The experimentally determined spot size of 2.2 mm agreed well with the simulated value of 1.5 mm. The time-dependence of pulsed output for various operating conditions was also measured. The neutron generator was found to satisfy design requirements for a planned fast neutron tomography arrangement based on a plastic scintillator detector array which is expected to be capable of producing 2D tomograms with a resolution of ∼1.5 mm.

  12. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  13. Neutron Cross Section Covariances for Structural Materials and Fission Products

    SciTech Connect

    Hoblit, S.; Hoblit,S.; Cho,Y.-S.; Herman,M.; Mattoon,C.M.; Mughabghab,S.F.; Oblozinsky,P.; Pigni,M.T.; Sonzogni,A.A.

    2011-12-01

    We describe neutron cross section covariances for 78 structural materials and fission products produced for the new US evaluated nuclear reaction library ENDF/B-VII.1. Neutron incident energies cover full range from 10{sup -5} eV to 20 MeV and covariances are primarily provided for capture, elastic and inelastic scattering as well as (n,2n). The list of materials follows priorities defined by the Advanced Fuel Cycle Initiative, the major application being data adjustment for advanced fast reactor systems. Thus, in addition to 28 structural materials and 49 fission products, the list includes also {sup 23}Na which is important fast reactor coolant. Due to extensive amount of materials, we adopted a variety of methodologies depending on the priority of a specific material. In the resolved resonance region we primarily used resonance parameter uncertainties given in Atlas of Neutron Resonances and either applied the kernel approximation to propagate these uncertainties into cross section uncertainties or resorted to simplified estimates based on integral quantities. For several priority materials we adopted MF32 covariances produced by SAMMY at ORNL, modified by us by adding MF33 covariances to account for systematic uncertainties. In the fast neutron region we resorted to three methods. The most sophisticated was EMPIRE-KALMAN method which combines experimental data from EXFOR library with nuclear reaction modeling and least-squares fitting. The two other methods used simplified estimates, either based on the propagation of nuclear reaction model parameter uncertainties or on a dispersion analysis of central cross section values in recent evaluated data files. All covariances were subject to quality assurance procedures adopted recently by CSEWG. In addition, tools were developed to allow inspection of processed covariances and computed integral quantities, and for comparing these values to data from the Atlas and the astrophysics database KADoNiS.

  14. Ignitor-like Toroidal Devices for Neutron Production

    NASA Astrophysics Data System (ADS)

    Bombarda, Francesca; Ramogida, G.; Zucchetti, M.; Coppi, B.

    2012-10-01

    Compact fusion toroidal machines operating in DT have the potential to become efficient sources of neutrons for material testing. An Ignitor-like device could be envisaged for this purpose, making full use of the intense neutron flux that it can generate without reaching ignition. Preliminary radiation damage estimates for some fusion-relevant materialsfootnotetextF. Bombarda, B. Coppi, et al., Fus. Eng. Des. 86,2632 (2011) have shown that few full-power months of operation would provide adequate dpa levels. The main features and technological issues of a High Field Neutron Source Facility based on the Columbus concept,footnotetextB. Coppi and M.F. Salvetti, MIT Report PTP02/06, (2002) with about 50% more volume than Ignitor, are illustrated and discussed. Optimization of the plasma temperature and density relative to the reference ignition scenario (with the assistance of auxiliary heating power) can achieve considerable reductions of duty cycle requirements. The constraints imposed by flux availability, magnet heating and wall loading will inevitably impose a complete redesign of the machine, with the adoption of novel materials (such as MgB2 superconductor already adopted for Ignitor), and new modes of operation will need be investigated.

  15. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    NASA Astrophysics Data System (ADS)

    Sinha, Amar; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P. S.; Bishnoi, Saroj

    2015-05-01

    The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated keff of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor ks and external neutron source efficiency φ∗ in great details. Experiments with D-T neutrons are also underway.

  16. Compact deuterium-tritium neutron generator using a novel field ionization source

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Sanchez, J.; Tang, V.; Wang, H.

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  17. Efficient generation of fusion neutrons from cryogenically cooled heteronuclear clusters irradiated by intense femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Lu, Haiyang; Li, Song; Xu, Yi; Guo, Xiaoyang; Leng, Yuxin; Liu, Jiansheng; Shen, Baifei; Li, Ruxin; Xu, Zhizhan

    2014-02-01

    We present experimental studies on the conversion efficiency of fusion neutrons generated from Coulomb explosion of cryogenically cooled heteronuclear deuterated methane (CD4) clusters irradiated by intense femtosecond laser pulses. A stronger nonlinear relationship between the cluster size and the stagnation temperature for CD4 clusters than that for monoatomic or diatomic clusters is revealed, resulting in marked increases in the average kinetic energy of deuterons and the fusion neutron yield. Finally, a significantly enhanced conversion efficiency of 1.9 × 107 neutrons/J of incident laser energy is achieved by lowering the stagnation temperature to 217 K under a backing pressure of 80 bars.

  18. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy

    NASA Astrophysics Data System (ADS)

    Loi, G.; Dominietto, M.; Cannillo, B.; Ciocca, M.; Krengli, M.; Mones, E.; Negri, E.; Brambilla, M.

    2006-02-01

    Intraoperative electron beam radiotherapy is increasingly performed using mobile linac delivering therapeutic radiation doses in unshielded operating rooms. While no special neutron-shielding problem should arise for operation at 10 MeV or less, it is not clear whether this holds true for operation at higher energies. This paper reports the measured neutron production from a Mobetron mobile electron linac, operated at 12 MeV, and compares the results with those from a conventional linac, also operated at 12 MeV in electron mode. Neutron leakage measurements were performed by means of passive bubble detectors in the scattering foil, patient and floor planes. Neutron dose equivalent rates per unit of electron dose delivered by the Mobetron at its normal treatment distance (50 cm SSD) were 0.33 µSv Gy-1 at the accelerator head, 0.18 µSv Gy-1 in the patient plane at 15 cm from the beam axis and 0.31 µSv Gy-1 at the floor plane, on the beam axis and under the beam stopper. For a weekly workload of 250 Gy, the weekly neutron dose equivalents at 12 MeV for the Mobetron at a distance of 300 cm from the scattering foil were 14.3 and 1.7 µSv/week for floor below and adjoining areas on the same floor, respectively. Neutron dose equivalent rates generated from Mobetron are at least one order of magnitude lower than ones produced by a conventional linac operated at the same energy in electron mode. Mobetron can be used at 12 MeV in an unshielded operating room for a weekly workload of up to 250 Gy if the bremsstrahlung x-rays are shielded to negligible levels.

  19. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. PMID:26302662

  20. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  1. Project of the borehole neutron generator for the direct determination of oxygen and carbon by activation method

    NASA Astrophysics Data System (ADS)

    Bogdanovich, B. Yu; Vovchenko, E. D.; Iliinskiy, A. V.; Isaev, A. A.; Kozlovskiy, K. I.; Nesterovich, A. V.; Senyukov, V. A.; Shikanov, A. E.

    2016-09-01

    The paper deals with application features of borehole neutron generator (BNG) based on the vacuum accelerating tube (AT) with laser-plasma ion source for determination of oxygen isotope 16O and carbon isotope 12C by direct activation. The project of pulsed BNG for realization of an activation method in the conditions of natural presence of productive hydrocarbons is offered. The diode system with radial acceleration, magnetic electron insulation and laser-plasma source of deuterons at the anode in a sealed-off vacuum accelerating tube is applied. The permanent NdFeB magnet with induction about 0.5 T for produce the insulating magnetic field in the diode gap is proposed. In the experiments on the model of BNG with the accelerating voltage source (≈350 kV), performed by the scheme of Arkadiev-Marx generator, the output of (d, d) neutrons was ∼107 pulse-1.

  2. Pyroelectric neutron generator for calibration of neutrino and dark matter detectors

    NASA Astrophysics Data System (ADS)

    Chepurnov, A. S.; Ionidi, V. Y.; Ivashchuk, O. O.; Kubankin, A. S.; Oleinik, A. N.; Shchagin, A. V.

    2016-02-01

    Pyroelectric crystals, such as LiNbO3 or LiTaO3 being under influence of a temperature gradient can produce an electric field up to 105 kV/cm. It was experimentally confirmed that a crystal installed in a chamber with a residual gas pressure of about 1 mTorr could be used to generate X-Ray radiation with an energy up to 100 keV The same setup could be used to generate s 2.45 MeV neutrons if the target is deuterated and residual gas is D2. Due to such properties as On/Off mode of operation and the absence of radioactive materials, pyroelectric neutron generators seem to be a promising tool for calibration of neutrino and dark matter and other low background detectors. We propose the application of the controlled pyroelectric neutron generator for calibration of such detectors.

  3. Direct generation of a Majorana mass for the neutron from exotic instantons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2016-06-01

    We discuss a new mechanism in which non-perturbative quantum gravity effects directly generate a Majorana mass for the neutron. In particular, in string theory, exotic instantons can generate an effective six quark operator by calculable mixed disk amplitudes. In a low string scale scenario, with MS ≃ 10 ÷105 TeV, a neutron-antineutron oscillation can be reached in the next generation of experiments. We argue that protons and neutralinos are not destabilized and that dangerous FCNCs are not generated. We show an example of quiver theories, locally free by tadpoles and anomalies, reproducing MSSM plus a Majorana neutron and a Majorana neutrino. These models naturally provide a viable baryogenesis mechanism by resonant RH neutrino decays, as well as a stable WIMP-like dark matter.

  4. Gluon saturation and Feynman scaling in leading neutron production

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Gonçalves, V. P.; Spiering, D.; Navarra, F. S.

    2016-01-01

    In this paper we extend the color dipole formalism for the study of leading neutron production in e + p → e + n + X collisions at high energies and estimate the related observables which were measured at HERA and could be analyzed in future electron-proton (ep) colliders. In particular, we calculate the Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the photon-pion total cross section. In the color dipole formalism, the photon-pion cross section is described in terms of the dipole-pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate the recently released H1 leading neutron spectra can be described using the color dipole formalism and that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.

  5. Examination of radioargon production by cosmic neutron interactions.

    PubMed

    Johnson, Christine; Armstrong, Hirotatsu; Wilson, William H; Biegalski, Steven R

    2015-02-01

    Radioargon isotopes, particularly (37)Ar, are currently being considered for use as an On-Site Inspection (OSI) relevant radionuclide within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order to understand any soil air measurements taken during an OSI, the radioargon background due to cosmic ray induced activation along with other sources must be understood. An MCNP6 model was developed using the cosmic ray source feature within the code to examine the neutron flux at ground level as a function of various conditions: date during the solar magnetic activity cycle, latitude of sampling location, geology of the sampling location, and sampling depth. Once the cosmic neutron flux was obtained, calculations were performed to determine the rate of radioargon production for the main interactions. Radioargon production was shown to be highly dependent on the soil composition, and a range of (37)Ar production values at 1 m depth was found with a maximum production rate of 4.012 atoms/sec/m(3) in carbonate geologies and a minimum production rate of 0.070 atoms/sec/m(3) in low calcium granite. The sampling location latitude was also shown to have a measurable effect on the radioargon production rate, where the production of (37)Ar in an average continental crust is shown to vary by a factor of two between the equator and the poles. The sampling date's position within the solar magnetic activity cycle was also shown to cause a smaller change, less than a factor of 1.2, in activation between solar maxima and solar minima. PMID:25461524

  6. Examination of radioargon production by cosmic neutron interactions.

    PubMed

    Johnson, Christine; Armstrong, Hirotatsu; Wilson, William H; Biegalski, Steven R

    2015-02-01

    Radioargon isotopes, particularly (37)Ar, are currently being considered for use as an On-Site Inspection (OSI) relevant radionuclide within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In order to understand any soil air measurements taken during an OSI, the radioargon background due to cosmic ray induced activation along with other sources must be understood. An MCNP6 model was developed using the cosmic ray source feature within the code to examine the neutron flux at ground level as a function of various conditions: date during the solar magnetic activity cycle, latitude of sampling location, geology of the sampling location, and sampling depth. Once the cosmic neutron flux was obtained, calculations were performed to determine the rate of radioargon production for the main interactions. Radioargon production was shown to be highly dependent on the soil composition, and a range of (37)Ar production values at 1 m depth was found with a maximum production rate of 4.012 atoms/sec/m(3) in carbonate geologies and a minimum production rate of 0.070 atoms/sec/m(3) in low calcium granite. The sampling location latitude was also shown to have a measurable effect on the radioargon production rate, where the production of (37)Ar in an average continental crust is shown to vary by a factor of two between the equator and the poles. The sampling date's position within the solar magnetic activity cycle was also shown to cause a smaller change, less than a factor of 1.2, in activation between solar maxima and solar minima.

  7. Neutron Activation Analysis and Product Isotope Inventory Code System.

    1990-10-31

    Version 00 NAC was designed to predict the neutron-induced gamma-ray radioactivity for a wide variety of composite materials. The NAC output includes the input data, a list of all reactions for each constituent element, and the end-of-irradiation disintegration rates for each reaction. NAC also compiles a product isotope inventory containing the isotope name, the disintegration rate, the gamma-ray source strength, and the absorbed dose rate at 1 meter from an unshielded point source. The inducedmore » activity is calculated as a function of irradiation and decay times; the effect of cyclic irradiation can also be calculated.« less

  8. Neutron production in neutron-induced reactions at 96 MeV on 56Fe and 208Pb

    NASA Astrophysics Data System (ADS)

    Sagrado García, I. C.; Lecolley, J. F.; Lecolley, F. R.; Blideanu, V.; Ban, G.; Fontbonne, J. M.; Itis, G.; Lecouey, J. L.; Lefort, T.; Marie, N.; Steckmeyer, J. C.; Le Brun, C.; Blomgren, J.; Johansson, C.; Klug, J.; Orhn, A.; Mermod, P.; Olsson, N.; Pomp, S.; Osterlund, M.; Tippawan, U.; Prokofiev, A. V.; Nadel-Turonski, P.; Fallot, M.; Foucher, Y.; Guertin, A.; Haddad, F.; Vatre, M.

    2011-10-01

    Double-differential cross sections for neutron production were measured in 96-MeV neutron-induced reactions at The Svedberg Laboratory in Uppsala, Sweden. Measurements for Fe and Pb targets were performed using two independent setups: DECOI-DEMON, time-of-flight telescope dedicated to the detection of emitted neutrons with energies between a few and 50MeV and CLODIA-SCANDAL device devoted to measuring emitted neutrons with energies above 40MeV. Double-differential cross sections were measured for an angular range between 15 and 98 deg and with low-energy thresholds (≈2 MeV). Angular and energy distributions and total neutron emission cross sections have been obtained from those measurements. Results have been compared with predictions given by different models included in several transport codes (MCNPX, GEANT, TALYS, PHITS, and DYWAN) and with other experimental data (the EXFOR database).

  9. NEXT GENERATION NEUTRON SCINTILLATORS BASED ON SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Cai-Lin Wang

    2008-06-30

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/{sup 6}LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and {sup 6}Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/{sup 6}LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional {sup 6}Li-glass and ZnS/{sup 6}LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag{sup +}, Eu{sup 3+} or Ce{sup 3+} QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  10. A compact neutron generator using a field ionization source

    SciTech Connect

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  11. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  12. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Brown, J.; Adroja, D. T.; Manuel, P.; Kouzmenko, G.; Bewley, R. I.; Wotherspoon, R.

    2012-12-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  13. Discharge characteristics of a penning ion source for compact neutron generator

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Li, Mingjuan; Gao, Kun; Gu, Deshan

    2014-12-01

    We investigate the discharge characteristics of a penning ion source for a compact sealed neutron generator in DC mode. A measuring system consisting of console, vacuum gauges, and teslameter is established. By using the measuring system, the discharge current as a function of ion source voltage, gas pressure, and magnetic field is studied. The results show that the neutron generator can operate in a safe and steady state when the experimental parameters are as follows: ion source voltage of 1.2-2 kV, gas pressure of 4×10-2-8×10-2 Pa, and magnetic field of 0.3-0.5 T. Within these ranges, the neutron yield of the generator can reach 2×108 n/s.

  14. Long-duration neutron production by nonflaring transients in the solar corona

    NASA Astrophysics Data System (ADS)

    Feldman, William C.; Lawrence, David J.; Vestrand, W. Thomas; Baker, Daniel N.; Peplowski, Patrick N.; Rodgers, Douglas J.

    2015-10-01

    The purpose of this work is to study neutron enhancements observed using the Neutron Spectrometer aboard MESSENGER in order to identify events that may have been generated at/or near the Sun by solar transients. To securely establish an origin of the observed neutrons that is nonlocal to the MESSENGER spacecraft, a measurement of the energetic ion environment local to MESSENGER is needed. For this purpose, we use energetic ion spectrometers on several spacecraft at 1 AU when they were magnetically connected to MESSENGER during an event. We report strong evidence that for six neutron events studied in detail, the detected neutrons do not likely have a local spacecraft origin. By implication, most of the detected neutrons for these six events may have originated near the Sun, generated by many moderate-level solar eruptive events that produce an extended solar exosphere of moderate-energy neutrons, protons, and electrons.

  15. Calculations of long-lived isomer production in neutron reactions

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1991-01-01

    We present theoretical calculations for the production of the long-lived isomers: {sup 121m}Sn (11/2-, 55 yr), {sup 166m}Ho(7-, 1200 yr), {sup 184m}Re(8+, 165 d), {sup 186m}Re(8+, 2{times}10{sup 5} yr), {sup 178m}Hf(16+, 31 yr), {sup 179m}Hf(25/2-, 25 d), {sup 192m}Ir(9+, 241 yr), all which pose potential radiation activation problems in nuclear fusion reactors if produced in 14-MeV neutron-induced reactions. We consider mainly (n,2n) production modes, but also (n,n{sup {prime}}) and (n,{gamma}) where necessary, and compare our results both with experimental data (where available) and systematics. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. 16 refs., 9 figs., 6 tabs.

  16. Generative inspection process planner for integrated production

    SciTech Connect

    Brown, C.W. . Kansas City Div.); Gyorog, D.A. . Dept. of Mechanical Engineering)

    1990-04-01

    This work describes the design prototype development of a generative process planning system for dimensional inspection. The system, IPPEX (Inspection Process Planning EXpert), is a rule-based expert system for integrated production. Using as advanced product modeler, relational databases, and artificial intelligence techniques, IPPEX generates the process plan and part program for the dimensional inspection of products using CMMs. Through an application interface, the IPPEX system software accesses product definition from the product modeler. The modeler is a solid geometric modeler coupled with a dimension and tolerance modeler. Resource data regarding the machines, probes, and fixtures are queried from databases. IPPEX represents inspection process knowledge as production rules and incorporates an embedded inference engine to perform decision making. The IPPEX system, its functional architecture, system architecture, system approach, product modeling environment, inspection features, inspection knowledge, hierarchical planning strategy, user interface formats, and other fundamental issues related to inspection planning and part programming for CMMs are described. 27 refs., 16 figs., 4 tabs.

  17. High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; HFNG Collaboration

    2015-04-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.

  18. A Covariance Generation Methodology for Fission Product Yields

    NASA Astrophysics Data System (ADS)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  19. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  20. The Transmutation of Nuclear Waste in the Two-Zone Subcritical System Driven by High- Intensity Neutron Generator - 12098

    SciTech Connect

    Babenko, V.O.; Gulik, V.I.; Pavlovych, V.M.

    2012-07-01

    The main problems of transmutation of high-level radioactive waste (minor actinides and long-lived fission products) are considered in our work. The range of radioactive waste of nuclear power is analyzed. The conditions under which the transmutation of radioactive waste will be most effective are analyzed too. The modeling results of a transmutation of the main radioactive isotopes are presented and discussed. The transmutation of minor actinides and long-lived fission products are modeled in our work (minor actinides - Np-237, Am-241, Am-242, Am-243, Cm-244, Cm-245; long-lived fission products - I-129, Tc-99). The two-zone subcritical system is calculated with help of different neutron-physical codes (MCNP, Scale, Montebarn, Origen). The ENDF/B-VI nuclear data library used in above calculations. Thus, radioactive wastes can be divided into two main groups that need to be transmuted. The minor actinides form the first group and the long-lived fission products form the second one. For the purpose of effective transmutation these isotopes must be extracted from the spent nuclear fuel with the help of either PUREX technology or pyrometallurgical technology. The two-zone reactor system with fast and thermal regions is more effective for nuclear waste transmutation than the one-zone reactor. Modeling results show that nearly all radioactive wastes can be transmuted in the two-zone subcritical system driven by a high-intensity neutron generator with the external neutron source strength of 1.10{sup 13} n/sec. Obviously, transmutation rate will increase with a rise of the external neutron source strength. From the results above we can also see that the initial loading of radioactive isotopes into the reactor system should exceed by mass those isotopes that are finally produced. (authors)

  1. Lifetime Increased Cancer Risk in Mice Following Exposure to Clinical Proton Beam–Generated Neutrons

    SciTech Connect

    Gerweck, Leo E. Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-05-01

    Purpose: To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Methods and Materials: Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Results: Exposure of mice to a dose of 600 Gy of proton beam–generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions: Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates.

  2. Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons

    PubMed Central

    Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-01-01

    Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699

  3. Towards an automated intelligence product generation capability

    NASA Astrophysics Data System (ADS)

    Smith, Alison M.; Hawes, Timothy W.; Nolan, James J.

    2015-05-01

    Creating intelligence information products is a time consuming and difficult process for analysts faced with identifying key pieces of information relevant to a complex set of information requirements. Complicating matters, these key pieces of information exist in multiple modalities scattered across data stores, buried in huge volumes of data. This results in the current predicament analysts find themselves; information retrieval and management consumes huge amounts of time that could be better spent performing analysis. The persistent growth in data accumulation rates will only increase the amount of time spent on these tasks without a significant advance in automated solutions for information product generation. We present a product generation tool, Automated PrOduct Generation and Enrichment (APOGEE), which aims to automate the information product creation process in order to shift the bulk of the analysts' effort from data discovery and management to analysis. APOGEE discovers relevant text, imagery, video, and audio for inclusion in information products using semantic and statistical models of unstructured content. APOGEEs mixed-initiative interface, supported by highly responsive backend mechanisms, allows analysts to dynamically control the product generation process ensuring a maximally relevant result. The combination of these capabilities results in significant reductions in the time it takes analysts to produce information products while helping to increase the overall coverage. Through evaluation with a domain expert, APOGEE has been shown the potential to cut down the time for product generation by 20x. The result is a flexible end-to-end system that can be rapidly deployed in new operational settings.

  4. Sustaining knowledge in the neutron generator community and benchmarking study. Phase II.

    SciTech Connect

    Huff, Tameka B.; Stubblefield, William Anthony; Cole, Benjamin Holland, II; Baldonado, Esther

    2010-08-01

    This report documents the second phase of work under the Sustainable Knowledge Management (SKM) project for the Neutron Generator organization at Sandia National Laboratories. Previous work under this project is documented in SAND2008-1777, Sustaining Knowledge in the Neutron Generator Community and Benchmarking Study. Knowledge management (KM) systems are necessary to preserve critical knowledge within organizations. A successful KM program should focus on people and the process for sharing, capturing, and applying knowledge. The Neutron Generator organization is developing KM systems to ensure knowledge is not lost. A benchmarking study involving site visits to outside industry plus additional resource research was conducted during this phase of the SKM project. The findings presented in this report are recommendations for making an SKM program successful. The recommendations are activities that promote sharing, capturing, and applying knowledge. The benchmarking effort, including the site visits to Toyota and Halliburton, provided valuable information on how the SEA KM team could incorporate a KM solution for not just the neutron generators (NG) community but the entire laboratory. The laboratory needs a KM program that allows members of the workforce to access, share, analyze, manage, and apply knowledge. KM activities, such as communities of practice (COP) and sharing best practices, provide a solution towards creating an enabling environment for KM. As more and more people leave organizations through retirement and job transfer, the need to preserve knowledge is essential. Creating an environment for the effective use of knowledge is vital to achieving the laboratory's mission.

  5. A neutron booster for spallation sources—application to accelerator driven systems and isotope production

    NASA Astrophysics Data System (ADS)

    Galy, J.; Magill, J.; Van Dam, H.; Valko, J.

    2002-06-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the μm-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology—for example in the design neutron amplifiers for medical applications and "fast" islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module could be developed for spallation targets foreseen in the MYRRHA (L. Van Den Durpel, H. Aı̈t Abderrahim, P. D'hondt, G. Minsart, J.L. Bellefontaine, S. Bodart, B. Ponsard, F. Vermeersch, W. Wacquier. A prototype accelerator driven system in Belgium: the Myrrha project, Technical Committee Meeting on Feasibility and Motivation for Hybrid concepts for Nuclear Energy generation and Transmutation, Madrid, Spain, September 17-19, 1997 [1]). or MEGAPIE (M. Salvatores, G.S. Bauer, G. Heusener. The MEGAPIE initiative: executive outline and status as per November 1999, MPO-1-GB-6/0_GB, 1999 [2]) projects. With a neutron multiplication factor of the booster unit in the range 10-20 (i.e. with a keff of 0.9-0.95), considerably less powerful accelerators would be required to obtain the desired neutron flux. Instead of the powerful accelerators with proton energies of 1 GeV and currents of 10 mA foreseen for accelerator driven systems, similar neutron fluxes can be obtained

  6. On the Development of a Miniature Neutron Generator for the Brachytherapy Treatment of Cancer

    NASA Astrophysics Data System (ADS)

    Forman, L.

    2009-03-01

    Brachytherapy refers to application of an irradiation source within a tumor. 252Cf needles used in brachytherapy have been successfully applied to treatment of some of the most virulent cancers but it is doubtful that it will be widely used because of difficulty in dealing with unwanted dose (source cannot be turned off) and in adhering to stringent NRC regulations that have been exacerbated in our post 911 environment. We have been working on the development of a miniature neutron generator with the reaction target placed at the end of a needle (tube) for brachytherapy applications. Orifice geometries are most amenable, e.g. rectum and cervix, but interstitial use is possible with microsurgery. This paper dicusses the results of a 30 watt DD neutron generator SBU project that demonstrates that sufficient hydrogen isotope current can be delivered down a small diameter needle required for a DT neutron treatment device, and, will summarize the progress of building a commercial device pursued by the All Russian Institute for Automatics (VNIIA) supported by the DOE's Industrial Proliferation Prevention Program (IPP). It is known that most of the fast neutron (FN) beam cancer treatment facilities have been closed down. It appears that the major limitation in the use of FN beams has been damage to healthy tissue, which is relatively insensitive to photons, but this problem is alleviated by brachytherapy. Moreover, recent clinical results indicate that fast neutrons in the boost mode are most highly effective in treating large, hypoxic, and rapidly repopulating diseases. It appears that early boost application of FN may halt angiogenesis (development and repair of tumor vascular system) and shrink the tumor resulting in lower hypoxia. The boost brachytherapy application of a small, low cost neutron generator holds promise of significant contribution to the treatment of cancer.

  7. Restart of the chemical preparation process for the fabrication of ZnO varistors for ferroelectric neutron generator power supplies.

    SciTech Connect

    Lockwood, Steven John

    2005-03-01

    To date, all varistors used in ferroelectric neutron generators have been supplied from a single, proprietary source, General Electric Corporate Research and Development (GE CR&D). To protect against the vulnerability of a single source, Sandia initiated a program in the early 1980's to develop a second source for this material. A chemical preparation process for making homogeneous, high purity ZnO-based varistor powder was generated, scaled to production quantities, and transferred to external suppliers. In 1992, the chem-prep varistor program was suspended when it appeared there was sufficient inventory of GE CR&D material to supply ferroelectric neutron generator production for many years. In 1999, neutron generator production schedules increased substantially, resulting in a predicted exhaustion of the existing supply of varistor material within five years. The chem-prep program was restarted in January, 2000. The goals of the program were to (1) duplicate the chem-prep powder synthesis process that had been qualified for WR production, (2) demonstrate sintered billets from the chem-prep powder met requirements, (3) develop a process for rod fabrication and demonstrate that all component specifications could be met, and (4) optimize the process from powder synthesis through component fabrication for full-scale production. The first three of these goals have been met and are discussed in this report. A facility for the fabrication of production quantities of chem-prep powder has been established. All batches since the restart have met compositional requirements, but differences in sintering behavior between the original process and the restarted process were noted. Investigation into the equipment, precipitant stoichiometry, and powder processing procedures were not able to resolve the discrepancies. It was determined that the restarted process, which incorporated Na doping for electrical stability (a process that was not introduced until the end of the initial

  8. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  9. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  10. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    used to calculate regionwise spectra in the 1-D ANISN portion, all internally to reflect the 1-D transport correction. The regionwise spectra are then used to generate mutigroup regionwise neutron constants. The 1-D neutron transport can be performed up to three stages, e.g., from a TRISO fuel to PEBBLE to 1-D full core wedge. In addition, COMBINE7.1 has now the capability of adjoint flux calculation through the 1-D ANISN transport. Photon transport capability is also added. For this, a photon production and photo-atomic cross section library, MATNG.LIB, was generated in MATXS format through NJOY code. The photon production cross section matrix is of 167 neutron - 18 photon groups. Photo-atomic cross sections, including heating, are in 18 energy groups.

  11. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side

    NASA Astrophysics Data System (ADS)

    Klir, D.; Krasa, J.; Cikhardt, J.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Rezac, K.; Sila, O.; Skala, J.; Ullschmied, J.; Velyhan, A.

    2015-09-01

    Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 108 at the peak intensity of ≈3 × 1016 W/cm2. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the 2H(d,n)3He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 109 with the peak neutron fluence of (2.5 ± 0.5) × 108 n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 1014 deuterons in the 0.5-2.0 MeV energy range. The neutron yield of 2 × 109 at the laser energy of 600 J implied the production efficiency of 3 × 106 n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 1016 W/cm2. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.

  12. A continuously self regenerating high-flux neutron-generator facility

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.

    2013-10-01

    A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.

  13. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    SciTech Connect

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-05-15

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10{sup 8} n/s was obtained at a pulsed discharge of -51 kV, 7.3 A.

  14. Spallation neutron production and the current intra-nuclear cascade and transport codes

    NASA Astrophysics Data System (ADS)

    Filges, D.; Goldenbaum, F.; Enke, M.; Galin, J.; Herbach, C.-M.; Hilscher, D.; Jahnke, U.; Letourneau, A.; Lott, B.; Neef, R.-D.; Nünighoff, K.; Paul, N.; Péghaire, A.; Pienkowski, L.; Schaal, H.; Schröder, U.; Sterzenbach, G.; Tietze, A.; Tishchenko, V.; Toke, J.; Wohlmuther, M.

    A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models.

  15. Protective overcoatings on thin-film titanium targets for neutron generators

    NASA Astrophysics Data System (ADS)

    Falabella, S.; Tang, V.; Ellsworth, J. L.; Mintz, J. M.

    2014-02-01

    We have developed a thin-film coating for neutron generator targets that can be loaded with deuterium or tritium at low temperatures (100 °C), and at gas/Ti ratios greater than 1.7. The key to this improvement is the addition of a thin palladium overcoat at the end of the titanium deposition. This overcoat prevents the oxidation of the titanium film, yet still allows loading to take place at low temperatures. A palladium overcoat of just 50-100 Å is sufficient to protect the titanium, while presenting a minimal energy loss to incident ions. We have just begun producing targets using this method, and see the possibility of substantial improvement in neutron generator efficiencies.

  16. The API 120: A portable neutron generator for the associated particle technique

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Lemchak, M.; Simpson, J. D.

    2005-12-01

    The API 120 is a lightweight, portable neutron generator for active neutron interrogation (ANI) field work exploiting the associated particle technique. It incorporates a small sealed-tube accelerator, an all digital control system with smart on-board diagnostics, a simple platform-independent control interface and a comprehensive safety interlock philosophy with provisions for wireless control. The generator operates in a continuous output mode using either the D-D or D-T fusion reactions. To register the helium ion associated with fusion, the system incorporates a high resolution fiber optic imaging plate that may be coated with one of several different phosphors. The ion beam on the target measures less than 2 mm in diameter, thus making the system suitable for multi-dimensional imaging. The system is rated at 1E7 n/s for over 1000 h although higher yields are possible. The overall weight is 12 kg; power consumption is less than 50 W.

  17. Long-Duration Neutron Production in Solar Eruptive Events Detected with the MESSENGER Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Lawrence, D. J.; Vestrand, W. T.; Peplowski, P. N.

    2014-12-01

    Nine long-duration neutron solar eruptive events (SEEs) between 31 December 2007 and 16 March 2013 appear to be excellent candidates for detection of fast neutrons from the Sun by the MESSENGER Neutron Spectrometer (NS). One event (on 4 June 2011) is the cleanest example, because it was not accompanied by energetic ions at MESSENGER having energies greater than 50±10 MeV/nuc. The purpose of this study is to assemble a set of conditions common to all events that can help identify the physical conditions at their origin. We classified the nine events into three categories: (1) those having tight magnetic connection to the Sun as well as to spacecraft at 1 AU that can separately measure the energetic proton, alpha particle, and electron flux spectra, (2) those with sufficiently close connection that the energetic flux spectra can be compared, (3) those that have only marginal connections, and (4) those that are also seen at Earth. Four events fall into category (1), three into category (2), two into category (3), and parts of four events overlapped neutron events also seen by the scintillation FIBer solar neutron telescope (FIB) detector placed on the International Space Station in 2009. Seven of the nine events that have either tight or marginal magnetic connection have alpha particle abundances less than 2%. For each event, we modeled expected fast neutron count rates from the 1 AU ion spectrum, a process that accounts for the transport of the neutrons through the spacecraft to the NS. The ratios of measured to predicted fast-neutron counts range between 2.0 and 12.1.

  18. Neutron diffraction measurements of time-dependent residual stresses generated by severe thermomechanical deformation

    SciTech Connect

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; Hubbard, Camden R

    2009-01-01

    Residual stresses were generated by severe thermomechanical deformation in an aluminum alloy plate. The evolution of the residual stresses during natural aging was investigated by neutron diffraction up to 10,000h. A data reduction method was developed to eliminate microstructure influences (solute variations) on the lattice spacing changes, thereby allowing the determination of the long-range macroscopic residual stresses. The residual stress decreased ({approx}25MPa) with time due to the microstructural modification within the deformed region during natural aging.

  19. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    PubMed

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer. PMID:26325583

  20. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    PubMed

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer.

  1. Tritium generation and neutron measurements in Pd-Si under high deuterium gas pressure

    SciTech Connect

    Claytor, T.N.; Tuggle, D.G.; Menlove, H.O.

    1991-01-01

    This paper summarizes some of the methods applicable for low level tritium detection needed in the search for anomalous fusion in metal hydrides. It is also intended to further detail our tritium and neutron results that have been obtained with the Pd-Si-D system, originally presented at earlier workshops. A measure of reproducibility that was not evident in our previous work has been achieved partially due to the better detection sensitivity afforded by the use of low tritium deuterium and partially from the fact that the foil-wafer cells can be made with nearly identical electrical characteristics. This reproducibility has allowed us to narrow the optimum conditions for the experiment. While this experiment is rather different from the standard'' electrolytic cell or the Ti gas hydride experiment, similarities exist in that non equilibrium conditions are sought and the tritium generation levels are low and neutron emission is extremely weak. In contrast to many electrochemical cell experiments, the system used in these experiments is completely sealed during operation and uses no electrolyte. The major improvements to the experiment have been the use of vary low tritium deuterium for the hydriding and the replacement of the aluminum neutron counter tubes with ones of stainless steel. These changes have resulted in pronounced improvements to the detection systems since the background tritium level in the gas has been reduced by a factor of 300 and the neutron background has been decreased by a factor of 14. 16 refs., 8 figs., 1 tab.

  2. Study on generating of thermal neutron scattering cross sections for LiH

    SciTech Connect

    Wang, L.; Jiang, X.; Zhao, Z.; Chen, L.

    2013-07-01

    LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

  3. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  4. Overview of secondary neutron production relevant to shielding inspace

    SciTech Connect

    Heilbronn, L.; Nakamura, T.; Iwata, Y.; Kurosawa, T.; Iwase, H.; Townsend, L.W.

    2004-12-03

    An overview of experimental secondary neutron measurements relevant to space-related activities is presented. Stopping target yields and cross section measurements conducted at particle accelerators using heavy ions with energies >100 MeV per nucleon are discussed.

  5. Production cross sections of neutron rich isotopes from a 82Se beam

    NASA Astrophysics Data System (ADS)

    Tarasov, O. B.; Morrissey, D. J.; Amthor, A. M.; Bandura, L.; Baumann, T.; Bazin, D.; Berryman, J. S.; Chubarian, G.; Fukuda, N.; Gade, A.; Ginter, T. N.; Hausmann, M.; Inabe, N.; Kubo, T.; Pereira, J.; Portillo, M.; Sherrill, B. M.; Stolz, A.; Sumithrarachchi, C.; Thoennessen, M.; Weisshaar, D.

    2013-03-01

    Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements 11 <= Z <= 32 were determined by varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements 22 <= Z <= 25 (64Ti, 67V, 69Cr, 72Mn). One event was registered consistent with 70Cr, and another one with 75Fe. A one-body Qg systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. The current results confirm those of our previous experiment with a 76Ge beam: enhanced production cross sections for neutron-rich fragments near Z = 20.

  6. The Next Generation of HLA Image Products

    NASA Astrophysics Data System (ADS)

    Gaffney, N. I.; Casertano, S.; Ferguson, B.

    2012-09-01

    We present the re-engineered pipeline based on existing and improved algorithms with the aim of improving processing quality, cross-instrument portability, data flow management, and software maintenance. The Hubble Legacy Archive (HLA) is a project to add value to the Hubble Space Telescope data archive by producing and delivering science-ready drizzled data products and source lists derived from these products. Initially, ACS, NICMOS, and WFCP2 data were combined using instrument-specific pipelines based on scripts developed to process the ACS GOODS data and a separate set of scripts to generate source extractor and DAOPhot source lists. The new pipeline, initially designed for WFC3 data, isolates instrument-specific processing and is easily extendable to other instruments and to generating wide-area mosaics. Significant improvements have been made in image combination using improved alignment, source detection, and background equalization routines. It integrates improved alignment procedures, better noise model, and source list generation within a single code base. Wherever practical, PyRAF based routines have been replaced with non-IRAF based python libraries (e.g. NumPy and PyFITS). The data formats have been modified to handle better and more consistent propagation of information from individual exposures to the combined products. A new exposure layer stores the effective exposure time for each pixel in the sky which is key in properly interpreting combined images from diverse data that were not initially planned to be mosaiced. We worked to improve the validity of the metadata within our FITS headers for these products relative to standard IRAF/PyRAF processing. Any keywords that pertain to individual exposures have been removed from the primary and extension headers and placed in a table extension for more direct and efficient perusal. This mechanism also allows for more detailed information on the processing of individual images to be stored and propagated

  7. Novel methods for improvement of a Penning ion source for neutron generator applications.

    PubMed

    Sy, A; Ji, Q; Persaud, A; Waldmann, O; Schenkel, T

    2012-02-01

    Penning ion source performance for neutron generator applications is characterized by the atomic ion fraction and beam current density, providing two paths by which source performance can be improved for increased neutron yields. We have fabricated a Penning ion source to investigate novel methods for improving source performance, including optimization of wall materials and electrode geometry, advanced magnetic confinement, and integration of field emitter arrays for electron injection. Effects of several electrode geometries on discharge characteristics and extracted ion current were studied. Additional magnetic confinement resulted in a factor of two increase in beam current density. First results indicate unchanged proton fraction and increased beam current density due to electron injection from carbon nanofiber arrays.

  8. Improving Epithermal Transmission Measurements by Optimizing Neutron Production and Detection

    NASA Astrophysics Data System (ADS)

    Piela, Sean Garrigan

    Methods of improving the neutron count rate in the energy range 3 to 100-300 [keV] at the 100 [m] detector station for the Gaerttner LINAC Center were studied. One part of this undertaking was the explore alterations to the main photonuclear target used for this energy range. Detailed simulations using Monte Carlo N-Particle Transport Code (MCNP, version 5) were carried out and the results used to synthesize an optimized target design. Simulation predicted a gain in neutron intensity of 1.63 at 4.49 [keV], above the current target capability. Experiment found a gain of 1.42 at 4.89 [keV] over the current target. An addition of 1% boric acid to the water in the moderating ring of the current target is predicted to result in a factor of 111 +/- 12 increase in the neutron to photon ratio above baseline for 3.51 [keV] neutrons at 100 [m]; this value is for photons above 700 [keV]. The gain in neutron intensity for the optimized target comes with a gain in photon intensity. A 1% boric acid addition to this design has same neutron to photon ratio as with the boric acid addition to the current target (for 3.51 [keV] neutrons). In an alternate approach to enhancing the neutron counts, a prototype plastic scintillator was studied as a possible replacement for the extant lithium glass scintillators, with experiments finding major increases to the neutron counts in the energy range of interest. The plastic scintillator prototype was found to produce gains of 1.86, 3.61, 1.76 and 3.16 at 70.1, 127, 219, and 307 [keV], respectively, over a lithium glass detector. However, at 24.5 [keV] the plastic prototype count rate was only 36% of that measured with the lithium glass detector. The prototype detector geometry and its associated electronics need to be altered in order to actualize the true potential of the plastic scintillator detector.

  9. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2011-03-31

    A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5*1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2-0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm^2 was obtained at moderate microwave power levels of 400 W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.

  10. Study of reactions with neutron production in pp and pd collisions at 1 GeV

    SciTech Connect

    Baturin, V.N.; Koptev, V.P.; Maev, E.M.; Makarov, M.M.; Nelyubin, V.V.; Sulimov, V.V.; Khanzadeev, A.V.; Shcherbakov, G.V.

    1980-02-01

    Absolute doubly differential cross sections for production of neutrons of energy 350--1000 MeV on bombardment of hydrogen and deuterium with 1-GeV protons have been measured at angles 4, 7.5, 11.3, and 13.2/sup 0/. The neutron energy was determined by the time-of-flight method with utilization of the time microstructure of the accelerator beam. Cross sections for neutron production in reactions with meson production were obtained. It is noted that the dominant process in these reactions is the formation of the triangle-open(1232) isobar in the intermediate state. Cross sections for quasielastic knockout of neutrons from deuterium were determined. The contribution of spin-dependent amplitudes to the pn..-->..np charge-exchange cross section was estimated an an angle 0/sup 0/.

  11. On the possibility of neutron generation in an imploding TiD{sub 2} puff Z pinch

    SciTech Connect

    Baksht, Rina B.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.

    2013-08-15

    Simulation of implosion of a TiD{sub 2} puff Z pinch is reported. The Z pinch is supposed to be produced by the plasma flow generated by a vacuum arc, as described by Rousskikh et al.[Phys. Plasmas 18, 092707 (2011)]. To simulate the implosion, a one-dimensional two-temperature radiative magnetohydrodynamics code was used. The simulation has shown that neutrons are generated during the implosion of a TiD{sub 2} puff Z pinch due to thermalization of the pinch plasma stagnated on axis. It has been shown that the necessary condition for neutron generation is that the ion temperature must be substantially higher than the electron temperature. For a pinch current of 1 MA, the predicted yield of 'thermal' neutrons is 2.5 × 10{sup 9} neutrons/shot.

  12. Development of a neutron guide tube production technique at KAERI

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Jin; Seung, Baek-Soek; Lee, Chang-Hee; Kim, Hark-Rho

    2006-11-01

    In this paper, we present KAERI's technical development status for a neutron guide tube fabrication. To achieve a high uniformity, very low roughness and perfect interface during the layer growth process, a sputtering machine was developed whereby various deposition parameters can be controlled. The Ni mirrors fabricated with this coating equipment show a neutron reflectivity of 97% at the critical angle and the Ni/Ti-supermirrors show ( M=2) 84%. For a substrate alignment and assembly for the guide elements, a non-contact measurement apparatus equipped with optical microscopes was developed instead of using a 3-axis measuring machine. By employing this optical equipment, it was possible to assemble a neutron guide with an accuracy in the lateral direction of 0.005 mm and in the vertical direction of 0.01 mm.

  13. A Fluka study of underground cosmogenic neutron production

    NASA Astrophysics Data System (ADS)

    Empl, A.; Hungerford, E. V.; Jasim, R.; Mosteiro, P.

    2014-08-01

    Neutrons produced by cosmic muon interactions are important contributors to backgrounds in underground detectors when searching for rare events. Typically such neutrons can dominate the background, as they are particularly difficult to shield and detect. Since actual data is sparse and not well documented, simulation studies must be used to design shields and predict background rates. Thus validation of any simulation code is necessary to assure reliable results. This work compares in detail predictions of the FLUKA simulation code to existing data, and uses this code to report a simulation of cosmogenic backgrounds for typical detectors embedded in a water tank with liquid scintillator shielding.

  14. Characterization of a Thermo Scientific D711 D-T neutron generator located in a low-scatter facility

    SciTech Connect

    Hayes, John W.; Finn, Erin; Greenwood, Larry; Wittman, Rick

    2014-03-01

    A dosimetry experiment used to measure the neutron flux and spectrum of a D-T neutron generator is presented. The D-T generator at Pacific Northwest National Laboratory is installed in the middle of a large room to minimize scatter of neutrons back to the sample. The efficacy of maintaining a pure fast neutron field for the sample is investigated. Twenty-one positions within 13 cm of the neutron source contained foils or wires of Fe, Ni, Al with additional Au, and In monitors at some locations. Spectral adjustment of the neutron flux at each position based on measured reaction rates and theoretical Monte Carlo calculations show that at least 99.1% of the spectrum lies above 110 keV for all measured positions, and neutrons above 14 MeV can account for as much as 91% at locations along the axis of the generator and close to the source. The 14 MeV component drops to 77% in radial positions far from the source. The largest total flux observed was 8.29E+08 n/cm2-s (±1.4%) in the center of the cooling cap, although additional experiments have shown this value could be as high as 1.20E+09 n/cm2-s.

  15. Ion source and beam guiding studies for an API neutron generator

    SciTech Connect

    Sy, A.; Ji, Q.; Persaud, A.; Ludewigt, B. A.; Schenkel, T.

    2013-04-19

    Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ion current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.

  16. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  17. A New Way of Generating Load at Cryogenic Temperatures for Neutron Studies

    NASA Astrophysics Data System (ADS)

    Jacobsen, Matthew; Ridley, Christopher; Kirichek, Oleg; Manuel, Pascal; Attfield, J.; Kamenev, Konstantin

    2013-06-01

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly for neutron studies due to the volume of sample required. This challenge has been previously tackled by using a modified Bridgman-seal in a Paris-Edinburgh cell. We present a novel design of a pressure cell in which load is generated by a bellows driven by helium gas which ensures leak-free operation of the device. The bellows is custom-designed to generate the load of 80 kN at the maximum operational gas pressure of 350 bar. For opposed anvils with 3 mm diameter working surface, for example, this load converts into an average pressure of 11 GPa across the culets. The cell has four large windows for the scattered beam and the setup allows control of pressure in a wide (P,T)-range in which helium is in gas or liquid state. The cell has been used at the WISH beamline of the ISIS Pulsed Neutron Source with sapphire anvils. The device will be presented in detail, along with pressure loading curves and initial experimental data. Bailey, I. F. (2003). Z. Kristallogr., 218(2-2003), 84-95.

  18. Production of charm mesons by high-energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons ED{sup *{plus minus}}, D{sup 0}, and D{sub s}{sup {plus minus}} have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 {plus minus} 19 events was investigated in the decay mode D{sup *{plus minus}} {yields} D{sup 0} {pi}{sup {plus minus}} with the subsequent decay mode D{sup 0} {yields} K{sup +}K{sup {minus}}. The cross section per nucleon for D{sup *}{plus minus}, at most probable energy {radical}s = 35 GeV, was measured to be: d{sigma}(xf)/dxf {center dot} BR = 2.11 {plus minus} .43({plus minus}63){mu}b/nucleon for 0.0 < x{sub f} < 0.14 (x{sub f} = .07). The branching ratio (BR) is defined as: BR {identical to} BR(D{sup *} {yields} D{sub {pi}}) {times} BR(D {yields} K{sup +}K{sup {minus}}). The dependence of the cross section per nucleus on number of nucleons in the target was fit to a form A{sup {alpha}} and it was found that {alpha} = .96 {plus minus} .17. A sample of 64 {plus minus} 16 D{sub s}{sup {plus minus}} events was investigated for the decay D{sub s}{sup {plus minus}} {yields} {phi}{pi}{sup {plus minus}}. The differential cross section for D{sub s}{sup {plus minus}} production averaged over the particle and antiparticle states is: BR {center dot} {1/2} d{sigma}D{sub s}{sup +}/dxf + d{sigma}(D{sub s}{sup {minus}}/dxf) = 2.8 {plus minus} 0.80 {plus minus} .86 {mu}b/nucleon at x{sub f} = 0.175 where the first error is statistical and the second error is systematic. The branching fraction is defined as BR {identical to} BR(D{sub s} {yields} {phi}{pi}), and a linear A dependence was assumed.

  19. Production of charm mesons by high energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons D/sup /plus minus//, D/sup 0/, and D/sub s//sup /plus minus//, have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 /plus minus/ 19 events as investigated in the decay D/sup /plus minus// /yields/ D/sup 0//pi//sup /plus minus// with the subsequent decay mode D/sup 0/ /yields/ K/sup +/K/sup /minus//. The cross section per nucleon for D/sup /plus minus//, at most probable energy /radical/s = 35 GeV, was measured to be 2.11 /plus minus/ .43 (plusreverse arrowminus/.63)/mu/b/nucleon for 0.0 < x/sub f/ < 0.14 (/bar x//sub f/ = .07). The branching ratio (BR) is defined as: BR /identicalreverse arrowto/ Br(D /yields/ D/pi/) /times/ BR(D /yields/ K/sup +/K/sup /minus//). The dependence of the cross section per nucleus on number of nucleons in target was fit to a form A /sup /alpha// and it was found that /alpha/ = .96 /plusreverse arrowminus/ .17. A sample of 64 /plusreverse arrowminus/ 16 D/sub s//sup /plus minus// events was investigates for the decay D/sub s//sup /plus minus// /yields/ /phi//pi//sup /plus minus//. The differential cross section for D/sub s//sup /plus minus// production averaged over the particle and antiparticle states is: BR.(1/2)(d/sigma/(D/sub s//sup +/)/dx/sub f/ + d/sigma/(D/sub s//sup /minus//) = 2.85 /plusreverse arrowminus/ 0.80 /plusreverse arrowminus/ .86 /mu/b/nucleon at x/sub f/ = 0.175 where the first errors is statistical and the second error is systematic. The branching fraction is defined as BR /equivalentreverse arrowto/ BR(D/sub s/ /yields/ /phi//pi/), and a linear A dependence was assumed. An estimate of relative cross section is: 0.19 /plusreverse arrowminus/ 0.09 at x/sub f/ = 0. 36 refs., 43 figs., 5 tabs.

  20. Production of High-purity Radium-223 from Legacy Actinium-Beryllium Neutron Sources

    SciTech Connect

    Z. Soderquist, Chuck; K. McNamara, Bruce; R. Fisher, Darrell

    2012-06-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclides with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing 223Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity 223Ra from 227Ac. We obtained 227Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity 223Ra. We extracted 223Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free 223Ra product, and does not disturb the 227Ac/227Th equilibrium. A high purity, carrier-free 227Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of 223Ra for research and new alpha-emitter radiopharmaceutical development.

  1. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    PubMed

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development.

  2. Production of high-purity radium-223 from legacy actinium-beryllium neutron sources.

    PubMed

    Soderquist, Chuck Z; McNamara, Bruce K; Fisher, Darrell R

    2012-07-01

    Radium-223 is a short-lived alpha-particle-emitting radionuclide with potential applications in cancer treatment. Research to develop new radiopharmaceuticals employing (223)Ra has been hindered by poor availability due to the small quantities of parent actinium-227 available world-wide. The purpose of this study was to develop innovative and cost-effective methods to obtain high-purity (223)Ra from (227)Ac. We obtained (227)Ac from two surplus actinium-beryllium neutron generators. We retrieved the actinium/beryllium buttons from the sources and dissolved them in a sulfuric-nitric acid solution. A crude actinium solid was recovered from the solution by coprecipitation with thorium fluoride, leaving beryllium in solution. The crude actinium was purified to provide about 40 milligrams of actinium nitrate using anion exchange in methanol-water-nitric acid solution. The purified actinium was then used to generate high-purity (223)Ra. We extracted (223)Ra using anion exchange in a methanol-water-nitric acid solution. After the radium was separated, actinium and thorium were then eluted from the column and dried for interim storage. This single-pass separation produces high purity, carrier-free (223)Ra product, and does not disturb the (227)Ac/(227)Th equilibrium. A high purity, carrier-free (227)Th was also obtained from the actinium using a similar anion exchange in nitric acid. These methods enable efficient production of (223)Ra for research and new alpha-emitter radiopharmaceutical development. PMID:22697483

  3. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side

    SciTech Connect

    Klir, D.; Krasa, J.; Velyhan, A.; Cikhardt, J.; Rezac, K.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Skala, J.; Ullschmied, J.; Sila, O.

    2015-09-15

    Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 10{sup 8} at the peak intensity of ≈3 × 10{sup 16 }W/cm{sup 2}. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the {sup 2}H(d,n){sup 3}He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 10{sup 9} with the peak neutron fluence of (2.5 ± 0.5) × 10{sup 8 }n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 10{sup 14} deuterons in the 0.5–2.0 MeV energy range. The neutron yield of 2 × 10{sup 9} at the laser energy of 600 J implied the production efficiency of 3 × 10{sup 6 }n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 10{sup 16 }W/cm{sup 2}. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.

  4. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described.

  5. Heavy and Superheavy Elements Production in High Intensive Neutron Fluxes of Explosive Process

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2015-06-01

    Mathematical model of heavy and superheavy nuclei production in intensive pulsed neutron fluxes of explosive process is developed. The pulse character of the process allows dividing it in time into two stages: very short rapid process of multiple neutron captures with higher temperature and very intensive neutron fluxes, and relatively slower process with lesser temperature and neutron fluxes. The model was also extended for calculation of the transuranium yields in nuclear explosions takes into account the adiabatic character of the process, the probabilities of delayed fission, and the emission of delayed neutrons. Also the binary starting target isotopes compositions were included. Calculations of heavy transuranium and transfermium nuclei production were made for "Mike", "Par" and "Barbel" experiments, performed in USA. It is shown that the production of transfermium neutron-rich nuclei and superheavy elements with A ~ 295 is only possible when using binary mixture of starting isotopes with the significant addition of heavy components, such as long-lived isotopes of curium, or californium.

  6. Efficient neutron production from a novel configuration of deuterium gas-puff z-pinch.

    PubMed

    Klir, D; Kubes, P; Rezac, K; Cikhardt, J; Kravarik, J; Sila, O; Shishlov, A V; Kovalchuk, B M; Ratakhin, N A; Kokshenev, V A; Labetsky, A Yu; Cherdizov, R K; Fursov, F I; Kurmaev, N E; Dudkin, G N; Nechaev, B A; Padalko, V N; Orcikova, H; Turek, K

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Y(n)=(2.9 ± 0.3) × 10(12) at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5 × 10(7). This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  7. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  8. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture.

    PubMed

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-05-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm.

  9. Generation of peanut mutants by fast neutron irradiation combined with in vitro culture.

    PubMed

    Wang, Jing-Shan; Sui, Jiong-Ming; Xie, Yong-Dun; Guo, Hui-Jun; Qiao, Li-Xian; Zhao, Li-Lan; Yu, Shan-Lin; Liu, Lu-Xiang

    2015-05-01

    Induced mutations have played an important role in the development of new plant varieties. In this study, we investigated the effects of fast neutron irradiation on somatic embryogenesis combined with plant regeneration in embryonic leaflet culture to develop new peanut (Arachis hypogaea L.) germplasm for breeding. The dry seeds of the elite cultivar Luhua 11 were irradiated with fast neutrons at dosages of 9.7, 14.0 and 18.0 Gy. The embryonic leaflets were separated and incubated in a medium with 10.0-mg/l 2,4-D to induce somatic embryogenesis. Next, they were incubated in a medium with 4.0-mg/l BAP for plant regeneration. As the irradiation dosage increased, the frequency of both somatic embryo formation and plantlet regeneration decreased. The regenerated plantlets were grafted onto rootstocks and were transplanted into the field. Later, the mature seeds of the regenerated plants were harvested. The M2 generation plants from most of the regenerated cultivars exhibited variations and segregation in vigor, plant height, branch and pod number, pod size, and pod shape. To determine whether the phenotypes were associated with genomic modification, we compared the DNA polymorphisms between the wild-type plants and 19 M3-generation individuals from different regenerated plants. We used 20 pairs of simple sequence repeat (SSR) primers and detected polymorphisms between most of the mutants and the wild-type plants (Luhua 11). Our results indicate that using a combination of fast neutron irradiation and tissue culture is an effective approach for creating new peanut germplasm. PMID:25653418

  10. Asymmetric neutrino production in magnetized proto-neutron stars in fully relativistic mean-field approach

    SciTech Connect

    Maruyama, Tomoyuki; Kajino, Toshitaka; Hidaka, Jun; Takiwaki, Tomoya; Yasutake, Nobutoshi; Kuroda, Takami; Cheoun, Myung-Ki; Ryu, Chung-Yeol; Mathews, Grant J.

    2014-05-02

    We calculate the neutrino production cross-section in the proto-neutron-star matter under a strong magnetic field in the relativistic mean-field approach. We introduce a new parameter-set which can reproduce the 1.96 solar mass neutron star. We find that the production process increases emitted neutrinos along the direction parallel to the magnetic field and decrease those along its opposite direction. It means that resultant asymmetry due to the neutrino absorption and scattering process in the magnetic field becomes larger by the addition of the neutrino production process.

  11. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  12. MAGNETIC ENERGY PRODUCTION BY TURBULENCE IN BINARY NEUTRON STAR MERGERS

    SciTech Connect

    Zrake, Jonathan; MacFadyen, Andrew I.

    2013-06-01

    The simultaneous detection of electromagnetic and gravitational wave emission from merging neutron star binaries would greatly aid in their discovery and interpretation. By studying turbulent amplification of magnetic fields in local high-resolution simulations of neutron star merger conditions, we demonstrate that magnetar-level ({approx}> 10{sup 16} G) fields are present throughout the merger duration. We find that the small-scale turbulent dynamo converts 60% of the randomized kinetic energy into magnetic fields on a merger timescale. Since turbulent magnetic energy dissipates through reconnection events that accelerate relativistic electrons, turbulence may facilitate the conversion of orbital kinetic energy into radiation. If 10{sup -4} of the {approx}10{sup 53} erg of orbital kinetic available gets processed through reconnection and creates radiation in the 15-150 keV band, then the fluence at 200 Mpc would be 10{sup -7} erg cm{sup -2}, potentially rendering most merging neutron stars in the advanced LIGO and Virgo detection volumes detectable by Swift BAT.

  13. An aerial radiological survey of the neutron products company and surrounding area

    SciTech Connect

    Vojtech, R.J.

    1994-12-01

    An aerial radiological survey was conducted from November 1-10, 1993, over the Neutron Products Company and neighboring areas. The company, located in Dickerson, Maryland, has two major operations involving the radioisotope cobalt-60 ({sup 60}Co)-the manufacture of commercial {sup 60}Co sources and the sterilization of medical products by exposure to radiation. The sterilization facility consists of two {sup 60}Co sources with activities of approximately 500,000 and 1,500,000 Ci, respectively. The purpose of the aerial survey was to detect and document any anomalous gamma-emitting radionuclides in the environment which may have resulted from operations of the Neutron Products Company. The survey covered two areas: the first was a 6.5- by 6.5-kilometer area centered over the Neutron Products facility; the second area was a 2- by 2.5-kilometer region surrounding a waste pumping station on Muddy Branch in Gaithersburg, Maryland. This site is approximately fifteen kilometers southeast of the Neutron Products facility and was included because sanitary and other liquid waste materials from the plant site are being disposed of at the pumping station. Contour maps showing gamma radiation exposure rates at 1 meter above ground level, overlaid on an aerial photo of the area, were constructed from the data measured during the flights. The exposure rates measured within the survey regions were generally uniform and typical of rates resulting from natural background radiation. Only one area showed an enhanced exposure rate not attributable to natural background. This area, located directly over the Neutron Products facility, was analyzed and identified as {sup 60}Co, the radioisotope used in the irradiation and source production operations conducted at the Neutron Products Company. The measurements over the Muddy Branch area in Gaithersburg were typical of natural background radiation and showed no evidence of {sup 60}Co or any other man-made radionuclide.

  14. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    SciTech Connect

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  15. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  16. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D-D neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion

  17. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D-D neutron generator.

    PubMed

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion

  18. Novel mixed-oxide ceramic for neutron multiplication and tritium generation

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, Dakshinamoorthy; Ghanwat, S. J.; Tripathi, B. M.; Danani, Chandan

    2011-10-01

    Beryllium and lithium titanate (Li 2TiO 3), have limited use in blankets due to the swelling of beryllium and low thermal conductivity of Li 2TiO 3. A novel mixed oxide composite of beryllium oxide and lithium titanate (BeO-Li 2TiO 3) is proposed, which utilizes the high thermal conductivity of BeO and its favourable neutronics. Li 2TiO 3 was prepared using two different routes, one employing a solid-state reaction and the other through sol-gel route. The sintered BeO-Li 2TiO 3 is found to have no intermediate products and its thermal conductivity decreased from 36 to 14 W/m/K with the increase in temperature from 127 °C to 927 °C. The coefficient of thermal expansion (CTE) of BeO-Li 2TiO 3 is less than that of Li 2TiO 3. Thermodynamic calculations show that tritium cannot be trapped in BeO unless beryllium monotrioxide (BeOT) is formed. The merits of BeO are compared with beryllium metal and neutronic calculations on tritium production in this novel mixed oxide are also presented.

  19. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  20. Preliminary investigation of parasitic radioisotope production using the LANL IPF secondary neutron flux

    NASA Astrophysics Data System (ADS)

    Engle, J. W.; Kelsey, C. T.; Bach, H.; Ballard, B. D.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2012-12-01

    In order to ascertain the potential for radioisotope production and material science studies using the Isotope Production Facility at Los Alamos National Lab, a two-pronged investigation has been initiated. The Monte Carlo for Neutral Particles eXtended (MCNPX) code has been used in conjunction with the CINDER 90 burnup code to predict neutron flux energy distributions as a result of routine irradiations and to estimate yields of radioisotopes of interest for hypothetical irradiation conditions. A threshold foil activation experiment is planned to study the neutron flux using measured yields of radioisotopes, quantified by HPGe gamma spectroscopy, from representative nuclear reactions with known thresholds up to 50 MeV.

  1. Neutron production from puffing deuterium in plasma focus device

    SciTech Connect

    Kubes, P.; Cikhardt, J.; Kortanek, J.; Batobolotova, B.; Rezac, K.; Klir, D.; Kravarik, J.; Paduch, M.; Zielinska, E.; Surala, W.; Sadowski, M. J.; Scholz, M.; Karpinski, L.

    2014-08-15

    The current research has continued on the PF-1000 plasma focus device at the current of 2 MA by comparison of the shots with and without injected deuterium. The increase of the total neutron yield at the level of 10{sup 10}–10{sup 11} per shot was achieved after the compression of about 10 μg/cm of the deuterium from the gas-valve by about 46 μg/cm of the neon or deuterium plasma sheath. It increases five times at the decrease of the puffing deuterium mass to one-half. In shots with neon in the chamber and with puffing deuterium, a considerable decrease was confirmed of the soft X-ray emission in comparison with shots without deuterium injection. This decrease can be explained by the absence of the neon in the region of the compressed and hot plasma. The deuterium plasma from the gas-puff should then be confined in the internal structures both in the phase of implosion as well as during their formation and transformation. In shots with puffing deuterium, the evolution of instabilities in the plasma column was suppressed. The deuterium plasma has a higher conductance and better ability to form expressive and dense plasmoids and to transport the internal current in comparison with neon plasma. Neutrons were produced both at the initial phase of stagnation, as well as at a later time at the evolution of the constrictions and dense plasmoids.

  2. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  3. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  4. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, G.W.; Leeper, R.J.

    1984-08-16

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating a nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a /sup 7/Li(p,..gamma..)/sup 8/Be reaction to produce 16.5 MeV gamma emission.

  5. Generation of broad-group neutron/photon cross-section libraries for shielding applications

    SciTech Connect

    Ingersoll, D.T.; Roussin, R.W.; Fu, C.Y.; White, J.E.

    1989-01-01

    The generation and use of multigroup cross-section libraries with broad energy group structures is primarily for the economy of computer resources. Also, the establishment of reference broad-group libraries is desirable in order to avoid duplication of effort, both in terms of the data generation and verification, and to assure a common data base for all participants in a specific project. Uncertainties are inevitably introduced into the broad-group cross sections due to approximations in the grouping procedure. The dominant uncertainty is generally with regard to the energy weighting function used to average the pointwise or fine-group data within a single broad group. Intelligent choice of the weighting functions can reduce such uncertainties. Also, judicious selection of the energy group structure can help to reduce the sensitivity of the computed responses to the weighting function, at least for a selected set of problems. Two new multigroup cross section libraries have been recently generated from ENDF/B-V data for two specific shielding applications. The first library was prepared for use in sodium-cooled reactor systems and is available in both broad-group structures. The second library, just recently completed, was prepared for use in air-over-ground environments and is available in a broad-group (46-neutron, 23-photon) energy structure. The selection of the specific group structures and weighting functions was an important part of the generation of both libraries.

  6. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    NASA Astrophysics Data System (ADS)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  7. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    NASA Astrophysics Data System (ADS)

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-01

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  8. The ceramic-cup microwave ion source for sealed-tube neutron generator

    NASA Astrophysics Data System (ADS)

    Jing, Shiwei; Li, Wensheng; Gu, Li; Liu, Linmao

    2001-01-01

    A microwave proton source for sealed-tube neutron generator has been built in the radiation Technology Institute of Northeast Normal University. The plasma resonance chamber is made of 95%Al2O3 ceramic material. The microwave absorption as a function of the magnetic field and the pressure is studied. The microwave absorption efficiencies, (Pi-Pr)/Pi are more than 90% when the magnetic field at the microwave windows is 0.095 T and incident microwave power is 300-500 W, at the same time, the impedance between the microwave circuit and the plasma source is well matched. Two-grid multi-hole extraction electrodes are employed to extract ion. The maximum proton current of 30 mA is obtained when the extraction voltage is 5.4 KV and the incident microwave power is 300 W.

  9. Error Assessment of Homogenized Cross Sections Generation for Whole Core Neutronic Calculation

    SciTech Connect

    Hursin, Mathieu; Kochunas, Brendan; Downar, Thomas J.

    2007-10-26

    The objective of the work here was to assess the errors introduced by using 2D, few group homogenized cross sections to perform neutronic analysis of BWR problems with significant axial heterogeneities. The 3D method of characteristics code DeCART is used to generate 2-group assembly homogenized cross sections first using a conventional 2D lattice model and then using a full 3D solution of the assembly. A single BWR fuel assembly model based on an advanced BWR lattice design is used with a typical void distribution applied to the fuel channel coolant. This model is validated against an MCNP model. A comparison of the cross sections is performed for the assembly homogenized planar cross sections from the DeCART 3D and DeCART 2D solutions.

  10. A compact DD neutron generator-based NAA system to quantify manganese (Mn) in bone in vivo.

    PubMed

    Liu, Yingzi; Byrne, Patrick; Wang, Haoyu; Koltick, David; Zheng, Wei; Nie, Linda H

    2014-09-01

    A deuterium-deuterium (DD) neutron generator-based neutron activation analysis (NAA) system has been developed to quantify metals, including manganese (Mn), in bone in vivo. A DD neutron generator with a flux of up to 3*10(9) neutrons s(-1) was set up in our lab for this purpose. Optimized settings, including moderator, reflector, and shielding material and thickness, were selected based on Monte Carlo (MC) simulations conducted in our previous work. Hand phantoms doped with different Mn concentrations were irradiated using the optimized DD neutron generator irradiation system. The Mn characteristic γ-rays were collected by an HPGe detector system with 100% relative efficiency. The calibration line of the Mn/calcium (Ca) count ratio versus bone Mn concentration was obtained (R(2) = 0.99) using the hand phantoms. The detection limit (DL) was calculated to be about 1.05 μg g(-1) dry bone (ppm) with an equivalent dose of 85.4 mSv to the hand. The DL can be reduced to 0.74 ppm by using two 100% HPGe detectors. The whole body effective dose delivered to the irradiated subject was calculated to be about 17 μSv. Given the average normal bone Mn concentration of 1 ppm in the general population, this system is promising for in vivo bone Mn quantification in humans.

  11. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    PubMed

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226.

  12. Does Generating Examples Aid Proof Production?

    ERIC Educational Resources Information Center

    Iannone, Paola; Inglis, Matthew; Mejia-Ramos, Juan Pablo; Simpson, Adrian; Weber, Keith

    2011-01-01

    Many mathematics education researchers have suggested that asking learners to generate examples of mathematical concepts is an effective way of learning about novel concepts. To date, however, this suggestion has limited empirical support. We asked undergraduate students to study a novel concept by either tackling example generation tasks or…

  13. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  14. Promises and Challenges of Two-Step Targets for Production of Neutron-rich RIBs

    SciTech Connect

    Talbert, W.L.; Drake, D.M.; Hsu, H.-H.; Wilson, M.T.

    2003-08-26

    Development of a prototype two-step target to produce neutron-rich RIBs is presented, with particular emphasis on thermal analysis under high-power operation. The two-step target is an attractive concept for production of fission-product activities without interference by high-energy spallation reactions which occur in direct production targets. In this concept, a high-energy production beam interacts with a primary target of refractory metal, depositing beam energy in the primary target and producing low-energy neutrons that cause fissions in a surrounding secondary target of mixed UC2 and excess C. Thermal analysis of the composite target presents challenges in cooling the primary target while maintaining the secondary target at temperatures suitable for release of the fission products. The effects of fission energy deposition in the secondary target are discussed, along with the complexities resulting from the thermally insulating character of the secondary target material.

  15. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    PubMed

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging. PMID:26945102

  16. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    PubMed

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging.

  17. D-D Neutron Generator Calibrations and Hardware in the LUX-ZEPLIN Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Will; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) dark matter search experiment will be a two-phase liquid/gas xenon time projection chamber with 7 tonnes of active liquid xenon (LXe) located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. LZ will utilize an in-situ, absolute calibration of nuclear recoils (NR) in LXe using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used in the LUX detector to measured the NR charge yield in LXe (Qy) to 0.7 keV recoil energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keV - both of which were the lowest energy measurements achieved in the field. These absolute, ultra-low energy calibrations of the NR signal yields in LXe provide clear measurements of the detector response used for the WIMP search analysis. The improvements made for LZ will include shorter neutron pulse times, multiple neutron conduit configurations, and lower energy neutrons. The upgrades allow for even lower energy measurements of the nuclear recoil response in LXe and an independent measurement of Ly, as well as providing less uncertainty in energy reconstruction. In addition to discussing the physics of the neutron calibrations, I will describe the hardware systems used to implement them.

  18. Efficiency of generation of optical centers in KS-4V and KU-1 quartz glasses at neutron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Islamov, A. Kh.; Salikhbaev, U. S.; Ibragimova, E. M.; Nuritdinov, I.; Fayzullaev, B. S.; Vukolov, K. Yu.; Orlovskiy, I.

    2013-11-01

    Pure quartz glasses of KS-4V and KU-1 types are candidates for optical plasma diagnostic system in ITER. The purpose of experiment was to study the efficiency of defect production in these glasses under irradiation with 60Со γ-quanta (5.7 Gy/s) dose range of 102-107 Gy and the fission reactor neutrons in the fluency range of 1020-1023 n/m2 and gammas simulating the plasma influence. In KU-1 (1000 ppm OH) the accumulation kinetics of E‧-(5.75 eV) and NBO-(1.9 eV) centers at γ-doses⩾5×105 Gy and neutron fluencies <1021 n/m2 is faster, than that in KS-4V glasses (<0.1 ppm OH) that is caused by rupture of hydrogen bonds. At fluencies >1021 n/m2 the NBO accumulation kinetics is slower in KU-1 than in KS-4B, because highly mobile hydrogen atoms access to the generated NBO centers. In KS-4V irradiated to γ-doses102-5 × 103 Gy a new unstable absorption band at 1.8 eV was found, which is caused by the glass synthesis conditions and alkali metal impurities. The transparency at 3.5-6.2 eV at fluencies 1020-5 × 1021 n/m2 is higher in KS-4V than KU-1. However at fluencies >1021 n/m2 in KS-4V the photoluminescence band at 2.7 eV is more intensive and distorts a diagnosed signal. The transparency in 3.5-1.2 eV at fluencies >1021 n/m2 is higher in KU-1 than KS-4V.

  19. Chem-prep PZT 95/5 for neutron generator applicatios : powder preparation characterization utilizing design of experiments.

    SciTech Connect

    Lockwood, Steven John; Rodman-Gonzales, Emily Diane; Voigt, James A.; Moore, Diana Lynn

    2003-07-01

    Niobium doped PZT 95/5 (lead zirconate-lead titanate) is the material used in voltage bars for all ferroelectric neutron generator power supplies. In June of 1999, the transfer and scale-up of the Sandia Process from Department 1846 to Department 14192 was initiated. The laboratory-scale process of 1.6 kg has been successfully scaled to a production batch quantity of 10 kg. This report documents efforts to characterize and optimize the production-scale process utilizing Design of Experiments methodology. Of the 34 factors identified in the powder preparation sub-process, 11 were initially selected for the screening design. Additional experiments and safety analysis subsequently reduced the screening design to six factors. Three of the six factors (Milling Time, Media Size, and Pyrolysis Air Flow) were identified as statistically significant for one or more responses and were further investigated through a full factorial interaction design. Analysis of the interaction design resulted in developing models for Powder Bulk Density, Powder Tap Density, and +20 Mesh Fraction. Subsequent batches validated the models. The initial baseline powder preparation conditions were modified, resulting in improved powder yield by significantly reducing the +20 mesh waste fraction. Response variation analysis indicated additional investigation of the powder preparation sub-process steps was necessary to identify and reduce the sources of variation to further optimize the process.

  20. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  1. APSTNG: Associated particle sealed-tube neutron generator studies for arms control. Final report on NN-20 Project ST220

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; Brunner, T.; Hess, A.; Tylinski, S.

    1994-12-01

    Argonne National Laboratory has performed research and development on the use of Associated Particle Sealed-Tube Neutron Generator (APSTNG) technology for treaty verification and non-proliferation applications, under funding from the DOE Office of Nonproliferation and National Security. Results indicate that this technology has significant potential for nondestructively detecting elemental compositions inside inspected objects or volumes. The final phase of this project was placement of an order for commercial procurement of an advanced sealed tube, with its high-voltage supply and control systems. Procurement specifications reflected lessons learned during the study. The APSTNG interrogates a volume with a continuous 14-MeV neutron flux. Each neutron is emitted coincident with an {open_quotes}associated{close_quotes} alpha-particle emitted in the opposite direction. Thus detection of an alpha-particle marks the emission of a neutron in a cone opposite to that defined by the alpha detector. Detection of a gamma ray coincident with the alpha indicates that the gamma was emitted from a neutron-induced reaction inside the neutron cone: the gamma spectra can be used to identify fissionable materials and many isotopes having an atomic number larger than that of boron. The differences in gamma-ray and alpha-particle detection times yield a coarse measurement of the distance along the cone axis from the APSTNG emitter to each region containing the identified nuclide. A position-sensitive alpha detector would permit construction of coarse three-dimensional images. The source and emission-detection systems can be located on the same side of the interrogated volume. The neutrons and gamma rays are highly penetrating. A relatively high signal-to-background ratio allows the use of a relatively small neutron source and conventional electronics.

  2. METHOD OF INITIATING AND SUSTAINING AN ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Mackin, R.J. Jr.; Simon, A.

    1961-08-22

    A method for producing an energetic plasma for neutron production and for faeling this plasma once it is formed is described. The plasma is initially fonmed as set forth in U. S. Patent No. 2,969,308. After the plasma is formed, cold neutral particles with an energy of at least 1 Kev are injected in a radial directinn and transverse to the axis of the device. These cold particles are substituted for the molecular ion injection and are used for fueling the plasma device on a continuous regulated basis in order to maintain a reaction temperature of about 60 Kev for producing neutrons. (AE C)

  3. High-energy particle production in the 1997 November 6 flare as viewed from gamma rays and neutrons

    NASA Astrophysics Data System (ADS)

    Yoshimori, M.; Suga, K.; Nakayama, S.; Ogawa, H.; Share, G. H.; Murphy, R. J.

    2001-08-01

    Yohkoh observed hard Xand gamma-rays from a X9.4 flare on November 6, 1997. Strong gamma-rays were emitted in 11:52-11:56 UT (peak phase). After that, weak and extended gamma-ray production lasted for 600s (extended phase). The OSSE aboard CGRO detected neutrons associated with this flare between 12:08 and 12:28 UT. The neutron count-rate time profile exhibit a gradually decrease with time. We derive the proton spectra and the timing of particle acceleration to explain the observed neutron time profile. The proton spectra of E-3.5 in the peak phase and of E-3.0 in the extended phase give a good fit to the observed neutron time profile. We present detailed calculations of the neutron arrival time profiles and discuss high-energy particle production processes from the gamma-ray neutron observations.

  4. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    NASA Astrophysics Data System (ADS)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  5. Integrated doses calculation in evacuation scenarios of the neutron generator facility at Missouri S&T

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji B.

    2016-08-01

    Any source of ionizing radiations could lead to considerable dose acquisition to individuals in a nuclear facility. Evacuation may be required when elevated levels of radiation is detected within a facility. In this situation, individuals are more likely to take the closest exit. This may not be the most expedient decision as it may lead to higher dose acquisition. The strategy followed in preventing large dose acquisitions should be predicated on the path that offers least dose acquisition. In this work, the neutron generator facility at Missouri University of Science and Technology was analyzed. The Monte Carlo N-Particle (MCNP) radiation transport code was used to model the entire floor of the generator's building. The simulated dose rates in the hallways were used to estimate the integrated doses for different paths leading to exits. It was shown that shortest path did not always lead to minimum dose acquisition and the approach was successful in predicting the expedient path as opposed to the approach of taking the nearest exit.

  6. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; van Rompay, Marc; Ballanger, Anne

    2002-03-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7×10 10 to 3.7×10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach.

  7. First production of ultracold neutrons with a solid deuterium source at the pulsed reactor TRIGA Mainz⋆

    NASA Astrophysics Data System (ADS)

    Frei, A.; Sobolev, Yu.; Altarev, I.; Eberhardt, K.; Gschrey, A.; Gutsmiedl, E.; Hackl, R.; Hampel, G.; Hartmann, F. J.; Heil, W.; Kratz, J. V.; Lauer, Th.; Liźon Aguilar, A.; Müller, A. R.; Paul, S.; Pokotilovski, Yu.; Schmid, W.; Tassini, L.; Tortorella, D.; Trautmann, N.; Trinks, U.; Wiehl, N.

    2007-11-01

    The production rates of ultracold neutrons (UCN) with a solid deuterium converter have been measured at the pulsed reactor TRIGA Mainz. Exposed to a thermal neutron fluence of ensuremath ˜ 1\\cdot 10^{13} n·cm^-2·pulse^-1, the number of detected very cold and ultracold neutrons ranges up to 200 000 at 7mol of solid deuterium (sD2) in combination with a pre-moderator (mesitylene). About 50% of the measured neutrons can be assigned to UCN with energies E of ensuremath V_F(sD_2)≤ E ≤ V_F(guide) where V F( sD 2) = 105 neV and V F( guide) = 190 neV are the Fermi potentials of the sD2 converter and our stainless steel neutron guides, respectively. Thermal cycling of solid deuterium, which was frozen out from the gas phase, considerably improved the UCN yield, in particular at higher amounts of sD2.

  8. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al 2O 3:C

    NASA Astrophysics Data System (ADS)

    Mittani, J. C. R.; da Silva, A. A. R.; Vanhavere, F.; Akselrod, M. S.; Yukihara, E. G.

    2007-07-01

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al 2O 3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li ( 6LiF), lithium carbonate 95% enriched with 6Li ( 6Li 2CO 3), boric acid enriched with 99% of 10B (H310BO) and gadolinium oxide (Gd 2O 3). The proportion of Al 2O 3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ( 6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al 2O 3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al 2O 3:C.

  9. Measurements Of Spin Observables In Pseudoscalar-Meson Photo-Production Using Polarized Neutrons In Solid HD

    SciTech Connect

    Kageya, Tsuneo

    2014-01-01

    Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an efficient neutron target. Preliminary E asymmetries for the exclusive reaction, gamma + n(p)--> pi- + p(p), selecting quasi free neutron kinematics are discussed.

  10. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: I. Electron-positron pair production

    SciTech Connect

    Istomin, Ya. N. Sob'yanin, D. N.

    2011-10-15

    The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.

  11. Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs

    SciTech Connect

    Ayman Hawari

    2008-06-20

    The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

  12. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  13. Light-ion production in the interaction of 96 MeV neutrons with oxygen

    SciTech Connect

    Tippawan, U.; Pomp, S.; Atac, A.; Blomgren, J.; Dangtip, S.; Hildebrand, A.; Johansson, C.; Klug, J.; Mermod, P.; Oesterlund, M.; Bergenwall, B.; Nilsson, L.; Olsson, N.; Prokofiev, A.V.; Nadel-Turonski, P.; Corcalciuc, V.; Koning, A.J.

    2006-03-15

    Double-differential cross sections are reported for light-ion (p, d, t, {sup 3}He, and {alpha}) production in oxygen induced by 96 MeV neutrons. Energy spectra are measured at eight laboratory angles from 20 degree sign to 160 degree sign in steps of 20 degree sign . Procedures for data taking and data reduction are presented. Deduced energy-differential and production cross sections are reported. Experimental cross sections are compared to theoretical reaction model calculations and experimental data at lower neutron energies in the literature. The measured proton data agree reasonably well with the results of the model calculations, whereas the agreement for the other particles is less convincing. The measured production cross sections for protons, deuterons, tritons, and {alpha} particles support the trends suggested by data at lower energies.

  14. Structures of the fractional spaces generated by the difference neutron transport operator

    SciTech Connect

    Ashyralyev, Allaberen; Taskin, Abdulgafur

    2015-09-18

    The initial boundary value problem for the neutron transport equation is considered. The first, second and third order of accuracy difference schemes for the approximate solution of this problem are presented. Highly accurate difference schemes for neutron transport equation based on Padé approximation are constructed. In applications, stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained.The positivity of the neutron transport operator in Slobodeckij spaces is proved. Numerical techniques are developed and algorithms are tested on an example in MATLAB.

  15. Analysis of optical density data generated from neutron radiographs of uranium-plutonium mixed oxide fuel pellets inside sealed nuclear fuel pins

    NASA Astrophysics Data System (ADS)

    Panakkal, J. P.; Ghosh, J. K.; Roy, P. R.

    1986-03-01

    A quantitative analysis of neutron radiographs of welded nuclear fuel pins containing uranium-plutonium mixed oxide fuel pellets has been carried out to obtain a simple model for the transmission of neutrons through fuel pins during neutron radiography. The optical density data obtained by detailed microdensitometer scanning across the image of pellets of varying plutonium enrichment has been correlated to the product of the macroscopic neutron cross section and the distance traversed by the neutrons. Based on the experimental data, a simple model which can be applied to fuel pins of different dimensions and plutonium enrichment has been derived.

  16. ATR neutron spectral characterization

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  17. Neutron induced light-ion production from Iron and Bismuth at 175 MeV

    NASA Astrophysics Data System (ADS)

    Bevilacqua, R.; Pomp, S.; Simutkin, V.; Tippawan, U.; Andersson, P.; Blomgren, J.; Österlund, M.; Hayashi, M.; Hirayama, S.; Naito, Y.; Watanabe, Y.; Tesinsky, M.; Lecolley, F.-R.; Marie, N.; Hjalmarsson, A.; Prokofiev, A.; Kolozhvari, A.

    2010-03-01

    We have measured light-ion (p, d, t, 3He and α) production in the interaction of 175 MeV neutrons with iron and bismuth, using the MEDLEY setup. A large set of measurements at 96 MeV has been recently completed and published, and now higher energy region is under investigation. MEDLEY is a conventional spectrometer system that allows low-energy thresholds and offers measurements over a wide angular range. The system consists of eight telescopes, each of them composed of two silicon surface barrier detectors, to perform particle identification, and a CsI(Tl) scintillator to fully measure the kinetic energy of the produced light-ions. The telescopes are placed at angles from 20° to 160°, in steps of 20°. Measurements have been performed at The Svedberg Laboratory, Uppsala (Sweden), where a quasi mono-energetic neutron beam is available and well characterized. Time of flight techniques are used to select light-ion events induced by neutrons in the main peak of the source neutron spectrum. We report preliminary double differential cross sections for production of protons, deuterons and tritons in comparison with model calculations using TALYS-1.0 code.

  18. Investigation of Secondary Neutron Production in Large Space Vehicles for Deep Space

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2016-01-01

    Future NASA missions will focus on deep space and Mars surface operations with large structures necessary for transportation of crew and cargo. In addition to the challenges of manufacturing these large structures, there are added challenges from the space radiation environment and its impacts on the crew, electronics, and vehicle materials. Primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle and the elements inside the vehicle. These interactions lead to the primary radiation being absorbed or producing secondary radiation (primarily neutrons). With all vehicles, the high-energy primary radiation is of most concern. However, with larger vehicles, there is more opportunity for secondary radiation production, which can be significant enough to cause concern. In a previous paper, we embarked upon our first steps toward studying neutron production from large vehicles by validating our radiation transport codes for neutron environments against flight data. The following paper will extend the previous work to focus on the deep space environment and the resulting neutron flux from large vehicles in this deep space environment.

  19. The Geostationary Operational Environmental Satellite (GOES) Product Generation System

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.

    2004-01-01

    The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

  20. First Generation ASCI Production Visualization Environments

    SciTech Connect

    Heermann, P.D.

    1999-04-08

    The delivery of the first one tera-operations/sec computer has significantly impacted production data visualization, affecting data transfer, post processing, and rendering. Terascale computing has motivated a need to consider the entire data visualization system; improving a single algorithm is not sufficient. This paper presents a systems approach to decrease by a factor of four the time required to prepare large data sets for visualization.For daily production use, all stages in the processing pipeline from physics simulation code to pixels on a screen, must be balanced to yield good overall performance. Also, to complete the data path from screen to the analyst's eye, user display systems for individuals and teams are examined. Performance of the initial visualization system is compared with recent improvements. Lessons learned from the coordinated deployment of improved algorithms are also discussed, including the need for 64 bit addressing and a fully parallel data visualization pipeline.

  1. Residual Nuclide Production from Iron, Lead, and Uranium by Neutron-Induced Reactions up to 180 MeV

    SciTech Connect

    Michel, R.; Glasser, W.; Herpers, U.; Schuhmacher, H.; Brede, H.J.; Dangendorf, V.; Nolte, R.; Malmborg, P.; Prokofiev, A.V.; Smirnov, A.N.; Rishkov, I.; Kollar, D.; Meulders, J.P.; Duijvestijn, M.; Koning, A.

    2005-05-24

    Within the HINDAS project, activation experiments with quasi mono-energetic neutrons were performed at UCL and TSL. Cross sections for the production of residual radionuclides were derived from the measured activities by unfolding, based on the neutron spectra inside the target stacks and starting from 'guess' excitation functions. Exemplary results are presented and are compared with theoretical calculations using the TALYS code.

  2. Replacing a 252Cf source with a neutron generator in a shuffler - a conceptual design performed with MCNPX

    SciTech Connect

    Schear, Melissa A; Tobin, Stephen J

    2009-01-01

    The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, and may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The

  3. Neutron capture production rates of cosmogenic 60Co, 59Ni and 36Cl in stony meteorites

    NASA Technical Reports Server (NTRS)

    Spergel, M. S.; Reedy, R. C.; Lazareth, O. W.; Levy, P. W.

    1986-01-01

    Results for neutron flux calculations in stony meteoroids (of various radii and compositions) and production rates for Cl-36, Ni-59, and Co-60 are reported. The Ni-59/Co-60 ratio is nearly constant with depth in most meteorites: this effect is consistent with the neutron flux and capture cross section properties. The shape of the neutron flux energy spectrum, varies little with depth in a meteorite. The size of the parent meteorite can be determined from one of its fragments, using the Ni-59/Co-60 ratios, if the parent meteorite was less than 75 g/cm(2) in radius. If the parent meteorite was larger, a lower limit on the size of the parent meteorite can be determined from a fragment. In C3 chondrites this is not possible. In stony meteorites with R less than 50 g/cm(2) the calculated Co-60 production rates (mass less than 4 kg), are below 1 atom/min g-Co. The highest Co-60 production rates occur in stony meteorites with radius about 250 g/cm(2) (1.4 m across). In meteorites with radii greater than 400 g/cm(2), the maximum Co-60 production rate occurs at a depth of about 175 g/cm(2) in L-chondrite, 125 g/cm(2) in C3 chrondrite, and 190 g/cm(2) in aubrites.

  4. A long-lived tritiated titanium target for fast neutron production

    NASA Astrophysics Data System (ADS)

    Hughey, B. J.

    1995-03-01

    Diagnostic techniques using neutron beams have a broad spectrum of applications in advanced manufacturing, explosives and contraband detection, medicine, and industry. The most suitable nuclear reaction for producing large fluxes of fast neutrons at low bombarding energy is the H(d,n)-3 He-4, i.e. d-T, reaction. The lifetime of currently used d-T neutron generators is limited by the gradual evolution of tritium gas from the target during bombardment. This paper is a report of work in progress to develop a method for inhibiting the replacement of tritium with beam deuterons and thus preventing the evolution of tritium gas leading to reduced neutron yield. It is anticipated that tritiated target lifetime can be increased by at least an order of magnitude by using a range-thin tritiated titanium target mounted on a substrate with a high hydrogen diffusivity, such as niobium. Lifetime can be further enhanced by increasing the deuteron beam bombarding energy from the typical value of 200 keV to 600 keV. The results of experiments demonstrating the effect of hydrogen diffusion coefficient on concentration of implanted beam deuterons in candidate substrate materials (Cu, Pd, and Nb) are presented, and issues relevant to the fabrication of a tritiated titanium target on a niobium substrate are discussed.

  5. The field evaporation of deuterated titanium as a neutron generator ion source

    NASA Astrophysics Data System (ADS)

    Reichenbach, B.; Johnson, B. Bargsten; Schwoebel, P. R.

    2010-11-01

    The field evaporation of deuterated titanium films is being investigated as a deuterium ion source for deuterium-tritium neutron generators. It has been found that titanium and deuterated titanium films having thicknesses of up to at least 70 layers assume a body-centered-cubic crystal structure when grown on ⟨110⟩ oriented tungsten substrates. Deuterated titanium films having thicknesses exceeding 50 atomic layers have been controllably field evaporated from the surface of tungsten tips in less than 20 ns. At ion current densities exceeding ˜106 A/cm2 and film thicknesses greater than ˜20 layers, space charge effects decrease the ratio of D to TiDx ions to less than 1. Decreasing the evaporation rate such that ion current densities are of the order of 105 A/cm2 increases the D to TiDx ratio for the evaporation of a film thickness of greater than ˜20 layers by the reduction in space charge effects that can inhibit the dissociation of titanium-deuterium complexes. Atomic deuterium ion yields of ˜10-7 μC of D+/tip have been observed and yields of >10-6 μC of D+/tip should be possible using larger tip radii. The field evaporation of titanium from an array of microfabricated tips has been demonstrated for the first time.

  6. New Insights into Pore Characteristics and Hydrocarbon Generation of Shale Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2014-12-01

    Pore size, distribution, connectivity, and shape as well as hydrocarbon saturation and composition reflect the history of hydrocarbon maturation and migration. However, characterization of the underlying factors and processes controlling hydrocarbons behavior in tight rocks is extremely limited, especially lacking of direct experimental observations. We have studied the pore characteristics of marine and lacustrine shale from the Erdos basin, China during laboratory pyrolysis using small-angle neutron scattering (SANS). Our SANS results show that scattering intensity of smaller pores (< 20 nm)/larger Q values of shale samples increase systematically as temperature increase during pyrolysis from 250 oC to 600oC (Fig.1a). These results in combination with hydrocarbon fractions measurements during the same process (Fig. 1b) provide a quantitative relation between pore characteristics and hydrocarbons generation. Our results indicate that hydrocarbon expulsion primarily causes the observed changes in smaller pores. They also demonstrate that due to its sensitivity to hydrogen, SANS locates all pores whether the pore is filled or not with hydrocarbons. Thus, SANS is particularly suited for probing hydrocarbon behavior in tight shale reservoirs and the factors that impact their pore dynamics for the petroleum industry.

  7. A search for cosmogenic production of β-neutron emitting radionuclides in water

    NASA Astrophysics Data System (ADS)

    Dazeley, S.; Askins, M.; Bergevin, M.; Bernstein, A.; Bowden, N. S.; Shokair, T. M.; Jaffke, P.; Rountree, S. D.; Sweany, M.

    2016-06-01

    Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of β-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the β-neutron measurement, we also provide a first look at isolating single-β producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over 207 live days indicates a 9Li production yield upper limit of 1.9 ×10-7μ-1g-1cm2 at ~400 m water equivalent (m.w.e.) overburden at the 90% confidence level. In this work the 9Li signal in WATCHBOY was used as a proxy for the combined search for 9Li and 8He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.

  8. Proton linac for hospital-based fast neutron therapy and radioisotope production

    SciTech Connect

    Lennox, A.J.; Hendrickson, F.R.; Swenson, D.A.; Winje, R.A.; Young, D.E.; Rush Univ., Chicago, IL; Science Applications International Corp., Princeton, NJ; Fermi National Accelerator Lab., Batavia, IL )

    1989-09-01

    Recent developments in linac technology have led to the design of a hospital-based proton linac for fast neutron therapy. The 180 microamp average current allows beam to be diverted for radioisotope production during treatments while maintaining an acceptable dose rate. During dedicated operation, dose rates greater than 280 neutron rads per minute are achievable at depth, DMAX = 1.6 cm with source to axis distance, SAD = 190 cm. Maximum machine energy is 70 MeV and several intermediate energies are available for optimizing production of isotopes for Positron Emission Tomography and other medical applications. The linac can be used to produce a horizontal or a gantry can be added to the downstream end of the linac for conventional patient positioning. The 70 MeV protons can also be used for proton therapy for ocular melanomas. 17 refs., 1 fig., 1 tab.

  9. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  10. Constraints on binary neutron star merger product from short GRB observations

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2016-02-01

    Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.

  11. ACHIEVING THE REQUIRED COOLANT FLOW DISTRIBUTION FOR THE ACCELERATOR PRODUCTION OF TRITIUM (APT) TUNGSTEN NEUTRON SOURCE

    SciTech Connect

    D. SIEBE; K. PASAMEHMETOGLU

    2000-11-01

    The Accelerator Production of Tritium neutron source consists of clad tungsten targets, which are concentric cylinders with a center rod. These targets are arranged in a matrix of tubes, producing a large number of parallel coolant paths. The coolant flow required to meet thermal-hydraulic design criteria varies with location. This paper describes the work performed to ensure an adequate coolant flow for each target for normal operation and residual heat-removal conditions.

  12. Neutron-induced gamma-ray production from carbon and nitrogen

    SciTech Connect

    Nelson, R.O.; Wender, S.A.

    1994-06-01

    Gamma-ray production cross sections and angular distributions were measured with five 7.6 cm diameter {times} 7.6 cm long BGO detectors at the high-energy white neutron source of the WNR facility at Los Alamos for targets of C {sup 14}NH{sub 3} and {sup 15}NH{sub 3}. Gamma rays were measured in the energy range from 1.4 to 25 MeV. The incident neutron energies spanned the range from 2 to over 100 MeV. The detectors were positioned at angles of 39{degree}, 55{degree}, 90{degree}, 125{degree}, and 144{degree} with respect to the neutron beam. We have extracted angular distributions and cross sections for the 4.44 and 15.1 MeV {gamma} rays from inelastic excitation of C for 4 < E{sub n} < 150 MeV. In ENDF-B/VI these {gamma}-rays are treated as being isotropic. Our angular distributions show that this is not the case. For the nitrogen isotopes we have extracted angular distributions and cross sections for several {gamma} rays in the neutron energy range, 2 < E{sub n} < 20 MeV.

  13. Gamma ray production cross section from energetic neutron inelastic scattering for methodical improvements in planetary gamma-ray spectroscopy

    SciTech Connect

    Castaneda, C.M.; Gearhart, R.; Sanii, B.; Englert, P.A.J.; Drake, D.M.; Reedy, R.C.

    1991-12-31

    Planetary Gamma ray spectroscopy can be used to chemically analyze the top soil from planets in future planetary missions. The production from inelastic neutron interaction plays an effective role in the determination on the C and H at the surface. The gamma ray production cross section from the strongest lines excited in the neutron bombardment of Fe have been measured by the use of a time analyzed quasi-mono-energetic neutron beam and a high purity germanium detector. The results from En=6.5, 32, 43, and 65 MeV are presented.

  14. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    SciTech Connect

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  15. The gravitational-wave signal generated by a galactic population of double neutron-star binaries

    NASA Astrophysics Data System (ADS)

    Yu, Shenghua; Jeffery, C. Simon

    2015-04-01

    We investigate the gravitational wave (GW) signal generated by a population of double neutron-star (DNS) binaries with eccentric orbits caused by kicks during supernova collapse and binary evolution. The DNS population of a standard Milky Way-type galaxy has been studied as a function of star formation history, initial mass function (IMF) and metallicity and of the binary-star common-envelope ejection process. The model provides birthrates, merger rates and total number of DNS as a function of time. The GW signal produced by this population has been computed and expressed in terms of a hypothetical space GW detector (eLISA) by calculating the number of discrete GW signals at different confidence levels, where `signal' refers to detectable GW strain in a given frequency-resolution element. In terms of the parameter space explored, the number of DNS-originating GW signals is greatest in regions of recent star formation, and is significantly increased if metallicity is reduced from 0.02 to 0.001, consistent with Belczynski et al. Increasing the IMF power-law index (from -2.5 to -1.5) increases the number of GW signals by a large factor. This number is also much higher for models where the common-envelope ejection is treated using the α-mechanism (energy conservation) than when using the γ-mechanism (angular-momentum conservation). We have estimated the total number of detectable DNS GW signals from the Galaxy by combining contributions from thin disc, thick disc, bulge and halo. The most probable numbers for an eLISA-type experiment are 0-1600 signals per year at S/N ≥ 1, 0-900 signals per year at S/N ≥ 3, and 0-570 at S/N ≥ 5, coming from about 0-65, 0-60 and 0-50 resolved DNS, respectively.

  16. The Use of the Photofission of 238U for a Neutron-Rich Radioactive Ion Beams Generation

    NASA Astrophysics Data System (ADS)

    Szöllős, O.; Kliman, J.

    2003-10-01

    The fission fragments yield for photofission of 238U, induced by bremsstrahlung photons with endpoint energies of 25 and 50MeV was evaluated to estimate the possibility of producing the neutron-rich nuclei. The systematics coming from A.C. Wahl's Zp model 1 for charge distribution of fission fragments were used. Results for xenon and krypton isotopes are compared with experimental data 2 obtained on the DRIBs 3 (Dubna Radioactive Ion Beams) facility for neutron-rich nuclei production in Flerov Laboratory. The fission rate and fission density in production target for metallic uranium and UCx compounds were simulated with Geant4 4 simulation toolkit to design the target geometry, The fission rate dependence on material of the electron stopping target was examined, At nominal beam values on microtron MT-25 (Ie = 20μA, Ee = 25MeV) up to 2.1011 fissions/s could be achieved. Then the production rate of neutron-rich isotopes reaching order of 109s-1. The induced activity in the production target depending on an irradiation time was calculated for radiation protection purposes and target safety estimation. The cumulation of actinide nuclei was also calculated.

  17. Comparison of Pd/D Co-Deposition and DT Neutron Generated Triple Tracks Observed in CR-39 Detectors

    SciTech Connect

    P.A. Mosier-Boss, J.Y. Dea, L.P.G. Forsley, M.S. Morey, J.R. Tinsley, J.P. Hurley, F.E. Gordon

    2010-08-01

    Solid state nuclear track detectors (SSNTDs), such as CR-39, have been used to detect energetic charged particles and neutrons. Of the neutron and charged particle interactions that can occur in CR-39, the one that is the most easily identifiable is the carbon breakup reaction. The observation of a triple track, which appears as three alpha particle tracks breaking away from a center point, is diagnostic of the 12C(n, n')3α carbon breakup reaction. Such triple tracks have been observed in CR-39 detectors that have been used in Pd/D co-deposition experiments. In this communication, triple tracks in CR-39 detectors observed in Pd/D co-deposition experiments are compared with those generated upon exposure to a DT neutron source. It was found that both sets of tracks were indistinguishable. Both symmetric and asymmetric tracks were observed. Using linear energy transfer (LET) curves and track modeling, the energy of the neutron that created the triple track can be estimated.

  18. Geant4 simulations of the neutron production and transport in the n_TOF spallation target

    NASA Astrophysics Data System (ADS)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.

    2016-11-01

    The neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with Geant4. The results obtained with the different hadronic Physics Lists provided by Geant4 have been compared with the experimental neutron flux in n_TOF-EAR1. The best overall agreement in both the absolute value and the energy dependence of the flux from thermal to 1GeV, is obtained with the INCL++ model coupled with the Fritiof Model(FTFP). This Physics List has been thus used to simulate and study the main features of the new n_TOF-EAR2 beam line, currently in its commissioning phase.

  19. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  20. Production of unknown neutron-rich isotopes in 238U collisions at near-barrier energy

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Li, Zhuxia; Zhang, Yingxun; Wang, Ning; Li, Qingfeng; Shen, Caiwan; Wang, Yongjia; Wu, Xizhen

    2016-08-01

    The production cross sections for primary and residual fragments with charge number from Z =70 to 120 produced in the collision of 238U at 7.0 MeV/nucleon are calculated by the improved quantum molecular dynamics (ImQMD) model incorporated with the statistical evaporation model (hivap code). The calculation results predict that about 60 unknown neutron-rich isotopes from elements Ra (Z =88 ) to Db (Z =105 ) can be produced with the production cross sections above the lower bound of 10-8 mb in this reaction. And almost all of the unknown neutron-rich isotopes are emitted at the laboratory angles θlab≤60°. Two cases, i.e., the production of the unknown uranium isotopes with A ≥244 and that of rutherfordium with A ≥269 , are investigated to understand the production mechanism of unknown neutron-rich isotopes. It is found that for the former case the collision time between two uranium nuclei is shorter and the primary fragments producing the residues have smaller excitation energies of ≤30 MeV and the outgoing angles of those residues cover a range of 30°-60°. For the latter case, a longer collision time is needed for a large number of nucleons being transferred and thus it results in higher excitation energies and smaller outgoing angles of primary fragments, and eventually results in a very small production cross section for the residues of Rf with A ≥269 which have a small interval of outgoing angles of θlab=40°-50°.

  1. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  2. ALPHN: A computer program for calculating ({alpha}, n) neutron production in canisters of high-level waste

    SciTech Connect

    Salmon, R.; Hermann, O.W.

    1992-10-01

    The rate of neutron production from ({alpha}, n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the ({alpha}, n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the ({alpha}, n) neutron production of each actinide in neutrons per second and the total for the canister. The ({alpha}, n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown.

  3. ALPHN: A computer program for calculating ([alpha], n) neutron production in canisters of high-level waste

    SciTech Connect

    Salmon, R.; Hermann, O.W.

    1992-10-01

    The rate of neutron production from ([alpha], n) reactions in canisters of immobilized high-level waste containing borosilicate glass or glass-ceramic compositions is significant and must be considered when estimating neutron shielding requirements. The personal computer program ALPHA calculates the ([alpha], n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the ([alpha], n) neutron production of each actinide in neutrons per second and the total for the canister. The ([alpha], n) neutron production rates are source terms only; that is, they are production rates within the glass and do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister. In a typical application, these cases might represent the same canister of vitrified high-level waste at eight different decay times. Run time for a typical problem containing 20 chemical species, 24 actinides, and 8 decay times was 35 s on an IBM AT personal computer. Results of an example based on an expected canister composition at the Defense Waste Processing Facility are shown.

  4. Sequential generation of matrix-product states in cavity QED

    SciTech Connect

    Schoen, C.; Hammerer, K.; Wolf, M. M.; Cirac, J. I.; Solano, E.

    2007-03-15

    We study the sequential generation of entangled photonic and atomic multiqubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multiqubit states sequentially generated at the cavity output of a single-photon source and atomic multiqubit states generated by their sequential interaction with the same cavity mode.

  5. High-power liquid-lithium jet target for neutron production.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Berkovits, D; Eliyahu, I; Feinberg, G; Friedman, M; Hazenshprung, N; Mardor, I; Nagler, A; Shimel, G; Tessler, M; Silverman, I

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the (7)Li(p,n)(7)Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm(3)) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the (7)Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ~200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm(2) and volume power density of ~2 MW/cm(3) at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF. PMID:24387433

  6. High-power liquid-lithium jet target for neutron production

    NASA Astrophysics Data System (ADS)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Berkovits, D.; Eliyahu, I.; Feinberg, G.; Friedman, M.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Tessler, M.; Silverman, I.

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ˜200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm2 and volume power density of ˜2 MW/cm3 at a lithium flow of ˜4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  7. High-power liquid-lithium jet target for neutron production

    SciTech Connect

    Halfon, S.; Feinberg, G.; Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I.; Paul, M.; Friedman, M.; Tessler, M.

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  8. APECS: A family of optimization products for least cost generation

    SciTech Connect

    Petrill, E.; Stallings, J.; Shea, S.

    1996-05-01

    Reducing costs of power generation is the primary focus of many power generators today in efforts to prepare for competition in a deregulated market, to increase profitability, or to retain customers. To help power generators track and manage power generation costs, the Electric Power Research Institute (EPRI) offers APECS{sup plus}, one of EPRI`s APECS - Advisory Plant and Environmental Control System - family of optimization products for fossil power plants. The APECS family of products provides tools and techniques to optimize costs, as well as NO{sub x} emissions and performance, in fossil power plants. These products include APECS{sup plus}, GNOCIS, and ULTRAMAX{reg_sign}. The products have varying degrees of functionality and their application at a power plant will depend on the site-specific needs and resources in each case. This paper describes APECS{sup plus}, the cost management product of the APECS family of optimization products. The other key products in this family, GNOCIS and ULTRAMAX{reg_sign}, are mentioned here and described in more detail in the literature.

  9. A compact post-acceleration beam chopper for a 4.5 MV Dynamitron pulsed neutron generator

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Fujisawa, M.; Baba, M.; Iwasaki, T.; Iwasaki, S.; Sakamoto, R.; Hirakawa, N.; Sugiyama, K.

    1994-08-01

    A post-acceleration beam chopper (PACS) has been installed for a 4.5 MV Dynamitron accelerator to improve the energy resolution of neutron time-of-flight (TOF) experiments by shortening the duration of the ion beam pulses. The PACS sweeps the accelerated ion pulses across a chopping slit and eliminates the tails of the beam pulses. It operates sinusoidally at a frequency of 8 MHz with a maximum voltage of 10 kV peak to peak in synchronization with the accelerated ion pulses. The high voltage generator of the PACS was constructed of commercially available amplifiers and components, which realized easy maintenance and low cost. The PACS proved to be very effective to improve the pulse shape and has been applied for double-differential neutron emission cross section measurements.

  10. MODIS Land Data Products: Generation, Quality Assurance and Validation

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward; Wolfe, Robert; Morisette, Jeffery; Sinno, Scott; Teague, Michael; Saleous, Nazmi; Devadiga, Sadashiva; Justice, Christopher; Nickeson, Jaime

    2008-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described.

  11. Electron paramagnetic resonance spectroscopy of fast neutron-generated defects in GaAs

    NASA Astrophysics Data System (ADS)

    Goltzene, A.; Meyer, B.; Schwab, C.; Greenbaum, S. G.; Wagner, R. J.; Kennedy, T. A.

    1984-12-01

    A series of fast neutron-irradiated GaAs samples (neutron fluence range of 2×1015-2.5×1017 cm-2) has been investigated by electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra at 9 GHz exhibit a broad (˜1 kG) Lorentzian singlet at g≊2.09 superimposed on the AsGa quadruplet. The singlet intensity scales linearly with neutron fluence as does that of the quadruplet. The presence of this new defect has not been reported in as-grown GaAs known to have large concentrations of AsGa defects. EPR measurements at 35, 159, and 337 GHz indicate that the singlet linewidth increases with the microwave frequency.

  12. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry.

  13. Neutron cross-sections for next generation reactors: new data from n_TOF.

    PubMed

    Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2010-01-01

    In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. PMID:20096595

  14. New Production Routes for Medical Isotopes 64Cu and 67Cu Using Accelerator Neutrons

    NASA Astrophysics Data System (ADS)

    Kin, Tadahiro; Nagai, Yasuki; Iwamoto, Nobuyuki; Minato, Futoshi; Iwamoto, Osamu; Hatsukawa, Yuichi; Segawa, Mariko; Harada, Hideo; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke

    2013-03-01

    We have measured the activation cross sections producing 64Cu and 67Cu, promising medical radioisotopes for molecular imaging and radioimmunotherapy, by bombarding a natural zinc sample with 14 MeV neutrons. We estimated the production yields of 64Cu and 67Cu by fast neutrons from \\text{natC(d,n) with 40 MeV 5 mA deuterons. We used the present result together with the evaluated cross section of Zn isotopes. The calculated 64Cu yield is 1.8 TBq (175 g 64Zn) for 12 h of irradiation; the yields of 67Cu by 67Zn(n,p)67Cu and 68Zn(n,x)67Cu were 249 GBq (184 g 67Zn) and 287 GBq (186 g 68Zn) at the end of 2 days of irradiation, respectively. From the results, we proposed a new route to produce 67Cu with very little radionuclide impurity via the 68Zn(n,x)67Cu reaction, and showed the 64Zn(n,p)64Cu reaction to be a promising route to produce 64Cu. Both 67Cu and 64Cu are noted to be produced using fast neutrons.

  15. Neutron Production in Deuterium Gas-Puff Z-Pinch Implosions on Refurbished Z

    NASA Astrophysics Data System (ADS)

    Clark, R. W.; Velikovich, A. L.; Davis, J.; Giuliani, J. L.; Coverdale, C. A.; Flicker, D.

    2009-11-01

    Earlier experiments with deuterium gas puff implosions on Z [Coverdale et al., Phys. Plasmas 14, 022706 and 056309 (2007)] demonstrated reproducible production of high neutron yields, up to ˜3x10^13, a large part of which might be of thermonuclear origin. We report a scoping study for such experiments on refurbished Z which can implode deuterium gas-puff loads at high-current, longer pulse (˜250 ns) regime. Significantly higher thermal DD neutron yields are predicted for ZR. We discuss the relative roles of kinetic-to-thermal energy conversion and adiabatic compression in heating the central deuterium column to the fusion temperature. We quantify the effect on the thermal neutron yield produced by loading the outer shells of the multi-shell gas-puff with a heavier gas to improve matching of the implosion to the current pulse, by additional heating of the central jet area with a Z-Beamlet laser and by applying an axial magnetic field in order to stabilize the implosion from a large initial radius.

  16. Detection of illicit HEU production in gaseous centrifuge enrichment plants using neutron counting techniques on product cylinders

    SciTech Connect

    Freeman, Corey R; Geist, William H

    2010-01-01

    Innovative and novel safeguards approaches are needed for nuclear energy to meet global energy needs without the threat of nuclear weapons proliferation. Part of these efforts will include creating verification techniques that can monitor uranium enrichment facilities for illicit production of highly-enriched uranium (HEU). Passive nondestructive assay (NDA) techniques will be critical in preventing illicit HEU production because NDA offers the possibility of continuous and unattended monitoring capabilities with limited impact on facility operations. Gaseous centrifuge enrichment plants (GCEP) are commonly used to produce low-enriched uranium (LEU) for reactor fuel. In a GCEP, gaseous UF{sub 6} spins at high velocities in centrifuges to separate the molecules containing {sup 238}U from those containing the lighter {sup 235}U. Unfortunately, the process for creating LEU is inherently the same as HEU, creating a proliferation concern. Insuring that GCEPs are producing declared enrichments poses many difficult challenges. In a GCEP, large cascade halls operating thousands of centrifuges work together to enrich the uranium which makes effective monitoring of the cascade hall economically prohibitive and invasive to plant operations. However, the enriched uranium exiting the cascade hall fills product cylinders where the UF{sub 6} gas sublimes and condenses for easier storage and transportation. These product cylinders hold large quantities of enriched uranium, offering a strong signal for NDA measurement. Neutrons have a large penetrability through materials making their use advantageous compared to gamma techniques where the signal is easily attenuated. One proposed technique for detecting HEU production in a GCEP is using neutron coincidence counting at the product cylinder take off stations. This paper discusses findings from Monte Carlo N-Particle eXtended (MCNPX) code simulations that examine the feasibility of such a detector.

  17. Delayed-neutron branching ratios of precursors in the fission product region

    SciTech Connect

    Rudstam, G.; Aleklett, K.; Sihver, L. )

    1993-01-01

    Delayed-neutron branching ratios in the fission product region have been tabulated, and average values have been determined. In order to provide data complementary to published values an experiment covering the mass range 79-150 has been carried out at the OSIRIS isotope-separator on-line facility at Studsvik. This experiment has resulted in branching ratios for some precursors ([sup 84]Ge, [sup 133]Sn, and [sup 150]La) for which such data have not been reported before. In several other cases the new results are accurate than older determinations. 19 refs., 2 figs., 1 tab.

  18. Measurements of Spin Observables in Single Pion Photo-Production from Polarized Quasi-Free Neutrons in Solid HD

    NASA Astrophysics Data System (ADS)

    Kageya, Tsuneo

    Abstract Psuedo-scalar meson photo production measurements have been carried out with longitudinally-polarized neutrons using the circularly and linearly polarized photon beams and the CLAS at Thomas Jefferson National Accelerator Facility (Jlab). The experiment aims to obtain a complete set of spin observables on an effective neutron target using D in HD. Preliminary E and Σ asymmetries for the exclusive reaction, γ + n(p) → π- + p(p), are discussed.

  19. Measurements of spin observables in pseudo-scalar meson photo-production using polarized neutrons in solid HD

    NASA Astrophysics Data System (ADS)

    Kageya, T.

    2014-01-01

    A measurement of psuedo-scalar meson photo production from longitudinally polarized solid HD has been carried out with the CLAS at Thomas Jefferson National Accelerator Facility (Jlab) with circularly and linearly polarized photon beams. Its aim is to measure a complete set of spin observables for the neutron simultaneously from the same experiment. As a polarized neutron, deutron in HD was used. Preliminary asymmetries are shown for the π- channel.

  20. Measurements of spin observables in pseudo-scalar meson photo-production using polarized neutrons in solid HD

    SciTech Connect

    Kageya, Tsuneo

    2014-01-01

    A measurement of psuedo-scalar meson photo production from longitudinally polarized solid HD has been carried out with the CLAS at Thomas Jefferson National Accelerator Facility (Jlab) with circularly and linearly polarized photon beams. Its aim is to measure a complete set of spin observables for the neutron simultaneously from the same experiment. As a polarized neutron, deutron in HD was used. Preliminary asymmetries are shown for the {pi}{sup -} channel.

  1. Gamma-ray spectroscopy of neutron-rich products of heavy-ion collisions

    SciTech Connect

    Carpenter, M.P.; Janssens, R.V.F.; Ahmad, I.

    1995-08-01

    Thick-target {gamma}{gamma} coincidence techniques are being used to explore the spectroscopy of otherwise hard-to-reach neutron-rich products of deep-inelastic heavy ion reactions. Extensive {gamma}{gamma} coincidence measurements were performed at ATLAS using pulsed beams of {sup 80}Se, {sup 136}Xe, and {sup 238}U on lead-backed {sup 122,124}Sn targets with energies 10-15% above the Coulomb barrier. Gamma-ray coincidence intensities were used to map out yield distributions with A and Z for even-even product nuclei around the target and around the projectile. The main features of the yield patterns are understandable in terms of N/Z equilibration. We had the most success in studying the decays of yrast isomers. Thus far, more than thirty new {mu}s isomers in the Z = 50 region were found and characterized. Making isotopic assignments for previously unknown {gamma}-ray cascades proves to be one of the biggest problems. Our assignments were based (a) on rare overlaps with radioactivity data, (b) on the relative yields with different beams, and (c) on observed cross-coincidences between {gamma} rays from light and heavy reaction partners. However, the primary products of deep inelastic collisions often are sufficiently excited for subsequent neutron evaporation, so {gamma}{gamma} cross-coincidence results require careful interpretation.

  2. Long life neutron generator target using deuterium pass-through structure

    NASA Technical Reports Server (NTRS)

    Alger, D. L.

    1974-01-01

    Target structure permits all deuterons, except the one-in-a-million that interacts with tritium atom to produce a neutron, to pass completely through target structure and be returned to vacuum system. Since tritium atoms are not displaced as in conventional targets, tritium population will remain unchanged while under deuteron bombardment.

  3. High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, J.; Petrov, G. M.; Nees, J. A.; He, Z.-H.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2016-10-01

    Using several-mJ energy pulses from a high-repetition rate (1/2 kHz), ultrashort (35 fs) pulsed laser interacting with a ˜ 10 μm diameter stream of free-flowing heavy water (D2O), we demonstrate a 2.45 MeV neutron flux of 105/s. Operating at high intensity (of order 1019 W/cm2), laser pulse energy is efficiently absorbed in the pre-plasma, generating energetic deuterons. These collide with deuterium nuclei in both the bulk target and the large volume of low density D2O vapor surrounding the target to generate neutrons through d ( d , n ) 3 He reactions. The neutron flux, as measured by a calibrated neutron bubble detector, increases as the laser pulse energy is increased from 6 mJ to 12 mJ. A quantitative comparison between the measured flux and the results derived from 2D-particle-in-cell simulations shows comparable neutron fluxes for laser characteristics similar to the experiment. The simulations reveal that there are two groups of deuterons. Forward moving deuterons generate deuterium-deuterium fusion reactions in the D2O stream and act as a point source of neutrons, while backward moving deuterons propagate through the low-density D2O vapor filled chamber and yield a volumetric source of neutrons.

  4. Light-ion production in the interaction of 96 MeV neutrons with carbon

    SciTech Connect

    Tippawan, U.; Dangtip, S.; Pomp, S.; Blomgren, J.; Gustavsson, C.; Klug, J.; Oesterlund, M.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.; Jonsson, O.; Prokofiev, A. V.; Renberg, P.-U.; Corcalciuc, V.; Watanabe, Y.; Koning, A. J.

    2009-06-15

    Double-differential cross sections for light-ion (p, d, t, {sup 3}He, and {alpha}) production in carbon induced by 96 MeV neutrons have been measured at eight laboratory angles from 20 deg. to 160 deg. in steps of 20 deg. Experimental techniques are presented as well as procedures for data taking and data reduction. Deduced energy-differential, angle-differential, and production cross sections are reported. Experimental cross sections are compared with theoretical reaction model calculations and experimental data in the literature. The measured particle data show marked discrepancies from the results of the model calculations in spectral shape and magnitude. The measured production cross sections for protons, deuterons, tritons, {sup 3}He, and {alpha} particles support the trends suggested by data at lower energies.

  5. Probing the neutron-skin thickness by photon production from reactions induced by intermediate-energy protons

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng

    2015-07-01

    The photon from neutron-proton bremsstrahlung in p +Pb reactions is examined as a potential probe of the neutron-skin thickness in different centralities and at different proton incident energies. It is shown that the best choice of reaction environment is about 140 MeV for the incident proton and the 95%-100% centrality for the reaction system since the incident proton mainly interacts with neutrons inside the skin of the target and thus leads to different photon production to a maximal extent. Moreover, considering two main uncertainties from both photon production probability and nucleon-nucleon cross section in the reaction, I propose to use the ratio of photon production from two reactions to measure the neutron-skin thickness because of its cancellation effects on these uncertainties simultaneously, but preserved about 13%-15% sensitivities on the varied neutron-skin thickness from 0.1 to 0.3 fm within the current experimental uncertainty range of the neutron-skin size in 208Pb.

  6. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  7. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  8. A Step Toward Physics-Based Cosmogenic Nuclide Production Rates: Measurements of High-Energy Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Caffee, M. W.; Welten, K. C.; Ninomiya, K.; Omoto, T.; Nakagaki, R.; Takahashi, N.; Kasamatsu, Y.; Shima, T.; Sekimoto, S.; Yashima, H.; Shibata, S.; Matsumura, H.; Bajo, K.; Nagao, K.; Satoh, D.; Iwamoto, Y.; Hagiwara, M.; Shinohara, A.; Imamura, M.; Nishiizumi, K.

    2010-12-01

    Cosmic-ray produced nuclides are found in terrestrial and extraterrestrial materials. In extra-terrestrial materials it is in many instances possible to find samples with exposure times much longer than a specifc radionuclide’s half-life so the production rate for a specific geometry can be determined from the saturation activity. For most terrestrial applications this condition is not met, so an exposure age can only be determined if the production rate is independently determined. For terrestrial applications these production rates are ascertained by using geologic calibration sites. These calibrations themselves are not without ambiguity at times. Physics-based production rates are an alternative means by which production rates can be determined. Monte Carlo neutron transport codes are the essential tool in model calculations of cosmogenic nuclide production rates in terrestrial and extraterrestrial materials. However, even when the fundamental physics of neutron transport within planetary materials (atmospheres and surface materials) is modeled properly, the reliability of the results is limited by the lack of measured cross sections. Indeed, at the present time, the lack of the excitation functions for nuclides produced by high-energy neutrons that dominate the production of cosmogenic nuclides, is the largest uncertainty in cosmogenic nuclide production rate models. To improve the accuracy of cosmogenic nuclide production rates we are performing measurements of the high-energy neutron excitation functions [1]. Target materials, representing compounds found in naturally occurring minerals, were exposed to quasi-monoenergetic neutrons at the Research Center for Nuclear Physics (RCNP), Osaka University. The neutrons are produced utilizing the reaction 7Li(p, n). The first two irradiations used 300 MeV and 392 MeV primary proton beams, yielding average neutron energies of 287 MeV and 370 MeV, respectively. After bombardment by neutrons, the short half

  9. Defining next-generation products: an inside look.

    PubMed

    Tabrizi, B; Walleigh, R

    1997-01-01

    The continued success of technology-based companies depends on their proficiency in creating next-generation products and their derivatives. So getting such products out the door on schedule must be routine for such companies, right? Not quite. The authors recently engaged in a detailed study--in which they had access to sensitive internal information and to candid interviews with people at every level--of 28 next-generation product-development projects in 14 leading high-tech companies. They found that most of the companies were unable to complete such projects on schedule. And the companies also had difficulty developing the derivative products needed to fill the gaps in the market that their next-generation products would create. The problem in every case, the authors discovered, was rooted in the product definition phase. And not coincidentally, the successful companies in the study had all learned how to handle the technical and marketplace uncertainties in their product definition processes. The authors have discerned from the actions of those companies a set of best practices that can measurably improve the definition phase of any company's product-development process. They have grouped the techniques into three categories and carefully lay out the steps that companies need to take as they work through each stage. The best practices revealed here are not a magic formula for rapid, successful new-product definition. But they can help companies capture new markets without major delays. And that is good news for any manager facing the uncertainty that goes with developing products for a global marketplace.

  10. Defining next-generation products: an inside look.

    PubMed

    Tabrizi, B; Walleigh, R

    1997-01-01

    The continued success of technology-based companies depends on their proficiency in creating next-generation products and their derivatives. So getting such products out the door on schedule must be routine for such companies, right? Not quite. The authors recently engaged in a detailed study--in which they had access to sensitive internal information and to candid interviews with people at every level--of 28 next-generation product-development projects in 14 leading high-tech companies. They found that most of the companies were unable to complete such projects on schedule. And the companies also had difficulty developing the derivative products needed to fill the gaps in the market that their next-generation products would create. The problem in every case, the authors discovered, was rooted in the product definition phase. And not coincidentally, the successful companies in the study had all learned how to handle the technical and marketplace uncertainties in their product definition processes. The authors have discerned from the actions of those companies a set of best practices that can measurably improve the definition phase of any company's product-development process. They have grouped the techniques into three categories and carefully lay out the steps that companies need to take as they work through each stage. The best practices revealed here are not a magic formula for rapid, successful new-product definition. But they can help companies capture new markets without major delays. And that is good news for any manager facing the uncertainty that goes with developing products for a global marketplace. PMID:10174793

  11. Chem-Prep PZT 95/5 for neutron generator applications : development of laboratory-scale powder processing operations.

    SciTech Connect

    Montoya, Ted V.; Moore, Roger Howard; Spindle, Thomas Lewis Jr.

    2003-12-01

    Chemical synthesis methods are being developed as a future source of PZT 95/5 powder for neutron generator voltage bar applications. Laboratory-scale powder processes were established to produce PZT billets from these powders. The interactions between calcining temperature, sintering temperature, and pore former content were studied to identify the conditions necessary to produce PZT billets of the desired density and grain size. Several binder systems and pressing aids were evaluated for producing uniform sintered billets with low open porosity. The development of these processes supported the powder synthesis efforts and enabled comparisons between different chem-prep routes.

  12. Pyroelectric and ferroelectric semiconductors: dynamic holographic grating recording, generation of self-focused electron beam, X-rays, and neutrons

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N. V.; Kukhtareva, T. V.; Land, P.; Wang, J. C.

    2007-09-01

    Optical and electrical effects in semiconductors and ferroelectric crystals will be modeled. Standard photorefractive equations are supplemented by the equation of state for the polarization density following Devonshire-Ginsburg-Landau (DGL) approach. We have derived equations for pyroelectric and photogalvanic contribution to the holographic grating recording in ferroelectric materials. We will consider double-functional holographic interferometer, based on holographic pyroelectric current and optical beam coupling. Crystal electrostatic accelerators, based on charging of ferroelectric crystals by pyroelectric and photogalvanic effects are discussed in relation to generation of self-focused electron beam, X-rays and neutrons.

  13. Measurement of gamma-ray production cross sections in neutron-induced reactions for Al and Pb

    SciTech Connect

    Pavlik, A.; Vonach, H.; Hitzenberger, H.; Nelson, R.O.; Haight, R.C.; Wender, S.A.; Young, P.G.; Chadwick, M.B.

    1995-02-01

    The prompt gamma-radiation from the interaction of fast neutrons with aluminum and lead was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. The samples (Al and isotopically enriched {sup 207}Pb and {sup 208}Pb) were positioned at about 20 m or 41 m distance from the neutron production target. The spectra of the emitted gamma-rays were measured with a high-resolution HPGe detector. The incident neutron energy was determined by the time-of-flight method and the neutron fluence was measured with a U fission chamber. From the aluminum gamma-ray spectra excitation functions for prominent gamma-transitions in various residual nuclei (in the range from O to Al) were derived for neutron energies from 3 MeV to 400 MeV. For lead (n,xn{gamma}) reactions were studied for neutron energies up to 200 MeV by analyzing prominent gamma-transitions in the residual nuclei {sup 200,202,204,206,207,208}Pb. The experimental results were compared with nuclear model calculations using the code GNASH. A good overall agreement was obtained without special parameter adjustments.

  14. Neutron production and time resolution of a new class moderator for pulsed neutron diffraction. Measurements and transport calculations

    NASA Astrophysics Data System (ADS)

    Mayer, R. E.; Florido, P. C.; Granada, J. R.; Dawidowski, J.; Gillette, V. H.

    1992-06-01

    Measurements of neutron pulse time-width and intensity have been carried out on grids of small moderators placed side by side and decoupled by cadium strips; a moderator concept introduced by the authors through previous publications. Transport calculations are based on the standard reactor code DOT 3.5 with the ENDF-B IV nuclear data library.

  15. Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Sargsyan, V. V.; Scheid, W.

    2010-02-01

    The production cross sections of new neutron-rich Zn84,86 and Ge90,92 isotopes beyond N=50 are estimated for the first time in the multinucleon transfer reactions Ca48 + U238 and Ca48 + Pu244. The production of new isotopes in reactions with a Ca48 beam is discussed for future experiments.

  16. ACCELERATOR BASED CONTINUOUS NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; RUGGIERO,A.G.; LUDEWIG,H.

    2003-03-25

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate protons impinging on a heavy metal target. There do not appear to be any major technical challenges to the building of such a facility since a continuous spallation source has been operating in Switzerland for several years.

  17. A search for cosmogenic production of β-neutron emitting radionuclides in water

    DOE PAGESBeta

    Dazeley, S.; Askins, M.; Bergevin, M.; Bernstein, A.; Bowden, N. S.; Shokair, T. M.; Jaffke, P.; Rountree, S. D.; Sweany, M.

    2016-03-08

    Here we present the first results of WATCHBOY, a water Cherenkov detector designed to measure the yield of β-neutron emitting radionuclides produced by cosmic ray muons in water. In addition to the β-neutron measurement, we also provide a first look at isolating single-β producing radionuclides following muon-induced hadronic showers as a check of the detection capabilities of WATCHBOY. The data taken over 207 live days indicates a 9Li production yield upper limit ofmore » $$1.9\\times10^{-7}\\mu^{-1}g^{-1}\\mathrm{cm}^2$$ at $$\\sim400$$ meters water equivalent (m.w.e.) overburden at the 90% confidence level. In this work the 9Li signal in WATCHBOY was used as a proxy for the combined search for 9Li and 8He production. This result will provide a constraint on estimates of antineutrino-like backgrounds in future water-based antineutrino detectors.« less

  18. Pair production and annihilation in strong magnetic fields. [of neutron stars and pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    Electromagnetic phenomena occurring in the presence of strong magnetic fields are currently of great interest in high-energy astrophysics. In particular, the process of pair production by single photons in the presence of fields of order 10 to the 12th power Gauss is of importance in cascade models of pulsar gamma ray emission, and may also become significant in theories of other radiation phenomena whose sources may be neutron stars (e.g., gamma ray bursts). In addition to pair production, the inverse process of pair annihilation is greatly affected by the presence of superstrong magnetic fields. The most significant departures from annihilation processes in free space are a reduction in the total rate for annihilation into two photons, a broadening of the familiar 511-keV line for annihilation at rest, and the possibility for annihilation into a single photon which dominates the two-photon annihilation for B (10 to 13th power Gauss) The physics of these pair conversion processes, which is reviewed briefly, can become quite complex in the teragauss regime, and can involve calculations which are technically difficult to incorporate into models of emission mechanisms in neutron star magnetospheres. However, theoretical work, especially the case of pair annihilation, also suggests potential techniques for more direct measurements of field strengths near the stellar surface.

  19. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  20. Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator

    NASA Astrophysics Data System (ADS)

    Sabo-Napadensky, I.; Weiss-Babai, R.; Gayer, A.; Vartsky, D.; Bar, D.; Mor, I.; Chacham-Zada, R.; Cohen, M.; Tamim, N.

    2012-06-01

    One of the main problems in neutron imaging is the scattered radiation that accompanies the direct neutrons that reach the imaging detectors and affect the image quality. We have developed a dedicated collimator for 14.2 MeV fast neutrons. The collimator optimizes the amount of scattered radiation to primary neutrons that arrive at the imaging plane. We have used different materials within the collimator in order to lower the scattered radiation that arrives at the scanned object. The image quality and the signal to noise ratios that are measured show that a mixture of BORAX (Na2B4O7ṡ10H2O) and water in the experimental beam collimator give the best results. We have used GEANT4 to simulate the collimator performance, the simulations predict the optimized material looking on the ratios of the scattered to primary neutrons that contribute in the detector. We present our experimental setup, report the results of the experimental and related simulation studies with neutrons beam generated by a 14.2 MeV D-T neutron generator.

  1. Engineering cyanobacteria to generate high-value products

    SciTech Connect

    Ducat, DC; Way, JC; Silver, PA

    2011-02-01

    Although many microorganisms have been used for the bioindustrial generation of valuable metabolites, the productive potential of cyanobacterial species has remained largely unexplored. Cyanobacteria possess several advantages as organisms for bioindustrial processes, including simple input requirements, tolerance of marginal agricultural environments, rapid genetics, and carbon-neutral applications that could be leveraged to address global climate change concerns. Here, we review recent research involving the engineering of cyanobacterial species for the production of valuable bioindustrial compounds, including natural cyanobacterial products (e.g. sugars and isoprene), biofuels (e.g. alcohols, alkanes and hydrogen), and other commodity chemicals. Biological and economic obstacles to scaled cyanobacterial production are highlighted, and methods for increasing cyanobacterial production efficiencies are discussed.

  2. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  3. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  4. Development of an Efficient Approach to Perform Neutronics Simulations for Plutonium-238 Production

    SciTech Connect

    Chandler, David; Ellis, Ronald James

    2016-01-01

    Conversion of 238Pu decay heat into usable electricity is imperative to power National Aeronautics and Space Administration (NASA) deep space exploration missions; however, the current stockpile of 238Pu is diminishing and the quality is less than ideal. In response, the US Department of Energy and NASA have undertaken a program to reestablish a domestic 238Pu production program and a technology demonstration sub-project has been initiated. Neutronics simulations for 238Pu production play a vital role in this project because the results guide reactor safety-basis, target design and optimization, and post-irradiation examination activities. A new, efficient neutronics simulation tool written in Python was developed to evaluate, with the highest fidelity possible with approved tools, the time-dependent nuclide evolution and heat deposition rates in 238Pu production targets irradiated in the High Flux Isotope Reactor (HFIR). The Python Activation and Heat Deposition Script (PAHDS) was developed specifically for experiment analysis in HFIR and couples the MCNP5 and SCALE 6.1.3 software quality assured tools to take advantage of an existing high-fidelity MCNP HFIR model, the most up-to-date ORIGEN code, and the most up-to-date nuclear data. Three cycle simulations were performed with PAHDS implementing ENDF/B-VII.0, ENDF/B-VII.1, and the Hybrid Library GPD-Rev0 cross-section libraries. The 238Pu production results were benchmarked against VESTA-obtained results and the impact of various cross-section libraries on the calculated metrics were assessed.

  5. Prompt γ-ray production in neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2013-04-01

    Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.

  6. Neutron Dosimetry on the Full-Core First Generation VVER-440 Aimed at Reactor Support Structure Load Evaluation

    NASA Astrophysics Data System (ADS)

    Borodkin, P.; Borodkin, G.; Khrennikov, N.; Konheiser, J.; Noack, K.

    2009-08-01

    Reactor support structures (RSS), especially the ferritic steel wall of the water tank, of first-generation VVER-440 are non-restorable reactor equipment, and their lifetime may restrict plant-life. All operated Russian first generation VVER-440 have a reduced core with dummy assemblies except Unit 4 of Novovoronezh nuclear power plant (NPP). In comparison with other reactors, the full-core loading scheme of this reactor provides the highest neutron fluence on the reactor pressure vessel (RPV) and RSS accumulated over design service-life and its prolongation. The radiation load parameters on the RPV and RSS that have resulted from this core loading scheme should be evaluated by means of precise calculations and validated by ex-vessel neutron dosimetry to provide the reliable assessment of embrittlement parameters of these reactor components. The results of different types of calculations and their comparison with measured data have been analyzed in this paper. The calculational analysis of RSS fluence rate variation in dependence on the core loading scheme, including the standard and low leakage core as well as the introduction of dummy assemblies, is presented in this paper.

  7. Gamma ray generator

    SciTech Connect

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  8. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    SciTech Connect

    Higginson, D. P.; McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K.; Petrov, G. M.; Davis, J.; Frenje, J. A.; Jarrott, L. C.; Tynan, G.; Beg, F. N.; Kodama, R.; Nakamura, H.; Lancaster, K. L.

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  9. GOES-R GS Product Generation Infrastructure Operations

    NASA Astrophysics Data System (ADS)

    Blanton, M.; Gundy, J.

    2012-12-01

    GOES-R GS Product Generation Infrastructure Operations: The GOES-R Ground System (GS) will produce a much larger set of products with higher data density than previous GOES systems. This requires considerably greater compute and memory resources to achieve the necessary latency and availability for these products. Over time, new algorithms could be added and existing ones removed or updated, but the GOES-R GS cannot go down during this time. To meet these GOES-R GS processing needs, the Harris Corporation will implement a Product Generation (PG) infrastructure that is scalable, extensible, extendable, modular and reliable. The primary parts of the PG infrastructure are the Service Based Architecture (SBA), which includes the Distributed Data Fabric (DDF). The SBA is the middleware that encapsulates and manages science algorithms that generate products. The SBA is divided into three parts, the Executive, which manages and configures the algorithm as a service, the Dispatcher, which provides data to the algorithm, and the Strategy, which determines when the algorithm can execute with the available data. The SBA is a distributed architecture, with services connected to each other over a compute grid and is highly scalable. This plug-and-play architecture allows algorithms to be added, removed, or updated without affecting any other services or software currently running and producing data. Algorithms require product data from other algorithms, so a scalable and reliable messaging is necessary. The SBA uses the DDF to provide this data communication layer between algorithms. The DDF provides an abstract interface over a distributed and persistent multi-layered storage system (memory based caching above disk-based storage) and an event system that allows algorithm services to know when data is available and to get the data that they need to begin processing when they need it. Together, the SBA and the DDF provide a flexible, high performance architecture that can meet

  10. Production of neutron-rich Ca, Sn, and Xe isotopes in transfer-type reactions with radioactive beams

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lacroix, D.

    2010-12-15

    The production cross sections of neutron-rich isotopes {sup 52,54,56,58,60}Ca, {sup 136,138,140,142}Sn, and {sup 146,148,150,152}Xe are predicted for future experiments in the diffusive multinucleon transfer reactions {sup 86,90,92,94}Kr, {sup 124,130,132,134}Sn, {sup 136,140,142,146}Xe, and {sup 138,144,146}Ba+{sup 48}Ca with stable and radioactive beams at incident energies close to the Coulomb barrier. Because of the small cross sections, the production of neutron-rich isotopes requires the optimal choice of projectile-target combinations and bombarding energies.

  11. New neutron-rich isotope production in 154Sm+160Gd

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Guo, Lu

    2016-09-01

    Deep inelastic scattering in 154Sm+160Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD) model and time dependent Hartree-Fock (TDHF) theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI) for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with 58 ≤ Z ≤ 76 are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

  12. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    PubMed

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  13. Bubble production mechanism in a microfluidic foam generator.

    PubMed

    Stoffel, M; Wahl, S; Lorenceau, E; Höhler, R; Mercier, B; Angelescu, D E

    2012-05-11

    We present the design and characterization of a microfluidic bubble generator that has the potential of producing monodisperse bubbles in 256 production channels that can operate in parallel. For a single production channel we demonstrate a production rate of up to 4 kHz with a coefficient of variation of less than 1%. We observe a two-stage bubble production mechanism: initially the gas spreads onto a shallow terrace, and then overflows into a larger foam collection channel; pinning of the liquid-gas meniscus is observed at the terrace edge, the result being an asymmetric pinch-off. A semiempirical physical model predicts the scaling of bubble size with fluid viscosity and gas pressure from measurements of the pinned meniscus width.

  14. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method.

  15. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. PMID:27524041

  16. Neutron and gamma ray production in the 1991 June X-class flares

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Hua, X. M.; Kozlovsky, B.; Lingenfelter, R. E.; Mandzhavidze, N.

    1992-01-01

    We present new calculations of pion radiation and neutron emission from solar flares. We fit the recently reported high energy GAMMA-1 observations with pion radiation produced in a solar flare magnetic loop. We calculate the expected neutron emission in such a loop model and make predictions of the neutron fluences expected from the 1991 June X-class flares.

  17. Production of copper and Heusler alloy Cu 2MnAl mosaic single crystals for neutron monochromators

    NASA Astrophysics Data System (ADS)

    Courtois, P.; Hamelin, B.; Andersen, K. H.

    2004-08-01

    The growth of high-quality, large single crystals of copper allows the production of very efficient double focusing copper monochromators at ILL. The main difficulty of adapting the crystal mosaic to the instrument requirements has been overcome through the development of specific techniques such as the "onion peel" method and plastic deformations at high temperature. Several instruments have been equipped with new copper monochromators allowing a significant gain in the neutron flux onto the sample. ILL also produces Heusler single crystals with a controlled mosaic for polarized neutrons. Recently, an order of magnitude increase in polarized neutron flux has been reached on the triple axis spectrometer IN20 using a new Heusler monochromator. In addition, the Neutron Optics Laboratory carries out developments in the field of new materials for neutron monochromators. Mixed gradient crystals have been successfully grown with a variation in the d spacing Δ d/ d≈10 -2. Studies on new polarizing crystal alloys are also in progress and NiMnSb Heusler alloy having partially enriched Ni with 60Ni may be interesting for polarized neutron applications.

  18. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  19. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    NASA Astrophysics Data System (ADS)

    Selby, H. D.; Mac Innes, M. R.; Barr, D. W.; Keksis, A. L.; Meade, R. A.; Burns, C. J.; Chadwick, M. B.; Wallstrom, T. C.

    2010-12-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99Mo, 95Zr, 137Cs, 140Ba, 141,143Ce, and 147Nd. Modest incident-energy dependence exists for the 147Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ˜5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for 99Mo

  20. Production of the D/sub s//sup +- / by high-energy neutrons

    SciTech Connect

    Shipbaugh, C.; Wiss, J.; Binkley, M.; Butler, J.; Cumalat, J.P.; Coteus, P.; DiCorato, M.; Diesburg, M.; Enagonio, J.; Filaseta, J.; and others

    1988-05-23

    We have observed the production of the D/sub s//sup +- / by a high-energy neutron beam on nuclear targets. The D/sub s//sup +- / was observed in the decay mode D/sub s//sup +- /..-->..phi..pi../sup +- /, phi..-->..K/sup +/K/sup -/. The average of the inclusive cross sections for D/sub s//sup +/ and D/sub s//sup -/ hadroproduction is measured to be B dsigmadchi/sub F/ = 2.85 +- 0.80 +- 0.86 ..mu..bnucleon at chi/sub F/ = 0.175 on the assumption of a linear A dependence, where BequivalentGAMMA(D/sub s//sup +- /..-->..phi..pi../sup +- /)GAMMA(D/sub s//sup +- /..-->..all). GAMMA(D/sub s//sup +- /..-->..all)

  1. Recent Performance of the SNS H-Source for 1-MW Neutron Production

    SciTech Connect

    Stockli, Martin P; Han, Baoxi; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Welton, Robert F

    2013-01-01

    This paper describes the performance of the SNS ion source and LEBT as they continue to deliver ~50 mA H- beams at a 5.3% duty factor required for neutron production with a ~1MW proton beam since the fall of 2009. The source continues to deliver persistent H- beams for up to 6 weeks without adding Cs after an initial dose of ~4 mg, except when there are excessive plasma impurities. In one case the H- beam decayed due to an air leak, which is shown to be consistent with sputtering of the Cs layer, and which allows to bracket the plasma potential. In another case, the performance of two sources degraded progressively, which appears to be consistent with a progressive deterioration of the Cs covered Mo converter. These two and other recently discovered issues are discussed in detail.

  2. Improved production log interpretation in horizontal wells using pulsed neutron logs

    SciTech Connect

    Brady, J.L.; Kohring, J.J.; North, R.J.

    1996-12-31

    Production log flow profiles provide a valuable tool to evaluate well and reservoir performance. Horizontal wellbores and their associated completion designs present several challenges to profile interpretation for conventional production logging sensors and techniques. A unique approach combining pulsed neutron capture (PNC) log data with conventional production logging measurements is providing improved flow profile answers in slotted liner, horizontal well completions on the North Slope of Alaska. Identifying and eliminating undesirable gas production is one of the chief goals of production logging on the North Slope. This process becomes difficult in horizontal wellbores as fluid segregation affects the area investigated by the various logging sensors and also the velocities of the individual phases. Typical slotted liner completions further complicate analysis as fluids are able to flow in the liner/openhole annulus. Analysis of PNC log data provides two good qualitative indicators of formation permeability. The first technique is derived from the difference of the formation sigma response before and after injecting a high-capture cross-section borax solution. The second technique uses the difference of the formation sigma response and the formation porosity measured while injecting the formation with crude or seawater. Further analysis of PNC log runs show that the two techniques closely correlate with production flow profiles under solution gas-oil ratio (GOR) conditions. These two techniques in combination with conventional production logging measurements of temperature, capacitance, pressure, and spinner improve flow profile results. PNC results can be combined with temperature and pressure data in the absence of valid spinner data to provide an approximate flow profile. These techniques have been used to successfully determine profiles in both cemented and slotted liner completions with GORs in excess of 15,000 scf/bbl.

  3. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    SciTech Connect

    Goldman, Ira N.; Adelfang, Pablo E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

  4. ARCADIA{sup R} - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    SciTech Connect

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-07-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  5. A products generator for testing the performance of disassembly procedures

    NASA Astrophysics Data System (ADS)

    Adenso-Díaz, Belarmino; González Torre, Beatriz

    2004-12-01

    In recent decades, regulations and markets have been exerting pressure on designers and manufacturers to take more responsibility for the environmental impacts of their products throughout their life cycles. The problem of finding the disassembly sequence represents one of the major challenges when attempting to close product life cycles by carrying out reuse, recycling and remanufacturing practices. Many different techniques have been used to deal with this problem, varying from exact to heuristic solutions. So far, however, not much effort has gone into measuring and comparing the efficiency of this wide set of techniques. This is partly due to the difficulties of getting a wide population of real products, belonging to different industries and with different degree of complexity that might constitute a representative population for carrying out this kind of task. In this paper, a generator of complex products is presented that is able to build up products with hundreds of components joined by different kinds of joints in such a way that a theoretical "good" disassembly sequence is always known. The efficiency of different methods for general products can thus be easily compared. The performance of a Scatter Search algorithm is tested as an example of its application in this case.

  6. Landsat Data Continuity Mission (LDCM) Standard Product Generation and Characteristics

    NASA Astrophysics Data System (ADS)

    Micijevic, E.; Hayes, R.

    2012-12-01

    The LDCM's Landsat 8 (L8), planned for launch in February 2013, is the latest satellite in the 40 year history of the Landsat program. The satellite will have two imagers: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The data from both sensors will be processed and combined into the final Level 1 Terrain (L1T) standard product by the Landsat Product Generation System (LPGS) at the USGS Earth Resources Observation and Science (EROS). Landsat 8 products will nominally have 11 image bands; however, products will still be created if OLI only, or TIRS only collections are acquired. The LPGS is designed to create L1T products from Level 0 data by merging OLI and TIRS outputs and performing systematic radiometric and geometric corrections, followed by precision and terrain corrections that include Ground Control Points (GCP), and a Digital Elevation Model (DEM) for topographic accuracy. Scenes that have a quality score of 9 or greater and a percent cloud cover less than 40 will be automatically processed. In addition, any archived scene, regardless of cloud cover, can be requested for processing through USGS EROS clients, GloVis or Earth Explorer. While most data will be processed as Level L1T, some scenes will not have ground control or elevation data necessary for precision or terrain correction, respectively. In these cases, the best level of correction will be applied (Level 1G-systematic or Level 1Gt-systematic terrain). The standard Level 1T products will contain scaled Top of Atmosphere (TOA) reflectance data, only for OLI. The conversion between radiance and reflectance within radiometric processing (L1R) will be performed using the band specific coefficients that are proportional to the respective exoatmospheric solar irradiances and the Earth-Sun distance for the scene's acquisition day. The TIRS data will contain scaled at-sensor radiances and no at-sensor brightness temperature or emissivity conversions are planned. For users that

  7. Generation and applications of monoclonal antibodies for livestock production.

    PubMed

    Van Der Lende, T

    1994-01-01

    Monoclonal antibodies (MCAs) have found widespread applications in livestock production. Although the generation of murine MCAs is at present a routine, the production of homologous MCAs, especially important for in vivo applications, is still hampered by the lack of efficient homologous fusion partners for immortalization of antibody producing lymphocytes of livestock species. At present, MCAs are used in immunodiagnostic tests e.g. to monitor livestock reproduction and quality of livestock products. In the future MCAs will also be used in immunosensors for real-time and on-site applications in the same areas. The commercial application of MCAs for the immunomodulation of (pharmacologically induced) physiological processes underlying important (re)production traits is at present limited to the use of anti-PMSG MCAs in PMSG-induced superovulation. However, many potentially interesting applications are under investigation (e.g. immunopotentiation of growth hormone to enhance growth; immunocytolysis of adipocytes to increase lean meat production; immunoneutralization of GnRH for immunocastration; immunoimitation of hormone activity with anti-idiotype antibodies). Attempts to use specific MCAs for the sexing of embryos have been disappointing, mainly because of the relatively low accuracy. In the future, MCAs against membrane proteins which are specific for X- or Y-chromosome bearing spermatozoa might be used for bulk separation of livestock sperm. In general, it is expected that engineered (homologous) recombinant MCAs will largely contribute to the development of a new generation of rapid immunodiagnostic tests and effective immunomodulation applications. They will further increase the use of MCAs in livestock production.

  8. Iodine neutron capture therapy: A new generation of radiotherapy for the thyroid

    SciTech Connect

    Ahmed, K.F.; Stephens, A.G.; Spall, R.D.; Brey, R.R.; Bennion, J.S.

    1997-12-01

    An innovative technique is being pursued that takes advantage of noninvasive, in situ neutron capture therapy concepts for treating hyperthyroidism and thyroid carcinoma. Present treatment techniques include surgical removal of the thyroid or, more frequently, the oral administration of {sup 131}I. Therapeutic applications of {sup 131}I are complicated by the unavoidable and undesirable exposure of ancillary body organs, protracted treatment times due to long effective half-life, and less than ideal radiation emission characteristics, i.e., low-effective energy available for deposition in the target organ. These problems are mitigated through the use of {sup 128}I. Table I provides pertinent radiological characteristics for a comparison of {sup 131}I with {sup 128}I.

  9. Generation of X-rays and neutrons with a RF-discharge

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.

    1982-01-01

    An experimental study concerning disk shaped plasma structures was performed. Such disk-shaped structures can be obtained using an rf discharge in hydrogen. The applied frequency was 1-2 Mhz. In case of operation in deuterium it was found that the discharge emits neutrons and X-rays, although the applied voltage is only 2 kV. This phenomenon was explained by assuming formation of plasma cavitons which are surrounded by high electric fields. The condition for formation of these cavitons is that the applied rf frequency is equal to the plasma frequency. The ions trapped in these resonance structures acquire sufficient energy that they can undergo fusion reactions with the ions in the surrounding gas.

  10. Neutron production from (. cap alpha. ,n) reactions and spontaneous fission in ThO/sub 2/, UO/sub 2/, and (U,Pu)O/sub 2/ fuels

    SciTech Connect

    Perry, R.T.; Wilson, W.B.

    1981-06-01

    Available alpha-particle stopping cross-section and /sup 17/ /sup 18/O(..cap alpha..,n) cross-section data were adjusted, fitted, and used in calculating the thick-target neutron production function for alpha particles below 10 MeV in oxide fuels. The spent UO/sub 2/ function produced was folded with actinide decay spectra to determine (..cap alpha..,n) neutron production by each of 89 actinides. Spontaneous-fission (SF) neutron production for 40 actinides was calculated as the product of anti ..nu..(SF) and SF branching-fraction values accumulated or estimated from available data. These contributions and total neutron production in spent UO/sub 2/ fuel are tabulated and, when combined with any calculated inventory, describe the spent UO/sub 2/ neutron source. All data are tabulated and methodology is described to permit easy extension to specialized problems.

  11. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  12. Extension to Higher Mass Numbers of an Improved Knockout-Ablation-Coalescence Model for Secondary Neutron and Light Ion Production in Cosmic Ray Interactions

    NASA Astrophysics Data System (ADS)

    Indi Sriprisan, Sirikul; Townsend, Lawrence; Cucinotta, Francis A.; Miller, Thomas M.

    Purpose: An analytical knockout-ablation-coalescence model capable of making quantitative predictions of the neutron spectra from high-energy nucleon-nucleus and nucleus-nucleus collisions is being developed for use in space radiation protection studies. The FORTRAN computer code that implements this model is called UBERNSPEC. The knockout or abrasion stage of the model is based on Glauber multiple scattering theory. The ablation part of the model uses the classical evaporation model of Weisskopf-Ewing. In earlier work, the knockout-ablation model has been extended to incorporate important coalescence effects into the formalism. Recently, alpha coalescence has been incorporated, and the ability to predict light ion spectra with the coalescence model added. The earlier versions were limited to nuclei with mass numbers less than 69. In this work, the UBERNSPEC code has been extended to make predictions of secondary neutrons and light ion production from the interactions of heavy charged particles with higher mass numbers (as large as 238). The predictions are compared with published measurements of neutron spectra and light ion energy for a variety of collision pairs. Furthermore, the predicted spectra from this work are compared with the predictions from the recently-developed heavy ion event generator incorporated in the Monte Carlo radiation transport code HETC-HEDS.

  13. Comparisons of Neutron Cross Sections and Isotopic Composition Calculations for Fission-Product Evaluations

    NASA Astrophysics Data System (ADS)

    Kim, Do Heon; Gil, Choong-Sup; Chang, Jonghwa; Lee, Yong-Deok

    2005-05-01

    The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI (Korea Atomic Energy Research Institute)-BNL (Brookhaven National Laboratory) international collaboration have been compared with ENDF/B-VI.7. Also, the influence of the new evaluations on the isotopic composition calculations of the fission products has been estimated through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69-group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including the new evaluations in the resonance region covering the thermal region, and the expected ENDF/B-VII including those in the upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows a maximum difference of 5.02% compared to ENDF/B-VI.7. However, the isotopic compositions of all the fission products calculated with the expected ENDF/B-VII show no differences when compared to ENDF/B-VI.7 for the thermal reactor benchmark cases.

  14. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    NASA Astrophysics Data System (ADS)

    Kozlovskij, K. I.; Shikanov, A. E.; Vovchenko, E. D.; Shatokhin, V. L.; Isaev, A. A.; Martynenko, A. S.

    2016-09-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10-3-10-1 Torr and at the accelerating voltage up to 200 kV was observed.

  15. Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Scheid, W.

    2008-10-15

    Within the dinuclear system model we analyze the production of yet unknown neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in various complete fusion reactions. Different deexcitation channels of the excited compound nucleus are treated. The results are obtained without special adjustment to the selected evaporation channel. The fusion probability is an important ingredient of the excitation function. The results are in good agreement with the available experimental data. The alpha decay half-life times in the neutron-deficient actinides are discussed.

  16. Mobile neutron/gamma waste assay system for characterization of waste containing transuranics, uranium, and fission/activation products

    SciTech Connect

    Davidson, D.R.; Haggard, D.; Lemons, C.

    1994-12-31

    A new integrated neutron/gamma assay system has been built for measuring 55-gallon drums at Pacific Northwest Laboratory. The system is unique because it allows simultaneous measurement of neutrons and gamma-rays. This technique also allows measurement of transuranics (TRU), uranium, and fission/activation products, screening for shielded Special Nuclear Material prior to disposal, and critically determinations prior to transportation. The new system is positioned on a platform with rollers and installed inside a trailer or large van to allow transportation of the system to the waste site instead of movement of the drums to the scanner. The ability to move the system to the waste drums is particularly useful for drum retrieval programs common to all DOE sites and minimizes transportation problems on the site. For longer campaigns, the system can be moved into a facility. The mobile system consists of two separate subsystems: a passive Segmented Gamma Scanner (SGS) and a {open_quotes}clam-shell{close_quotes} passive neutron counter. The SGS with high purity germanium detector and {sup 75}Se transmission source simultaneously scan the height of the drum allowing identification of unshieled {open_quotes}hot spots{close_quotes} in the drum or segments where the matrix is too dense for the transmission source to penetrate. Dense segments can flag shielding material that could be used to hide plutonium or uranium during the gamma analysis. The passive nuetron counter with JSR-12N Neutron Coincidence Analyzer measures the coincident neutrons from the spontaneous fission of even isotopes of plutonium. Because high-density shielding produces minimal absorption of neutrons, compared to gamma rays, the passive neutron portion of the system can detect shielded SNM. Measurements to evaluate the performance of the system are still underway at Pacific Northwest Laboratory.

  17. PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS

    SciTech Connect

    Wanajo, Shinya; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru; Nishimura, Nobuya; Kyutoku, Koutarou

    2014-07-10

    Recent studies suggest that binary neutron star (NS-NS) mergers robustly produce heavy r-process nuclei above the atomic mass number A ∼ 130 because their ejecta consist of almost pure neutrons (electron fraction of Y {sub e} < 0.1). However, the production of a small amount of the lighter r-process nuclei (A ≈ 90-120) conflicts with the spectroscopic results of r-process-enhanced Galactic halo stars. We present, for the first time, the result of nucleosynthesis calculations based on the fully general relativistic simulation of a NS-NS merger with approximate neutrino transport. It is found that the bulk of the dynamical ejecta are appreciably shock-heated and neutrino processed, resulting in a wide range of Y {sub e} (≈0.09-0.45). The mass-averaged abundance distribution of calculated nucleosynthesis yields is in reasonable agreement with the full-mass range (A ≈ 90-240) of the solar r-process curve. This implies, if our model is representative of such events, that the dynamical ejecta of NS-NS mergers could be the origin of the Galactic r-process nuclei. Our result also shows that radioactive heating after ∼1 day from the merging, which gives rise to r-process-powered transient emission, is dominated by the β-decays of several species close to stability with precisely measured half-lives. This implies that the total radioactive heating rate for such an event can be well constrained within about a factor of two if the ejected material has a solar-like r-process pattern.

  18. Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Sargsyan, V. V.; Scheid, W.

    2010-02-15

    The production cross sections of new neutron-rich {sup 84,86}Zn and {sup 90,92}Ge isotopes beyond N=50 are estimated for the first time in the multinucleon transfer reactions {sup 48}Ca + {sup 238}U and {sup 48}Ca + {sup 244}Pu. The production of new isotopes in reactions with a {sup 48}Ca beam is discussed for future experiments.

  19. Production cross sections from 82Se fragmentation as indications of shell effects close to the neutron drip-line

    NASA Astrophysics Data System (ADS)

    Tarasov, O. B.; Portillo, M.; Morrissey, D. J.; Amthor, A. M.; Baumann, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Chubarian, G.; Fukuda, N.; Gade, A.; Ginter, T. N.; Hausmann, M.; Inabe, N.; Kubo, T.; Pereira, J.; Sherrill, B. M.; Stolz, A.; Sumithrarachichi, C.; Thoennessen, M.; Weisshaar, D.

    2013-10-01

    Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u with beryllium and tungsten targets have been measured for a large number of nuclei. The nuclides 64Ti,67V,69Cr,72Mn, the most neutron-rich isotopes of the elements 22 <= Z <= 25 , have been observed for the first time. The measured cross sections were used to search for trends in the structure of nuclei around 54Ca and were compared with Abrasion-Ablation calculations under the assumption of various mass models. The results confirm our previous investigations from a similar measurement using a 76Ge beam and can be explained with a modified GXPF1B Hamiltonian where the energy of the f5 / 2 orbit is lowered by 0.5 MeV for neutron-rich isotopes around Z = 20. The subshell gap at N = 34 is reduced compared to the unmodified Hamiltonian.

  20. The Live Access Server Scientific Product Generation Through Workflow Orchestration

    NASA Astrophysics Data System (ADS)

    Hankin, S.; Calahan, J.; Li, J.; Manke, A.; O'Brien, K.; Schweitzer, R.

    2006-12-01

    The Live Access Server (LAS) is a well-established Web-application for display and analysis of geo-science data sets. The software, which can be downloaded and installed by anyone, gives data providers an easy way to establish services for their on-line data holdings, so their users can make plots; create and download data sub-sets; compare (difference) fields; and perform simple analyses. Now at version 7.0, LAS has been in operation since 1994. The current "Armstrong" release of LAS V7 consists of three components in a tiered architecture: user interface, workflow orchestration and Web Services. The LAS user interface (UI) communicates with the LAS Product Server via an XML protocol embedded in an HTTP "get" URL. Libraries (APIs) have been developed in Java, JavaScript and perl that can readily generate this URL. As a result of this flexibility it is common to find LAS user interfaces of radically different character, tailored to the nature of specific datasets or the mindset of specific users. When a request is received by the LAS Product Server (LPS -- the workflow orchestration component), business logic converts this request into a series of Web Service requests invoked via SOAP. These "back- end" Web services perform data access and generate products (visualizations, data subsets, analyses, etc.). LPS then packages these outputs into final products (typically HTML pages) via Jakarta Velocity templates for delivery to the end user. "Fine grained" data access is performed by back-end services that may utilize JDBC for data base access; the OPeNDAP "DAPPER" protocol; or (in principle) the OGC WFS protocol. Back-end visualization services are commonly legacy science applications wrapped in Java or Python (or perl) classes and deployed as Web Services accessible via SOAP. Ferret is the default visualization application used by LAS, though other applications such as Matlab, CDAT, and GrADS can also be used. Other back-end services may include generation of Google

  1. Production of the next-generation library virtual tour.

    PubMed

    Duncan, J M; Roth, L K

    2001-10-01

    While many libraries offer overviews of their services through their Websites, only a small number of health sciences libraries provide Web-based virtual tours. These tours typically feature photographs of major service areas along with textual descriptions. This article describes the process for planning, producing, and implementing a next-generation virtual tour in which a variety of media elements are integrated: photographic images, 360-degree "virtual reality" views, textual descriptions, and contextual floor plans. Hardware and software tools used in the project are detailed, along with a production timeline and budget, tips for streamlining the process, and techniques for improving production. This paper is intended as a starting guide for other libraries considering an investment in such a project. PMID:11837254

  2. Irradiation temperature dependence of production efficiency of lattice defects in some neutron-irradiated oxides

    NASA Astrophysics Data System (ADS)

    Okada, Moritami; Atobe, Kozo; Nakagawa, Masuo

    2004-11-01

    Temperature dependence of production efficiency of irradiation-induced defects in neutron-irradiated oxides has been investigated. Some oxide single crystals, MgO, α-Al2O3 (sapphire) and TiO2 (rutile), were irradiated at several controlled temperatures, 10, 20, 50, 100, 150 and 200 K, using the low-temperature irradiation facility of Kyoto University Reactor (KUR-LTL), and at ambient temperature (∼370 K) in the same facility. Irradiation temperature dependence of production efficiency of a 1 μm band in TiO2 differs greatly from that of anion vacancy (F-type centers) in MgO and α-Al2O3. Results for MgO and α-Al2O3 show steep negative gradients from 10 to 370 K, whereas that for TiO2 includes a valley between 40 and 60 K and a hump at about 130 K, and then disappear at about 200 K. In MgO and α-Al2O3, this behavior can be explained by the recombination of Frenkel pairs, which is activated at higher temperature. In TiO2, in addition to the recombination mechanism, a covalent bonding property is thought to be exerted strong influence, and it is suggested that a disappearance of the 1 μm band at above 200 K is due to the recombination process of Frenkel pairs which is caused by the irradiation-induced crystallization.

  3. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  4. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  5. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    SciTech Connect

    Sengbusch, E.; Perez-Andujar, A.; DeLuca, P. M. Jr.; Mackie, T. R.

    2009-02-15

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 deg. continuous arc proton therapy and for 180 deg. split arc proton therapy (two 90 degree sign arcs) using CT profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  6. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180° continuous arc proton therapy and for 180° split arc proton therapy (two 90° arcs) using CT# profiles from the Pinnacle™ (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic

  7. Enhanced Product Generation at NASA Data Centers Through Grid Technology

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Hinke, Thomas H.; Gavali, Shradha; Seufzer, William J.

    2003-01-01

    This paper describes how grid technology can support the ability of NASA data centers to provide customized data products. A combination of grid technology and commodity processors are proposed to provide the bandwidth necessary to perform customized processing of data, with customized data subsetting providing the initial example. This customized subsetting engine can be used to support a new type of subsetting, called phenomena-based subsetting, where data is subsetted based on its association with some phenomena, such as mesoscale convective systems or hurricanes. This concept is expanded to allow the phenomena to be detected in one type of data, with the subsetting requirements transmitted to the subsetting engine to subset a different type of data. The subsetting requirements are generated by a data mining system and transmitted to the subsetter in the form of an XML feature index that describes the spatial and temporal extent of the phenomena. For this work, a grid-based mining system called the Grid Miner is used to identify the phenomena and generate the feature index. This paper discusses the value of grid technology in facilitating the development of a high performance customized product processing and the coupling of a grid mining system to support phenomena-based subsetting.

  8. Search for pair production of second generation scalar leptoquarks

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G.D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Northeastern U.

    2008-08-01

    We report on a search for the pair production of second generation scalar leptoquarks (LQ) in p{bar p} collisions at the center of mass energy {radical}s = 1.96TeV using a data set corresponding to an integrated luminosity of 1.0 fb{sup -1} collected with the D0 experiment at the Fermilab Tevatron Collider. Topologies arising from the LQ{ovr LQ} {yields} {mu}q{nu}q and LQ{ovr LQ} {yields} {mu}q{mu}q decay modes are investigated. No excess of data over the standard model prediction is observed and upper limits on the leptoquark pair production cross section are derived at the 95% C.L. as a function of the leptoquark mass and the branching fraction {beta} for the decay LQ {yields} {mu}q. These are interpreted as lower limits on the leptoquark mass as a function of {beta}. For {beta} = 1 (0.5), scalar second generation leptoquarks with masses up to 316GeV (270GeV) are excluded.

  9. An integrally shielded transportable generator system for thallium-201 production.

    PubMed

    Lagunas-Solar, M C; Little, F E; Goodart, C D

    1982-12-01

    An integrally shielded transportable 201Pb leads to 201Tl generator system for the production of 201Tl has been developed at the Crocker Nuclear Laboratory, University of California, Davis. The present generator design allows for processing of up to 4 Ci of 201Pb parent radioactivity yielding approximately 400 mCi of 201Tl in a chemical form easily converted to radiopharmaceutical quality. Larger capacity generator systems can be constructed since the use of depleted uranium for shielding purposes is becoming readily available. While the parent 201Pb radioactivity decays to the daughter 201Tl, the combination depleted uranium-lead shielded system (approximately 33 kg) can be transported to distant locations for final processing. In this manner, decay losses (approximately 25%) associated with transportation of bulk 201Tl can be avoided since transportation would occur during the time (approximately 32 h) needed for the growth of 201Tl via 201Pb(9.4 h) leads to 201Tl (73.5 h). Single small-volume elutions (15-20 ml) provide more than 95% of the 201Tl radioactivity with no detectable radioactive Pb breakthrough and less than 20 micrograms/ml of carrier Tl.

  10. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers

    PubMed Central

    Konefał, Adam; Orlef, Andrzej; Łaciak, Marcin; Ciba, Aleksander; Szewczuk, Marek

    2012-01-01

    Background High-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear. Aim The aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers. Materials and methods The measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy. Results The fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ∼106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator. Conclusion The thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from

  11. Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.

    2016-08-01

    The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons (< ν >) and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.

  12. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators.

    PubMed

    Martín, Guido; Abrahantes, Arian

    2004-05-01

    A conceptual design of a beam-shaping assembly for boron neutron capture therapy using deuterium-tritium accelerator based neutrons source is developed. Calculations based on a simple geometry model for the radiation transport are initially performed to estimate the assembly materials and their linear dimensions. Afterward, the assembly geometry is produced, optimized and verified. In order to perform these calculations the general-purpose MCNP code is used. Irradiation time and therapeutic gain are utilized as beam assessment parameters. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation. In the present beam-shaping assembly proposal, the therapeutic gain is improved by 23% and the accelerator current required for a fixed irradiation period is reduced by six times compared to previous proposals based on the same D-T reaction.

  13. Neutron production at 0{degree} from the {sup 40}Ca+H reaction at E{sub lab}=357A and 565A MeV

    SciTech Connect

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Costa, S.; Insolia, A.; Potenza, R.; Reito, S.; Romanski, J.; Russo, G.V.; Cronqvist, M.; Lindstrom, P.J.; Chen, C.; Guzik, T.G.; Tull, C.E.; Wefel, J.P.; Crawford, H.J.; Engelage, J.; Greiner, L.; Knott, C.N.; Waddington, C.J.; Webber, W.R.; Soutoul, A.; Testard, O.; Mitchell, J.W.

    1997-08-01

    Neutrons produced in the {sup 40}Ca+H reaction at E{sub lab}=357A and 565A MeV have been detected using a three-module version of the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range around the beam in the forward direction (0{degree}{minus}3.2{degree}). Semi-inclusive neutron production cross sections, at the two energies, are reported together with neutron energy spectra, angular, rapidity, and transverse momentum distributions. Comparison with a Boltzmann-Nordheim-Vlasov approach + phase space coalescence model is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  14. Operational status of the Los Alamos neutron science center (LANSCE)

    SciTech Connect

    Jones, Kevin W; Erickson, John L; Schoenberg, Kurt F

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  15. Neutron Production in Coincidence with Fragments from the {sup 40}Ca + H Reactions at E{sub lab} = 357 and 565 A MeV

    SciTech Connect

    Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T.G.; Insolia, A.; Knott, C.N.; Lindstrom, P.J.; Mitchell, J.W.; Potenza, R.; Russo, G.V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C.E.; Waddington, C.J.; Webber, W.R.; Wefel, J.P.

    2000-12-31

    In the frame of the Transport Collaboration neutrons in coincidence with charged fragments produced in the {sup 40}Ca + H reaction at E{sub lab} = 357 and 565 AMeV have been measured at the Heavy Ion Spectrometer System (HISS) facility of the Lawrence Berkeley National Laboratory, using the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range about the beam in the forward direction (0? - 3.2?). In this contribution we report absolute neutron production cross sections in coincidence with charged fragments (10 {<=} Z {<=} 20). The neutron multiplicities have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a pre-equilibrium emission of prompt neutrons in superposition to a 'slower' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in the inclusive rapidity distributions.

  16. Neutronics Simulations of 237Np Targets to Support Safety-Basis and 238Pu Production Assessment Efforts at the High Flux Isotope Reactor

    SciTech Connect

    Chandler, David; Ellis, Ronald James

    2015-01-01

    Fueled by two highly enriched uranium-bearing fuel elements surrounded by a large concentric ring of beryllium reflector, the High Flux Isotope Reactor (HFIR) provides one of the highest neutron fluxes in the world and is used to produce unique isotopes like plutonium-238. The National Aeronautics and Space Administration use radioisotope thermoelectric generators powered by 238Pu for deep-space missions. As part of the US Department of Energy s task to reestablish the domestic production of 238Pu, a technology demonstration sub-project has been initiated to establish a new 238Pu supply chain. HFIR safety-basis neutronics calculations are being performed to ensure the target irradiations have no adverse impacts on reactor performance and to calculate data required as input to follow-on thermal-structural, thermal-hydraulic and radionuclide/dose analyses. Plutonium-238 production assessments are being performed to estimate the amount of 238Pu that can be produced in HFIR s permanent beryllium reflector. It is estimated that a total of 0.96 1.12 kg 238Pu (~1.28 1.49 kg PuO2 at 85% 238Pu/Pu purity) could be produced per year in HFIR s permanent beryllium reflector irradiation facilities if they are all utilized.

  17. Nanoparticle production in arc generated fireballs of granular silicon powder

    NASA Astrophysics Data System (ADS)

    Ito, Tsuyohito; Cappelli, Mark A.

    2012-03-01

    Recently we observed buoyant fireballs by arc igniting silicon that drift in air for several seconds and postulated that the low aggregate density was attributed to the formation of a network of nanoparticles that must completely surround the burning silicon core, trapping the heated vapor generated as a result of particle combustion [Ito et al. Phys Rev E 80, 067401 (2009)]. In this paper, we describe the capturing of several of these fireballs in flight, and have characterized their nanostructure by high resolution microscopy. The nanoparticle network is found to have an unusually high porosity (> 99%), suggesting that this arc-ignition of silicon can be a novel method of producing ultra-porous silica. While we confirm the presence of a nanoparticle network within the fireballs, the extension of this mechanism to the production of ball lightning during atmospheric lightning strikes in nature is still the subject of ongoing debate.

  18. Monitoring of the neutron production at the Wendelstein 7-X stellarator.

    PubMed

    Wiegel, B; Schneider, W; Grünauer, F; Burhenn, R; Schuhmacher, H; Zimbal, A

    2014-10-01

    The stellarator Wendelstein 7-X (W7-X), presently under construction at the Max-Planck-Institute for Plasma Physics in Greifswald, will be equipped with a set of neutron monitors to measure the total annual neutron emission for official documentation and to provide information for plasma diagnostics purposes. The authors performed MCNP calculations to design and optimise the moderator geometry of the monitors to exhibit a nearly energy-independent response as well as particular angular responses for one central and two peripheral monitors. The monitors were designed with up to five neutron detector tubes with different sensitivity to thermal neutrons to cover the expected neutron emission rates of W7-X from 10(11) s(-1) to 10(16) s(-1). A prerequisite for the determination of the neutron emission produced by a D-D plasma is an in-situ calibration of the neutron monitors. Such a procedure requires a MCNP simulation of the entire geometry of the W7-X stellarator. In a first benchmark experiment during the assembly phase of W7-X, the validity of the W7-X MCNP model was tested.

  19. ANEM: The future neutron production target for Single Event Effect studies at LNL

    NASA Astrophysics Data System (ADS)

    Acosta Urdaneta, G. C.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Silvestrin, L.; Wyss, J.

    2016-11-01

    The design of a fast-neutron ( E > 1 MeV) irradiation facility, devoted to investigating neutron-induced Single Event Effects in microelectronic devices and systems, is under development at the 70MeV, 0.7mA SPES proton cyclotron at LNL (Legnaro, Italy). Here we report on the progress in the design of ANEM (Atmospheric-Neutron EMulator): a water-cooled rotating target capable of producing neutrons with an energy spectrum similar to that of the neutrons present at sea level. In ANEM the protons from the cyclotron alternatively impinge on two circular sectors of Be and W of different areas; the effective neutron spectrum is a weighted combination of the spectra from the two sectors. Thermal-mechanical Finite Element Analysis calculations of the performance of the ANEM prototype indicate that ANEM can deliver fast neutrons with an atmospheric-like energy spectrum in the 1-65MeV energy range with a maximum integral flux φn^{}(1-65 MeV) ≃ 107 n cm-2s-1 at 6m from the target, a very competitive value for Single Event Effects testing.

  20. Integration of cosmic-ray neutron probes into production agriculture: Lessons from the Platte River cosmic-ray neutron probe monitoring network

    NASA Astrophysics Data System (ADS)

    Avery, W. A.; Finkenbiner, C. E.; Franz, T. E.; Nguy-Robertson, A. L.; Munoz-Arriola, F.; Suyker, A.; Arkebauer, T. J.

    2015-12-01

    Projected increases in global population will put enormous pressure on fresh water resources in the coming decades. Approximately 70 percent of human water use is allocated to agriculture with 40 percent of global food production originating from irrigated lands. Growing demand for food will only worsen the strain placed on many irrigated agricultural systems resulting in an unsustainable reliance on groundwater. This work presents an overview of the Platte River Cosmic-ray Neutron Probe Monitoring Network, which consists of 10 fixed probes and 3 mobile probes located across the Platte River Basin. The network was installed in 2014 and is part of the larger US COSMOS (70+ probes) and global COSMOS networks (200+ probes). Here we will present an overview of the network, comparison of fixed neutron probe results across the basin, spatial mapping results of the mobile sensors at various sites and spatial scales, and lessons learned by working with various producers and water stakeholder groups. With the continued development of this technique, its incorporation for soil moisture management in large producer operations has the potential to increase irrigation water use efficiency in the Platte River Basin and beyond.

  1. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields

    NASA Astrophysics Data System (ADS)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P.; Sharma, S. C.; Ramjilal, Ninawe, N. G.; Sunil, C.; Gupta, A. K.; Bandyopadhyay, T.

    2014-06-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK_n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  2. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick ⁹Be target and estimation of neutron yields.

    PubMed

    Paul, Sabyasachi; Sahoo, G S; Tripathy, S P; Sharma, S C; Ramjilal; Ninawe, N G; Sunil, C; Gupta, A K; Bandyopadhyay, T

    2014-06-01

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK_n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed. PMID:24985813

  3. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick {sup 9}Be target and estimation of neutron yields

    SciTech Connect

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P. E-mail: tripathy@barc.gov.in; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-06-15

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  4. Spectra of photons and neutrons generated in a heterogeneous head of a 15 MV LINAC at differents field sizes

    SciTech Connect

    Benites-Rengifo, J. L.; Vega-Carrillo, H. R.; Velazquez-Fernandez, J. B.

    2012-10-23

    Spectra of photons and neutrons were calculated, using the Monte Carlo code MCNP-5 using the e/p/n mode. A heterogeneous model was used to define the linac head where the collimators were modeled to produce five different treatment fields at the isocenter. Photon and neutron spectra were estimated in several points along two directions from the isocenter. The total photon fluence beyond 60 cm behaves according to 1/r{sup 2} rule, while total neutron fluence, beyond 80 cm, can be described by diffusion theory using an infinite plane as a neutron source.

  5. The role of primary 16O as a neutron poison in AGB stars and fluorine primary production at halo metallicities.

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Bisterzo, S.; Cristallo, S.; Straniero, O.

    The discovery of a historical bug in the s-post-process AGB code obtained so far by the Torino group forced us to reconsider the role of primary 16O in the 13C-pocket, produced by the 13C(alpha , n)16O reaction, as important neutron poison for the build up of the s-elements at Halo metallicities. The effect is noticeable only for the highest 13C-pocket efficiencies (cases ST*2 and ST). For Galactic disc metallicities, the bug effect is negligible. A comparative analysis of the neutron poison effect of other primary isotopes (12C, 22Ne and its progenies) is presented. The effect of proton captures, by 14N(n, p)14C, boosts a primary production of fluorine in halo AGB stars, with [F/Fe] comparable to [C/Fe], without affecting the s-elements production.

  6. Confirmatory experiments for the United States Department of Energy Accelerator Production of Tritium Program: Neutron, triton and radionuclide production by thick targets of lead and tungsten bombarded by 800 MeV protons

    SciTech Connect

    Lisowski, P.W.; Cappiello, M.; Ullmann, J.L.; Gavron, A.; King, J.D.; Laird, R.; Mayo, D.; Waters, L.; Zoeller, C.; Staples, P.

    1994-10-01

    Neutron and Triton Production by 800 MeV Protons: The experiments presented in this report were performed in support of the Accelerator Production of Tritium (APT) project at the Los Alamos Weapons Neutron Research (WNR) facility in order to provide data to benchmark and validate physics simulations used in the APT target/blanket design. An experimental apparatus was built that incorporated many of the features of the neutron source region of the {sup 3}He target/blanket. Those features included a tungsten neutron source, flux traps, neutron moderator, lead backstop, lead multiplying annulus, neutron absorbing blanket and a combination neutron de-coupler and tritium producing gas ({sup 3}He). The experiments were performed in two separate proton irradiations each with approximately 100 nA-hr of 800 MeV protons. The first irradiation was made with a small neutron moderating blanket, allowing the authors to measure tritium production in the {sup 3}He gas by sampling, and counting the amount of tritium. The second irradiation was performed with a large neutron moderating blanket (light water with a 1% manganese sulfate solution) that allowed them to measure both the tritium production in the central region and the total neutron production. The authors did this by sampling and counting the tritium produced and by measuring the activation of the manganese solution. Results of the three tritium production measurements show large disagreements with each other and therefore with the values predicted using the LAHET-MCNP code system. The source of the discrepancies may lie with the sampling system or adsorption on the tungsten surfaces. The authors discuss tests that may resolve that issue. The data for the total neutron production measurement is much more consistent. Those results show excellent agreement between calculation and experiment.

  7. Adjoint acceleration of Monte Carlo simulations using SCALE: A radiation shielding evaluation of the neutron generator room at Missouri S&T

    NASA Astrophysics Data System (ADS)

    Sharma, Manish K.; Alajo, Ayodeji B.; Liu, Xin

    2015-08-01

    A deuterium-deuterium accelerator-type neutron generator was installed in the Nuclear Engineering Department at Missouri University of Science and Technology (Missouri S&T). This generator is shielded by different hydrogenated and non-hydrogenated materials to reduce the dose rates in the vicinity of the facility. In the work presented in this paper, both SCALE6 and MCNP5 radiation transport codes were used to conduct two independent simulations. The new shielding analysis tool of SCALE6-MAVRIC, with the automatic variance reduction technique of SCALE6, was utilized to estimate and compare the dose rates from the unbiased MCNP simulation. The ultimate goal of this study was to compare the computational effectiveness offered by employing the MAVRIC sequence in the modeling of the neutron generator facility at Missouri S&T.

  8. Toward a new generation of satellite surface products?

    NASA Astrophysics Data System (ADS)

    Aires, F.; Prigent, C.

    2006-11-01

    Despite the abundance and variety of remote sensing measurements, land surface characterization from satellite observations is still very challenging. The links between the three sources of surface information, namely the satellite observations, the in situ measurements, and the land surface model outputs, are complex. Innovative techniques have to be developed to merge these information sources and optimize the use of satellite measurements for better surface products and more predictability. Concepts such as multi-instrument/multiparameter retrieval algorithms are discussed, as well as the synergetic use of satellite observations, model outputs, and in situ data. The need for careful satellite calibration is stressed, and the scaling problem is emphasized. Recent results are reviewed to indicate what the land surface remote sensing problems are and how they might be attacked. Two concrete applications are presented: an "all weather" retrieval of surface skin temperature from combined microwave and infrared observations and a soil moisture analysis from the merging of multisatellite observations and land surface model outputs. This paper is intended to stimulate debates and collaborations between the land surface modelers and the satellite remote sensing community for the design of the next generation of land surface products.

  9. Human milk kills Giardia lamblia by generating toxic lipolytic products.

    PubMed

    Reiner, D S; Wang, C S; Gillin, F D

    1986-11-01

    This study supports our previous hypotheses that normal human milk kills Giardia lamblia trophozoites in vitro and that this killing is due to the release of free fatty acids (FFAs) from milk triglycerides by action of the bile salt-stimulated lipase (BSL) of human milk. Heat-stable killing of G. lamblia was generated when normal human milk was preincubated with sodium cholate, which activates BSL. Moreover, both the skim-milk (containing BSL) and cream (containing mainly triglycerides) fractions were required to kill G. lamblia. We measured the toxicity of FFA and other products of lipolysis to G. lamblia. cis-Unsaturated FFAs (LD50 less than 12 microM), three of four monoglycerides, and four of five lysophosphatidylcholines were toxic to the parasites (LD50 less than 100 microM). In contrast, the parasites were not harmed by the corresponding diglycerides, phosphatidylcholines, triolein, or glycerol. Thus, products of lipid hydrolysis in the normal digestive tract are toxic to G. lamblia. We also demonstrated that albumin and conjugated bile salts, which bind FFA, partially protected trophozoites from killing by oleic acid.

  10. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    PubMed

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method.

  11. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    SciTech Connect

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  12. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    NASA Technical Reports Server (NTRS)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  13. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  14. Neutron-Rich Isotope Production Using a Uranium Carbide Carbon Nanotubes SPES Target Prototype

    SciTech Connect

    Corradetti, Stefano; Biasetto, Lisa; Manzolaro, Mattia; Scarpa, Daniele; Carturan, S.; Andrighetto, Alberto; Prete, Gianfranco; Vasquez, Jose L; Zanonato, P.; Colombo, P.; Jost, Carola; Stracener, Daniel W

    2013-01-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  15. Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes

    SciTech Connect

    Stephen E. Binney

    2004-04-09

    Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.

  16. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  17. Production and identification of new, neutron-rich nuclei in the [sup 208]Pb region

    SciTech Connect

    Rykaczewski, K. ); Szerypo, J.; Evensen, A.-H.; Kugler, E.; Lettry, J.; Ravn, H. ); Kurpeta, J.; Pkochocki, A.; Karny, M.; Szerypo, J. ); Szerypo, J. ); Andreyev, H.; Huyse, M.; Wo uml; hr, A. ); Aystuml, J.; Nieminen, A.; Huhta, M. ); Walter, G. ) Hoff, P. )

    1998-12-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic [sup 208]Pb are briefly described. An identification of new neutron-rich isotopes [sup 215]Pb and [sup 217]Bi, and new decay properties of [sup 216]Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported. [copyright] [ital 1998 American Institute of Physics.

  18. Fission Product Gamma-Ray Line Pairs Sensitive to Fissile Material and Neutron Energy

    SciTech Connect

    Marrs, R E; Norman, E B; Burke, J T; Macri, R A; Shugart, H A; Browne, E; Smith, A R

    2007-11-15

    The beta-delayed gamma-ray spectra from the fission of {sup 235}U, {sup 238}U, and {sup 239}Pu by thermal and near-14-MeV neutrons have been measured for delay times ranging from 1 minute to 14 hours. Spectra at all delay times contain sets of prominent gamma-ray lines with intensity ratios that identify the fissile material and distinguish between fission induced by low-energy or high-energy neutrons.

  19. Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...

  20. A Code for the Generation of Group Constants for Reactor Calculations from Neutron Nuclear Data in KEDAK Format.

    1988-09-15

    Version 00 Group averaged neutron cross sections, energy resonance self shielding factors, elastic transfer elements up to P5 approximation, the inelastic, (n,2n) and (n,3n) transfer elements, fission spectra, etc., for coarse groups (26 groups in the standard case) in the fast neutron energy range are calculated.

  1. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  2. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  3. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  4. Neutron spectra around a tandem linear accelerator in the generation of (18)F with a bonner sphere spectrometer.

    PubMed

    Lagares, J I; Araque, J E Guerrero; Méndez-Villafañe, R; Arce, P; Sansaloni, F; Vela, O; Díaz, C; Campo, Xandra; Pérez, J M

    2016-08-01

    A Bonner sphere spectrometer was used to measure the neutron spectra produced at the collision of protons with an H2(18)O target at different angles. A unique H2(18)O target to produce (18)F was designed and placed in a Tandem linear particle accelerator which produces 8.5MeV protons. The neutron count rates measured with the Bonner spheres were unfolded with the MAXED code. With the GEANT4 Monte Carlo code the neutron spectrum induced in the (p, n) reaction was estimated, this spectrum was used as initial guess during unfolding. Although the cross section of the reaction (18)O(p,n)(18)F is well known, the neutron energy spectra is not correctly defined and it is necessary to verify the simulation with measurements. For this reason, the sensitivity of the unfolding method to the initial spectrum was analyzed applying small variation to the fast neutron peak. PMID:27235889

  5. Neutron spectra around a tandem linear accelerator in the generation of (18)F with a bonner sphere spectrometer.

    PubMed

    Lagares, J I; Araque, J E Guerrero; Méndez-Villafañe, R; Arce, P; Sansaloni, F; Vela, O; Díaz, C; Campo, Xandra; Pérez, J M

    2016-08-01

    A Bonner sphere spectrometer was used to measure the neutron spectra produced at the collision of protons with an H2(18)O target at different angles. A unique H2(18)O target to produce (18)F was designed and placed in a Tandem linear particle accelerator which produces 8.5MeV protons. The neutron count rates measured with the Bonner spheres were unfolded with the MAXED code. With the GEANT4 Monte Carlo code the neutron spectrum induced in the (p, n) reaction was estimated, this spectrum was used as initial guess during unfolding. Although the cross section of the reaction (18)O(p,n)(18)F is well known, the neutron energy spectra is not correctly defined and it is necessary to verify the simulation with measurements. For this reason, the sensitivity of the unfolding method to the initial spectrum was analyzed applying small variation to the fast neutron peak.

  6. Comparison and Validation of FLUKA and HZETRN as Tools for Investigating the Secondary Neutron Production in Large Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Koontz, Steve; Reddell, Brandon; Atwell, William; Boeder, Paul

    2015-01-01

    NASA's exploration goals are focused on deep space travel and Mars surface operations. To accomplish these goals, large structures will be necessary to transport crew and logistics in the initial stages, and NASA will need to keep the crew and the vehicle safe during transport and any surface activities. One of the major challenges of deep space travel is the space radiation environment and its impacts on the crew, the electronics, and the vehicle materials. The primary radiation from the sun (solar particle events) and from outside the solar system (galactic cosmic rays) interact with materials of the vehicle. These interactions lead to some of the primary radiation being absorbed, being modified, or producing secondary radiation (primarily neutrons). With all vehicles, the high energy primary radiation is of most concern. However, with larger vehicles that have large shielding masses, there is more opportunity for secondary radiation production, and this secondary radiation can be significant enough to cause concern. When considering surface operations, there is also a secondary radiation source from the surface of the planet, known as albedo, with neutrons being one of the most significant species. Given new vehicle designs for deep space and Mars missions, the secondary radiation environment and the implications of that environment is currently not well understood. Thus, several studies are necessary to fill the knowledge gaps of this secondary radiation environment. In this paper, we put forth the initial steps to increasing our understanding of neutron production from large vehicles by comparing the neutron production resulting from our radiation transport codes and providing a preliminary validation of our results against flight data. This paper will review the details of these results and discuss the finer points of the analysis.

  7. Neutron contamination from medical electron accelerators

    SciTech Connect

    Not Available

    1984-01-01

    This report addresses a problem encountered with the use of electron accelerators in radiation therapy. The potential exists for the production of neutrons, in several different ways, when equipment used to generate electrons operates at energies above 10 MeV. The sources of these neutrons and their relative contributions are described. A further section is devoted to the potential hazard from the neutrons which are produced and which represent a contribution to the total radiation dose to the patient. This contribution is not normally included in the calculation of dose delivered to the treatment volume, as performed by the therapist and the medical physicist. The question of whether or not this additional dose constitutes an unacceptable risk to the patient is discussed. The report addresses the hazard to operating personnel from neutrons produced outside the patient's treatment volume. Neutron measurement methods are also addressed. The report concludes with a survey of the published literature relevant to the subject.

  8. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  9. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.

    PubMed

    Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio

    2012-01-01

    Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included.

  10. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Nebel, R. A.; Ribe, F. L.; Schauer, M. M.; Schranck, L. S.; Umstadter, K. R.

    1999-06-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q).

  11. Comparison of pka energy spectra, gas-atom production and damage energy deposition in neutron irradiation at various facilities

    NASA Astrophysics Data System (ADS)

    Nishiguchi, R.; Shimomura, Y.; Hahn, P. A.; Guinan, M. W.; Kiritani, M.

    1991-03-01

    By dividing neutron-energy spectrum into four energy groups, (I) <10 eV, (II) 10 eV to 0.1 MeV, (III) 0.1 MeV to 10 MeV and (IV) > 10 MeV, contributions to damage parameters (PKA spectrum, damage energy and gas-atom production) from each of the energy group were calculated for neutron irradiations at various facilities with the SPECTER code developed by Greenwood and Smither [1]. The normalized PKA spectra and the gas-atom productions were compared to examine differences in damage parameters. Such comparisons were carried out among (1) irradiations at various positions in different fission reactors (i.e. KUR, JOYO and FFTF-MOTA), and among (2) those at various fission reactors. Damage parameters were also calculated at STARFIRE fusion reactor and RTNS-II. A possible method to correlate damages at different fission reactors is discussed. It is suggested that damages in fusion reactor can be simulated by the superposition of irradiations with fission and D-T neutrons.

  12. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    SciTech Connect

    Yang, W. S.; Lee, C. H.

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  13. Generation of chlorine by-products in simulated wash water.

    PubMed

    Shen, Cangliang; Norris, Pauline; Williams, Olivia; Hagan, Stephanie; Li, KaWang

    2016-01-01

    Free chlorine (FC) reacting with organic matter in wash water promotes the formation of chlorine by-products. This study aims to evaluate the dynamic impact of FC and organic load on the generation of haloacetic acids (HAAs) and trihalomethanes (THMs) in simulated wash water. Lettuce juice was sequentially added into FC solution with FC periodically replenished. Water samples were collected after each lettuce juice addition to measure water qualities and determine HAAs and THMs using US-Environmental-Protection-Agency (EPA) methods. Concentrations of 88-2103 μg/l of total HAAs and 20.79-859.47 μg/l of total THMs were detected during the study. Monobromoacetic, tribromoacetic, chlorodibromoacetic and trichloroacetic acid were the major HAAs components. Chloroform (trichloromethane) was the primary THMs present. A significant correlation of HAAs with chemical oxygen demand and THMs with FC was observed. Results indicated that optimizing wash water sanitizing systems to limit organic matters and maintain minimal effective FC concentration is critical.

  14. Generation of chlorine by-products in simulated wash water.

    PubMed

    Shen, Cangliang; Norris, Pauline; Williams, Olivia; Hagan, Stephanie; Li, KaWang

    2016-01-01

    Free chlorine (FC) reacting with organic matter in wash water promotes the formation of chlorine by-products. This study aims to evaluate the dynamic impact of FC and organic load on the generation of haloacetic acids (HAAs) and trihalomethanes (THMs) in simulated wash water. Lettuce juice was sequentially added into FC solution with FC periodically replenished. Water samples were collected after each lettuce juice addition to measure water qualities and determine HAAs and THMs using US-Environmental-Protection-Agency (EPA) methods. Concentrations of 88-2103 μg/l of total HAAs and 20.79-859.47 μg/l of total THMs were detected during the study. Monobromoacetic, tribromoacetic, chlorodibromoacetic and trichloroacetic acid were the major HAAs components. Chloroform (trichloromethane) was the primary THMs present. A significant correlation of HAAs with chemical oxygen demand and THMs with FC was observed. Results indicated that optimizing wash water sanitizing systems to limit organic matters and maintain minimal effective FC concentration is critical. PMID:26212946

  15. Advanced liquid fuel production from biomass for power generation

    SciTech Connect

    Grassi, G.; Palmarocchi, M.; Joeler, J.

    1995-11-01

    In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

  16. NOAA Introduces its First-Generation Reference Evapotranspiration Product

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; Geli, H. M.; Lewis, C.; Senay, G. B.; Verdin, J. P.

    2013-12-01

    NOAA is producing daily, gridded operational, long-term, reference evapotranspiration (ETo) data for the National Water Census (NWC). The NWC is a congressional mandate to provide water managers with accurate, up-to-date, scientifically defensible reporting on the national water cycle; as such, it requires a high-quality record of actual ET, which we derive as a fraction of NOAA's land-based ETo a fraction determined by remotely sensed (RS) LST and/or surface reflectance in an operational version of the Simplified Surface Energy Balance (SSEBop). This methodology permits mapping of ET on a routine basis with a high degree of consistency at multiple spatial scales. This presentation addresses the ETo input to this process. NOAA's ETo dataset is generated from the American Society of Civil Engineers Standardized Penman-Monteith equation driven by hourly, 0.125-degree (~12-km) data from the North American Land Data Assimilation System (NLDAS). Coverage is CONUS-wide from Jan 1, 1979, to within five days of the present. The ETo is verified against agro-meteorological stations in western CONUS networks, while a first-order, second-moment uncertainty analysis indicates when, where, and to what extent each driver contributes to ETo variability (and so potentially require the most attention). As the NWC's mandate requires a nationwide coverage, the ETo dataset must also be verified outside of the measure's traditional, agricultural/irrigated areas of application. In this presentation, we summarize the verification of the gridded ETo product and demonstrate the drivers of ETo variability in space and time across CONUS. Beyond its primary use as a component of ET in the NWC, we further explore potential uses of the ETo product as an input to drought models and as a stand-alone index of fast-developing agricultural drought, or 'flash drought.' NOAA's product is the first consistently modeled, daily, continent-wide ETo dataset that is both up-to-date and as temporally

  17. Fabrication and characterization of novel boron and gadolinium rich power generation and real-time neutron detection materials and devices

    NASA Astrophysics Data System (ADS)

    Natta, Marcus L.

    In this work, the neutron capture capabilities of two naturally occurring isotopes, gadolinium-157 (157Gd) and boron-10 (10B), were investigated for use as neutron detecting diodes. The appeal of using 157Gd and 10B is due to their large thermal neutron absorption cross sections: gadolinium (on average ˜46,000 barns) and boron-10 (˜3800 barns). Boron carbide (B4C) films were grown on nickel, copper, silver, and aluminum substrates using plasma enhanced chemical vapor deposition (PECVD) techniques forming p-n junctions using various configurations of two isomers: closo-1,7-dicarbadodecaborane (metacarborane) or closo-1,7-phosphacaborane (phosphacarborane) for the n-type layers and closo-1,2-dicarbadodecaborane (orthocarborane) for the p-type layer. These all-boron carbide heterojunction diodes were investigated experimentally, with highly sensitive current voltage measurements in light and dark and under alpha, beta, and neutron irradiation. The heteroisomeric diodes exhibited photovoltaic and alphavoltaic behavior and successfully functioned as neutron detectors. Preliminary results of beta radiation response of these heteroisomeric diodes is also presented. The high-kappa dielectric oxide, hafnium oxide (HfO2), was doped with gadolinium and grown on silicon using pulsed laser deposition (PLD) to form a novel semiconducting diode. Three levels of Gd-doping (3%, 10%, and 15%) were explored. A shift from the unstable monoclinic phase to the stable cubic phase is seen with increased Gd-doping concentrations, which may possibly serve as a better semiconductor. The detection of charge pulses created by neutron capture was explored using neutron sources from Nebraska Wesleyan University and The Ohio State University Research Reactor (OSURR) neutron sources. The 10% and 15% doped diodes exhibited pulse height spectra in the presence of neutrons. Electronic signal processing remains the most significant challenge for these latter detectors.

  18. Cosmological quantum chromodynamics, neutron diffusion, and the production of primordial heavy elements

    NASA Technical Reports Server (NTRS)

    Applegate, J. H.; Hogan, Craig J.; Scherrer, R. J.

    1988-01-01

    A simple one-dimensional model is used to describe the evolution of neutron density before and during nucleosynthesis in a high-entropy bubble left over from the cosmic quark-hadron phase transition. It is shown why cosmic nucleosynthesis in such a neutron-rich environment produces a surfeit of elements heavier than lithium. Analytical and numerical techniques are used to estimate the abundances of carbon, nitrogen, and heavier elements up to Ne-22. A high-density neutron-rich region produces enough primordial N-14 to be observed in stellar atmospheres. It shown that very heavy elements may be created in a cosmological r-process; the neutron exposure in the neutron-rich regions is large enough for the Ne-22 to trigger a catastrophic r-process runaway in which the quantity of heavy elements doubles in much less than an expansion time due to fission cycling. A primordial abundance of r-process elements is predicted to appear as an excess of rare earth elements in extremely metal-poor stars.

  19. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    SciTech Connect

    Novikov, M. S. Ivanov, D. P. E-mail: denis.ivanov30@mail.ru; Novikov, S. I. Shuvaev, S. A. E-mail: sergey.shuvaev@phystech.edu

    2015-12-15

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20–30 kA, an operating temperature of 10–20 K, and a magnetic field on the winding of 12–15 T (prospectively ∼20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet’s casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  20. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Novikov, M. S.; Ivanov, D. P.; Novikov, S. I.; Shuvaev, S. A.

    2015-12-01

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20-30 kA, an operating temperature of 10-20 K, and a magnetic field on the winding of 12-15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet's casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  1. Advanced oxidation protein products are generated by bovine neutrophils and inhibit free radical production in vitro.

    PubMed

    Bordignon, Milena; Da Dalt, Laura; Marinelli, Lieta; Gabai, Gianfranco

    2014-01-01

    Despite the recognised importance of oxidative stress in the health and immune function of dairy cows, protein oxidation markers have been poorly studied in this species. The current study aimed to characterise markers of protein oxidation generated by activated bovine neutrophils and investigate the biological effects of advanced oxidation protein products (AOPP) on bovine neutrophils. Markers of protein oxidation (AOPP, dityrosines and carbonyls) were measured in culture medium containing bovine serum albumin (BSA) exposed to neutrophils. The effect of AOPP-BSA on generation of reactive oxygen species (ROS) was assessed by chemiluminescence. Activation of caspases-3, -8 and -9 and the presence of DNA laddering were used as apoptosis markers. Greater amounts of AOPP were generated by phorbol myristate acetate (PMA)-activated than non-activated neutrophils (1.46 ± 0.13 vs. 0.75 ± 0.13 nmol/mg protein, respectively; P<0.05). Activated neutrophils and hypochlorous acid generated slightly different patterns of oxidized protein markers. Exposure to AOPP-BSA did not stimulate ROS production. Activated neutrophils generated a lesser amount of ROS when incubated with AOPP-BSA (P<0.001). Activation with PMA induced a loss of viable neutrophils after 3h, which was greater with AOPP-BSA incubation (P<0.05). Detectable amounts of active caspases-3, -8 and -9 were found in nearly all samples but differences in caspase activation or DNA laddering were not observed comparing treatment groups. Apoptosis was unlikely to be responsible for the greater loss of PMA-activated neutrophils cultured in AOPP-BSA and it is possible that primary necrosis occurred. The results suggest that accumulation of oxidized proteins at an inflammatory site might result in a progressive reduction of neutrophil viability.

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  3. Neutron Emission in Deuterium Dense Plasma Foci

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2013-10-01

    We present the results of a computational study of the deuterium dense plasma focus (DPF) carried out to improve understanding of the neutron production mechanism in the DPF. The device currents studied range from 70 kA to several MA. The complete evolution of the DPF is simulated in 3D from rundown through to neutron emission using a hybrid computational method. The rundown, pinching, stagnation and post-stagnation (pinch break-up) phases are simulated using the 3D MHD code Gorgon. Kinetic computational tools are used to model the formation and transport of non-thermal ion populations and neutron production during the stagnation and post-stagnation phases, resulting in the production of synthetic neutron spectra. It is observed that the break-up phase plays an important role in the formation of non-thermal ions. Large electric fields generated during pinch break-up cause ions to be accelerated from the edges of dense plasma regions. The dependence on current of the neutron yield, neutron spectra shape and isotropy is studied. The effect of magnetization of the non-thermal ions is evident as the anisotropy of the neutron spectra decreases at higher current.

  4. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; <20% 235U enrichment) targets. To achieve the equivalent amount of 99Mo with LEU targets, approximately 5 times uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  5. Neutron Capture and the Production of 60-Fe in Stellar Environments

    SciTech Connect

    Kelley, K

    2005-08-23

    The observation of gamma rays associated with the decay of {sup 26}Al and {sup 60}Fe can provide important information regarding ongoing nucleosynthesis in our galaxy. The half-lives of these radioisotopes (7.2 x 10{sup 5} y and 1.5 x 10{sup 6} y, respectively) are long compared to the interval between synthesis events such as supernovae, so they build up in a steady state in the interstellar medium (centered on the galactic plane, where massive stars reside), yet short enough that gamma radiation from their decay may be detected. Additionally, these half-lifes are short compared to the period of galactic revolution, so that observable abundances remain in the proximity of their production sites. Predicted abundances of {sup 26}Al and {sup 60}Fe vary widely between several calculations in the last decade. In 2004, the first observation of the gamma ray flux from {sup 60}Fe decay was reported, with a {sup 60}Fe/{sup 26}Al flux ratio in good agreement with nucleosynthesis modeling from 1995. However, recent calculations that include well motivated updates to the stellar and nuclear physics, predict a flux ratio as much as six times higher than the observed value. It is desirable to understand the discrepancy between the latest calculation, which in principle should have been more accurate, and the observation. In the present study, the uncertainties related to two key nuclear aspects of this problem, namely the neutron capture reaction rates for {sup 59,60}Fe, are investigated. New reaction rates are modeled using local systematics as opposed to the global systematics used in previous studies. Comparisons to experimental data are made whenever possible. The sensitivity of the reaction rates to various input quantities is gauged, and estimates regarding the total uncertainty in the reaction rates are made. The resulting rates and uncertainties are used in parameterized single-zone nucleosynthesis calculations using hydrodynamic conditions typical of those found in

  6. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  7. A study on the utilization of tritide titanium targets for monoenergetic neutron production

    NASA Astrophysics Data System (ADS)

    Karamanis, D.

    2002-10-01

    Proton beam interaction with a tritide titanium target in an electrostatic accelerator was studied by measuring the produced neutron rate as a function of bombarding time. The results are analyzed in the frame of target temperature increase, extension of existing low energy interaction model and SRIM simulation. Special emphasis is put on the evaluation of the release of radiotoxic tritium from the solid target.

  8. Second generation ethanol in Brazil: can it compete with electricity production?

    PubMed

    Dias, Marina O S; Cunha, Marcelo P; Jesus, Charles D F; Rocha, George J M; Pradella, José Geraldo C; Rossell, Carlos E V; Filho, Rubens Maciel; Bonomi, Antonio

    2011-10-01

    Much of the controversy surrounding second generation ethanol production arises from the assumed competition with first generation ethanol production; however, in Brazil, where bioethanol is produced from sugarcane, sugarcane bagasse and trash will be used as feedstock for second generation ethanol production. Thus, second generation ethanol production may be primarily in competition with electricity production from the lignocellulosic fraction of sugarcane. A preliminary technical and economic analysis of the integrated production of first and second generation ethanol from sugarcane in Brazil is presented and different technological scenarios are evaluated. The analysis showed the importance of the integrated use of sugarcane including the biomass represented by surplus bagasse and trash that can be taken from the field. Second generation ethanol may favorably compete with bioelectricity production when sugarcane trash is used and when low cost enzyme and improved technologies become commercially available. PMID:21795041

  9. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  10. Neutron and Gamma-ray Measurements

    SciTech Connect

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Popovichev, Sergey V.; Nishitani, Takeo; Bertalot, Luciano

    2008-03-12

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  11. Neutron and Gamma-ray Measurements

    NASA Astrophysics Data System (ADS)

    Krasilnikov, Anatoly V.; Sasao, Mamiko; Kaschuck, Yuri A.; Kiptily, Vasily G.; Nishitani, Takeo; Popovichev, Sergey V.; Bertalot, Luciano

    2008-03-01

    Due to high neutron and gamma-ray yields and large size plasmas many future fusion reactor plasma parameters such as fusion power, fusion power density, ion temperature, fuel mixture, fast ion energy and spatial distributions can be well measured by various fusion product diagnostics. Neutron diagnostics provide information on fusion reaction rate, which indicates how close is the plasma to the ultimate goal of nuclear fusion and fusion power distribution in the plasma core, which is crucial for optimization of plasma breakeven and burn. Depending on the plasma conditions neutron and gamma-ray diagnostics can provide important information, namely about dynamics of fast ion energy and spatial distributions during neutral beam injection, ion cyclotron heating and generated by fast ions MHD instabilities. The influence of the fast particle population on the 2-D neutron source profile was clearly demonstrated in JET experiments. 2-D neutron and gamma-ray source measurements could be important for driven plasma heating profile optimization in fusion reactors. To meat the measurement requirements in ITER the planned set of neutron and gamma ray diagnostics includes radial and vertical neutron and gamma cameras, neutron flux monitors, neutron activation systems and neutron spectrometers. The necessity of using massive radiation shielding strongly influences the diagnostic designs in fusion reactor, determines angular fields of view of neutron and gamma-ray cameras and spectrometers and gives rise to unavoidable difficulties in the absolute calibration. The development, testing in existing tokomaks and a possible engineering integration of neuron and gamma-ray diagnostic systems into ITER are presented.

  12. Neutronic effects on tungsten-186 double neutron capture

    NASA Astrophysics Data System (ADS)

    Garland, Marc Alan

    Rhenium-188, a daughter product of tungsten-188, is an isotope of great interest in therapeutic nuclear medicine, being used in dozens of laboratory and clinical investigations worldwide. Applications include various cancer therapy strategies, treatment of rheumatoid arthritis, prevention of restenosis following coronary artery angioplasty, and palliation of bone pain associated with cancer metastases. With its half-life of 17 hours, 2.12 MeV (maximum) beta-particle emission, chemical similarity to technetium-99m (the most widely used diagnostic radioisotope), and its availability in a convenient tungsten-188/rhenium-188 generator system, rhenium-188 is a superb candidate for a broad range of applications. Production of 188W is typically via double neutron capture by 186W in a high flux nuclear reactor, predominantly the High Flux Isotope Reactor at the Oak Ridge National Laboratory in Tennessee. Experience at HFIR has shown that production yields (measured in Ci of 188W produced per g of 186W target) decrease considerably as target size increases. While the phenomenon of neutron resonance self-shielding would be expected to produce such an effect, temperature effects on neutron flux distribution and neutron capture rates may also be involved. Experimental investigations of these phenomena have not been previously performed. The work presented in this thesis evaluates the factors that contribute to the decrease in 188W yield from both theoretical and experimental standpoints. Neutron self-shielding and temperature effects were characterized to develop a strategy for target design that would optimize production yield, an important factor in minimizing health care costs. It was determined that decrease in yield due to neutron self-shielding can be attributed to depletion of epithermal neutrons at resonant energies, most significantly within the initial 0.4 mm depth of the target. The results from these studies further show that 188W yield in the interior of the

  13. A simple model for neutron radiography of uranium-plutonium mixed oxide fuel pins

    NASA Astrophysics Data System (ADS)

    Panakkal, J. P.; Ghosh, J. K.

    1988-04-01

    Neutron radiography has been used for monitoring plutonium enrichment in uranium-plutonium mixed oxide fuel pellets inside welded nuclear fuel pins by correlating the optical density of radiographs at the centre of the pellets and plutonium enrichment. Optical density data corresponding to different thickness of the pellets starting from the centre towards the periphery was generated by microdensitometer scanning of neutron radiographs of the experimental fuel pins. An attempt has been made to correlate the optical density at points corresponding to different thickness segments of the pellets and thermal neutron interaction probability (product of the total macroscopic neutron cross section and the distance traversed by the neutrons). Based on the experimental data generated, a simple model for transmission of neutrons through nuclear fuel pins has been evolved. Using this model, it is possible to predict the optical density of plutonium bearing fuel pins containing pellets of different composition or diameter in neutron radiographic investigations.

  14. Generate rigorous pyrolysis models for olefins production by computer

    SciTech Connect

    Klein, M.T.; Broadbelt, L.J.; Grittman, D.H.

    1997-04-01

    With recent advances in the automation of the model-building process for large networks of kinetic equations, it may become feasible to generate computer pyrolysis models for naphthas and gas oil feedstocks. The potential benefit of a rigorous mechanistic model for these relatively complex liquid feedstocks is great, due to diverse characterizations and yield spectrums. An ethane pyrolysis example is used to illustrate the computer generation of reaction mechanism models.

  15. A Compact Monitoring System for Recording X-Rays, Gamma Rays and Neutrons Generated By Atmospheric Lightning Discharges and Other Natural Phenomena

    NASA Astrophysics Data System (ADS)

    Martin, I. M.; Alves, M. A.

    2009-12-01

    The generation of X-rays, gamma-rays and neutrons by atmospheric lightning discharges has been predicted by different researchers several decades ago. But only within the last 25 years the first experimental evidences of events relating the generation of these radiations with lightning have been made; since then there is a continuing effort to collect more information about this type of phenomenon. In this study we describe a compact monitoring system to detect simultaneously X-rays, gamma-rays and neutrons using rather inexpensive off-the-shelf commercial detectors (Micro Roengten Radiation Monitor, 8-inch gamma tube coupled to a 3x3 inch sodium iodide [Nai(Tl)] crystal, Ludlum He-3 neutron detector) and accompanying computer interfaces. The system is extremely portable and can be powered with small automotive batteries, if necessary. Measurements are performed at ground-level. Preliminary measurements have already yielded positive results, e.g., changes in the neutron flux related to a lightning discharge and varying weather conditions have been observed in the city of Sao Jose dos Campos, Brazil (23° 11‧ 11″S, 45° 52‧ 43″ W, 600 m above sea level). This a pilot study, in the near future a larger number of these compact monitoring system will be installed in different location in order to increase the area coverage. Although the main objective of the study is to detect high-energy events produced by lightning discharges, the monitoring system will also be able to detect changes in the radiation background produced by other natural phenomena.

  16. Hydrogen isotope and light element profiling in solid tritium targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; England, J. B. A.; Goldie, D. J.

    1987-04-01

    Five targets consisting of titanium tritide layers on copper backings have been investigated using nuclear reaction analysis. As these targets are commonly used to produce monoenergetic neutrons via the T(p, n) 3 He and T(d, n) 4 He reactions, it is important to know of the presence of other elements which may produce neutrons at different energies. The thicknesses of the titanium tritide layers were measured by observing the T(p, n) 3 He threshold yield curve and also the energy spread of the neutrons using a 3He-filled gridded ion chamber. Elastic recoil analysis with a particle identifying system was used to measure the hydrogen, deuterium, tritium and 3He content, and elastic scattering was used to study the carbon and oxygen. Surprisingly high concentrations of both hydrogen and oxygen were found on all targets, including the three which had never been used. Also surprising was the 3He content which was approximately the same for targets of all ages and conditions of use. As expected, the carbon content increased strongly with use, originating no doubt, from vacuum pump oil. Up to 3% deuterium atoms were observed in unused targets with much higher contents being recorded in used targets.

  17. Production, crystallization and neutron diffraction of fully deuterated human myelin peripheral membrane protein P2.

    PubMed

    Laulumaa, Saara; Blakeley, Matthew P; Raasakka, Arne; Moulin, Martine; Härtlein, Michael; Kursula, Petri

    2015-11-01

    The molecular details of the formation of the myelin sheath, a multilayered membrane in the nervous system, are to a large extent unknown. P2 is a peripheral membrane protein from peripheral nervous system myelin, which is believed to play a role in this process. X-ray crystallographic studies and complementary experiments have provided information on the structure-function relationships in P2. In this study, a fully deuterated sample of human P2 was produced. Crystals that were large enough for neutron diffraction were grown by a ten-month procedure of feeding, and neutron diffraction data were collected to a resolution of 2.4 Å from a crystal of 0.09 mm(3) in volume. The neutron crystal structure will allow the positions of H atoms in P2 and its fatty-acid ligand to be visualized, as well as shedding light on the fine details of the hydrogen-bonding networks within the P2 ligand-binding cavity.

  18. DIANE: Advanced system for mobile neutron radiology

    NASA Astrophysics Data System (ADS)

    Dance, W. E.; Huriet, J. R.; Cluzeau, S.; Mast, H.-U.; Albisu, F.

    1989-04-01

    Development of a new neutron radiology system, DIANE, is underway which will provide a ten-fold improvement in image-acquisition speed over presently operating mobile systems, insuring greater inspection throughput for production applications. Based on a 10 12 n/s sealed-tube (D-T) neutron generator under development by Sodern, on LTV's neutron moderator/collimator and electronic imaging systems and on robotic and safety systems being developed by IABG and Sener, the DIANE concept is that of a complete facility for on-site neutron radiography or radioscopy. The LTV components, which provide film or electronic imaging, including digital processing of 12-bit images, have been demonstrated in three basic systems now operating with Kaman A-711 neutron generators, including one operating in IABG's facilities. Sodern has fabricated a prototype neutron generator tube, the TN 46, for emission of 10 11 n/s over 1000 to 1500 hours, at 250 kV and 2 mA in the ion beam.

  19. Electric energy production by particle thermionic-thermoelectric power generators

    NASA Technical Reports Server (NTRS)

    Oettinger, P. E.

    1980-01-01

    Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.

  20. Protons from the decay of solar flare neutrons

    NASA Technical Reports Server (NTRS)

    Evenson, P.; Meyer, P.; Pyle, K. R.

    1983-01-01

    Fluxes of energetic protons in interplanetary space are observed which are interpreted as the decay products of neutrons generated in a solar flare on 1982 June 3 at 11:42 UT. Because of the particular geometry of this event the spectrum of neutrons escaping from the sun can be constructed with great accuracy in the kinetic energy range 10-100 MeV. The resulting spectrum places stringent constraints on the free parameters used in previously published calculations of neutron production in solar flares. An estimate is made of the diffusion mean free path of charged particles in the interplanetary medium in a new way.

  1. Comparison of light transport-incorporated MCNPX and FLUKA codes in generating organic scintillators responses to neutrons and gamma rays

    NASA Astrophysics Data System (ADS)

    Tajik, M.; Ghal-Eh, N.

    2015-08-01

    The NE102 plastic scintillator response to 137Cs gamma rays and NE213 liquid scintillator response to both mono-energetic and 241Am-Be neutrons have been modeled using FLUKA's EVENTBIN and MCNPX's PTRAC cards. The comparison made in different energy regions confirms that the overall difference is less than 6%.

  2. CALIBRATION OF THE HB LINE ACTIVE WELL NEUTRON COINCIDENCE COUNTER FOR MEASUREMENT OF LANL 3013 HIGHLY ENRICHED URANIUM PRODUCT SPLITS

    SciTech Connect

    Dewberry, R; Donald02 Williams, D; Rstephen Lee, R; David-W Roberts, D; Leah Arrigo, L

    2008-01-22

    In this paper we describe set-up, calibration, and testing of the F-Area Analytical Labs active well neutron coincidence counter(HV-221000-NDA-X-1-DK-AWCC-1)in SRNL for use in HB-Line to enable assay of 3013EU/Pu metal product. The instrument was required within a three-month window for availability upon receipt of LANL Category IV uranium oxide samples into the SRS HB-Line facility. We describe calibration of the instrument in the SRNL nuclear nondestructive assay facility in the range 10-400 g HEU for qualification and installation in HB-Line for assay of the initial suite of product samples.

  3. Characterization of the energy distribution of neutrons generated by 5 MeV protons on a thick beryllium target at different emission angles.

    PubMed

    Agosteo, S; Colautti, P; Esposito, J; Fazzi, A; Introini, M V; Pola, A

    2011-12-01

    Neutron energy spectra at different emission angles, between 0° and 120° from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0° resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.

  4. ANITA-2000 activation code package - updating of the decay data libraries and validation on the experimental data of the 14 MeV Frascati Neutron Generator

    NASA Astrophysics Data System (ADS)

    Frisoni, Manuela

    2016-03-01

    ANITA-2000 is a code package for the activation characterization of materials exposed to neutron irradiation released by ENEA to OECD-NEADB and ORNL-RSICC. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation. The code requires the decay data library (file fl1) containing the quantities describing the decay properties of the unstable nuclides and the library (file fl2) containing the gamma ray spectra emitted by the radioactive nuclei. The fl1 and fl2 files of the ANITA-2000 code package, originally based on the evaluated nuclear data library FENDL/D-2.0, were recently updated on the basis of the JEFF-3.1.1 Radioactive Decay Data Library. This paper presents the results of the validation of the new fl1 decay data library through the comparison of the ANITA-4M calculated values with the measured electron and photon decay heats and activities of fusion material samples irradiated at the 14 MeV Frascati Neutron Generator (FNG) of the NEA-Frascati Research Centre. Twelve material samples were considered, namely: Mo, Cu, Hf, Mg, Ni, Cd, Sn, Re, Ti, W, Ag and Al. The ratios between calculated and experimental values (C/E) are shown and discussed in this paper.

  5. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still

  6. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  7. A search for neutrons and gamma rays associated with tritium production in deuterated metals

    SciTech Connect

    Wolf, K.L.; Lawson, D.R.; Packham, N.J.C.; Wass, J.C.

    1989-01-01

    Tritium activity has been measured in several Pd-Ni-D{sub 2}O electrolytic cells, as reported previously. At the present time 13 separate cells have shown tritium at 10{sup 2} to 10{sup 6} times the background level of the D{sub 2}O used in these experiments. The appearance of the activity in the electrolyte and in the gas phase occurs over a period of hours to a few days after remaining at or near the background level during 4--10 weeks of charging in 0.1 M LiOD, D{sub 2}O solution. The present paper deals with attempts to reproduce the tritium measurements and to establish the source, from either contamination or nuclear reaction. The sudden appearance of tritium activity in the cells requires the tritium to be loaded in a component prior to the beginning of cell operation in a contamination model. Release is assumed to be caused by deterioration of one of the materials used in the 0.1 M LiOD solution. In an extensive set of tests, no contamination has been found in the starting materials or in normal water blanks. Results for neutron and gamma-ray correlations have proved to be negative also. The limit set on the absence of 2.5 MeV neutrons for the t/n ration is 10{sup 7} from that expected in the d + d reaction, and 10{sup 3} for 14 MeV neutrons expected from the t + d secondary reaction. Similarly, Coulomb excitation gamma rays expected from the interaction of 3 MeV protons with Pd are found to be absent, which indicates that the d(d,p)t two-body reaction does not occur in the Pd electrode. 9 figs., 2 tabs.

  8. [Correlation between the microbiological (S. aureus) and seismic activities with regard to the sun-earth interactions and neutron flux generation].

    PubMed

    Shestopalov, I P; Rogozhin, Iu A

    2005-01-01

    The study searched for interactions between the solar activity, seismic energy of the Earth and microbiological processes in the period from 1969 to 1997. Microbiological processes were found dependent on as the solar, so intraterrestrial (e.g. seismic) activity. The 11-year seismic on biological cycles on Earth display a positive inter-correlation and a negative one with the solar activity (sun-spots cycles). There is also correlation between the Earth's seismic energy and neutron fluxes generated at the times of earthquakes on our planet, and microbiological parameters.

  9. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  10. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    DOEpatents

    Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  11. OCCURRENCE OF A NEW GENERATION OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A survey of disinfection by-product (DBP) occurrence in the United States was conducted at 12 drinking water treatment plants. In addition to currently regulated DBPs, more than 50 DBPs that rated a high priority for potential toxicity were studied. These priority DBPs included...

  12. Neutron propagation and 2.2 MeV gamma-ray line production in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, H. T.; Ramaty, R.

    1974-01-01

    The 2.2 MeV gamma ray line intensity from the sun was calculated using a Monte Carlo method for neutron propagation in the solar atmosphere. Detailed results are provided on the total gamma ray yield per neutron and on the time profile of the 2.2 MeV line from an instantaneous and monoenergetic neutron source. The parameters which have the most significant effects on the line intensity are the energies of the neutrons, the position of the neutron source on the sun, and the abundance of He-3 in the photosphere. For an isotropic neutron source which is not too close to the limb of the sun, the gamma ray yield is between about 0.02 to 0.2 photons per neutron, provided that the neutron energies are in the range 1 to 100 MeV and the ratio He-3/H is less than about .00005.

  13. Neutron Production and Fast Deuteron Characteristics at the Plasma Focus Discharge

    SciTech Connect

    Kubes, P.; Kravarik, J.; Klir, D.; Rezac, K.; Scholz, M.; Paduch, M.; Ivanova-Stanik, I.; Karpinski, L.; Tomaszewski, K.

    2009-01-21

    This paper summarized the results of interferometry, X-ray and neutron diagnostics performed at the plasma focus facility filled with deuterium. The fusion processes are produced mainly in the dense and hot spherical structure of 2 cm diameter 5-8 cm in front of the anode. The electron temperature of this structure is about 750 eV and the density 5x10{sup 24}-5x10{sup 25}. The neutron energy distribution was calculated using time of flight analysis and showed the dominant direction of the fast deuteron velocity downstream. The deuteron energy distribution was estimated supposing isotropy distribution of the sum of opposite orientation. The total number of fast deuterons in the energy range of 10-400 keV is about 10{sup 18} with total energy of 20 kJ. Plasma in the spherical structure is heated dominantly with ion-ion Coulomb collisions of fast deuterons in the energy range below 10 keV.

  14. NECESSARY CONDITIONS FOR SHORT GAMMA-RAY BURST PRODUCTION IN BINARY NEUTRON STAR MERGERS

    SciTech Connect

    Murguia-Berthier, Ariadna; Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Lee, William H.

    2014-06-10

    The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the trigger—the actual astrophysical configuration that is capable of powering an sGRB—but also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce an sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (≤100 ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of successful breakthrough of the jet through the neutrino-driven wind, the energy stored in the cocoon could contribute to the precursor and extended emission observed in sGRBs.

  15. Neutron and light-charged-particle productions in proton-induced reactions on 208Pb at 62.9 MeV

    NASA Astrophysics Data System (ADS)

    Guertin, A.; Marie, N.; Auduc, S.; Blideanu, V.; Delbar, Th.; Eudes, P.; Foucher, Y.; Haddad, F.; Kirchner, T.; Le Brun, Ch.; Lebrun, C.; Lecolley, F. R.; Lecolley, J. F.; Ledoux, X.; Lefèbvres, F.; Lefort, T.; Louvel, M.; Ninane, A.; Patin, Y.; Pras, Ph.; Rivière, G.; Varignon, C.

    2005-01-01

    Neutrons and light charged particles produced in 62.9MeV proton-induced reactions on 208Pb were measured during a single experiment performed at the CYCLONE facility in Louvain-la-Neuve (Belgium). Two independent experimental set-ups were used to extract double differential cross-sections for neutrons, protons, deuterons, tritons, 3He and alpha-particles. Charged particles were detected using a set of Si- Si- CsI telescopes from 25° to 155°, by step of 10 degrees. Neutrons were measured using shielded DeMoN counters, liquid NE213 scintillators, at 24°, 35°, 55°, 80° and 120°. These data allowed the determination of angle differential, energy differential and total production cross-sections. A comparison with theoretical calculations (MCNPX, FLUKA and TALYS) has been performed. It shows that the neutron and proton production rates are well predicted by MCNPX, using the INCL4 option. All the other codes underestimate the neutron production whereas they overestimate the proton one. For composite particles, which represent 17% of the charged particle total reaction cross-section, neither the shape nor the amplitude of the cross-sections are correctly predicted by the models.

  16. Second generation fusion neutron time-of-flight spectrometer at optimized rate for fully digital data acquisition

    SciTech Connect

    Zhang, X. E-mail: jnke1@icloud.com Fan, T.; Yuan, X.; Xie, X.; Chen, Z.; Källne, J.; Gorini, G.; Nocente, M.

    2014-04-15

    The progress on high-rate event recording of data is taken as starting point to revisit the design of fusion neutron spectrometers based on the TOF (time-of-flight) technique. The study performed was aimed at how such instruments for optimized rate (TOFOR) can be further developed to enhance the plasma diagnostic capabilities based on measurement of the 2.5 MeV dd neutron emission from D plasmas, especially the weak spectral components that depend on discrimination of extraneous events. This paper describes a design (TOFOR II) adapted for use with digital wave form recording of all detector pulses providing information on both amplitude (pulse height) and timing. The results of simulations are presented and the performance enhancement is assessed in comparison to the present.

  17. Facility for generating crew waste water product for ECLSS testing

    NASA Technical Reports Server (NTRS)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  18. Production of the entire range of r-process nuclides by black hole accretion disk outflows from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-08-01

    We consider r-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disk outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disk viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar System r-process distribution. The spike arises from convection in the disk and depends on the treatment of nuclear heating in the simulations. We conclude that disk outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  19. Laser-driven high-energy-density deuterium and tritium ions for neutron production in a double-cone configuration

    SciTech Connect

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Yin, Yan; Ma, Yan-Yun; Zhu, Qing-Jun

    2015-12-15

    By using two-dimensional particle-in-cell simulations, we investigate laser-driven ion acceleration and compression from a thin DT foil in a double-cone configuration. By using two counterpropagating laser pulses, it is shown that a double-cone structure can effectively guide, focus, and strengthen the incident laser pulses, resulting in the enhanced acceleration and compression of D{sup +} and T{sup +}. Due to the ion Coulomb repulsion and the effective screening from the external laser electric fields, the transverse diffusion of ions is significantly suppressed. Finally, the peak energy density of the compressed ions exceeds 2.73 × 10{sup 16 }J/m{sup 3}, which is about five orders of magnitude higher than the threshold for high energy density physics, 10{sup 11 }J/m{sup 3}. Under this condition, DT fusion reactions are initiated and the neutron production rate per volume is estimated to be as high as 7.473 × 10{sup 35}/m{sup 3} s according to Monte Carlo simulations. It is much higher than that of the traditional large neutron sources, which may facilitate many potential applications.

  20. STEM-EDS analysis of fission products in neutron-irradiated TRISO fuel particles from AGR-1 experiment

    NASA Astrophysics Data System (ADS)

    Leng, B.; van Rooyen, I. J.; Wu, Y. Q.; Szlufarska, I.; Sridharan, K.

    2016-07-01

    Historic and recent post-irradiation-examination from the German AVR and Advanced Gas Reactor Fuel Development and Qualification Project have shown that 110 m Ag is released from intact tristructural isotropic (TRISO) fuel. Although TRISO fuel particle research has been performed over the last few decades, little is known about how metallic fission products are transported through the SiC layer, and it was not until March 2013 that Ag was first identified in the SiC layer of a neutron-irradiated TRISO fuel particle. The existence of Pd- and Ag-rich grain boundary precipitates, triple junction precipitates, and Pd nano-sized intragranular precipitates in neutron-irradiated TRISO particle coatings was investigated using Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy analysis to obtain more information on the chemical composition of the fission product precipitates. A U-rich fission product honeycomb shape precipitate network was found near a micron-sized precipitate in a SiC grain about ∼5 μm from the SiC-inner pyrolytic carbon interlayer, indicating a possible intragranular transport path for uranium. A single Ag-Pd nano-sized precipitate was found inside a SiC grain, and this is the first research showing such finding in irradiated SiC. This finding may possibly suggest a possible Pd-assisted intragranular transport mechanism for Ag and may be related to void or dislocation networks inside SiC grains. Preliminary semi-quantitative analysis indicated the micron-sized precipitates to be Pd2Si2U with carbon existing inside these precipitates. However, the results of such analysis for nano-sized precipitates may be influenced by the SiC matrix. The results reported in this paper confirm the co-existence of Cd with Ag in triple points reported previously.