NASA Astrophysics Data System (ADS)
Coventry, M. D.; Krites, A. M.
Measurements to determine the absolute D-D and D-7Li neutron production rates with a neutron generator running at 100-200 kV acceleration potential were performed using the threshold activation foil technique. This technique provides a clear measure of fast neutron flux and with a suitable model, the neutron output. This approach requires little specialized equipment and is used to calibrate real-time neutron detectors and to verify neutron output. We discuss the activation foil measurement technique and describe its use in determining the relative contributions of D-D and D-7Li reactions to the total neutron yield and real-time detector response and compare to model predictions. The D-7Li reaction produces neutrons with a continuum of energies and a sharp peak around 13.5 MeV for measurement techniques outside of what D-D generators can perform. The ability to perform measurements with D-D neutrons alone, then add D-7Li neutrons for inelastic gamma production presents additional measurement modalities with the same neutron source without the use of tritium. Typically, D-T generators are employed for inelastic scattering applications but have a high regulatory burden from a radiological aspect (tritium inventory, liability concerns) and are export-controlled. D-D and D-7Li generators avoid these issues completely.
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Feasibility study on medical isotope production using a compact neutron generator.
Leung, Ka-Ngo; Leung, James K; Melville, Graeme
2018-07-01
Compact neutron generators can provide high flux of neutrons with energies ranging from thermal (0.025 eV) to 14 MeV. Recent measurements demonstrated high neutron yields from the D- 7 Li fusion reaction at an interaction energy of 500 keV. Using the D- 7 Li reaction and applying new advancements in high flux neutron generator technology along with the commercial availability of high voltage DC power supplies enables the production of useful quantities of radioisotopes for medical applications. Using the known neutron reaction cross-sections, it has been estimated that hundreds-to-thousands MBq (or tens-to-hundreds mCi) of 99 Mo, 225 Ac, 64 Cu and 67 Cu can be obtained from a compact high flux neutron generator. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.
2015-11-01
Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.
Compact D-D/D-T neutron generators and their applications
NASA Astrophysics Data System (ADS)
Lou, Tak Pui
2003-10-01
Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.
Pathways to agility in the production of neutron generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltz, R.E.; Beavis, L.C.; Cutchen, J.T.
1994-02-01
This report is the result of a study team commissioned to explore pathways for increased agility in the manufacture of neutron generators. As a part of Sandia`s new responsibility for generator production, the goal of the study was to identify opportunities to reduce costs and increase flexibility in the manufacturing operation. Four parallel approaches (or pathways) were recommended: (1) Know the goal, (2) Use design leverage effectively, (3) Value simplicity, and (4) Configure for flexibility. Agility in neutron generator production can be enhanced if all of these pathways are followed. The key role of the workforce in achieving agility wasmore » also noted, with emphasis on ownership, continuous learning, and a supportive environment.« less
Switchable radioactive neutron source device
Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.
1989-01-01
This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.
Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products
NASA Astrophysics Data System (ADS)
Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula
2015-10-01
The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.
Characterization of plastic and boron carbide additive manufactured neutron collimators
NASA Astrophysics Data System (ADS)
Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.
2017-12-01
Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.
Switchable radioactive neutron source device
Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.
1987-11-06
This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.
Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator.
Ji, Q; Lin, C-J; Tindall, C; Garcia-Sciveres, M; Schenkel, T; Ludewigt, B A
2017-05-01
Tagging of neutrons (2.45 MeV) with their associated 3 He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3 He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3 He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3 He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.
X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; A.J. Caffrey
2001-08-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measuredmore » with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.« less
Photonuclear Contributions to SNS Pulse Shapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker C.; Iverson, Erik B.; Gallmeier, Franz X.
Short-pulsed sources like the Spallation Neutron Source (SNS) and ISIS produce bursts of neutron pulses at rates of 10-60 Hz, with sub-microsecond proton pulses impacting on high-Z target materials. Moderators are grouped around the target to receive the fast neutrons generated from spallation reactions to moderate them effciently to thermal and sub-thermal energies and to feed narrow neutron pulses to neutron scattering instruments. The scattering instruments use the neutrons as a probe for material investigations, and make use of time-of-flight (TOF) methods for resolving the neutron energy. The energy resolution of scattering instruments depends on the narrow time-structure of themore » neutron pulses, while neutrons in the long tail of the emission time distributions can degrade the instrument performance and add undesired background to measurements. The SNS neutronics team is investigating a possible source term impacting the background at short-pulsed spallation sources. The ISIS TS2 project claims to have significantly reduced neutron scattering instrument background levels by the elimination or reduction of iron shielding in the target-moderator-reflector assembly. An alternative hypothesis, also proposed by ISIS, suggests that this apparent reduction arises from moving beamline shielding away from the neutron guide channels, reducing albedo down the beamlines. In both hypotheses, the background neutrons in question are believed to be generated by photonuclear reactions. If the background neutrons are indeed generated via photonuclear channels, then they are generated in a time-dependent fashion, since most of the high-energy photons capable of inducing photonuclear production are gone within a few microseconds following the proton pulse. To evaluate this e ect, we have enabled photonuclear reactions in a series of studies for the SNS first target station (FTS) taking advantage of its Monte Carlo model. Using a mixture of ENDF/B VII.0 and TENDL-2014 photonuclear cross sections available and the CEM03 physics model within MCNPX 2.6.0 in the simulation, we are able to estimate the impact of photoneutron production on both overall neutron production and delayed neutron production. We find that a significant number of photon-induced neutrons are produced a few milliseconds after the proton pulse, following prompt gamma emission through the capture of neutrons in the slowing-down and thermalization processes. We name these "slowing-down delayed neutrons" to distinguish them from either "activation-delayed neutrons" or "beta-delayed neutrons." The beta-delayed and activation-delayed neutrons were not part of this study, and will be addressed elsewhere. While these other delayed neutron channels result in the time-independent (constant) production of fast neutrons outside of the prompt pulse, the slowing-down delayed neutrons also a ect the shape of the pulses. Although numerically insignificant in most cases, we describe a set of scenarios related to T0-chopper operation in which the slowing-down delayed neutrons may be important.« less
Production of 14 MeV neutrons by heavy ions
Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.
1977-01-01
This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum wasmore » measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.« less
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
NASA Astrophysics Data System (ADS)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.
Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei
NASA Astrophysics Data System (ADS)
Yurevich, Vladimir
2016-09-01
The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.
Characterization of a deuterium-deuterium plasma fusion neutron generator
NASA Astrophysics Data System (ADS)
Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.
2018-01-01
We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.
NASA Astrophysics Data System (ADS)
Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors
2017-03-01
At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Alexis Chanel
The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.
Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferres, Laurent
Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less
Development of a Time-tagged Neutron Source for SNM Detection
Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; ...
2015-06-18
Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore » extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less
Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC
Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath
2015-01-01
A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661
Calculation of Spectra of Neutrons and Charged Particles Produced in a Target of a Neutron Generator
NASA Astrophysics Data System (ADS)
Gaganov, V. V.
2017-12-01
An algorithm for calculating the spectra of neutrons and associated charged particles produced in the target of a neutron generator is detailed. The products of four nuclear reactions 3H( d, n)4He, 2H( d, n)3He, 2H( d, p)3H, and 3He( d, p)4He are analyzed. The results of calculations are presented in the form of neutron spectra for several emission angles and spectra of associated charged particles emitted at an angle of 180° for a deuteron initial energy of 0.13 MeV.
Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.
Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho
2017-07-01
A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High yield neutron generators using the DD reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.
2013-04-19
A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less
High yield neutron generators using the DD reaction
NASA Astrophysics Data System (ADS)
Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.
2013-04-01
A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.
NASA Astrophysics Data System (ADS)
Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.
2017-05-01
The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.
The first IEC fusion industrial neutron generator and developments
NASA Astrophysics Data System (ADS)
Sved, John
1999-06-01
Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 107 D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 1010 by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2014 CFR
2014-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (a) Examples of electronic products which may emit x-rays and other ionizing electromagnetic radiation, electrons, neutrons, and other particulate radiation include: Ionizing electromagnetic radiation... radiation and ionizing electromagnetic radiation: Electron microscopes. Neutron generators. (b) Examples of...
Development of high flux thermal neutron generator for neutron activation analysis
NASA Astrophysics Data System (ADS)
Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.
2015-05-01
The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.
Neutron Productions from thin Be target irradiated by 50 MeV/u 238U beam
NASA Astrophysics Data System (ADS)
Lee, Hee-Seock; Oh, Joo-Hee; Jung, Nam-Suk; Oranj, Leila Mokhtari; Nakao, Noriaki; Uwamino, Yoshitomo
2017-09-01
Neutrons generated from thin beryllium target by 50 MeV/u 238U beam were measured using activation analysis at 15, 30, 45, and 90 degrees from the beam direction. A 0.085 mm-thick Be stripper of RIBF was used as the neutron generating target. Activation detectors of bismuth, cobalt, and aluminum were placed out of the stripper chamber. The threshold reactions of 209Bi(n, xn)210-xBi(x=4 8), 59Co(n, xn)60-xCO(x=2 5), 59Co(n, 2nα)54Mn, 27Al(n, α)24Na, and 27Al(n,2nα)22Na were applied to measure the production rates of radionuclides. The neutron spectra were obtained using an unfolding method with the SAND-II code. All of production rates and neutron spectra were compared with the calculated results using Monte Carlo codes, the PHITS and the FLUKA. The FLUKA results showed better agreement with the measurements than the PHITS. The discrepancy between the measurements and the calculations were discussed.
Comparison of bulk and pitcher-catcher targets for laser-driven neutron production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willingale, L.; Maksimchuk, A.; Joglekar, A. S.
2011-08-15
Laser-driven d(d, n)-{sup 3}He beam-target fusion neutron production from bulk deuterated plastic (CD) targets is compared with a pitcher-catcher target scheme using an identical laser and detector arrangement. For laser intensities in the range of (1-3) x 10{sup 19} W cm{sup -2}, it was found that the bulk targets produced a high yield (5 x 10{sup 4} neutrons per steradian) beamed preferentially in the laser propagation direction. Numerical modeling shows the importance of considering the temperature adjusted stopping powers to correctly model the neutron production. The bulk CD targets have a high background target temperature leading to a reduced stoppingmore » power for the deuterons, which increases the probability of generating neutrons by fusion. Neutron production from the pitcher-catcher targets was not as efficient since it does not benefit from the reduced stopping power in the cold catcher target. Also, the inhibition of the deuteron acceleration by a proton rich contamination layer significantly reduces the pitcher-catcher neutron production.« less
Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator
NASA Astrophysics Data System (ADS)
Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.
2014-12-01
Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.
Electrical Engineering in Los Alamos Neutron Science Center Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Michael James
The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less
Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.
Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath
2015-11-01
A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok
2014-07-01
The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.
Compact ion source neutron generator
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe
2015-10-13
A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.
Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.
2008-04-15
A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.
Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations
NASA Astrophysics Data System (ADS)
Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET
2017-09-01
The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.
Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.
Introduction to spallation physics and spallation-target design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, G.J.; Pitcher, E.J.; Daemen, L.L.
1995-10-01
When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incidentmore » particle type and energy, and target material and geometry.« less
Waltz, Cory; Ayllon, Mauricio; Becker, Tim; Bernstein, Lee; Leung, Ka-Ngo; Kirsch, Leo; Renne, Paul; Bibber, Karl Van
2017-07-01
A facility based on a next-generation, high-flux D-D neutron generator has been commissioned and it is now operational at the University of California, Berkeley. The current generator designed for 40 Ar/ 39 Ar dating of geological materials produces nearly monoenergetic 2.45MeV neutrons at outputs of 10 8 n/s. The narrow energy range is advantageous relative to the 235 U fission spectrum neutrons due to (i) reduced 39 Ar recoil energy, (ii) minimized production of interfering argon isotopes from K, Ca, and Cl, and (iii) reduced total activity for radiological safety and waste generation. Calculations provided show that future conditioning at higher currents and voltages will allow for a neutron output of over 10 10 n/s, which is a necessary requirement for production of measurable quantities of 39 Ar through the reaction 39 K(n,p) 39 Ar. A significant problem encountered with increasing deuteron current was beam-induced electron backstreaming. Two methods of suppressing secondary electrons resulting from the deuterium beam striking the target were tested: the application of static electric and magnetic fields. Computational simulations of both techniques were done using a finite element analysis in COMSOL Multiphysics ® . Experimental tests verified these simulations. The most reliable suppression was achieved via the implementation of an electrostatic shroud with a voltage offset of -800V relative to the target. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Li, Shengtai; Jungman, Gerard
2016-08-31
The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.
Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team
2014-10-01
Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.
Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilbronn, L.; Iwata, Y.; Iwase,H.
Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, withmore » the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.« less
Secondary neutron-production cross sections from heavy-ion interactions in composite targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilbronn, L.; Iwata, Y.; Murakami, T.
Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity,more » with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.« less
NASA Astrophysics Data System (ADS)
Kehayias, J. J.; Zhuang, H.
1993-06-01
A small sealed D-T neutron generator is used for the pulsed (4-8 kHz) production of fast neutrons. Carbon and oxygen are detected in vivo by counting the 4.44 and 6.13 MeV gamma rays resulting from the inelastic scattering of the fast neutrons. Hydrogen is detected by thermal neutron capture. BGO detectors (127 mm diameter × 76 mm thick) were found more tolerant to neutron exposure and improved the signal to background ratio for the carbon detection by a factor of 6, compared to 152 × 152 mm NaI(Tl). The elemental analysis of the body is used to study the changes of body composition with aging. We investigate the causes of depletion of lean body mass and the development of ways of maintaining functional capacity and quality of life of the elderly.
SU-E-T-168: Characterization of Neutrons From the TrueBeam Treatment Head
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawkey, D; Svatos, M
2015-06-15
Purpose: Calculate neutron production and transport in the TrueBeam treatment head, as input for vault design and phantom dose calculations. Methods: A detailed model of the treatment head, including shielding components off the beam axis, was created from manufacturer’s engineering drawings. Simulations were done with Geant4 for the 18X, 15X, 10X and 10FFF beams, tuned to match measured dose distributions inside the treatment field. Particles were recorded on a 70 cm radius sphere surrounding the treatment head enabling input into simulations of vaults. Results: For the 18X beam, 11×10{sup 9} neutrons/MU were observed. The energy spectrum was a broad peakmore » with average energy 0.37 MeV. With jaws closed, 48% of the neutrons were generated in the primary collimator, 18% in the jaws, 12% in the target, and 10% in the flattening filter. With wide open jaws, few neutrons were produced in the jaws and consequently total neutron production dropped to 8.5×10{sup 9} neutrons/MU. Angular distributions were greatest along the beam axis (12×10{sup 9} neutrons/MU/sr, within 2 deg of the beam axis) and antiparallel to the beam axis (7×10{sup 9} neutrons/MU/sr). Peaks were observed in the neutron energy spectrum, corresponding to elastic scattering resonances in the shielding materials. Neutron production was lower for the other beams studied: 4.1×10{sup 9} neutrons/MU for 15X, 0.38×10{sup 9} neutrons/MU for 10X, and 0.22×10{sup 9} neutrons/MU for 10FFF. Despite dissimilar treatment head geometries and materials, the neutron production and energy spectrum were similar to those reported for Clinac accelerators. Conclusion: Detailed neutron production and leakage calculations for the TrueBeam treatment head were done. Unlike other studies, results are independent of the surrounding vault, enabling vault design calculations.« less
The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF
NASA Astrophysics Data System (ADS)
Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.
2016-10-01
The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.
The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF
NASA Astrophysics Data System (ADS)
Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.
2017-10-01
The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.
NASA Astrophysics Data System (ADS)
Voyles, A. S.; Basunia, M. S.; Batchelder, J. C.; Bauer, J. D.; Becker, T. A.; Bernstein, L. A.; Matthews, E. F.; Renne, P. R.; Rutte, D.; Unzueta, M. A.; van Bibber, K. A.
2017-11-01
Cross sections for the 47Ti(n,p)47Sc and 64Zn(n,p)64Cu reactions have been measured for quasi-monoenergetic DD neutrons produced by the UC Berkeley High Flux Neutron Generator (HFNG). The HFNG is a compact neutron generator designed as a "flux-trap" that maximizes the probability that a neutron will interact with a sample loaded into a specific, central location. The study was motivated by interest in the production of 47Sc and 64Cu as emerging medical isotopes. The cross sections were measured in ratio to the 113In(n,n‧)113mIn and 115In(n,n‧)115mIn inelastic scattering reactions on co-irradiated indium samples. Post-irradiation counting using an HPGe and LEPS detectors allowed for cross section determination to within 5% uncertainty. The 64Zn(n,p)64Cu cross section for 2.76-0.02+0.01 MeV neutrons is reported as 49.3 ± 2.6 mb (relative to 113In) or 46.4 ± 1.7 mb (relative to 115In), and the 47Ti(n,p)47Sc cross section is reported as 26.26 ± 0.82 mb. The measured cross sections are found to be in good agreement with existing measured values but with lower uncertainty (<5%), and also in agreement with theoretical values. This work highlights the utility of compact, flux-trap DD-based neutron sources for nuclear data measurements and potentially the production of radionuclides for medical applications.
Neutron production by stopping 55 MeV deuterons in carbon and heavy water
NASA Astrophysics Data System (ADS)
Lhersonneau, G.; Malkiewicz, T.; Jones, P.; Ketelhut, S.; Trzaska, W. H.
2012-09-01
Neutron production by stopping 55 MeV deuterons in thick carbon and heavy-water targets has been measured by the activation method. The geometry was close to the one defined for the SPIRAL2 uranium-carbide target in the initial phase. A comparative method for obtaining the neutron flux has been used and is presented in detail. The neutron flux generated by 55 MeV deuterons on carbon is 2.3 times the flux at the deuteron energy of 40 MeV. The flux further increases by a factor 1.4 when using a heavy-water target. These results are discussed in the context of an energy upgrade of the SPIRAL2 driver accelerator.
Role of anode length in a mather-type plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beg, F.N.; Zakaullah, M.; Nisar, M.
In this paper, neutron emission from a 3 KJ Mather-type plasma focus is studied. Specifically, the behavior of system with the change in anode length is investigated. Anode lengths of high and low fluence anisotropy as well as for high neutron yield are identified. Experiment also suggest the possibility of ion beam generation leading to neutron production via beam-plasma interaction.
NASA Astrophysics Data System (ADS)
Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.
2015-11-01
The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod
2015-09-07
In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less
Study of the Anatomy of the X-Ray and Neutron Production Scaling Laws in the Plasma Focus.
1980-05-15
plasma focus discharge in deuterium as an extension of our previous work on scaling laws of x-ray and neutron production. The structure of dense plasmoids which emit MeV ions has been recorded by ion imaging with pinhole camera and contact print techniques. The plasmoids are generated in the same region in which particle beams, neutron and x-ray emission reach a maximum of intensity. Sharply defined boundaries of the ion-beam source and of plasmoids have been obtained by ion track etching on plastic material
Investigation of the feasibility of a small scale transmutation device
NASA Astrophysics Data System (ADS)
Sit, Roger Carson
This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long-lived fission products could result in an irradiation effective half-life of a few years with a three order magnitude increase in the on-target neutron flux accomplishable through a combination of technological enhancements to the source and system design optimization; (3) the transmutation of long-lived fission products requires a thermal-slow energy spectrum to prevent the generation of activation products with half-lives even longer than the original radionuclide; (4) there is no benefit in trying to transmute short-lived fission products due to the ineffectiveness of the transmutation process and the generation of a multiplicity of counterproductive activation products; (5) for actinides, irradiation effective half-lives of < 1 year can be achieved with a four orders magnitude increase in the on-target flux; (6) the ideal neutron energy spectra for transmuting actinides is highly dependent on the particular radionuclide and its fission-to-capture ratio as they determine the generationrate of other actinides; and (7) the methodology developed in this dissertation provides a mechanism that can be used for studying the feasibility of transmuting other radionuclides, and its application can be extended to studying the production of radionuclides of interest in a transmutation process. Although large-scale transmutation technology is presently being researched world-wide for spent fuel management applications, such technology will not be viable for a couple of decades. This dissertation investigated the concept of a small-scale transmutation device using present technology. The results of this research show that with reasonable enhancements, transmutation of specific radionuclides can be practical in the near term.
Accelerator-driven transmutation of spent fuel elements
Venneri, Francesco; Williamson, Mark A.; Li, Ning
2002-01-01
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing
Fast neutron production from lithium converters and laser driven protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, M.; Jiang, S.; Wertepny, D.
2013-05-15
Experiments to generate neutrons from the {sup 7}Li(p,n){sup 7}Be reaction with 60 J, 180 fs laser pulses have been performed at the Texas Petawatt Laser Facility at the University of Texas at Austin. The protons were accelerated from the rear surface of a thin target membrane using the target-normal-sheath-acceleration mechanism. The neutrons were generated in nuclear reactions caused by the subsequent proton bombardment of a pure lithium foil of natural isotopic abundance. The neutron energy ranged up to 2.9 MeV. The total yield was estimated to be 1.6 × 10{sup 7} neutrons per steradian. An extreme ultra-violet light camera, usedmore » to image the target rear surface, correlated variations in the proton yield and peak energy to target rear surface ablation. Calculations using the hydrodynamics code FLASH indicated that the ablation resulted from a laser pre-pulse of prolonged intensity. The ablation severely limited the proton acceleration and neutron yield.« less
Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator
NASA Astrophysics Data System (ADS)
Hamm, Robert W.
2000-12-01
Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.
Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch
NASA Astrophysics Data System (ADS)
Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.
2014-03-01
A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.
NASA Astrophysics Data System (ADS)
Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki
2014-09-01
Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.
A neutron beam facility for radioactive ion beams and other applications
NASA Astrophysics Data System (ADS)
Tecchio, L. B.
1999-06-01
In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.
NASA Astrophysics Data System (ADS)
Iwamoto, Y.; Shigyo, N.; Satoh, D.; Kunieda, S.; Watanabe, T.; Ishimoto, S.; Tenzou, H.; Maehata, K.; Ishibashi, K.; Nakamoto, T.; Numajiri, M.; Meigo, S.; Takada, H.
2004-08-01
Neutron-production double-differential cross sections for 870 MeV π+ and π- and 2.1 GeV π+ mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120, and 150° . The typical flight path length was 1.5 m . Neutron detection efficiencies were evaluated by calculation results of SCINFUL and CECIL codes. The experimental results were compared with JAERI quantum molecular dynamics code. For the meson incident reactions, adoption of NN in-medium effects was slightly useful for reproducing 870 MeV π+ -incident neutron yields at neutron energies of 10 30 MeV , as was the case for proton incident reactions. The π- incident reaction generates more neutrons than π+ incidence as the number of nucleons in targets decrease.
NASA Astrophysics Data System (ADS)
Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo
2018-05-01
The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).
Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierson, B.D., E-mail: bpnuke@umich.edu; Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352; Greenwood, L.R.
Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields ofmore » short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.« less
Neutrino-antineutrino pair production by hadronic bremsstrahlung
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-09-01
I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).
Infra-red signature neutron detector
Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN
2009-10-13
A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.
Ultra-short ion and neutron pulse production
Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.
2006-01-10
An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.
Griffiths, Malcolm; Walters, L.; Greenwood, L. R.; ...
2017-09-21
The original article addresses the opportunities and complexities of using materials test reactors with high neutron fluxes to perform accelerated studies of material aging in power reactors operating at lower neutron fluxes and with different neutron flux spectra. Radiation damage and gas production in different reactors have been compared using the code, SPECTER. This code provides a common standard from which to compare neutron damage data generated by different research groups using a variety of reactors. This Corrigendum identifies a few typographical errors. Tables 2 and 3 are included in revised form.
Bioenvironmental Engineer’s Guide to Ionizing Radiation
2005-10-01
mercury x-rays 186 (4 % ) - y Ra -226 radon x-rays Luminous Products, Neutron (tl/2: 1600 y) Alpha photons from daughters: Sources (w/ Be ) Rn-222, Po...Radioisotope Thermoelectric (t1,2: 88 y) Generators Pu-239 Alpha uranium x-rays Nuclear Weapons, Neutron (t1 /2: 2.4 x 104 y) Sources (w/ Be ...Calibration Am-241 .60 (36 %) - Static Eliminators, Chemical (h2: 432 y) Alpha n Agent Detectors, Neutron neptunium x-rays Sources (w/ Be ) 11 October 2005
NASA Astrophysics Data System (ADS)
Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.
2015-12-01
The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.
NASA Astrophysics Data System (ADS)
King, Michael Joseph
Instrumentation development is essential to the advancement and success of homeland security systems. Active interrogation techniques that scan luggage and cargo containers for shielded special nuclear materials or explosives hold great potential in halting further terrorist attacks. The development of more economical, compact and efficient source and radiation detection devices will facilitate scanning of all containers and luggage while maintaining high-throughput and low-false alarms Innovative ion sources were developed for two novel, specialized neutron generating devices and initial generator tests were performed. In addition, a low-energy acceleration gamma generator was developed and its performance characterized. Finally, an organic semiconductor was investigated for direct fast neutron detection. A main part of the thesis work was the development of ion sources, crucial components of the neutron/gamma generator development. The use of an externally-driven radio-frequency antenna allows the ion source to generate high beam currents with high, mono-atomic species fractions while maintaining low operating pressures, advantageous parameters for neutron generators. A dual "S" shaped induction antenna was developed to satisfy the high current and large extraction area requirements of the high-intensity neutron generator. The dual antenna arrangement generated a suitable current density of 28 mA/cm2 at practical RF power levels. The stringent requirements of the Pulsed Fast Neutron Transmission Spectroscopy neutron generator necessitated the development of a specialized ten window ion source of toroidal shape with a narrow neutron production target at its center. An innovative ten antenna arrangement with parallel capacitors was developed for driving the multi-antenna arrangement and uniform coupling of RF power to all ten antennas was achieved. To address the desire for low-impact, low-radiation dose active interrogation systems, research was performed on mono-energetic gamma generators that operate at low-acceleration energies and leverage neutron generator technologies. The dissertation focused on the experimental characterization of the generator performance and involved MCNPX simulations to evaluate and analyze the experimental results. The emission of the 11.7 MeV gamma-rays was observed to be slightly anisotropic and the gamma yield was measured to be 2.0*105 gamma/s-mA. The lanthanum hexaboride target suffered beam damage from a high power density beam; however, this may be overcome by sweeping the beam across a larger target area. The efficient detection of fast neutrons is vital to active interrogation techniques for the detection of both SNM and explosives. Novel organic semiconductors are air-stable, low-cost materials that demonstrate direct electronic particle detection. As part of the development of a pi-conjugated organic polymer for fast neutron detection, charge generation and collection properties were investigated. By devising a dual, thin-film detector test arrangement, charge collection was measured for high energy protons traversing the dual detector arrangement that allowed the creation of variable track lengths by tilting the detector. The results demonstrated that an increase in track length resulted in a decreased signal collection. This can be understood by assuming charge carrier transport along the track instead of along the field lines, which was made possible by the filling of traps. However, this charge collection mechanism may be insufficient to generate a useful signal. This dissertation has explored the viability of a new generation of radiation sources and detectors, where the newly developed ion source technologies and prototype generators will further enhance the capabilities of existing threat detection systems and promote the development of cutting-edge detection technologies.
Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo
2015-01-01
The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.
D-D neutron generator development at LBNL.
Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N
2005-01-01
The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article.
How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator
Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; ...
2015-06-18
A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. Themore » particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.« less
Production of 92Y via the 92Zr(n,p) reaction using the C(d,n) accelerator neutron source
NASA Astrophysics Data System (ADS)
Kin, Tadahiro; Sanzen, Yukimasa; Kamida, Masaki; Watanabe, Yukinobu; Itoh, Masatoshi
2017-09-01
We have proposed a new method of producing medical radioisotope 92Y as a candidate of alternatives of 111In bioscan prior to 90Y ibritumomab tiuxetan treatment. The 92Y isotope is produced via the 92Zr (n,p) reaction using accelerator neutrons generated by the interaction of deuteron beams with carbon. A feasibility experiment was performed at Cyclotron and Radioisotope Center, Tohoku University. A carbon thick target was irradiated by 20-MeV deuterons to produce accelerator neutrons. The thick target neutron yield (TTNY) was measured by using the multiple foils activation method. The foils were made of Al, Fe, Co, Ni, Zn, Zr, Nb, and Au. The production amount of 92Y and induced impurities were estimated by simulation with the measured TTNY and the JENDL-4.0 nuclear data.
A Monte Carlo studies of the entrance foil material in a target assembly for FDG production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merouani, A.; El Khayati, N.; EL Ghayour, A.
2015-07-01
In this work, a Monte Carlo simulation was performed for different entrance foil Materials in the target assembly for [{sup 18}F] FDG production, to investigate the neutron generations in the entrance foil. However, the objective is to study a materials that has the more or less similar mechanical properties as the Havar{sup R} foil with less generation of secondary particles and without affecting, the yield of FDG production. (authors)
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.
2015-04-01
Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David
2014-03-01
Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the coldmore » source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and affects mechanical properties of aluminum including density, neutron irradiation hardening, swelling, and loss of ductility. Because slightly greater quantities of silicon will be produced in the cold source moderator vessel for the LEU core, these effects will be slightly greater for the LEU core than for the HEU core. Three-group (thermal, epithermal, and fast) neutron flux results tallied in the cold source LH2 hemisphere show greater values for the LEU core under both BOC and EOC conditions. The thermal neutron flux in the LH2 hemisphere for the LEU core is about 12.4% greater at BOC and 2.7% greater at EOC than for the HEU core. Therefore, cold neutron scattering will not be adversely affected and the 4 12 neutrons conveyed to the cold neutron guide hall for research applications will be enhanced.« less
Marchese, N; Cannuli, A; Caccamo, M T; Pace, C
2017-01-01
Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhadan, A.; Sotnikov, V.; Adam, J.; Solnyshkin, A.; Tyutyunnikov, S.; Voronko, V.; Zhivkov, P.; Zavorka, L.
2017-06-01
The possibility of medical radionuclide 64,67Cu production in spallation neutron spectrum induced by proton and deuteron beams has been studied. Experiments were performed on a massive natural uranium target at the accelerators Phasotron and Nuclotron JINR, Dubna. The main disadvantage of this method is a high 64Cu/67Cu ratio in the final product at EOB. Significantly reduce 64Cu/67Cu ratio is only possible if you use zinc target enriched with 68Zn or 67Zn. The MCNPX simulation of 67,64Cu production and definition of the theoretical limit of the specific activity of 67,64Cu by irradiation of natural zinc and zinc enriched by the 68 isotope were performed. The neutron flux density shouldnot be less than 5.1013 n/cm2/s if we want to obtain high specific activity (>200 GBq/mg) of 67Cu.
NASA Astrophysics Data System (ADS)
Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.
2016-03-01
We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.
Ross, J. S.; Higginson, D. P.; Ryutov, D.; ...
2017-05-05
A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M > 4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6–10 mm are irradiated with laser energies of 250 kJ per foil, generating ~1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated bymore » deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. Here, the observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.« less
Ross, J S; Higginson, D P; Ryutov, D; Fiuza, F; Hatarik, R; Huntington, C M; Kalantar, D H; Link, A; Pollock, B B; Remington, B A; Rinderknecht, H G; Swadling, G F; Turnbull, D P; Weber, S; Wilks, S; Froula, D H; Rosenberg, M J; Morita, T; Sakawa, Y; Takabe, H; Drake, R P; Kuranz, C; Gregori, G; Meinecke, J; Levy, M C; Koenig, M; Spitkovsky, A; Petrasso, R D; Li, C K; Sio, H; Lahmann, B; Zylstra, A B; Park, H-S
2017-05-05
A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, E. C.; Lowe, D. R.; O'Brien, R.
Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 –more » 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.« less
Characterization of Deuteron-Deuteron Neutron Generators
NASA Astrophysics Data System (ADS)
Waltz, Cory Scott
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near mono-energetic 2.45 MeV neutrons at outputs of 108 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 1010 n/s. Characteristics that effect the operational stability include the suppression of the target-emitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than -400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values. Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil irradiations. An overview of experiments using the HFNG, including medical isotope cross section measurements, geochronology, delayed gamma measurements from uranium fission, and single event upset of cpu's is discussed. Future work should focus on the reduction of beam induced arcing between the shroud and the vacuum chamber. Investigation of insulator charge build-up, as well as electrical ash-over of insulators should be explored. The reduction of beam induced arcing will allow for larger beam currents and acceleration voltages, therefore increasing the neutron flux.
Development of fast neutron radiography system based on portable neutron generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th
Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. Themore » raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.« less
Melville, G; Melville, P
2013-02-01
Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods
NASA Astrophysics Data System (ADS)
Lai, Bo-Lun; Sheu, Rong-Jiun
2017-09-01
Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.
1979-11-01
plasma focus operations have been experimentally analyzed in terms of (A) The fine structure of the axial-current channel during maximum of compression. (B) Correlation coefficient, for neutron yield n (by D2 discharges) and the multiplicity of the electron beam pulses; (C) Different values of the electrode voltage. The current distribution near the axial plasma column during the explosive decay of the column has been monitored and correlated with the electron beam production. Plasma focus discharges by our mode of operation generate high-intensity
Liu, Zheng; Li, Gang; Liu, Linmao
2014-04-01
This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Latifah, R.; Bunawas; Noor, J. A. E.
2018-03-01
Linear accelerator (linac) becomes the most commonly used treatment to damage and kill cancer cell. Photon and electron as the radiation beam are produced by accelerating electrons to very high energy. Neutrons are generated when incident high photon energy interacts with component of linac such as target, flattering filter and collimator via photoneutrons reaction. The neutrons can also produce activation of materials in treatment room to generate radioactive materials. We have estimated the concentration of Argon-41 as activated product from argon-40 in the linac room using foil activation. The results show that the Argon-41 concentration in linac room which is operated 15 MV for 1 treatment (1 minute) is 1440 Bq/m3. Accordingly that concentration, the occupational dose is 6.4 mSv per year.
Medical Isotope Production Analyses In KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, Alberto; Gohar, Yousry
Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less
Multiple source associated particle imaging for simultaneous capture of multiple projections
Bingham, Philip R; Hausladen, Paul A; McConchi, Seth M; Mihalczo, John T; Mullens, James A
2013-11-19
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing neutron radiography. For example, in one exemplary method, an object is interrogated with a plurality of neutrons. The plurality of neutrons includes a first portion of neutrons generated from a first neutron source and a second portion of neutrons generated from a second neutron source. Further, at least some of the first portion and the second portion are generated during a same time period. In the exemplary method, one or more neutrons from the first portion and one or more neutrons from the second portion are detected, and an image of the object is generated based at least in part on the detected neutrons from the first portion and the detected neutrons from the second portion.
Leung, Ka-Ngo; Lou, Tak Pui
2005-03-22
A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.
Thermal Neutron Radiography using a High-flux Compact Neutron Generator
NASA Astrophysics Data System (ADS)
Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross
A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.
METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION
Bell, P.R.; Simon, A.; Mackin, R.J. Jr.
1961-01-24
A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.
Nikezic, D; Shahmohammadi Beni, Mehrdad; Krstic, D; Yu, K N
2016-01-01
Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy.
Nikezic, D.; Shahmohammadi Beni, Mehrdad; Krstic, D.; Yu, K. N.
2016-01-01
Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656
Selective Deuteron Acceleration and Neutron Production on the Vulcan PW Laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Freeman, R. R.; Ahmed, H.; Green, J. A.; Alejo, A.; Kar, S.; Vassura, L.
2014-10-01
Fast neutron sources are important for a variety of applications including radiography and the detection of sensitive materials. Here we report on the results of an experiment using the Vulcan PW laser at Rutherford Appleton Laboratory to produce a nearly pure deuterium ion beam via Target Normal Sheath Acceleration. The typical contaminants are suppressed by freezing a μ m's thick layer of heavy water vapor (D2 O) onto a cryogenic target during the shot sequence. Neutrons were generated by colliding the accelerated deuterons were into secondary targets made of deuterated plastic in the pitcher-catcher arrangement. Absolute yields for deuterium ions and neutrons are reported. This work is supported by DOE Contract DE-FC02-04ER54789.
Crane, Thomas W.
1986-01-01
The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.
Crane, T.W.
1983-12-21
The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.
Multi-particle inspection using associated particle sources
Bingham, Philip R.; Mihalczo, John T.; Mullens, James A.; McConchie, Seth M.; Hausladen, Paul A.
2016-02-16
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.
Determination of the Secondary Neutron Flux at the Massive Natural Uranium Spallation Target
NASA Astrophysics Data System (ADS)
Zeman, M.; Adam, J.; Baldin, A. A.; Furman, W. I.; Gustov, S. A.; Katovsky, K.; Khushvaktov, J.; Mar`in, I. I.; Novotny, F.; Solnyshkin, A. A.; Tichy, P.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Vespalec, R.; Vrzalova, J.; Wagner, V.; Zavorka, L.
The flux of secondary neutrons generated in collisions of the 660 MeV proton beam with the massive natural uranium spallation target was investigated using a set of monoisotopic threshold activation detectors. Sandwiches made of thin high-purity Al, Co, Au, and Bi metal foils were installed in different positions across the whole spallation target. The gamma-ray activity of products of (n,xn) and other studied reactions was measured offline with germanium semiconductor detectors. Reaction yields of radionuclides with half-life exceeding 100 min and with effective neutron energy thresholds between 3.6 MeV and 186 MeV provided us with information about the spectrum of spallation neutrons in this energy region and beyond. The experimental neutron flux was determined using the measured reaction yields and cross-sections calculated with the TALYS 1.8 nuclear reaction program and INCL4-ABLA event generator of MCNP6. Neutron spectra in the region of activation sandwiches were also modeled with the radiation transport code MCNPX 2.7. Neutron flux based on excitation functions from TALYS provides a reasonable description of the neutron spectrum inside the spallation target and is in good agreement with Monte-Carlo predictions. The experimental flux that uses INCL4 cross-sections rather underestimates the modeled spectrum in the whole region of interest, but the agreement within few standard deviations was reached as well. The paper summarizes basic principles of the method for determining the spectrum of high-energy neutrons without employing the spectral adjustment routines and points out to the need for model improvements and precise cross-section measurements.
Indoor Fast Neutron Generator for Biophysical and Electronic Applications
NASA Astrophysics Data System (ADS)
Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.
2018-05-01
This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.
Field ionization characteristics of an ion source array for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.
2013-11-01
A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.
USDA-ARS?s Scientific Manuscript database
Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...
Pulsed Neurton Elemental On-Line Material Analyzer
Vourvopoulos, George
2002-08-20
An on-line material analyzer which utilizes pulsed neutron generation in order to determine the composition of material flowing through the apparatus. The on-line elemental material analyzer is based on a pulsed neutron generator. The elements in the material interact with the fast and thermal neutrons produced from the pulsed generator. Spectra of gamma-rays produced from fast neutrons interacting with elements of the material are analyzed and stored separately from spectra produced from thermal neutron reactions. Measurements of neutron activation takes place separately from the above reactions and at a distance from the neutron generator. A primary passageway allows the material to flow through at a constant rate of speed and operators to provide data corresponding to fast and thermal neutron reactions. A secondary passageway meters the material to allow for neutron activation analysis. The apparatus also has the capability to determine the density of the flowed material. Finally, the apparatus continually utilizes a neutron detector in order to normalize the yield of the gamma ray detectors and thereby automatically calibrates and adjusts the spectra data for fluctuations in neutron generation.
NASA Astrophysics Data System (ADS)
Valdes-Galicia, J. F.; González, L. X.; Watanabe, K.; Muraki, Y.; Matsubara, Y.; Lopez, D.; Koga, K.; Kakimoto, F.; Sako, T.; Salinas, J., Sr.; Ticona, R.; Shibata, S.; Masuda, S.; Tunesada, S.
2016-12-01
An M 6.5-class flare was observed at N12E56 of the solar surface at 16:06 UT on July 8, 2014. In association with the flare, two neutron detectors located at high mountains: Mt. Sierra Negra in Mexico (4600m asl) and Mt. Chacaltaya in Bolivia (5200m asl) recorded two neutron pulses, separated approximately 30 minutes. Enhancements were also observed in the neutral channel detector onboard the International Space Station. We analyzed these data combined with solar images from the Atompspheric ImagingAssembly (AIA) onboard the SolarDynamicalObservatory (SDO). From our analysis we conclude that the production mechanism of neutrons cannot be explained by a single model: one of the enhancements may be explained by an electric field generated by the collision of magnetic loops, and the other by a shock acceleration mechanism at the front side of the observed CME. To the best of our knowledge, this is the first time that evidence is found for two different mechanisms present in a solar eruption leading to energetic solar neutron production.
Design of a novel instrument for active neutron interrogation of artillery shells.
Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.
Design of a novel instrument for active neutron interrogation of artillery shells
Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from 53-7+7% to 74-10+8% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s. PMID:29211773
NASA Astrophysics Data System (ADS)
Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Pfeiffer, M.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Fraile, L. M.; Mach, H.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Korten, W.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.
2017-05-01
Lifetimes of low-lying yrast states in neutron-rich 94,96,98Sr have been measured by Germanium-gated γ -γ fast timing with LaBr 3 (Ce ) detectors using the EXILL&FATIMA spectrometer at the Institut Laue-Langevin. Sr fission products were generated using cold-neutron-induced fission of 235U and stopped almost instantaneously within the thick target. The experimental B (E 2 ) values are compared with results of Monte Carlo shell-model calculations made without truncation on the occupation numbers of the orbits spanned by eight proton and eight neutron orbits and show good agreement. Similarly to the Zr isotopes, the abrupt shape transition in the Sr isotopes near neutron number N =60 is identified as being caused by many-proton excitations to its g9 /2 orbit.
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-07-01
The paper concerns important differences in the evolution of plasma column structures during the production of fusion neutrons in the first and subsequent neutron pulses, as observed for plasma-focus discharges performed with the deuterium filling. The first neutron pulse, of a more isotropic distribution, is usually produced during the formation of the first big plasmoid. The next neutron pulses can be generated by the fast deuterons moving dominantly in the downstream direction, at the instants of a disruption of the pinch constriction, when other plasmoids are formed during the constriction evolution. In both cases, the fusion neutrons are produced by a beam-target mechanism, and the acceleration of fast electron- and deuteron-beams can be interpreted by transformation and decay of the magnetic field associated with a filamentary structure of the current flow in the plasmoid.
NASA Astrophysics Data System (ADS)
Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET
2018-02-01
In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
Fissile interrogation using gamma rays from oxygen
Smith, Donald; Micklich, Bradley J.; Fessler, Andreas
2004-04-20
The subject apparatus provides a means to identify the presence of fissionable material or other nuclear material contained within an item to be tested. The system employs a portable accelerator to accelerate and direct protons to a fluorine-compound target. The interaction of the protons with the fluorine-compound target produces gamma rays which are directed at the item to be tested. If the item to be tested contains either a fissionable material or other nuclear material the interaction of the gamma rays with the material contained within the test item with result in the production of neutrons. A system of neutron detectors is positioned to intercept any neutrons generated by the test item. The results from the neutron detectors are analyzed to determine the presence of a fissionable material or other nuclear material.
Leung, Ka-Ngo [Hercules, CA
2008-04-22
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo
2005-06-14
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo [Hercules, CA
2009-12-29
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Reyna, David
In this work we investigate a method that confirms the operability of neutron detectors requiring neither radiological sources nor radiation-generating devices. This is desirable when radiological sources are not available, but confidence in the functionality of the instrument is required. The “source”, based on the production of neutrons in high-Z materials by muons, provides a tagged, low-background and consistent rate of neutrons that can be used to check the functionality of or calibrate a detector. Using a Monte Carlo guided optimization, an experimental apparatus was designed and built to evaluate the feasibility of this technique. Through a series of trialmore » measurements in a variety of locations we show that gated muon-induced neutrons appear to provide a consistent source of neutrons (35.9 ± 2.3 measured neutrons/10,000 muons in the instrument) under normal environmental variability (less than one statistical standard deviation for 10,000 muons) with a combined environmental + statistical uncertainty of ~18% for 10,000 muons. This is achieved in a single 21-22 minute measurement at sea level.« less
Targeted Modification of Neutron Energy Spectra for National Security Applications
NASA Astrophysics Data System (ADS)
Bevins, James Edward
At its core, research represents an attempt to break from the "this is the way we have always done it" paradigm. This idea is evidenced from the start in this research effort by the problem formulation to develop a new way to generate synthetic debris that mimics the samples that would be collected for forensics purposes following a nuclear weapon attack on the U.S. or its allies. The philosophy is also demonstrated by the design methodology used to solve the synthetic debris problem, using methods not commonly applied to nuclear engineering problems. Through this research, the bounds of what is deemed possible in neutron spectral shaping are moved ever so slightly. A capability for the production of synthetic debris and fission products was developed for the National Ignition Facility (NIF). Synthetic debris has historically been made in a limited fashion using sample doping techniques since the cessation of nuclear weapons testing, but a more robust alternative approach using neutron spectral shaping was proposed and developed by the University of California-Berkeley and Lawrence Livermore National Laboratory (LLNL). Using NIF as a starting source spectrum, the energy tuning assembly (ETA) developed in this work can irradiate samples with a combined thermonuclear and prompt fission neutron spectrum (TN+PFNS). When used with fissile foils, this irradiation will produce a synthetic fission product distribution that is realistic across all mass chains. To design the ETA, traditional parametric point design approaches were discarded in favor of formal optimization techniques. Finding a lack of suitable algorithms in the literature, a metaheuristic-based optimization algorithm, Gnowee, was developed for rapid convergence to nearly globally optimum solutions for complex, constrained engineering problems with mixed-integer and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Comparisons between Gnowee and several well-established metaheuristic algorithms are made for a set of continuous, mixed-integer, and combinatorial benchmarks. These results demonstrated Gnoweee to have superior flexibility and convergence characteristics over a wide range of design spaces. The Gnowee algorithm was implemented in Coeus, a new piece of software, to perform optimization of design problems requiring radiation transport for the evaluation of their objective functions. Currently, Coeus solves ETA optimization problems using hybrid radiation transport (ADVANTG and MCNP) to assess design permutations developed by Gnowee. Future enhancements of Coeus will look to expand the geometries and objective functions considered to those beyond ETA design. Coeus was used to generate an ETA design for the TN+PFNS application on NIF. The design achieved a reasonable match with the objective TN+PFNS and associated fission product distributions within the size and weight constraints imposed by the NIF facility. The ETA design was built by American Elements, and initial validation tests were conducted at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. These experiments used foil activation and pulse height spectroscopy to measure the ETA-modified spectrum. Additionally, pulse height spectroscopy measurements were taken as the ETA was built-up component-by-component to measure the impact of nuclear data on the ability to model the ETA performance. Some initial analysis of these results is included here. Finally, an integral validation experiment on NIF was proposed using the Coeus generated ETA design. A scoping study conducted by LLNL determined the proposed experiment and ETA design are within NIF facility limitations and current radio-chemistry capabilities. The study found that the proposed ETA experiment was "low risk," has "no show stoppers," and has a "reasonable cost." All that is needed is a sponsor to close the last funding gap and bring the experiment to fruition. This research broke with the current sample doping approach and applied neutron spectral shaping to design an ETA that can create realistic synthetic fission and activation products and improve technical nuclear forensics outcomes. However, the ETA presented in this research represents more than a stand alone point design with a limited scope and application. It is proof of a concept and the product of a unique capability that has a wide range of potential applications. This research demonstrates that the concept of neutron spectral shaping can be used to engineer complex neutron spectra within the confines of physics. There are many possible applications that could benefit from the ability to generate custom energy neutron spectra that fall outside of current sources and methods. The ETA is the product of a general-purpose optimization algorithm, Gnowee, and design framework, Coeus, which enables the use of Gnowee for complex nuclear design problems. Through Gnowee and Coeus, new ETA neutronics designs can be generated in days, not months or years, with a drastic reduction in the research effort required to do so. (Abstract shortened by ProQuest.).
The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology
NASA Astrophysics Data System (ADS)
Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.
2014-12-01
The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.
Generation of nanosecond neutron pulses in vacuum accelerating tubes
NASA Astrophysics Data System (ADS)
Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.
2014-06-01
The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.
Spectrometers for compact neutron sources
NASA Astrophysics Data System (ADS)
Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.
2018-03-01
We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.
NASA Astrophysics Data System (ADS)
Chernikova, D.; Romodanov, V. L.; Belevitin, A. G.; Afanas`ev, V. V.; Sakharov, V. K.; Bogolubov, E. P.; Ryzhkov, V. I.; Khasaev, T. O.; Sladkov, A. A.; Bitulev, A. A.
2014-05-01
The present paper discusses results of full-scale experimental and numerical investigations of influence of construction materials of portable pulsed neutron generators ING-031, ING-07, ING-06 and ING-10-20-120 (VNIIA, Russia) to their radiation characteristics formed during and after an operation (shutdown period). In particular, it is shown that an original monoenergetic isotropic angular distribution of neutrons emitted by TiT target changes into the significantly anisotropic angular distribution with a broad energy spectrum stretching to the thermal region. Along with the low-energetic neutron part, a significant amount of photons appears during the operation of generators. In the pulse mode of operation of neutron generator, a presence of the construction materials leads to the "tailing" of the original neutron pulse and the appearance of an accompanying photon pulse at ~ 3 ns after the instant neutron pulse. In addition to that, reactions of neutron capture and inelastic scattering lead to the creation of radioactive nuclides, such as 58Co, 62Cu, 64Cu and 18F, which form the so-called activation radiation. Thus, the selection of a portable neutron generator for a particular type of application has to be done considering radiation characteristics of the generator itself. This paper will be of interest to users of neutron generators, providing them with valuable information about limitations of a specific generator and with recommendations for improving the design and performance of the generator as a whole.
Associated Particle Tagging (APT) in Magnetic Spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, David V.; Baciak, James E.; Stave, Sean C.
2012-10-16
Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation.more » In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: • We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. • The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.« less
Pappas, D.S.
1987-07-31
The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.
2015-01-01
DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.
The radioactive ion beams facility project for the legnaro laboratories
NASA Astrophysics Data System (ADS)
Tecchio, Luigi B.
1999-04-01
In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mildenberger, Frank; Mauerhofer, Eric
2015-07-01
In Germany, radioactive waste with negligible heat production has to pass through a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Additionally to its radioactive components, the waste may contain non-radioactive chemically toxic substances that can adversely affect human health and pollute the environment, especially the ground water. After an adequate decay time, the waste radioactivity will become harmless but the non-radioactive substances will persist over time. In principle, these hazardous substances may be quantified from traceability and quality controls performed during the production of themore » waste packages. As a consequence, a research and development program was initiated in 2007 with the aim to develop a nondestructive analytical technique for radioactive waste packages based on prompt and delayed gamma neutron activation analysis (P and DGNAA) employing a DT-neutron generator in pulsed mode. In a preliminary study it was experimentally demonstrated that P and DGNAA is suitable to determine the chemical composition of large samples. In 2010 a facility called MEDINA (Multi Element Detection based on Instrumental Neutron Activation) was developed for the qualitative and quantitative determination of nonradioactive, toxic elements and substances in 200-l steel drums. The determination of hazardous substances and elements is generally achieved measuring the prompt gamma-rays induced by thermal neutrons. Additional information about the composition of the waste matrix could be derived measuring the delayed gamma-rays from short life activation products. However a sensitive detection of these delayed gamma-rays requires that thermal neutrons have almost vanished. Therefore, the thermal neutron die-away-time has to be known in order to achieve an optimal discrimination between prompt and delayed gamma-ray spectra acquisition. Measurements Thermal neutron die-away times have been determined for the following cases: a) the empty chamber, b ) an empty 200-l steel drum, for a 200-l steel drum filled c) with concrete d) with polyethylene and e) with a mixture of polyethylene and concrete by measuring the prompt-gamma ray count rate of relevant isotopes like of {sup 1}H, {sup 10}B, {sup 12}C, {sup 28}Si, {sup 35}Cl, {sup 40}Ca and {sup 56}Fe which are emitted from different parts of the facility and the sample. Additionally, the average die-away-time was determined from the total detector count rate. The neutron generator was operated with a neutron emission of 8x10{sup 7} n.s{sup -1}, a neutron pulse with a length of 250 μs and a repetition time of 5 ms. The spectra were acquired between the neutron pulses over t{sub c}=500 μs after a pre-defined waiting time t{sub D} (multiple of 500 μs). The thermal neutron die-away time was ranging between 0.9 ms and 5 ms according to the sample composition. As an example the measured thermal neutron die-away-time Λ [μs] of a drum filled with concrete is presented. Detailed results of this study will be presented and discussed. (authors)« less
Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA
2008-03-11
A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.
Benchmarking of Neutron Production of Heavy-Ion Transport Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less
Tertiary particle physics with ELI: from challenge to chance (Conference Presentation)
NASA Astrophysics Data System (ADS)
Drska, Ladislav
2017-05-01
nteraction of high-intensity laser pulses with solid state targets results in generation of intense pulses of secondary particles via electromagnetic interaction : electrons, ions, hard x-rays. The beams of these particles can be used to produce various types of third-generation particles, beyond electromagnetic also other types of fundamental interactions can be involved in this process [1]. As the most interesting tertiary particles could be mentioned positrons, neutron, muons. This paper shall extend our previous analysis of this topic [2]: it discusses selected technical problems of design and realization of applicable sources of these particles and presents some more elaborated proposals for potential meaningful / hopefuly realistic exploitations of this technology. (1)Tertiary Sources (TS) : First Development Steps. This part of the presentation includes the topics as follows: (11) Pulsed positron sources: Verified solutions of laser-driven positron sources [3] [4] [5], development towards applicable facilities. Some unconventional concepts of application of lasers for positron production [6]. Techniques for realization of low/very-low energy positrons. (12) Taylored neutron sources [7]: Neutron sources with demanded space distribution, strongly beamed and isotropic solutions [8] [9]. Neutron generation with taylored energy distribution. Problem of the direct production of neutrons with very low energy [10] [11]. (13) Potential muon sources: Proof-of-principle laser experiment on electron / photon driven muon production [12] [13]. Study of the possibility of effective generation of surface muons. Problems of the production of muons with very low energy. (2) Fundamental & Applied Physics with TS: This part of the talk presents the themes: (21) Diagnostic potential of TS: Lepton emission as a signature of processes in extreme systems. Passive and active diagnostics using positrons, problems of detection and evaluation. Potential diagnostic applications of muons. Concrete application study: muon tomography. (22) Antilepton gravity studies [14]: Possibility of antimattter gravity research using positronium and muonium [15] [16]. Lepton / antilepton gravity studiesactive with relativistic particle beams [17]. First-phase practical application : positron production for filling (commertial) particle traps, development base for multiple microtrap systems. (23) Hidden world searching [18] : Potential laser-based production / detection of selected dark mattter particles - axions, hidden photons [19] [20]. Search for hidden particles in nuclear decay processes [21]. Potential application output: intense positronium source. Conclusion: The extensive feasibility study confirms the potential of ELI to contribute to the solution of Grand Challenge Problems of physics. Laser-produced tertiary particles will play important role in this effort. : References [1] L.Drska et al.: Physics of Extreme Systems. Course ATHENS CTU18, Prague 12 - 19 Nov., 2016. http://vega.fjfi.cvut.cz/docs/athens2016/ [2] L.Drska : Lepton Diagnostics and Antimatter Physics. In: SPIE Optics+Optoelectronics, Prague, April 13 - 16, 2015 . [3] H. Chen et al.: Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysics Applications. Rep. LLNL-JRNL-665381, Dec. 11, 2014. [4] E Liang et al.: High e+ / e- Ratio Dense Pair Creation with 1022 W.cm-2 Laser Irradiating Solid Targets. Scientific Reports, Sept. 14, 2015. www.nature.com/scientificreports [5] G. Sarri et al.: Spectral and Spatial Characterization of Laser-driven Positron Beams. Plasma Phys. Control. Fusion 59 (2017) 014015. [6] B. Schoch: A Method to Produce Intense Positron Beams via Electro Pair Production on Electrons. arXiv:1607.03847v1 [physics.acc-ph] [7] I. Pomerantz: Laser Generation of Neutrons: Science and Applications. In: ELI-NP Summer School, Magurele, Sept. 21 - 25, 2015. http://www.eli-np.ro/2015-summer-school/presentations/23.09/Pomerantz_Eli-NP-Summer-school-2015.pdf [8] V.P. Kovalev: Secondary Radiation of Electron Accelerators (in Russian). Atomizdat 1969. [9] M. Lebois et al.: Development of a Kinematically Focused Neutron Source with p(Li7,n)Be7 Inverse Reaction. Nucl. Instr. Meth. Phys. Res. A 735 (2014), 145. [10] D. Habs et al.: Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance. Appl. Phys B103 (2011),485. [11] T. Masuda et al.: A New Method of Creating High/Intensity Neutron Source. arXiv:1604.02818v1[nucl-ex] [12] A.I. Titov et al.: Dimuon Production by Laser-wakefield Accelerated Electrons. Phys. Rev. ST Accel. Beams 12 (2009) 111301. [13] W. Dreesen et al.: Detection of Petawatt Laser-Induced Muon Source for Rapid High-Gamma Material Detection. DOE/NV/25946-2262. [14] F. Castelli: Positronium and Fundamental Physics: What Next ? In: What Next, Florence 2015. [15] G. Dufour et al. : Prospects for Studies of the Free Fall and Gravitation Quantum States of Antimatter. Advances in High Energy Physics 2015 (2015) 379642. [16] D.M. Kaplan et al.. Antimatter Gravity with Muonium. IIT-CAPP-16-1. arXiv:1601.07222v2 [physics.ins-det] [17] T. Kalaydzhyan: Gravitational Mass of Positron from LEP Synchrotron Losses. arXiv:1508.04377v3 [hep-ph] [18] J. Alexander et al.: Dark Sector 2016 Workshop: Community Report. arXiv:1608.08632[hep-ph] [19] M.A. Wahud et al.: Axion-like Particle Production in a Laser-Induced Dynamical Spacertime. arXiv:1612.07743v1 [hep-ph] [20] V. Kozhuharov et al: New Projects on Dark Photon Search. arXiv:1610.04389v1 [hep-ex] [21] A.J. Krasznahorkay et al.: Observation of Anomalous Internal Pair Creation in Be8: A Possible Signature of a Light, Neutral Boson. arXiv:1504.01527v1 [nucl-ex
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.
2018-04-01
A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.
NASA Astrophysics Data System (ADS)
Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.
2015-09-01
In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanhoy, J. R.; Ramirez, A. P.; Alcorn-Dominguez, D. K.
Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from g-ray production cross sections following inelastic neutron scattering (n,n0) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator). For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energymore » resolution, since at 125°, the a 2P 2 term of the Legendre expansion is identically zero and the a 4P 4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the g-ray production cross section. Finally, this project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting g-ray excitation functions as cross sections when the incident neutron energy is <1000 keV above threshold or before the onset of feeding.« less
Vanhoy, J. R.; Ramirez, A. P.; Alcorn-Dominguez, D. K.; ...
2017-09-13
Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from g-ray production cross sections following inelastic neutron scattering (n,n0) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator). For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energymore » resolution, since at 125°, the a 2P 2 term of the Legendre expansion is identically zero and the a 4P 4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the g-ray production cross section. Finally, this project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting g-ray excitation functions as cross sections when the incident neutron energy is <1000 keV above threshold or before the onset of feeding.« less
NASA Astrophysics Data System (ADS)
Vanhoy, J. R.; Ramirez, A. P.; Alcorn-Dominguez, D. K.; Hicks, S. F.; Peters, E. E.; McEllistrem, M. T.; Mukhopadhyay, S.; Yates, S. W.
2017-09-01
Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n'γ) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (
Using gamma-ray emission to measure areal density of inertial confinement fusion capsulesa)
NASA Astrophysics Data System (ADS)
Hoffman, N. M.; Wilson, D. C.; Herrmann, H. W.; Young, C. S.
2010-10-01
Fusion neutrons streaming from a burning inertial confinement fusion capsule generate gamma rays via inelastic nuclear scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density (ρR) and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, C12 nuclei emit gamma rays at 4.44 MeV after excitation by 14.1 MeV neutrons from D+T fusion. These gamma rays can be measured by a new gamma-ray detector under development. Analysis of predicted signals is in progress, with results to date indicating that the method promises to be useful for diagnosing imploded capsules.
On the angular and energy distribution of solar neutrons generated in P-P reactions
NASA Technical Reports Server (NTRS)
Efimov, Y. E.; Kocharov, G. E.
1985-01-01
The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.
Recent UCN source developments at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.
The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In themore » source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 {micro}amp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4.« less
First neutron generation in the BINP accelerator based neutron source.
Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S
2009-07-01
Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.
NASA Astrophysics Data System (ADS)
Mitsuka, Gaku
2017-04-01
The PHENIX experiment at the BNL Relativistic Heavy Ion Collider recently reported transverse single-spin asymmetry, AN, for forward neutrons in p↑A collisions at √{sNN}=200 GeV . AN in p↑Al and p↑Au collisions were measured as -0.015 and 0.18, respectively. These values are clearly different from the measured AN=-0.08 in p↑p collisions. In this paper, I propose that a large AN for forward neutrons in ultraperipheral p↑A collisions may explain the PHENIX measurements. The proposed model is demonstrated using two Monte Carlo simulations. In the ultraperipheral collision simulation, I use the starlight event generator for the simulation of the virtual photon flux and then use the maid2007 unitary isobar model for the simulation of neutron production in the interactions of a virtual photon with a polarized proton. In the p↑A hadronic interaction simulation, the differential cross sections for forward neutron production are predicted by a simple one-pion exchange model and the Glauber model. The simulated AN values for both the contribution of ultraperipheral collisions and the hadronic interactions are in good agreement with the PHENIX results.
Moderator design studies for a new neutron reference source based on the D-T fusion reaction
NASA Astrophysics Data System (ADS)
Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.
2016-06-01
The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.
Characteristics of a heavy water photoneutron source in boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Danial, Salehi; Dariush, Sardari; M. Salehi, Jozani
2013-07-01
Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.
Next Generation H- Ion Sources for the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.
2009-03-01
The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.
The role of neutron star mergers in the chemical evolution of the Galactic halo
NASA Astrophysics Data System (ADS)
Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.
2015-05-01
Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r-process production of Sr, Zr, and Ba by neutron star mergers - complemented by an s-process production by spinstars - provide results that are compatible with our previous findings based on other r-process sites. We critically discuss the weak and strong points of both neutron star merging and supernova scenarios for producing Eu and eventually suggest that the best solution is probably a mixed one in which both sources produce Eu. In fact, this scenario reproduces the scatter observed in all the studied elements better. Warning, no authors found for 2015A&A...577A.131.
Method and system for detecting explosives
Reber, Edward L [Idaho Falls, ID; Jewell, James K [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID; Seabury, Edward H [Idaho Falls, ID; Blackwood, Larry G [Idaho Falls, ID; Edwards, Andrew J [Idaho Falls, ID; Derr, Kurt W [Idaho Falls, ID
2009-03-10
A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.
Explosives detection system and method
Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.
2007-12-11
A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
NASA Astrophysics Data System (ADS)
Franklyn, C. B.
2011-12-01
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.
Characteristics of proton beams and secondary neutrons arising from two different beam nozzles
NASA Astrophysics Data System (ADS)
Choi, Yeon-Gyeong; Kim, Yu-Seok
2015-10-01
A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.
Neutron capillary optics: status and perspectives
NASA Astrophysics Data System (ADS)
Kumakhov, M. A.
2004-08-01
The article is dedicated to the current status of neutron polycapillary optics and its application. X-ray and neutron polycapillary optics was first suggested in my papers published and patented about 20 years ago. The first X-ray lens was made about 20 years ago (in 1985) in my laboratory at the Kurchatov Institute of Atomic Power. The first neutron assembled capillary lens consisting of several thousand polycapillaries was assembled and tested 2 years later at the atomic reactor of the Kurchatov Institute. A great many experiments were done at the atomic reactors in Russia, Germany, France, USA for neutron beam focusing, turning. Most successful were the experiments on turning neutron beam at the atomic reactor in Berlin, where it was possible to turn the neutron beam by the angle of 20°. Numerous experiments in Germany and France proved high efficacy of polycapillary optics in controlling thermal neutron radiation. The article gives new results obtained in creating pure beams of thermal neutrons on the basis of polycapillary optics. New polycapillary technologies developed at IRO, Moscow/Unisantis, Geneva, enable creation of neutron diffractometers, spectrometers, reflectometers, microscopes—all with a micron-size focal spot. All instruments are portable and highly efficient. Such generation of instruments has been already developed and realized for X-rays, and the same process for neutron beams has already started. So, neutron polycapillary optics makes it possible to create new instruments and raise the level of scientific research, and also enables use of neutron beam for industrial application in production environment.
Identification of nuclear weapons
Mihalczo, J.T.; King, W.T.
1987-04-10
A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.
NASA Astrophysics Data System (ADS)
Saltos, Andrea
In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.
Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision.
Azechi, H; Sakaiya, T; Watari, T; Karasik, M; Saito, H; Ohtani, K; Takeda, K; Hosoda, H; Shiraga, H; Nakai, M; Shigemori, K; Fujioka, S; Murakami, M; Nagatomo, H; Johzaki, T; Gardner, J; Colombant, D G; Bates, J W; Velikovich, A L; Aglitskiy, Y; Weaver, J; Obenschain, S; Eliezer, S; Kodama, R; Norimatsu, T; Fujita, H; Mima, K; Kan, H
2009-06-12
We performed integrated experiments on impact ignition, in which a portion of a deuterated polystyrene (CD) shell was accelerated to about 600 km/s and was collided with precompressed CD fuel. The kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of about 1.6 keV. We achieved a two-order-of-magnitude increase in the neutron yield by optimizing the timing of the impact collision, demonstrating the high potential of impact ignition for fusion energy production.
High energy neutron and gamma-radiation generated during the solar flares
NASA Technical Reports Server (NTRS)
Kocharov, G. E.; Mandzhavidze, N. Z.
1985-01-01
The problem of high energy neutrons and gamma rays generation in the solar conditions is considered. It is shown that due to a peculiarity of generation and propagation of neutrons corresponding solar flares should be localized at high helio-longitudes.
Geant4 Modifications for Accurate Fission Simulations
NASA Astrophysics Data System (ADS)
Tan, Jiawei; Bendahan, Joseph
Monte Carlo is one of the methods to simulate the generation and transport of radiation through matter. The most widely used radiation simulation codes are MCNP and Geant4. The simulation of fission production and transport by MCNP has been thoroughly benchmarked. There is an increasing number of users that prefer using Geant4 due to the flexibility of adding features. However, it has been found that Geant4 does not have the proper fission-production cross sections and does not produce the correct fission products. To achieve accurate results for studies in fissionable material applications, Geant4 was modified to correct these inaccuracies and to add new capabilities. The fission model developed by the Lawrence Livermore National Laboratory was integrated into the neutron-fission modeling package. The photofission simulation capability was enabled using the same neutron-fission library under the assumption that nuclei fission in the same way, independent of the excitation source. The modified fission code provides the correct multiplicity of prompt neutrons and gamma rays, and produces delayed gamma rays and neutrons with time and energy dependencies that are consistent with ENDF/B-VII. The delayed neutrons are now directly produced by a custom package that bypasses the fragment cascade model. The modifications were made for U-235, U-238 and Pu-239 isotopes; however, the new framework allows adding new isotopes easily. The SLAC nuclear data library is used for simulation of isotopes with an atomic number above 92 because it is not available in Geant4. Results of the modified Geant4.10.1 package of neutron-fission and photofission for prompt and delayed radiation are compared with ENDFB-VII and with results produced with the original package.
Benchmarking of neutron production of heavy-ion transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, I.; Ronningen, R. M.; Heilbronn, L.
Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less
Fragment distribution in 78,86Kr+181Ta reactions
NASA Astrophysics Data System (ADS)
Zhang, Dong-Hong; Zhang, Feng-Shou
2018-05-01
Within the framework of the isospin-dependent quantum molecular dynamics model, along with the GEMINI model, the 86Kr+181Ta reaction at 80, 120 and 160 MeV/nucleon and the 78Kr+181Ta reaction at 160 MeV/nucleon are studied, and the production cross sections of the generated fragments are calculated. More inter-mediate and large mass fragments can be produced in the reactions with a large range of impact parameter. The production cross sections of nuclei such as the isotopes of Si and P generally decrease with increasing incident energy. Isotopes near the neutron drip line are produced more in the neutron-rich system 86Kr+181Ta. Supported by Youth Research Foundation of Shanxi Datong University (2016Q10)
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu
NASA Astrophysics Data System (ADS)
Luo, Junhua; Jiang, Li; Li, Suyuan
2017-10-01
The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.
FY16 Status Report on NEAMS Neutronics Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Shemon, E. R.; Smith, M. A.
2016-09-30
The goal of the NEAMS neutronics effort is to develop a neutronics toolkit for use on sodium-cooled fast reactors (SFRs) which can be extended to other reactor types. The neutronics toolkit includes the high-fidelity deterministic neutron transport code PROTEUS and many supporting tools such as a cross section generation code MC 2-3, a cross section library generation code, alternative cross section generation tools, mesh generation and conversion utilities, and an automated regression test tool. The FY16 effort for NEAMS neutronics focused on supporting the release of the SHARP toolkit and existing and new users, continuing to develop PROTEUS functions necessarymore » for performance improvement as well as the SHARP release, verifying PROTEUS against available existing benchmark problems, and developing new benchmark problems as needed. The FY16 research effort was focused on further updates of PROTEUS-SN and PROTEUS-MOCEX and cross section generation capabilities as needed.« less
The intensive DT neutron generator of TU Dresden
NASA Astrophysics Data System (ADS)
Klix, Axel; DÖring, Toralf; Domula, Alexander; Zuber, Kai
2018-01-01
TU Dresden operates an accelerator-based intensive DT neutron generator. Experimental activities comprise investigation into material activation and decay, neutron and photon transport in matter and R&D work on radiation detectors for harsh environments. The intense DT neutron generator is capable to produce a maximum of 1012 n/s. The neutron source is a solid-type water-cooled tritium target based on a titanium matrix on a copper carrier. The neutron yield at a typical deuteron beam current of 1 mA is of the order of 1011 n/s in 4Π. A pneumatic sample transport system is available for short-time irradiations and connected to wo high-purity germanium detector spectrometers for the measurement of induced activities. The overall design of the experimental hall with the neutron generator allows a flexible setup of experiments including the possibility of investigating larger structures and cooled samples or samples at high temperatures.
NASA Astrophysics Data System (ADS)
Ghias, Asghar
1999-11-01
Neutron activation methods and bore-hole gamma-ray spectrometry have been versatile techniques for real time field evaluation in mineral exploration. The most common neutron generators producing 14 MeV and 2.5 MeV neutrons accelerate deuterium ions into a tritium or deuterium target via the 3H( 2H,n)4He or the 2H(2H,n) 3H reactions. The development and design of bore-hole 2.5 MeV high flux neutron generator coupled with an efficient gamma-ray detector is the primary focus of this work, which is needed by the coal and petroleum industries. A 2.5 MeV neutron generator, which used the D(D,n)T reaction, was constructed similar to a conventional Zetatron 14 MeV generator. The performance of the low energy neutron generator was studied under various operating conditions. In order to enhance the neutron flux of the generator, an r.f. field was applied to the ion source which increased the neutron yield per pulse by about thirty percent. A theoretical study of the r.f enhancement has been made to explain the operation of the r.f. added Zetatron tube. An alternative, method of neutron flux enhancement by use of laser-excitation is discussed and explained theoretically. The laser technique although not experimentally verified, is based on the recent development of vibronic lasers, the neutron flux can be enhanced several orders of magnitude by precise tuning of the wavelength within vibronic band. Activation experiments using a large coal sample (about I ton) were conducted, and studies were made on inter and intrapulse counting, detector gated spectra, and comparison of the spectra using different neutron sources. Preliminary results on coal analysis reveal that lower energy (2.5 MeV) is superior to high energy (14 MeV) neutrons. During the course of this work it became necessary to measure fast neutrons, efficiently and in real time. A new type of detector was consequently developed using SnO2 as sheath material around a BGO detector to measure the capture gamma-rays of oxygen. Using neutron activation studies of coal, the feasibility of applying the technique to aid medical diagnostics is also discussed in this dissertation.
Radiation fields from neutron generators shielded with different materials
NASA Astrophysics Data System (ADS)
Chichester, D. L.; Blackburn, B. W.
2007-08-01
As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.
Biophysics and medical effects of enhanced radiation weapons.
Reeves, Glen I
2012-08-01
Enhanced radiation weapons (ERW) are fission-fusion devices where the massive numbers of neutrons generated during the fusion process are intentionally allowed to escape rather than be confined to increase yield (and fallout products). As a result, the energy partition of the weapon output shifts from blast and thermal energies toward prompt radiation. The neutron/gamma output ratio is also increased. Neutrons emitted from ERW are of higher energy than the Eave of neutrons from fission weapons. These factors affect the patterns of injury distribution; delay wound healing in combined injuries; reduce the therapeutic efficacy of medical countermeasures; and increase the dose to radiation-only casualties, thus potentiating the likelihood of encountering radiation-induced incapacitation. The risk of radiation-induced carcinogenesis is also increased. Radiation exposure to first responders from activation products is increased over that expected from a fission weapon of similar yield. However, the zone of dangerous fallout is significantly reduced in area. At least four nations have developed the potential to produce such weapons. Although the probability of detonation of an ERW in the near future is very small, it is nonzero, and clinicians and medical planners should be aware of the medical effects of ERW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Hellmut
Substantial progress has been made in various diagnostics for investigating results of experiments during the last years performed with the PF1000 device at IPPLM, Warsaw, Poland. In addition to standard diagnostics of the electrical characteristics of up to 1 MJ discharges in a Mather type plasma focus geometry, such as high speed photography, X-ray, fast electron beam and time-integrated neutron measurements, there have been made among others at least three quite successful efforts recently: 1) Setting up of a neutron time-of-flight line with up to five scintillation detectors including optical fibre based data collection equipment, 2) Use of a Mechellemore » spectrometer with CCD registration and possibility to take time-resolved spectra with resolutions down to 100 ns and 3) Setting up and using pinhole cameras equipped with solid state nuclear track detectors for the detection of fusion generated protons. Correlations of emission events as well as plasma and electrical current dynamics are investigated. Neutron emission characteristics and fusion products production mechanisms are discussed considering a generalized beam target model, called Gyrating Particle Model.« less
Current Interruption and Particle Beam Generation by a Plasma Focus.
1982-11-30
Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions...results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a...strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device. (Author)
NASA Astrophysics Data System (ADS)
Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.
2014-01-01
Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling factors based on recently updated neutron and proton excitation functions (probability of nuclide production in a given nuclear reaction as a function of energy) for commonly measured in situ cosmogenic nuclides. Such scaling factors reflect the influence of the energy distribution of the flux folded with the relevant excitation functions. Resulting scaling factors indicate 3He shows the strongest positive deviation from the flux-based scaling, while 14C exhibits a negative deviation. These results are consistent with a recent Monte Carlo-based study using a different cosmic-ray physics code package but the same excitation functions.
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklyn, C. B.
2011-12-13
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less
NASA Astrophysics Data System (ADS)
Wu, Ying
2009-11-01
The development of a prototype compact neutron generator for the application of associated particle imaging (API) to be used for explosive and contraband detection will be presented. The API technique makes use of the 3.5 MeV alpha particles that are produced simultaneously with the 14 MeV neutrons in the deuterium-tritium (^2D(^3T,n)^4α) fusion reaction to determine the direction of the neutrons and reduce background noise. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. In this work an axial type neutron generator was designed and built with a predicted neutron yield of 10^8 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. It was shown that the measured yield for a D/D gas filled generator was 2x10^5n/s, which scales to 2x10^7 n/s if a D/T gas fill is used. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of > 80% can be obtained with only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the acceleration column, to suppress secondary backscattered electrons produced at the target. Initial measurements of the neutron generator performance including the beam spot size and neutron yield under sealed operation will be discussed, along with suggestions for future improvements.
Toward Direct Reaction-in-Flight Measurements
NASA Astrophysics Data System (ADS)
Wilhelmy, Jerry; Bredeweg, Todd; Fowler, Malcolm; Gooden, Matthew; Hayes, Anna; Rusev, Gencho; Caggiano, Joseph; Hatarik, Robert; Henry, Eugene; Tonchev, Anton; Yeaman, Charles; Bhike, Megha; Krishichayan, Krishi; Tornow, Werner
2016-03-01
At the National Ignition Facility (NIF) neutrons having energies greater than the equilibrium 14.1 MeV value can be produced via Reaction-in-Flight (RIF) interactions between plasma atoms and upscattered D or T ions. The yield and spectrum of these RIF produced neutrons carry information on the plasma properties as well as information on the stopping power of ions under plasma conditions. At NIF the yield of these RIF neutrons is predicted to be 4-7 orders of magnitude below the peak 14 MeV neutron yield. The current generation of neutron time of flight (nTOF) instrumentation has so far been incapable of detecting these low-yield neutrons primarily due to high photon backgrounds. To date, information on RIF neutrons has been obtained in integral activation experiments using reactions with high energy thresholds such as 169Tm(n,3n)167Tm and 209Bi(n,4n) 206Bi. Initial experiments to selectively suppress photon backgrounds have been performed at TUNL using pulsed monoenergetic neutron beams of 14.9, 18.5, 24.2, and 28.5 MeV impinging on a Bibenzyl scintillator. By placing 5 cm of Pb before the scintillator we were able to selectively suppress the photons from the flash occurring at the production target and enhance the n/_signal by ~6 times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klix, A.; Fischer, U.; Raj, P.
Fusion power reactors will rely on the internal production of the fuel tritium from lithium in the tritium breeding blanket. Test Blanket Modules (TBM) will be installed in ITER with the aim to investigate the nuclear performance of different breeding blanket designs. Currently there is no fully qualified nuclear instrumentation available for the measurement of neutron fluxes and tritium production rates which would be able to withstand the harsh environment conditions in the TBM such as high temperature (>400 deg. C) and, depending on the operation scenario, intense radiation levels. As partner of the European Consortium on Nuclear Data andmore » Measurement Techniques in the framework of several F4E specific grants and contracts, KIT and ENEA have jointly studied the possibility to develop and test detectors suitable to operate in ITER-TBMs. Here we present an overview of ongoing work on three types of neutron flux monitors under development for the TBMs with focus on the KIT activities. A neutron activation system (NAS) with pneumatic sample transport could provide absolute neutron flux measurements in selected positions. A test system for investigating activation materials with short half-lives was constructed at the DT neutron generator laboratory of Technical University of Dresden to investigate the neutronics aspects. Several irradiations have been performed with focus on the simultaneous measurement of the extracted activated probes. An engineering assessment of a TBM NAS in the conceptual design phase has been done which considered issues of design requirements and integration. Last but not least, a mechanical test bench is under construction at KIT which will address issues of driving the activation probes, solutions for loading the system etc. experimentally. Self-powered neutron detectors (SPND) are widely applied in fission reactor monitoring, and the commercially available SPNDs are sensitive to thermal neutrons. We are investigating novel materials for SPND which would be sensitive also to the fast neutron flux expected in the TBMs. To this end simulations were done with the European Activation System EASY and neutron flux spectra which were calculated with MCNP for the HCPB TBM. Preliminary tests with commercial SPND in a fast reactor were performed. As a result of these activities, several materials have been found which may be suitable for the measurement of fast neutron fluxes in the TBM. Test detectors are under preparation for testing with DT neutron generators. Within the I{sub S}MART project, funded by KIC InnoEnergy, KIT is developing an online detector based on silicon carbide electronics for the TBMs. The operation of such detectors at TBM relevant temperatures is expected to incur lower accumulated radiation damage to them than at room temperature due to annealing effects. Detectors of several designs have been already irradiated with DT neutrons. Irradiation tests at elevated temperatures have been done and further tests are currently underway. This paper summarizes the status of the work for these three neutron flux monitor systems. (authors)« less
Neutron production from 200-500 MeV proton interaction with spacecraft materials.
Maurer, Richard H; Kinnison, James D; Roth, David R
2005-01-01
We report on detailed energy spectra of neutron production > 14 MeV from collisions of 200-500 MeV protons with combinations of aluminium, graphite and polyethylene. Comparisons of normalised neutron spectra are made with respect to incident proton energy, angle of neutron production and material. In general, carbon (graphite) or polyethylene (by itself or in combination with aluminium) reduce secondary neutron production > 14 MeV relative to the production from interactions in aluminium.
Characterization of a high repetition-rate laser-driven short-pulsed neutron source
NASA Astrophysics Data System (ADS)
Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.
2018-05-01
We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.
A compact ion source for intense neutron generation
NASA Astrophysics Data System (ADS)
Perkins, Luke Torrilhon
Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and therefore control the neutron output (pulse width, repetition rate and magnitude) while operating at low pressures (~5 mTorr). In the experimental testing presented herein, a prototype, 5 cm-diameter, inductively driven ion source has produced unsaturated hydrogen beam current densities in excess of 1 A/cm2 and monatomic species fractions in excess of 90%. This satisfactory performance, with respect to the targeted neutron output, was achieved with a 2 MHz, 60 kW pulse of RF to produce a ~20μs plasma pulse at <100 Hz.
Neutron density profile in the lunar subsurface produced by galactic cosmic rays
NASA Astrophysics Data System (ADS)
Ota, Shuya; Sihver, Lembit; Kobayashi, Shingo; Hasebe, Nobuyuki
Neutron production by galactic cosmic rays (GCR) in the lunar subsurface is very important when performing lunar and planetary nuclear spectroscopy and space dosimetry. Further im-provements to estimate the production with increased accuracy is therefore required. GCR, which is a main contributor to the neutron production in the lunar subsurface, consists of not only protons but also of heavy components such as He, C, N, O, and Fe. Because of that, it is important to precisely estimate the neutron production from such components for the lunar spectroscopy and space dosimetry. Therefore, the neutron production from GCR particles in-cluding heavy components in the lunar subsurface was simulated with the Particle and Heavy ion Transport code System (PHITS), using several heavy ion interaction models. This work presents PHITS simulations of the neutron density as a function of depth (neutron density profile) in the lunar subsurface and the results are compared with experimental data obtained by Apollo 17 Lunar Neutron Probe Experiment (LNPE). From our previous study, it has been found that the accuracy of the proton-induced neutron production models is the most influen-tial factor when performing precise calculations of neutron production in the lunar subsurface. Therefore, a benchmarking of proton-induced neutron production models against experimental data was performed to estimate and improve the precision of the calculations. It was found that the calculated neutron production using the best model of Cugnon Old (E < 3 GeV) and JAM (E > 3 GeV) gave up to 30% higher values than experimental results. Therefore, a high energy nuclear data file (JENDL-HE) was used instead of the Cugnon Old model at the energies below 3 GeV. Then, the calculated neutron density profile successfully reproduced the experimental data from LNPE within experimental errors of 15% (measurement) + 30% (systematic). In this presentation, we summarize and discuss our calculated results of neutron production in the lunar subsurface.
Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.
1987-08-05
A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.
Moderator design studies for a new neutron reference source based on the D–T fusion reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.
2016-06-01
The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramaticallymore » in recent years. Neutron generators based on deuterium-tritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14.6 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2 to 5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.« less
Is There an Interest to Use Deuteron Beams to Produce Non-Conventional Radionuclides?
Alliot, Cyrille; Audouin, Nadia; Barbet, Jacques; Bonraisin, Anne-Cecile; Bossé, Valérie; Bourdeau, Cécile; Bourgeois, Mickael; Duchemin, Charlotte; Guertin, Arnaud; Haddad, Ferid; Huclier-Markai, Sandrine; Kerdjoudj, Rabah; Laizé, Johan; Métivier, Vincent; Michel, Nathalie; Mokili, Marcel; Pageau, Mickael; Vidal, Aurélien
2015-01-01
With the recent interest on the theranostic approach, there has been a renewed interest for alternative radionuclides in nuclear medicine. They can be produced using common production routes, i.e., using protons accelerated by biomedical cyclotrons or neutrons produced in research reactors. However, in some cases, it can be more valuable to use deuterons as projectiles. In the case of Cu-64, smaller quantities of the expensive target material, Ni-64, are used with deuterons as compared with protons for the same produced activity. For the Sc-44m/Sc-44g generator, deuterons afford a higher Sc-44m production yield than with protons. Finally, in the case of Re-186g, deuterons lead to a production yield five times higher than protons. These three examples show that it is of interest to consider not only protons or neutrons but also deuterons to produce alternative radionuclides. PMID:26029696
Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination
Liu, B; Xu, J; Liu, T; Ouyang, X
2012-01-01
Objective To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Methods Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a 252Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D–D neutron generator can create neutrons at up to 1013 n s−1 with current technology. All these enable an effective and low-cost method of killing anthrax spores. Results There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. Conclusion The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g 252Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D–D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D–D neutron generator output >1013 n s−1 should be attainable in the near future. This indicates that we could use a D–D neutron generator to sterilise anthrax contamination within several seconds. PMID:22573293
Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination.
Liu, B; Xu, J; Liu, T; Ouyang, X
2012-10-01
To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a (252)Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D-D neutron generator can create neutrons at up to 10(13) n s(-1) with current technology. All these enable an effective and low-cost method of killing anthrax spores. There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g (252)Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D-D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D-D neutron generator output >10(13) n s(-1) should be attainable in the near future. This indicates that we could use a D-D neutron generator to sterilise anthrax contamination within several seconds.
Cosmogenic activation of germanium used for tonne-scale rare event search experiments
NASA Astrophysics Data System (ADS)
Wei, W.-Z.; Mei, D.-M.; Zhang, C.
2017-11-01
We report a comprehensive study of cosmogenic activation of germanium used for tonne-scale rare event search experiments. The germanium exposure to cosmic rays on the Earth's surface are simulated with and without a shielding container using Geant4 for a given cosmic muon, neutron, and proton energy spectrum. The production rates of various radioactive isotopes are obtained for different sources separately. We find that fast neutron induced interactions dominate the production rate of cosmogenic activation. Geant4-based simulation results are compared with the calculation of ACTIVIA and the available experimental data. A reasonable agreement between Geant4 simulations and several experimental data sets is presented. We predict that cosmogenic activation of germanium can set limits to the sensitivity of the next generation of tonne-scale experiments.
High efficiency proportional neutron detector with solid liner internal structures
Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.
2014-08-05
A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.
Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems
NASA Astrophysics Data System (ADS)
Luis, Raul Fernandes
Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None
Apparatus for measuring a flux of neutrons
Stringer, James L.
1977-01-01
A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.
Elemental analysis using temporal gating of a pulsed neutron generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, Sudeep
Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing devicemore » outputs data that is indicative of elemental composition of the sample based upon the binned pulses.« less
Spallation Neutron Source Materials Studies
NASA Astrophysics Data System (ADS)
Sommer, W. F.
1998-04-01
Operation of accelerator facilities such as Los Alamos Neutron Science Center (LANSCE), ISIS at Rutherford Appleton Laboratory, the Swiss Institute Neutron Source (SINQ) at Paul Scherrer Institute, and others has provided valuable information on materials performance in high energy particle beams and high energy neutron environments. The Accelerator Production of Tritium (APT) project is sponsoring an extensive series of tests on the effect of spallation neutron source environments to physical and mechanical properties of candidate materials such as nickel-based alloys, stainless steel alloys, aluminum alloys and solid target materials such as tungsten. Measurements of corrosion rates of these candidate materials during irradiation and while in contact with flowing coolant water are being made. The APT tests use the irradiation facility in the beam stop area of the LANSCE accelerator using 800 MeV protons as well as the neutron flux-spectrum generated as these protons interact with targets. The initial irradiations were completed in summer 1997, exposing materials to a fluence approaching 4-6 x 10^21 protons/cm^2. Sample retrieval is now underway. Mechanical properties measurements are being conducted at several laboratories. Studies on components used in service have also been initiated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekhar, MVS
The objective is to develop and implement a superior low-cost, large area (potentially >32in), easily deployable, close proximity, harsh environment innovative neutron sensor needed for next generation fuel cycle monitoring. We will exploit recent breakthroughs at the PI’s lab on the electrochemistry of epitaxial graphene (EG) formed on commercial SiC wafers, a transformative nanomaterial system with superior radiation detection and durability properties to develop a new paradigm in detection for fast neutrons, a by-product of fission reactors. There are currently few effective detection/monitoring schemes, especially solid-state ones at present. This is essential for monitoring and control of future fuel cyclesmore » to make them more efficient and reliable. By exploiting these novel materials, as well as innovative hybrid SiC/EG/Cladding device architectures conceived by the team, will develop low-cost, high performance solutions to fast-neutron detection. Finally, we will also explore 3-terminal device implementations for neutron detectors with built-in electronic gain to further shrink these devices and improve their sensitivity.« less
Optimization of a Light Collection System for use in the Neutron Lifetime Project
NASA Astrophysics Data System (ADS)
Taylor, C.; O'Shaughnessy, C.; Mumm, P.; Thompson, A.; Huffman, P.
2007-10-01
The Ultracold Neutron (UCN) Lifetime Project is an ongoing experiment with the objective of improving the average measurement of the neutron beta-decay lifetime. A more accurate measurement may increase our understanding of the electroweak interaction and improve astrophysical/cosmological theories on Big Bang nucleosynthesis. The current apparatus uses 0.89 nm cold neutrons to produce UCN through inelastic collisions with superfluid 4He in the superthermal process. The lifetime of the UCN is measured by detection of scintillation light from superfluid 4He created by electrons produced in neutron decay. Competing criteria of high detection efficiency outside of the apparatus and minimum heating of the experimental cell has led to the design of an acrylic light collection system. Initial designs were based on previous generations of the apparatus. ANSYS was used to optimize the cooling system for the light guide by checking simulated end conditions based on width of contact area, number of contact points, and location on the guide itself. SolidWorks and AutoCAD were used for design. The current system is in the production process.
Neel, J V; Satoh, C; Goriki, K; Asakawa, J; Fujita, M; Takahashi, N; Kageoka, T; Hazama, R
1988-01-01
A sample of (1) children whose parents had been proximally exposed (i.e., less than 2,000 m from the hypocenter) at the time of the atomic bombings of Hiroshima and Nagasaki and (2) a suitable comparison group have been examined for the occurrence of mutations altering the electrophoretic mobility or activity of a series of 30 proteins. The examination of the equivalent of 667,404 locus products in the children of proximally exposed persons yielded three mutations altering electrophoretic mobility; the corresponding figure for the comparison group was three mutations in 466,881 tests. The examination of a subset of 60,529 locus products for loss of enzyme activity in the children of proximally exposed persons yielded one mutation; no mutations were encountered in 61,741 determinations on the children of the comparison group. When these two series are compared, the mutation rate observed in the children of proximally exposed persons is thus 0.60 x 10(-5)/locus/generation, with 95% confidence intervals between 0.2 and 1.5 x 10(-5), and that in the comparison children is 0.64 x 10(-5)/locus/generation, with 95% intervals between 0.1 and 1.9 x 10(-5). The average conjoint gonad doses for the proximally exposed parents are estimated to be 0.437 Gy of gamma radiation and 0.002 Gy of neutron radiation. If a relative biological effectiveness of 20 is assigned to the neutron radiation, the combined total gonad dose for the parents becomes 0.477 Sv. (Organ absorbed doses are expressed in gray [1 Gy = 100 rad]; where dose is a mixture of gamma and neutron radiation, it is necessary because of the differing relative biological effectiveness of gamma and neutron radiation to express the combined gamma-neutron gonad exposures in sieverts [1 Sv = 100 rem]). PMID:3358419
Novel methods for aircraft corrosion monitoring
NASA Astrophysics Data System (ADS)
Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.
1995-07-01
Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C; Kim, J; Park, S
Purpose: Photon beams with energy higher than 10 MV interact with metal material in the primary barriers, where lead or steel have been widely used, neutrons can be generated. Monte Carlo simulations were performed to simulate the production of photoneutrons and the neutron shielding effect. Methods: For two photon beam energies, 15 MV and 18 MV, we simulated to strike metal sheets (steel and lead), and the ambient dose equivalents were calculated at the isocenter (in the patient plane) while delivering 1 Gy to the patient. For these cases, the thickness of the neutron shielding materials (Borated polyethylene (BPE) andmore » concrete) were simulated to reduce the patient exposure by neutron doses. Results: When 18 MV photons interact with the metal sheets in the primary barrier, the evaluated neutron doses at the isocenter inside the treatment vault were 48.7 µSv and 7.3 µSv for lead and steel, respectively. In case of 15 MV photons, the calculated neutron doses were 18.6 µSv and 0.6 µSv for lead and steel, respectively. The neutron dose delivered to the patient can be reduced to negligible levels by including a 10 cm thick sheet of BPE or 22 cm thick sheet of concrete. Conclusion: When bunker shielding is designed with a primary barrier including a metal sheet inside the wall for a high energy machine, proper neutron shielding should be constructed to avoid undesirable extra dose.« less
Covariance Matrix Evaluations for Independent Mass Fission Yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, N., E-mail: nicholas.terranova@unibo.it; Serot, O.; Archier, P.
2015-01-15
Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yieldsmore » variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.« less
Method and apparatus for detecting neutrons
Perkins, R.W.; Reeder, P.L.; Wogman, N.A.; Warner, R.A.; Brite, D.W.; Richey, W.C.; Goldman, D.S.
1997-10-21
The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO{sub 2} with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. 5 figs.
Method and apparatus for detecting neutrons
Perkins, Richard W.; Reeder, Paul L.; Wogman, Ned A.; Warner, Ray A.; Brite, Daniel W.; Richey, Wayne C.; Goldman, Don S.
1997-01-01
The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO.sub.2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Liu, Y; Nie, L
2015-06-15
Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30more » ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.« less
Negative ion-driven associated particle neutron generator
Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...
2015-10-09
We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
Triple tracks in CR-39 as the result of Pd-D Co-deposition: evidence of energetic neutrons.
Mosier-Boss, Pamela A; Szpak, Stanislaw; Gordon, Frank E; Forsley, Lawrence P G
2009-01-01
Since the announcement by Fleischmann and Pons that the excess enthalpy generated in the negatively polarized Pd-D-D(2)O system was attributable to nuclear reactions occurring inside the Pd lattice, there have been reports of other manifestations of nuclear activities in this system. In particular, there have been reports of tritium and helium-4 production; emission of energetic particles, gamma or X-rays, and neutrons; as well as the transmutation of elements. In this communication, the results of Pd-D co-deposition experiments conducted with the cathode in close contact with CR-39, a solid-state nuclear etch detector, are reported. Among the solitary tracks due to individual energetic particles, triple tracks are observed. Microscopic examination of the bottom of the triple track pit shows that the three lobes of the track are splitting apart from a center point. The presence of three alpha-particle tracks outgoing from a single point is diagnostic of the (12)C(n,n')3alpha carbon breakup reaction and suggests that DT reactions that produce > or = 9.6 MeV neutrons are occurring inside the Pd lattice. To our knowledge, this is the first report of the production of energetic (> or = 9.6 MeV) neutrons in the Pd-D system.
Study of muon-induced neutron production using accelerator muon beam at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.
2015-08-17
Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experimentmore » for more comprehensive study of muon-induced neutron production.« less
Jiang, C Y; Tong, X; Brown, D R; Glavic, A; Ambaye, H; Goyette, R; Hoffmann, M; Parizzi, A A; Robertson, L; Lauter, V
2017-02-01
Modern spallation neutron sources generate high intensity neutron beams with a broad wavelength band applied to exploring new nano- and meso-scale materials from a few atomic monolayers thick to complicated prototype device-like systems with multiple buried interfaces. The availability of high performance neutron polarizers and analyzers in neutron scattering experiments is vital for understanding magnetism in systems with novel functionalities. We report the development of a new generation of the in situ polarized 3 He neutron polarization analyzer for the Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. With a new optical layout and laser system, the 3 He polarization reached and maintained 84% as compared to 76% in the first-generation system. The polarization improvement allows achieving the transmission function varying from 50% to 15% for the polarized neutron beam with the wavelength band of 2-9 Angstroms. This achievement brings a new class of experiments with optimal performance in sensitivity to very small magnetic moments in nano systems and opens up the horizon for its applications.
Neutron generation from Z-pinches
NASA Astrophysics Data System (ADS)
Vikhrev, V. V.; Korolev, V. D.
2007-05-01
Recent advances in both experimental and theoretical studies on neutron generation in various Z-pinch facilities are reviewed. The main methods for enhancing neutron emission from the Z-pinch plasma are described, and the problems of igniting a thermonuclear burn wave in this plasma are discussed.
Research on stellarator-mirror fission-fusion hybrid
NASA Astrophysics Data System (ADS)
Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.
2014-09-01
The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.
On the Ultimate Fate of Massive Neutron Stars in an Ever Expanding Universe
NASA Astrophysics Data System (ADS)
Hujeirat, Ahmad A.
2018-01-01
General theory of relativity predicts the central densities of massive neutron stars (-MANs) to be much larger than the nuclear density. In the absence of energy production, the lifetimes of MANs should be shorter that their low-mass counterparts. Yet neither black holes nor neutron stars, whose masses are between two and five solar masses have ever been observed. Also, it is not clear what happened to the old MANs that were created through the collapse of first generation of stars shortly after the Big Bang. In this article, it is argued that MANs must end as completely invisible objects, whose cores are made of incompressible quark-gluon-superfluids and that their effective masses must have doubled through the injection of dark energy by a universal scalar field at the background of supranuclear density. It turns out that recent glitch observations of pulsars and young neutron star systems and data from particle collisions at the LHC and RHIC are in line with the presen! t scenario.
Next generation gamma-ray Cherenkov detectors for the National Ignition Facility.
Herrmann, H W; Kim, Y H; McEvoy, A M; Zylstra, A B; Young, C S; Lopez, F E; Griego, J R; Fatherley, V E; Oertel, J A; Stoeffl, W; Khater, H; Hernandez, J E; Carpenter, A; Rubery, M S; Horsfield, C J; Gales, S; Leatherland, A; Hilsabeck, T; Kilkenny, J D; Malone, R M; Hares, J D; Milnes, J; Shmayda, W T; Stoeckl, C; Batha, S H
2016-11-01
The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ∼100 ps state-of-the-art photomultiplier tubes (PMT) to ∼10 ps Pulse Dilation PMT technology currently under development.
Design specification for the European Spallation Source neutron generating target element
NASA Astrophysics Data System (ADS)
Aguilar, A.; Sordo, F.; Mora, T.; Mena, L.; Mancisidor, M.; Aguilar, J.; Bakedano, G.; Herranz, I.; Luna, P.; Magan, M.; Vivanco, R.; Jimenez-Villacorta, F.; Sjogreen, K.; Oden, U.; Perlado, J. M.; Martinez, J. L.; Bermejo, F. J.
2017-06-01
The paper addresses some of the most relevant issues concerning the thermal hydraulics and radiation damage of the neutron generation target to be built at the European Spallation Source as recently approved after a critical design review. The target unit consists of a set of Tungsten blocks placed inside a wheel of 2.5 m diameter which rotates at some 0.5 Hz in order to distribute the heat generated from incoming protons which reach the target in the radial direction. The spallation material elements are composed of an array of Tungsten pieces which rest on a rotating steel support (the cassette) and are distributed in a cross-flow configuration. The thermal, mechanical and radiation effects resulting from the impact of a 2 GeV proton pulse are analysed in detail as well as an evaluation of the inventory of spallation products. The current design is found to conform to specifications and found to be robust enough to deal with several accident scenarios.
AMPX: a modular code system for generating coupled multigroup neutron-gamma libraries from ENDF/B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Lucius, J.L.; Petrie, L.M.
1976-03-01
AMPX is a modular system for producing coupled multigroup neutron-gamma cross section sets. Basic neutron and gamma cross-section data for AMPX are obtained from ENDF/B libraries. Most commonly used operations required to generate and collapse multigroup cross-section sets are provided in the system. AMPX is flexibly dimensioned; neutron group structures, and gamma group structures, and expansion orders to represent anisotropic processes are all arbitrary and limited only by available computer core and budget. The basic processes provided will (1) generate multigroup neutron cross sections; (2) generate multigroup gamma cross sections; (3) generate gamma yields for gamma-producing neutron interactions; (4) combinemore » neutron cross sections, gamma cross sections, and gamma yields into final ''coupled sets''; (5) perform one-dimensional discrete ordinates transport or diffusion theory calculations for neutrons and gammas and, on option, collapse the cross sections to a broad-group structure, using the one-dimensional results as weighting functions; (6) plot cross sections, on option, to facilitate the ''evaluation'' of a particular multigroup set of data; (7) update and maintain multigroup cross section libraries in such a manner as to make it not only easy to combine new data with previously processed data but also to do it in a single pass on the computer; and (8) output multigroup cross sections in convenient formats for other codes. (auth)« less
NASA Astrophysics Data System (ADS)
Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo
2009-03-01
We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.
Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.
Chang, G S; Ambrosek, R G
2005-01-01
The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.
Material identification based upon energy-dependent attenuation of neutrons
Marleau, Peter
2015-10-06
Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.
Application of pixel-cell detector technology for Advanced Neutron Beam Monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, Daniel M.
2011-01-11
Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and instrumented a 64-pixel-cell detector to specifications for the Cold-Neutron Chopper Spectrometer and POWGEN instruments, (3) investigated the general characteristics of this technology, (4) studied pixel-cell configurations and arrived at an optimized modular design, and (5) evaluated fabrication costs of mass production for these configurations. The resulting technology will enable a complete line of pixel-cell-based neutron detectors to be commercially under available. ORDELA, Inc has a good track history of application of innovative technology into the marketplace. Our commercialization record reflects this. For additional information, please contact Daniel Kopp at ORDELA, Inc. at +1 (865) 483-8675 or check our website at www.ordela.com.« less
Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanami, T.; Hagiwara, M.; Iwase, H.
2008-02-01
The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energymore » range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target station in FNAL.« less
Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K
2017-09-01
Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is necessary. Finally, concepts are presented for modifying the generated neutron spectra to achieve particular targeted spectra, simulating Cf or workplace environments.
VizieR Online Data Catalog: Short GRBs with Fermi GBM and Swift BAT (Burns+, 2016)
NASA Astrophysics Data System (ADS)
Burns, E.; Connaughton, V.; Zhang, B.-B.; Lien, A.; Briggs, M. S.; Goldstein, A.; Pelassa, V.; Troja, E.
2018-01-01
Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. (4 data files).
Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.
Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O
2015-12-01
BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M
2009-02-21
In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2014-09-01
A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.
Los Alamos Using Neutrons to Stop Nuclear Smugglers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin
Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.
Los Alamos Using Neutrons to Stop Nuclear Smugglers
Favalli, Andrea; Swinhoe, Martyn; Roark, Kevin
2018-02-14
Los Alamos National Laboratory researchers have successfully demonstrated for the first time that laser-generated neutrons can be enlisted as a useful tool in the War on Terror. The international research team used the short-pulse laser at Los Alamos's TRIDENT facility to generate a neutron beam with novel characteristics that interrogated a closed container to confirm the presence and quantity of nuclear material inside. The successful experiment paves the way for creation of a table-top-sized or truck-mounted neutron generator that could be installed at strategic locations worldwide to thwart smugglers trafficking in nuclear materials.
Time dependent worldwide distribution of atmospheric neutrons and of their products. I, II, III.
NASA Technical Reports Server (NTRS)
Merker, M.; Light, E. S.; Verschell, H. J.; Mendell, R. B.; Korff, S. A.
1973-01-01
Review of the experimental results obtained in a series of measurements of the fast neutron cosmic ray spectrum by means of high-altitude balloons and aircraft. These results serve as a basis for checking a Monte Carlo calculation of the entire neutron distribution and its products. A calculation of neutron production and transport in the earth's atmosphere is then discussed for the purpose of providing a detailed description of the morphology of secondary neutron components. Finally, an analysis of neutron observations during solar particle events is presented. The Monte Carlo output is used to estimate the contribution of flare particles to fluctuations in the steady state neutron distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Sean; Dewan, Leslie; Massie, Mark
This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less
Imhoff, D.H.; Harker, W.H.
1963-12-01
Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)
NASA Astrophysics Data System (ADS)
Sabo-Napadensky, I.; Weiss-Babai, R.; Gayer, A.; Vartsky, D.; Bar, D.; Mor, I.; Chacham-Zada, R.; Cohen, M.; Tamim, N.
2012-06-01
One of the main problems in neutron imaging is the scattered radiation that accompanies the direct neutrons that reach the imaging detectors and affect the image quality. We have developed a dedicated collimator for 14.2 MeV fast neutrons. The collimator optimizes the amount of scattered radiation to primary neutrons that arrive at the imaging plane. We have used different materials within the collimator in order to lower the scattered radiation that arrives at the scanned object. The image quality and the signal to noise ratios that are measured show that a mixture of BORAX (Na2B4O7ṡ10H2O) and water in the experimental beam collimator give the best results. We have used GEANT4 to simulate the collimator performance, the simulations predict the optimized material looking on the ratios of the scattered to primary neutrons that contribute in the detector. We present our experimental setup, report the results of the experimental and related simulation studies with neutrons beam generated by a 14.2 MeV D-T neutron generator.
The EURITRACK project: development of a tagged neutron inspection system for cargo containers
NASA Astrophysics Data System (ADS)
Perot, Bertrand; Perret, Gregory; Mariani, Alain; Ma, Jean-Luc; Szabo, Jean-Louis; Mercier, Emmanuel; Sannie, Guillaume; Viesti, Giuseppe; Nebbia, Giancarlo; Pesente, Silvia; Lunardon, Marcello; Formisano, Paola; Moretto, Sandra; Fabris, Daniela; Zenoni, Aldo; Bonomi, Germano; Donzella, Antonietta; Fontana, Andrea; Boghen, Gaia; Valkovic, Vladivoj; Sudac, Darovin; Moszynski, Marek; Batsch, Tadeusz; Gierlik, Michal; Wolski, Dariusz; Klamra, Wlodzimierz; Isaksson, Patrick; Le Tourneur, Philippe; Lhuissier, Miguel; Colonna, Annamaria; Tintori, Carlo; Peerani, Paolo; Sequeira, Vitor; Salvato, Martino
2006-05-01
The EURopean Illicit TRAfficing Countermeasures Kit project is part of the 6th European Union Framework Program, and aims at developing a neutron inspection system for detecting threat materials (explosives, drugs, etc.) in cargo containers. Neutron interaction in the container produces specific gamma-rays used to determine the chemical composition of the inspected material. An associated particle sealed tube neutron generator is developed to allow precise location of the interaction point by direction and time-of-flight measurements of the neutrons tagged by alpha-particles. The EURITRACK project consists in developing: a transportable deuterium-tritium neutron generator including a position sensitive alpha detector (8×8 matrix of YAP:Ce crystals coupled to a multi-anode photomultiplier), fast neutron and gamma-ray detectors, front-end electronics to perform coincidence and spectroscopic measurements, and an integrated software which manages neutron generator and detectors positioning, data acquisition and analysis. Hardware components have been developed and tested by the consortium partners. Current status of this work and provisional performances of the system assessed by Monte Carlo calculations are presented.
Rapid response sensor for analyzing Special Nuclear Material
Mitra, S. S.; Doron, O.; Chen, A. X.; ...
2015-06-18
Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less
A Monte Carlo model for photoneutron generation by a medical LINAC
NASA Astrophysics Data System (ADS)
Sumini, M.; Isolan, L.; Cucchi, G.; Sghedoni, R.; Iori, M.
2017-11-01
For an optimal tuning of the radiation protection planning, a Monte Carlo model using the MCNPX code has been built, allowing an accurate estimate of the spectrometric and geometrical characteristics of photoneutrons generated by a Varian TrueBeam Stx© medical linear accelerator. We considered in our study a device working at the reference energy for clinical applications of 15 MV, stemmed from a Varian Clinac©2100 modeled starting from data collected thanks to several papers available in the literature. The model results were compared with neutron and photon dose measurements inside and outside the bunker hosting the accelerator obtaining a complete dose map. Normalized neutron fluences were tallied in different positions at the patient plane and at different depths. A sensitivity analysis with respect to the flattening filter material were performed to enlighten aspects that could influence the photoneutron production.
Assessment of the 3H and 7Be generation in the IFMIF lithium loop
NASA Astrophysics Data System (ADS)
Simakov, S. P.; Fischer, U.; von Möllendorff, U.
2004-08-01
A complete evaluation of the 7Be and tritium inventory induced in the IFMIF lithium loop by deuterons and neutrons was performed on the basis of 3D Monte Carlo calculations with the M CDeLicious code and evaluated d-Li and n-Li cross-section data. The associated reaction cross-sections and thick lithium target yields were checked against available experimental data. The IFMIF calculations showed that the deuteron beam will produce 1.5 g of 7Be and 6 g of 3H per full power year in the lithium jet. The tritium generation in the whole lithium loop due to neutron induced reactions is at a rate of 1.5 g/fpy. The radio-active decay results in an equilibrium concentration 0.3 mg of 7Be and 50 mg of 3H per 1 kg of circulating lithium if no radioactive products are removed from the loop.
Development of deterministic transport methods for low energy neutrons for shielding in space
NASA Technical Reports Server (NTRS)
Ganapol, Barry
1993-01-01
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in aluminum. As an external verification, the results from MGSLAB and MGSEMI were compared to ANISN/PC, a routinely used neutron transport code, showing excellent agreement. In an application to an aluminum shield, the FN method seems to generate reasonable results.
Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirenti, Cecilia; Gold, Roman; Miller, M. Coleman
As gravitational wave instrumentation becomes more sensitive, it is interesting to speculate about subtle effects that could be analyzed using upcoming generations of detectors. One such effect that has great potential for revealing the properties of very dense matter is fluid oscillations of neutron stars. These have been found in numerical simulations of the hypermassive remnants of double neutron star mergers and of highly eccentric neutron star orbits. Here we focus on the latter and sketch out some ideas for the production, gravitational-wave detection, and analysis of neutron star oscillations. These events will be rare (perhaps up to several tensmore » per year could be detected using third-generation detectors such as the Einstein Telescope or the Cosmic Explorer), but they would have unique diagnostic power for the analysis of cold, catalyzed, dense matter. Furthermore, these systems are unusual in that analysis of the tidally excited f-modes of the stars could yield simultaneous measurements of their masses, moments of inertia, and tidal Love numbers, using the frequency, damping time, and amplitude of the modes. They would thus present a nearly unique opportunity to test the I-Love-Q relation observationally. The analysis of such events will require significant further work in nuclear physics and general relativistic nonlinear mode coupling, and thus we discuss further directions that will need to be pursued. For example, we note that for nearly grazing encounters, numerical simulations show that the energy delivered to the f-modes may be up to two orders of magnitude greater than predicted in the linear theory.« less
Optimization of Shielding- Collimator Parameters for ING-27 Neutron Generator Using MCNP5
NASA Astrophysics Data System (ADS)
Hegazy, Aya Hamdy; Skoy, V. R.; Hossny, K.
2018-04-01
Neutron generators are now used in various fields. They produce only fast neutrons; D-D neutron generator produces 2.45 MeV neutrons and D-T produces 14.1 MeV neutrons. In order to optimize shielding-collimator parameters to achieve higher neutron flux at the investigated sample (The signal) with lower neutron and gamma rays flux at the area of the detectors, design iterations are widely used. This work was applied to ROMASHA setup, TANGRA project, FLNP, Joint Institute for Nuclear Research. The studied parameters were; (1) shielding-collimator material, (2) Distance between the shielding-collimator assembly first plate and center of the neutron beam, and (3) thickness of collimator sheets. MCNP5 was used to simulate ROMASHA setup after it was validated on the experimental results of irradiation of Carbon-12 sample for one hour to detect its 4.44 MeV characteristic gamma line. The ratio between the signal and total neutron flux that enters each detector was calculated and plotted, concluding that the optimum shielding-collimator assembly is Tungsten of 5 cm thickness for each plate, and a distance of 2.3 cm. Also, the ratio between the signal and total gamma rays flux was calculated and plotted for each detector, leading to the previous conclusion but the distance was 1 cm.
Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA
Stoeckl, C.; Boni, R.; Ehrne, F.; ...
2016-05-10
A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less
Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeckl, C.; Boni, R.; Ehrne, F.
A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium–tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera inmore » a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less
Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeckl, C.; Boni, R.; Ehrne, F.
A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less
Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization
NASA Astrophysics Data System (ADS)
Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon
2017-07-01
This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.
Mook, H.A. Jr.
1984-01-01
In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.
Mook, Jr., Herbert A.
1985-01-01
In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.
Measuring the Density of Different Materials by Using the Collimated Fast Neutron Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudac, D.; Nad, K.; Orlic, Z.
It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the targetmore » position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays. Although the associated alpha particle technique/associate particle imaging (API) was used to discriminate the neutrons from the gamma rays, it is believed that the same results would be obtained by using the pulse shape discrimination method. In that way API technique can be avoided and the neutron generator which produces much higher beam intensity than 10{sup 8} n/s can be used. (authors)« less
Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M
2014-01-01
In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903
USDA-ARS?s Scientific Manuscript database
Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...
A secular technetium-molybdenum generator
NASA Astrophysics Data System (ADS)
Araujo, Wagner L.; Campos, Tarcisio P. R.
2015-05-01
A compact secular molybdenium generator is subject of this paper. This generator represents a nuclear system that comprises a hydrogen-isotopes fusor, moderator, reflector and shield. Deuterium fusion reactions in a tritiated or deuterated target provide the neutron source. A moderation fluid slowdown the neutron energy which increases 98Mo(n,γ)99Mo capture reaction rates. Neutron reflection minimizes the neutron escape and the radiation shield encloses the device. The neutron yield calculation along with electromagnetic and nuclear simulations were addressed. Results revealed the accelerator equipotential surfaces ranging from -30 to 150 kV, the ion trajectories and the energy beam profile define a deuteron current of 1 A with energy of 180 keV at the target, the spatial distribution of the neutron flux, and the 99Mo and 99mTc activities in function of transmuter operation time. The kinetics of the 99mTc correlated to its precursor activity demonstrates a secular equilibrium providing 2 Ci in a operational time of 150 h. As conclusion, the investigated nuclear and electromagnetic features have demonstrated that such generator shall have a notable potential for feeding the 99mTc clinical application.
TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons
NASA Astrophysics Data System (ADS)
Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.
The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.
DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Chichester; E. H. Seabury; J. M. Zabriskie
2009-06-01
A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault.more » The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.« less
Classifying threats with a 14-MeV neutron interrogation system.
Strellis, Dan; Gozani, Tsahi
2005-01-01
SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.
Altered [99mTc]Tc-MDP biodistribution from neutron activation sourced 99Mo.
Demeter, Sandor; Szweda, Roman; Patterson, Judy; Grigoryan, Marine
2018-01-01
Given potential worldwide shortages of fission sourced 99 Mo/ 99m Tc medical isotopes there is increasing interest in alternate production strategies. A neutron activated 99 Mo source was utilized in a single center phase III open label study comparing 99m Tc, as 99m Tc Methylene Diphosphonate ([ 99m Tc]Tc-MDP), obtained from solvent generator separation of neutron activation produced 99 Mo, versus nuclear reactor produced 99 Mo (e.g., fission sourced) in oncology patients for which an [ 99m Tc]Tc-MDP bone scan would normally have been indicated. Despite the investigational [ 99m Tc]Tc-MDP passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.
Nested Focusing Optics for Compact Neutron Sources
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neutron Capture Energies for Flux Normalization and Approximate Model for Gamma-Smeared Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog; Clarno, Kevin T.; Liu, Yuxuan
The Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) neutronics simulator MPACT has used a single recoverable fission energy for each fissionable nuclide assuming that all recoverable energies come only from fission reaction, for which capture energy is merged with fission energy. This approach includes approximations and requires improvement by separating capture energy from the merged effective recoverable energy. This report documents the procedure to generate recoverable neutron capture energies and the development of a program called CapKappa to generate capture energies. Recoverable neutron capture energies have been generated by using CapKappa withmore » the evaluated nuclear data file (ENDF)/B-7.0 and 7.1 cross section and decay libraries. The new capture kappas were compared to the current SCALE-6.2 and the CASMO-5 capture kappas. These new capture kappas have been incorporated into the Simplified AMPX 51- and 252-group libraries, and they can be used for the AMPX multigroup (MG) libraries and the SCALE code package. The CASL VERA neutronics simulator MPACT does not include a gamma transport capability, which limits it to explicitly estimating local energy deposition from fission, neutron, and gamma slowing down and capture. Since the mean free path of gamma rays is typically much longer than that for the neutron, and the total gamma energy is about 10% to the total energy, the gamma-smeared power distribution is different from the fission power distribution. Explicit local energy deposition through neutron and gamma transport calculation is significantly important in multi-physics whole core simulation with thermal-hydraulic feedback. Therefore, the gamma transport capability should be incorporated into the CASL neutronics simulator MPACT. However, this task will be timeconsuming in developing the neutron induced gamma production and gamma cross section libraries. This study is to investigate an approximate model to estimate gammasmeared power distribution without performing any gamma transport calculation. A simple approximate gamma smearing model has been investigated based on the facts that pinwise gamma energy depositions are almost flat over a fuel assembly, and assembly-wise gamma energy deposition is proportional to kappa-fission energy deposition. The approximate gamma smearing model works well for single assembly cases, and can partly improve the gamma smeared power distribution for the whole core model. Although the power distributions can be improved by the approximate gamma smearing model, still there is an issue to explicitly obtain local energy deposition. A new simple approach or gamma transport/diffusion capability may need to be incorporated into MPACT to estimate local energy deposition for more robust multi-physics simulation.« less
Commercial Superconducting Electron Linac for Radioisotope Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, Terry Lee; Boulware, Charles H.; Hollister, Jerry L.
2015-08-13
The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research andmore » development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.« less
Personnel electronic neutron dosimeter
Falk, R.B.; Tyree, W.H.
1982-03-03
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
Personnel electronic neutron dosimeter
Falk, Roger B.; Tyree, William H.
1984-12-18
A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.
NASA Astrophysics Data System (ADS)
Indi Sriprisan, Sirikul; Townsend, Lawrence; Cucinotta, Francis A.; Miller, Thomas M.
Purpose: An analytical knockout-ablation-coalescence model capable of making quantitative predictions of the neutron spectra from high-energy nucleon-nucleus and nucleus-nucleus collisions is being developed for use in space radiation protection studies. The FORTRAN computer code that implements this model is called UBERNSPEC. The knockout or abrasion stage of the model is based on Glauber multiple scattering theory. The ablation part of the model uses the classical evaporation model of Weisskopf-Ewing. In earlier work, the knockout-ablation model has been extended to incorporate important coalescence effects into the formalism. Recently, alpha coalescence has been incorporated, and the ability to predict light ion spectra with the coalescence model added. The earlier versions were limited to nuclei with mass numbers less than 69. In this work, the UBERNSPEC code has been extended to make predictions of secondary neutrons and light ion production from the interactions of heavy charged particles with higher mass numbers (as large as 238). The predictions are compared with published measurements of neutron spectra and light ion energy for a variety of collision pairs. Furthermore, the predicted spectra from this work are compared with the predictions from the recently-developed heavy ion event generator incorporated in the Monte Carlo radiation transport code HETC-HEDS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Ditmire; Zweiback, J; Cowan, T E
In conclusion, we have observed the production of 2.45 MeV deuterium fusion neutrons when a gas of deuterium clusters is irradiated with a 120 mJ, 35 fs laser pulse. When the focal position is optimized, we have observed as many as 10{sup 4} neutrons per laser shot. This yield is consistent with some simple estimates for the fusion yield. We also find that the fusion yield is a sensitive function of the deuterium cluster size in the target jet, a consequence of the Coulomb explosion origin of the fast deuterons. We also find that the neutron pulse duration is fast,more » with a characteristic burn time of well under 1 ns. This experiment may represent a means for producing a compact, table-top source of short pulse fusion neutrons for applications. Furthermore, we have measured hard x-ray yield from femtosecond laser interactions with both solid and micron scale droplet targets. Strong hard x-ray production is observed from both targets. However, the inferred electron temperature is somewhat higher in the case of irradiation of the droplets. These data are consistent with PIC simulations. This finding indicates that quite unique hot electron dynamics occur during the irradiation of wavelength scale particles by an intense laser field and likely warrants further study.« less
Direct bonded HOPG - Analyzer support without background source
NASA Astrophysics Data System (ADS)
Groitl, Felix; Kitaura, Hidetoshi; Nishiki, Naomi; Rønnow, Henrik M.
2018-04-01
A new production process allows a direct bonding of HOPG crystals on Si wafers. This new method facilitates the production of analyzer crystals with support structure without the use of additional, background inducing fixation material, e.g. glue, wax and screws. This new method is especially interesting for the upcoming generation of CAMEA-type multiplexing spectrometers. These instruments allow for a drastic performance increase due to the increased angular coverage and multiple energy analysis. Exploiting the transparency of multiple HOPG for cold neutrons, a consecutive arrangement of HOPG analyzer crystals per Q-channel can be achieved. This implies that neutrons travel through up to 10 arrays of analyzer crystals before reaching the analyzer corresponding to their energy. Hence, a careful choice of the fixation method for the analyzer crystals in regards to transparency and background is necessary. Here, we present first results on the diffraction and mechanical performance of direct bonded analyzer crystals.
NASA Astrophysics Data System (ADS)
Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.
2018-04-01
Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.
BINP accelerator based epithermal neutron source.
Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S
2011-12-01
Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.
High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Waltz, Cory; HFNG Collaboration
2015-04-01
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.
Intense, directed neutron beams from a laser-driven neutron source at PHELIX
NASA Astrophysics Data System (ADS)
Kleinschmidt, A.; Bagnoud, V.; Deppert, O.; Favalli, A.; Frydrych, S.; Hornung, J.; Jahn, D.; Schaumann, G.; Tebartz, A.; Wagner, F.; Wurden, G.; Zielbauer, B.; Roth, M.
2018-05-01
Laser-driven neutrons are generated by the conversion of laser-accelerated ions via nuclear reactions inside a converter material. We present results from an experimental campaign at the PHELIX laser at GSI in Darmstadt where protons and deuterons were accelerated from thin deuterated plastic foils with thicknesses in the μm and sub-μm range. The neutrons were generated inside a sandwich-type beryllium converter, leading to reproducible neutron numbers around 1011 neutrons per shot. The angular distribution was measured with a high level of detail using up to 30 bubble detectors simultaneously. It shows a laser forward directed component of up to 1.42 × 1010 neutrons per steradian, corresponding to a dose of 43 mrem scaled to a distance of 1 m from the converter.
Neutron-capture Nucleosynthesis in the First Stars
NASA Astrophysics Data System (ADS)
Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher
2014-04-01
Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and The McDonald Observatory of The University of Texas at Austin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Markus; Vogel, Sven C.; Bourke, Mark Andrew M.
A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron sourcemore » the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >10 10 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for characterization of irradiated fuels. Potential operational advantages compared to a spallation neutron source include reduced shielding complexity, reduced energy requirements, and a production target free of fission products. Contributors to this report include experts in laser-driven neutron production (Roth, Fernandez), laser design (Haefner, Siders, Leemans), laser target design (Glenzer), spallation target/moderator design (Mocko), neutron instrumentation and characterization applications (Vogel, Bourke).« less
NASA Astrophysics Data System (ADS)
Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.
Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.
Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A
2014-12-01
An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles A. Wemple; Joshua J. Cogliati
2005-04-01
A univel geometry, neutral particle Monte Carlo transport code, written entirely in the Java programming language, is under development for medical radiotherapy applications. The code uses ENDF-VI based continuous energy cross section data in a flexible XML format. Full neutron-photon coupling, including detailed photon production and photonuclear reactions, is included. Charged particle equilibrium is assumed within the patient model so that detailed transport of electrons produced by photon interactions may be neglected. External beam and internal distributed source descriptions for mixed neutron-photon sources are allowed. Flux and dose tallies are performed on a univel basis. A four-tap, shift-register-sequence random numbermore » generator is used. Initial verification and validation testing of the basic neutron transport routines is underway. The searchlight problem was chosen as a suitable first application because of the simplicity of the physical model. Results show excellent agreement with analytic solutions. Computation times for similar numbers of histories are comparable to other neutron MC codes written in C and FORTRAN.« less
Use of SRIM and Garfield with Geant4 for the characterization of a hybrid 10B/3He neutron detector
NASA Astrophysics Data System (ADS)
van der Ende, B. M.; Rand, E. T.; Erlandson, A.; Li, L.
2018-06-01
This paper describes a method for more complete neutron detector characterization using Geant4's Monte Carlo methods for characterizing overall detector response rate and Garfield interfaced with SRIM for the simulation of the detector's raw pulses, as applied to a hybrid 10B/3He detector. The Geant4 models characterizing the detector's interaction with a 252Cf point source and parallel beams of mono-energetic neutrons (assuming ISO 8529 reference energy values) compare and agree well with calibrated 252Cf measurements to within 6.4%. Validated Geant4 model outputs serve as input to Garfield+SRIM calculations to provide meaningful pulse height spectra. Modifications to Garfield for this work were necessary to account for simultaneous tracking of electrons resulting from proton and triton reaction products from a single 3He neutron capture event, and it was further necessary to interface Garfield with the energy loss, range, and straggling calculations provided by SRIM. Individual raw pulses generated by Garfield+SRIM are also observed to agree well with experimentally measured raw pulses from the detector.
Active detection of shielded SNM with 60-keV neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmann, C; Dietrich, D; Hall, J
2008-07-08
Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimentalmore » results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.« less
Next Generation Gamma-Ray Cherenkov Detectors for the National Ignition Facility
Herrmann, Hans W.; Kim, Yong Ho; McEvoy, Aaron Matthew; ...
2016-10-19
The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3more » will inform the design of a heavily-shielded “Super” GCD to be located as close as 20 cm from TCC. In conclusion, it will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current ~100 ps state-of-the-art photomultiplier tubes (PMT) to ~10 ps Pulse Dilation PMT technology currently under development.« less
NASA Astrophysics Data System (ADS)
Tuve, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Knott, C. N.; Insolia, A.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1999-01-01
Neutron production, in coincidence with fragments emitted in the 40Ca+H reaction at Elab=357A and 565A MeV, has been measured using a 3-module version of the multifunctional neutron spectrometer MUFFINS. The mean neutron multiplicities for neutrons detected in the angular range covered by MUFFINS (0°-3.2°) have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a preequilibrium emission of prompt neutrons in superposition to a ``slower'' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in inclusive rapidity distributions. The energy dependence of the inclusive neutron production cross sections, measured in a previous work, is here interpreted as due to the stronger neutron focusing in the forward direction at the higher energy. Comparison with a BNV+phase space coalescence model is discussed.
A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koivunoro, H.; Lou, T.P.; Leung, K. N.
2003-04-02
Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based onmore » D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, R.P., E-mail: rpkelley@ufl.edu; Ray, H.; Jordan, K.A.
An empirical investigation of the scintillation mechanism in a pressurized {sup 4}He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a {sup 252}Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactive isotopes. This pulse shape expression was fitted to the measured neutron pulse shape using a least-squares optimization algorithm, allowing an empiricalmore » analysis of the mechanism of scintillation inside the {sup 4}He detector. A further understanding of this mechanism in the {sup 4}He detector will advance the use of this system as a neutron spectrometer. For {sup 252}Cf neutrons, the triplet and singlet time constants were found to be 970 ns and 686 ns, respectively. For neutrons from the (d,d) generator, the time constants were found to be 884 ns and 636 ns. Differences were noted in the magnitude of these parameters compared to previously published data, however the general relationships were noted to be the same and checked with expected trends from theory. Of the excited helium states produced from a {sup 252}Cf neutron interaction, 76% were found to be born as triplet states, similar to the result from the neutron generator of 71%. The two sources yielded similar pulse shapes despite having very different neutron energy spectra, validating the robustness of the fits across various neutron energies.« less
Simulation of neutron production using MCNPX+MCUNED.
Erhard, M; Sauvan, P; Nolte, R
2014-10-01
In standard MCNPX, the production of neutrons by ions cannot be modelled efficiently. The MCUNED patch applied to MCNPX 2.7.0 allows to model the production of neutrons by light ions down to energies of a few kiloelectron volts. This is crucial for the simulation of neutron reference fields. The influence of target properties, such as the diffusion of reactive isotopes into the target backing or the effect of energy and angular straggling, can be studied efficiently. In this work, MCNPX/MCUNED calculations are compared with results obtained with the TARGET code for simulating neutron production. Furthermore, MCUNED incorporates more effective variance reduction techniques and a coincidence counting tally. This allows the simulation of a TCAP experiment being developed at PTB. In this experiment, 14.7-MeV neutrons will be produced by the reaction T(d,n)(4)He. The neutron fluence is determined by counting alpha particles, independently of the reaction cross section. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J.; Valkovic, V.
2016-06-01
It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays.
Neutrons from thunderstorms at low atmospheric altitudes and related doses at aircraft
NASA Astrophysics Data System (ADS)
Drozdov, A.; Grigoriev, A.
2013-02-01
We conduct a simulation of thunderstorm neutron flashes at the lowest atmospheric altitudes below 10 km. The neutron generation mechanism is based on the nowadays conventional idea of possibility for photonuclear reactions to proceed on the atmospheric components owing to TGF photons. Our modeling includes generation of neutrons from TGF and their further propagation with account of interaction with background nuclei. Using the calculation results we investigate the neutron flux properties with respect to problem of their registration, and predict the radiation environment caused by thunderstorm neutrons on altitudes of civil airflights. It is shown, that good conditions for the neutron flashes observation are provided from the 3 km altitude, and, possibly, the neutrons can be registered at ground level. We also found that thunderstorm-neutron-related effective dose can reach the value of 0.5 mSv in the region close to the TGF source if it is located at an altitude of 10 km.
Progress in tagged neutron beams for cargo inspections
NASA Astrophysics Data System (ADS)
Pesente, S.; Nebbia, G.; Viesti, G.; Daniele, F.; Fabris, D.; Lunardon, M.; Moretto, S.; Nad, K.; Sudac, D.; Valkovic, V.
2007-08-01
The use of neutron beams produced via the D + T reaction and tagged by the associated particle technique has been recently applied to cargo container inspections. In the EURITRACK project, a portable sealed-tube neutron generator has been designed and built to deliver 14 MeV neutron beams tagged by a matrix of 64 YAP:Ce alpha-particle detectors read by a multi-anode HAMAMATSU H8500 Photomultiplier Tube. The performances of this alpha-particle detector have been determined as a function of the count rate at the Rudjer Boskovic Institute, Zagreb (Croatia). Moreover, tests of the final detector operated inside the sealed-tube neutron generator are fully satisfactory.
NASA Technical Reports Server (NTRS)
Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.
1979-01-01
Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.
Abrasion-ablation model for neutron production in heavy ion reactions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.
1995-01-01
In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.
NASA Astrophysics Data System (ADS)
Barzakh, A. E.; Lhersonneau, G.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Volkov, Yu. M.; Alyakrinskiy, O.; Barbui, M.; Stroe, L.; Tecchio, L. B.
2011-05-01
The diffusion-effusion model has been used to analyse the release and yields of Fr and Cs isotopes from uranium carbide targets of very different thicknesses (6.3 and 148 g/cm2) bombarded by a 1 GeV proton beam. Release curves of several isotopes of the same element and production efficiency versus decay half-life are well fitted with the same set of parameters. Comparison of efficiencies for neutron-rich and neutron-deficient Cs isotopes enables separation of the contributions from the primary ( p + 238U) and secondary (n + 238U) reactions to the production of neutron-rich Cs isotopes. A rather simple calculation of the neutron contribution describes these data fairly well. The FLUKA code describes the primary and secondary-reaction contributions to the Cs isotopes production efficiencies for different targets quite well.
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2013-12-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium-deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium-tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23µSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject.
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2014-01-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium–deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium–tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23μSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject. PMID:24165395
Plasma driven neutron/gamma generator
Leung, Ka-Ngo; Antolak, Arlyn
2015-03-03
An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.
NASA Technical Reports Server (NTRS)
Maurer, R. H.; Kinnison, J. D.; Roth, D. R.; Miller, J.; Heilbronn, L.; Zeitlin, C.; Singleterry, R.
2001-01-01
Astronauts who spend months and years traveling long distances in spacecraft and working on other planets will be subjected to high energy radiation of galactic and solar origin without the protection of the Earth's thick (one writer has called it buff) atmosphere and magnetic field. The lack of natural protection will allow high energy cosmic ray particles and solar protons to crash directly into relatively thin spacecraft walls and planetary atmospheres producing energetic secondary particles in these collisions. A substantial fraction of these secondaries will be neutrons that carry no electric charge and, consequently, are difficult to detect. At sea level on Earth the remaining neutrons are the result of many generations (approximately 10) of collisions, have very low energies (scientists call them thermal neutrons), and do not penetrate deeply into the human body. They do contribute to the natural background radiation seen by humans on Earth, but much of the dose is only at the surface or skin of the body. In the International Space Station or on the surface of Mars, the secondary neutrons will be the result of only one or two generations of interaction due to the thinner (about a factor of 20 compared to the Earth's atmosphere) walls or atmosphere, have considerably more energy and penetrate deeply into the human body. In addition, neutrons are substantially moderated by hydrogenous material such as water. A significant fraction of the water exists in the astronaut's body. Therefore, the neutron can not only penetrate more deeply into the body, but also be stopped there and deposit all or most of its radiation dose in organs such as the liver, spleen, kidney, etc. We hypothesize that the risk of serious cancers will be increased for the exposed humans. The portable, real time neutron spectrometer being developed by our team will monitor the environment inside spacecraft structures and on planetary surfaces. Activities supported by this grant will evaluate the neutron environment inside several candidate spacecraft materials at accelerator facilities. These experiments will enable engineers to choose the structure materials that minimize the production of secondary neutrons. With the information that the neutron energy spectrometer produces, scientists and doctors will be able to assess the increased risk of cancer and develop countermeasures. The instrument itself will include an alarm system to warn astronauts when high radiation fluxes are occurring so that they can seek shelter immediately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, Robert Dennis; Cleveland, Steven L.
The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible usingmore » gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.« less
Comparison of actinide production in traveling wave and pressurized water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, A.G.; Smith, T.A.; Deinert, M.R.
The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactormore » cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)« less
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. A.; Lee, C. H.; Hill, R. N.
2016-12-15
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron absorption reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence. With the GAMSOR capability, users can take any valid steady state DIF3D calculation and compute the power distribution due to neutron and gamma heating. The MC2-3 code is the preferable companion code to use for generating neutron and gamma cross section data, but the GAMSOR code can accept cross section data from other sources. To further this aspect, an additional utility code was created which demonstrates how to merge the neutron and gamma cross section data together to carry out a simultaneous solve of the two systems.« less
FY17 Status Report on NEAMS Neutronics Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C. H.; Jung, Y. S.; Smith, M. A.
2017-09-30
Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less
Small Accelerators for the Next Generation of BNCT Irradiation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T.; Tanaka, K.; Bengua, G.
2005-01-15
The neutron irradiation system for boron neutron capture therapy (BNCT) using compact accelerators installed at hospitals was mainly investigated for the usage of direct neutrons from near-threshold {sup 7}Li(p,n){sup 7}Be, and moderated neutrons from 2.5 MeV {sup 7}Li(p,n){sup 7}Be reactions and other reactions. This kind of system can supply the medical doctors and patients with convenience to carry out BNCT in hospitals. The accelerator system would be regarded as the next-generation of BNCT in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury
2013-09-01
Idaho National Laboratory’s (INL’s) Portable Isotopic Neutron Spectroscopy System (PINS) non-intrusively identifies the chemical fill of munitions and sealed containers. The PINS-3X variant of the system is used to identify explosives and uses a deuterium-tritium (DT) electronic neutron generator (ENG) as the neutron source. Use of the system, including possession and use of the neutron generator and shipment of the system components requires compliance with a number of regulations. This report outlines some of these requirements as well as some of the requirements in using the system outside of INL.
Measurement of Continuous-Energy Neutron-Incident Neutron-Production Cross Section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigyo, Nobuhiro; Kunieda, Satoshi; Watanabe, Takehito
Continuous energy neutron-incident neutron-production double differential cross sections were measured at the Weapons Neutron Research (WNR) facility of the Los Alamos Neutron Science Center. The energy of emitted neutrons was derived from the energy deposition in a detector. The incident-neutron energy was obtained by the time-of-flight method between the spallation target of WNR and the emitted neutron detector. Two types of detectors were adopted to measure the wide energy range of neutrons. The liquid organic scintillators covered up to 100 MeV. The recoil proton detectors that constitute the recoil proton radiator and phoswich type NaI (Tl) scintillators were used formore » neutrons above several tens of MeV. Iron and lead were used as sample materials. The experimental data were compared with the evaluated nuclear data, the results of GNASH, JQMD, and PHITS codes.« less
High power neutron production targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wender, S.
1996-06-01
The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.
A long-lived tritiated titanium target for fast neutron production
NASA Astrophysics Data System (ADS)
Hughey, B. J.
1995-03-01
Diagnostic techniques using neutron beams have a broad spectrum of applications in advanced manufacturing, explosives and contraband detection, medicine, and industry. The most suitable nuclear reaction for producing large fluxes of fast neutrons at low bombarding energy is the H(d,n)-3 He-4, i.e. d-T, reaction. The lifetime of currently used d-T neutron generators is limited by the gradual evolution of tritium gas from the target during bombardment. This paper is a report of work in progress to develop a method for inhibiting the replacement of tritium with beam deuterons and thus preventing the evolution of tritium gas leading to reduced neutron yield. It is anticipated that tritiated target lifetime can be increased by at least an order of magnitude by using a range-thin tritiated titanium target mounted on a substrate with a high hydrogen diffusivity, such as niobium. Lifetime can be further enhanced by increasing the deuteron beam bombarding energy from the typical value of 200 keV to 600 keV. The results of experiments demonstrating the effect of hydrogen diffusion coefficient on concentration of implanted beam deuterons in candidate substrate materials (Cu, Pd, and Nb) are presented, and issues relevant to the fabrication of a tritiated titanium target on a niobium substrate are discussed.
Robertson, deceased, J. Craig; Rowland, Mark S.
1989-03-21
A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.
Application of nuclear analytical techniques using long-life sealed-tube neutron generators.
Bach, P; Cluzeau, S; Lambermont, C
1994-01-01
The new range of sealed-tube neutron generators developed by SODERN appears to be appropriate for the industrial environment. The main characteristics are the high emission stability during the very long lifetime of the tube, flexible pulsed mode capability, safety in operation with no radiation in "off" state, and the easy transportation of equipment. Some applications of the neutron generators, called GENIE, are considered: high-sensitivity measurement of transuranic elements in nuclear waste drums, bulk material analysis for process control, and determination of the airborne pollutants for environmental monitoring.
Microtron MT 25 as a source of neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kralik, M.; Solc, J.; Chvatil, D.
2012-08-15
The objective was to describe Microtron MT25 as a source of neutrons generated by bremsstrahlung induced photonuclear reactions in U and Pb targets. Bremsstrahlung photons were produced by electrons accelerated at energy 21.6 MeV. Spectral fluence of the generated neutrons was calculated with MCNPX code and then experimentally determined at two positions by means of a Bonner spheres spectrometer in which the detector of thermal neutrons was replaced by activation Mn tablets or track detectors CR-39 with a {sup 10}B radiator. The measured neutron spectral fluence and the calculated anisotropy served for the estimation of neutron yield from the targetsmore » and for the determination of ambient dose equivalent rate at the place of measurement. Microtron MT25 is intended as one of the sources for testing neutron sensitive devices which will be sent into the space.« less
Spallation neutron production and the current intra-nuclear cascade and transport codes
NASA Astrophysics Data System (ADS)
Filges, D.; Goldenbaum, F.; Enke, M.; Galin, J.; Herbach, C.-M.; Hilscher, D.; Jahnke, U.; Letourneau, A.; Lott, B.; Neef, R.-D.; Nünighoff, K.; Paul, N.; Péghaire, A.; Pienkowski, L.; Schaal, H.; Schröder, U.; Sterzenbach, G.; Tietze, A.; Tishchenko, V.; Toke, J.; Wohlmuther, M.
A recent renascent interest in energetic proton-induced production of neutrons originates largely from the inception of projects for target stations of intense spallation neutron sources, like the planned European Spallation Source (ESS), accelerator-driven nuclear reactors, nuclear waste transmutation, and also from the application for radioactive beams. In the framework of such a neutron production, of major importance is the search for ways for the most efficient conversion of the primary beam energy into neutron production. Although the issue has been quite successfully addressed experimentally by varying the incident proton energy for various target materials and by covering a huge collection of different target geometries --providing an exhaustive matrix of benchmark data-- the ultimate challenge is to increase the predictive power of transport codes currently on the market. To scrutinize these codes, calculations of reaction cross-sections, hadronic interaction lengths, average neutron multiplicities, neutron multiplicity and energy distributions, and the development of hadronic showers are confronted with recent experimental data of the NESSI collaboration. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross-sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target generally within less than 10% deviation, while production cross-section measurements for light charged particles on thin targets point out that appreciable distinctions exist within these models.
NASA Astrophysics Data System (ADS)
Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza
2017-02-01
In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.
Radiocarbon Production by Thunderstorms
NASA Astrophysics Data System (ADS)
Babich, L. P.
2017-11-01
In view of the neutron flux enhancements observed in thunderstorms, a contribution of thunderstorm neutrons to atmospheric radiocarbon (isotope 614C) production is analyzed in connection with the archaeometry. Herein, estimates of neutron fluence per lightning electromagnetic pulse in regions with severe thunderstorm activity, at which a local rate of the 614C production is comparable to the observed rates, are shown to be consistent with the measured magnitudes of thunderstorm neutron fluence. At present, available observations of atmospheric neutron and parent gamma ray flashes correlated with thunderstorms do not allow making final conclusions about thunderstorm contributions to 614C production. For this, numerous studies of high-energy phenomena in thunderstorms are required, especially in the tropical belt where the thunderstorm activity is especially severe and where the 614C production by galactic cosmic rays is almost independent of the solar activity disturbing the Earth's magnetic field shielding the Earth from cosmic rays.
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Reactor-Produced Medical Radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A
2011-01-01
The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chaptermore » is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.« less
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...
2018-04-09
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Next Generation Fast Neutron Detector for Space Exploration (Mini-FND)
NASA Astrophysics Data System (ADS)
Hassler, D. M.; Ehresmann, B.
2018-02-01
SwRI has developed a miniature Fast Neutron Detector (mini-FND), for use in the Deep Space Gateway, to characterize the neutron albedo radiation. Mini-FND will provide coverage of the biologically relevant neutrons at energies of 500 keV and greater.
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
A pulsed neutron generator for in vivo body composition studies
NASA Astrophysics Data System (ADS)
Weinlein, J. H.; O'Neal, M. L.; Bacon, F. M.
1991-05-01
A neutron generator system utilizing two Zetatron neutron tubes has been designed and delivered to the U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University for use in clinical measurements of body carbon by neutron inelastic scattering. Each neutron tube is capable of delivering 10 3-10 4 14-MeV neutrons in a 7-μs pulse at repetition rates of 4 or 8 kHz, and can be operated independently as well as in a master-slave mode. The neutron tubes are gas filled with a mixture of deuterium and tritium; the target of the tube is operated at - 30 to - 60 kV dc and the ion source is operated with a 2.5-kV, 7-μs pulse. The tube gas pressure is monitored and controlled by measuring the total current in the high voltage circuit and feeding it back to the gas-reservoir drive circuit. Neutrons were measured with a plastic scintillator and photomultiplier tube.
Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging
Michalak, Barbara; Sommer, Heino; Mannes, David; Kaestner, Anders; Brezesinski, Torsten; Janek, Jürgen
2015-01-01
Gas generation as a result of electrolyte decomposition is one of the major issues of high-performance rechargeable batteries. Here, we report the direct observation of gassing in operating lithium-ion batteries using neutron imaging. This technique can be used to obtain qualitative as well as quantitative information by applying a new analysis approach. Special emphasis is placed on high voltage LiNi0.5Mn1.5O4/graphite pouch cells. Continuous gassing due to oxidation and reduction of electrolyte solvents is observed. To separate gas evolution reactions occurring on the anode from those associated with the cathode interface and to gain more insight into the gassing behavior of LiNi0.5Mn1.5O4/graphite cells, neutron experiments were also conducted systematically on other cathode/anode combinations, including LiFePO4/graphite, LiNi0.5Mn1.5O4/Li4Ti5O12 and LiFePO4/Li4Ti5O12. In addition, the data were supported by gas pressure measurements. The results suggest that metal dissolution in the electrolyte and decomposition products resulting from the high potentials adversely affect the gas generation, particularly in the first charge cycle (i.e., during graphite solid-electrolyte interface layer formation). PMID:26496823
A neutron track etch detector for electron linear accelerators in radiotherapy
Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip
2010-01-01
Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893
The accelerator neutron source for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.
2016-11-01
The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.
MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements
NASA Astrophysics Data System (ADS)
Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.
2016-07-01
Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different therapeutic beams at CNAO in Pavia (protons, 12C ions and possibly 4He and 16O ions).
Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; ...
2016-05-26
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less
Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less
Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material
NASA Technical Reports Server (NTRS)
Poindexter, A. M.
1967-01-01
Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.
Intense fusion neutron sources
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-04-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator
Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.
1984-01-01
A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.
NASA Astrophysics Data System (ADS)
Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Yeamans, C. B.; Rinderknecht, H. G.; Sayre, D. B.; Grim, G.; Baker, K.; Casey, D. T.; Dewald, E.; Goyon, C.; Jarrott, L. C.; Khan, S.; Lepape, S.; Ma, T.; Pickworth, L.; Shah, R.; Kline, J. L.; Perry, T.; Zylstra, A.; Yi, S. A.
2017-10-01
In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T (generated by the primary DD reaction branches) can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons, respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence ratio (CR), and an electron temperature (Te) . This technique has been used on a myriad of deuterium filled capsule implosion experiments on the NIF using the neutron time of flight (nTOF) diagnostics to measure the yield of secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the yield of secondary D3He protons. This work is supported in part by the U.S. DoE and LLNL.
Bang, W; Barbui, M; Bonasera, A; Quevedo, H J; Dyer, G; Bernstein, A C; Hagel, K; Schmidt, K; Gaul, E; Donovan, M E; Consoli, F; De Angelis, R; Andreoli, P; Barbarino, M; Kimura, S; Mazzocco, M; Natowitz, J B; Ditmire, T
2013-09-01
We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.
DD fusion neutron production at UW-Madison using IEC devices
NASA Astrophysics Data System (ADS)
Fancher, Aaron; Michalak, Matt; Kulcinski, Gerald; Santarius, John; Bonomo, Richard
2017-10-01
An inertial electrostatic confinement (IEC) device using spherical, gridded electrodes at high voltage accelerates deuterium ions, allowing for neutrons to be produced within the device from DD fusion reactions. The effects of the device cathode voltage (30-170 kV), current (30-100 mA), and pressure (0.15-1.25 mTorr) on the neutron production rate have been measured. New high voltage capabilities have resulted in the achievement of a steady state neutron production rate of 3.3x108 n/s at 175 kV, 100 mA, and 1.0 mTorr of deuterium. Applications of IEC devices include the production of DD neutrons to detect chemical explosives and special nuclear materials using active interrogation methods. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-AR1095 and the Grainger Foundation.
Perspectives for online analysis of raw material by pulsed neutron irradiation
NASA Astrophysics Data System (ADS)
Bach, Pierre; Le Tourneur, P.; Poumarede, B.
1997-02-01
On-line analysis by pulsed neutron irradiation is an example of an advanced technology application of nuclear techniques, concerning real problems in the cement, mineral and coal industries. The most significant of these nuclear techniques is their capability of continuous measurement without contact and without sampling, which can lead to improved control of processes and resultant large financial savings. Compared to Californium neutron sources, the use of electrical pulsed neutron generators allows to obtain a higher signal/noise ratio for a more sensitive measurement, and allows to overcome a number of safety problems concerning transportation, installation and maintenance. An experiment related to a possible new on-line raw material analyzer is described, using a pulsed neutron generator. The key factors contributing to an accurate measurement are related to a suitable generator, to a high count rate gamma ray spectroscopy electronics, and to computational tools. Calculation and results for the optimization of the neutron irradiation time diagram are reported. One of the operational characteristics of such an equipment is related to neutron flux available: it is possible to adjust it to the requested accuracy, i.e. for a high accuracy during a few hours/day and for a lower accuracy the rest of the time. This feature allows to operate the neutron tube during a longer time, and then to reduce the cost of analysis.
XPOSE: the Exxon Nuclear revised LEOPARD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skogen, F.B.
1975-04-01
Main differences between XPOSE and LEOPARD codes used to generate fast and thermal neutron spectra and cross sections are presented. Models used for fast and thermal spectrum calculations as well as the depletion calculations considering U-238 chain, U-235 chain, xenon and samarium, fission products and boron-10 are described. A detailed description of the input required to run XPOSE and a description of the output are included. (FS)
Determining Light Decay Curves in a Plastic Scintillator using Cosmic Ray Muons
NASA Astrophysics Data System (ADS)
Wakwella, Praveen; Mandanas, Sarah; Wilson, John; Visca, Hannah; Padalino, Stephen; Sangster, T. Craig; Regan, Sean P.
2017-10-01
Plastic scintillators are used in ICF research to measure neutron energies via their time of flight (nToF). The energy resolution and sensitivity of an nToF system is directly correlated with the scintillation decay time of the plastic. To decrease the decay time, some scintillators are quenched with oxygen. Consequently, they become less efficient at producing light. As time passes, oxygen defuses out of the scintillator this in turn increases light production and the decay time. Mono-energetic calibration neutrons produced at accelerator facilities can be used to monitor the decreased oxygen content, however this is a time consuming process and requires that the scintillators be removed from the ICF facilities on a regular basis. Here, a possible method for cross calibrating accelerator neutrons with cosmic ray muons is presented. This method characterizes the scintillator with accelerator-generated neutrons and then cross calibrates them with cosmic ray muons. Once the scintillators are redeployed at the ICF facility the oxygen level can be regularly monitored using muons in situ. Funded in part by the United States Department of Energy through a Grant from the Laboratory for Laser Energetics.
Modern alchemy: Fred Hoyle and element building by neutron capture
NASA Astrophysics Data System (ADS)
Burbidge, E. Margaret
Fred Hoyle's fundamental work on building the chemical elements by nuclear processes in stars at various stages in their lives began with the building of elements around iron in the very dense hot interiors of stars. Later, in the paper by Burbidge, Burbidge, Fowler and Hoyle, we four showed that Hoyle's "equilibrium process" is one of eight processes required to make all of the isotopes of all the elements detected in the Sun and stars. Neutron capture reactions, which Fred had not considered in his epochal 1946 paper, but for which experimental data were just becoming available in 1957, are very important, in addition to the energy-generating reactions involving hydrogen, helium, carbon, nitrogen and oxygen, for building all of the elements. They are now providing clues to the late stages of stellar evolution and the earliest history of our Galaxy. I describe here our earliest observational work on neutron capture processes in evolved stars, some new work on stars showing the results of the neutron capture reactions, and data relating to processes ending in the production of lead, and I discuss where this fits into the history of stars in our own Galaxy.
FIRST-PRINCIPLES CALCULATIONS OF INTRINSIC DEFECTS AND Mg TRANSMUTANTS IN 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.
2013-09-25
Silicon carbide (SiC) possesses many desirable attributes for applications in high-temperature and neutron radiation environments. These attributes include excellent dimensional and thermodynamic stability, low activation, high strength, and high thermal conductivity. Therefore, SiC based materials draw broad attention as structural materials for the first wall (FW) and blanket in fusion power plants. Under the severe high-energy neutron environment of D-T fusion systems, SiC suffers significant transmutation resulting in both gaseous and metallic transmutants. Recent calculations by Sawan, et al. [2] predict that at a fast neutron dose of ~100 dpa, there will be about 0.5 at% Mg generated in SiCmore » through nuclear transmutation. Other transmutation products, including 0.15 at% Al, 0.2 at% Be and 2.2 at% He, also emerge. Formation and migration energies of point defects in 3C-SiC have been widely investigated using density functional theory (DFT). However, the properties of defects associated with transmutants are currently not well understood. Fundamental understanding of where the transmutation products go and how they affect microstructure evolution of SiC composites will help to predict property evolution and performance of SiC-based materials in fusion reactors.« less
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy
2015-01-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy
2015-10-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.
Combined neutron and x-ray imaging at the National Ignition Facility (invited)
Danly, C. R.; Christensen, K.; Fatherley, Valerie E.; ...
2016-10-11
X-ray and neutrons are commonly used to image Inertial Confinement Fusion implosions, providing key diagnostic information on the fuel assembly of burning DT fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occur from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreasedmore » neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a Combined Neutron X-ray Imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line-of-sight. Here, this system is described, and initial results are presented along with prospects for definitive coregistration of the images.« less
Combined neutron and x-ray imaging at the National Ignition Facility (invited).
Danly, C R; Christensen, K; Fatherley, V E; Fittinghoff, D N; Grim, G P; Hibbard, R; Izumi, N; Jedlovec, D; Merrill, F E; Schmidt, D W; Simpson, R A; Skulina, K; Volegov, P L; Wilde, C H
2016-11-01
X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images.
Determination of spallation neutron flux through spectral adjustment techniques
Mosby, Michelle A.; Engle, Jonathan Ward; Jackman, Kevin Richard; ...
2016-05-30
The Los Alamos Isotope Production Facility (IPF) creates medical isotopes using a proton beam impinged on a target stack. Spallation neutrons are created in the interaction of the beam with target. The use of these spallation neutrons to produce additional radionuclides has been proposed in this paper. However, the energy distribution and magnitude of the flux is not well understood. Finally, a modified SAND-II spectral adjustment routine has been used with radioactivation foils to determine the differential neutron fluence for these spallation neutrons during a standard IPF production run.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Papadias, Dionissios D.
2015-01-01
The Transient Reactor Test Facility (TREAT) is a graphite-reflected, graphitemoderated, and air-cooled reactor fueled with 93.1% enriched UO2 particles dispersed in graphite, with a carbon-to-235U ratio of ~10000:1. TREAT was used to simulate accident conditions by subjecting fuel test samples placed at the center of the core to high energy transient pulses. The transient pulse production is based on the core’s selflimiting nature due to the negative reactivity feedback provided by the fuel graphite as the core temperature rises. The analysis of the conversion of TREAT to low enriched uranium (LEU) is currently underway. This paper presents the analytical methodsmore » used to calculate the transient performance of TREAT in terms of power pulse production and resulting peak core temperatures. The validation of the HEU neutronics TREAT model, the calculation of the temperature distribution and the temperature reactivity feedback as well as the number of fissions generated inside fuel test samples are discussed.« less
Design of a liquid membrane target for high repetition rate neutron generation
NASA Astrophysics Data System (ADS)
Poole, Patrick; Andereck, C. David; Storm, Mike; Schumacher, Douglass
2013-10-01
Ultra-bright, pulsed, spatially-small sources of energetic neutrons have applications in radiography and non-destructive remote sensing. Neutrons can be generated by a process wherein ions accelerated from a laser-irradiated primary target subsequently bombard a converter material, causing neutron-producing nuclear reactions, such as 7Li(d,n)8Be. Deuterons from this process are suppressed by contamination that builds up on the rear of the solid primary target. To eliminate this issue we propose a self-replenishing liquid membrane target consisting of heavy water and deuterated surfactant, formed in-vacuum within a moveable wire frame. In addition to removing issues associated with solid target positioning and collateral damage, this apparatus provides flow rate and target thickness control, and allows for the high repetition rates required to generate desired neutron fluxes with a portable laser-based system. The apparatus design will be presented, as well as a novel interferometric method that measures the membrane thickness using tightly-focused light. This work was performed with support from DARPA.
Cosmic ray neutron background reduction using localized coincidence veto neutron counting
Menlove, Howard O.; Bourret, Steven C.; Krick, Merlyn S.
2002-01-01
This invention relates to both the apparatus and method for increasing the sensitivity of measuring the amount of radioactive material in waste by reducing the interference caused by cosmic ray generated neutrons. The apparatus includes: (a) a plurality of neutron detectors, each of the detectors including means for generating a pulse in response to the detection of a neutron; and (b) means, coupled to each of the neutrons detectors, for counting only some of the pulses from each of the detectors, whether cosmic ray or fission generated. The means for counting includes a means that, after counting one of the pulses, vetos the counting of additional pulses for a prescribed period of time. The prescribed period of time is between 50 and 200 .mu.s. In the preferred embodiment the prescribed period of time is 128 .mu.s. The veto means can be an electronic circuit which includes a leading edge pulse generator which passes a pulse but blocks any subsequent pulse for a period of between 50 and 200 .mu.s. Alternately, the veto means is a software program which includes means for tagging each of the pulses from each of the detectors for both time and position, means for counting one of the pulses from a particular position, and means for rejecting those of the pulses which originate from the particular position and in a time interval on the order of the neutron die-away time in polyethylene or other shield material. The neutron detectors are grouped in pods, preferably at least 10. The apparatus also includes means for vetoing the counting of coincidence pulses from all of the detectors included in each of the pods which are adjacent to the pod which includes the detector which produced the pulse which was counted.
Production of radionuclide molybdenum 99 in a distributed and in situ fashion
Gentile, Charles A.; Cohen, Adam B.; Ascione, George
2016-04-19
A method and apparatus for producing Mo-99 from Mo-100 for the use of the produced Mo-99 in a Tc-99m generator without the use of uranium is presented. Both the method and apparatus employ high energy gamma rays for the transformation of Mo-100 to Mo-99. The high energy gamma rays are produced by exposing a metal target to a moderated neutron output of between 6 MeV and 14 MeV. The resulting Mo-99 spontaneously decays into Tc-99m and can therefore be used in a Tc-99m generator.
Scintillating Fiber Technology for a High Neutron Spectrometer
NASA Technical Reports Server (NTRS)
Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John
2014-01-01
Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.
SU-E-T-195: Commissioning the Neutron Production of a Varian TrueBeam Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irazola, L; Brualla, L; Rosello, J
2015-06-15
Purpose: The purpose of this work is the characterization of a new Varian TrueBeam™ facility in terms of neutron production, in order to estimate neutron equivalent dose in organs during radiotherapy treatments. Methods: The existing methodology [1] was used with the reference SRAMnd detector, calibrated in terms of thermal neutron fluence at the reference field operated by PTB (Physikalisch-Technische-Bundesanstalt) at the GeNF (Geesthacht-Neutron-Facility) with the GKSS reactor FRG-1 [2]. Thermal neutron fluence for the 5 available possibilities was evaluated: 15 MV and 10&6 MV with and without Flattening Filter (FF and FFF, respectively). Irradiation conditions are as described in [3].more » In addition, three different collimator-MLC configurations were studied for 15 MV: (a) collimator of 10×10 cm{sup 2} and MLC fully retracted (reference), (b) field sizes of 20×20 cm{sup 2} and 10×10 cm{sup 2} for collimator and MLC respectively, and (c) collimator and MLC aperture of 10×10 cm{sup 2}. Results: Thermal fluence rate at the “reference point” [3], as a consequence of the neutron production, obtained for (a) conformation in 15 MV is (1.45±0.11) x10{sup 4} n•cm{sup 2}/MU. Configurations (b) and (c) gave fluences of 96.6% and 97.8% of the reference (a). Neutron production decreases up to 8.6% and 5.7% for the 10 MV FF and FFF beams, respectively. Finally, it decreases up to 2.8% and 0.1% for the 6 MV FF and FFF modes, respectively. Conclusion: This work evaluates thermal neutron production of Varian TrueBeam™ system for organ equivalent dose estimation. The small difference in collimator-MLC configuration shows the universality of the methodology [3]. A decrease in this production is shown when decreasing energy from 15 to 10 MV and an almost negligible production was found for 6 MV. Moreover, a lower neutron contribution is observed for the FFF modes.[1]Phys Med Biol,2012;57:6167–6191.[2]Radiat Meas,2010;45:1513–1517.[3]Med Phys,2015;42:276–281.« less
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.; Isolde Collaboration
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high- Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC 2/graphite and ThO 2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
Radioactive ion beams produced by neutron-induced fission at ISOLDE
NASA Astrophysics Data System (ADS)
Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.
2003-05-01
The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N-Particle Transport Code, Version 4C, LA-13709-M] libraries, of the neutron flux from the converters interacting with the actinide targets.
Secondary electron ion source neutron generator
Brainard, John P.; McCollister, Daryl R.
1998-01-01
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof
Adams, Robert; Zboray, Robert; Prasser, Horst-Michael
2016-01-01
Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion of the capabilities of the system and its outlook. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simpson, R; Cutler, T E; Danly, C R; Espy, M A; Goglio, J H; Hunter, J F; Madden, A C; Mayo, D R; Merrill, F E; Nelson, R O; Swift, A L; Wilde, C H; Zocco, T G
2016-11-01
The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.
The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improvemore » upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.« less
NASA Astrophysics Data System (ADS)
Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.
2016-11-01
The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.
NASA Technical Reports Server (NTRS)
Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration
A novel design of beam shaping assembly to use D-T neutron generator for BNCT.
Kasesaz, Yaser; Karimi, Marjan
2016-12-01
In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurements of soil carbon by neutron-gamma analysis in static and scanning modes
USDA-ARS?s Scientific Manuscript database
The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detecto...
Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers
NASA Astrophysics Data System (ADS)
Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.
2017-12-01
Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.
Laser-based fast-neutron spectroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus
2017-05-01
Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.
Development of a pMOSFET sensor with a Gd converter for low energy neutron dosimetry.
Lee, N H; Kim, S H; Youk, G U; Park, I J; Kim, Y M
2004-01-01
A pMOSFET having a 10 microm thick Gadolinium (Gd) layer has been invented as a slow neutron sensor. When slow neutrons are incident to the Gd layer, conversion electrons, which generate electron-hole pairs in the SiO2 layer of the pMOSFET, are generated by a neutron capture process. The holes are easily trapped in the oxide and act as positive-charge centres in the oxide. Due to the induced charges, the threshold turn-on voltage of the pMOSFET is changed. The developed sensors were tested at a neutron beam port of the HANARO research reactor and a 60Co irradiation facility to investigate slow neutron response and gamma ray contamination, respectively. The resultant voltage change was proportional to the accumulated neutron dose and it was very sensitive to slow neutrons. Moreover, ionising radiation contamination was negligible. It can also be used in a mixed radiation field by subtracting the voltage change of a pMOSFET without Gd from that of the Gd-pMOSFET.
NASA Astrophysics Data System (ADS)
Tennfors, Einar
2013-02-01
The present article is a critical comment on Widom and Larsens speculations concerning low-energy nuclear reactions (LENR) based on spontaneous collective motion of protons in a room temperature metallic hydride lattice producing oscillating electric fields that renormalize the electron self-energy, adding significantly to the effective electron mass and enabling production of low-energy neutrons. The frequency and mean proton displacement estimated on the basis of neutron scattering from protons in palladium and applied to the Widom and Larsens model of the proton oscillations yield an electron mass enhancement less than one percent, far below the threshold for the proposed neutron production and even farther below the mass enhancement obtained by Widom and Larsen assuming a high charge density. Neutrons are not stopped by the Coulomb barrier, but the energy required for the neutron production is not low.
On the energy spectrum of cosmogenic neutrons
NASA Astrophysics Data System (ADS)
Malgin, A. S.
2017-11-01
The processes of the generation of cosmogenic neutrons (cg-neutrons) underground are considered. The neutrons produced by cosmic-ray muons in their interactions with matter are called cosmogenic. Deep-inelastic π A-collisions of pions in muon-induced hadronic showers are mainly their source at energies above 30 MeV. The characteristics of the energy spectrum for the generation of cg-neutrons have been determined by invoking the additive quark model of deep-inelastic soft processes and the mechanism for the interactions of high-energy nucleons in a nucleus. The three-component shape of the spectrum is explained, and the energy of the "knee" in the spectrum has been found to depend on the mass number A. The peculiarities of deep-inelastic π A-scattering lead to the conclusion that the spectrum of cg-neutrons steepens sharply at energies above 1 GeV. The calculated quantitative characteristics of the spectrum are compared with those obtained in measurements.
NASA Astrophysics Data System (ADS)
Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.
2017-02-01
A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.
The use of hydrogenous material for sensitizing pMOS dosimeters to neutrons
NASA Astrophysics Data System (ADS)
Kronenberg, S.; Brucker, G. J.
1995-02-01
This paper is concerned with the application of pMOS dosimeters to measuring neutron dose by the use of hydrogenous materials to convert incident neutron flux to recoil protons. These latter charged particles can generate electron-hole pairs, and consequently, charge trapping takes place at the MOS interfaces, and threshold voltage shifts are produced. The use of pMOS devices for measuring gamma doses has been described extensively in the literature. Clearly, if measurable voltage shifts could be generated in a MOS device by neutrons, then a radiation detection instrument containing two MOS devices, back to back, with hydrogenous shields, and one MOS dosimeter without a converter would allow 4/spl pi/ measurements of neutron and gamma doses to be made. The results obtained in this study indicate that paraffin or polyethylene will convert incident, 2.82 MeV neutrons to recoil protons, which subsequently cause measurable voltage shifts.
A compact DD neutron generator-based NAA system to quantify manganese (Mn) in bone in vivo.
Liu, Yingzi; Byrne, Patrick; Wang, Haoyu; Koltick, David; Zheng, Wei; Nie, Linda H
2014-09-01
A deuterium-deuterium (DD) neutron generator-based neutron activation analysis (NAA) system has been developed to quantify metals, including manganese (Mn), in bone in vivo. A DD neutron generator with a flux of up to 3*10(9) neutrons s(-1) was set up in our lab for this purpose. Optimized settings, including moderator, reflector, and shielding material and thickness, were selected based on Monte Carlo (MC) simulations conducted in our previous work. Hand phantoms doped with different Mn concentrations were irradiated using the optimized DD neutron generator irradiation system. The Mn characteristic γ-rays were collected by an HPGe detector system with 100% relative efficiency. The calibration line of the Mn/calcium (Ca) count ratio versus bone Mn concentration was obtained (R(2) = 0.99) using the hand phantoms. The detection limit (DL) was calculated to be about 1.05 μg g(-1) dry bone (ppm) with an equivalent dose of 85.4 mSv to the hand. The DL can be reduced to 0.74 ppm by using two 100% HPGe detectors. The whole body effective dose delivered to the irradiated subject was calculated to be about 17 μSv. Given the average normal bone Mn concentration of 1 ppm in the general population, this system is promising for in vivo bone Mn quantification in humans.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.
2013-08-01
Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Layered semiconductor neutron detectors
Mao, Samuel S; Perry, Dale L
2013-12-10
Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.
On the Possibility of Creating a Point-Like Neutron Source
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Razin, S. V.; Shaposhnikov, R. A.; Lapin, R. L.; Bokhanov, A. F.; Kazakov, M. Yu.
2018-03-01
We consider the possibility of creating a compact high-power neutron generator with a small emitting area (of the order of 100 μm) and a neutron yield of 1010s-1 on the basis of a deuterium-deuterium fusion reaction (or 1012 s-1 on the basis of a deuterium-tritium fusion reaction). The fusion takes place under bombardment of a deuterium- (or tritium-) saturated target by a high-current (about 100 mA) focused deuterium ion beam with an energy of 100 keV. The ion beam with total current at a level of hundreds of milliamperes and small emittance (less than 0.1 π·mm·mrad), which is crucial for sharp focusing, can be generated by a quasi-gas-dynamic ion source of a new generation created on the basis of a discharge in an open magnetic trap sustained by high-power electromagnetic radiation of the millimeter wavelength range under electron cyclotron resonance conditions. Simulations of the focusing system for the experimentally obtained ion beam show the possibility to create a deuterium ion beam with a transverse size of 200 μm on the neutron-forming target. Prospects for using such a neutron source for neutron tomography are discussed.
NASA Astrophysics Data System (ADS)
Fermi, Enrico
The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the structure is given. In particular, a mathematical formula is given for the neutron density distribution at various points throughout a pile with a parallelepiped geometry. This expression is discussed in details, with regard to its possible approximate form and the corrections needed when the approximations are not valid. From the discussion, a definition of the so-called "critical size" emerges, that is the size for which the total surface to volume ratio of the entire pile is such that the rate of neutron loss is reduced to a value less than the rate of neutron production; the expressions of the critical radius for various geometrical structures are given. Finally, it is reported in detail a measurement of the neutron density in a pile built with a rectangular geometrical arrangement of uranium boxes in graphite blocks. As a result of this "invention", it was proposed a structure with an actual K factor of 1.054: this structure was built and operated at various rates of power production in the form of heat. For the present Patent, there is no "reference" published article, although some material appears also in [Anderson (1942b)] of March 26, 1942. More in general, some results are as well present in several papers of Volume II of the Fermi Collected Papers [Fermi (1962)] but many details (including several figures) are reported only in the present Patent.
Monte Carlo simulation of random, porous (foam) structures for neutron detection
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Fronk, Ryan G.; Shultis, J. Kenneth; Roberts, Jeremy A.; Edwards, Nathaniel S.; Stevenson, Sarah R.; Tiner, Christopher N.; McGregor, Douglas S.
2017-01-01
Porous media incorporating highly neutron-sensitive materials are of interest for use in the development of neutron detectors. Previous studies have shown experimentally the feasibility of 6LiF-saturated, multi-layered detectors; however, the random geometry of porous materials has limited the effectiveness of simulation efforts. The results of scatterless neutron transport and subsequent charged reaction product ion energy deposition are reported here using a novel Monte Carlo method and compared to results obtained by MCNP6. This new Dynamic Path Generation (DPG) Monte Carlo method was developed in order to overcome the complexities of modeling a random porous geometry in MCNP6. The DPG method is then applied to determine the optimal coating thickness for 10B4C-coated reticulated vitreous-carbon (RVC) foams. The optimal coating thickness for 4.1275 cm-thick 10B4C-coated reticulated vitreous carbon foams with porosities of 5, 10, 20, 30, 45, and 80 pores per inch (PPI) were determined for ionizing gas pressures of 1.0 and 2.8 atm. A simulated, maximum, intrinsic thermal-neutron detection efficiency of 62.8±0.25% was predicted for an 80 PPI RVC foam with a 0.2 μm thick coating of 10B4C, for a lower level discriminator setting of 75 keV and an argon pressure of 2.8 atm.
Optimization of the Army’s Fast Neutron Moderator for Radiography
2013-02-26
thermal neutron flux from a commercially available high-energy D-T neutron generator. This paper details the steps taken to increase exposure rates...experiment was to have increased thermal neutron flux rates and shorter exposure times than previously achieved. Additional technology developments...This reduced the thermalizing efficiency of the moderator at higher energies, resulted in a large loss of neutron flux at the image plane, and
Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.
Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C
2017-04-01
Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.
NASA Astrophysics Data System (ADS)
Rigamonti, D.; Giacomelli, L.; Gorini, G.; Nocente, M.; Rebai, M.; Tardocchi, M.; Angelone, M.; Batistoni, P.; Cufar, A.; Ghani, Z.; Jednorog, S.; Klix, A.; Laszynska, E.; Loreti, S.; Pillon, M.; Popovichev, S.; Roberts, N.; Thomas, D.; Contributors, JET
2018-04-01
An accurate calibration of the JET neutron diagnostics with a 14 MeV neutron generator was performed in the first half of 2017 in order to provide a reliable measurement of the fusion power during the next JET deuterium-tritium (DT) campaign. In order to meet the target accuracy, the chosen neutron generator has been fully characterized at the Neutron Metrology Laboratory of the National Physical Laboratory (NPL), Teddington, United Kingdom. The present paper describes the measurements of the neutron energy spectra obtained using a high-resolution single-crystal diamond detector (SCD). The measurements, together with a new neutron source routine ‘ad hoc’ developed for the MCNP code, allowed the complex features of the neutron energy spectra resulting from the mixed D/T beam ions interacting with the T/D target nuclei to be resolved for the first time. From the spectral analysis a quantitative estimation of the beam ion composition has been made. The unprecedented intrinsic energy resolution (<1% full width at half maximum (FWHM) at 14 MeV) of diamond detectors opens up new prospects for diagnosing DT plasmas, such as, for instance, the possibility to study non-classical slowing down of the beam ions by neutron spectroscopy on ITER.
Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments
NASA Astrophysics Data System (ADS)
Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton
2014-09-01
The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.
Isotopic composition and neutronics of the Okelobondo natural reactor
NASA Astrophysics Data System (ADS)
Palenik, Christopher Samuel
The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve geochemical models of the solubility-limiting phase. A study of the competing effects of radiation damage and annealing in a U-bearing crystal of zircon shows that low temperature annealing in actinide-bearing phases is significant in the annealing of radiation damage.
Solid-State Neutron Detector Device
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)
2017-01-01
The structure and methods of fabricating a high efficiency compact solid state neutron detector based on III-Nitride semiconductor structures deposited on a substrate. The operation of the device is based on absorption of neutrons, which results in generation of free carriers.
Photonuclear activation of pure isotopic mediums.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohman, Mark A.; Lukosi, Eric Daniel
2010-06-01
This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to themore » material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.« less
Accelerator based epithermal neutron source
NASA Astrophysics Data System (ADS)
Taskaev, S. Yu.
2015-11-01
We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.
NASA Astrophysics Data System (ADS)
Klir, D.; Krasa, J.; Cikhardt, J.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Rezac, K.; Sila, O.; Skala, J.; Ullschmied, J.; Velyhan, A.
2015-09-01
Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 108 at the peak intensity of ≈3 × 1016 W/cm2. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the 2H(d,n)3He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 109 with the peak neutron fluence of (2.5 ± 0.5) × 108 n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 1014 deuterons in the 0.5-2.0 MeV energy range. The neutron yield of 2 × 109 at the laser energy of 600 J implied the production efficiency of 3 × 106 n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 1016 W/cm2. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.
Neutron production at 0° from the 40Ca+H reaction at Elab=357A and 565A MeV
NASA Astrophysics Data System (ADS)
Tuvè, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Reito, S.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1997-08-01
Neutrons produced in the 40Ca+H reaction at Elab=357A and 565A MeV have been detected using a three-module version of the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range around the beam in the forward direction (0°-3.2°). Semi-inclusive neutron production cross sections, at the two energies, are reported together with neutron energy spectra, angular, rapidity, and transverse momentum distributions. Comparison with a Boltzmann-Nordheim-Vlasov approach + phase space coalescence model is discussed.
Background radiation measurements at high power research reactors
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration
2016-01-01
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.
Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor
NASA Astrophysics Data System (ADS)
Bess, John Darrell
A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.
Secondary electron ion source neutron generator
Brainard, J.P.; McCollister, D.R.
1998-04-28
A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.
Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.
2015-01-01
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118
Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J
2015-09-11
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.
A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less
NASA Astrophysics Data System (ADS)
Turkoglu, Danyal
Precise knowledge of prompt gamma-ray intensities following neutron capture is critical for elemental and isotopic analyses, homeland security, modeling nuclear reactors, etc. A recently-developed database of prompt gamma-ray production cross sections and nuclear structure information in the form of a decay scheme, called the Evaluated Gamma-ray Activation File (EGAF), is under revision. Statistical model calculations are useful for checking the consistency of the decay scheme, providing insight on its completeness and accuracy. Furthermore, these statistical model calculations are necessary to estimate the contribution of continuum gamma-rays, which cannot be experimentally resolved due to the high density of excited states in medium- and heavy-mass nuclei. Decay-scheme improvements in EGAF lead to improvements to other databases (Evaluated Nuclear Structure Data File, Reference Input Parameter Library) that are ultimately used in nuclear-reaction models to generate the Evaluated Nuclear Data File (ENDF). Gamma-ray transitions following neutron capture in 93Nb have been studied at the cold-neutron beam facility at the Budapest Research Reactor. Measurements have been performed using a coaxial HPGe detector with Compton suppression. Partial gamma-ray production capture cross sections at a neutron velocity of 2200 m/s have been deduced relative to that of the 255.9-keV transition after cold-neutron capture by 93Nb. With the measurement of a niobium chloride target, this partial cross section was internally standardized to the cross section for the 1951-keV transition after cold-neutron capture by 35Cl. The resulting (0.1377 +/- 0.0018) barn (b) partial cross section produced a calibration factor that was 23% lower than previously measured for the EGAF database. The thermal-neutron cross sections were deduced for the 93Nb(n,gamma ) 94mNb and 93Nb(n,gamma) 94gNb reactions by summing the experimentally-measured partial gamma-ray production cross sections associated with the ground-state transitions below the 396-keV level and combining that summation with the contribution to the ground state from the quasi-continuum above 396 keV, determined with Monte Carlo statistical model calculations using the DICEBOX computer code. These values, sigmam and sigma 0, were (0.83 +/- 0.05) b and (1.16 +/- 0.11) b, respectively, and found to be in agreement with literature values. Comparison of the modeled population and experimental depopulation of individual levels confirmed tentative spin assignments and suggested changes where imbalances existed.
NASA Astrophysics Data System (ADS)
Kehayias, Joseph J.; Ma, Ruimei; Zhuang, Hong; Moore, Robert; Dowling, Lisa
1995-03-01
Non-invasive in vivo elemental analysis is a technique used to assess human body composition which is indicative of nutritional status and health condition. The in vivo measurement of the body's major elements is used for a variety of medical studies requiring the determination of the body's compartments (protein, fat, water, bone). Whole body gamma-ray counters, consisting of Nal(Tl) crystal detectors in a shielded room, are used for measuring in vivo the body's Ca, Cl, Na and P by delayed neutron activation analysis. Thermal neutrons from a moderated 238Pu-Be source are used for the measurement of total body nitrogen (and thus protein) and chlorine at low radiation exposure (0.80 mSv). The resulting high energy prompt gamma-rays from nitrogen (10.83 MeV) and chlorine (6.11 MeV) are detected simultaneously with the irradiation. Body fat (the main energy store) and fat distribution (which relates to risk for cardiovascular disease) are measured by detecting C and O in vivo through fast neutron inelastic scattering. A small sealed D-T neutron generator is used for the pulsed (4 - 8 KHz) production of fast neutrons. Carbon and oxygen are detected by counting the 4.44 and 6.13 MeV gamma-rays resulting from the inelastic scattering of the fast neutrons from the 12C and 16O nuclei, respectively. One use of this method is the systematic study of the mechanisms driving the age-associated depletion of the metabolizing, oxygen-consuming cellular compartment of the body. The understanding of this catabolism may suggest ways to maintain lean tissue and thus to preserve quality of life for the very old.
Anomalous nuclear reactions in condensed matter: Recent results and open questions
NASA Astrophysics Data System (ADS)
Jones, S. E.; Palmer, E. P.; Czirr, J. B.; Decker, D. L.; Jensen, G. L.; Thorne, J. M.; Taylor, S. F.; Rafelski, J.
1990-06-01
We have observed clear signatures for neutron emission during deuteron infusion into metals, implying the occurrence of nuclear fusion in condensed matter near room temperature. The low-level nuclear phenomenon has been demonstrated in collaborative experiments at Brigham Young University, at the Gran Sasso laboratory in Italy, and at the Los Alamos National Laboratory. We have shown that neutron emission can be induced in metals using both electrochemical and variational temperature/pressure means to generate non-equilibrium conditions. Observed average neutron emission rates are approximately 0.04-0.4 no/ s. Current efforts focus on trying to understand and control the phenomenon. In particular, we wish to understand the correlation of neutron yields with parameters such as hydrogen/metal ion ratio, pressure (induced, for example, by electrical field or gas pressure or mechanical pressure), temperature variation, hydride phase changes, and surface conditions, e.g., a palladium coating on titanium. We want to know if fusion arises due to the close proximity of the deuterons in the lattice (piezonuclear fusion), or possibly from “microscopic hot fusion”, accompanying strong electric fields at propagating cracks in the hydride. The latter interpretation would imply neutron emission in bursts. Our experiments show clear evidence for emission of ˜102 neutrons in bursts lasting <128 μs, although random neutron-singles emissions were also observed. Experiments now underway to compare the d-d, and p-d, and d-t reaction rates will be important to a consistent description of the new phenomenon. Careful scrutiny of this effect could increase our understanding of heat, helium-3, and tritium production in the earth, other planets, and even the stars.
Trojan Horse Method for neutrons-induced reaction studies
NASA Astrophysics Data System (ADS)
Gulino, M.; Asfin Collaboration
2017-09-01
Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.
Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H
2017-02-01
Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5 n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13 Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13 Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3 cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to irradiate in reasonable time was 4.9 × 10 13 n/s. Results demonstrated that a DD-based BNCT system could be designed to produce neutron beams that have acceptable in-air and in-phantom characteristics. The parameter values were comparable to those of existing BNCT facilities. Continuing efforts are ongoing to improve the DD neutron yield. © 2016 American Association of Physicists in Medicine.
New sources and instrumentation for neutron science
NASA Astrophysics Data System (ADS)
Gil, Alina
2011-04-01
Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.
Coalescence Effects on Neutron Production in High Energy Nucleus-Nucleus Collisions
2001-08-01
25/Jun/2001 THESIS 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH- ENERGY NUCLEUS-NUCLEUS COLLISIONS 5b... Energy Nucleus-Nucleus Collisions." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial...School COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH ENERGY NUCLEUS-NUCLEUS COLLISIONS A Thesis Presented for the Master of Science Degree The
Designing of the 14 MeV neutron moderator for BNCT
NASA Astrophysics Data System (ADS)
Cheng, Dao-Wen; Lu, Jing-Bin; Yang, Dong; Liu, Yu-Min; Wang, Hui-Dong; Ma, Ke-Yan
2012-09-01
In boron neutron capture therapy (BNCT), the ratio of the fast neutron flux to the neutron flux in the tumor (RFNT) must be less than 3%. If a D-T neutron generator is used in BNCT, the 14 MeV neutron moderator must be optimized to reduce the RFNT. Based on the neutron moderation theory and the simulation results, tungsten, lead and diamond were used to moderate the 14 MeV neutrons. Satisfying RFNT of less than 3%, the maximum neutron flux in the tumor was achieved with a three-layer moderator comprised of a 3 cm thick tungsten layer, a 14 cm thick lead layer and a 21 cm thick diamond layer.
Survey of Neutron Generators for Active Interrogation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Calvin Elroy; Myers, William L.; Sundby, Gary M.
Some of these commercially available generators meet all of the requirements in Table 1, but there are other concerns. Most generators containing SF6 will be required to have the SF6 gas removed for shipping because of DOT regulations. However, Thermo Fisher has a DOT exemption. The P211 and B211 from Thermo Fisher meet the requirements listed in Table 1, but they are old designs and are no longer offered for sale. Also, they require 15 minutes or more of warmup before neutron output is available, and they lack a modern digital control. The nGen-300C from Starfire Industries is interesting becausemore » it is a portable system, but it uses the DD reaction for 2.5 MeV neutrons, which are not as penetrating as the 14 MeV neutrons from the DT reaction. The MP 320 from Thermo Fisher is another portable system, but the minimum pulse rate is 250 Hz, which is too fast for measurement of delayed neutrons and re-interrogation by delayed neutrons between pulses. The Genie 16 from Sodern (from France) probably meets the requirements, but the required power is probably too high for battery operation. The generators from Russia and China may be difficult to purchase, and service may not be available. The power required by some of these generators is low enough that batteries can be used. The portable units, nGen-300C and the MP320, could easily be operated with batteries. Other generators with low power requirements, as specified in the above vendors list, could possibly be operated with reason size batteries. The batteries do not need to be internal to the generator, but can be in a separate package. The availability of high capacity lithium batteries with sophisticated safety circuits makes battery operation more possible now than when lead acid batteries were used. The best path forward probably requires working with vendors of the existing systems. If Starfire Industries could be persuaded to put tritium in their nGen-300C generator, possibly in collaboration with a national laboratory, this would provide the 14-MeV neutrons needed. Another possibility is a modification of the Thermo Fisher MP 320 to run at 50 to 100 Hz. More discussions with these vendors, and possibly others, are required to determine their interest and possible costs.« less
NASA Astrophysics Data System (ADS)
Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.
2017-03-01
A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.
Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results,
Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.
Shan, Qing; Chu, Shengnan; Jia, Wenbao
2015-11-01
Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Temporal narrowing of neutrons produced by high-intensity short-pulse lasers
Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...
2015-07-28
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less
NASA Technical Reports Server (NTRS)
Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.
2003-01-01
For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as prefragments, then decay by the emission of nucleons, composites, and gamma rays. Recent improvements to the model have incorporated coalescence effects, which effectively tie up single nucleons in the formation of composites during final-state interactions. Comparison of the improved model s predictions with neutron production data near 0 deg in the CA-40+ H reaction at 357 and 565 MeV/nucleon show marked improvement.
Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.
Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J
2009-06-01
A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.
Revised SNAP III Training Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Calvin Elroy; Gonzales, Samuel M.; Myers, William L.
The Shielded Neutron Assay Probe (SNAP) technique was developed to determine the leakage neutron source strength of a radioactive object. The original system consisted of an Eberline TM Mini-scaler and discrete neutron detector. The system was operated by obtaining the count rate with the Eberline TM instrument, determining the absolute efficiency from a graph, and calculating the neutron source strength by hand. In 2003 the SNAP III, shown in Figure 1, was designed and built. It required the operator to position the SNAP, and then measure the source-to-detector and detectorto- reflector distances. Next the operator entered the distance measurements andmore » started the data acquisition. The SNAP acquired the required count rate and then calculated and displayed the leakage neutron source strength (NSS). The original design of the SNAP III is described in SNAP III Training Manual (ER-TRN-PLN-0258, Rev. 0, January 2004, prepared by William Baird) This report describes some changes that have been made to the SNAP III. One important change is the addition of a LEMO connector to provide neutron detection output pulses for input to the MC-15. This feature is useful in active interrogation with a neutron generator because the MC-15 has the capability to only record data when it is not gated off by a pulse from the neutron generator. This avoids recording of a lot of data during the generator pulses that are not useful. Another change was the replacement of the infrared RS-232 serial communication output by a similar output via a 4-pin LEMO connector. The current document includes a more complete explanation of how to estimate the amount of moderation around a neutron-emitting source.« less
Neutron Decay with PERC: a Progress Report
NASA Astrophysics Data System (ADS)
Konrad, G.; Abele, H.; Beck, M.; Drescher, C.; Dubbers, D.; Erhart, J.; Fillunger, H.; Gösselsberger, C.; Heil, W.; Horvath, M.; Jericha, E.; Klauser, C.; Klenke, J.; Märkisch, B.; Maix, R. K.; Mest, H.; Nowak, S.; Rebrova, N.; Roick, C.; Sauerzopf, C.; Schmidt, U.; Soldner, T.; Wang, X.; Zimmer, O.; Perc Collaboration
2012-02-01
The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The new instrument PERC is under development by an international collaboration. The physics motivation, sensitivity, and applications of PERC as well as the status of the design and preliminary results on uncertainties in proton spectroscopy are presented in this paper.
NASA Astrophysics Data System (ADS)
Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis
2017-01-01
A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.
Neutron residual stress measurements on rail sections for different production conditions
DOT National Transportation Integrated Search
2004-11-13
Rail sectioning with subsequent neutron diffraction experiments has been used to assess residual stresses in the rails. In this study we present the results of neutron stress : measurements performed at the NIST Center for Neutron Research (NCNR) on ...
NASA Astrophysics Data System (ADS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.
2014-02-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.
NASA Astrophysics Data System (ADS)
Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.
2012-08-01
A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).
Hosseini, Seyed Abolfazl; Esmaili Paeen Afrakoti, Iman
2018-01-17
The purpose of the present study was to reconstruct the energy spectrum of a poly-energetic neutron source using an algorithm developed based on an Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is a kind of artificial neural network based on the Takagi-Sugeno fuzzy inference system. The ANFIS algorithm uses the advantages of both fuzzy inference systems and artificial neural networks to improve the effectiveness of algorithms in various applications such as modeling, control and classification. The neutron pulse height distributions used as input data in the training procedure for the ANFIS algorithm were obtained from the simulations performed by MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). Taking into account the normalization condition of each energy spectrum, 4300 neutron energy spectra were generated randomly. (The value in each bin was generated randomly, and finally a normalization of each generated energy spectrum was performed). The randomly generated neutron energy spectra were considered as output data of the developed ANFIS computational code in the training step. To calculate the neutron energy spectrum using conventional methods, an inverse problem with an approximately singular response matrix (with the determinant of the matrix close to zero) should be solved. The solution of the inverse problem using the conventional methods unfold neutron energy spectrum with low accuracy. Application of the iterative algorithms in the solution of such a problem, or utilizing the intelligent algorithms (in which there is no need to solve the problem), is usually preferred for unfolding of the energy spectrum. Therefore, the main reason for development of intelligent algorithms like ANFIS for unfolding of neutron energy spectra is to avoid solving the inverse problem. In the present study, the unfolded neutron energy spectra of 252Cf and 241Am-9Be neutron sources using the developed computational code were found to have excellent agreement with the reference data. Also, the unfolded energy spectra of the neutron sources as obtained using ANFIS were more accurate than the results reported from calculations performed using artificial neural networks in previously published papers. © The Author(s) 2018. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Lifetime Increased Cancer Risk in Mice Following Exposure to Clinical Proton Beam–Generated Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerweck, Leo E., E-mail: lgerweck@mgh.harvard.edu; Huang, Peigen; Lu, Hsiao-Ming
2014-05-01
Purpose: To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Methods and Materials: Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy,more » 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Results: Exposure of mice to a dose of 600 Gy of proton beam–generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions: Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates.« less
Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons
Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong
2014-01-01
Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699
Performance of an improved thermal neutron activation detector for buried bulk explosives
NASA Astrophysics Data System (ADS)
McFee, J. E.; Faust, A. A.; Andrews, H. R.; Clifford, E. T. H.; Mosquera, C. M.
2013-06-01
First generation thermal neutron activation (TNA) sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on multi-sensor landmine detection systems. The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. The sensor is described, with emphasis on the improvements. Experiments to characterize the performance of the second generation TNA in detecting buried landmines and improvised explosive devices (IEDs) hidden in culverts are described. Performance results, including comparisons between the performance of the first and second generation systems are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliescu, Elena; Bercea, Sorin; Dudu, Dorin
2013-12-16
The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.
A continuously self regenerating high-flux neutron-generator facility
NASA Astrophysics Data System (ADS)
Rogers, A. M.; Becker, T. A.; Bernstein, L. A.; van Bibber, K.; Bleuel, D. L.; Chen, A. X.; Daub, B. H.; Goldblum, B. L.; Firestone, R. B.; Leung, K.-N.; Renne, P. R.; Waltz, C.
2013-10-01
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being constructed at UC Berkeley. The current generator, designed around two RF-driven multicusp deuterium ion sources, is capable of producing a neutron output of >1011 n/s. A specially designed titanium-coated copper target located between the ion sources accelerates D+ ions up to 150 keV, generating 2.45 MeV neutrons through the d(d,3He)n fusion reaction. Deuterium in the target is self loaded and regenerating through ion implantation, enabling stable and continuous long-term operation. The proposed science program is focused on pioneering advances in the 40Ar/39Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science research including statistical model studies of radiative-strength functions and level densities, and education. An overview of the facility and its unique capabilities as well as first measurements from the HFNG commissioning will be presented. Work supported by NSF Grant No. EAR-0960138, U.S. DOE LBL Contract No. DE-AC02-05CH11231, and U.S. DOE LLNL Contract No. DE-AC52-07NA27344.
Probe for contamination detection in recyclable materials
Taleyarkhan, Rusi
2003-08-05
A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.
MEASUREMENT OF SECONDARY NEUTRONS GENERATED DURING PROTON THERAPY.
Vykydal, Z; Andrlík, M; Bártová, H; Králík, M; Šolc, J; Vondráček, V
2016-12-01
Measurements described in this article were carried out with the aim of evaluating risks of the patient exposure to secondary neutrons during treatment at the Proton Therapy Centre Prague. The neutron spectral fluence was measured by means of the extended Bonner sphere spectrometer (EBS). The article presents secondary neutron spectral fluences obtained by the EBS with passive thermoluminescent detectors, i.e. pairs of 6 LiF and 7 LiF chips. Measurements were performed in two positions: the first one behind the Nylon 6 phantom, and the second one close to the range shifter to evaluate their contribution to the generation of neutrons. Both the Nylon 6 phantom and the range shifter were irradiated with a pencil beam of protons 4 mm in diameter and the energy of 200 MeV. The results are supplemented with the values of effective dose derived from neutron spectral fluences. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neutron radiation characteristics of the IVth generation reactor spent fuel
NASA Astrophysics Data System (ADS)
Bedenko, Sergey; Shamanin, Igor; Grachev, Victor; Knyshev, Vladimir; Ukrainets, Olesya; Zorkin, Andrey
2018-03-01
Exploitation of nuclear power plants as well as construction of new generation reactors lead to great accumulation of spent fuel in interim storage facilities at nuclear power plants, and in spent fuel «wet» and «dry» long-term storages. Consequently, handling the fuel needs more attention. The paper is focused on the creation of an efficient computational model used for developing the procedures and regulations of spent nuclear fuel handling in nuclear fuel cycle of the new generation reactor. A Thorium High-temperature Gas-Cooled Reactor Unit (HGTRU, Russia) was used as an object for numerical research. Fuel isotopic composition of HGTRU was calculated using the verified code of the MCU-5 program. The analysis of alpha emitters and neutron radiation sources was made. The neutron yield resulting from (α,n)-reactions and at spontaneous fission was calculated. In this work it has been shown that contribution of (α,n)-neutrons is insignificant in case of such (Th,Pu)-fuel composition and HGTRU operation mode, and integral neutron yield can be approximated by the Watt spectral function. Spectral and standardized neutron distributions were achieved by approximation of the list of high-precision nuclear data. The distribution functions were prepared in group and continuous form for further use in calculations according to MNCP, MCU, and SCALE.
Maser mechanism of optical pulsations from anomalous X-ray pulsar 4U 0142+61
NASA Astrophysics Data System (ADS)
Lu, Y.; Zhang, S. N.
2004-11-01
Based on the work of Luo & Melrose from the early 1990s, a maser curvature emission mechanism in the presence of curvature drift is used to explain the optical pulsations from anomalous X-ray pulsars (AXPs). The model comprises a rotating neutron star with a strong surface magnetic field, i.e. a magnetar. Assuming the space-charge-limited flow acceleration mechanism, in which the strongly magnetized neutron star induces strong electric fields that pull the charges from its surface and flow along the open field lines, the neutron star generates a dense flow of electrons and positrons (relativistic pair plasma) by either two-photon pair production or one-photon pair creation resulting from inverse Compton scattering of the thermal photons above the pulsar polar cap (PC). The motion of the pair plasma is essentially one-dimensional along the field lines. We propose that optical pulsations from AXPs are generated by a curvature-drift-induced maser developing in the PC of magnetars. Pair plasma is considered as an active medium that can amplify its normal modes. The curvature drift, which is energy-dependent, is another essential ingredient in allowing negative absorption (maser action) to occur. For the source AXP 4U 0142+61, we find that the optical pulsation triggered by curvature-drift maser radiation occurs at the radial distance R(νM) ~ 4.75 × 109 cm to the neutron star. The corresponding curvature maser frequency is about νM~ 1.39 × 1014 Hz, and the pulse component from the maser amplification is about 27 per cent. The result is consistent with the observation of the optical pulsations from AXP 4U 0142+61.
Neutron production from flattening filter free high energy medical linac: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.
2015-11-01
One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.
Neutron bursts from long laboratory sparks
NASA Astrophysics Data System (ADS)
Kochkin, P.; Lehtinen, N. G.; Montanya, J.; Van Deursen, A.; Ostgaard, N.
2016-12-01
Neutron emission in association with thunderstorms and lightning discharges was reported by different investigators from ground-based observation platforms. In both cases such emission is explained by photonuclear reaction, since high-energy gamma-rays in sufficient fluxes are routinely detected from both, lightning and thunderclouds. The required gamma-rays are presumably generated by high-energy electrons in Bremsstrahlung process after their acceleration via cold and/or relativistic runaway mechanisms. This phenomenon attracted moderate scientific attention until fast neutron bursts (up to 10 MeV) from long 1 MV laboratory sparks have been reported. Clearly, with such relatively low applied voltage the electrons are unable to accelerate to the energies required for photo/electro disintegration. Moreover, all known elementary neutron generation processes are not capable to explain this emission right away. We performed an independent laboratory experiment on long sparks with the aim to confirm or disprove the neutron emission from them. The experimental setup was assembled at High-Voltage Laboratory in Barcelona and contained a Marx generator in a cone-cone spark gap configuration. The applied voltage was as low as 800 kV and the gap distance was only 60 cm. Two ns-fast cameras were located near the gap capturing short-exposure images of the pre-breakdown phenomenon at the expected neutron generation time. A plastic scintillation detector sensitive to neutrons was covered in 11 cm of lead and placed near the spark gap. The detector was calibrated and showed good performance in neutron detection. Apart of it, voltage, currents through both electrodes, and three X-ray detectors were also monitored in sophisticated measuring system. We will give an overview of the previous experimental and theoretical work in this topic, and present the results of our new experimental campaign. The conclusions are based on good signal-to-noise ratio measurements and are substantiated by high-contrast images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granroth, Garrett E
2011-01-01
Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes ofmore » $Q$ and $$\\omega$$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$$_4$$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.« less
Los Alamos Neutron Science Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less
A 6He production facility and an electrostatic trap for measurement of the beta-neutrino correlation
NASA Astrophysics Data System (ADS)
Mukul, I.; Hass, M.; Heber, O.; Hirsh, T. Y.; Mishnayot, Y.; Rappaport, M. L.; Ron, G.; Shachar, Y.; Vaintraub, S.
2018-08-01
A novel experiment has been commissioned at the Weizmann Institute of Science for the study of weak interactions via a high-precision measurement of the beta-neutrinoangular correlation in the radioactive decay of short-lived 6He. The facility consists of a 14 MeV d + t neutron generator to produce atomic 6He, followed by ionization and bunching in an electron beam ion source, and injection into an electrostatic ion beam trap. This ion trap has been designed for efficient detection of the decay products from trapped light ions. The storage time in the trap for different stable ions was found to be in the range of 0.6 to 1.2 s at the chamber pressure of ∼7 × 10-10 mbar. We present the initial test results of the facility, and also demonstrate an important upgrade of an existing method (Stora et al., 2012) for production of light radioactive atoms, viz. 6He, for the precision measurement. The production rate of 6He atoms in the present setup has been estimated to be ∼ 1 . 45 × 10-4 atoms per neutron, and the system efficiency was found to be 4.0 ± 0.6%. An improvement to this setup is also presented for the enhanced production and diffusion of radioactive atoms for future use.
High-voltage supply for neutron tubes in well-logging applications
Humphreys, D.R.
1982-09-15
A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.
High voltage supply for neutron tubes in well logging applications
Humphreys, D. Russell
1989-01-01
A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.
Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring
NASA Astrophysics Data System (ADS)
Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen
2015-04-01
Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.
The Upgrade of the Neutron Induced Positron Source NEPOMUC
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S.
2013-06-01
In summer 2012, the new NEutron induced POsitron Source MUniCh (NEPOMUC) was installed and put into operation at the research reactor FRM II. At NEPOMUC upgrade 80% 113Cd enriched Cd is used as neutron-gamma converter in order to ensure an operation time of 25 years. A structure of Pt foils inside the beam tube generates positrons by pair production. Moderated positrons leaving the Pt front foil are electrically extracted and magnetically guided to the outside of the reactor pool. The whole design, including Pt-foils, the electric lenses and the magnetic fields, has been improved in order to enhance both the intensity and the brightness of the positron beam. After adjusting the potentials and the magnetic guide and compensation fields an intensity of about 3·109 moderated positrons per second is expected. During the first start-up, the measured temperatures of about 90°C ensure a reliable operation of the positron source. Within this contribution the features and the status of NEPOMUC upgrade are elucidated. In addition, an overview of recent positron beam experiments and current developments at the spectrometers is given.
Absolute measurements of fast neutrons using yttrium.
Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M
2010-08-01
Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.
NASA Astrophysics Data System (ADS)
Toropov, A. A.; Kozlov, V. I.; Mullayarov, V. A.; Starodubtsev, S. A.
2013-03-01
We consider neutron bursts (Yakutsk cosmic ray spectrograph,105 m above sea level) and the electric field during lightning discharges. It was found that the neutron bursts are observed in the negative lightning discharg only. We discuss the possibility of generation of neutrons in the lower part (the point of impact into the ground) lightning discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, G; Kapadia, A
Purpose: To optimize collimation and shielding for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact clinical neutron imaging system. The envisioned application is cancer diagnosis through Neutron Stimulated Emission Computed Tomography (NSECT). Methods: Collimator designs were tested with an isotropic 2.5 MeV neutron source through GEANT4 simulations. The collimator is a 52×52×52 cm{sup 3} polyethylene block coupled with a 1 cm lead sheet in sequence. Composite opening was modeled into the collimator to permit passage of neutrons. The opening varied in shape (cylindrical vs. tapered), size (1–5 cm source-side and target-side openings) and aperture placements (13–39 cm frommore » source-side). Spatial and energy distribution of neutrons and gammas were tracked from each collimator design. Parameters analyzed were primary beam width (FWHM), divergence, and efficiency (percent transmission) for different configurations of the collimator. Select resultant outputs were then used for simulated NSECT imaging of a virtual breast phantom containing a 2.5 cm diameter tumor to assess the effect of the collimator on spatial resolution, noise, and scan time. Finally, composite shielding enclosure made of polyethylene and lead was designed and evaluated to block 99.99% of neutron and gamma radiation generated in the system. Results: Analysis of primary beam indicated the beam-width is linear to the aperture size. Increasing source-side opening allowed at least 20% more neutron throughput for all designs relative to the cylindrical openings. Maximum throughput for all designs was 364% relative to cylindrical openings. Conclusion: The work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-defined collimated neutron beam that can be used to image samples of interest with millimeter resolution. Balance in output efficiency, noise reduction, and scan time should be considered to determine the optimal design for specific NSECT applications.« less
Kooi, M W; Stap, J; Barendsen, G W
1984-06-01
Exponentially growing cells of an established line derived from a mouse osteosarcoma (MOS) have been studied by time-lapse cinematography after irradiation with 3 Gy of 200 kV X-rays or 1.5 Gy of 14 MeV neutrons. Cell cycle times (Tc) of individual cells and their progeny in three subsequent generations as well as the occurrence of aberrant mitosis have been determined to evaluate the variation in expression of damage in relation to the stage in the intermitotic cycle and the radiation quality. The results show that the radiation doses applied cause an equal elongation of the mean Tc, which is largest in the irradiated cells but persists in the three subsequent generations. After 3 Gy of X-rays, mitotic delay is largest in cells irradiated in later stages of the cycle, but this difference is not observed after 1.5 Gy of 14 MeV neutrons. In subsequent generations the Tc values show larger variations among descendents of cells treated in the same stage of the cycle as compared to controls but this variation is equal for the doses of X-rays and neutrons applied. Division probability was significantly reduced in irradiated cells as well as in subsequent generations, whereby with neutrons as compared to X-rays the damage is expressed in earlier generations, with less variation as a function of the cell cycle.
Identification of lithium hydride and its hydrolysis products with neutron imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garlea, Elena; King, Martin O.; Galloway, E. C.
In this study, lithium hydride (LiH) and its hydrolysis products were investigated non-destructively with neutron radiography and neutron computed tomography. Relative neutron transmission intensities (I/I 0) were measured for LiOH, Li 2O and LiH, and their linear attenuation coefficients calculated from this data. We show that 7Li is necessary for creating large differences in I/I 0 for facile identification of these compounds. The thermal decomposition of LiOH to Li 2O was also observed with neutron radiography. Computed tomography shows that the samples were fairly homogeneous, with very few macroscopic defects. Lastly, the results shown here demonstrate the feasibility of observingmore » LiH hydrolysis with neutron imaging techniques in real time.« less
Identification of lithium hydride and its hydrolysis products with neutron imaging
Garlea, Elena; King, Martin O.; Galloway, E. C.; ...
2016-12-24
In this study, lithium hydride (LiH) and its hydrolysis products were investigated non-destructively with neutron radiography and neutron computed tomography. Relative neutron transmission intensities (I/I 0) were measured for LiOH, Li 2O and LiH, and their linear attenuation coefficients calculated from this data. We show that 7Li is necessary for creating large differences in I/I 0 for facile identification of these compounds. The thermal decomposition of LiOH to Li 2O was also observed with neutron radiography. Computed tomography shows that the samples were fairly homogeneous, with very few macroscopic defects. Lastly, the results shown here demonstrate the feasibility of observingmore » LiH hydrolysis with neutron imaging techniques in real time.« less
Khorshidi, Abdollah
2017-01-01
The reactor has increased its area of application into medicine especially boron neutron capture therapy (BNCT); however, accelerator-driven neutron sources can be used for therapy purposes. The present study aimed to discuss an alternative method in BNCT functions by a small cyclotron with low current protons based on Karaj cyclotron in Iran. An epithermal neutron spectrum generator was simulated with 30 MeV proton energy for BNCT purposes. A low current of 300 μA of the proton beam in spallation target concept via 9Be target was accomplished to model neutron spectrum using 208Pb moderator around the target. The graphite reflector and dual layer collimator were planned to prevent and collimate the neutrons produced from proton interactions. Neutron yield per proton, energy distribution, flux, and dose components in the simulated head phantom were estimated by MCNPX code. The neutron beam quality was investigated by diverse filters thicknesses. The maximum epithermal flux transpired using Fluental, Fe, Li, and Bi filters with thicknesses of 7.4, 3, 0.5, and 4 cm, respectively; as well as the epithermal to thermal neutron flux ratio was 161. Results demonstrated that the induced neutrons from a low energy and low current proton may be effective in tumor therapy using 208Pb moderator with average lethargy and also graphite reflector with low absorption cross section to keep the generated neutrons. Combination of spallation-based BNCT and proton therapy can be especially effective, if a high beam intensity cyclotron becomes available.
Deuterium-lithium plasma as a source of fusion neutrons
NASA Astrophysics Data System (ADS)
Chirkov, A. Yu; Vesnin, V. R.
2017-11-01
The concepts of deuterium-tritium (D-T) fusion neutron source are currently developed for hybrid fusion-fission systems and the waste transmutation ones. The need to use tritium technologies is a deterrent factor in this promising direction of energy production. Potential possibilities of using systems that do not require tritium developments are of a significant interest. A deuterium-deuterium (D-D) reaction is considered for the use in demonstration fusion neutron sources. The product of this reaction is tritium, which will burn in the plasma with the emission of fast neutrons. D-D reaction is significantly slower then D-T reaction. Present study shows an increase in neutron yield using a powerful injection of the beam of deuterium atoms. The reactions of the deuterium with lithium isotopes are considered. In some of these reactions, fast neutrons can be obtained. The results of the calculation of the neutron yield from the deuterium lithium plasma are discussed. The estimates of the parameters needed for the realization of a source of fusion neutrons are presented.
Neutronics calculation of RTP core
NASA Astrophysics Data System (ADS)
Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.
2017-01-01
Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.
Neutron spectra due (13)N production in a PET cyclotron.
Benavente, J A; Vega-Carrillo, H R; Lacerda, M A S; Fonseca, T C F; Faria, F P; da Silva, T A
2015-05-01
Monte Carlo and experimental methods have been used to characterize the neutron radiation field around PET (Positron Emission Tomography) cyclotrons. In this work, the Monte Carlo code MCNPX was used to estimate the neutron spectra, the neutron fluence rates and the ambient dose equivalent (H*(10)) in seven locations around a PET cyclotron during (13)N production. In order to validate these calculations, H*(10) was measured in three sites and were compared with the calculated doses. All the spectra have two peaks, one above 0.1MeV due to the evaporation neutrons and another in the thermal region due to the room-return effects. Despite the relatively large difference between the measured and calculated H*(10) for one point, the agreement was considered good, compared with that obtained for (18)F production in a previous work. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.
2010-12-01
The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.
Adams, Robert; Zboray, Robert; Cortesi, Marco; Prasser, Horst-Michael
2014-04-01
A conceptual design optimization of a fast neutron tomography system was performed. The system is based on a compact deuterium-deuterium fast neutron generator and an arc-shaped array of individual neutron detectors. The array functions as a position sensitive one-dimensional detector allowing tomographic reconstruction of a two-dimensional cross section of an object up to 10 cm across. Each individual detector is to be optically isolated and consists of a plastic scintillator and a Silicon Photomultiplier for measuring light produced by recoil protons. A deterministic geometry-based model and a series of Monte Carlo simulations were used to optimize the design geometry parameters affecting the reconstructed image resolution. From this, it is expected that with an array of 100 detectors a reconstructed image resolution of ~1.5mm can be obtained. Other simulations were performed in order to optimize the scintillator depth (length along the neutron path) such that the best ratio of direct to scattered neutron counts is achieved. This resulted in a depth of 6-8 cm and an expected detection efficiency of 33-37%. Based on current operational capabilities of a prototype neutron generator being developed at the Paul Scherrer Institute, planned implementation of this detector array design should allow reconstructed tomograms to be obtained with exposure times on the order of a few hours. Copyright © 2014 Elsevier Ltd. All rights reserved.
New production systems at ISOLDE
NASA Astrophysics Data System (ADS)
Hagebø, E.; Hoff, P.; Jonsson, O. C.; Kugler, E.; Omtvedt, J. P.; Ravn, H. L.; Steffensen, K.
1992-08-01
New target systems for the ISOLDE on-line mass separator facility are presented. Targets of carbides, metal/graphite mixtures, foils of refractory metals, molten metals and oxides have been tested. Beams of high intensity of neutron-rich isotopes of a large number of elements are obtained from a uranium carbide target with a hot plasma-discharge ion source. A target of ZrO 2 has been shown to provide high intensity beams of neutron-deficient isotopes of Mn, Cu, Zn, Ga, Ge, As, Se, Br, Kr and Rb, while a SiC target with a hot plasma ion source gives intense beams of radioactive isotopes of a number of light elements. All these systems are rather chemically unselective. Chemically selective performance has been obtained for several systems, i.e.: the production of neutron-deficient Au from ( 3He, pχn) reactions on a Pt/graphite target with a hot plasma ion source; the production of neutron-deficient Lu and LuF + and Hf and HfF 3+ from a Ta-foil target with a hot plasma ion source under CF 4 addition; the production of neutron-deficient Sr as SrF + and Y as YF 2+ form a Nb-foil target with a W surface ionizer under CF 4 addition; the production of neutron-deficient Se as COSe + from a ZrO 2 target with a hot plasma ion source under O 2 addition; and the production of radioactive F from a SiC target with a hot plasma ion source operating in Al vapour.
NASA Astrophysics Data System (ADS)
Kubes, P.; Paduch, M.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Rezac, K.; Zielinska, E.; Sadowski, M. J.; Szymaszek, A.; Tomaszewski, K.; Zaloga, D.
2017-09-01
The paper describes the evolution of self-organized structures inside a pinched plasma column during the phase of the effective production of fusion neutrons, as observed in the mega-ampere plasma focus experiment performed with a conical tip placed in the centre of the anode face. In a comparison with the plane anode face configuration, the described anode shape facilitated transformations in the pinch column during the neutron production and increased the neutron yield several times. Simultaneously, it decreased the minimal diameter and the length of the pinched column, and it depressed the first neutron pulse. It also induced shorter pulses of X-rays and neutrons, which enabled the determination of a temporal difference between the emission of electron and deuteron beams. The fast electrons were produced mainly during a disruption of the pinch constriction, while the fast deuterons - during the formation and explosion of plasmoids. The paper also presents the temporal evolution of a current distribution in the plasmoid during the neutron production, as well as the appearance and stable positions of current filaments traces upon the surface of the conical anode tip.
Background radiation measurements at high power research reactors
Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...
2015-10-23
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less
Torrisi, Lorenzo
2014-10-23
Deuterated polyethylene targets have been irradiated by means of a 1016 W/cm2 laser using 600 J pulse energy, 1315 nm wavelength, 300 ps pulse duration and 70 micron spot diameter. The plasma parameters were measured using on-line diagnostics based on ion collectors, SiC detectors and plastic scintillators, all employed in time-of-flight configuration. In addition, a Thomson parabola spectrometer, an X-ray streak camera, and calibrated neutron dosimeter bubble detectors were employed. Characteristic protons and neutrons at maximum energies of 3.0 MeV and 2.45 MeV, respectively, were detected, confirming that energy spectra of reaction products coming from deuterium-deuterium nuclear fusion occur. In thick advanced targets a fusion rate of the order of 2 × 108 fusions per laser shot was calculated.
Method for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, D.P.; Browning, J.F.
1999-02-16
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.
Method for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, David P.; Browning, James F.
1999-01-01
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
System for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, David P.; Browning, James F.
1998-01-01
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.
System for studying a sample of material using a heavy ion induced mass spectrometer source
Fries, D.P.; Browning, J.F.
1998-07-21
A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.
ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
NASA Astrophysics Data System (ADS)
Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.
2006-12-01
We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of thermal high-enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of 233,235U and 239Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, fusion, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL, and can be retrieved from www.nndc.bnl.gov.
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
NASA Technical Reports Server (NTRS)
Sisterson, J. M.; Jones, D. T. L.; Binns, P. J.; Langen, K.; Schroeder, I.; Buthelezi, Z.; Latti, E.; Brooks, F. D.; Buffler, A.; Allie, M. S.;
2001-01-01
Cross section measurements for neutron-induced reactions are summarized. Measured cross sections for 22 Na produced by neutrons in Al and Si are used to calculate the production rate for 22 Na in lunar rock 12002 by galactic cosmic ray particles. Additional information is contained in the original extended abstract.
Monitoring system for a liquid-cooled nuclear fission reactor
DeVolpi, Alexander
1987-01-01
A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.
Non-invasive measurements of soil water content using a pulsed 14 MeV neutron generator
USDA-ARS?s Scientific Manuscript database
Most current techniques of setting crop irrigation schedules use invasive, labor-intensive soil-water content measurements. We developed a cart-mounted neutron probe capable of non-invasive measurements of volumetric soil moisture contents. The instrument emits neutrons which are captured by hydroge...
Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Roth, Markus
2015-05-01
An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.
Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan
NASA Astrophysics Data System (ADS)
Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.
2015-05-01
Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.
Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi
2016-12-01
Efficient and safe production of molybdenum-99 ( 99 Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced 99 Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient 99 Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
The investigation of fast neutron Threshold Activation Detectors (TAD)
NASA Astrophysics Data System (ADS)
Gozani, T.; King, M. J.; Stevenson, J.
2012-02-01
The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major constituent of available scintillators (e.g., BaF2, CaF2, hydrogen free liquid fluorocarbon). Thus the activation products of the fast prompt neutrons, in particular, the beta particles, can be measured with a very high efficiency in the detector. Other detectors and substances were investigated, such as 6Li and even common detectors such as NaI. The principles and experimental results obtained with F, NaI and 6Li based TAD are shown. The various contributing activation products are identified. The insensitivity of the fluorine based TAD to (d,D) neutrons is demonstrated. Ways and means to reduce or subtract the various neutron induced activations of NaI detector are elucidated along with its fast neutron detection capabilities. 6Li could also be a useful TAD.
Procedure to Generate the MPACT Multigroup Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kang Seog
The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.
2014-02-18
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes inmore » two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.« less
Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights
NASA Astrophysics Data System (ADS)
Drozdov, A.; Grigoriev, A.; Malyshkin, Y.
2013-02-01
High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.
Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT
NASA Astrophysics Data System (ADS)
Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing
2017-04-01
The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigni, Marco T; Francis, Matthew W; Gauld, Ian C
A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less
NASA Astrophysics Data System (ADS)
Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.
Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.
Measurements of 89Y(n,2n)88Y and 89Y(n,3n)87Y, 87mY cross sections for fast neutrons at KIRAMS
NASA Astrophysics Data System (ADS)
In, Eun Jin; Bak, Sang-In; Ham, Cheolmin; Kim, Do Yoon; Myung, Hyunjeong; Shim, Chungbo; Shin, Jae Won; Min, Kyung Joo; Zhou, Yujie; Park, Tae-Sun; Hong, Seung-Woo; Bhoraskar, V. N.
2017-09-01
A proton cyclotron MC-50 in Korea Institute of Radiological & Medical Science (KIRAMS) is used to carry out neutron activation experiments with Y2O3 targets irradiated with neutron beams of a continuous spectrum produced by proton beams on a thick beryllium target. Neutrons are generated by 9Be (p, n) reaction with an incident proton intensity of 20 μA. The neutron spectra generated by proton beams of 30, 35, and 40 MeV are calculated by GEANT4 simulations. Nb powders are used for neutron flux monitoring by measuring the activities of 92mNb through the reaction 93Nb (n, 2n). By using a subtraction method, the average cross section of 89Y(n,2n) and 89Y(n,3n) reactions at the neutron energies of 29.8 ± 1.8 MeV and 34.8 ± 1.8 MeV are extracted and are found to be close to the existing cross sections from the EXFOR data and the evaluated nuclear data libraries such as TENDL-2015 or EAF-2010.
Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements
NASA Astrophysics Data System (ADS)
Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.
2017-10-01
We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz <= 2 kGs, applied throughout the pinch region, stabilizes the Rayleigh-Taylor instability. The standard silver activation diagnostics and 4 plastic scintillator neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.
High efficiency focus neutron generator
NASA Astrophysics Data System (ADS)
Sadeghi, H.; Amrollahi, R.; Zare, M.; Fazelpour, S.
2017-12-01
In the present paper, the new idea to increase the neutron yield of plasma focus devices is investigated and the results are presented. Based on many studies, more than 90% of neutrons in plasma focus devices were produced by beam target interactions and only 10% of them were due to thermonuclear reactions. While propounding the new idea, the number of collisions between deuteron ions and deuterium gas atoms were increased remarkably well. The COMSOL Multiphysics 5.2 was used to study the given idea in the known 28 plasma focus devices. In this circumstance, the neutron yield of this system was also obtained and reported. Finally, it was found that in the ENEA device with 1 Hz working frequency, 1.1 × 109 and 1.1 × 1011 neutrons per second were produced by D-D and D-T reactions, respectively. In addition, in the NX2 device with 16 Hz working frequency, 1.34 × 1010 and 1.34 × 1012 neutrons per second were produced by D-D and D-T reactions, respectively. The results show that with regards to the sizes and energy of these devices, they can be used as the efficient neutron generators.
PELAN applications and recent field tests
NASA Astrophysics Data System (ADS)
Martinez, Juan J.; Holslin, Daniel T.
2004-10-01
When neutrons interact with particular nuclei, the resulting energy of the interaction can be released in the form of gamma rays, which are characteristic of the nucleus involved in the reaction. The PELAN (Pulsed Elemental Analysis with Neutrons) system uses a pulsed neutron generator and an integral thermalizing shield that induce reactions that cover most of the entire gamma ray energy spectra1. The neutron generator uses a D-T reaction, which releases fast 14MeV neutrons responsible for providing information on those nuclei that mostly respond to inelastic scattering. During the time period between pulses, the fast neutrons undergo multiple inelastic interactions that lower their energy making them easier to be captured by certain nuclei; this energy spectrum of gamma rays induced by these interactions are designated as the gamma ray thermal spectra. The PELAN system has been used for a number of applications where non-intrusive, non-destructive interrogation is needed. Although Pulsed Fast Thermal Neutron Analysis (PFTNA) has been around for approximately 30 years, the technology has never been successfully commercialized for practical applications. The following report illustrates examples of the performance of on a number of applications of interrogation of Unexploded Ordnance (UXO), mine confirmation, large vehicle bombs inspection and illicit drug smuggling detection.
NASA Astrophysics Data System (ADS)
Kornev, V. A.; Askinazi, L. G.; Belokurov, A. A.; Chernyshev, F. V.; Lebedev, S. V.; Melnik, A. D.; Shabelsky, A. A.; Tukachinsky, A. S.; Zhubr, N. A.
2017-12-01
The paper presents DD neutron flux measurements in neutron beam injection (NBI) experiments aimed at the optimization of target plasma and heating beam parameters to achieve maximum neutron flux in the TUMAN-3M compact tokamak. Two ion sources of different design were used, which allowed the separation of the beam’s energy and power influence on the neutron rate. Using the database of experiments performed with the two ion sources, an empirical scaling was derived describing the neutron rate dependence on the target plasma and heating beam parameters. Numerical modeling of the neutron rate in the NBI experiments performed using the ASTRA transport code showed good agreement with the scaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; C.J. Wharton
2008-08-01
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) andmore » high explosive (HE) filled munitions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seabury, E. H.; Chichester, D. L.; Wharton, C. J.
2009-03-10
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM)more » and high explosive (HE) filled munitions.« less
Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC
NASA Astrophysics Data System (ADS)
Helenius, Ilkka; Paukkunen, Hannu; Eskola, Kari J.
2017-03-01
A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-p_T direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-p_T hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region.
Accelerator driven sub-critical core
McIntyre, Peter M; Sattarov, Akhdiyor
2015-03-17
Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.
Method and apparatus for generating low energy nuclear particles
Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.
1999-02-09
A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.
Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dioszegi I.; Vanier P.E.; Salwen C.
2016-10-29
Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less
High-flux neutron source based on a liquid-lithium target
NASA Astrophysics Data System (ADS)
Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.
2013-04-01
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.
Radiation effect of neutrons produced by D-D side reactions on a D-3He fusion reactor
NASA Astrophysics Data System (ADS)
Bahmani, J.
2017-04-01
One of the most important characteristics in D-3He fusion reactors is neutron production via D-D side reactions. The neutrons can activate structural material, degrading them and ultimately converting them into high-level radioactive waste, while it is really costly and difficult to remove them. The neutrons from a fusion reactor could also be used to make weapons-grade nuclear material, rendering such types of fusion reactors a serious proliferation hazard. A related problem is the presence of radioactive elements such as tritium in D-3He plasma, either as fuel for or as products of the nuclear reactions; substantial quantities of radioactive elements would not only pose a general health risk, but tritium in particular would also be another proliferation hazard. The problems of neutron radiation and radioactive element production are especially interconnected because both would result from the D-D side reaction. Therefore, the presentation approach for reducing neutrons via D-D nuclear side reactions in a D-3He fusion reactor is very important. For doing this research, energy losses and neutron power fraction in D-3He fusion reactors are investigated. Calculations show neutrons produced by the D-D nuclear side reaction could be reduced by changing to a more 3He-rich fuel mixture, but then the bremsstrahlung power loss fraction would increase in the D-3He fusion reactor.
Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H
2015-12-01
A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.
Neutrons produced by known energies of ions abundant in space
NASA Technical Reports Server (NTRS)
Wadman, W. W., III
1972-01-01
Particle accelerator radiation measurements are applied to the problem of calculating biological dose from radiation produced in the walls of a spacecraft by various ions in space. Neutrons, one of the products of the interactions of energetic ions with matter, are usually quite penetrating and have large values of Q.F. or R.B.E. Ions of helium, boron, carbon, nitrogen, and oxygen were accelerated and directed onto target materials of copper or tantalum. The secondary neutron production was determined. Studies were made of the angular distribution and an inferred neutron spectrum was calculated from activities of threshold reaction detectors.
Forward Neutron Production at the Fermilab Main Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigmanov, T.S.; /Michigan U.; Rajaram, D.
2010-10-01
We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as A{sup a} where a is 0.46 {+-} 0.06 for a beam momentum of 58 GeV/c and 0.54 {+-} 0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo. The MIPPmore » (Main Injector Particle Production) experiment (FNAL E907) [1] acquired data in the Meson Center beam line at Fermilab. The primary purposes of the experiment were to investigate scaling laws in hadron fragmentation [2], to obtain hadron production data for the NuMI (Neutrinos at the Main Injector [3]) target to be used for calculating neutrino fluxes, and to obtain inclusive pion, neutron, and photon production data to facilitate proton radiography [4]. While there is considerable data available on inclusive charged particle production [5], there is little data on neutron production. In this article we present results for forward neutron production using proton beams of 58 GeV/c, 84 GeV/c, and 120 GeV/c on hydrogen, beryllium, carbon, bismuth, and uranium targets, and compare these data with predictions from Monte Carlo simulations.« less
New Methodologies for Generation of Multigroup Cross Sections for Shielding Applications
NASA Astrophysics Data System (ADS)
Arzu Alpan, F.; Haghighat, Alireza
2003-06-01
Coupled neutron and gamma multigroup (broad-group) libraries used for Light Water Reactor shielding and dosimetry commonly include 47-neutron and 20-gamma groups. These libraries are derived from the 199-neutron, 42-gamma fine-group VITAMIN-B6 library. In this paper, we introduce modifications to the generation procedure of the broad-group libraries. Among these modifications, we show that the fine-group structure and collapsing technique have the largest impact. We demonstrate that a more refined fine-group library and the bi-linear adjoint weighting collapsing technique can improve the accuracy of transport calculation results.
NASA Astrophysics Data System (ADS)
Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela
2017-09-01
The ENEA-Bologna Nuclear Data Group produced the VITJEFF32.BOLIB multi-group coupled neutron/photon (199 n + 42 γ) cross section library in AMPX format, based on the OECD-NEA Data Bank JEFF-3.2 evaluated nuclear data library. VITJEFF32.BOLIB was conceived for nuclear fission applications as European counterpart of the ORNL VITAMIN-B7 similar library (ENDF/B-VII.0 data). VITJEFF32.BOLIB has the same neutron and photon energy group structure as the former ORNL VITAMIN-B6 reference library (ENDF/B-VI.3 data) and was produced using similar data processing methodologies, based on the LANL NJOY-2012.53 nuclear data processing system for the generation of the nuclide cross section data files in GENDF format. Then the ENEA-Bologna 2007 Revision of the ORNL SCAMPI nuclear data processing system was used for the conversion into the AMPX format. VITJEFF32.BOLIB contains processed cross section data files for 190 nuclides, obtained through the Bondarenko (f-factor) method for the treatment of neutron resonance self-shielding and temperature effects. Collapsed working libraries of self-shielded cross sections in FIDO-ANISN format, used by the deterministic transport codes of the ORNL DOORS system, can be generated from VITJEFF32.BOLIB through the cited SCAMPI version. This paper describes the methodology and specifications of the data processing performed and presents some results of the VITJEFF32.BOLIB validation.
Field ion source development for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.
2012-01-01
An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.
Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, andmore » up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them are equipped with instrumentation for condensed matter physics research: - H3 - spectrometer and diffractometer with double monochromator; - H4 - small angle scattering spectrometer; - H5 - polarized neutrons spectrometer; - H6, H7 - two 3-axial crystal neutron spectrometers; - H8 - neutron radiography stand. For two horizontal channels are ongoing exploitation programs: - H2 - station with epithermal neutron beam produced in uranium converter is being developed. Intelligent converter will be installed on the periphery of reactor core. The intensity of the beam will be at the level 2x10{sup 9} n cm{sup -2}s{sup -1} what makes the beam unique in the Europe. - H1 - special pneumatic horizontal mail is being developed for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. The number of neutron irradiation facilities in MARIA reactor is increasing every year. Numerous of thermal neutron irradiation channels including fast hydraulic rabbit system and large size channels for fast neutron irradiation are used routinely. Recently new in-pile facility with ITER-like neutron energy spectrum for 14 MeV neutron irradiation has been constructed. Taking into account its performance and ability of almost incessant operation the facility appears as one of the most powerful 14 MeV neutron sources. The facility shall be used for material research connected with thermonuclear devices (ITER) and 4. generation nuclear reactors. The system of independent fuels channels used in MARIA reactor appear to be very flexible and very convenient to be used as irradiation channels for uranium targets for {sup 99}Mo production. Currently, MARIA reactor supplies ca. 18% world production of {sup 99}Mo. The MARIA reactor research activities are still extended. The current scientific projects are connected e.g. with silicon neutron transmutation doping, in-pile gamma heating measurements, French calculation codes implementation (TRIPOLI4, APOLLO2). The horizontal neutron beams utilization is also developed. The MARIA reactor, due to its primary application connected with loop and fuel testing, is very convenient for testing the nuclear instrumentation, control and measurement systems.« less
A Basic LEGO Reactor Design for the Provision of Lunar Surface Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Darrell Bess
2008-06-01
A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less
USDA-ARS?s Scientific Manuscript database
Soil moisture content on a horizontal scale of hectometers and at depths of decimeters can be inferred from measurements of low-energy cosmic-ray neutrons that are generated within soil, moderated mainly by hydrogen atoms, and diffused back to the atmosphere. These neutrons are sensitive to water co...
Kasesaz, Y; Khalafi, H; Rahmani, F
2013-12-01
Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.
GAMSOR: Gamma Source Preparation and DIF3D Flux Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M. A.; Lee, C. H.; Hill, R. N.
2017-06-28
Nuclear reactors that rely upon the fission reaction have two modes of thermal energy deposition in the reactor system: neutron absorption and gamma absorption. The gamma rays are typically generated by neutron capture reactions or during the fission process which means the primary driver of energy production is of course the neutron interaction. In conventional reactor physics methods, the gamma heating component is ignored such that the gamma absorption is forced to occur at the gamma emission site. For experimental reactor systems like EBR-II and FFTF, the placement of structural pins and assemblies internal to the core leads to problemsmore » with power heating predictions because there is no fission power source internal to the assembly to dictate a spatial distribution of the power. As part of the EBR-II support work in the 1980s, the GAMSOR code was developed to assist analysts in calculating the gamma heating. The GAMSOR code is a modified version of DIF3D and actually functions within a sequence of DIF3D calculations. The gamma flux in a conventional fission reactor system does not perturb the neutron flux and thus the gamma flux calculation can be cast as a fixed source problem given a solution to the steady state neutron flux equation. This leads to a sequence of DIF3D calculations, called the GAMSOR sequence, which involves solving the neutron flux, then the gamma flux, and then combining the results to do a summary edit. In this manuscript, we go over the GAMSOR code and detail how it is put together and functions. We also discuss how to setup the GAMSOR sequence and input for each DIF3D calculation in the GAMSOR sequence.« less
Khorshidi, Abdollah
2016-11-01
Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. Copyright © 2016 Elsevier B.V. All rights reserved.
Strategy for the absolute neutron emission measurement on ITER.
Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S
2010-10-01
Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schear, Melissa A; Tobin, Stephen J
2009-01-01
The {sup 252}Cf shuffler has been widely used in nuclear safeguards and radioactive waste management to assay fissile isotopes, such as {sup 235}U or {sup 239}Pu, present in a variety of samples, ranging from small cans of uranium waste to metal samples weighing several kilograms. Like other non-destructive assay instruments, the shuffler uses an interrogating neutron source to induce fissions in the sample. Although shufflers with {sup 252}Cf sources have been reliably used for several decades, replacing this isotopic source with a neutron generator presents some distinct advantages. Neutron generators can be run in a continuous or pulsed mode, andmore » may be turned off, eliminating the need for shielding and a shuffling mechanism in the shuffler. There is also essentially no dose to personnel during installation, and no reliance on the availability of {sup 252}Cf. Despite these advantages, the more energetic neutrons emitted from the neutron generator (141 MeV for D-T generators) present some challenges for certain material types. For example when the enrichment of a uranium sample is unknown, the fission of {sup 238}U is generally undesirable. Since measuring uranium is one of the main uses of a shuffler, reducing the delayed neutron contribution from {sup 238}U is desirable. Hence, the shuffler hardware must be modified to accommodate a moderator configuration near the source to tailor the interrogating spectrum in a manner which promotes sub-threshold fissions (below 1 MeV) but avoids the over-moderation of the interrogating neutrons so as to avoid self-shielding. In this study, where there are many material and geometry combinations, the Monte Carlo N-Particle eXtended (MCNPX) transport code was used to model, design, and optimize the moderator configuration within the shuffler geometry. The code is then used to evaluate and compare the assay performances of both the modified shuffler and the current {sup 252}Cf shuffler designs for different test samples. The matrix effect and the non-uniformity of the interrogating flux are investigated and quantified in each case. The modified geometry proposed by this study can serve s a guide in retrofitting shufflers that are already in use.« less
Informing the improvement of forest products durability using small angle neutron scattering
Nayomi Plaza Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes
2016-01-01
A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...
Associated-particle sealed-tube neutron probe for nonintrusive inspection
NASA Astrophysics Data System (ADS)
Rhodes, E.; Dickerman, C. E.
1997-02-01
The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential for the associated-particle method to move out of the laboratory into field applications. This paper is a review of ANL investigations of this technology. Alpha particles associated with 14-MeV neutrons generated from the D-T reaction travel in the opposite direction and are detected inside the sealed tube. Gamma-ray spectra of resulting neutron reactions in the inspected volume encompassed by the alpha-detector solid angle identify many nuclides. Flight-times determined from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-rays and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation without collimation. A continuous ion beam allows data acquisition by relatively low-bandwidth electronics. When a compact sealed-tube neutron generator is used, a relatively small and easily maintainable inspection system can be developed, that is rugged enough to be transportable. Proof-of-concept laboratory experiments have been performed for simulated explosives, drugs, special nuclear materials, and chemical warfare agents. Efficient collection of maximum information from each detected neutron with low background rates can allow a much lower source intensity than pulsed accelerator methods and yield a preference for an APSTNG system, when it can provide adequate usable source intensity. Based on lessons learned with the present system, an advanced APSTNG system is being designed and built that will be transportable and yield substantial increases in neutron output and target lifetime.
Analysis of neutron and gamma-ray streaming along the maze of NRCAM thallium production target room.
Raisali, G; Hajiloo, N; Hamidi, S; Aslani, G
2006-08-01
Study of the shield performance of a thallium-203 production target room has been investigated in this work. Neutron and gamma-ray equivalent dose rates at various points of the maze are calculated by simulating the transport of streaming neutrons, and photons using Monte Carlo method. For determination of neutron and gamma-ray source intensities and their energy spectrum, we have applied SRIM 2003 and ALICE91 computer codes to Tl target and its Cu substrate for a 145 microA of 28.5 MeV protons beam. The MCNP/4C code has been applied with neutron source term in mode n p to consider both prompt neutrons and secondary gamma-rays. Then the code is applied for the prompt gamma-rays as the source term. The neutron-flux energy spectrum and equivalent dose rates for neutron and gamma-rays in various positions in the maze have been calculated. It has been found that the deviation between calculated and measured dose values along the maze is less than 20%.
NASA Astrophysics Data System (ADS)
Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing
2018-03-01
The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .
Neutron production in coincidence with fragments from the 4Ca+H reactions at Elab=357 and 565 A MeV
NASA Astrophysics Data System (ADS)
Tuvà, C.; Albergo, S.; Boemi, D.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tricomi, A.; Tull, C. E.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
2000-04-01
In the frame of the Transport Collaboration neutrons in coincidence with charged fragments produced in the 40Ca+H reaction at Elab=357 and 565 A MeV have been measured at the Heavy Ion Spectrometer System (HISS) facility of the Lawrence Berkeley National Laboratory, using the multifunctional neutron spectrometer MUFFINS. The detector covered a narrow angular range about the beam in the forward direction (0°-3.2°). In this contribution we report absolute neutron production cross sections in coincidence with charged fragments (10⩽Z⩽20). The neutron multiplicities have been estimated from the comparison between the neutron cross sections, in coincidence with the fragments, and the elemental cross sections. We have found evidence for a pre-equilibrium emission of prompt neutrons in superposition to a `slower' deexcitation of the equilibrated remnant by emission of nucleons and fragments, as already seen in the inclusive rapidity distributions.
Measurement of 173Lu(n,γ) Cross Sections at DANCE
NASA Astrophysics Data System (ADS)
Roig, O.; Theroine, C.; Ebran, A.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Vieira, D. J.
2014-05-01
A highly gamma-radioactive target, 3.7 GBq, of 173Lu isotope was placed inside the DANCE array (Detector for Advanced Neutron Capture Experiments) at Los Alamos to study the radiative neutron capture on an unstable isotope. The 173Lu element was produced by naturalHf(p,xn) reactions following by beta-decays at the Isotope Production Facility (IPF). Measurements of radiative neutron capture cross section on 173Lu were achieved at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source facility over the neutron energy range from thermal up to 1 keV. A special configuration was necessary to perform the experiment using the DANCE [1] array due to the high gamma activity of the target. We will report on the target production, the experiment and the results obtained for the radiative neutron capture on 173Lu. The radiative capture cross section was obtained for the first time on this unstable nucleus. Some resonances have been characterized. A comparison with a recent data evaluation is presented.
Fast-Neutron Activation of Long-Lived Isotopes in Enriched Ge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Steven R.; Guiseppe, Vincente; LaRoque, B. H.
2010-11-16
We measured the production of 57Co, 54Mn, 68Ge, 65Zn, and 60Co in an sample of Ge enriched in isotope 76 due to high-energy neutron interactions. These isotopes are critical in understanding background in Ge detectors used for double-beta decay experiments. These isotopes are produced by cosmogenic-neutron interactions in the detectors while they reside on the Earth's surface. We compared the measured production to that predicted by cross-section calculations based on CEM03.02. The cross section calculations over-predict our measurements by approximately a factor of 2-3 depending on isotope. We then use the measured cosmic-ray neutron ux and our results to predictmore » the cosmogenic production rate with an accuracy near 15%.« less
Femtosecond Electron and Photon Pulses Facility in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimjaem, S.; Thongbai, C.; Jinamoon, V.
Femtosecond electron and photon pulses facility has been established as SURIYA project at the Fast Neutron Research Facility (FNRF). Femtosecond electron bunches can be generated from a system consisting of an RF gun with a thermionic cathode, an alpha magnet as an magnetic bunch compressor, and a linear accelerator as a post acceleration section. Femtosecond electron pulses can be used directly or used as a source to produce equally short electromagnetic (EM) radiation pulses via certain kind of radiation production processes. At SURIYA project, we are interested especially in production of radiation in Far-infrared (FIR) regime. At these wavelengths, themore » radiation from femtosecond electron pulses is emitted coherently resulting in high intensity radiation. Overview of the facility, the generation of femtosecond electron bunches, the theoretical background of coherent transition radiation and the recent experimental results will be presented and discussed in this paper.« less
Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars
NASA Technical Reports Server (NTRS)
Ruderman, Malvin; Chen, Kaiyou
1997-01-01
Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.
NEUTRON FLUX INTENSITY DETECTION
Russell, J.T.
1964-04-21
A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)
Response of six neutron survey meters in mixed fields of fast and thermal neutrons.
Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S
2013-10-01
Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.
Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; King, Michael J.
2016-01-01
Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.
Murari, A; Angelone, M; Bonheure, G; Cecil, E; Craciunescu, T; Darrow, D; Edlington, T; Ericsson, G; Gatu-Johnson, M; Gorini, G; Hellesen, C; Kiptily, V; Mlynar, J; Perez von Thun, C; Pillon, M; Popovichev, S; Syme, B; Tardocchi, M; Zoita, V L
2010-10-01
Notwithstanding the advances of the past decades, significant developments are still needed to satisfactorily diagnose “burning plasmas.” D–T plasmas indeed require a series of additional measurements for the optimization and control of the configuration: the 14 MeV neutrons, the isotopic composition of the main plasma, the helium ash, and the redistribution and losses of the alpha particles. Moreover a burning plasma environment is in general much more hostile for diagnostics than purely deuterium plasmas. Therefore, in addition to the development and refinement of new measuring techniques, technological advances are also indispensable for the proper characterization of the next generation of devices. On JET an integrated program of diagnostic developments, for JET future and in preparation for ITER, has been pursued and many new results are now available. In the field of neutron detection, the neutron spectra are now routinely measured in the energy range of 1–18 MeV by a time of flight spectrometer and they have allowed studying the effects of rf heating on the fast ions. A new analysis method for the interpretation of the neutron cameras measurements has been refined and applied to the data of the last trace tritium campaign (TTE). With regard to technological upgrades, chemical vapor deposition diamond detectors have been qualified both as neutron counters and as neutron spectrometers, with a potential energy resolution of about one percent. The in situ calibration of the neutron diagnostics, in preparation for the operation with the ITER-like wall, is also promoting important technological developments. With regard to the fast particles, for the first time the temperature of the fast particle tails has been obtained with a new high purity Germanium detector measuring the gamma emission spectrum from the plasma. The effects of toroidal Alfven eigenmodes modes and various MHD instabilities on the confinement of the fast particles have been determined with a combination of gamma ray cameras, neutral particle analyzers, scintillator probe, and Faraday cups. From a more technological perspective, various neutron filters have been tested to allow measurement of the gamma ray emission also at high level of neutron yield.
New developments in the diagnostics for the fusion products on JET in preparation for ITER (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murari, A.; Angelone, M.; Pillon, M.
Notwithstanding the advances of the past decades, significant developments are still needed to satisfactorily diagnose ''burning plasmas.'' D-T plasmas indeed require a series of additional measurements for the optimization and control of the configuration: the 14 MeV neutrons, the isotopic composition of the main plasma, the helium ash, and the redistribution and losses of the alpha particles. Moreover a burning plasma environment is in general much more hostile for diagnostics than purely deuterium plasmas. Therefore, in addition to the development and refinement of new measuring techniques, technological advances are also indispensable for the proper characterization of the next generation ofmore » devices. On JET an integrated program of diagnostic developments, for JET future and in preparation for ITER, has been pursued and many new results are now available. In the field of neutron detection, the neutron spectra are now routinely measured in the energy range of 1-18 MeV by a time of flight spectrometer and they have allowed studying the effects of rf heating on the fast ions.A new analysis method for the interpretation of the neutron cameras measurements has been refined and applied to the data of the last trace tritium campaign (TTE). With regard to technological upgrades, chemical vapor deposition diamond detectors have been qualified both as neutron counters and as neutron spectrometers, with a potential energy resolution of about one percent. The in situ calibration of the neutron diagnostics, in preparation for the operation with the ITER-like wall, is also promoting important technological developments. With regard to the fast particles, for the first time the temperature of the fast particle tails has been obtained with a new high purity Germanium detector measuring the gamma emission spectrum from the plasma. The effects of toroidal Alfven eigenmodes modes and various MHD instabilities on the confinement of the fast particles have been determined with a combination of gamma ray cameras, neutral particle analyzers, scintillator probe, and Faraday cups. From a more technological perspective, various neutron filters have been tested to allow measurement of the gamma ray emission also at high level of neutron yield.« less
Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC.
Helenius, Ilkka; Paukkunen, Hannu; Eskola, Kari J
2017-01-01
A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-[Formula: see text] direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-[Formula: see text] hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region.
IEC-Based Neutron Generator for Security Inspection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Linchun; Miley, George H.
2002-07-01
Large nuclear reactors are widely employed for electricity power generation, but small nuclear radiation sources can also be used for a variety of industrial/government applications. In this paper we will discuss the use of a small neutron source based on Inertial Electrostatic Confinement (IEC) of accelerated deuterium ions. There is an urgent need of highly effective detection systems for explosives, especially in airports. While current airport inspection systems are strongly based on X-ray technique, neutron activation including Thermal Neutron Analysis (TNA) and Fast Neutron Analysis (FNA) is powerful in detecting certain types of explosives in luggage and in cargoes. Basicmore » elements present in the explosives can be measured through the (n, n'?) reaction initiated by fast neutrons. Combined with a time-of-flight technique, a complete imaging of key elements, hence of the explosive materials, is obtained. Among the various neutron source generators, the IEC is an ideal candidate to meet the neutron activation analysis requirements. Compared with other accelerators and radioisotopes such as {sup 252}Cf, the IEC is simpler, can be switched on or off, and can reliably produce neutrons with minimum maintenance. Theoretical and experimental studies of a spherical IEC have been conducted at the University of Illinois. In a spherical IEC device, 2.54-MeV neutrons of {approx}10{sup 8} n/s via DD reactions over recent years or 14-MeV neutrons of {approx}2x10{sup 10} n/s via DT reactions can be obtained using an ion gun injection technique. The possibility of the cylindrical IEC in pulsed operation mode combining with pulsed FNA method would also be discussed. In this paper we examine the possibility of using an alternative cylindrical IEC configuration. Such a device was studied earlier at the University of Illinois and it provides a very convenient geometry for security inspection. However, to calculate the neutron yield precisely with this configuration, an understanding of the potential wall trapping and acceleration of ions is needed. The theory engaged is an extension of original analytic study by R.L. Hirsh on the potential well structure in a spherical IEC device, i.e. roughly a 'line' source of neutrons from a cylindrical IEC is a 'point' source from the spherical geometry. Thus our present study focuses on the cylindrical IEC for its convenient application in an FNA detecting system. The conceptual design and physics of ion trapping and re-circulation in a cylindrical IEC intended for neutron-based inspection system will be presented. (authors)« less
A Stringent Limit on the Mass Production Rate of r-process Elements in the Milky Way
NASA Astrophysics Data System (ADS)
Macias, Phillip; Ramirez-Ruiz, Enrico
2018-06-01
We analyze data from several studies of metal-poor stars in the Milky Way, focusing individually on the main r-process elements (Eu) as well as the lighter neutron-capture element Sr, at the neutron-magic peak N = 50. Because these elements were injected in an explosion, we calculate the mass swept up when the blast wave first becomes radiative, yielding a lower limit for the dilution of such elements and hence a lower limit on the ejecta mass that is incorporated into the next generation of stars. Our study demonstrates that in order to explain the largest enhancements in [Eu/Fe] observed in stars at low [Fe/H] metallicities, individual r-process production events must synthesize a minimum of roughly 10‑3 M ⊙ of r-process material. This provides a critical constraint on galactic chemical evolution models. We also show independently that if the site of Mg production is the same as that of Eu, individual injection events must synthesize up to ∼10‑3 M ⊙ of r-process material. On the other hand, demanding that Sr traces Mg production results in r-process masses per event of ∼10‑5 M ⊙ . This suggests that the astrophysical sites responsible for the genesis of the main r-process elements need to operate at a drastically reduced rate when compared to standard core-collapse supernovae.