Science.gov

Sample records for neutron induced prompt

  1. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  2. Prompt fission neutron spectra in fast-neutron-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Desai, V. V.; Nayak, B. K.; Saxena, A.; Suryanarayana, S. V.; Capote, R.

    2015-07-01

    Prompt fission neutron spectrum (PFNS) measurements for the neutron-induced fission of 238U are carried out at incident neutron energies of 2.0, 2.5, and 3.0 MeV, respectively. The time-of-flight technique is employed to determine the energy of fission neutrons. The prompt fission neutron energy spectra so obtained are analyzed using Watt parametrization to derive the neutron multiplicity and average prompt fission neutron energy. The present experimental PFNS data are compared with the evaluated spectra taken from the ENDF/B-VII.1 library and the predictive calculations carried out using the empire-3.2 (Malta) code with built-in Los Alamos (LA) and Kornilov PFNS models. The sensitivity of the empire-3.2 LA model-calculated PFNS to the nuclear level density parameter of the average fission fragment and to the total kinetic energy is investigated. empire-3.2 LA model PFNS calculations that use Madland 2006-recommended values [D. G. Madland, Nucl. Phys. A 772, 113 (2006), 10.1016/j.nuclphysa.2006.03.013] of the total kinetic energy and the level density parameter a =A /(10 ±0.5 ) compare very well to measured data at all incident neutron incident energies.

  3. Evaluation of the Prompt Fission Neutron Spectrum of Thermal-neutron Induced Fission in U-235

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.

    A new evaluation of the prompt fission neutron spectra (PFNS) for the neutron-induced fission of the U-235 nucleus is presented. By using differential data as "shape data" good consistency was achieved between selected sets of differential data. A fit of differential PFNS data with the generalised least-squares method using the GANDR code allowed the estimation of the uncertainties and correlations. All experimental data were consistently fitted in a model independent way giving a PFNS average energy of2.000 MeV with an estimated 9 keV uncertainty.

  4. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    DOE PAGES

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmarkmore » calculations using this evaluation are briefly discussed.« less

  5. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    SciTech Connect

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; Kahler, Albert Comstock; Rising, Michael Evan; White, Morgan Curtis

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  6. Prompt γ-ray production in neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2013-04-01

    Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.

  7. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  8. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  9. Investigations on neutron-induced prompt gamma ray analysis of bulk samples.

    PubMed

    Dokhale, P A; Csikai, J; Oláh, L

    2001-06-01

    A systematic investigation was carried out for the improvement of the prompt gamma interrogation method used for contraband detection by the pulsed fast/thermal neutron analysis (PFTNA) technique. Optimizations of source detector shielding and geometry, role of the type and dimension of the gamma detector, attenuation of neutrons and gamma rays in bulky samples were also studied. Results obtained for both the shielding materials and elemental content of cocaine simulants have been compared with the values calculated by the MCNP-4A code.

  10. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    SciTech Connect

    Mitra,S.

    2008-11-17

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

  11. Comparative measurement of prompt fission γ -ray emission from fast-neutron-induced fission of 235U and 238U

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Wilson, J. N.; Halipré, P.; Oberstedt, A.; Oberstedt, S.; Marini, P.; Schmitt, C.; Rose, S. J.; Siem, S.; Fallot, M.; Porta, A.; Zakari, A.-A.

    2015-09-01

    Prompt fission γ -ray (PFG) spectra have been measured in a recent experiment with the novel directional fast-neutron source LICORNE at the ALTO facility of the IPN Orsay. These first results from the facility involve the comparative measurement of prompt γ emission in fast-neutron-induced fission of 235U and 238U . Characteristics such as γ multiplicity and total and average radiation energy are determined in terms of ratios between the two systems. Additionally, the average photon energies were determined and compared with recent data on thermal-neutron-induced fission of 235U . PFG spectra are shown to be similar within the precision of the present measurement, suggesting that the extra incident energy does not significantly impact the energy released by prompt γ rays. The origins of some small differences, depending on either the incident energy or the target mass, are discussed. This study demonstrates the potential of the present approach, combining an innovative neutron source and new-generation detectors, for fundamental and applied research on fission in the near future.

  12. Evaluation of the 239Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of 239Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  13. Prompt fission neutron spectra of actinides

    DOE PAGES

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; ...

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  14. Prompt fission neutron spectrum of actinides

    SciTech Connect

    Capote, R.; Chen, Y. -J.; Hambsch, F. J.; Jurado, B.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; Otuka, N.; Pronyaev, V. G.; Saxena, A.; Schmidt, K. H.; Shcherbakov, O. A.; Shu, N. -C.; Smith, D. L.; Talou, P.; Trkov, A.; Tudora, A. C.; Vogt, R.; Vorobyev, A. S.

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  15. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  16. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  17. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  18. Prompt Fission Neutron Spectra of Actinides

    SciTech Connect

    Capote, R; Chen, Y J; Hambsch, F J; Kornilov, N V; Lestone, J P; Litaize, O; Morillon, B; Neudecker, D; Oberstedt, S; Ohsawa, T; Smith, D. L.

    2016-01-01

    The energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) “Evaluation of Prompt Fission Neutron Spectra of Actinides”was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei. The following technical areas were addressed: (i) experiments and uncertainty quantification (UQ): New data for neutron-induced fission of 233U, 235U, 238U, and 239Pu have been measured, and older data have been compiled and reassessed. There is evidence from the experimental work of this CRP that a very small percentage of neutrons emitted in fission are actually scission neutrons; (ii) modeling: The Los Alamos model (LAM) continues to be the workhorse for PFNS evaluations. Monte Carlo models have been developed that describe the fission phenomena microscopically, but further development is needed to produce PFNS evaluations meeting the uncertainty targets; (iii) evaluation methodologies: PFNS evaluations rely on the use of the least-squares techniques for merging experimental and model data. Considerable insight was achieved on how to deal with the problem of too small uncertainties in PFNS evaluations. The importance of considering that all experimental PFNS data are “shape” data was stressed; (iv) PFNS evaluations: New evaluations, including covariance data, were generated for major actinides including 1) non-model GMA evaluations of the 235U(nth,f), 239Pu(nth,f), and 233U(nth,f) PFNS based exclusively on experimental data (0.02 ≤ E ≤ 10 MeV), which resulted in PFNS average energies E of 2.00±0.01, 2.073±0.010, and 2.030±0.013 MeV, respectively; 2) LAM evaluations of neutron-induced fission spectra on uranium and plutonium targets with improved UQ for incident energies from thermal up to 30 MeV; and 3) Point-by-Point calculations for 232Th, 234U and 237Np targets; and (v) data

  19. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    DOE PAGES

    Neudecker, D.; Talou, P.; Kawano, T.; ...

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.« less

  20. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    SciTech Connect

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  1. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    DOE PAGES

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; ...

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with themore » improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.« less

  2. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    SciTech Connect

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; Lee, Hye Young; White, Morgan Curtis; Rising, Michael Evans

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.

  3. The Need for Precise and Well-documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission of {sup 239}Pu

    SciTech Connect

    Neudecker, D. Taddeucci, T.N.; Haight, R.C.; Lee, H.Y.; White, M.C.; Rising, M.E.

    2016-01-15

    The spectrum of neutrons emitted promptly after {sup 239}Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the {sup 239}Pu PFNS as a ratio to either the {sup 235}U or {sup 252}Cf PFNS.

  4. Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples

    SciTech Connect

    Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C.; Wilde, P.

    2002-12-05

    Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.

  5. Prompt neutron multiplicities for the transplutonium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1985-01-01

    The direct determination of the average prompt neutron emission values is reviewed, and a method of comparing different sites of neutron emission multiplicity distribution values is described. Measured and recommended values are tabulated for these nuclides: /sup 241/Am, /sup 242/Am, /sup 242/Cm, /sup 243/Cm, /sup 244/Cm, /sup 246/Cm, /sup 247/Cm, /sup 248/Cm, /sup 250/Cm, /sup 245/Cm, /sup 249/Bk, /sup 246/Cf, /sup 249/Cf, /sup 250/Cf, /sup 252/Cf, /sup 254/Cf, /sup 251/Cf, /sup 253/Es, /sup 254/Es, /sup 244/Fm, /sup 246/Fm, /sup 255/Fm, /sup 252/No, /sup 254/Fm, /sup 256/Fm, /sup 257/Fm. 59 refs., 24 tabs. (LEW)

  6. Introducing Nuclear Data Evaluations of Prompt Fission Neutron Spectra

    SciTech Connect

    Neudecker, Denise

    2015-06-17

    Nuclear data evaluations provide recommended data sets for nuclear data applications such as reactor physics, stockpile stewardship or nuclear medicine. The evaluated data are often based on information from multiple experimental data sets and nuclear theory using statistical methods. Therefore, they are collaborative efforts of evaluators, theoreticians, experimentalists, benchmark experts, statisticians and application area scientists. In this talk, an introductions is given to the field of nuclear data evaluation at the specific example of a recent evaluation of the outgoing neutron energy spectrum emitted promptly after fission from 239Pu and induced by neutrons from thermal to 30 MeV.

  7. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  8. Detection of thermal-induced prompt fission neutrons of highly-enriched uranium: A position sensitive technique

    NASA Astrophysics Data System (ADS)

    Tartaglione, A.; Di Lorenzo, F.; Mayer, R. E.

    2009-07-01

    Cargo interrogation in search for special nuclear materials like highly-enriched uranium or 239Pu is a first priority issue of international borders security. In this work we present a thermal-pulsed neutron-based approach to a technique which combines the time-of-flight method and demonstrates a capability to detect small quantities of highly-enriched uranium shielded with high or low Z materials providing, in addition, a manner to know the approximate position of the searched material.

  9. Average neutronic properties of prompt fission products

    SciTech Connect

    Foster, D.G. Jr.; Arthur, E.D.

    1982-02-01

    Calculations of the average neutronic properties of the ensemble of fission products producted by fast-neutron fission of /sup 235/U and /sup 239/Pu, where the properties are determined before the first beta decay of any of the fragments, are described. For each case we approximate the ensemble by a weighted average over 10 selected nuclides, whose properties we calculate using nuclear-model parameters deduced from the systematic properties of other isotopes of the same elements as the fission fragments. The calculations were performed primarily with the COMNUC and GNASH statistical-model codes. The results, available in ENDF/B format, include cross sections, angular distributions of neutrons, and spectra of neutrons and photons, for incident-neutron energies between 10/sup -5/ eV and 20 MeV. Over most of this energy range, we find that the capture cross section of /sup 239/Pu fission fragments is systematically a factor of two to five greater than for /sup 235/U fission fragments.

  10. Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons

    NASA Astrophysics Data System (ADS)

    Festa, G.; Arcidiacono, L.; Pappalardo, A.; Minniti, T.; Cazzaniga, C.; Scherillo, A.; Andreani, C.; Senesi, R.

    2016-03-01

    We present a concept of integrated measurements for isotope identification which takes advantage of the time structure of spallation neutron sources for time resolved γ spectroscopy. Time resolved Prompt Gamma Activation Analysis (T-PGAA) consists in the measurement of gamma energy spectrum induced by the radioactive capture as a function of incident neutron Time Of Flight (TOF), directly related with the energy of incident neutrons. The potential of the proposed concept was explored on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (U.K.). Through this new technique we show an increase in the sensitivity to specific elements of archaeometric relevance, through incident neutron energy selection in prompt γ spectra for multicomponent samples. Results on a standard bronze sample are presented.

  11. Transuranic waste assay by neutron interrogation and online prompt and delayed neutron measurement

    NASA Astrophysics Data System (ADS)

    Raoux, A.-C.; Lyoussi, A.; Passard, C.; Denis, C.; Loridon, J.; Misraki, J.; Chany, P.

    2003-06-01

    A comprehensive program is currently underway in several laboratories for the development of sensitive and non-destructive techniques for the quantification of transuranics in low and intermediate radioactive waste packages. This paper describes the method being developed to quantify different isotopes separately by using online prompt and delayed neutron measurements from the fission of isotopes such as 235U, 238U, 239Pu and 241Pu. The system uses a new generation 14 MeV pulsed neutron generator the emission of which is about 2×10 9 n s -1. The association of the differential die-away technique technique [W.E. Kunz, J.D. Atencio, J.T. Caldwell, A 1 nCi/g sensitivity transuranic waste assay system using pulsed neutron interrogation, INMM Annual meeting, Palm Beach, Florida. LA-UR-90-1794, CONF-800655-4 (1980)] (Differential Die-away Technique) and the SPHINCS method [Nucl. Instr. and Meth. B 160 (2000) 280-289] (Sequential PHoton Interrogation and Neutron Counting Signatures) allows measurement of the prompt and delayed neutrons from thermal and fast-induced fission after each interrogating pulse. This method is demonstrated by the measurement of uranium and plutonium samples. Samples of U + Pu have also been analysed inside a non-active drum of bituminized coating for the purpose of demonstrating the feasibility of the separation of 235U from 239Pu by this method. Moreover, the influence of 238U and the necessity of correcting its effects have been studied. Finally, the purpose is to determine the best estimated value for each mass of interest associated with its own standard deviation and statistical distribution. Hence a specific method, based on the Monte Carlo trials, has been developed to estimate masses and associated uncertainties for each isotope of interest.

  12. A New Method of Prompt Fission Neutron Energy Spectrum Unfolding

    SciTech Connect

    Zeynalova, O. V.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.

    2010-11-25

    The prompt neutron emission in spontaneous fission of {sup 252}Cf has been investigated applying digital signal electronics along with associated digital signal processing algorithms. The goal was to find out the reasons of a long time existing discrepancy between theoretical calculations and the measurements of prompt fission neutron (PFN) emission dependence on the total kinetic energy (TKE) of fission fragments (FF). On the one hand the {sup 252}Cf(sf) reaction is one of the main references for nuclear data, on the other hand the understanding of PFN emission mechanism is very important for nuclear fission theory. Using a twin Frisch-grid ionization chamber for fission fragment (FF) detection and a NE213-equivalent neutron detector in total about 10{sup 7} fission fragment-neutron coincidences have been registered. Fission fragment kinetic energy, mass and angular distribution, neutron time-of-flight and pulse shape have been investigated using a 12 bit waveform digitizer. The signal waveforms have been analyzed using digital signal processing algorithms. For the first time the dependence of the number of emitted neutrons as a function of total kinetic energy (TKE) of the fragments is in very good agreement with theoretical calculations in the range of TKE from 140-220 MeV.

  13. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  14. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  15. The LANL/LLNL Prompt Fission Neutron Spectrum Program at LANSCE and Approach to Uncertainties

    SciTech Connect

    Haight, R.C.; Wu, C.Y.; Lee, H.Y.; Taddeucci, T.N.; Perdue, B.A.; O'Donnell, J.M.; Fotiades, N.; Devlin, M.; Ullmann, J.L.; Bredeweg, T.A.; Jandel, M.; Nelson, R.O.; Wender, S.A.; Neudecker, D.; Rising, M.E.; Mosby, S.; Sjue, S.; White, M.C.; Bucher, B.; Henderson, R.

    2015-01-15

    New data on the prompt fission neutron spectra (PFNS) from neutron-induced fission with higher accuracies are needed to resolve discrepancies in the literature and to address gaps in the experimental data. The Chi-Nu project, conducted jointly by LANL and LLNL, aims to measure the shape of the PFNS for fission of {sup 239}Pu induced by neutrons from 0.5 to 20 MeV with accuracies of 3–5% in the outgoing energy from 0.1 to 9 MeV and 15% from 9 to 12 MeV and to provide detailed experimental uncertainties. Neutrons from the WNR/LANSCE neutron source are being used to induce fission in a Parallel-Plate Avalanche Counter (PPAC). Two arrays of neutron detectors are used to cover the energy range of neutrons emitted promptly in the fission process. Challenges for the present experiment include background reduction, use of {sup 239}Pu in a PPAC, and understanding neutron detector response. Achieving the target accuracies requires the understanding of many systematic uncertainties. The status and plans for the future will be presented.

  16. Impact of prompt-neutron corrections on final fission-fragment distributions

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Pomp, S.; Oberstedt, S.

    2012-11-01

    Background: One important quantity in nuclear fission is the average number of prompt neutrons emitted from the fission fragments, the prompt neutron multiplicity, ν¯. The total number of prompt fission neutrons, ν¯tot, increases with increasing incident neutron energy. The prompt-neutron multiplicity is also a function of the fragment mass and the total kinetic energy of the fragmentation. Those data are only known in sufficient detail for a few thermal-neutron-induced fission reactions on, for example, 233,235U and 239Pu. The enthralling question has always been asked how the additional excitation energy is shared between the fission fragments. The answer to this question is important in the analysis of fission-fragment data taken with the double-energy technique. Although in the traditional approach the excess neutrons are distributed equally across the mass distribution, a few experiments showed that those neutrons are predominantly emitted by the heavy fragments.Purpose: We investigated the consequences of the ν(A,TKE,En) distribution on the fission fragment observables.Methods: Experimental data obtained for the 234U(n,f) reaction with a Twin Frisch Grid Ionization Chamber, were analyzed assuming two different methods for the neutron evaporation correction. The effect of the two different methods on the resulting fragment mass and energy distributions is studied.Results: We found that the preneutron mass distributions obtained via the double-energy technique become slightly more symmetric, and that the impact is larger for postneutron fission-fragment distributions. In the most severe cases, a relative yield change up to 20-30% was observed.Conclusions: We conclude that the choice of the prompt-neutron correction method has strong implications on the understanding and modeling of the fission process and encourages new experiments to measure fission fragments in coincidence with prompt fission neutrons. Even more, the correct determination of postneutron

  17. Prompt merger collapse and the maximum mass of neutron stars.

    PubMed

    Bauswein, A; Baumgarte, T W; Janka, H-T

    2013-09-27

    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.

  18. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-29

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the {sup 252}Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the {sup 252}Cf(SF) reaction with data available from literature.

  19. RADSAT Benchmarks for Prompt Gamma Neutron Activation Analysis Measurements

    SciTech Connect

    Burns, Kimberly A.; Gesh, Christopher J.

    2011-07-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. High-resolution gamma-ray spectrometers are used in these applications to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems. The main purpose of this work is to benchmark several problems modeled with RADSAT and MCNP to experimental data. Additionally, the cross section libraries for RADSAT are updated to include ENDF/B-VII cross sections. Preliminary findings show promising results when compared to MCNP and experimental data, but also areas where additional inquiry and testing are needed. The potential benefits and shortcomings of the multi-group-based approach are discussed in terms of accuracy and computational efficiency.

  20. Coincidence Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    R.P. gandner; C.W. Mayo; W.A. Metwally; W. Zhang; W. Guo; A. Shehata

    2002-11-10

    The normal prompt gamma-ray neutron activation analysis for either bulk or small beam samples inherently has a small signal-to-noise (S/N) ratio due primarily to the neutron source being present while the sample signal is being obtained. Coincidence counting offers the possibility of greatly reducing or eliminating the noise generated by the neutron source. The present report presents our results to date on implementing the coincidence counting PGNAA approach. We conclude that coincidence PGNAA yields: (1) a larger signal-to-noise (S/N) ratio, (2) more information (and therefore better accuracy) from essentially the same experiment when sophisticated coincidence electronics are used that can yield singles and coincidences simultaneously, and (3) a reduced (one or two orders of magnitude) signal from essentially the same experiment. In future work we will concentrate on: (1) modifying the existing CEARPGS Monte Carlo code to incorporate coincidence counting, (2) obtaining coincidence schemes for 18 or 20 of the common elements in coal and cement, and (3) optimizing the design of a PGNAA coincidence system for the bulk analysis of coal.

  1. The LANL/LLNL Program to Measure Prompt Fission Neutron Spectra at LANSCE

    NASA Astrophysics Data System (ADS)

    Haight, Robert; Wu, Ching Yen; Lee, Hye Young; Taddeucci, Terry; Mosby, Shea; O'Donnell, John; Fotiades, Nikolaos; Devlin, Mattew; Ullmann, John; Nelson, Ronald; Wender, Stephen; White, Morgan; Solomon, Clell; Neudecker, Denise; Talou, Patrick; Rising, Michael; Bucher, Brian; Buckner, Matthew; Henderson, Roger

    2015-10-01

    Accurate data on the spectrum of neutrons emitted in neutron-induced fission are needed for applications and for a better understanding of the fission process. At LANSCE we have made important progress in understanding systematic uncertainties and in obtaining data for 235U on the low-energy part of the prompt fission neutron spectra (PFNS), a particularly difficult region because down-scattered neutrons go in this direction. We use a double time-of-flight technique to determine energies of incoming and outgoing neutrons. With data acquisition via waveform digitizers, accidental coincidences between fission chamber and neutron detector are measured to high statistical accuracy and then subtracted from measured events. Monte Carlo simulations with high performance computers have proven to be essential in the design to minimize neutron scattering and in calculating detector response. Results from one of three approaches to analyzing the data will be presented. This work is funded by the US Department of Energy, National Nuclear Security Administration and Office of Nuclear Physics.

  2. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  3. Event-by-Event Study of Prompt Neutrons from 239Pu

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-01-15

    Employing a recently developed Monte Carlo model, we study the fission of {sup 240}Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1 MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.

  4. Event-by-event study of prompt neutrons from 239Pu(n,f)

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2009-07-23

    Employing a recently developed Monte-Carlo model, we study the fission of {sup 240}Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte-Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.

  5. Current Issues in Nuclear Data Evaluation Methodology: {sup 235}U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    SciTech Connect

    Trkov, A.; Capote, R.; Pronyaev, V.G.

    2015-01-15

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the {sup 235}U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as ”shape data” good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched {sup 235}U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission ν{sup ¯} at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for {sup 233,235}U, {sup 239}Pu and {sup 252}Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  6. Current Issues in Nuclear Data Evaluation Methodology: 235U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.; Pronyaev, V. G.

    2015-01-01

    Issues in evaluation methodology of the prompt fission neutron spectra (PFNS) and neutron multiplicity for the thermal-neutron-induced fission of the 235U are discussed. The inconsistency between the experimental differential and integral data is addressed. By using differential data as "shape data" good consistency was achieved between available sets of differential data. Integral dosimetry data have been used to define the PFNS slope at high outgoing neutron energies, where the quality of the differential data is poor. The inclusion into the fit of measured integral (spectrum-averaged) cross sections had a very small impact in the region where differential PFNS data are abundant and accurate, but removed the discrepancy with integral data at higher neutron emission energies. All experimental data are consistently fitted giving a PFNS average energy of 2.008 MeV. The impact on criticality prediction of the newly evaluated PFNS was tested. The highly enriched 235U solution assemblies with high leakage HEU-SOL-THERM-001 and HEU-SOL-THERM-009 benchmarks are the most sensitive to the PFNS. Criticality calculations for those solutions show a significant increase in reactivity if the average neutron energy of the fission neutrons is reduced from the ENDF/B-VI.5 value of 2.03 MeV. The proposed reduction of the PFNS average energy by 1.1% can be compensated by reducing the average number of neutrons per fission νbar at the thermal energy to the Gwin et al. measured value. The simple least-squares PFNS fit was confirmed by a more sophisticated combined fit of differential PFNS data for 233,235U, 239Pu and 252Cf nuclides with the generalised least-squares method using the GMA and GANDR codes.

  7. A new design of fission detector for prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy spectroscopy. Correlated FF kinetic energies, their masses and the angle of the fission axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical algorithms were provided along with formulae derived for fission axis angles determination. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event by event analysis of individual fission reactions from non point fissile source. Position sensitive neutron induced fission detector for neutron imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  8. Measurement of prompt neutron generation time at the VIR-2M pulsed nuclear reactor

    NASA Astrophysics Data System (ADS)

    Glukhov, L. Yu.; Kotkov, S. P.; Kuznetsov, M. S.; Chursin, S. S.

    2016-12-01

    The prompt neutron generation time is measured in the core of the VIR-2M research nuclear reactor. The measurements are performed using the Babala method while the reactor is in the subcritical state. The VIR-2M reactor and the relevant experimental equipment are briefly described, and the experimental procedure and data processing technique are presented. It is shown that the prompt neutron generation time with empty experimental channels is 35 ± 1 μs.

  9. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    PubMed

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences.

  10. The Prompt Gamma Neutron Activation Analysis Facility at ICN-Pitesti

    SciTech Connect

    Barbos, D.; Paunoiu, C.; Mladin, M.; Cosma, C.

    2008-08-14

    PGNAA is a very widely applicable technique for determining the presence and amount of many elements simultaneously in samples ranging in size from micrograms to many grams. PGNAA is characterized by its capability for nondestructive multi-elemental analysis and its ability to analyse elements that cannot be determined by INAA. By means of this PGNAA method we are able to increase the performance of INAA method. A facility has been developed at Institute for Nuclear Research-Pitesti so that the unique features of prompt gamma-ray neutron activation analysis can be used to measure trace and major elements in samples. The facility is linked at the radial neutron beam tube at ACPR-TRIGA reactor. During the PGNAA-facility is in use the ACPR reactor will be operated in steady-state mode at 250 KW maximum power. The facility consists of a radial beam-port, external sample position with shielding, and induced prompt gamma-ray counting system.Thermal neutron flux with energy lower than cadmium cut-off at the sample position was measured using thin gold foil is: {phi}{sub scd} = 1.10{sup 6} n/cm{sup 2}/s with a cadmium ratio of:80.The gamma-ray detection system consist of an HpGe detector of 16% efficiency (detector model GC1518) with 1.85 keV resolution capability. The HpGe is mounted with its axis at 90 deg. with respect to the incident neutron beam at distance about 200mm from the sample position. To establish the performance capabilities of the facility, irradiation of pure element or sample compound standards were performed to identify the gama-ray energies from each element and their count rates.

  11. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...

  12. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    SciTech Connect

    Dahing, Lahasen Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  13. Determination of boron in materials by cold neutron prompt gamma-ray activation analysis.

    PubMed

    Paul, Rick L

    2005-01-01

    An instrument for cold neutron prompt gamma-ray activation analysis (PGAA), located at the NIST Center for Neutron Research (NCNR), has proven useful for the measurement of boron in a variety of materials. Neutrons, moderated by passage through liquid hydrogen at 20 K, pass through a (58)Ni coated guide to the PGAA station in the cold neutron guide hall of the NCNR. The thermal equivalent neutron fluence rate at the sample position is 9 x 10(8) cm(-2) s(-1). Prompt gamma rays are measured by a cadmium- and lead-shielded high-purity germanium detector. The instrument has been used to measure boron mass fractions in minerals, in NIST SRM 2175 (Refractory Alloy MP-35-N) for certification of boron, and most recently in semiconductor-grade silicon. The limit of detection for boron in many materials is <10 ng g(-1).

  14. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron.

    PubMed

    Fantidis, J G; Nicolaou, G E; Potolias, C; Vordos, N; Bandekas, D V

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources ((241)Am/Be, (252)Cf, (241)Am/B, and DT neutron generator). Among the different systems the (252)Cf neutron based PGNAA system has the best performance.

  15. The average number of prompt neutrons and the distributions of prompt neutron emission number for spontaneous fission of plutonium-240, curium-242, and curium-244

    SciTech Connect

    Huanqiao, Z.; Shaoming, L.; Shengyue, D.; Zuhau, L.

    1984-03-01

    (The average number of prompt neutron v /SUB p/ and the distributions of prompt neutron number probability P(v) for spontaneous fission of /sup 240/Pu, /sup 242/Cm, and /sup 244/Cm relative to v /SUB p/ (/sup 252/Cf) have been measured using a large gadolinium-loaded liquid scintillation counter with a coincidence method.)The results were v /SUB p/ (/sup 240/Pu)=2.141+ or 0.016, v /SUB p/ (/sup 242/Cm)=2.562 + or - 0.020, and v /SUB p/ (/sup 244/Cm)= 2.721 + or - 0.021. (The measured distributions of prompt neutron number were fitted with Gaussian curves by a weighted least-squares method.) The widths of Gaussian distribution are 1.149 + or - 0.047, 1.159 + or - 0.074, and 1.175 + or 0.098 for /sup 240/Pu, /sup 242/Cm, and /sup 244/Cm, respectively. (The results as well as a previous measurement of spontaneous fission of /sup 252/Cf show the linear variation of sigma with v /SUB p/ at the first order of approximation.) The data were fitted by a least-squares method, and the result is given by a sigma= 0.980+0.076v /SUB p/ . This fact demonstrates the trend that the width of the excitation energy distribution of fission fragments increases with the average excitation energy of the fission fragments in the range of nuclides mentioned above.

  16. Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter

    NASA Astrophysics Data System (ADS)

    Priyada, P.; Ashwini, U.; Sarkar, P. K.

    2016-05-01

    The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10-8 MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome.

  17. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    NASA Astrophysics Data System (ADS)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  18. Prompt neutron fission spectrum mean energies for the fissile nuclides and /sup 252/Cf

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of /sup 252/Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, /sup 233/U, /sup 235/U, /sup 239/Pu, and /sup 241/Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs. (LEW)

  19. Theoretical Calculation of Prompt Neutron Spectra from Fission of Curium Isotopes

    NASA Astrophysics Data System (ADS)

    Ohsawa, Takaaki; Tani, Kazuhiro; Kishimoto, Yasufumi

    2003-06-01

    Prompt neutron spectra for Cm-isotopes (242Cm, 243Cm, 244Cm, 245Cm, 246Cm, 248Cm) were calculated on the basis of a modified version of the Madland-Nix model combined with a multimodal fission model. The predicted spectra were found to be in fair agreement with recent data. A slight enhancement of the low-energy component of the spectrum was interpreted in terms of neutron emission during fragment acceleration.

  20. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  1. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection.

  2. Improvement in the practical implementation of neutron source strength calibration using prompt gamma rays.

    PubMed

    Khabaz, Rahim; Rene Vega-Carrillo, Hector

    2013-08-01

    In this study, the neutron emission rate from neutron sources using prompt gamma rays in hydrogen was determined, and several improvements were applied. Using Monte Carlo calculations, the best positions for the source, moderator and detector relative to each other were selected. For (241)Am-Be and (252)Cf sources, the sizes for polyethylene spheres with the highest efficiency were 12- and 10-inch, respectively. In addition, a new shielding cone was designed to account for scattered neutrons and gamma rays. The newly designed shielding cone, which is 45 cm in length, provided suitable attenuation for the source radiation.

  3. Monte Carlo Predictions of Prompt Fission Neutrons and Photons: a Code Comparison

    NASA Astrophysics Data System (ADS)

    Talou, P.; Kawano, T.; Stetcu, I.; Vogt, R.; Randrup, J.

    2014-04-01

    This paper reports on initial comparisons between the LANL CGMF and LBNL/LLNL FREYA codes, which both aim at computing prompt fission neutrons and gammas. While the methodologies used in both codes are somewhat similar, the detailed implementations and physical assumptions are different. We are investigating how some of these differences impact predictions.

  4. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  5. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  6. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    NASA Astrophysics Data System (ADS)

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. They are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integral cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributions in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.

  7. Spin distribution in neutron induced preequilibrium reactions

    SciTech Connect

    Dashdorj, D; Kawano, T; Chadwick, M; Devlin, M; Fotiades, N; Nelson, R O; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Macri, R; Younes, W

    2005-10-04

    The preequilibrium reaction mechanism makes an important contribution to neutron-induced reactions above E{sub n} {approx} 10 MeV. The preequilibrium process has been studied exclusively via the characteristic high energy neutrons produced at bombarding energies greater than 10 MeV. They are expanding the study of the preequilibrium reaction mechanism through {gamma}-ray spectroscopy. Cross-section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 250 MeV) on a {sup 48}Ti sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Residual state population was predicted using the GNASH reaction code, enhanced for preequilibrium. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshback, Kerman, and Koonin (FKK). The multistep direct part of the FKK theory was calculated for a one-step process. The FKK preequilibrium spin distribution was incorporated into the GNASH calculations and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without preequilibrium effects is significant.

  8. Prompt fission neutron spectra of n+235U above the (n,nf) fission threshold

    NASA Astrophysics Data System (ADS)

    Shu, Neng-Chuan; Jia, Min; Chen, Yong-Jing; Liu, Ting-Jin

    2015-05-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. Supported by National Natural Science Foundation of China (11205246, 91126010, U1230127, 91226102), IAEA CRP (15905), and Defense Industrial Technology Development Program (B0120110034)

  9. Prompt and Delayed Inelastic Scattering Reactions from Fission Neutron PGAA - First Results of FaNGaS

    SciTech Connect

    Rossbach, M.; Randriamalala, T.; Revay, Zs.; Kudejova, P.; Soelradel, S.; Wagner, F.

    2015-07-01

    The new instrument Fast Neutron Gamma Spectroscopy (FaNGaS) has been installed at the SR10 beam line of the FRM II Research Reactor in Garching and tested successfully. Complimentary to cold neutron PGAA, with FaNGaS inelastic scattering reactions induced by fission neutrons can be studied. Gamma lines from (n,n'γ) reactions up to now have been rarely studied and no adequate compilation of the emitted gamma energies exist. In developing nondestructive analytical techniques using neutron generator based PGAA such data are badly needed for quantification of heavy metals and actinides in e.g. nuclear waste or safeguards samples. A number of elements and relevant actinides have been irradiated in the fast neutron beam SR10 at the FRM II reactor in Garching, Germany. A heavily shielded 50% eff. HPGe detector perpendicular to the beam is looking at the samples exposed to 2.3 E8 cm{sup -2}s{sup -1} fission neutrons. Prompt gamma spectra have been taken and evaluated using the available data in scattered sources. Additional gamma lines have been detected and are being compiled to create a data base for (n,n') reactions. Particular emphasis is given on actinides including {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 242}Pu and {sup 241}Am. Some examples will be given and first results will be discussed in this contribution. (authors)

  10. Determination of hydrogen in niobium by cold neutron prompt gamma ray activation analysis and neutron incoherent scattering

    SciTech Connect

    R.L. Paul; H.H. Cheu-Maya; G.R. Myneni

    2002-11-01

    The presence of trace amounts of hydrogen in niobium is believed to have a detrimental effect on the mechanical and superconducting properties. Unfortunately, few techniques are capable of measuring hydrogen at these levels. We have developed two techniques for measuring hydrogen in materials. Cold neutron prompt gamma-ray activation analysis (PGAA) has proven useful for the determination of hydrogen and other elements in a wide variety of materials. Neutron incoherent scattering (NIS), a complementary tool to PGAA, has been used to measure trace hydrogen in titanium. Both techniques were used to study the effects of vacuum heating and chemical polishing on the hydrogen content of superconducting niobium.

  11. Database of prompt gamma rays from slow neutron capture forelemental analysis

    SciTech Connect

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

    2004-12-31

    The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative

  12. Preliminary Evaluation and Uncertainty Quantification of the Prompt Fission Neutron Spectrum of {sup 239}Pu

    SciTech Connect

    Neudecker, D.; Talou, P.; Taddeucci, T.N.; Haight, R.C.; Kawano, T.; Lee, H.Y.; Smith, D.L.; Capote, R.; Rising, M.E.; White, M.C.

    2015-01-15

    Low evaluated uncertainties were obtained in a previous evaluation of the {sup 239}Pu prompt fission neutron spectrum and associated covariances for incident neutrons of 0.5 MeV, which were enlarged a-posteriori before being incorporated into ENDF/B-VII.1. These low evaluated uncertainties triggered an in-depth study and improved estimate of experimental as well as model uncertainties. Here, we will summarize these efforts and show that the improved estimate of experimental and model uncertainties leads to corresponding evaluated uncertainties in good agreement with uncertainties obtained in a statistical analysis based primarily on experimental information.

  13. Preliminary Evaluation and Uncertainty Quantification of the Prompt Fission Neutron Spectrum of 239Pu

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Taddeucci, T. N.; Haight, R. C.; Kawano, T.; Lee, H. Y.; Smith, D. L.; Capote, R.; Rising, M. E.; White, M. C.

    2015-01-01

    Low evaluated uncertainties were obtained in a previous evaluation of the 239Pu prompt fission neutron spectrum and associated covariances for incident neutrons of 0.5 MeV, which were enlarged a-posteriori before being incorporated into ENDF/B-VII.1. These low evaluated uncertainties triggered an in-depth study and improved estimate of experimental as well as model uncertainties. Here, we will summarize these efforts and show that the improved estimate of experimental and model uncertainties leads to corresponding evaluated uncertainties in good agreement with uncertainties obtained in a statistical analysis based primarily on experimental information.

  14. Estimation of Covariances on Prompt Fission Neutron Spectra and Impact of the PFNS Model on the Vessel Fluence

    NASA Astrophysics Data System (ADS)

    Berge, Léonie; Litaize, Olivier; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Pénéliau, Yannick; Regnier, David

    2016-02-01

    As the need for precise handling of nuclear data covariances grows ever stronger, no information about covariances of prompt fission neutron spectra (PFNS) are available in the evaluated library JEFF-3.2, although present in ENDF/B-VII.1 and JENDL-4.0 libraries for the main fissile isotopes. The aim of this work is to provide an estimation of covariance matrices related to PFNS, in the frame of some commonly used models for the evaluated files, such as the Maxwellian spectrum, the Watt spectrum, or the Madland-Nix spectrum. The evaluation of PFNS through these models involves an adjustment of model parameters to available experimental data, and the calculation of the spectrum variance-covariance matrix arising from experimental uncertainties. We present the results for thermal neutron induced fission of 235U. The systematic experimental uncertainties are propagated via the marginalization technique available in the CONRAD code. They are of great influence on the final covariance matrix, and therefore, on the spectrum uncertainty band width. In addition to this covariance estimation work, we have also investigated the importance on a reactor calculation of the fission spectrum model choice. A study of the vessel fluence depending on the PFNS model is presented. This is done through the propagation of neutrons emitted from a fission source in a simplified PWR using the TRIPOLI-4® code. This last study includes thermal fission spectra from the FIFRELIN Monte-Carlo code dedicated to the simulation of prompt particles emission during fission.

  15. Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation analysis (PGNAA) is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV, and D-T wi...

  16. Prompt-gamma neutron activation analysis system design: Effects of D-T versus D-D neutron generator source selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...

  17. Measurements of prompt radiation induced conductivity of alumina and sapphire

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  18. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  19. Determining plutonium mass in spent fuel using Cf-252 interrogation with prompt neutron detection

    SciTech Connect

    Hu, Jianwei; Tobin, Stephen J; Menlove, Howard O; Croft, Stephen

    2010-01-01

    {sup 252}Cf Interrogation with Prompt Neutron (CIPN) detection is proposed as one of 14 NDA techniques to determine Pu mass in spent fuel assemblies (FAs). CIPN is a low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chamber (FC) is chosen as neutron detector because of its insensitivity to {gamma} radiation. The CIPN assay is comprised of two measurements, a background count and an active count, without and with the {sup 252}Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. The capability of CIPN to detect diversion and to determine fissile content was quantified using MCNPX simulations. New schemes were proposed (such as burnup and cooling time correction, etc.) and the results show that the fissile content of a target spent fuel assembly can be determined using CIPN signal.

  20. Apparatus for the measurement of total body nitrogen using prompt neutron activation analysis with californium-252.

    PubMed

    Mackie, A; Hannan, W J; Smith, M A; Tothill, P

    1988-01-01

    Details of clinical apparatus designed for the measurement of total body nitrogen (as an indicator of body protein), suitable for the critically ill, intensive-care patient are presented. Californium-252 radio-isotopic neutron sources are used, enabling a nitrogen measurement by prompt neutron activation analysis to be made in 40 min with a precision of +/- 3.2% for a whole body dose equivalent of 0.145 mSv. The advantages of Californium-252 over alternative neutron sources are discussed. A comparison between two irradiation/detection geometries is made, leading to an explanation of the geometry adopted for the apparatus. The choice of construction and shielding materials to reduce the count rate at the detectors and consequently to reduce the pile-up contribution to the nitrogen background is discussed. Salient features of the gamma ray spectroscopy system to reduce spectral distortion from pulse pile-up are presented.

  1. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics. [Patient application

    DOEpatents

    Barnard, R.W.; Jensen, D.H.

    1980-11-05

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or epithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  2. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    DOEpatents

    Barnard, Ralston W.; Jensen, Dal H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  3. Calculation of thermal neutron self-shielding correction factors for aqueous bulk sample prompt gamma neutron activation analysis using the MCNP code

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Jalali, M.; Mohammadi, A.

    2007-10-01

    In this work thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing materials is studied using bulk sample prompt gamma neutron activation analysis (BSPGNAA) with the MCNP code. The code was used to perform three dimensional simulations of a neutron source, neutron detector and sample of various material compositions. The MCNP model was validated against experimental measurements of the neutron flux performed using a BF 3 detector. Simulations were performed to predict thermal neutron self-shielding in aqueous bulk samples containing neutron absorbing solutes. In practice, the MCNP calculations are combined with experimental measurements of the relative thermal neutron flux over the sample's surface, with respect to a reference water sample, to derive the thermal neutron self-shielding within the sample. The proposed methodology can be used for the determination of the elemental concentration of unknown aqueous samples by BSPGNAA where knowledge of the average thermal neutron flux within the sample volume is required.

  4. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  5. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key

    2014-02-24

    Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography image from boron neutron capture therapy using Monte Carlo simulation. Prompt gamma ray (478 keV) was used to reconstruct image with ordered subsets expectation maximization method. From analysis of receiver operating characteristic curve, area under curve values of three boron regions were 0.738, 0.623, and 0.817. The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm, and 1.4 cm.

  6. Fitting Prompt Fission Neutron Spectra Using Kalman Filter Integrated with Empire Code

    NASA Astrophysics Data System (ADS)

    Nobre, G. P. A.; Herman, M.; Hoblit, S.; Palumbo, A.; Capote, R.; Trkov, A.

    2014-04-01

    Prompt fission neutron spectra (PFNS) have proven to have a significant effect on criticality of selected benchmarks, in some cases as important as cross-sections. Therefore, a precise determination of uncertainties in PFNS is desired. Existing PFNS evaluations in nuclear data libraries relied so far almost exclusively on the Los Alamos model. However, deviations of evaluated data from available experiments have been noticed at both low and high neutron emission energies. New experimental measurements of PFNS have been recently published, thus demanding new evaluations. The present work describes the effort of integrating Kalman and EMPIRE codes in such a way to allow for parameter fitting of PFNS models. The first results are shown for the major actinides for two different PFNS models (Kornilov and Los Alamos). This represents the first step towards reevaluation of both cross-section and fission spectra data considering both microscopic and integral experimental data for major actinides.

  7. Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study

    NASA Astrophysics Data System (ADS)

    Biegun, Aleksandra K.; Seravalli, Enrica; Cambraia Lopes, Patrícia; Rinaldi, Ilaria; Pinto, Marco; Oxley, David C.; Dendooven, Peter; Verhaegen, Frank; Parodi, Katia; Crespo, Paulo; Schaart, Dennis R.

    2012-10-01

    Therapeutic proton and heavier ion beams generate prompt gamma photons that may escape from the patient. In principle, this allows for real-time, in situ monitoring of the treatment delivery, in particular, the hadron range within the patient, by imaging the emitted prompt gamma rays. Unfortunately, the neutrons simultaneously created with the prompt photons create a background that may obscure the prompt gamma signal. To enhance the accuracy of proton dose verification by prompt gamma imaging, we therefore propose a time-of-flight (TOF) technique to reject this neutron background, involving a shifting time window to account for the propagation of the protons through the patient. Time-resolved Monte Carlo simulations of the generation and transport of prompt gamma photons and neutrons upon irradiation of a PMMA phantom with 100, 150 and 200 MeV protons were performed using Geant4 (version 9.2.p02) and MCNPX (version 2.7.D). The influence of angular collimation and TOF selection on the prompt gamma and neutron longitudinal profiles is studied. Furthermore, the implications of the proton beam microstructure (characterized by the proton bunch width and repetition period) are investigated. The application of a shifting TOF window having a width of ΔTOFz = 1.0 ns appears to reduce the neutron background by more than 99%. Subsequent application of an energy threshold does not appear to sharpen the distal falloff of the prompt gamma profile but reduces the tail that is observed beyond the proton range. Investigations of the influence of the beam time structure show that TOF rejection of the neutron background is expected to be effective for typical therapeutic proton cyclotrons.

  8. Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study.

    PubMed

    Biegun, Aleksandra K; Seravalli, Enrica; Lopes, Patrícia Cambraia; Rinaldi, Ilaria; Pinto, Marco; Oxley, David C; Dendooven, Peter; Verhaegen, Frank; Parodi, Katia; Crespo, Paulo; Schaart, Dennis R

    2012-10-21

    Therapeutic proton and heavier ion beams generate prompt gamma photons that may escape from the patient. In principle, this allows for real-time, in situ monitoring of the treatment delivery, in particular, the hadron range within the patient, by imaging the emitted prompt gamma rays. Unfortunately, the neutrons simultaneously created with the prompt photons create a background that may obscure the prompt gamma signal. To enhance the accuracy of proton dose verification by prompt gamma imaging, we therefore propose a time-of-flight (TOF) technique to reject this neutron background, involving a shifting time window to account for the propagation of the protons through the patient. Time-resolved Monte Carlo simulations of the generation and transport of prompt gamma photons and neutrons upon irradiation of a PMMA phantom with 100, 150 and 200 MeV protons were performed using Geant4 (version 9.2.p02) and MCNPX (version 2.7.D). The influence of angular collimation and TOF selection on the prompt gamma and neutron longitudinal profiles is studied. Furthermore, the implications of the proton beam microstructure (characterized by the proton bunch width and repetition period) are investigated. The application of a shifting TOF window having a width of ΔTOF(z) = 1.0 ns appears to reduce the neutron background by more than 99%. Subsequent application of an energy threshold does not appear to sharpen the distal falloff of the prompt gamma profile but reduces the tail that is observed beyond the proton range. Investigations of the influence of the beam time structure show that TOF rejection of the neutron background is expected to be effective for typical therapeutic proton cyclotrons.

  9. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  10. Prompt gamma ray diagnostics and enhanced hadron-therapy using neutron-free nuclear reactions

    NASA Astrophysics Data System (ADS)

    Giuffrida, L.; Margarone, D.; Cirrone, G. A. P.; Picciotto, A.; Cuttone, G.; Korn, G.

    2016-10-01

    We propose a series of simulations about the potential use of Boron isotopes to trigger neutron-free (aneutronic) nuclear reactions in cancer cells through the interaction with an incoming energetic proton beam, thus resulting in the emission of characteristic prompt gamma radiation (429 keV, 718 keV and 1435 keV). Furthermore assuming that the Boron isotopes are absorbed in cancer cells, the three alpha-particles produced in each p-11B aneutronic nuclear fusion reactions can potentially result in the enhancement of the biological dose absorbed in the tumor region since these multi-MeV alpha-particles are stopped inside the single cancer cell, thus allowing to spare the surrounding tissues. Although a similar approach based on the use of 11B nuclei has been proposed in [Yoon et al. Applied Physics Letters 105, 223507 (2014)], our work demonstrate, using Monte Carlo simulations, the crucial importance of the use of 10B nuclei (in a solution containing also 11B) for the generation of prompt gamma-rays, which can be applied to medical imaging. In fact, we demonstrate that the use of 10B nuclei can enhance the intensity of the 718 keV gamma-ray peak more than 30 times compared to the solution containing only 11B nuclei. A detailed explanation of the origin of the different prompt gamma-rays, as well as of their application as real-time diagnostics during a potential cancer treatment, is here discussed.

  11. The effect of neutron skin on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies

    NASA Astrophysics Data System (ADS)

    De, Somnath

    2017-04-01

    Recent experiments on lead ({{{Pb}}}82208) nuclei have observed the celebrated phenomenon of the neutron skin thickness of low energy nuclear physics. Skin thickness provides a measure of the extension of the spatial distribution of neutrons inside the atomic nucleus than protons. We have studied the effect of neutron skin thickness on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies. We have calculated the ‘central-to-peripheral ratio’ ({R}{cp}) of prompt photon production with and without accounting for the neutron skin effect. The neutron skin causes a characteristic enhancement of the ratio, in particular at forward rapidity, which is distinguishable in our calculation. However, a very precise direct photon measurement up to large transverse momenta would be necessary to constrain the feature in experiment.

  12. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    SciTech Connect

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.; Aloiz, E.; Paul, R.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content. The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.

  13. 239Pu Prompt Fission Neutron Spectra Impact on a Set of Criticality and Experimental Reactor Benchmarks

    NASA Astrophysics Data System (ADS)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-04-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  14. Criticality prompt gamma and neutron dose equations validated by Monte Carlo analyses and compared to known criticality accident doses

    NASA Astrophysics Data System (ADS)

    Hochhalter, Eugene

    The United States (US) Department of Energy [DOE] and the Nuclear Regulatory Commission [NRC] have provided the nuclear industry with requirements, goals, and objectives for the preparation of safety analysis and the finalization of that safety analysis in the form of a documented safety analysis (DSA) and technical safety requirements (TSRs). The deterministic guidance provided by the NRC in Regulatory Guide (RG) 3.33 for calculating the prompt gamma and neutron doses from a criticality has a number of potential issues associated with the semi-empirical equations, which make these equations potentially out dated. The NRC guidance for estimating the prompt gamma and neutron doses to a facility worker due to an accidental criticality was withdrawn without newer deterministic guidance being issued. This research project determined the original basis for the RG prompt gamma and neutron equations, evaluated the potential issues associated with the RG 3.33 prompt gamma and neutron equations, and modified the RG 3.33 point source prompt gamma and neutron equations to calculate the doses for the selected set of criticality accidents. The criticality accidents addressed by this dissertation include: 1. U-235, Pu-239, and Pu-241 point source criticality, 2. U-235, Pu-239, and Pu-241 sphere source criticality, 3. Uranyl nitrate and plutonium nitrate solutions in a cylindrical process vessel and 4. Low level waste in 55-gallon and 30-gallon drums. The prompt gamma and neutron equation doses (RG 3.33/3.34/3.35) are compared to actual nuclear industry criticality accident worker doses to assess the conservatism of the RG equations. Finally, the RG 3.33 prompt gamma and neutron dose equations are compared to MCNP5 results to investigate consistency with respect to the modified prompt gamma and neutron dose equations and the representative dose estimates for each of the criticality configurations (point source, spherical source, and cylindrical source). Knowledge and accurate

  15. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  16. Binary neutron star mergers as engines of short gamma-ray bursts: delayed vs. prompt collapse

    NASA Astrophysics Data System (ADS)

    Ruiz, Milton; Paschalidis, Vasileios; Shapiro, Stuart

    2017-01-01

    Inspiralling and merging binary neutron stars (NSNSs) are not only promising sources of detectable gravitational waves, but they are also possible progenitors of short gamma-ray bursts. We have recently performed magnetohydrodynamic simulations in full general relativity which show that a jet is launched from the poles of the spinning black hole formed following magnetized NSNS mergers. For the cases we explored the black hole-disk remnant arises from the ``delayed'' collapse of a hypermassive NSNS that forms following an equal-mass merger. Now we have varied both the initial NS compaction and binary mass ratio to explore the formation of jets for cases in which the merger leads to ``prompt'' collapse.

  17. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  18. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  19. Feasibility study of prompt gamma neutron activation analysis (PGNAA) of explosives simulants and bulk material using DD/DT neutron generator

    NASA Astrophysics Data System (ADS)

    Bishnoi, S.; Sarkar, P. S.; Patel, T.; Adhikari, P. S.; Sinha, Amar

    2013-04-01

    Elemental characterization of low Z elements (C,H,Cl,Fe) inside bulk materials were performed using PGNAA technique. Samples having elemental composition similar to explosives were used for such experimentations using moderated DD neutrons as well as DT(14MeV) neutrons. We could observe characteristic prompt capture gamma rays of hydrogen (2.224MeV), nitrogen (10.83 MeV), chlorine (6.11 MeV) and Fe (6.02MeV and 7.63MeV) also (n,n'γ) prompt gamma signal (4.43MeV) of carbon. BGO detector has been used for gamma spectrum acquisition. These experimentations has been carried out for initial feasibility studies of detecting prompt gamma lines as a part of PGNAA technique based explosive detection system development. A detail description of experimental set up and procedure has been discussed in paper.

  20. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages.

  1. A benchmarked MCNP model of the in vivo detection of gadolinium by prompt gamma neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gräfe, J. L.; McNeill, F. E.; Byun, S. H.; Chettle, D. R.; Noseworthy, M. D.

    2010-08-01

    Gadolinium (Gd)-based contrast agents are a valuable diagnostic aid for magnetic resonance imaging (MRI). The amount of free Gd deposited in tissues following contrast enhanced MRI is of toxicological concern. The McMaster University in vivo prompt gamma neutron activation analysis facility has been adapted for the detection of Gd in the kidney, liver, and the leg muscle. A simple model of the HPGe detector used for detection of the prompt γ-rays following Gd neutron capture has been created using Monte Carlo simulation. A separate simulation describing the neutron collimation and shielding apparatus has been modified to determine the neutron capture rate in the Gd phantoms. The MCNP simulation results have been confirmed by experimental measurement. The deviations between MCNP and the experiment were between 1% and 18%, with an average deviation of 3.8 ± 6.7%. The validated MCNP model is to be used to improve the Gd in vivo measurement sensitivity by determining the best neutron moderator/reflector arrangement.

  2. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  3. Inference of total DT fusion neutron yield from prompt gamma-ray measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Church, J. A.; Herrmann, H. W.; Stoeffl, W.; Caggiano, J. A.; Cerjan, C.; Sayre, D.

    2014-10-01

    Prompt D-T fusion gamma-rays measured at the National Ignition Facility (NIF) with the Gamma-ray Reaction History detector (GRH) have been used recently to infer the total DT fusion neutron yield of inertial confinement fusion (ICF) implosions. DT fusion produces energetic gamma-rays (16.75 MeV) with a small branching ratio of approximately (4.2 +/- 2.0)e-5 γ/n. While the large error bar precludes use of the branching ratio for an accurate yield determination, the gamma-rays themselves provide the most unperturbed measure of fusion burn and can be used for such a purpose. A cross-calibration for the DT fusion gamma-ray to neutron signal is obtained via low areal density exploding pusher implosions which have mostly unperturbed neutron and gamma-ray signals. The calibration is then used to infer total DT neutron yield from gamma-ray measurements on high areal-density, cryogenically layered implosions in which neutrons are heavily down-scattered (up to 30%). Furthermore, the difference between the gamma-ray inferred total DT yield and the primary neutron yield (unscattered neutrons) can be used to estimate the total down-scatter fraction. Error analysis and comparison of yield values will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-657694.

  4. Reevaluation of the average prompt neutron emission multiplicity (nubar) values from fission of uranium and transuranium nuclides

    SciTech Connect

    Holden, N.E.; Zucker, M.S.

    1984-01-01

    In response to a need of the safeguards community, we have begun an evaluation effort to upgrade the recommended values of the prompt neutron emission multiplicity distribution, P/sub nu/ and its average value, nubar. This paper will report on progress achieved thus far. The evaluation of the uranium, plutonium, americium and curium nuclide's nubar values will be presented. The recommended values will be given and discussed. 61 references.

  5. Development of a database for prompt gamma-ray neutron activation analysis: Summary report of the third research coordination meeting

    SciTech Connect

    Lindstrom, Richard M.; Firestone, Richard B.; Pavi, ???

    2003-04-01

    The main discussions and conclusions from the Third Co-ordination Meeting on the Development of a Database for Prompt Gamma-ray Neutron Activation Analysis are summarized in this report. All results were reviewed in detail, and the final version of the TECDOC and the corresponding software were agreed upon and approved for preparation. Actions were formulated with the aim of completing the final version of the TECDOC and associated software by May 2003.

  6. Investigation of phenomenological models for the Monte Carlo simulation of the prompt fission neutron and {gamma} emission

    SciTech Connect

    Litaize, O.; Serot, O.

    2010-11-15

    A Monte Carlo simulation of the fission fragment deexcitation process was developed in order to analyze and predict postfission-related nuclear data which are of crucial importance for basic and applied nuclear physics. The basic ideas of such a simulation were already developed in the past. In the present work, a refined model is proposed in order to make a reliable description of the distributions related to fission fragments as well as to prompt neutron and {gamma} energies and multiplicities. This refined model is mainly based on a mass-dependent temperature ratio law used for the initial excitation energy partition of the fission fragments and a spin-dependent excitation energy limit for neutron emission. These phenomenological improvements allow us to reproduce with a good agreement the {sup 252}Cf(sf) experimental data on prompt fission neutron multiplicity {nu}(A), {nu}(TKE), the neutron multiplicity distribution P({nu}), as well as their energy spectra N(E), and lastly the energy release in fission.

  7. Prompt gamma neutron activation analysis of 10B and Gd in biological samples at the MEPhI reactor.

    PubMed

    Khokhlov, V F; Zaitsev, K N; Beliayev, V N; Kulakov, V N; Lipengolts, A A; Portnov, A A

    2009-07-01

    The purpose of the work was to build a prompt gamma neutron activation analysis (PGNAA) facility at the MEPhI reactor for analyzing the content of various elements for NCT. The facility was implemented on a monochromatic neutron beam. Methods of quantitative (10)B and Gd measurement have been developed for pharmacokinetic studies. The facility is capable of measuring 1 microg of (10)B and 10 microg of Gd in biological samples with an error less than 10%. The detection limit of the facility is 0.3 microg of (10)B and 2 microg of Gd. Neutron flux attenuation within biological tissue samples was estimated and a new system for determining the elemental concentration was suggested.

  8. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  9. Systematics of the mean energy and the mean multiplicity of prompt neutrons originating from {sup 232}Th fission

    SciTech Connect

    Svirin, M. I.

    2012-12-15

    The cross section for the neutron-induced fission of {sup 232}Th target nuclei, {sigma}{sub f} (E{sub n}), was described within statistical theory. The spectra of the mean multiplicity, v-bar (E{sub n}), and the mean energy, E-bar(E{sub n}), of secondary neutrons accompanying {sup 232}Th fission induced by neutrons of energy extending up to E{sub n} = 20 MeV were analyzed on the basis of the chance structure of the cross section.

  10. Prompt neutron emission from the spontaneous fission of sup 260 Md

    SciTech Connect

    Wild, J.F.; van Aarle, J.; Westmeier, W.; Lougheed, R.W.; Hulet, E.K.; Moody, K.J.; Dougan, R.J.; Koop, E.; Glaser, R.E.; Brandt, R.; Patzelt, P. Philipps University, D-3550, Marburg an der Lahn, )

    1990-02-01

    We have made the first measurement of the number of neutrons emitted from the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of {sup 254}Es, we produced a large sample of 28-d {sup 260}Md, which was neutron counted in a 1-m-diameter spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58{plus minus}0.11, substantially less than for other actinides. A linear dependence of neutron multiplicity on fragment-excitation energy is observed to the highest values of total kinetic energy.

  11. The Prompt Fission Neutron Spectrum: From Experiment to the Evaluated Data and its Impact on Critical Assemblies

    SciTech Connect

    Rising, Michael Evan

    2015-06-10

    After a brief introduction concerning nuclear data, prompt fission neutron spectrum (PFNS) evaluations and the limited PFNS covariance data in the ENDF/B-VII library, and the important fact that cross section uncertainties ~ PFNS uncertainties, the author presents background information on the PFNS (experimental data, theoretical models, data evaluation, uncertainty quantification) and discusses the impact on certain well-known critical assemblies with regard to integral quantities, sensitivity analysis, and uncertainty propagation. He sketches recent and ongoing research and concludes with some final thoughts.

  12. Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n,f)

    SciTech Connect

    Vogt, R; Randrup, J; Brown, D A; Descalle, M A; Ormand, W E

    2011-11-28

    We have developed an improved evaluation method for the spectrum of neutrons emitted in fission of {sup 239}Pu induced by incident neutrons with energies up to 20 MeV. The covariance data, including incident energy correlations introduced by the evaluation method, were used to fix the input parameters in our event-by-event model of fission, FREYA, by applying formal statistical methods. Formal estimates of uncertainties in the evaluation were developed by randomly sampling model inputs and calculating likelihood functions based on agreement with the evaluated . Our approach is able to employ a greater variety of fission measurements than the relatively coarse spectral data alone. It also allows the study of numerous fission observables for more accurate model validation. The combination of an event-by-event Monte Carlo fission model with a statistical-likelihood analysis is thus a powerful tool for evaluation of fission-neutron data. Our empirical model FREYA follows the complete fission event from birth of the excited fragments through their decay via neutron emission until the fragment excitation energy is below the neutron separation energy when neutron emission can no longer occur. The most recent version of FREYA incorporates pre-equilibrium neutron emission, the emission of the first neutron before equilibrium is reached in the compound nucleus, and multi-chance fission, neutron evaporation prior to fission when the incident neutron energy is above the neutron separation energy. Energy, momentum, charge and mass number are conserved throughout the fission process. The best available values of fragment masses and total kinetic energies are used as inputs to FREYA. We fit three parameters that are not well under control from previous measurements: the shift in the total fragment kinetic energy; the energy scale of the asymptotic level density parameter, controlling the fragment 'temperature' for neutron evaporation; and the relative excitation of the

  13. Neutron induced bystander effect among zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  14. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Clackdoyle, R.; Shortkroff, S.; Yanch, J.

    2008-05-01

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo 10B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the 10B capture reactions. The 10B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the 10B prompt gamma signals were tallied from 16 angular positions. Results demonstrate that for this

  15. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    NASA Astrophysics Data System (ADS)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  16. Enrico Fermi's Discovery of Neutron-Induced Artificial Radioactivity: Neutrons and Neutron Sources

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2006-09-01

    We reconstruct and analyze the path leading from James Chadwick’s discovery of the neutron in February 1932 through Frédéric Joliot and Irène Curie’s discovery of artificial radioactivity in January 1934 to Enrico Fermi’s discovery of neutron-induced artificial radioactivity in March 1934. We show, in particular, that Fermi’s innovative construction and use of radon-beryllium neutron sources permitted him to make his discovery.

  17. Prompt gamma activation analysis (PGAA) and short-lived neutron activation analysis (NAA) applied to the characterization of legacy materials

    SciTech Connect

    Firestone, Richard B; English, G.A.; Firestone, R.B.; Perry, D.L.; Reijonen, J.P.; Leung, Ka-Ngo; Garabedian, G.F.; Molnar, G.L.; Revay, Zs.

    2008-02-13

    Without quality historical records that provide the composition of legacy materials, the elemental and/or chemical characterization of such materials requires a manual analytical strategy that may expose the analyst to unknown toxicological hazards. In addition, much of the existing legacy inventory also incorporates radioactivity, and, although radiological composition may be determined by various nuclear-analytical methods, most importantly, gamma-spectroscopy, current methods of chemical characterization still require direct sample manipulation, thereby presenting special problems with broad implications for both the analyst and the environment. Alternately, prompt gamma activation analysis (PGAA) provides a'single-shot' in-situ, non-destructive method that provides a complete assay of all major entrained elemental constituents.1-3. Additionally, neutron activation analysis (NAA) using short-lived activation products complements PGAA and is especially useful when NAA activation surpasses the PGAA in elemental sensitivity.

  18. Thoughts on Sensitivity Analysis and Uncertainty Propagation Methods with Respect to the Prompt Fission Neutron Spectrum Impact on Critical Assemblies

    SciTech Connect

    Rising, M.E.

    2015-01-15

    The prompt fission neutron spectrum (PFNS) uncertainties in the n+{sup 239}Pu fission reaction are used to study the impact on several fast critical assemblies modeled in the MCNP6.1 code. The newly developed sensitivity capability in MCNP6.1 is used to compute the k{sub eff} sensitivity coefficients with respect to the PFNS. In comparison, the covariance matrix given in the ENDF/B-VII.1 library is decomposed and randomly sampled realizations of the PFNS are propagated through the criticality calculation, preserving the PFNS covariance matrix. The information gathered from both approaches, including the overall k{sub eff} uncertainty, is statistically analyzed. Overall, the forward and backward approaches agree as expected. The results from a new method appear to be limited by the process used to evaluate the PFNS and is not necessarily a flaw of the method itself. Final thoughts and directions for future work are suggested.

  19. Delayed neutron fraction and prompt decay constant measurement in the MINERVE reactor using the PSI instrumentation

    SciTech Connect

    Perret, Gregory

    2015-07-01

    The critical decay constant (B/A), delayed neutron fraction (B) and generation time (A) of the Minerve reactor were measured by the Paul Scherrer Institut (PSI) and the Commissariat a l'Energie Atomique (CEA) in September 2014 using the Feynman-alpha and Power Spectral Density neutron noise measurement techniques. Three slightly subcritical configuration were measured using two 1-g {sup 235}U fission chambers. This paper reports on the results obtained by PSI in the near critical configuration (-2g). The most reliable and precise results were obtained with the Cross-Power Spectral Density technique: B = 708.4±9.2 pcm, B/A = 79.0±0.6 s{sup -1} and A 89.7±1.4 micros. Predictions of the same kinetic parameters were obtained with MCNP5-v1.6 and the JEFF-3.1 and ENDF/B-VII.1 nuclear data libraries. On average the predictions for B and B/A overestimate the experimental results by 5% and 11%, respectively. The discrepancy is suspected to come from either a corruption of the data or from the inadequacy of the point kinetic equations to interpret the measurements in the Minerve driven system. (authors)

  20. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  1. Neutron-induced gamma-ray production

    SciTech Connect

    Nelson, R.O.; Drake, D.M.; Haight, R.C.; Laymon, C.M.; Wender, S.A.; Young, P.G. ); Drosg, M.; Pavlik, A.; Vonach, H. . Inst. fuer Radiumforschung und Kernphysik); Larson, D.C. )

    1990-01-01

    High resolution Ge detectors coupled with the WNR high-intensity, high-energy, pulsed neutron source at LAMPF recently have been used to measure a variety of reactions including (n,xn) for 1 {le} x {le} 11, (n,n{alpha}), (n,np), etc. The reactions are identified by the known gamma-ray energies of prompt transitions between the low lying states in the final nuclei. With our spallation neutron source cross section data are obtained at all neutron energies from a few MeV to over 200 MeV. Applications of the data range from assisting the interpretation of the planned Mars Observer mission to map the elemental composition of the martian surface, to providing data for nuclear model verification and understanding reaction mechanisms. For example, a study of the Pb(n,xn) reactions for 2 {le} x {le} 11 populating the first excited states of the even Pb isotopes is underway. These data will be used to test preequilibrium and other reaction models. 9 refs., 5 figs.

  2. Measurements of Prompt Radiation-Induced Conductivity of Pyralux®

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; McLain, Michael Lee; Sheridan, Timothy J.; Preston, Eric F.; Stringer, Thomas Arthur

    2014-01-01

    In this report, measurements of the prompt radiation-induced conductivity (RIC) in 3 mil samples of Pyralux® are presented as a function of dose rate, pulse width, and applied bias. The experiments were conducted with the Medusa linear accelerator (LINAC) located at the Little Mountain Test Facility (LMTF) near Ogden, UT. The nominal electron energy for the LINAC is 20 MeV. Prompt conduction current data were obtained for dose rates ranging from ~2 x 109 rad(Si)/s to ~1.1 x 1011 rad(Si)/s and for nominal pulse widths of 50 ns and 500 ns. At a given dose rate, the applied bias across the samples was stepped between -1500 V and 1500 V. Calculated values of the prompt RIC varied between 1.39x10-8 Ω-1 · m-1 and 2.67x10-7 Ω-1 · m-1 and the prompt RIC coefficient varied between 1.25x10-18 Ω-1 · m-1/(rad/s) and 1.93x10-17 Ω-1 · m-1/(rad/s).

  3. Neutron multiplicity in the fission of 238U and 235U with neutrons up to 200 MeV.

    PubMed

    Ethvignot, T; Devlin, M; Duarte, H; Granier, T; Haight, R C; Morillon, B; Nelson, R O; O'Donnell, J M; Rochman, D

    2005-02-11

    Prompt-fission-neutron multiplicities were measured for 238U(n,f) and 235U(n,f) from 0.4 to 200 MeV. The data are of great importance in connection with accelerator-coupled nuclear reactor systems incinerating actinides. We report that fission induced by 200 MeV neutrons produces approximately 10 more prompt neutrons than fission induced by reactor neutrons. Most neutrons are evaporated from the fission fragments and the prefission compound nucleus, as the preequilibrium emission of energetic neutrons accounts for a maximum of 15% of the prompt neutrons at 200 MeV.

  4. Toward prompt gamma spectrometry for monitoring boron distributions during extra corporal treatment of liver metastases by boron neutron capture therapy: a Monte Carlo simulation study.

    PubMed

    Khelifi, R; Nievaart, V A; Bode, P; Moss, R L; Krijger, G C

    2009-07-01

    A Monte Carlo calculation was carried out for boron neutron capture therapy (BNCT) of extra corporal liver phantom. The present paper describes the basis for a subsequent clinical application of the prompt gamma spectroscopy set-up aimed at in vivo monitoring of boron distribution. MCNP code was used first to validate the homogeneity in thermal neutron field in the liver phantom and simulate the gamma ray detection system (collimator and detector) in the treatment room. The gamma ray of 478 keV emitted by boron in small specific region can be detected and a mathematical formalism was used for the tomography image reconstruction.

  5. Neutron-neutron angular correlations in spontaneous and neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2015-04-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  6. Performance test results of noninvasive characterization of Resource Conservation and Recovery Act surrogate waste by prompt gamma neutron activation analysis

    SciTech Connect

    Gehrke, R.J.; Streier, G.G.

    1997-03-01

    During FY-96, a performance test was carried out with funding from the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) to determine the noninvasive elemental assay capabilities of commercial companies for Resource Conservation and Recovery Act (RCRA) metals present in 8-gal drums containing surrogate waste. Commercial companies were required to be experienced in the use of prompt gamma neutron activation analysis (PGNAA) techniques and to have a prototype assay system with which to conduct the test assays. Potential participants were identified through responses to a call for proposals advertised in the Commerce Business Daily and through personal contacts. Six companies were originally identified. Two of these six were willing and able to participate in the performance test, as described in the test plan, with some subsidizing from the DOE MWFA. The tests were conducted with surrogate sludge waste because (1) a large volume of this type of waste awaits final disposition and (2) sludge tends to be somewhat homogeneous. The surrogate concentrations of the above RCRA metals ranged from {approximately} 300 ppm to {approximately} 20,000 ppm. The lower limit was chosen as an estimate of the expected sensitivity of detection required by noninvasive, pretreatment elemental assay systems to be of value for operational and compliance purposes and to still be achievable with state-of-the-art methods of analysis. The upper limit of {approximately} 20,000 ppm was chosen because it is the opinion of the author that assay above this concentration level is within current state-of-the-art methods for most RCRA constituents. This report is organized into three parts: Part 1, Test Plan to Evaluate the Technical Status of Noninvasive Elemental Assay Techniques for Hazardous Waste; Part 2, Participants` Results; and Part 3, Evaluation of and Comments on Participants` Results.

  7. Developments for neutron-induced fission at IGISOL-4

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Penttilä, H.; Al-Adili, A.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.; Koponen, J.; Lantz, M.; Mattera, A.; Moore, I. D.; Pohjalainen, I.; Pomp, S.; Rakopoulos, V.; Reinikainen, J.; Rinta-Antila, S.; Simutkin, V.; Solders, A.; Voss, A.; Äystö, J.

    2016-06-01

    At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.

  8. Neutron-Induced Failures in Semiconductor Devices

    SciTech Connect

    Wender, Stephen Arthur

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  9. Neutron-induced defects in optical fibers

    SciTech Connect

    Rizzolo, S.; Morana, A.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Cannas, M.; Boscaino, R.; Bauer, S.; Perisse, J.; Mace, J-R.; Nacir, B.

    2014-10-21

    We present a study on 0.8 MeV neutron-induced defects up to fluences of 10{sup 17} n/cm{sup 2} in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

  10. Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons

    SciTech Connect

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B. Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-15

    The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

  11. The feasibility of in vivo quantification of bone-gadolinium in humans by prompt gamma neutron activation analysis (PGNAA) following gadolinium-based contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; McNeill, F. E.; Chettle, D. R.; Noseworthy, M. D.; Prestwich, W. V.

    2015-11-01

    The feasibility of using a 238Pu/Be-based in vivo prompt γ-ray neutron activation analysis (IVNAA) system, previously successfully used for measurements of muscle, for the detection of gadolinium (Gd) in bone was presented. Gd is extensively used in contrast agents in MR imaging. We present phantom measurement data for the measurement of Gd in the tibia. Gd has seven naturally occurring isotopes, of which two have extremely large neutron capture cross sections; 155Gd (14.8% natural abundance (NA), σ= 60,900 barns) and 157Gd (15.65% NA, σ= 254,000 barns). Our previous work focused on muscle but this only informs about the short term kinetics of Gd. We studied the possibility of measuring bone, as it may be a long term storage site for Gd. A human simulating bone phantom set was developed. The phantoms were doped with seven concentrations of Gd of concentrations 0.0, 25, 50, 75, 100, 120 and 150 ppm. Additional elements important for neutron activation analysis, Na, Cl and Ca, were also included to create an overall elemental composition consistent with Reference Man. The overall conclusion is that the potential application of this Pu-Be-based prompt in vivo NAA for the monitoring of the storage and retention of Gd in bone is not feasible.

  12. Prompt radiation-induced conductivity in polyurethane foam and glass microballoons

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2014-06-01

    We performed measurements and analyses of the prompt radiation-induced conductivity (RIC) in thin samples of polyurethane foam and glass microballoon foam at the Little Mountain Medusa LINAC facility in Ogden, UT. The RIC coefficient was non-linear with dose rate for polyurethane foam; however, typical values at 1E11 rad(si)/s dose rate was measured as 0.8E-11 mho/m/rad/s for 5 lb./cu ft. foam and 0.3E-11 mho/m/rad/s for 10 lb./cu ft. density polyurethane foam. For encapsulated glass microballoons (GMB) the RIC coefficient was approximately 1E-15 mho/m/rad/s and was not a strong function of dose rate.

  13. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  14. Point-by-Point model calculation of the prompt neutron multiplicity distribution ν (A ) for 238U(n ,f ) at incident neutron energies ranging from 1 MeV to 80 MeV

    NASA Astrophysics Data System (ADS)

    Tudora, A.; Hambsch, F.-J.; Tobosaru, V.

    2016-10-01

    Prompt neutron multiplicity distributions ν(A ) are generally required for prompt emission correction of double energy (2 E ) measurements of fission fragments in order to determine pre-neutron fragment properties. The lack of experimental ν(A ) data especially at higher incident neutron energy imposes the use of prompt emission models to predict ν(A ). At incident neutron energies (En ) where multiple fission chances are involved, the Point-by-Point (PbP) model of prompt emission is able to provide the individual ν(A ) of the compound nuclei of the main and secondary nucleus chains that are undergoing fission at a given En . The total ν(A ) are obtained by averaging these individual ν(A ) over the fission chance probabilities (expressed as total and partial fission cross-section ratios). An indirect validation of the total ν(A ) results is proposed. At high En (above 70 MeV) the PbP results of individual ν(A ) of the first few nuclei of the main and secondary nucleus chains exhibit an almost linear increase. This shape is explained by the damping of shell effects entering the superfluid expression of the level-density parameters. They tend to approach the asymptotic values for a great part of the fragments. This fact leads to a smooth and almost linear increase of fragment excitation energy with the fragment mass number that is reflected in a smooth and almost linear behavior of individual ν(A ). The comparison of the present results with those of the GEF code reveals different shapes of ν(A ) as well as different total average neutron multiplicity as a function of the En . At high En the PbP calculations definitely reflect the influence of the almost linear shape of individual ν(A ) of the first few nuclei of the U and Pa chains. The differences between the total ν(A ) obtained by averaging the PbP results of individual ν(A ) over fission cross-section ratios of different evaluations are insignificant.

  15. Neutron induced capture and fission discrimination using calorimetric shape decomposition

    NASA Astrophysics Data System (ADS)

    Carrapiço, C.; Berthoumieux, E.; Dridi, W.; Gonçalves, I. F.; Gunsing, F.; Lampoudis, C.; Vaz, P.; n TOF Collaboration

    2013-03-01

    The neutron capture and fission cross-sections of 233U have been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 keV using a high performance 4π BaF2 Total Absorption Calorimeter (TAC) as a detection device. In order to separate the contributions of neutron capture and neutron induced fission in the TAC, a methodology called Calorimetric Shape Decomposition (CSD) was developed. The CSD methodology is based on the study of the TAC's energy response for all competing reactions, allowing to discriminate between γ s originating from neutron induced fission and those from neutron capture reactions without the need for fission tagging or any additional detection system. In this article, the concept behind the CSD is explained in detail together with the necessary analysis to obtain the TAC's response to neutron capture and neutron induced fission. The discrimination between capture and fission contributions is shown for several neutron energies. A comparison between the 233U neutron capture and fission yield extraction with ENDF/B-VII v1. library data is also provided.

  16. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  17. Prompt Neutron Spectrometry for Identification of SNM in Unknown Shielding Configurations: FY16 ONR YIP Final Report

    DTIC Science & Technology

    2016-05-31

    RESULTS FROM VIRTUAL DETECTOR SIMULATIONS ................................................................. 13 II. G. GENETIC ALGORITHMS FOR RESPONSE...16 II.I. GENETIC ALGORITHM EVOLUTION PARAMETERS...adapting the machine learning concept of genetic algorithms as a generalized method for moderating-type neutron spectrometer optimization, utilizing

  18. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  19. Analysis of sewage sludge using an experimental prompt gamma neutron activation analysis (pgnaa) set-up with an am-be source

    NASA Astrophysics Data System (ADS)

    Idiri, Z.; Redjem, F.; Beloudah, N.

    2016-09-01

    An experimental PGNAA set-up using a 1 Ci Am-Be source has been developed and used for analysis of bulk sewage sludge samples issued from a wastewater treatment plant situated in an industrial area of Algiers. The sample dimensions were optimized using thermal neutron flux calculations carried out with the MCNP5 Monte Carlo Code. A methodology is then proposed to perform quantitative analysis using the absolute method. For this, average thermal neutron flux inside the sludge samples is deduced using average thermal neutron flux in reference water samples and thermal flux measurements with the aid of a 3He neutron detector. The average absolute gamma detection efficiency is determined using the prompt gammas emitted by chlorine dissolved in a water sample. The gamma detection efficiency is normalized for sludge samples using gamma attenuation factors calculated with the MCNP5 code for water and sludge. Wet and dehydrated sludge samples were analyzed. Nutritive elements (Ca, N, P, K) and heavy metals elements like Cr and Mn were determined. For some elements, the PGNAA values were compared to those obtained using Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma (ICP) methods. Good agreement is observed between the different values. Heavy element concentrations are very high compared to normal values; this is related to the fact that the wastewater treatment plant is treating not only domestic but also industrial wastewater that is probably rejected by industries without removal of pollutant elements. The detection limits for almost all elements of interest are sufficiently low for the method to be well suited for such analysis.

  20. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  1. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Couture, A.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Stoyer, M. A.; Wu, C. Y.; Becker, J. A.; Haslett, R. J.; Henderson, R. A.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  2. Prompt fission gamma-ray studies at DANCE

    SciTech Connect

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M.. M; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O’Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  3. The muon-induced neutron indirect detection EXperiment, MINIDEX

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Carissimo, C.; Gooch, C.; Kneißl, R.; Langford, J.; Liu, X.; Majorovits, B.; Palermo, M.; Schulz, O.; Vanhoefer, L.

    2017-04-01

    A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with a GEANT4-based package for two different sets of physics models of relevance for neutron production by muons is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo packages. In addition, the time evolution of the muon-induced signal is not well described by the simulations.

  4. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M. ); Panozzo, J.; Libertin, C.R. )

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following [gamma]-ray exposure in fibroblasts. Our past work had shown differences in the expression of [beta]-protein kinase C and c-fos genes, both being induced following [gamma]-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not [gamma]-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to [gamma] rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  5. Low doses of neutrons induce changes in gene expression

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-06-01

    Studies were designed to identify genes induced following low-dose neutron but not following {gamma}-ray exposure in fibroblasts. Our past work had shown differences in the expression of {beta}-protein kinase C and c-fos genes, both being induced following {gamma}-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not {gamma}-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to {gamma} rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure.

  6. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  7. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  8. Evaluation of an in vivo prompt gamma neutron activation facility for body composition studies in critically ill intensive care patients: results on 41 normals

    SciTech Connect

    Beddoe, A.H.; Streat, S.J.; Hill, G.L.

    1984-03-01

    A programme of metabolic and nutritional research is being undertaken in critically ill patients requiring intensive care. Central to this research is the measurement of the three nutritionally important compartments of body composition, protein, fat, and water by a combination of tritium dilution and prompt gamma in vivo neutron activation analysis (IVNAA). In this paper a calibration technique is presented that enables absolute estimates of total body nitrogen (TBN) to be made using prompt gamma IVNAA in critically ill patients with gross abnormalities in body composition, especially in their state of hydration. This technique, which is independent of skinfold anthropometry and does not make a priori assumptions about the ratios of major body compartments, has been applied to 41 normal volunteers and the derived values for nitrogen compared with values obtained by applying three currently used calibration methods to the same experimental data. The empirical equations relate TBN in normal people to age, height, weight and sex. The mean ratios of experimental to predicted TBN (with SEMs) are 1.013 +/- 0.017 and 1.002 +/- 0.014, respectively. Mean values of the ratio of TBN to fat-free mass (0.0340 +/- 0.0004) and of total body water to fat-free mass (0.716 +/- 0.002) agree closely with values reported elsewhere for normals by a variety of techniques including chemical analysis. Finally, TBN results based on the four different calibration methods are presented for five surgical patients, demonstrating the importance of the calibration method on estimates of TBN in patients with abnormal body composition. It is concluded that this technique will provide accurate estimates of the total body content of protein, water, and fat in intensive care patients.

  9. Point-by-Point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    NASA Astrophysics Data System (ADS)

    Tudora, A.

    2013-03-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments <ν>(TKE) exhibit, especially in the case of 252Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of <ν> at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dɛ slopes are also obtained by averaging the same PbP matrix ɛ(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for three fissioning systems benefiting of experimental data as a function of TKE: 252Cf(SF), 235U(nth,f) and 239Pu(nth,f). In the case of 234U(n,f) for the first time it was possible to calculate <ν>(TKE) and <ɛ>(TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3-5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of <ν> at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments.

  10. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-11-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.

  11. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake

    PubMed Central

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-01-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves. PMID:27874858

  12. Muon Induced Spallation Neutrons in the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Orrell, J. L.; Ahmad, Q. R.; Hazama, R.; Wilkerson, J. F.

    2001-05-01

    Neutrons produced as spallation products from muon passage through the Sudbury Neutrino Observatory (SNO) are studied. Muons can produce spallation neutrons through inelastic scattering on nuclei. Thermalized neutrons capture on the deuterium in SNO's heavy water detector volume via d(n,γ)t. The γ-ray has an energy of 6.25-MeV and produces a detectable signal in the SNO detector. We show it is possible to extract a nearly pure sample of thermalized neutrons. The observed capture time and energy are used to confirm the events' identity as neutrons. The total detection efficiency for muon induced spallation of neutrons is estimated and used to calculate the total muon induced spallation rate of neutrons in the SNO detector. This rate will impact the analysis of the Neutral Current Detectors (NCDs). The NCDs are ^3He proportional counters which will be inserted into SNO and used to measure the neutral current reaction of neutrinos, d(ν_x,n)p, in SNO's heavy water.

  13. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    DOE PAGES

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.; ...

    2015-10-09

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of fourmore » pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.« less

  14. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel-Design concept and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Henzlova, D.; Menlove, H. O.; Rael, C. D.; Trellue, H. R.; Tobin, S. J.; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2016-01-01

    This paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. This paper describes the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. These features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  15. Californium interrogation prompt neutron (CIPN) instrument for non-destructive assay of spent nuclear fuel – design concept and experimental demonstration

    SciTech Connect

    Henzlova, Daniela; Menlove, Howard Olsen; Rael, Carlos D.; Trellue, Holly Renee; Tobin, Stephen Joseph; Park, Se-Hwan; Oh, Jong-Myeong; Lee, Seung-Kyu; Ahn, Seong-Kyu; Kwon, In-Chan; Kim, Ho-Dong

    2015-10-09

    Our paper presents results of the first experimental demonstration of the Californium Interrogation Prompt Neutron (CIPN) instrument developed within a multi-year effort launched by the Next Generation Safeguards Initiative Spent Fuel Project of the United States Department of Energy. The goals of this project focused on developing viable non-destructive assay techniques with capabilities to improve an independent verification of spent fuel assembly characteristics. For this purpose, the CIPN instrument combines active and passive neutron interrogation, along with passive gamma-ray measurements, to provide three independent observables. We describe the initial feasibility demonstration of the CIPN instrument, which involved measurements of four pressurized-water-reactor spent fuel assemblies with different levels of burnup and two initial enrichments. The measurements were performed at the Post-Irradiation Examination Facility at the Korea Atomic Energy Institute in the Republic of Korea. The key aim of the demonstration was to evaluate CIPN instrument performance under realistic deployment conditions, with the focus on a detailed assessment of systematic uncertainties that are best evaluated experimentally. The measurements revealed good positioning reproducibility, as well as a high degree of insensitivity of the CIPN instrument's response to irregularities in a radial burnup profile. Systematic uncertainty of individual CIPN instrument signals due to assembly rotation was found to be <4.5%, even for assemblies with fairly extreme gradients in the radial burnup profile. Lastly, these features suggest that the CIPN instrument is capable of providing a good representation of assembly average characteristics, independent of assembly orientation in the instrument.

  16. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  17. Neutron-induced Cross Section Measurements of Calcium

    NASA Astrophysics Data System (ADS)

    Guber, K.; Kopecky, S.; Schillebeeckx, P.; Kauwenberghs, K.; Siegler, P.

    2014-05-01

    To support the US Department of Energy Nuclear Criticality Safety Program, neutron-induced cross section experiments were performed at the Geel Electron Linear Accelerator of the Institute for Reference Material and Measurements of the Joint Research Centers, European Union. Neutron capture and transmission measurements were carried out using a metallic calcium sample. The measured data will be used for a new calcium evaluation, which will be submitted with covariances to the ENDF/B nuclear data library.

  18. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  19. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    NASA Astrophysics Data System (ADS)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Bélier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Héctor; Audouin, Laurent; Aumann, Thomas; Ayyad, Yassid; Benlliure, Jose; Casarejos, Enrique; Cortina Gil, Dolores; Caamaño, Manuel; Farget, Fanny; Fernández Domínguez, Beatriz; Heinz, Andreas; Jurado, Beatriz; Kelić-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Paradela, Carlos; Pietri, Stéphane; Ramos, Diego; Rodríguez-Sànchez, Jose-Luis; Rodríguez-Tajes, Carme; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Tassan-Got, Laurent; Vargas, Jossitt; Voss, Bernd; Weick, Helmut

    2015-12-01

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism.

  20. Mercury and gold concentrations of highly polluted environmental samples determined using prompt gamma-ray analysis and instrument neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki

    2011-04-01

    The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.

  1. SHEBA prompt burst dynamics

    SciTech Connect

    Kimpland, R.

    1997-12-31

    The Solution High-Energy Burst Assembly (SHEBA), located at the Los Alamos Critical Experiments Facility, is a homogeneous liquid-fueled reactor that is being prepared for prompt burst operation. As part of the preparations, a reactor safety study was performed in support of the new SHEBA experiment plan. This study looked at the maximum power, total energy yield, and maximum transient pressures that may occur in the reactor during prompt burst operation. The goal of this study is to analyze the neutronic and hydrodynamic behavior of the reactor during burst operation, and to ensure that prompt burst operation does not damage the reactor or exceed the safety envelope of the facility`s Safety Analysis Report (SAR).

  2. Neutron-induced background in charge-coupled device detectors

    SciTech Connect

    Jaanimagi, P. A.; Boni, R.; Keck, R. L.

    2001-01-01

    The inertial confinement fusion (ICF) community must become more cognizant of the neutron-induced background levels in charge-coupled device (CCD) detectors that are replacing film as the recording medium in many ICF diagnostics. This background degrades the signal-to-noise ratio (SNR) of the recorded signals and for the highest-yield shots comprises a substantial fraction of the pixel's full well capacity. CCD detectors located anywhere in the OMEGA Target Bay are precluded from recording high precision signals (SNR>30) for deuterium--tritium neutron yields greater than 10{sup 13}. CCDs make excellent calibrated neutron detectors. The average CCD background level is proportional to the neutron yield, and we have measured a linear response over four decades. The spectrum of deposited energy per pixel is heavily weighted to low energies, <50 keV, with a few isolated saturated pixels. Most of the background recorded by the CCDs is due to secondary radiation produced by interactions of the primary neutrons with all the materials in the Target Bay as well as the shield walls and the floor. Since the noise source comes from all directions it is very difficult to shield. The fallback position of using film instead of CCD cameras for high-neutron-yield target shots is flawed, as we have observed substantially increased fog levels on our x-ray recording film as a function of the neutron yield.

  3. Measurement of the average number of prompt neutrons emitted per fission of /sup 233/U relative to /sup 252/Cf for the energy region 500 eV to 10 MeV and below 0. 3 eV

    SciTech Connect

    Gwin, R.; Spencer, R.R.; Ingle, R.W.

    1981-11-01

    The energy dependence of the average number of prompt fission neutrons emitted per fission, anti ..nu../sub p/(E), has been measured for /sup 233/U relative to anti ..nu../sub p/ for /sup 252/Cf over the neutron energy ranges 500 eV to 10 MeV and below 0.3 eV. A large Gd-loaded liquid scintillator was used to detect neutrons and the samples of /sup 233/U and /sup 252/Cf were contained in fission chambers. The present results for anti ..nu../sub p/(E) for /sup 233/U are in accord with the experimental results of Boldeman and the evaluated results of Lemmel in the thermal energy range, but in the neutron energy region between 100 keV and 1 MeV the present data are 1% or more larger than other experimental values.

  4. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    SciTech Connect

    Pozzi, Sara; Haight, Robert

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  5. Thermoluminescence in CaF2:Dy and CaF2:Mn induced by monoenergetic, parallel beam, 81-0 meV diffracted neutrons.

    PubMed

    Horowitz, Y S; Shahar, B B; Dubi, A; Pinto, H

    1977-05-01

    The thermal neutron thermoluminescent response of CaF2 : Dy (TLD-200, 0-35% wt Dy) and CaF2 : mn (TLD-400, 2% wt Mn) has been measured by exposure to a monoenergetic, parallel beam of 81-0 meV neutrons from a Kandi-II diffractometer. The TL dosemeters were rectangular and of 0-165 X 0-165 X 0-83 cm dimensions. The measured integral TLD-200 response for a neutron fluence of 10(10) n cm-2 was 0-21 +/- 0-013 R of 60Co which translates to 0-33 +/- 0-021 R 60Co for a Maxwellian neutron energy distribution at T = 293-6 K. The measured integral TLD-400 response for a neutron fluence of 10(10) n cm-2 was 0-09 +/- 0-006 R 60Co which similarly translates to 0-14 +/- 0-010 R 60Co for a Maxwellian neutron energy distribution at T = 293-6 K. The thermoluminescent response of both materials is both theoretically and experimentally shown to be composed of a thermal neutron induced prompt gamma component (approximately 20%) as well as the major component due to the thermal neutron induced beta decay of 165Dy and 56Mn. It is pointed out that the thermal neutron thermoluminescent response of both materials is size and geometry dependent.

  6. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  7. Neutron irradiation induced amorphization of silicon carbide

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Hay, J. C.

    1999-07-01

    This paper provides the properties of bulk stoichiometric silicon carbide which has been amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60°C to a total fast neutron fluence of 2.6 × 10 25 n/m 2. Amorphization was seen in both materials as evidenced by TEM, electron diffraction and X-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the amorphized CVD SiC. Using measured thermal conductivity data for the CVD SiC sample, the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than ˜125°C.

  8. Non-destructive elemental analysis of large meteorite samples by prompt gamma-ray neutron activation analysis with the internal mono-standard method.

    PubMed

    Latif, Sk A; Oura, Y; Ebihara, M; Nakahara, H

    2013-11-01

    Prompt gamma-ray neutron activation analysis (PGNAA) using the internal mono-standard method was tested for its applicability to analyzing large solid samples including irregularly shaped meteorite samples. For evaluating the accuracy and precision of the method, large quantities of the Geological Survey of Japan standardized rock powders (JB-1a, JG-1a, and JP-1) were analyzed and 12 elements (B, Na, Mg, Al, Cl, K, Ca, Ti, Mn, Fe, Sm, and Gd) were determined by using Si as an internal standard element. Analytical results were mostly in agreement with literature values within 10 %. The precision of the method was also shown to be within 10 % (1σ) for most of these elements. The analytical procedure was then applied to four stony meteorites (Allende, Kimble County, Leedey, Lake Labyrinth) and four iron meteorites (Canyon Diablo, Toluca (Mexico), Toluca (Xiquipilco), Squaw Creek) consisting of large chunks or single slabs. For stony meteorites, major elements (Mg, Al, Si, S, Ca, and Ni), minor elements (Na and Mn) and trace element (B, Cl, K, Ti, Co, and Sm) were determined with adequate accuracy. For iron meteorites, results for the Co and Ni mass fractions determined are all consistent with corresponding literature values. After the analysis, it was confirmed that the residual radioactivity remaining in the sample after PGNAA was very low and decreased down to the background level. This study shows that PGNAA with the internal mono-standard method is highly practical for determining the elemental composition of large, irregularly shaped solid samples including meteorites.

  9. High Energy Neutron Induced Gamma Production

    SciTech Connect

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  10. Analytic computation of average energy of neutrons inducing fission

    SciTech Connect

    Clark, Alexander Rich

    2016-08-12

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  11. Defect-induced magnetism in graphite through neutron irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Pochet, Pascal; Jenkins, Catherine A.; Arenholz, Elke; Bukalis, Gregor; Gemming, Sibylle; Helm, Manfred; Zhou, Shengqiang

    2014-12-01

    We have investigated the variation in the magnetization of highly ordered pyrolytic graphite (HOPG) after neutron irradiation, which introduces defects in the bulk sample and consequently gives rise to a large magnetic signal. We observe strong paramagnetism in HOPG, increasing with the neutron fluence. The induced paramagnetism can be well correlated with structural defects by comparison with density-functional theory calculations. In addition to the in-plane vacancies, the transplanar defects also contribute to the magnetization. The lack of any magnetic order between the local moments is possibly due to the absence of hydrogen/nitrogen chemisorption, or the magnetic order cannot be established at all in the bulk form.

  12. Neutron interferometer crystallographic imperfections and gravitationally induced quantum interference measurements

    NASA Astrophysics Data System (ADS)

    Heacock, B.; Arif, M.; Haun, R.; Huber, M. G.; Pushin, D. A.; Young, A. R.

    2017-01-01

    Dynamical diffraction leads to an interesting, unavoidable set of interference effects for neutron interferometers. This experiment studies the interference signal from two and three successive Bragg diffractions in the Laue geometry. We find that intrinsic Bragg-plane misalignment in monolithic, "perfect" silicon neutron interferometers is relevant between successive diffracting crystals, as well as within the Borrmann fan for typical interferometer geometries. We show that the dynamical phase correction employed in the Colella, Overhauser, and Werner gravitationally induced quantum interference experiments is attenuated by slight, intrinsic misalignments between diffracting crystals, potentially explaining the long-standing 1% discrepancy between theory and experiment. This systematic may also impact precision measurements of the silicon structure factor, affecting previous and future measurements of the Debye-Waller factor and neutron-electron scattering length as well as potential fifth-force searches. For the interferometers used in this experiment, Bragg planes of different diffracting crystals were found to be misaligned by 10 to 40 nrad.

  13. Yield of delayed neutrons in the thermal-neutron-induced reaction {sup 245}Cm(n, f)

    SciTech Connect

    Andrianov, V. R.; Vyachin, V. N.; Gundorin, N. A.; Druzhinin, A. A.; Zhdanova, K. V.; Lihachev, A. N.; Pikelner, L. B.; Rebrova, N. V.; Salamatin, I. M.; Furman, V. I.

    2008-10-15

    The yield of delayed neutrons, v{sub d}, from thermal-neutron-induced fission of {sup 245}Cm is measured. Experiments aimed at studying the properties of delayed neutrons from the fission of some reactor isotopes and initiated in 1997 were continued at the upgraded Isomer-M facility by a method according to which a periodic irradiation of a sample with a pulsed neutron beam from the IBR-2 reactor was accompanied by recording emitted neutrons in the intervals between the pulses. The accuracy of the resulting total delayed-neutron yield v{sub d} = (0.64 {+-} 0.02)% is two times higher than that in previous measurements. This work was performed at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (JINR, Dubna).

  14. Gamma-ray production cross sections in multiple channels for neutron induced reaction on 48Ti for En=1 to 200 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Chadwick, M B; Devlin, M; Fotiades, N; Kawano, T; Nelson, R O; Younes, W

    2006-07-06

    Prompt {gamma}-ray production cross sections were measured on a {sup 48}Ti sample for incident neutron energies from 1 MeV to 200 MeV. Partial {gamma}-ray cross sections for transitions in {sup 45-48}Ti, {sup 45-48}Sc, and {sup 43-45}Ca were determined. The observation of about 130 transitions from 11 different isotopes in the present work provides a demanding test of reaction model calculations, and is the first study in this mass region to extract partial {gamma}-ray cross sections for many different reaction channels over a wide range of incident neutron energies. The neutrons were produced by the Los Alamos National Laboratory spallation neutron source located at the LANSCE/WNR facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed GErmanium Array for Neutron Induced Excitations (GEANIE). Event neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections and then compared with model calculations using the enhanced GNASH reaction code. Compound nuclear, pre-equilibrium emission and direct reaction mechanisms are included. Overall the model calculations of the partial {gamma}-ray cross sections are in good agreement with measured values.

  15. Digital acquisition development for neutron induced fission studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Richman, Debra; O'Donnell, John; Couture, Aaron; Mosby, Shea; Wender, Steve

    2013-10-01

    The Los Alamos Neutron Science Center (LANSCE) is a neutron time of flight facility with a diverse group of experiments dedicated to the study of neutron induced reactions. A powerful proton LINAC is used to produce multiple pulsed neutron beams for which monitoring is required to track the neutron flux and energy distribution for each pulse. Digital DAQ techniques lend themselves well to beam monitoring and many of the experiments. Significant effort is being put into transitioning several traditional analog DAQ systems to state of the art digital systems. The Irradiation of Chips and Electronics (ICE House) and the Total Kinetic Energy of Fission (TKE) experiments are both transitioning to digital for the fall 2013 LANSCE run cycle. These new DAQ systems were built using the CAEN VME digitizer family, and both systems will benefit from reduced module count and zero deadtime. The TKE experiment utilizes FPGA firmware to streamline the acquisition system, as well as provide additional data for further analysis. Details of the implementation process along with preliminary data from both experiments will be presented.

  16. Genotoxicity of neutrons in Drosophila melanogaster. Somatic mutation and recombination induced by reactor neutrons.

    PubMed

    Guzmán-Rincón, J; Delfín-Loya, A; Ureña-Núñez, F; Paredes, L C; Zambrano-Achirica, F; Graf, U

    2005-08-01

    This paper describes the observation of a direct relationship between the absorbed doses of neutrons and the frequencies of somatic mutation and recombination using the wing somatic mutation and recombination test (SMART) of Drosophila melanogaster. This test was used for evaluating the biological effects induced by neutrons from the Triga Mark III reactor of Mexico. Two different reactor power levels were used, 300 and 1000 kW, and two absorbed doses were tested for each power level: 1.6 and 3.2 Gy for 300 kW and 0.84 and 1.7 Gy for 1000 kW. A linear relationship was observed between the absorbed dose and the somatic mutation and recombination frequencies. Furthermore, these frequencies were dependent on larval age: In 96-h-old larvae, the frequencies were increased considerably but the sizes of the spots were smaller than in 72-h-old larvae. The analysis of the balancer-heterozygous progeny showed a linear absorbed dose- response relationship, although the responses were clearly lower than found in the marker-trans-heterozygous flies. Approximately 65% of the genotoxicity observed is due to recombinational events. The results of the study indicate that thermal and fast neutrons are both mutagenic and recombinagenic in the D. melanogaster wing SMART, and that the frequencies are dependent on neutron dose, reactor power, and the age of the treated larvae.

  17. Theoretical cross sections of tantalum on neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Siddik, Tarik

    2016-11-01

    Neutron-induced cross-sections for the stable isotope 181Ta, in the energy region up to 20 MeV have been calculated. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS-1.0 and were compared with available experimental data in the literature and with ENDF/B-VII, T = 300 K; JENDL-3.3, T = 300 K and JEFF-3.1, T = 300 K evaluated libraries.

  18. Total prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henserson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2016-06-01

    The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity.

  19. Calculation of radiation damage induced by neutrons in compound materials

    NASA Astrophysics Data System (ADS)

    Lunéville, L.; Simeone, D.; Jouanne, C.

    2006-07-01

    Many years have been devoted to study the behaviour of solids submitted to impinging particles like ions or neutrons. The nuclear evaluations describe more and more accurately the various neutron-atom interactions. Anisotropic neutron-atom cross-sections are now available for many elements. Moreover, clear mathematical formalism now allows to calculate the number of displacements per atom in polyatomic targets in a realistic way using the binary collision approximation (BCA) framework. Even if these calculations do not take into account relaxation processes at the end of the displacement spike, they can be used to compare damages induced by different facilities like pressurized water reactors (PWR), fast breeder reactors (FBR), high temperature reactors (HTR) and fusion facilities like the European Spallation Source (ESS) and the International Fusion Material Irradiation Facility (IFMIF) on a defined material. In this paper, a formalism is presented to describe the neutron-atom cross-section and primary recoil spectra taking into account the anisotropy of nuclear reactions extracted from nuclear evaluations. Such a formalism permitted to compute displacement per atom production rate, primary and weighted recoil spectra within the BCA. The multigroup approximation has been used to calculate displacement per atom production rate and recoil spectra for a define nuclear reactor. All these informations are useful to compare recoil spectra and displacement per atom production rate produced by particle accelerator and nuclear reactor.

  20. Impaired DNA replication prompts deletions within palindromic sequences, but does not induce translocations in human cells.

    PubMed

    Kurahashi, Hiroki; Inagaki, Hidehito; Kato, Takema; Hosoba, Eriko; Kogo, Hiroshi; Ohye, Tamae; Tsutsumi, Makiko; Bolor, Hasbaira; Tong, Maoqing; Emanuel, Beverly S

    2009-09-15

    Palindromic regions are unstable and susceptible to deletion in prokaryotes and eukaryotes possibly due to stalled or slow replication. In the human genome, they also appear to become partially or completely deleted, while two palindromic AT-rich repeats (PATRR) contribute to known recurrent constitutional translocations. To explore the mechanism that causes the development of palindrome instabilities in humans, we compared the incidence of de novo translocations and deletions at PATRRs in human cells. Using a highly sensitive PCR assay that can detect single molecules, de novo deletions were detected neither in human somatic cells nor in sperm. However, deletions were detected at low frequency in cultured cell lines. Inhibition of DNA replication by administration of siRNA against the DNA polymerase alpha 1 (POLA1) gene or introduction of POLA inhibitors increased the frequency. This is in contrast to PATRR-mediated translocations that were never detected in similar conditions but were observed frequently in human sperm samples. Further deletions were found to take place during both leading- and lagging-strand synthesis. Our data suggest that stalled or slow replication induces deletions within PATRRs, but that other mechanisms might contribute to PATRR-mediated recurrent translocations in humans.

  1. Prompt radiation, shielding and induced radioactivity in a high-power 160 MeV proton linac

    NASA Astrophysics Data System (ADS)

    Magistris, Matteo; Silari, Marco

    2006-06-01

    CERN is designing a 160 MeV proton linear accelerator, both for a future intensity upgrade of the LHC and as a possible first stage of a 2.2 GeV superconducting proton linac. A first estimate of the required shielding was obtained by means of a simple analytical model. The source terms and the attenuation lengths used in the present study were calculated with the Monte Carlo cascade code FLUKA. Detailed FLUKA simulations were performed to investigate the contribution of neutron skyshine and backscattering to the expected dose rate in the areas around the linac tunnel. An estimate of the induced radioactivity in the magnets, vacuum chamber, the cooling system and the concrete shield was performed. A preliminary thermal study of the beam dump is also discussed.

  2. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  3. Prompt inhibition of fMLP-induced Ca2+ mobilization by parenteral lipid emulsions in human neutrophils.

    PubMed

    Wanten, Geert; Rops, Angelique; van Emst-De Vries, Sjenet E; Naber, Ton; Willems, Peter H G M

    2002-04-01

    It remains unclear whether modulation of immune system functions by lipids contributes to the increased infection rate observed in patients treated with parenteral nutrition. We therefore evaluated the effects of lipid emulsions derived from fish oil [very long chain triglycerides (VLCT)], olive oil [long-chain triglycerides- mono-unsaturated fatty acid (LCT-MUFA)], soya oil [long-chain triglycerides (LCT)], or a physical mixture of coconut and soya oil [mixed long- and medium-chain triglycerides (LCT-MCT)] on neutrophil activation. N-formyl-methionyl-leucyl-phenylalanine (fMLP) evoked an immediate increase of the cytosolic Ca2+ concentration ([Ca2+](i,av)) in a suspension of neutrophils. When added 3 min before fMLP, however, all four lipid emulsions reduced the hormone-induced increase in [Ca2+](i,av) with the same efficacy but with different potency. Half-maximal inhibition was reached at emulsion concentrations of 0.24 mM VLCT, 0.32 mM LCT-MCT, 0.52 mM LCT, and 0.82 mM LCT-MUFA. Similarly to the lipids, the protein kinase C (PKC) activator PMA markedly reduced the fMLP-induced increase in [Ca2+](i,av). PMA inhibition was abolished by the PKC inhibitor staurosporine. In contrast, however, this drug did not interfere with the inhibitory lipid effect, indicating that the lipids act primarily in a PKC-independent manner. In summary, this study shows that nutritional lipids can evoke a prompt and significant attenuation of hormone-induced neutrophil stimulation and that the emulsions based on fish oil and a mixture of coconut oil and soya oil are among the most potent ones in this respect.

  4. Prompt injections of highly relativistic electrons induced by interplanetary shocks: A statistical study of Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Kanekal, S. G.; Jian, L. K.; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.

    2016-12-01

    We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E > 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

  5. Muon-Induced Neutrons Do Not Explain the DAMA Data

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.

    2015-04-01

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC /MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φnν=1.0 ×10-9 cm-2 s-1 . We predict 3.49 ×10-5 counts /day /kg /keV , which accounts for less than 0.3% of the DAMA signal modulation amplitude.

  6. Muon-Induced Neutrons Do Not Explain the DAMA Data.

    PubMed

    Klinger, J; Kudryavtsev, V A

    2015-04-17

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC/MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φ(n)(ν)=1.0 × 10(-9)  cm(-2) s(-1). We predict 3.49 × 10(-5)  counts/day/kg/keV, which accounts for less than 0.3% of the DAMA signal modulation amplitude.

  7. Prompt fission gamma-ray studies at DANCE

    DOE PAGES

    Jandel, M.; Rusev, G.; Bond, E. M.; ...

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL,more » for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.« less

  8. Prompt radiation as a probe for fission dynamics

    SciTech Connect

    Karpeshin, F. F.

    2011-07-15

    It is shown that the Strutinsky-Denisov induced polarization mechanism leads to the appearance of the prompt electric dipole radiation from fission fragments of {sup 235}Uby thermal neutrons in the domain of around 5 MeV. The probability of the radiation is at the level of 0.001 per fission, which is in agreement with experiment. The angular distribution exhibits left-right asymmetry with respect to the direction of the neutron polarization axis. That means that the emission of gamma quanta at the given angle depends on the neutron polarization. The asymmetry is at the level of 10{sup -3}. The study of this effect will give a direct information about the scission configuration, nuclear viscosity, and dissipation properties of the collective energy of the surface vibration in fragments with large amplitude. This will give a complete picture of the process of snapping back the nuclear surface.

  9. Neutrino Signal of Collapse-induced Thermonuclear Supernovae: The Case for Prompt Black Hole Formation in SN 1987A

    NASA Astrophysics Data System (ADS)

    Blum, Kfir; Kushnir, Doron

    2016-09-01

    Collapse-induced thermonuclear explosion (CITE) may explain core-collapse supernovae (CCSNe). We analyze the neutrino signal in CITE and compare it to the neutrino burst of SN 1987A. For strong (≳ {10}51 erg) CCSNe, such as SN 1987A, CITE predicts a proto-neutron star (PNS) accretion phase lasting up to a few seconds that is cut off by black hole (BH) formation. The neutrino luminosity can later be revived by accretion disk emission after a dead time of a few to a few tens of seconds. In contrast, the neutrino mechanism for CCSNe predicts a short (≲s) PNS accretion phase, followed by slowly declining PNS cooling luminosity. We repeat statistical analyses used in the literature to interpret the neutrino mechanism, and apply them to CITE. The first 1-2 s of the neutrino burst are equally compatible with CITE and with the neutrino mechanism. However, the data points toward a luminosity drop at t = 2-3 s, which is in some tension with the neutrino mechanism but can be naturally attributed to BH formation in CITE. The occurrence of neutrino signal events at 5 s suggests that, within CITE, the accretion disk formed by that time. We perform two-dimensional numerical simulations showing that CITE may be able to accommodate this disk formation time while reproducing the ejected 56Ni mass and ejecta kinetic energy within factors of 2-3 of observations. We estimate the accretion disk neutrino luminosity, finding it to be on the low side but compatible with the data to a factor of 10. Given comparable uncertainties in the disk luminosity simulation, we conclude that direct BH formation may have occurred in SN 1987A.

  10. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVneutron energies while discrepancies appear at higher neutron energies. The cross section for producing an isotope in fast neutron-induced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  11. Neutron-induced helium implantation in GCFR cladding

    SciTech Connect

    Yamada, H.; Poeppel, R. B.; Sevy, R. H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10/sup 10/ He/cm/sup 2/.s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 ..mu..m, more than 99% of helium particles are implanted in the first 2-..mu..m-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding.

  12. Cosmic-Ray-Induced Ship-Effect Neutron Measurements and Implications for Cargo Scanning at Borders

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Seifert, Allen; Siciliano, Edward R.; Weier, Dennis R.; Windsor, Lindsay K.; Woodring, Mitchell L.; Borgardt, James D.; Buckley, Elise D.; Flumerfelt, Eric L.; Oliveri, Anna F.; Salvitti, Matthew

    2008-03-11

    Neutron measurements are used as part of the interdiction process for illicit nuclear materials at border crossings. Even though the natural neutron background is small, its variation can impact the sensitivity of detection systems. The natural background of neutrons that is observed in monitoring instruments arises almost entirely from cosmic ray induced cascades in the atmosphere and the surrounding environment. One significant source of variation in the observed neutron background is produced by the “ship effect” in large quantities of cargo that transit past detection instruments. This paper reports on results from measurements with typical monitoring equipment of ship effect neutrons in various materials. One new result is the “neutron shadow shielding” effect seen with some low neutron density materials.

  13. Prompt-Gamma Activation Analysis.

    PubMed

    Lindstrom, Richard M

    1993-01-01

    A permanent, full-time instrument for prompt-gamma activation analysis is nearing completion as part of the Cold Neutron Research Facility (CNRF). The design of the analytical system has been optimized for high gamma detection efficiency and low background, particularly for hydrogen. Because of the purity of the neutron beam, shielding requirements are modest and the scatter-capture background is low. As a result of a compact sample-detector geometry, the sensitivity (counting rate per gram of analyte) is a factor of four better than the existing Maryland-NIST thermal-neutron instrument at this reactor. Hydrogen backgrounds of a few micrograms have already been achieved, which promises to be of value in numerous applications where quantitative nondestructive analysis of small quantities of hydrogen in materials is necessary.

  14. Characterization of Neutron-Induced Defects in Isotopically Enriched Lithium Tetraborate

    DTIC Science & Technology

    2011-03-01

    Electron paramagnetic resonance, electron-nuclear double resonance, pulsed anneal, and thermoluminescence studies prior to neutron irradiation concluded...that Ag doped Li2B4O7 crystals contain Ag point defects that trap both electrons and holes. Pulsed anneal and thermoluminescence studies of all...crystal types prior to neutron irradiation suggest neutron induced defects are significantly more stable than as-grown defects. Thermoluminescence may

  15. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  16. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  17. Measurements of high-energy neutron-induced fission ofnatPb and 209Bi

    NASA Astrophysics Data System (ADS)

    Tarrío, D.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Paradela, C.; Stephan, C.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Becvár, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Gonçalves, I.; González-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsig, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-10-01

    The CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of natPb and 209Bi relative to 235U and 238U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV.

  18. Calculations of neutron flux spectra induced in the earth's atmosphere by galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Chandler, K. C.; Barish, J.

    1972-01-01

    Calculations have been carried out to determine the neutron flux induced in the earth's atmosphere by galactic protons and alpha particles at solar minimum for a geomagnetic latitude of 42 N. Neutron flux spectra were calculated using Monte Carlo and discrete ordinates methods, and various comparisons with experimental data are presented. The magnitude and shape of the calculated neutron-leakage spectrum at the particular latitude considered support the theory that the cosmic-ray-albedo-neutron-decay mechanism is the source of the protons and electrons trapped in the Van Allen belts.

  19. (n,2n) and (n,3n) cross sections of neutron-induced reactions on 150Sm for En from threshold to 35 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G; Kawano, T; Becker, J; Wu, C; Devlin, M; Fotiades, N; Nelson, R; Kunieda, S

    2009-03-16

    Cross-section measurements were made of prompt discrete {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 35 MeV) on a {sup 150}Sm sample fo 1550 mg/cm{sup 2} of Sm{sub 2}O{sub 3} enriched to 95.6% in {sup 150}Sm. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual {gamma}-rays up to E{sub x} = 0.8 MeV in {sup 149}Sm and one {gamma}-ray transition between the first excited and ground state in {sup 148}Sm were measured. Partial {gamma}-ray cross sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic 'global' optical model potential parameters. The coupled-channel optical model based on the soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin distribution in {sup 150}Sm was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. the partial cross sections for discrete {gamma}-ray cascade paths leading to the ground state in {sup 149}Sm and {sup 148}Sm have been summed (without double counting) to estimate lower limits for reaction cross sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross sections. These reaction channel cross sections agree with previously measured experimental and ENDF/B-VII evaluations.

  20. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  1. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. 6Lil(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal.

  2. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.

  3. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    NASA Astrophysics Data System (ADS)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En < 0.5 eV) and lesser degree in epithermal and evaporation domains (i.e., 0.5 eV < En < 0.1 MeV and 0.1 MeV < En < 20 MeV, respectively). Cascade neutron (En > 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  4. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    SciTech Connect

    Yoon, D; Jung, J; Suh, T

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  5. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    SciTech Connect

    Lestone, J.P.

    2016-01-15

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of {sup 235}U and from spontaneous fission of {sup 252}Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  6. Neutron-induced 2.2 MeV background in gamma ray telescopes

    NASA Technical Reports Server (NTRS)

    Zanrosso, E. M.; Long, J. L.; Zych, A. D.; White, R. S.

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma ray line radiation essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen.

  7. Hard error generation by neutron-induced fission fragments

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-12-01

    The authors observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal-nitride-oxide nonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup **2/ moving at an angle of 30 degrees or less from the electric field in the high-field, gate region of the memory transistor, and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, they observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. They mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. The authors' concentration measurements are in excellent agreement with other's measurement of uranium concentration in ceramic lids. The authors' Monte Carlo analyses also agree closely with their measurements of hard error probability in MNOS NVRAMs.

  8. Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.

    1992-01-01

    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.

  9. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  10. Neutrons scattering studies in the actinide region

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from [sup 239]Pu; neutron scattering in [sup 181]Ta and [sup 197]Au; response of a [sup 235]U fission chamber near reaction thresholds; two-parameter data acquisition system; black'' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory.

  11. A laser-induced repetitive fast neutron source applied for gold activation analysis

    SciTech Connect

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-15

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 Multiplication-Sign 10{sup 5} n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He{sup 4} nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T{sup 3}.

  12. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy.

    PubMed

    Jeyasugiththan, Jeyasingam; Peterson, Stephen W

    2015-10-07

    During proton beam radiotherapy, discrete secondary prompt gamma rays are induced by inelastic nuclear reactions between protons and nuclei in the human body. In recent years, the Geant4 Monte Carlo toolkit has played an important role in the development of a device for real time dose range verification purposes using prompt gamma radiation. Unfortunately the default physics models in Geant4 do not reliably replicate the measured prompt gamma emission. Determining a suitable physics model for low energy proton inelastic interactions will boost the accuracy of prompt gamma simulations. Among the built-in physics models, we found that the precompound model with a modified initial exciton state of 2 (1 particle, 1 hole) produced more accurate discrete gamma lines from the most important elements found within the body such as 16O, 12C and 14N when comparing them with the available gamma production cross section data. Using the modified physics model, we investigated the prompt gamma spectra produced in a water phantom by a 200 MeV pencil beam of protons. The spectra were attained using a LaBr3 detector with a time-of-flight (TOF) window and BGO active shield to reduce the secondary neutron and gamma background. The simulations show that a 2 ns TOF window could reduce 99% of the secondary neutron flux hitting the detector. The results show that using both timing and active shielding can remove up to 85% of the background radiation which includes a 33% reduction by BGO subtraction.

  13. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Jeyasugiththan, Jeyasingam; Peterson, Stephen W.

    2015-10-01

    During proton beam radiotherapy, discrete secondary prompt gamma rays are induced by inelastic nuclear reactions between protons and nuclei in the human body. In recent years, the Geant4 Monte Carlo toolkit has played an important role in the development of a device for real time dose range verification purposes using prompt gamma radiation. Unfortunately the default physics models in Geant4 do not reliably replicate the measured prompt gamma emission. Determining a suitable physics model for low energy proton inelastic interactions will boost the accuracy of prompt gamma simulations. Among the built-in physics models, we found that the precompound model with a modified initial exciton state of 2 (1 particle, 1 hole) produced more accurate discrete gamma lines from the most important elements found within the body such as 16O, 12C and 14N when comparing them with the available gamma production cross section data. Using the modified physics model, we investigated the prompt gamma spectra produced in a water phantom by a 200 MeV pencil beam of protons. The spectra were attained using a LaBr3 detector with a time-of-flight (TOF) window and BGO active shield to reduce the secondary neutron and gamma background. The simulations show that a 2 ns TOF window could reduce 99% of the secondary neutron flux hitting the detector. The results show that using both timing and active shielding can remove up to 85% of the background radiation which includes a 33% reduction by BGO subtraction.

  14. Chromosome aberrations in human fibroblasts induced by monoenergetic neutrons. I. Relative biological effectiveness.

    PubMed

    Pandita, T K; Geard, C R

    1996-06-01

    The relative biological effectiveness (RBE) of neutrons for many biological end points varies with neutron energy. To test the hypothesis that the RBE of neutrons varies with respect to their energy for chromosome aberrations in a cell system that does not face interphase death, we studied the yield of chromosome aberrations induced by monoenergetic neutrons in normal human fibroblasts at the first mitosis postirradiation. Monoenergetic neutrons at 0.22, 0.34, 0.43, 1, 5.9 and 13.6 MeV were generated at the Accelerator Facility of the Center for Radiological Research, Columbia University, and were used to irradiate plateau-phase fibroblasts at low absorbed doses from 0.3 to 1.2 Gy at a low dose rate. The reference low-LET, low-dose-rate radiation was 137Cs-gamma rays (0.66 MeV). A linear dose response (Y = alphaD) for chromosome aberrations was obtained for all monoenergetic neutrons and for the gamma rays. The yield of chromosome aberrations per unit dose was high at low neutron energies (0.22, 0.34 and 0.43 MeV) with a gradual decline with the increase in neutron energy. Maximum RBE (RBEm) values varied for the different types of chromosome aberrations. The highest RBE (24.3) for 0.22 and 0.43 MeV neutrons was observed for intrachromosomal deletions, a category of chromosomal change common in solid tumors. Even for the 13.6 MeV neutrons the RBEm (11.1) exceeded 10. These results show that the RBE of neutrons varies with neutron energy and that RBEs are dissimilar between different types of asymmetric chromosome aberrations and suggest that the radiation weighting factors applicable to low-energy neutrons need firmer delineation. This latter may best be attained with neutrons of well-defined energies. This would enable integrations of appropriate quality factors with measured radiation fields, such as those in high-altitude Earth atmosphere. The introduction of commercial flights at high altitude could result in many more individuals being exposed to neutrons than

  15. Experimental study of neutron induced background noise on gated x-ray framing cameras

    SciTech Connect

    Izumi, N.; Hagmann, C.; Stone, G.; Hey, D.; Glenn, S.; Conder, A.; Teruya, A.; Sorce, C.; Tommasini, R.; Stoeffl, W.; Springer, P.; Landen, O. L.; Eckart, M.; Mackinnon, A. J.; Koch, J. A.; Bradley, D. K.; Bell, P.; Herrmann, H. W.; Kyrala, G. A.; Bahukutumbi, R.; and others

    2010-10-15

    A temporally gated x-ray framing camera based on a proximity focus microchannel plate is one of the most important diagnostic tools of inertial confinement fusion experiments. However, fusion neutrons produced in imploded capsules interact with structures surrounding the camera and produce background to x-ray signals. To understand the mechanisms of this neutron induced background, we tested several gated x-ray cameras in the presence of 14 MeV neutrons produced at the Omega laser facility. Differences between background levels observed with photographic film readout and charge-coupled-device readout have been studied.

  16. Measurements of activation induced by environmental neutrons using ultra low-level gamma-ray spectrometry.

    PubMed

    Martínez Canet, M J; Hult, M; Köhler, M; Johnston, P N

    2000-03-01

    The flux of environmental neutrons is being studied by activation of metal discs of selected elements. Near the earth's surface the total neutron flux is in the order of 10(-2) cm(-2)s(-1), which gives induced activities of a few mBq in the discs. Initial results from this technique, involving activation at ground level for several materials (W, Au, Ta, In, Re, Sm, Dy and Mn) and ultra low-level gamma-ray spectrometry in an underground laboratory located at 500 m.w.e., are presented. Diffusion of environmental neutrons in water is also measured by activation of gold at different depths.

  17. Neutron-induced fission measurements at the time-of-flight facility nELBE

    SciTech Connect

    Kögler, T.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2015-05-18

    Neutron-induced fission of ²⁴²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  18. Molecular structural analysis of HPRT mutations induced by thermal and epithermal neutrons in Chinese hamster ovary cells.

    PubMed

    Kinashi, Y; Sakurai, Y; Masunaga, S; Suzuki, M; Takagaki, M; Akaboshi, M; Ono, K

    2000-09-01

    Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.

  19. In vivo elemental analysis by counting neutron-induced gamma rays for medical and biological applications

    NASA Astrophysics Data System (ADS)

    Kehayias, Joseph J.; Ma, Ruimei; Zhuang, Hong; Moore, Robert; Dowling, Lisa

    1995-03-01

    Non-invasive in vivo elemental analysis is a technique used to assess human body composition which is indicative of nutritional status and health condition. The in vivo measurement of the body's major elements is used for a variety of medical studies requiring the determination of the body's compartments (protein, fat, water, bone). Whole body gamma-ray counters, consisting of Nal(Tl) crystal detectors in a shielded room, are used for measuring in vivo the body's Ca, Cl, Na and P by delayed neutron activation analysis. Thermal neutrons from a moderated 238Pu-Be source are used for the measurement of total body nitrogen (and thus protein) and chlorine at low radiation exposure (0.80 mSv). The resulting high energy prompt gamma-rays from nitrogen (10.83 MeV) and chlorine (6.11 MeV) are detected simultaneously with the irradiation. Body fat (the main energy store) and fat distribution (which relates to risk for cardiovascular disease) are measured by detecting C and O in vivo through fast neutron inelastic scattering. A small sealed D-T neutron generator is used for the pulsed (4 - 8 KHz) production of fast neutrons. Carbon and oxygen are detected by counting the 4.44 and 6.13 MeV gamma-rays resulting from the inelastic scattering of the fast neutrons from the 12C and 16O nuclei, respectively. One use of this method is the systematic study of the mechanisms driving the age-associated depletion of the metabolizing, oxygen-consuming cellular compartment of the body. The understanding of this catabolism may suggest ways to maintain lean tissue and thus to preserve quality of life for the very old.

  20. Laser induced neutron production by explosion of the deuterium clusters

    SciTech Connect

    Holkundkar, Amol R.; Mishra, Gaurav Gupta, N. K.

    2014-01-15

    The high energy deuterium ions serve as compact source of neutrons when fused with either deuterium or tritium atoms. In view of this, the explosion of the deuterium clusters under the influence of the laser pulse with intensity ranging from 10{sup 15} to 10{sup 19} W/cm{sup 2} is being studied along with the effect of the cluster radius and inter-cluster distance. The objective of this article is to study the efficiency of the deuterium cluster as a compact source of neutrons under various laser and cluster parameters. It is being observed that the cluster density (number of clusters per unit volume) is quite important to gain high neutron yield.

  1. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  2. Hall-drift induced magnetic field instability in neutron stars.

    PubMed

    Rheinhardt, M; Geppert, U

    2002-03-11

    In the presence of a strong magnetic field and under conditions as realized in the crust and the superfluid core of neutron stars, the Hall drift dominates the field evolution. We show by a linear analysis that, for a sufficiently strong large-scale background field depending at least quadratically on position in a plane conducting slab, an instability occurs which rapidly generates small-scale fields. Their growth rates depend on the choice of the boundary conditions, increase with the background field strength, and may reach 10(3) times the Ohmic decay rate. The effect of that instability on the rotational and thermal evolution of neutron stars is discussed.

  3. Simulating Makrofol as a detector for neutron-induced recoils.

    PubMed

    Zhang, G; Becker, F; Urban, M; Xuan, Y

    2011-03-01

    The response of solid-state nuclear track detector is extremely dependent on incident angles of neutrons, which determine the angular distribution of secondary particles. In this paper, the authors present a method to investigate the angular response of Makrofol detectors. Using the C++-based Monte-Carlo tool-kit Geant4 in combination with SRIM and our MATLAB codes, we simulated the angular response of Makrofol. The simulations were based on the restricted energy loss model, and the concept of energy threshold and critical angle. Experiments were carried out with (252)Cf neutrons to verify the simulation results.

  4. Neutron-induced reactions in the hohlraum to study reaction in flight neutrons

    NASA Astrophysics Data System (ADS)

    Boswell, M. S.; Elliott, S. R.; Guiseppe, V.; Kidd, M.; Rundberg, B.; Tybo, J.

    2013-04-01

    We are currently developing the physics necessary to measure the Reaction In Flight (RIF) neutron flux from a NIF capsule. A measurement of the RIF neutron flux from a NIF capsule could be used to deduce the stopping power in the cold fuel of the NIF capsule. A foil irradiated at the Omega laser at LLE was counted at the LANL low-background counting facility at WIPP. The estimated production rate of 195Au was just below our experimental sensitivity. We have made several improvements to our counting facility in recent months. These improvements are designed to increase our sensitivity, and include installing two new low-background detectors, and taking steps to reduce noise in the signals.

  5. Total Kinetic Energy Release in the Fast Neutron Induced Fission of 235U

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Yanez, Ricardo

    2016-09-01

    We have measured the total kinetic energy (TKE) release, its variance and associated fission product mass distributions for the neutron induced fission of 235U for En = 2-90 MeV using the 2E method. The neutron energies were determined,event by event, by time of flight measurements with the white spectrum neutron beam from LANSCE. The TKE decreases with increasing neutron energy. This TKE decrease is due to increasing symmetric fission (and decreasing asymmetric fission)with increasing neutron energy, in accord with Brosa model predictions. Our measurement of the TKE release for 235U(nth,f) is in excellent agreement with the known value, indicating our measurements are absolute measurements. The TKE variances are sensitive indicators of nth chance fission. Due to the occurrence of nth chance fission and pre-fission neutron emission, the average fissioning system and its excitation energy is a complex function of the incident neutron energy. Detailed comparisons of our data with previous measurements will be made. This work was supported, in part, by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Grant DE-SC0014380.

  6. Displacement damage induced in iron by gammas and neutrons under irradiation in the IFMIF test cell

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; Fischer, U.

    2011-10-01

    This work presents a complete comparative analysis of the radiation damage induced in iron-based materials in IFMIF by photons and neutrons. The gamma induced damage takes into account, for the first time, both photonuclear and photoatomic reaction mechanisms. The relevant cross sections were taken from available data evaluations. The gamma and neutron radiation fields were calculated by the McDeLicious Monte Carlo code using a 3-D geometry model. Finally the gamma and neutron induced damages in the iron have been assessed inside the IFMIF test cell and the surrounding concrete walls. It was found that the photoatomic mechanism dominates the photonuclear with at least one hundred times higher damage rates. The ratio of the gamma and the neutron induced displacement damage was found to be 10 -3 inside the concrete wall and 10 -5 in the components close to d-Li source. This fraction may increase a few times due to the uncertainty of the evaluated γ-dpa cross sections and the different surviving probabilities for defects produced by gammas and neutrons, nevertheless unlikely exceed 1%.

  7. Energy- and time-resolved detection of prompt gamma-rays for proton range verification.

    PubMed

    Verburg, Joost M; Riley, Kent; Bortfeld, Thomas; Seco, Joao

    2013-10-21

    In this work, we present experimental results of a novel prompt gamma-ray detector for proton beam range verification. The detection system features an actively shielded cerium-doped lanthanum(III) bromide scintillator, coupled to a digital data acquisition system. The acquisition was synchronized to the cyclotron radio frequency to separate the prompt gamma-ray signals from the later-arriving neutron-induced background. We designed the detector to provide a high energy resolution and an effective reduction of background events, enabling discrete proton-induced prompt gamma lines to be resolved. Measuring discrete prompt gamma lines has several benefits for range verification. As the discrete energies correspond to specific nuclear transitions, the magnitudes of the different gamma lines have unique correlations with the proton energy and can be directly related to nuclear reaction cross sections. The quantification of discrete gamma lines also enables elemental analysis of tissue in the beam path, providing a better prediction of prompt gamma-ray yields. We present the results of experiments in which a water phantom was irradiated with proton pencil-beams in a clinical proton therapy gantry. A slit collimator was used to collimate the prompt gamma-rays, and measurements were performed at 27 positions along the path of proton beams with ranges of 9, 16 and 23 g cm(-2) in water. The magnitudes of discrete gamma lines at 4.44, 5.2 and 6.13 MeV were quantified. The prompt gamma lines were found to be clearly resolved in dimensions of energy and time, and had a reproducible correlation with the proton depth-dose curve. We conclude that the measurement of discrete prompt gamma-rays for in vivo range verification of clinical proton beams is feasible, and plan to further study methods and detector designs for clinical use.

  8. Late-time emission of prompt fission γ rays

    NASA Astrophysics Data System (ADS)

    Talou, P.; Kawano, T.; Stetcu, I.; Lestone, J. P.; McKigney, E.; Chadwick, M. B.

    2016-12-01

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ -ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ -ray energy, the average total γ -ray multiplicity, and the fragment-specific γ -ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μ s following fission, in the case of 235U and 239Pu(nth,f ) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ -ray energy increases by 2% to 5% in the same time interval. Finally, those results are shown to be robust against significant changes in the model input parameters.

  9. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  10. Determination of the cosmic-ray-induced neutron flux and ambient dose equivalent at flight altitude

    NASA Astrophysics Data System (ADS)

    Pazianotto, M. T.; Cortés-Giraldo, M. A.; Federico, C. A.; Gonçalez, O. L.; Quesada, J. M.; Carlson, B. V.

    2015-07-01

    There is interest in modeling the atmosphere in the South Atlantic Magnetic Anomaly in order to obtain information about the cosmic-ray induced neutron spectrum and angular distribution as functions of altitude. In this work we use the Monte Carlo codes MCNPX and Geant4 to determine the cosmic-ray-induced neutron flux in the atmosphere produced by the cosmic ray protons incident on the top of the atmosphere and to estimate the ambient dose equivalent rate as function of altitude. The results present a reasonable conformity to other codes (QARM and EXPACS) based on other parameterizations.

  11. Chromosomal abnormalities in neutron-induced acute myeloid leukemias in CBA/H mice

    SciTech Connect

    Bouffler, S.D.; Meijne, E.I.M.; Huiskamp, R.

    1996-09-01

    Acute myeloid leukemias (AMLs) induced in CBA/H mice by 1 MeV fission neutrons have been examined for chromosomal abnormalities by G-band analysis. In common with X-ray- and {alpha}-particle-induced AMLs in CBA/H mice, more than 90% (16/17) of the myeloid leukemias had chromosome 2 abnormalities, in this case, all interstitial deletions. Chromosome 2 breakpoints were not wholly consistent, but clustering in three specific G-band regions was observed. Very distal (H-region) breakpoints were more common in the neutron AMLs than in X-ray- or {alpha}-particle-induced leukemias. These data indicate that neutron-induced AMLs in CBA/H mice are not characterized by a specific chromosome deletion but that a variety of chromosome 2 deletion types are associated with the disease. Trisomy of chromosome 1 (12.5% AMLs) and aneusomy of chromosomes 6 (31% AMLs) and Y (37.5% AMLs) were noted. While chromatid breakage was observed occasionally in neutron-induced AML, no clear indications of persistent chromosomal instability or high levels of stable chromosomal change were apparent. 19 refs., 1 fig., 1 tab.

  12. Measurement of gravitation-induced quantum interference for neutrons in a spin-echo spectrometer

    NASA Astrophysics Data System (ADS)

    de Haan, Victor-O.; Plomp, Jeroen; van Well, Ad A.; Rekveldt, M. Theo; Hasegawa, Yuji H.; Dalgliesh, Robert M.; Steinke, Nina-Juliane

    2014-06-01

    With a neutron spin-echo reflectometer (OffSpec at ISIS, UK) it is possible to measure the gravitation-induced quantum phase difference between the two spin states of the neutron wave function in a magnetic field. In the small-angle approximation, this phase depends linearly on the inclination angle of the neutron beam with respect to the horizontal. This also holds for the Bonse-Hart interferometer used in the Colella-Overhauser-Werner experiments and should be taken into account. Neglecting this term could yield deviations up to 1% per degree inclination angle. The gravitation-induced quantum phase as measured with OffSpec with an accuracy of 0.1% agrees with the theoretically expected results.

  13. In-situ Calibration of Detectors using Muon-induced Neutrons

    SciTech Connect

    Marleau, Peter; Reyna, David

    2016-10-31

    In this work we investigate a method that confirms the operability of neutron detectors requiring neither radiological sources nor radiation generating devices. This is desirable when radiological sources are not available, but confidence in the functionality of the instrument is required. The “source”, based on the production of neutrons in high-Z materials by muons, provides a tagged, low-background and consistent rate of neutrons that can be used to check the functionality of or calibrate a detector. Using a Monte Carlo guided optimization, an experimental apparatus was designed and built to evaluate the feasibility of this technique. Through a series of trial measurements in a variety of locations we show that gated muon-induced neutrons appear to provide a consistent source of neutrons (35.9 ± 2.3 measured neutrons/10,000 muons in the instrument) under normal environmental variability (less than one statistical standard deviation for 10,000 muons) with a combined environmental + statistical uncertainty of ~18% for 10,000 muons. This is achieved in a single 21-22 minute measurement at sea level.

  14. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    NASA Astrophysics Data System (ADS)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  15. Analysis of Neutron Induced Gamma Activity in Lowbackground Ge - Spectroscopy Systems

    NASA Astrophysics Data System (ADS)

    Jovančević, Nikola; Krmar, Midrag

    Neutron interactions with materials of Ge-spectroscopy systems are one of the main sources of background radiation in low-level gamma spectroscopy measurements. Because of that detailed analysis of neutron induced gamma activity in low-background Ge-spectroscopy systems was done. Two HPGe detectors which were located in two different passive shields: one in pre-WW II made iron and the second in commercial low background lead were used in the experiment. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal and shield materials (lead, iron, hydrogen, NaI) were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. The relative intensities of several gamma lines emitted after the inelastic scattering of neutrons (created by cosmic muons) in 56Fe were report. These relative intensities of detected gamma lines of 56Fe are compared with the results collected in the same iron shield by the use of the 252Cf neutrons.

  16. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    SciTech Connect

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy {gamma} rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy {gamma} rays or 2 Gy fast neutrons. Very few {gamma} irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy {gamma} irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to {gamma} irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  17. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    SciTech Connect

    Wang, Zujun Huang, Shaoyan; Liu, Minbo; Xiao, Zhigang; He, Baoping; Yao, Zhibin; Sheng, Jiangkun

    2014-07-15

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  18. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  19. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    DOE PAGES

    Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen; ...

    2016-10-17

    In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states weremore » studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.« less

  20. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Nelson, R. O.; Kawano, T.; Carroll, J. J.

    2016-10-01

    Background: In (n ,n' ) reactions on stable Ir and Au isotopes in the mass A =190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n ,2 n ) reaction channel opens up, and then decreases. Purpose: In order to check for similar behavior in the mass A =100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Methods: Excited states were studied using the (n ,n'γ ), (n ,2 n γ ), and (n ,3 n γ ) reactions on 103Rh and 109Ag. A germanium detector array for γ -ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Results: Absolute partial γ -ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. Conclusions: The opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A =190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.

  1. Feeding of Rh and Ag isomers in fast-neutron-induced reactions

    SciTech Connect

    Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen; Kawano, T.; Carroll, J. J.

    2016-10-17

    In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states were studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.

  2. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    SciTech Connect

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n{prime}) gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC{sup 2}-2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations.

  3. Neutron-induced fission cross section of U234 and Np237 measured at the CERN Neutron Time-of-Flight (n_TOF) facility

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Tarrío, D.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-09-01

    A high-resolution measurement of the neutron-induced fission cross section of U234 and Np237 has been performed at the CERN Neutron Time-of-Flight facility. The cross sections have been determined in a wide energy range from 1 eV to 1 GeV using the evaluated U235 cross section as reference. In these measurements the energy determination for the U234 resonances could be improved, whereas previous discrepancies for the Np237 resonances were confirmed. New cross-section data are provided for high neutron energies that go beyond the limits of prior evaluations, obtaining important differences in the case of Np237.

  4. Neutron Induced D Breakup in Inertial Confinement Fusion at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schroder, W. U.; Frenje, J. A.; Gatu Johnson, M.

    2015-11-01

    High-resolution neutron spectroscopy is used to study the deuteron breakup reaction D(n,n ') np in the thermonuclear environment created in inertial confinement fusion experiments at the Omega Laser Facility. Neutrons with an energy of 14.1 MeV generated in the primary D-T fusion reactions scatter elastically and inelastically off the dense (cryogenic) D-T fuel assembly surrounding the central hot spot at peak fuel compression. These neutrons also induce a breakup of the fuel deuterons. The corresponding breakup cross section is measured relative to elastic n -D and n -T scattering, i.e., simultaneously in the same environment. Apart from astrophysical and technological interest, the neutron-induced deuteron breakup reaction is of interest to the physics of nucleon -nucleon forces. For example, theoretical calculations predict a noticeable influence of nucleonic three-body forces on the magnitude of the breakup cross section. Preliminary results from measurements of the neutron contribution in the 2- to 6-MeV range show reasonable agreement with the published ENDL 2008.2 semi-empirical cross-section. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors pro...

  6. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    DOEpatents

    Bloom, Everett E.; Stiegler, James O.; Rowcliffe, Arthur F.; Leitnaker, James M.

    1979-01-01

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels.

  7. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    DOEpatents

    Bloom, Everett E.; Stiegler, James O.; Rowcliffe, Arthur F.; Leitnaker, James M.

    1977-03-08

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels.

  8. Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to nth+235U, nth+239Pu, and 252Cf (sf)

    NASA Astrophysics Data System (ADS)

    Becker, B.; Talou, P.; Kawano, T.; Danon, Y.; Stetcu, I.

    2013-01-01

    The prompt neutron and γ emission from primary fission fragments are calculated for thermal neutron induced fission of 235U and 239Pu and for spontaneous fission of 252Cf using a Monte Carlo Hauser-Feshbach approach for the evaporation of the excited fission fragments. Remaining free model parameters, such as excitation energy sharing and initial spin distribution, are determined by comparison of the neutron emission characteristics with experimental data. Using the obtained parameters the γ-ray characteristics, e.g., γ spectrum, multiplicity distribution, average multiplicity and energy, and multiplicity distribution, are calculated and compared with available experimental data.

  9. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  10. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  11. Prompt Gamma Ray Analysis of Soil Samples

    SciTech Connect

    Naqvi, A.A.; Khiari, F.Z.; Haseeb, S.M.A.; Hussein, Tanvir; Khateeb-ur-Rehman; Isab, A.H.

    2015-07-01

    Neutron moderation effects were measured in bulk soil samples through prompt gamma ray measurements from water and benzene contaminated soil samples using 14 MeV neutron inelastic scattering. The prompt gamma rays were measured using a cylindrical 76 mm x 76 mm (diameter x height) LaBr{sub 3}:Ce detector. Since neutron moderation effects strongly depend upon hydrogen concentration of the sample, for comparison purposes, moderation effects were studied from samples containing different hydrogen concentrations. The soil samples with different hydrogen concentration were prepared by mixing soil with water as well as benzene in different weight proportions. Then, the effects of increasing water and benzene concentrations on the yields of hydrogen, carbon and silicon prompt gamma rays were measured. Moderation effects are more pronounced in soil samples mixed with water as compared to those from soil samples mixed with benzene. This is due to the fact that benzene contaminated soil samples have about 30% less hydrogen concentration by weight than the water contaminated soil samples. Results of the study will be presented. (authors)

  12. Closed-Loop Performance Measures for Flight Controllers Subject to Neutron-Induced Upsets

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven; Zhang, Hong; Gonzalex, Oscar R.

    2003-01-01

    It has been observed that atmospheric neutrons can produce single event upsets in digital flight control hardware. The phenomenon has been studied extensively at the chip level, and now system level experiments are underway. In this paper analytical closed-loop performance measures for the tracking error are developed for a plant that is stabilized by a recoverable computer system subject to neutron induced upsets. The underlying model is a Markov jump-linear system with process noise. The steady-state tracking error is expressed in terms of a generalized observability Gramian.

  13. Neutron-induced reactions on AlF3 studied using the optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Lv, Cui-Juan; Zhang, Guo-Qiang; Wang, Hong-Wei; Zuo, Jia-Xu

    2015-08-01

    Neutron-induced reactions on 27Al and 19F nuclei are investigated using the optical model implemented in the TALYS 1.4 toolkit. Incident neutron energies in a wide range from 0.1 keV to 30 MeV are calculated. The cross sections for the main channels (n, np), (n, p), (n, α), (n, 2n), and (n, γ) and the total reaction cross section (n, tot) of the reactions are obtained. When the default parameters in TALYS 1.4 are adopted, the calculated results agree with the measured results. Based on the calculated results for the n + 27Al and n + 19F reactions, the results of the n + 27Al19F reactions are predicted. These results are useful both for the design of thorium-based molten salt reactors and for neutron activation analysis techniques.

  14. Analysis of the Nuclear Structure of 186 Re Using Neutron-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Matters, David; McClory, John; Carroll, James; Chiara, Chris; Fotiades, Nikolaos; Devlin, Matt; Nelson, Ron O.

    2015-04-01

    Evaluated nuclear structure data for 186 Re identifies the majority of spin-parity assignments as tentative, with approximate values associated with the energies of several levels and transitions. In particular, the absence of known transitions that feed the Jπ =8+ isomer motivates their discovery, which would have astrophysical implications and a potential application in the development of an isomer power source. Using the GErmanium Array for Neutron Induced Excitations (GEANIE) spectrometer at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility, the (n,2n γ) and (n,n' γ) reactions in a 99.52% enriched 187 Re target were used to measure γ-ray excitation functions in 186 Re and 187 Re, respectively. A preliminary analysis of the data obtained from the experiment reveals several new transitions in 186 Re and 187 Re.

  15. Determination of radionuclides induced by fast neutrons from the JCO criticality accident in Tokai-mura, Japan for estimating neutron doses.

    PubMed

    Kojima, S; Imanaka, T; Takada, J; Mitsugashira, T; Nakanishi, T; Seki, R; Kondo, M; Sasaki, K I; Saito, T; Yamaguchi, Y; Furukawa, M

    2001-09-01

    A criticality accident occurred at a uranium conversion facility in Tokai-mura, Japan on September 30, 1999, and fission neutrons were continuously emitted for about 20 hours. Materials of stainless steel or iron, and chemical reagents were collected at places between 2 m and 270 m from the criticality accident site on October 25 and 26, 1999, November 27, 1999 and February 11, 2000. Neutron-induced radionuclides. such as 54Mn and 58Co, in the materials exposed to fast neutrons from the accident were measured to estimate the neutron fluences and energy distributions. Highly sensitive y-ray spectrometry with a well-type Ge detector was performed after radiochemical separation of Mn and Co from the materials. An instrumental neutron activation analysis was mainly applied for determinations of the target elements and chemical yields. The concentrations of 54Mn and 58Co in a mesh screen of stainless steel collected at a location 2.0 m from the accident site were determined. The total number of fission events was evaluated to be 2.5 x 10(18) by Monte-Carlo calculations of neutron transfer by considering the observed values of 54Mn and 58Co. The results presented here are fundamental to estimate the neutron doses at various distances.

  16. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    SciTech Connect

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L. . E-mail: Pierre.Bischoff@ircad.u-strasbg.fr

    2005-08-26

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.

  17. Effect of X-ray energies on induced photo-neutron doses

    NASA Astrophysics Data System (ADS)

    Khaled, N. E.; Ghanim, E. H.; Shinashin, Kh.; El-Sersy, A. R.

    2014-03-01

    Photoneutrons induced by two high energies range from the Elekta medical linear accelerator (10 and 18 MV) were measured by nuclear track detectors (NTDs). CR-39 NTD in contact with converter screen slide films, natural boron of thickness 40 μm coated on the polyester film (BN1). Detectors were exposed at 100 cm SSD with field size 20×20 on the patient table, with chest phantom and with build-up Perspex used for high-energy exposure. CR-39 registers the thermal neutron by the (n-α) reaction with the thin layer of boron and the fast neutron was measured through the (n-p) elastic scattering with the H2 molecules in the CR-39 constituents.It was found that the total neutron dose (thermal and fast) from the 18 MV X-ray is higher than that of 10 MV. The measured thermal neutron dose is relatively smaller than the fast neutron dose in the case of direct exposure at the two X-ray energies. On the other hand, in the case of measurements on phantom and upon the use of build-up Perspex sheets, the ratio of fast to that of thermal is less than that of direct exposure.

  18. Neutron-Induced Fission Cross Section Measurements for Uranium Isotopes and Other Actinides at LANSCE

    SciTech Connect

    Laptev, Alexander B.; Tovesson, Fredrik K.; Hill, Tony S.

    2012-08-16

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research center (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard {sup 235}U foil is translated into a fission cross section ratio. Thin actinide targets with deposits of <200 {micro}g/cm{sup 2} on stainless steel backing were loaded into a fission chamber. In addition to previously measured data for {sup 237}Np, {sup 239-242}Pu, {sup 243}Am, new measurements include the recently completed {sup 233,238}U isotopes, {sup 236}U data which is being analyzed, and {sup 234}U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. When analysis of the new measured data is completed, data will be delivered to evaluators. Having data for multiple Uranium isotopes will support theoretical modeling capabilities and strengthens nuclear data evaluation.

  19. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    SciTech Connect

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs.

  20. Optomechanical design of a prompt gamma reaction history diagnostic

    SciTech Connect

    Hermann, Hans W; Kaufman, Morris I; Malone, Robert M; Frogget, Brent C; Tunnell, Thomas W; Cox, Brian; Frayer, Daniel K; Ali, Zaheer; Stoeffl, Wolfgang

    2009-01-01

    The National Ignition Facility and the Omega Laser Facility both have a need for measuring prompt gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic using off-axis-parabolic mirrors has been built. Some new techniques were used in the design, construction, and tolerancing of this gamma ray diagnostic. Because of the wavelength requirement (250-700 nm), the optical element surface finishes were a key design consideration. The optical enclosure had to satisfy pressure safety concerns and shielding against electromagnetic interference induced by gammas and neutrons. Structural finite element analysis was needed to meet rigorous optical and safety requirements. The optomechanical design is presented. Alignment issues are also discussed.

  1. Predicted neutron yield and radioactivity for laser-induced (p,n) reactions in LiF

    SciTech Connect

    Swift, D C; McNaney, J M

    2009-01-30

    Design calculations are presented for a pulsed neutron source comprising polychromatic protons accelerated from a metal foil by a short-pulse laser, and a LiF converter in which (p,n) reactions occur. Although the proton pulse is directional, neutrons are predicted to be emitted relatively isotropically. The neutron spectrum was predicted to be similar to the proton spectrum, but with more neutrons of low energy in the opposite direction to the incident protons. The angular dependence of spectrum and intensity was predicted. The (p,n) reactions generate unstable nuclei which decay predominantly by positron emission to the original {sup 7}Li and {sup 19}F isotopes. For the initial planned experiments using a converter 1mm thick, we predict that 0.1% of the protons will undergo a (p,n) reaction, producing 10{sup 9} neutrons. Ignoring the unreacted protons, neutrons, and prompt gamma emission as excited nuclear states decay, residual positron radioactivity (and production of pairs of 511 keV annihilation photons) is initially 4.2MBq decaying with a half-life of 17.22 s for 6 mins ({sup 19}Ne decays), then 135Bq decaying with a half-life of 53.22 days ({sup 7}Be decays).

  2. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

    PubMed

    Afach, S; Ayres, N J; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-10-16

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1  pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.

  3. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  4. Reducing Uncertainties in Neutron Induced Fission Cross Sections via a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2016-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission Fragment Tracking Experiment collaboration (NIFFTE) designed and built a fission Time Project Chamber (fission TPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2015 run cycle, measurements of several actinides were performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as the current progress towards a sub-percent measurement of the 239Pu/235U (n,f) cross-section ratio. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    PubMed

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  6. 231Pa and 233Pa Neutron-Induced Fission Data Analysis

    SciTech Connect

    Maslov, V.M.; Tetereva, N.A.; Baba, M.; Hasegawa, A.; Kornilov, N.V.; Kagalenko, A.B.

    2005-05-24

    The 231Pa and 233Pa neutron-induced fission cross-section database is analyzed within the Hauser-Feshbach approach. The consistency of neutron-induced fission cross-section data and data extracted from transfer reactions is investigated. The fission probabilities of Pa, fissioning in 231,233Pa(n,nf) reactions, are defined by fitting (3He,d) or (3He,t) transfer-reaction data. The present estimate of the 233Pa(n,f) fission cross section above the emissive fission threshold is supported by smooth level-density parameter systematics, validated in the case of the 231Pa(n,f) data description up to En =20 MeV.

  7. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Blyth, S. C.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Yeh, M.; Zhang, B. J.; Aberdeen Tunnel Experiment Collaboration

    2016-04-01

    We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ=(5.7 ±0.6 )×10-6 cm-2 s-1 sr-1 . The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn=(1.19 ±0.08 (stat)±0.21 (syst))×10-4 neutrons /(μ .g .cm-2 ) . A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of ⟨Eμ⟩ 0.76 ±0.03 for liquid-scintillator targets.

  8. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE PAGES

    Yeh, M.; Chan, Y. L.; Chen, X. C.; ...

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depthsmore » gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.« less

  9. Investigation of neutron-induced background in Magnetic-Recoil-Spectrometer CR-39 data using a DT neutron source and MCNP simulations

    NASA Astrophysics Data System (ADS)

    Milanese, Lucio M.; Frenje, Johan; Gatu Johnson, Maria; Lahmann, Brandon; Sio, Hong; Petrasso, Richard

    2015-11-01

    The Magnetic Recoil neutron Spectrometers (MRS) installed on the OMEGA laser facility and the National Ignition Facility (NIF) are routinely used to measure neutron yield, areal density and ion temperatures from DT implosions. The observed background in the lower-energy part of MRS spectra is significantly higher than expected from analysis of neutron-induced background data obtained in stand-alone CR-39 experiments at OMEGA. A possible explanation relates to the scattering of neutrons in the MRS housing vessel, which is not accounted for in current modeling. To test experimentally the impact of individual vessel components on the observed background, parts of the MRS housing have been mocked up and CR-39 data have been collected employing a DT neutron source. The experimental results are contrasted to MCNP simulations to improve our understanding of the mechanism behind the enhanced neutron background. The results will be used to correct measured spectra from OMEGA and the NIF to allow detailed analysis of lower energy data. This work was supported in part by NLUF, US DOE, and LLE.

  10. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  11. Continuous versus pulse neutron induced gamma spectroscopy for soil carbon analysis.

    PubMed

    Kavetskiy, A; Yakubova, G; Torbert, H A; Prior, S A

    2015-02-01

    Neutron induced gamma spectra analysis (NGA) provides a means of measuring carbon in large soil volumes without destructive sampling. Calibration of the NGA system must account for system background and the interference of other nuclei on the carbon peak at 4.43 MeV. Accounting for these factors produced measurements in agreement with theoretical considerations. The continuous NGA mode was twice as fast and just as accurate as the pulse mode, thus this mode was preferable for routine soil carbon analysis.

  12. Measurement of neutron-induced reactions on 242mAm

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  13. Measurement of the Amm242 neutron-induced reaction cross sections

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2017-02-01

    The neutron-induced reaction cross sections of Amm242 were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known Amm242(n ,f ) cross section. The (n ,γ ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new Amm242 fission cross section was normalized to ENDF/B-VII.1 to set the absolute scale, and it agreed well with the (n ,f ) cross section reported by Browne et al. (1984) from thermal energy to 1 keV. The average absolute capture-to-fission ratio was determined from thermal energy to En=0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19 % from the ENDF/B-VII.1 evaluation.

  14. Measurement of the Am242m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  15. Study of neutron irradiation-induced colors in Brazilian topaz

    NASA Astrophysics Data System (ADS)

    Leal, A. S.; Krambrock, K.; Ribeiro, L. G. M.; Menezes, M. Â. B. C.; Vermaercke, P.; Sneyers, L.

    2007-09-01

    In this work, preliminary results of the investigation of the coloring mechanisms in topaz from different regions of Brazil, irradiated by the TRIGA MARK I IPR-R1 and BR1 nuclear reactors of the CDTN/CNEN (Brazil) and SCK.CEN(Belgium), respectively, are presented . The samples were analyzed by the k0-NAA method for impurities and total activity. The color and color centers were investigated by optical absorption and electron paramagnetic resonance (EPR) spectroscopy. The total integrated flux dependence of the induced blue colors and color centers is discussed.

  16. AttoPhotoChemistry. Probing ultrafast electron dynamics by the induced nuclear motion: The prompt and delayed predissociation of N2

    NASA Astrophysics Data System (ADS)

    Muskatel, B. H.; Remacle, F.; Levine, R. D.

    2014-05-01

    Quantum mechanical wavepacket dynamics simulation that includes the nuclear motion exhibit a prompt, few fs, dissociation of electronically attosecond excited N2 in addition to the slow dissociation evident from spectral line broadening in well resolved spectra. The simulations show that nuclear motion can probe early times electron dynamics. The separation of time scales is mimicked by a model study fashioned like chemical kinetics of unimolecular dissociation. The physical origin of the separation into prompt and delayed decay is argued to be the same in the vibrational and the present case, namely that there are more bound than dissociative channels.

  17. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    SciTech Connect

    Chyzh, A; Wu, C Y; Ullmann, J; Jandel, M; Bredeweg, T; Couture, A; Norman, E

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  18. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals.

    PubMed

    Liu, Yu; Wang, Gang; Wang, Shunchong; Yang, Jianhui; Chen, Liang; Qin, Xiubo; Song, Bo; Wang, Baoyi; Chen, Xiaolong

    2011-02-25

    Defect-induced magnetism is firstly observed in neutron irradiated SiC single crystals. We demonstrated that the intentionally created defects dominated by divacancies (V(Si)V(C)) are responsible for the observed magnetism. First-principles calculations revealed that defect states favor the formation of local moments and the extended tails of defect wave functions make long-range spin couplings possible. Our results confirm the existence of defect-induced magnetism, implying the possibility of tuning the magnetism of wide band-gap semiconductors by defect engineering.

  19. QED vacuum fluctuations and induced electric dipole moment of the neutron

    SciTech Connect

    Dominguez, C. A.; Falomir, H.; Ipinza, M.; Loewe, M.; Kohler, S.; Rojas, J. C.

    2009-08-01

    Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of nonlinearity in QED.

  20. Neutron-Induced Partial γ-ray Cross-Section Measurements on Cu, Ge and Pb

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Esterline, J. H.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Kidd, M. F.; Tonchev, A.; Tornow, W.; Karwowski, H. J.; Kelley, J. H.; Mei, D. M.

    2008-10-01

    In high-precision low-statistic measurements such as those carried out in deep underground low-background environments, naturally-occurring radiation can obscure the region of interest. For example, energetic neutrons produced from natural radioactivity or muon-induced reactions will interact with the experimental apparatus producing a continuous background. A survey of neutron-induced γ-ray transitions in ^natCu, enriched ^76Ge, and ^natPb from 150-4000 keV was carried out at TUNL using pulsed mono-energetic neutron beams, with an emphasis on the region around 2039 keV where the 0νββ decay peak of ^76Ge is expected to appear. Transitions at 2041, 2615, and 3062 keV in the shielding materials of Pb and Cu may either directly interfere with the ^76Ge 0νββ peak at 2039 keV or may produce nearby escape peaks. The rates at which these background peaks occur are needed to determine whether events due to 0νββ decay are observed and whether neutrinos are indeed their own anti-particles.

  1. Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors

    NASA Astrophysics Data System (ADS)

    El-Sayed, D.; El-Saftawy, A. A.; Abd El Aal, S. A.; Fayez-Hassan, M.; Al-Abyad, M.; Mansour, N. A.; Seddik, U.

    2017-04-01

    Understanding the nature of polymers used as nuclear detectors is crucial to enhance their behaviors. In this work, the induced modifications in wettability and etching properties of Hostaphan and Makrofol polymers irradiated by different fluences of thermal neutrons are investigated. The wetting properties are studied by contact angle technique which showed the spread out of various liquids over the irradiated polymers surfaces (wettability enhanced). This wetting behavior is attributed to the induced changes in surface free energy (SFE), morphology, roughness, structure, hardness, and chemistry. SFE values are calculated by three different models and found to increase after neutrons irradiation associated with differences depending on the used model. These differences result from the intermolecular interactions in the liquid/polymer system. Surface morphology and roughness of both polymers showed drastic changes after irradiation. Additionally, surface structure and hardness of pristine and irradiated polymers were discussed and correlated to the surface wettability improvements. The changes in surface chemistry are examined by Fourier transform infrared spectroscopy (FTIR), which indicate an increase in surface polarity due to the formation of polar groups. The irradiated polymers etching characteristics and activation energies are discussed as well. Lastly, it is evident that thermal neutrons show efficiency in improving surface wettability and etching properties of Hostaphan and Makrofol in a controlled way.

  2. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  3. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm.

  4. Estimation of the number of prompt fission gamma rays

    SciTech Connect

    Valentine, T.E.

    2000-07-01

    The correlation between the total gamma-ray energy from fission and the number of prompt neutrons emitted from fission is used to estimate the average number of prompt gamma rays from fission in lieu of performing a measurement. Competition in the emission of prompt gamma rays and neutrons from the de-excitation of fission fragments has been observed experimentally. Mathematical models were used to estimate the properties of prompt gamma rays from the spontaneous fission of various nuclides that are encountered in nuclear safeguard applications. The estimated prompt gamma-ray parameters for spontaneous fission of {sup 238}U, {sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, and {sup 244}Cm are presented. The total prompt gamma-ray energy was estimated using the average number of neutrons from fission for each nuclide. The average energy of prompt gamma rays from fission was estimated, and the average number of prompt gamma rays from fission was estimated. The data presented can be used to characterize spontaneous fission isotopes commonly encountered in nuclear safeguard applications. This information may prove useful for development of advanced nondestructive assay methods. Furthermore, the models presented in this summary provide a mechanism to estimate gamma-ray properties for any fission process. The use of models to estimate gamma-ray properties from fission highlights the fact that little experimental data exist for many spontaneous fission nuclides. Measurements of the gamma-ray properties not only would be useful for developing nondestructive assay methods but also would provide additional information about the fission process.

  5. RECENT APPLICATIONS OF THE GREENSPAN AND TSCHIEGG DATA ON NEUTRON INDUCED CAVITATION THRESHOLDS

    SciTech Connect

    West, Colin D

    2007-03-01

    In 1967 Greenspan and Tschiegg published a paper on radiation induced acoustic cavitation. They researched the thresholds for cavitation induced in various liquids by fast neutrons, {alpha}-decay recoils and fission fragments. It turns out that these data can be used to verify predictions of a more recent theory of radiation induced cavitation nucleation. In 1979, in a report to their sponsor (The Office of Naval Research) they published new details of their results on neutron induced cavitation thresholds, including tables of the thresholds at different temperatures for various liquids. They were also some fission fragment results, but none of the {alpha}-decay recoil data. By that time Greenspan had evidently retired while I had left the field of cavitation research and did not know of the existence of their report [which also contains the only published record of some cavitation threshold measurements made by West and Howlett at Harwell, England]. Later still, in 1982, Greenspan and Tschiegg published the graphical data--but not the tables--in a more easily accessible form. In the late 1990s I revisited the problem of calculating radiation induced cavitation thresholds. There was interest in this because the Spallation Neutron Source (SNS) project, then just beginning, planned to use a liquid mercury target to produce intense bursts of neutrons when irradiated by a pulsed, high energy proton beam. It was known that the pressure waves produced by local heating when the proton pulse struck the target could, upon reflection at the walls of the mercury container, give rise to very high, although brief, negative pressure waves in the mercury. There was concern that cavitation might result and, if it did, might lead to undesirable effects. With the encouragement of the SNS target team this author managed further to develop an earlier method of calculating the threshold for such cavitation, and the SNS project kindly provided funding to publish the work in two ORNL

  6. Neutron-induced reactions and secondary-ion mass spectrometry: complementary tools for depth profiling. Final report

    SciTech Connect

    Downing, G.; Fleming, R.; Simons, D.; Newbury, D.

    1982-01-01

    The technique of neutron depth profiling is based upon inducing nuclear reactions by bombardment with low-energy neutrons. The nuclear reactions result in the emission of high-energy alpha particles or protons. The energy spectrum of the emitted particles is used to derive a depth distribution by transforming the energy loss into an equivalent depth by stopping-power calculations. Depth profiles of bismuth distributions in silicon and tin have been measured by both neutron depth profiling and secondary ion mass spectrometry. Information from both techniques can be used synergistically to aid in a full characterization of the depth distribution.

  7. Stress-induced martensite variant reorientation in magnetic shape memory Ni Mn Ga single crystal studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Molnar, P.; Sittner, P.; Lukas, P.; Hannula, S.-P.; Heczko, O.

    2008-06-01

    Stress-induced martensite variant reorientation in magnetic shape memory Ni-Mn-Ga single crystal was studied in situ by the neutron diffraction technique. Principles of determination of individual tetragonal martensitic variants in shape memory alloys are explained. Using neutron diffraction we show that the macroscopic strain originates solely from the martensite structure reorientation or variant redistribution. Neutron diffraction also reveals that the reorientation of martensite is not fully completed even at a stress value of 25 MPa, which is about 20 times larger than the mean stress needed for reorientation. Only one twinning system is active during the reorientation process.

  8. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n_TOF

    NASA Astrophysics Data System (ADS)

    Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becčvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Heil, M.; Herrera-Martinez, A.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-08-01

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n_TOF spallation neutron facility. Between them some measurements involve isotopes (233U, 241Am, 243Am, 245Cm) relevant for applications to nuclear technologies. The n_TOF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and α particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of 235U.

  9. Effect of zeolite properties on ground-state and triplet-triplet absorption, prompt and oxygen induced delayed fluorescence of tetraphenylporphyrin at gas/solid interface

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Costa, Silvia M. B.; Lopes, J. M.; Serralha, F. N.; Ribeiro, F. Ramôa

    2000-08-01

    The ground-state and transient absorption, prompt and delayed fluorescence of tetraphenylporphyrin (TPP) adsorbed onto the external surface of different zeolites was monitored using diffuse-reflectance steady-state and laser flash photolysis. The delayed fluorescence (DF) of TPP detected in the presence of O 2 is attributed to the energy transfer from 3TPP to 3O 2 to form 1O 2 and subsequent energy transfer from 1O 2 to some other 3TPP within the organised molecular ensembles on the zeolite surface. The spectroscopic and kinetic parameters, namely the yield of DF (2-20% relative to prompt fluorescence), depend on the zeolite properties: the observed differences were correlated with the acid-base properties of the two zeolite series studied in this work (KA, NaA, CaA) and (NaA, NaX, NaY).

  10. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Ou, Li; Zhang, Yingxun; Li, Zhuxia

    2014-06-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions O16 + Ge76, O16 + Sm154, Ca40 + Zr96, and Sn132 + Ca40 are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is L ≈78 MeV and the surface energy coefficient is gsur=18±1.5 MeV fm2. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at neck side result in the lowering of the fusion barrier.

  11. Neutron induced defects in silicon detectors characterized by DLTS and TSC methods

    NASA Astrophysics Data System (ADS)

    Fretwurst, E.; Dehn, C.; Feick, H.; Heydarpoor, P.; Lindström, G.; Moll, M.; Schütze, C.; Schulz, T.

    1996-02-01

    Neutron induced defects in silicon detectors fabricated from n-type float zone material of different resistivity (100-6000Ω cm) have been studied using the C-DLTS (Capacitance-Deep Level Transient Spectroscopy) and TSC (Thermally Stimulated Current) method. While the application of the C-DLTS technique for high resistivity material is limited to neutron fluences below about 10 11 cm -2 the TSC method remains a powerful tool for the defect characterization even at high fluences. Up to 5 defect levels were observed in some of the unirradiated samples. These partly are due to thermal treatments during the fabrication process. After neutron irradiation defect levels at Ec - 0.17, -0.23 and -0.42 eV and at Ev + 0.36 eV were found. A detailed analysis of the predominant peak at about -0.42 eV has shown that it is a superposition of two levels at -0.39 and -0.42 eV. For these defect levels introduction rates, annealing effects and a comparison between the DLTS and TSC technique are presented. Possible correlations of these results with macroscopic detector properties are discussed.

  12. Theory of inelastic neutron scattering in a field-induced spin-nematic state

    NASA Astrophysics Data System (ADS)

    Smerald, Andrew; Ueda, Hiroaki T.; Shannon, Nic

    2015-05-01

    We develop a theory of spin excitations in a field-induced spin-nematic state, and use it to show how a spin-nematic order can be indentified using inelastic neutron scattering. We concentrate on two-dimensional frustrated ferromagnets, for which a two-sublattice, bond-centered spin-nematic state is predicted to exist over a wide range of parameters. First, to clarify the nature of spin-excitations, we introduce a soluble spin-1 model, and use this to derive a continuum field theory, applicable to any two-sublattice spin-nematic state. We then parameterize this field theory, using diagrammatic calculations for a realistic microscopic model of a spin-1/2 frustrated ferromagnet, and show how it can be used to make predictions for inelastic neutron scattering. As an example, we show quantitative predictions for inelastic scattering of neutrons from BaCdVO(PO 4)2 , a promising candidate to realize a spin-nematic state at an achievable h ˜4 T. We show that in this material it is realistic to expect a ghostly Goldstone mode, signalling spin-nematic order, to be visible in experiment.

  13. Reliability Design for Neutron Induced Single-Event Burnout of IGBT

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Ishiko, Masayasu

    Single-event burnout (SEB) caused by cosmic ray neutrons leads to catastrophic failures in insulated gate bipolar transistors (IGBTs). It was found experimentally that the incident neutron induced SEB failure rate increases as a function of the applied collector voltage. Moreover, the failure rate increased sharply with an increase in the applied collector voltage when the voltage exceeded a certain threshold value (SEB cutoff voltage). In this paper, transient device simulation results indicate that impact ionization at the n-drift/n+ buffer boundary is a crucially important factor in the turning-on of the parasitic pnp transistor, and eventually latch-up of the parasitic thyristor causes SEB. In addition, the device parameter dependency of the SEB cutoff voltage was analytically derived from the latch-up condition of the parasitic thyristor. As a result, it was confirmed that reducing the current gain of the parasitic transistor, such as by increasing the n-drift region thickness d was effective in increasing the SEB cutoff voltage. Furthermore, `white' neutron-irradiation experiments demonstrated that suppressing the inherent parasitic thyristor action leads to an improvement of the SEB cutoff voltage. It was confirmed that current gain optimization of the parasitic transistor is a crucial factor for establishing highly reliable design against chance failures.

  14. Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films

    SciTech Connect

    Anastasiadis, S.H.; Russell, T.P.; Satija, S.K.; Majkrzak, C.F.

    1989-04-17

    Neutron reflectivity from annealed thin films of the poly(styrene-b-deuterated methylmethacrylate), P(S-b-D-MMA), reveals the formation of a multilayered morphology parallel to the film surface. This multilayer forms so that PS locates, preferentially, at the air/copolymer and D-PMMA at the substrate/copolymer interfaces with layer thicknesses at these interfaces one-half that found in the bulk. P(D-S-b-MMA) of lower molecular weight shows the first evidence of surface-induced ordering of copolymers in the phase mixed state characterized by an exponentially damped cosine function.

  15. Double strand-breaks and DNA-to-protein cross-links induced by fast neutrons in bacteriophage DNA.

    PubMed

    Hawkins, R B

    1979-01-01

    Coliphage T7 was suspended in tryptone broth and exposed to a mixture of fast neutrons and gamma radiation. Plaque survival, double strand-breaks and DNA-to-protein cross-linkage were examined and the results compared with those found in phage exposed to gamma radiation alone. Neutral sucrose density sedimentation patterns indicate that neutron-induced double strand-breaks sometimes occur in clusters of more than 100 in the same phage and that the effeciency with which double strand-breaks form is about 50 times that of gamma-induced double strand-breaks. Neutron-induced protein-to-DNA cross-links probably also occur in clusters with enhanced efficiency relative to low LET radiation.

  16. Detection of Special Nuclear Material from Delayed Neutron Emission Induced by a Dual-Particle Monoenergetic Source

    SciTech Connect

    Mayer, Michael F.; Nattress, J.; Jovanovic, I

    2016-06-30

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n gamma)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  17. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Nattress, J.; Jovanovic, I.

    2016-06-01

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass-polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  18. Neutrons scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1992

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from {sup 239}Pu; neutron scattering in {sup 181}Ta and {sup 197}Au; response of a {sup 235}U fission chamber near reaction thresholds; two-parameter data acquisition system; ``black`` neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory.

  19. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites

    SciTech Connect

    Karthik, Chinnathambi; Kane, Joshua; Butt, Darryl P.; Windes, William E.; Ubic, Rick

    2015-05-01

    This paper reports the neutron-irradiation-induced effects on the microstructure of NBG-18 and IG-110 nuclear graphites. The high-temperature neutron irradiation at two different irradiation conditions was carried out at the Advanced Test Reactor National User Facility at the Idaho National Laboratory. NBG-18 samples were irradiated to 1.54 dpa and 6.78 dpa at 430 °C and 678 °C respectively. IG-110 samples were irradiated to 1.91 dpa and 6.70 dpa at 451 °C and 674 °C respectively. Bright-field transmission electron microscopy imaging was used to study the changes in different microstructural components such as filler particles, microcracks, binder and quinoline-insoluble (QI) particles. Significant changes have been observed in samples irradiated to about 6.7 dpa. The closing of pre-existing microcracks was observed in both the filler and the binder phases. The binder phase exhibited substantial densification with near complete elimination of the microcracks. The QI particles embedded in the binder phase exhibited a complete microstructural transformation from rosettes to highly crystalline solid spheres. The lattice images indicate the formation of edge dislocations as well as extended line defects bridging the adjacent basal planes. The positive climb of these dislocations has been identified as the main contributor to the irradiation-induced swelling of the graphite lattice.

  20. Initial observations of cavitation-induced erosion of liquid metal spallation target vessels at the Spallation Neutron Source

    SciTech Connect

    McClintock, David A; Riemer, Bernie; Ferguson, Phillip D; Carroll, Adam J; Dayton, Michael J

    2012-01-01

    During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316L target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.

  1. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  2. Prompting Strategies for Introducing Opera.

    ERIC Educational Resources Information Center

    Beck, Charles R.

    2002-01-01

    Describes how to introduce opera to students through the use of prompting strategies. Explains that these strategies encourage active participation by students and help to improve listening skills. Focuses on prompting strategies, such as matching characters to songs, identifying, and sequencing songs. (CMK)

  3. Neutron Induced Backgrounds In the MIXE X-Ray Detector at Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.

    1997-01-01

    The MIXE detector developed at NASA/MSFC is designed for x-ray astronomy and consists of a multiwire proportional counter sensitive to photons less than 150 keV. The detector has been flown on several balloon flights with higher than expected background levels observed. Previous predictions of the detector background due to atmospheric gamma-ray and cosmic diffuse sources were much less (factor of 3) than flight background measurements. The work reported here was undertaken to determine if the additional contribution from gamma-rays generated by albedo and cosmic-ray induced neutrons in the detector and payload assembly could account for the background levels observed. Monte Carlo nuclear interaction and radiation transport simulations were made for the ambient cosmic-ray environment corresponding to a previous MEE balloon flight at 3 g/cm(exp 2) residual atmosphere and 42 N geomagnetic latitude. The omnidirectional albedo neutron spectrum and the GCR proton spectrum which were used as input to the calculations are shown. For the albedo angular distribution, the predicted up/down flux ratio of 2.5 was used together with the angular dependence measured by Preszler, et al.

  4. TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.

  5. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  6. Late-time emission of prompt fission γ rays

    SciTech Connect

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; Lestone, John Paul; McKigney, Edward Allen; Chadwick, Mark Benjamin

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.

  7. Neutron scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1994

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1994-09-01

    During the period August 1, 1991 to July 31, 1994 the authors report progress on the following: (a) prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; (b) two-parameter measurement of nuclear lifetimes; (c) `black` neutron detector; (d) data reduction techniques for neutron scattering experiments; (e) elastic and inelastic neutron scattering studies in {sup 197}Au; (f) elastic and inelastic neutron scattering studies in {sup 239}Pu; (g) neutron induced defects in silicon dioxide MOS structures; (h) response of a {sup 235}U fission chamber near reaction thresholds; (i) efficiency calibration of a liquid scintillation detector using the WNR facility at LAMPF; (j) prompt fission neutron energy spectrum measurements below the incident neutron energy; (k) multi-parameter data acquisition system; (l) accelerator improvements; (m) non-DOE supported research. Eight Ph.D. dissertations and two M.S. theses were completed during the report period. Publications consisted of 6 journal articles, 10 conference proceedings, and 19 abstracts of presentations at scientific meetings. One invited talk was given.

  8. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    SciTech Connect

    Yeh, M.; Chan, Y. L.; Chen, X. C.; Chu, M. C.; Cui, K. X.; Hahn, R. L.; Ho, T. H.; Hsiung, Y. B.; Hu, B. Z.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Lin, G. L.; Lin, Y. C.; Luk, K. B.; Luk, W. H.; Ngai, H. Y.; Ngan, S. Y.; Pun, C. S. J.; Shih, K.; Tam, Y. H.; Tsang, R. H. M.; Wang, C. H.; Wong, C. M.; Wong, H. L. H.; Wong, K. K.; Zhang, B. J.

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be Iμ = (5.7±0.6)×10–6 cm–2 s–1 sr–1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Yn = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10–4 neutrons/(μ•g•cm–2). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of < Eμ >0.76±0.03 for liquid-scintillator targets.

  9. Enrico Fermi's Discovery of Neutron-Induced Artificial Radioactivity:The Recovery of His First Laboratory Notebook

    NASA Astrophysics Data System (ADS)

    Acocella, Giovanni; Guerra, Francesco; Robotti, Nadia

    . We give a short description of the discovery of the first experimental notebook of Enrico Fermi (1901-1954) on his researches during March and April of 1934 on neutron-induced artificial radioactivity, and we point out its relevance for a proper historical and conceptual understanding of those researches.

  10. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed.

  11. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  12. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Bromine and Krypton

    SciTech Connect

    Hoffman, R; Dietrich, F; Bauer, R; Kelley, K; Mustafa, M

    2004-07-23

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of bromine and krypton (34 {le} Z {le} 37, 40 {le} N {le} 47).

  13. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Samarium, Europium, and Gadolinium

    SciTech Connect

    Hoffman, R D; Kelley, K; Dietrich, F S; Bauer, R; Mustafa, M

    2004-11-30

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of samarium, europium and gadolinium (62 {le} Z {le} 64, 82 {le} N {le} 96).

  14. Rotation induced octupole correlations in the neutron-deficient 109Te nucleus

    NASA Astrophysics Data System (ADS)

    de Angelis, G.; Fahlander, C.; Gadea, A.; Farnea, E.; Bazzacco, D.; Belcari, N.; Blasi, N.; Bizzeti, P. G.; Bizzeti-Sona, A.; de Acuña, D.; de Poli, M.; Grawe, H.; Johnson, A.; Lo Bianco, G.; Lunardi, S.; Napoli, D. R.; Nyberg, J.; Pavan, P.; Persson, J.; Rossi Alvarez, C.; Rudolph, D.; Schubart, R.; Spolaore, P.; Wyss, R.; Xu, F.

    1998-10-01

    High spin states in the neutron deficient nucleus 109Te have been populated with the 58Ni+54Fe reaction at 220 MeV and investigated through γ-spectroscopy methods at the GASP spectrometer making use of reaction channel selection with the ISIS Si-ball. The level scheme has been extended up to an excitation energy of ~12.1 MeV. The spins and parities of the observed levels are assigned tentatively supporting the identification of two bands of opposite parity connected by strong dipole transitions inferred to be of E1 character. Octupole correlations in 109Te induced by rotation are suggested as the cause of this effect.

  15. Thermally stimulated current studies on neutron irradiation induced defects in GaN

    NASA Astrophysics Data System (ADS)

    Kuriyama, K.; Ooi, M.; Onoue, A.; Kushida, K.; Okada, M.; Xu, Q.

    2006-03-01

    The evaluation of the neutron irradiation induced defects in GaN is studied using a thermally stimulated current (TSC) method with excitation above (below) the energy band gap using ultraviolet (blue, green, red, and infrared) emitting diodes. Annealing at 1000°C, a broad TSC spectrum for excitation by the ultraviolet light is resolved by five traps, P1 (ionization energy is 200meV), P2 (270meV), P3 (380meV), P4 (490meV), and P5 (595meV). Infrared illumination shows a remarkable reduction in TSC for the P2 and P3 traps, indicating the photoquenching behavior. The possible origins of the observed five traps are discussed.

  16. Neutron-induced fission-cross-section measurements and calculations of selected transplutonic isotopes

    SciTech Connect

    White, R.M.; Browne, J.C.

    1982-08-27

    The neutron-induced fission cross sections of /sup 242m/Am and /sup 245/Cm have been measured over an energy range of 10/sup -4/ eV to approx. 20 MeV in a series of experiments at three facilities during the past several years. The combined results of these measurements, in which only sub-milligram quantities of enriched isotopes were used, yield cross sections with uncertainties of approximately 5% below 10 MeV relative to the /sup 235/U standard cross section used to normalize the data. We summarize the resonance analysis of the /sup 242m/Am(n,f) cross section in the eV region. Hauser-Feshbach statistical calculations of the detailed fission cross sections of /sup 235/U and /sup 245/Cm have been carried out over the energy region from 0.1 to 5 MeV and these results are compared with our experimental data.

  17. Neutron- and proton-induced reactions for analysis of bioenvironmental samples

    SciTech Connect

    Spyrou, N.M.; Altaf, W.J.; Khrbish, Y.S. )

    1988-01-01

    The study of the elemental composition of bioenvironmental samples is of continuing interest in a wide variety of medical and environmental investigations, be it as environmental monitors or as indicators of the state of health and disease of an individual or a population. Nuclear activation methods play an important role in these studies as research tools and in certain cases are employed as rapid, routine analytical techniques. Although the authors have been using instrumental neutron activation analysis as the main technique for obtaining information about elemental composition and concentration, they have also developed techniques, for further or complementary analysis, in which proton-induced reactions have been exploited. Two recent studies, in which the composition of human lung tissue and the elemental concentration in plant samples were determined, have been selected as illustrations of the techniques employed.

  18. Neutron scattering study of the field-induced tricritical point in MnSi

    NASA Astrophysics Data System (ADS)

    Kindervater, J.; Bauer, A.; Garst, M.; Janoschek, M.; Martin, N.; Mühlbauer, S.; Häussler, W.; Böni, P.; Pfleiderer, C.

    The intermetallic compound MnSi attracts great scientific interest due to two unusual phase transitions, namely the transition from the conical phase to a skyrmion lattice in small fields and the transition from the helical to the paramagnetic phase without external magnetic field that was recently identified to be a fluctuation induced first-order transition, i.e. a so called Brazovskii-transition. Recent measurements of the specific heat provide striking evidence for a tricritical point (TCP), were the first order transition alters to second order. We report neutron spin echo measurements using the MIEZE technique. The recorded quasi elastic linewidth shows a change of the characteristic spin fluctuations at the TCP. The combination with additional SANS measurements and a generalized Brazovskii theory establishes a consistent picture of the statics and dynamics of the transition. Financial support by ERC-AdG (291079 TOPFIT) and through DFG TRR80 is greatfully acknowledged.

  19. Neutron focusing system for the Texas Cold Neutron Source

    NASA Astrophysics Data System (ADS)

    Wehring, Bernard W.; Kim, Jong-Youl; Ünlü, Kenan

    1994-12-01

    A "converging neutron guide" focusing system located at the end of the Texas Cold Neutron Source (TCNS) "curved neutron guide" would increase the neutron flux for neutron capture experiments. Our design for a converging guide is based on using several rectangular truncated cone sections. Each rectangular truncated cone consists of four 20-cm long Si plates coated with NiC-Ti supermirrors. Dimensions of each section were determined by a three-dimensional Monte Carlo optimization calculation. The two slant angles of the truncated cones were varied to optimize the neutron flux at the focal area of the focusing system. Different multielement converging guides were designed and their performance analyzed. From the performance results and financial considerations, we selected a four-section 80-cm long converging guide focusing system for construction and use with the TCNS. The focused cold neutron beam will be used for neutron capture experiment, e.g., prompt gamma activation analysis and neutron depth profiling.

  20. Production, distribution and applications of californium-252 neutron sources.

    PubMed

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations.

  1. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  2. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  3. Total prompt γ-ray emission in fission of U235, Pu239,241, and Cf252

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2014-07-01

    The total prompt γ-ray energy distributions for the neutron-induced fission of U235 and Pu239,241 in the neutron energy range of 0.025 eV - 100 keV and the spontaneous fission of Cf252 were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix generated with a geometrical model of the detector arrays and validated with the γ-ray calibration sources. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ˜20% higher than those of early measurements for all the fissile nuclei studied. The implication for the γ heating in nuclear reactors is discussed.

  4. Finance issue brief: prompt payment.

    PubMed

    Stauffer, M

    1999-10-22

    Although under standard business laws withholding prompt payment is considered an unfair trade practice, a number of states are enacting new laws or clarifying existing language to ensure that health plans are paying providers in a timely fashion.

  5. Finance issue brief: prompt payment.

    PubMed

    Stauffer, M

    1999-06-25

    Although under standard business laws withholding prompt payment is considered an unfair trade practice, a number of states are enacting new laws or clarifying existing language to ensure that health plans are paying providers in a timely fashion.

  6. Early changes in flow cytometric DNA profiles induced by californium-252 neutron brachytherapy in squamocellular carcinomas of the uterine cervix.

    PubMed

    Tacev, T; Zaloudík, J; Janáková, L; Vagunda, V

    1998-01-01

    Ninety-five squamocellular carcinomas of the uterine cervix, clinical Stages II and III, were treated by either four schedules combining 252-californium neutron-gamma-radiotherapy with different proportions of a neutron component (9, 6 and 3 Gy) or gamma-irradiation alone. Flow cytometric DNA profiles were obtainable in 72 cases before treatment and 56 cases were monitored for DNA content by flow cytometry (FCM) in weekly intervals by analysis of sequential microbiopsies for one month during and after radiotherapy. DNA aneuploidy was reduced from 40% (25/63) to 19% (9/47) one week within therapy in neutron-treated groups, but not after initial gamma-radiotherapy alone. Extinction of DNA aneuploid subpopulations occurred after neutron therapy in all remaining aneuploid tumors (9/9) during further monitoring, but only in 40% (2/5) of tumors after sole gamma-irradiation. In contrast, proliferation index by more than 50% was more often achieved in groups with a higher gamma-radiation component than after neutrons only. When all therapy-induced DNA flow cytometric events are taken together for evaluation of the effects of various radiotherapy schedules, it appears that the regimen with the maximal neutron dose may not be optimal for all tumors. It is hypothesized that the differences in the early flow cytometric DNA profiles may select the DNA aneuploid squamous cell uterine cervical carcinomas as candidates for combined neutron-brachytherapy, while highly proliferating DNA near-diploid tumors may profit more from treatment with a higher gamma-radiotherapy component. However, these early DNA flow cytometric findings need to be correlated with clinical course of the disease to validate this hypothesis, a process which will be completed at the end of the expected five-year clinical outcome in 2000.

  7. Systematics of prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Jandel, M.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2013-03-01

    The prompt γ-ray energy and multiplicity distributions were measured for the neutron-induced fission in 235U and 239,241Pu by using a highly segmented 4πγ-ray calorimeter in coincidence with the detection of fission fragments by a gas-filled parallel-plate avalanche counter. Both distributions were unfolded according to the detector response, which was simulated numerically by using a model validated with the γ-ray calibration sources. The mean value and the width of the γ-ray multiplicity distribution show a systematic increase with increasing mass of fissile nucleus, whereas, the energy distribution shows the dependence of γ-ray energy above 5 MeV on the species of fissile nuclei. The correlations between γ-ray energy and multiplicity were studied by comparing the mean value and the width of the total γ-ray energy between measurement and simulation by using an assembly with elements selected by random sampling of their unfolded distributions. The detector response was taken into account in the simulation. These results together with the detailed description of the experiment and analysis are presented.

  8. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells.

    PubMed

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko

    2015-12-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  9. Characterization of neutron induced damage effect in several types of metallic multilayer nanocomposites based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Chen, Feida; Tang, Xiaobin; Yang, Yahui; Huang, Hai; Liu, Jian; Chen, Da

    2015-09-01

    Metallic multilayer nanocomposites are known to have excellent interface self-healing performance when it comes to repairing irradiation damages, thus showing promise as structural materials for advanced nuclear power systems. The present study investigated the neutron irradiation displacement damage rate, spectra of the primary knocked-on atoms (PKAs) produced in the cascade collision, and the H/He ratio in four kinds of metallic multilayer nanocomposites (Cu/Nb, Ag/V, Fe/W, and Ti/Ta) versus neutrons' energy. Results suggest that the three neutron induced damage effects in all multilayer systems increased with the increasing of incident neutrons' energy. For fission reactor environment (1 MeV), multilayer's displacement damage rate is 5-10 × 1022 dpa/(n/cm2) and the mean PKAs energy is about 16 keV, without any noteworthy H/He produced. Fe/W multilayer seems very suitable among these four systems. For fusion reactor environment (14 MeV), the dominant damage effect varies in different multilayer systems. Fe/W multilayer has the lowest displacement damage under the same neutron flux but its gaseous transmutation production is the highest. Considering the displacement damage and transmutation, the irradiation resistance of Ag/V and Ti/Ta systems seems much greater than those of the other two.

  10. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  11. GENERAL RELATIVISTIC SIMULATIONS OF ACCRETION INDUCED COLLAPSE OF NEUTRON STARS TO BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Perna, Rosalba

    2012-10-10

    Neutron stars (NSs) in the astrophysical universe are often surrounded by accretion disks. Accretion of matter onto an NS may increase its mass above the maximum value allowed by its equation of state, inducing its collapse to a black hole (BH). Here we study this process for the first time, in three-dimensions, and in full general relativity. By considering three initial NS configurations, each with and without a surrounding disk (of mass {approx}7% M{sub NS}), we investigate the effect of the accretion disk on the dynamics of the collapse and its imprint on both the gravitational wave (GW) and electromagnetic (EM) signals that can be emitted by these sources. We show in particular that, even if the GW signal is similar for the accretion induced collapse (AIC) and the collapse of an NS in vacuum (and detectable only for Galactic sources), the EM counterpart could allow us to discriminate between these two types of events. In fact, our simulations show that, while the collapse of an NS in vacuum leaves no appreciable baryonic matter outside the event horizon, an AIC is followed by a phase of rapid accretion of the surviving disk onto the newly formed BH. The post-collapse accretion rates, on the order of {approx}10{sup -2} M{sub Sun} s{sup -1}, make these events tantalizing candidates as engines of short gamma-ray bursts.

  12. Prompt proton decay in the vicinity of 56Ni

    NASA Astrophysics Data System (ADS)

    Johansson, E. K.; Rudolph, D.; Andersson, L.-L.; Torres, D. A.; Carpenter, M. P.; Charity, R. J.; Chiara, C. J.; Ekman, J.; Fahlander, C.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; du Rietz, R.; Sarantites, D. G.; Seweryniak, D.; Sobotka, L. G.; Zhu, S.

    2007-11-01

    A new decay mode, the so called prompt proton decay, was discovered in 1998. It has since proven to be an important decay mechanism for several neutron deficient nuclei in the A˜60 region. To measure with high accuracy the energies and angular distributions of these protons, a state-of-the-art charged particle detector—LuWuSiA—was developed. It was first utilized during a fusion-evaporation reaction experiment performed at Argonne National Laboratory, U.S.A. In this contribution, the characteristics of the prompt proton decay are discussed along with the special features of LuWuSiA as well as a revisit to the prompt proton decay in 58Cu.

  13. Analysis of Muon Induced Neutrons in Detecting High Z Nuclear Materials

    DTIC Science & Technology

    2015-03-01

    erent CAEN digitizer boards, V1720 and V1724, prevented accurate correlation between the inci- dent muon events and the neutrons that were produced. To...8217) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Compare frequency generator time stamps to neutron event time stamps % Prevent neutron data stamps to be applied to incorrect time stamps % due...Science. New York: Cambridge University Press, 2003. 3. H. K. M. Tanaka and et al., “Radiographic Imaging Below a Volcanic Crater Floor with Cosmic

  14. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    NASA Astrophysics Data System (ADS)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  15. Borehole parametric study for neutron induced capture gamma-ray spectrometry using the MCNP code.

    PubMed

    Shahriari, M; Sohrabpour, M

    2000-01-01

    The MCNP Monte Carlo code has been used to simulate neutron transport from an Am-Be source into a granite formation surrounding a borehole. The effects of the moisture and the neutron poison on the thermal neutron flux distribution and the capture by the absorbing elements has been calculated. Thermal and nonthermal captures for certain absorbers having resonance structures in the epithermal and fast energy regions such as W and Si were performed. It is shown that for those absorbers having large resonances in the epithermal regions when they are present in dry formation or when accompanied by neutron poisons the resonance captures may be significant compared to the thermal captures.

  16. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  17. Staphylococcus epidermidis Biofilm-Released Cells Induce a Prompt and More Marked In vivo Inflammatory-Type Response than Planktonic or Biofilm Cells

    PubMed Central

    França, Angela; Pérez-Cabezas, Begoña; Correia, Alexandra; Pier, Gerald B.; Cerca, Nuno; Vilanova, Manuel

    2016-01-01

    Staphylococcus epidermidis biofilm formation on indwelling medical devices is frequently associated with the development of chronic infections. Nevertheless, it has been suggested that cells released from these biofilms may induce severe acute infections with bacteraemia as one of its major associated clinical manifestations. However, how biofilm-released cells interact with the host remains unclear. Here, using a murine model of hematogenously disseminated infection, we characterized the interaction of cells released from S. epidermidis biofilms with the immune system. Gene expression analysis of mouse splenocytes suggested that biofilm-released cells might be particularly effective at activating inflammatory and antigen presenting cells and inducing cellular apoptosis. Furthermore, biofilm-released cells induced a higher production of pro-inflammatory cytokines, in contrast to mice infected with planktonic cells, even though these had a similar bacterial load in livers and spleens. Overall, these results not only provide insights into the understanding of the role of biofilm-released cells in S. epidermidis biofilm-related infections and pathogenesis, but may also help explain the relapsing character of these infections. PMID:27729907

  18. A study of alcohol-induced gelation of beta-lactoglobulin with small-angle neutron scattering, neutron spin echo, and dynamic light scattering measurements.

    PubMed

    Yoshida, Koji; Yamaguchi, Toshio; Osaka, Noboru; Endo, Hitoshi; Shibayama, Mitsuhiro

    2010-04-07

    Gelation of beta-lactoglobulin (beta-Lg) in various alcohol-water mixtures with 0.1 M (M = mol L(-1)) hydrochloric acid was investigated with small-angle neutron scattering (SANS), neutron spin echo (NSE), and time-resolved dynamic light scattering (TRDLS) measurements. The beta-Lg in alcohol-water solutions undergoes gelation at specific alcohol concentrations where the alcohol-induced alpha-helical structure of beta-Lg is stabilized. The SANS profiles showed that beta-Lg exists as a single molecule at a low alcohol concentration. With increasing alcohol concentration, the profiles indicate a power law behavior of approximately 1.7 when the samples gelate. These behaviors were observed in all alcohol-water mixtures used, but the alcohol concentrations where the SANS profiles change shift to a lower alcohol concentration region with an increase in the size of the hydrophobic group of the alcohols. Apparent diffusion constants, obtained from the intermediate scattering function (ISF) of NSE and the intensity time correlation function (ITCF) of TRDLS, mainly depend on the viscosity of alcohol-water mixtures before gelation. After gelation, on the other hand, the ISFs of gels do not change appreciably in the range of the NSE time scale, indicating the microscopically rigid structure of beta-Lg gel. The ITCF functions obtained from TRDLS follow a double exponential decay type before gelation, but a logarithmic one (exponent alpha = 0.7) after gelation. It is most likely that the alcohol-induced gelation undergoes a similar mechanism to that for the heat-induced one at pH = 7 where beta-Lg aggregates stick together to form a fractal network, although the gelation time is faster in the former than in the latter.

  19. Comparison of yields of neutron-rich nuclei in proton- and photon-induced 238U fission

    NASA Astrophysics Data System (ADS)

    Khan, F. A.; Bhowmick, Debasis; Basu, D. N.; Farooq, M.; Chakrabarti, Alok

    2016-11-01

    A comparative study of fission of actinides, especially 238U, by proton and bremsstrahlung photon is performed. The relative mass distribution of 238U fission fragments has been explored theoretically for both proton- and photon-induced fission. The integrated yield along with charge distribution of the products are calculated to find the neutron richness in comparison with the nuclei produced by the r process in nucleosynthesis. Some r -process nuclei in the intermediate-mass range for symmetric fission mode are found to be produced almost two orders of magnitude more for proton-induced fission than for photofission, although the rest of the neutron-rich nuclei in the asymmetric mode are produced in comparable proportion for both processes.

  20. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  1. Fast-neutron Induced Reactions at the nELBE Time-of-flight Facility

    NASA Astrophysics Data System (ADS)

    Junghans, A. R.; Beyer, R.; Elekes, Z.; Grosse, E.; Hannaske, R.; Kögler, T.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2014-05-01

    The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf is being rebuilt and extended with a low-background experimental hall. The neutron radiator consists of a liquid lead circuit without additional neutron moderators. The useful neutron spectrum extends from some tens of keV to about 10 MeV. nELBE is intended to deliver cross section data of fast-neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. Before the extension of the facility, the photon production cross section of 56Fe was measured with an HPGe detector and the inelastic neutron scattering cross section to the first few excited states in 56Fe was determined. The neutron total cross sections of Au and Ta were determined in the energy from 200 keV to 7 MeV in a transmission experiment.

  2. TPC tracking software for NIFFTE: the Neutron Induced Fission Fragment Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Kudo, Ryuho; Klay, J. L.

    2008-10-01

    Ever since the scientific community started analyzing and filtering data using computers, programming has become a crucial part for the success of many projects. The NIFFTE Collaboration, which is building a Time Projection Chamber (TPC) to study neutron-induced fission of the major actinides, naturally requires a comprehensive software framework to analyze the high volume of data it will collect. Following the traditional TPC reconstruction model, we have written a set of offline analysis algorithms to reconstruct tracks left by the fission fragments in the TPC and determine their (A,Z). We accomplish this by organizing the raw TPC voxel data into 2 dimensional planes, performing cluster and hit-finding within those planes and then connecting the hits to create 3-D tracks. Finally, track fitting and error correction are performed and the fragment A,Z are determined from the distribution of specific ionization along the track. Since one of the goals of this project is to create a re-usable library of TPC reconstruction code that can be adapted to other TPC projects, the software uses open source tools and is built as an object-oriented package in C++. This poster will present the current status of the TPC reconstruction algorithms and discuss the motivations behind our specific programming choices.

  3. Bayesian Evaluation Including Covariance Matrices of Neutron-induced Reaction Cross Sections of {sup 181}Ta

    SciTech Connect

    Leeb, H. Schnabel, G.; Srdinko, Th.; Wildpaner, V.

    2015-01-15

    A new evaluation of neutron-induced reactions on {sup 181}Ta using a consistent procedure based on Bayesian statistics is presented. Starting point of the evaluation is the description of nuclear reactions via nuclear models implemented in TALYS 1.4. A retrieval of experimental data was performed and covariance matrices of the experiments were generated from an extensive study of the corresponding literature. All reaction channels required for a transport file up to 200 MeV have been considered and the covariance matrices of cross section uncertainties for the most important channels are determined. The evaluation has been performed in one step including all available experimental data. A comparison of the evaluated cross sections and spectra with experimental data and available evaluations is performed. In general the evaluated cross section reflect our best knowledge and give a fair description of the observables. However, there are few deviations from expectation which clearly indicate the impact of the prior and the need to account for model defects. Using the results of the evaluation a complete ENDF-file similarly to those of the TENDL library is generated.

  4. Frequency-Induced Bulk Magnetic Domain-Wall Freezing Visualized by Neutron Dark-Field Imaging

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Harti, R. P.; Schäfer, R.; Van Swygenhoven, H.; Kaestner, A.; Hovind, J.; Lehmann, E.; Grünzweig, C.

    2016-08-01

    We use neutron dark-field imaging to visualize and interpret the response of bulk magnetic domain walls to static and dynamic magnetic excitations in (110)-Goss textured iron silicon high-permeability steel alloy. We investigate the domain-wall motion under the influence of an external alternating sinusoidal magnetic field. In particular, we perform scans combining varying levels of dcoffset (0 - 30 A /m ) , oscillation amplitude Aac (0 - 1500 A /m ) , and frequency fac ((0 - 200 Hz ) . By increasing amplitude Aac while maintaining constant values of dcoffset and fac , we record the transition from a frozen domain-wall structure to a mobile one. Vice versa, increasing fac while keeping Aac and dcoffset constant led to the reverse transition from a mobile domain-wall structure into a frozen one. We show that varying both Aac and fac shifts the position of the transition region. Furthermore, we demonstrate that higher frequencies require higher oscillation amplitudes to overcome the freezing phenomena. The fundamental determination and understanding of the frequency-induced freezing process in high-permeability steel alloys is of high interest to the further development of descriptive models for bulk macromagnetic phenomena. Likewise, the efficiency of transformers can be improved based on our results, since these alloys are used as transformer core material.

  5. Towards an improved evaluation of neutron-induced fission cross sections on actinides

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Hilaire, S.; Koning, A. J.; Capote, R.

    2011-03-01

    Mean-field calculations can now provide all the nuclear ingredients required to describe the fission path from the equilibrium deformation up to the nuclear scission point. The information obtained from microscopic mean-field models has been included in the TALYS reaction code to improve the predictions of neutron-induced fission cross sections. The nuclear inputs concern not only the details of the energy surface along the fission path, but also the coherent estimate of the nuclear level density derived within the combinatorial approach on the basis of the same single-particle properties, in particular at the fission saddle points. The predictive power of such a microscopic approach is tested on the experimental data available for the uranium isotopic chain. It is also shown that the various inputs can be tuned to reproduce, at best, experimental data in one unique coherent framework, so that in a close future it should become possible to make, on the basis of such models, accurate fission-cross-section calculations and the corresponding estimates for nuclei, energy ranges, or reaction channels for which no data exist. Such model uncertainties are usually not taken into account in data evaluations.

  6. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  7. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    NASA Astrophysics Data System (ADS)

    Zhao, J. R.; Zhang, X. P.; Yuan, D. W.; Chen, L. M.; Li, Y. T.; Fu, C. B.; Rhee, Y. J.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Zhang, K.; Han, B.; Liu, C.; Huang, K.; Ma, Y.; Li, Yi. F.; Xiong, J.; Huang, X. G.; Fu, S. Z.; Zhu, J. Q.; Zhao, G.; Zhang, J.

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 106) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  8. Changes in electrical properties of MOS transistor induced by single 14 MeV neutron

    SciTech Connect

    Haider, F. A. Chee, F. P. Abu Hassan, H.; Saafie, S.; Afishah, A.

    2016-01-22

    Neutron radiation causes significant changes in the characteristics of MOS devices by the creation of oxide-trapped charge and interface traps. The degradation of the current gain of the GF4936 dual n-channel depletion mode MOS transistor, caused by neutron displacement defects, was measured using in-situ method during neutron irradiation. The average degradation of the gain current is 35 mA at maximum fluence of 2.0 × 10{sup 10} n/cm2 while with an average of 25 mA at minimum fluence of 5.0 × 10{sup 8} n/cm{sup 2}. The change in channel current gain increased proportionally with neutron fluence, meanwhile drain saturation current decreased proportionally with the neutron fluence.

  9. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    PubMed

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer.

  10. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    NASA Technical Reports Server (NTRS)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  11. Method for on-line evaluation of materials using prompt gamma ray analysis

    DOEpatents

    Akers, Douglas W.

    2009-12-08

    A method for evaluating a material specimen comprises: Mounting a neutron source and a detector adjacent the material specimen; bombarding the material specimen with neutrons from the neutron source to create prompt gamma rays within the material specimen, some of the prompt gamma rays being emitted from the material specimen, some of the prompt gamma rays resulting in the formation of positrons within the material specimen by pair production; collecting positron annihilation data by detecting with the detector at least one emitted annihilation gamma ray resulting from the annihilation of a positron; storing the positron annihilation data on a data storage system for later retrieval and processing; and continuing to collect and store positron annihilation data, the continued collected and stored positron annihilation data being indicative of an accumulation of lattice damage over time.

  12. Of mermaids and mountains. Three decades of prompt activation in vivo.

    PubMed

    Morgan, W D

    2000-05-01

    During 1966 to 1972, several laboratories demonstrated the feasibility of measuring the major body elements H, N, Ca, and Cl by prompt gamma in vivo neutron activation analysis (PGIVNA). The MERMAID facility in Birmingham, England used a cyclotron-produced pulsed neutron beam, but other groups in the United Kingdom, United States, Canada, and New Zealand subsequently developed systems based on radioisotope neutron sources that could measure body nitrogen with a precision of a margin of error of a few percentage points. The accuracy of N measurement was greatly enhanced by Vartsky's internal standardization, using prompt-gamma H as the marker and total body hydrogen (based on total body water and skinfolds) as the reference. Chlorine and extracellular water volume were used in a similar way by the Swansea group to calibrate the prompt-gamma analysis of total body calcium. The PGIVNA technique is most valuable in assessing nutritional status, particularly in relation to body protein.

  13. Evaluation of {sup 28,29,30}Si neutron induced cross sections for ENDF/B-VI

    SciTech Connect

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Leal, L.C.; Epperson, S.J.

    1997-04-01

    Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. The evaluations are based on analysis of experimental data, supplemented by results of nuclear model calculations. The computational methods and the parameters required as input to the nuclear model codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced reaction cross sections, associated angular and energy distributions, and gamma-ray production cross sections is included. Extensive comparisons of the evaluated cross sections to measured data are shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly. These quantities are fundamental to studies of neutron heating and radiation damage.

  14. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  15. Calculated neutron-induced cross sections for /sup 53/Cr from 1 to 20 MeV

    SciTech Connect

    Shibata, K.; Hetrick, D.M.

    1987-05-01

    Neutron-induced cross sections of /sup 53/Cr have been calculated in the energy regions from 1 to 20 MeV. The quantities obtained are the cross sections for the reactions (n,n'..gamma..), (n,2n), (n,np), (n,n..cap alpha..), (n,p..gamma..), (n,pn), (n,..cap alpha gamma..), (n,..cap alpha..n), (n,d), (n,t), (n,/sup 3/He), and (n,..gamma..), as well as the spectra of emitted neutrons, protons, alpha particles, and gamma rays. The precompound process was included above 5 MeV in addition to the compound process. For the inelastic scattering, the contribution of the direct interaction was calculated with DWBA. 36 refs., 23 figs., 11 tabs.

  16. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    DOE PAGES

    Gerlits, Oksana; Wymore, Troy; Das, Amit; ...

    2016-03-09

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other asparticmore » proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.« less

  17. Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site

    SciTech Connect

    Gerlits, Oksana; Wymore, Troy; Das, Amit; Shen, Chen -Hsiang; Parks, Jerry M.; Smith, Jeremy C.; Weiss, Kevin L.; Keen, David A.; Blakeley, Matthew P.; Louis, John M.; Langan, Paul; Weber, Irene T.; Kovalevsky, Andrey

    2016-03-09

    Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.

  18. Experimental and simulation studies of neutron-induced single-event burnout in SiC power diodes

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori; Tadano, Hiroshi

    2014-01-01

    Neutron-induced single-event burnouts (SEBs) of silicon carbide (SiC) power diodes have been investigated by white neutron irradiation experiments and transient device simulations. It was confirmed that a rapid increase in lattice temperature leads to formation of crown-shaped aluminum and cracks inside the device owing to expansion stress when the maximum lattice temperature reaches the sublimation temperature. SEB device simulation indicated that the peak lattice temperature is located in the vicinity of the n-/n+ interface and anode contact, and that the positions correspond to a hammock-like electric field distribution caused by the space charge effect. Moreover, the locations of the simulated peak lattice temperature agree closely with the positions of the observed destruction traces. Furthermore, it was theoretically demonstrated that the period of temperature increase of a SiC power device is two orders of magnitude less than that of a Si power device, using a thermal diffusion equation.

  19. Small-angle neutron scattering study of structure and kinetics of temperature-induced protein gelation.

    PubMed

    Chodankar, S; Aswal, V K; Kohlbrecher, J; Vavrin, R; Wagh, A G

    2009-02-01

    The phase diagram, structural evolution, and kinetics of temperature-induced protein gelation of protein Bovine Serum Albumin (BSA) have been studied as a function of solution pH and protein concentration. The protein gelation temperature represents the onset of turbidity in the protein solution, which increases significantly with increasing pH beyond the isoelectric pH of the protein molecule. On the other hand, the gelation temperature decreases with an increase in protein concentration only in the low-protein-concentration regime and shows a small increasing trend at higher protein concentrations. The structural evolution and kinetics of protein gelation have been studied using small-angle neutron scattering. The structure of the protein molecule remains stable up to temperatures very close to the gelation temperature. On increasing the temperature above the gelation temperature, the protein solution exhibits a fractal structure, an indication of gel formation due to aggregation. The fractal dimension of the gel increases with increasing temperature, suggesting an increase in branching between the aggregates, which leads to stronger gels. The increase in both solution pH and protein concentration is found to delay the growth in the fractal structure and its saturation. The kinetics of gelation has been studied using the temperature-jump process of heating. It is found that the structure of the protein gels remains invariant after the heating time ( approximately 1 min), indicating a rapid formation of gel structure within this time. The protein gels prepared through gradual and temperature-jump heating routes do not always show the same structure. In particular, at higher temperatures (e.g., 85 degrees C ), while gradual heating shows a fractal structure, there is collapse of such fractal structure during temperature-jump heating.

  20. Characterization of the Energy Spectrum at the Indiana University Neutron Source

    DTIC Science & Technology

    2011-03-01

    60 PGNAA Prompt Gamma Neutron Activation Analysis . . . . . . . . . . . . . . . . . 60 DGNAA...broken into a number of sub-categories. Prompt Gamma Neutron Activation Analysis (PGNAA) 60 Table 6. Materials selected for use in the main experimental...Delay Gamma Neutron Activation Analysis . . . . . . . . . . . . . . . . . . . 61 TSCA Timing Single-Channel Analyzer

  1. Small-angle neutron scattering study of radiation-induced defects in synthetic quartz

    SciTech Connect

    Lebedev, V. M. Lebedev, V. T.; Orlov, S. P.; Pevzner, B. Z.; Tolstikhin, I. N.

    2006-12-15

    The supraatomic structure of single crystals of synthetic quartz was studied by thermal neutron small-angle scattering in the initial state (dislocation densities 54 and 570 cm{sup -2}) and after irradiation in the WWR-M reactor (Petersburg Nuclear Physics Institute) by fast neutrons with energies E{sub n} > 0.1 MeV at fluences F{sub n} = 0.2 x 10{sup 17} -5 x 10{sup 18} neutrons/cm{sup 2}. It is established that fast neutrons form point, linear, and volume defects in the lattice throughout the entire volume of a sample. Large-volume structures-amorphous-phase nuclei-reach sizes of {approx}100 nm in quartz, while occupying a small total volume of {approx}0.3% even at the maximum fluence 5 x 10{sup 18} neutrons/cm{sup 2}. The main fraction of the damaged volume (up to 5%) corresponds to point (with a radius of gyration of 1-2 nm) and linear defects, giving a comparable contribution ({approx}1-4%). The extended linear structures with a radius of 2 nm, even at a moderate fluence of 7.7 x 10{sup 17} neutrons/cm{sup 2}, have a significant total length per volume unit ({approx}10{sup 11} cm/cm{sup 3}) and can form a connected network with a cell {approx}30 nm in size in the sample. Foreign atoms and molecules can migrate through channels of this network.

  2. The 4π neutron detector CARMEN

    NASA Astrophysics Data System (ADS)

    Ledoux, X.; Laborie, J.-M.; Pras, P.; Lantuéjoul-Thfoin, I.; Varignon, C.

    2017-02-01

    CARMEN is a 4π neutron detector filled with a gadolinium-loaded liquid scintillator built to measure neutron multiplicity distributions. It is used to study fission and (n,xn) reactions. In addition to neutron multiplicity measurements, CARMEN can be used to measure neutron energy spectra with the time-of-flight technique, thanks to the time properties of the prompt signal. The detector, detection technique and efficiency determination are presented in detail. Two examples are also presented: the measurement of 252Cf spontaneous fission neutron multiplicity probability distribution and the measurement of the neutron energy spectrum emitted by an Am-Be radioactive source.

  3. Modeling of Fission Neutrons as a Signature for Detection of Highly Enriched Uranium

    SciTech Connect

    Wolford, J K; Frank, M I; Descalle, M

    2004-03-09

    We present the results of modeling intended to evaluate the feasibility of using neutrons from induced fission in highly enriched uranium (HEU) as a means of detecting clandestine HEU, even when it is embedded in absorbing surroundings, such as commercial cargo. We characterized radiation from induced fission in HEU, which consisted of delayed neutrons at all energies and prompt neutrons at energies above a threshold. We found that for the candidate detector and for the conditions we considered, a distinctive HEU signature should be detectable, given sufficient detector size, and should be robust over a range of cargo content. In the modeled scenario, an intense neutron source was used to induce fissions in a spherical shell of HEU. To absorb, scatter, and moderate the neutrons, we place one layer of simulated cargo between the source and target and an identical layer between the target and detector. The resulting neutrons and gamma rays are resolved in both time and energy to reveal the portion arising from fission. We predicted the dominant reaction rates within calcium fluoride and liquid organic scintillators. Finally, we assessed the relative effectiveness of two common neutron source energies.

  4. 48Ti(n,xnypzαγ) Reactions for Neutron Energies up to 250 MeV

    NASA Astrophysics Data System (ADS)

    Dashdorj, D.; Garret, P. E.; Becker, J. A.; Bernstein, L. A.; Cooper, J. R.; Devlin, M.; Fotiades, N.; Mitchell, G. E.; Nelson, R. O.; Younes, W.

    2005-05-01

    Cross-section measurements were made of prompt γ-ray production as a function of incident neutron energy on a 48Ti sample. Partial γ-ray cross sections for transitions in 45-48Ti, 44-48Sc, 42-45Ca, 41-44K, and 41-42Ar have been determined. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the LANSCE/WNR facility. The prompt-reaction γ rays were detected with the large-scale Compton-suppressed germanium array for neutron-induced excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The γ-ray excitation functions were converted to partial γ-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency, and neutron flux (monitored with an in-line fission chamber). The data will be presented for neutron energies between 1 to 250 MeV. These results are compared with model calculations that include compound nuclear and pre-equilibrium emission.

  5. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Perret, G.

    2011-04-01

    The LIFE@PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO 2 fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1σ uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2σ of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  6. Moisture effect in prompt gamma measurements from soil samples.

    PubMed

    Naqvi, A A; Khiari, F Z; Liadi, F A; Khateeb-Ur-Rehman; Raashid, M A; Isab, A H

    2016-09-01

    The variation in intensity of 1.78MeV silicon, 6.13MeV oxygen, and 2.22MeV hydrogen prompt gamma rays from soil samples due to the addition of 5.1, 7.4, 9.7, 11.9 and 14.0wt% water was studied for 14MeV incident neutron beams utilizing a LaBr3:Ce gamma ray detector. The intensities of 1.78MeV and 6.13MeV gamma rays from silicon and oxygen, respectively, decreased with increasing sample moisture. The intensity of 2.22MeV hydrogen gamma rays increases with moisture. The decrease in intensity of silicon and oxygen gamma rays with moisture concentration indicates a loss of 14MeV neutron flux, while the increase in intensity of 2.22MeV gamma rays with moisture indicates an increase in thermal neutron flux due to increasing concentration of moisture. The experimental intensities of silicon, oxygen and hydrogen prompt gamma rays, measured as a function of moisture concentration in the soil samples, are in good agreement with the theoretical results obtained through Monte Carlo calculations.

  7. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  8. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.

    1995-01-03

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.

  9. Gamma neutron assay method and apparatus

    DOEpatents

    Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.

    1995-01-01

    The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.

  10. Study of neutron-induced background and its effect on the search of 0νββ decay in 124Sn

    NASA Astrophysics Data System (ADS)

    Dokania, N.; Singh, V.; Mathimalar, S.; Ghosh, C.; Nanal, V.; Pillay, R. G.; Pal, S.; Bhushan, K. G.; Shrivastava, A.

    2014-11-01

    Neutron-induced background has been studied in various components of the TIN.TIN detector, which is under development for the search of Neutrinoless Double Beta Decay in 124Sn. Fast neutron flux ~106 n cm-2s-1 covering a broad energy range ~0.1 to ( ~18 MeV) was generated using 9Be(p,n)9B reaction. In addition, reactions with quasi-monoenergetic neutrons were also studied using 7Li(p,n)7Be reaction. Among the different cryogenic support structures studied, Teflon is found to be preferable compared to Torlon as there is no high energy gamma background Eγ > 1 MeV) . Contribution of neutron-induced reactions in nat, 124Sn from other Sn isotopes (A = 112-122) in the energy region of interest, namely, around the Qββ of 124Sn (E ~ 2.293 MeV), is also investigated.

  11. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  12. Neutron yields for reactions induced by 120 GeV protons on thick copper target

    SciTech Connect

    Kajimoto, Tsuyoshi; Sanami, Toshiya; Iwamoto, Yosuke; Shigyo, Nobuhiro; Hagiwara, Masayuki; Saitoh, Kiwamu; Nakashima, Hiroshi; Ishibashi, Kenji; Lee, Hee-Seock; Ramberg, Eric; Coleman, Richard; /Fermilab

    2011-02-01

    We developed an experimental method to measure neutron energy spectrum for 120-GeV protons on a thick copper target at Fermilab Test Beam Facility (FTBF). The spectrum in the energy range from 16 to 1600 MeV was obtained for 60-cm long copper target by time-of-flight technique with an NE213 scintillator and 5.5-m flight path. Energy spectra of neutrons generated from an interaction with beam and materials are important to design shielding structure of high energy accelerators. Until now, the energy spectra for the incident energy up to 3 GeV have been measured by several groups, Ishibashi et al., Amian et al., and Leray et al. In the energy region above 3 GeV, few experimental data are available because of small number of facilities for neutron experiment. On the other hand, concerning simulation codes, theoretical models for particle generation and transportation are switched from intermediate to high energy one around this energy. The spectra calculated by the codes have not been examined using experimental data. In shielding experiments using 120 GeV hadron beam, experimental data shows systematic differences from calculations. Hagiwara et al. have measured leakage neutron spectra behind iron and concrete shield from 120 GeV proton on target at anti-proton target station in Fermilab by using Bonner Spheres with unfolding technique. In CERN, Nakao et al reported experimental results of neutron spectra behind iron and concrete wall from 120 GeV/c proton and pion mixed beam on copper by using NE213 liquid scintillators with unfolding technique. Both of the results reported systematic discrepancies between experimental and calculation results. Therefore, experimental data are highly required to verify neutron production part of calculations. In this study, we developed an experimental method to measure neutron energy spectrum for 120 GeV proton on target. The neutron energy was determined using time-of-flight technique. We used the Fermilab Test Beam Facility (FTBF

  13. Production of neutron-rich transcalifornium nuclei in 238U-induced transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2016-11-01

    In order to produce more unknown neutron-rich transcalifornium nuclei, the collisions of 238U with the targets 248Cm, 249Cf, and 250Cm are investigated within the framework of the dinuclear system model. The production cross sections of unknown neutron-rich nuclei with Z =99 -104 in these reactions are predicted. The influences of N /Z ratios and charge numbers of the targets on the production cross sections are studied. It is found that high N /Z ratios of 248Cm and 250Cm targets enhance the production cross sections of neutron-rich transcalifornium nuclei. However, due to high charge number of the target 249Cf the predicted production cross sections of unknown neutron-rich nuclei with Z =104 in the reaction 238U+249Cf are higher than those in 238U+248Cm . We also have studied the entrance angular momentum effects on production probabilities of transfer products in the reaction 238U+248Cm . It is found that the formation probabilities of the final neutron-rich products increase first and then decrease with the increasing J .

  14. Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    NASA Astrophysics Data System (ADS)

    Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.

    2016-10-01

    This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  15. Tables of Neutron-Induced Fission Cross Section for Various Pu, U, and Th Isotopes, Deduced from Measured Fission Probabilites

    SciTech Connect

    Younes, W; Britt, H C

    2003-03-31

    Cross sections for neutron-induced fission of {sup 231,233}Th, {sup 234,235,236,237,239}U, and {sup 240,241,243}Pu are presented in tabular form for incident neutron energies of 0.1 {le} E{sub n}(MeV) {le} 2.5. The cross sections were obtained by converting measured fission probabilities from (t,pf) reactions on mass-A targets to (n,f) cross sections on mass-A + 1 neutron targets, by using modeling to compensate for the differences in the reaction mechanisms. Data from Britt et al. were used for the {sup 234}U(t,pf) reaction, from Cramer et al. for the {sup 230,232}Th(t,pf), {sup 236,238}U(t,pf), and {sup 240,242}Pu(t,pf) reactions, and from Britt et al. for the {sup 233,235}U(t,pf) and {sup 239}Pu(t,pf) reactions. The fission probabilities P{sub (t,pf)}(E{sub x}), measured as a function of excitation energy E{sub x} of the compound system formed by the (t,p) reaction, are listed in the tables with the corresponding deduced cross sections as a function of incident neutron energy E{sub n}, {sigma}{sub (n,f)}(E{sub n}). The excitation energy and incident neutron energy are related by E{sub x} = E{sub n} + B{sub n}, where B{sub n}, where B{sub n} is the neutron binding energy. Comparison with ENDF/B-VI evaluations of the well-measured {sup 234,235,236}U(n,f) and {sup 240,241}Pu(n,f) cross sections confirms the accuracy of the present results within a 10% standard deviation above E{sub n} = 1 MeV. Below E{sub n} = 1 MeV, localized deviations of at most {+-} 20% are observed.

  16. Assessment and improvements of Geant4 hadronic models in the context of prompt-gamma hadrontherapy monitoring

    NASA Astrophysics Data System (ADS)

    Dedes, G.; Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Létang, J. M.; Ray, C.; Testa, E.

    2014-04-01

    Monte Carlo simulations are nowadays essential tools for a wide range of research topics in the field of radiotherapy. They also play an important role in the effort to develop a real-time monitoring system for quality assurance in proton and carbon ion therapy, by means of prompt-gamma detection. The internal theoretical nuclear models of Monte Carlo simulation toolkits are of decisive importance for the accurate description of neutral or charged particle emission, produced by nuclear interactions between beam particles and target nuclei. We assess the performance of Geant4 nuclear models in the context of prompt-gamma emission, comparing them with experimental data from proton and carbon ion beams. As has been shown in the past and further indicated in our study, the prompt-gamma yields are consistently overestimated by Geant4 by a factor of about 100% to 200% over an energy range from 80 to 310 MeV/u for the case of 12C, and to a lesser extent for 160 MeV protons. Furthermore, we focus on the quantum molecular dynamics (QMD) modeling of ion-ion collisions, in order to optimize its description of light nuclei, which are abundant in the human body and mainly anticipated in hadrontherapy applications. The optimization has been performed by benchmarking QMD free parameters with well established nuclear properties. In addition, we study the effect of this optimization on charged particle emission. With the usage of the proposed parameter values, discrepancies reduce to less than 70%, with the highest values being attributed to the nucleon-ion induced prompt-gammas. This conclusion, also confirmed by the disagreement we observe in the case of proton beams, indicates the need for further investigation on nuclear models which describe proton and neutron induced nuclear reactions.

  17. WE-D-BRF-03: Proton Beam Range Verification with a Single Prompt Gamma-Ray Detector

    SciTech Connect

    Verburg, J; Testa, M; Cascio, E; Bortfeld, T; Lu, H; Seco, J

    2014-06-15

    Purpose: To present an experimental study of a novel range verification method for scanned and scattered proton beams. Methods: A detection system consisting of an actively shielded lanthanum(III)bromide scintillator and a one-sided lead collimator was used to measure prompt gamma-rays emitted during the delivery of proton beams to a water phantom and an anthropomorphic head phantom. The residual proton range at the collimator position was determined by comparing gamma-ray intensities while the proton energy was modulated to the distal end of the target. We used a clinical field to deliver a 50 cGy dose to a 12 cm diameter target in the water phantom and to a 175 cc tumor-shaped target in the head phantom. The detector signals were acquired with a custom data acquisition system enabling energy and time-of-flight discrimination of prompt gamma-rays. Results: Range deviations were detected with a statistical accuracy of ± 0.2 mm and ± 1.4 mm at 90% confidence level, respectively for the water and head phantom. We obtained a time resolution of 1 ns FWHM and an energy resolution < 2% FWHM for the main gamma lines from proton-induced nuclear reactions with carbon and oxygen. This allowed for an accurate separation of the prompt gamma-rays from neutron-induced background. Conclusion: Proton range deviations can be detected with millimeter accuracy using a single prompt gamma-ray measurement point acquired during the delivery of a few proton energy layers to the distal part of the target. The method is also feasible in the presence of background radiation from passively scattered proton beam delivery.

  18. Assessment and improvements of Geant4 hadronic models in the context of prompt-gamma hadrontherapy monitoring.

    PubMed

    Dedes, G; Pinto, M; Dauvergne, D; Freud, N; Krimmer, J; Létang, J M; Ray, C; Testa, E

    2014-04-07

    Monte Carlo simulations are nowadays essential tools for a wide range of research topics in the field of radiotherapy. They also play an important role in the effort to develop a real-time monitoring system for quality assurance in proton and carbon ion therapy, by means of prompt-gamma detection. The internal theoretical nuclear models of Monte Carlo simulation toolkits are of decisive importance for the accurate description of neutral or charged particle emission, produced by nuclear interactions between beam particles and target nuclei. We assess the performance of Geant4 nuclear models in the context of prompt-gamma emission, comparing them with experimental data from proton and carbon ion beams. As has been shown in the past and further indicated in our study, the prompt-gamma yields are consistently overestimated by Geant4 by a factor of about 100% to 200% over an energy range from 80 to 310 MeV/u for the case of (12)C, and to a lesser extent for 160 MeV protons. Furthermore, we focus on the quantum molecular dynamics (QMD) modeling of ion-ion collisions, in order to optimize its description of light nuclei, which are abundant in the human body and mainly anticipated in hadrontherapy applications. The optimization has been performed by benchmarking QMD free parameters with well established nuclear properties. In addition, we study the effect of this optimization on charged particle emission. With the usage of the proposed parameter values, discrepancies reduce to less than 70%, with the highest values being attributed to the nucleon-ion induced prompt-gammas. This conclusion, also confirmed by the disagreement we observe in the case of proton beams, indicates the need for further investigation on nuclear models which describe proton and neutron induced nuclear reactions.

  19. Neutron-induced transmutation reactions in 237Np, 238Pu, and 239Pu at the massive natural uranium spallation target

    NASA Astrophysics Data System (ADS)

    Zavorka, L.; Adam, J.; Baldin, A. A.; Caloun, P.; Chilap, V. V.; Furman, W. I.; Kadykov, M. G.; Khushvaktov, J.; Pronskikh, V. S.; Solnyshkin, A. A.; Sotnikov, V.; Stegailov, V. I.; Suchopar, M.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Voronko, V.; Vrzalova, J.

    2015-04-01

    Transmutation reactions in the 237Np, 238Pu, and 239Pu samples were investigated in the neutron field generated inside a massive (m = 512 kg) natural uranium spallation target. The uranium target assembly QUINTA was irradiated with the deuteron beams of kinetic energy 2, 4, and 8 GeV provided by the Nuclotron accelerator at the Joint Institute for Nuclear Research (JINR) in Dubna. The neutron-induced transmutation of the actinide samples was measured off-line by implementing methods of gamma-ray spectrometry with HPGe detectors. Results of measurement are expressed in the form of both the individual reaction rates and average fission transmutation rates. For the purpose of validation of radiation transport programs, the experimental results were compared with simulations of neutron production and distribution performed by the MCNPX 2.7 and MARS15 codes employing the INCL4-ABLA physics models and LAQGSM event generator, respectively. In general, a good agreement between the experimental and calculated reaction rates was found in the whole interval of provided beam energies.

  20. T invariance and T-odd asymmetries for the cold-polarized-neutron-induced fission of nonoriented nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2014-12-15

    It is shown that the coefficients D{sup exp} for all T-odd asymmetries observed experimentally in the cross sections for the reactions of cold-polarized-neutron-induced fission of nonoriented target nuclei (which involves the emission of prescission and evaporated particles) comply in shape and scale with the coefficients D{sup theor} calculated for the analogous asymmetries on the basis of quantum-mechanical nuclear-fission theory for T-invariant Hamiltonians of fissile systems. It is also shown that the asymmetries in question arise upon taking into account the effect of (i) the interference between the fission amplitudes of s- and p-wave resonances of a polarized fissile compound nucleus formed in the aforementioned reactions; (ii) the collective rotation of the compound nucleus in question (this rotation entails a change in the angular distributions of fission fragments and third particles); and (iii) the wriggling vibrations of this compound nucleus in the vicinity of its scission point, which lead to the appearance of high aligned spins of fission fragments, with the result that the emission of neutrons and photons evaporated from these fragments becomes anisotropic. The possible contribution of T-noninvariant interactions to the formation of the T-odd asymmetries under analysis is estimated by using the results obtained in experimentally testing the detailed-balance principle, (P-A) theorem, and T invariance of cross sections for elastic proton-proton and proton-neutron scattering.

  1. New Neutron-Induced Cross-Section Measurements for Weak s-process Studies

    SciTech Connect

    Guber, Klaus H; Wiarda, Dorothea; Leal, Luiz C; Derrien, Herve; Ausmus, Clint; Brashear, Dane; White, John A

    2008-01-01

    A series of new neutron capture and transmission measurements has been undertaken at the Oak Ridge Electron Linear Accelerator (ORELA) in response to deficiencies identified in nuclear data libraries of crucial importance to the Nuclear Criticality Safety Program. New data and evaluations including covariances are required for several stable fission products as well as for materials found in mixtures with uranium. For example, chromium and nickel as constituents of stainless steel perform poorly in criticality calculations due to their relatively large neutron cross sections and substantial uncertainties in previous measurements. Therefore, new neutron-capture and total cross-section measurements are needed for 52,53Cr and 58,60Ni. These newly obtained data can be used not only to improve criticality calculations but also to serve as input parameters for the weak s-process stellar model calculations in massive stars. We will report on new experiments for these nuclides.

  2. Study of proton-induced reactions and correlation with fast-neutron scattering

    SciTech Connect

    Hansen, L.F.

    1982-01-19

    The generation of cross sections for fast neutron-nucleon interactions obtained from elastic and charge-exchange proton data is discussed in terms of the Lane model formalism. A general description of the interaction of nucleons with nuclei is presented in terms of the optical model and the extended (or coupled-channel) optical model, together with the relation of these models to microscopic calculations of the nucleon-nucleon interaction. Comparisons between neutron elastic data and calculations carried out with optical model potentials obtained from (p,p) and (p,n) data are presented for a large number of nuclei. The validity of the Lane model and the importance of coupled effects in the actinide region are shown in a detailed comparison of calculations for elastic and inelastic neutron differential cross sections and measurements for /sup 232/Th and /sup 238/U.

  3. Range verification of passively scattered proton beams using prompt gamma-ray detection.

    PubMed

    Verburg, Joost M; Testa, Mauro; Seco, Joao

    2015-02-07

    We performed an experimental study to verify the range of passively scattered proton beams by detecting prompt gamma-rays emitted from proton-nuclear interactions. A method is proposed using a single scintillation detector positioned near the distal end of the irradiated target. Lead shielding was used to attenuate gamma-rays emitted along most of the entrance path of the beam. By synchronizing the prompt gamma-ray detector to the rotation of the range modulation wheel, the relation between the gamma emission from the distal part of the target and the range of the incident proton beam was determined. In experiments with a water phantom and an anthropomorphic head phantom, this relation was found to be sensitive to range shifts that were introduced. The wide opening angle of the detector enabled a sufficient signal-to-background ratio to be achieved in the presence of neutron-induced background from the scattering and collimating devices. Uniform range shifts were detected with a standard deviation of 0.1 mm to 0.2 mm at a dose level of 30 cGy to 50 cGy (RBE). The detectable magnitude of a range shift limited to a part of the treatment field area was approximately proportional to the ratio between the field area and the area affected by the range shift. We conclude that it is feasible to detect changes in the range of passively scattered proton beams using a relatively simple prompt gamma-ray detection system. The method can be employed for in vivo verification of the consistency of the delivered range in fractionated treatments.

  4. Radiation cataractogenesis induced by neutron or gamma irradiation in the rat lens is reduced by vitamin E

    SciTech Connect

    Ross, W.M.; Creighton, M.O.; Trevithick, J.R. )

    1990-09-01

    Although cataract of the eye lens is a known late effect of ionizing radiation exposure, most of the experimental work to date has concentrated on single, acute high doses or multiple, fractionated, chronic exposures. Many papers have dealt with biochemical alterations in metabolism and cellular components, with microscopic and electron microscopic lesions to the epithelial and cortical layers, and with clinical cataract formation. However, the minimum cataractogenic dose for rats has for many years been considered to be about 2 Gy for a single, acute dose of low LET radiation. Our purpose in designing this pilot study was three fold: firstly, to determine whether any physical damage could be detected after low, acute exposure to neutron radiation (10 and 100 cGy); secondly, to compare the relative effectiveness of fast (14 MeV) neutrons with gamma-rays; and thirdly, to investigate the possibility that vitamin E could protect the lenses from radiation damage. The results revealed that morphological damage was already discernible within minutes after exposure to neutrons or gamma-rays, that it became greater after 24 hours, that neutrons were more damaging than gamma-rays, and that vitamin E could effectively reduce the cataractogenic damage induced by ionizing radiation. Control, non-irradiated lenses with or without vitamin E, either in vivo or in vitro, showed no damage. Also, it appeared that in vitro irradiation was more damaging to lenses than in vivo irradiation, so this culture technique may prove to be a sensitive tool for assessing early damage caused by ionizing radiation.

  5. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    SciTech Connect

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-09-20

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.

  6. Protactinium neutron-induced fission up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Maslov, V.

    2010-03-01

    The theoretical evaluation of 230-233Pa(n,F) cross sections is based on direct data, 230-234Pa fission probabilities and ratios of fission probabilities in first-chance and emissive fission domains, surrogate for neutroninduced fission. First chance fission cross sections trends of Pa are based on consistent description of 232Th(n,F), 232Th(n,2n) and 238U(n,F), 238U(n,xn) data, supported by the ratio surrogate data by Burke et al., 2006, for the 237U(n,F) reaction. Ratio surrogate data on fission probabilities of 232Th(6 Li,4 He)234Pa and 232 Th(6 Li,d)236U by Nayak et al., 2008, support the predicted 233Pa(n, F) cross section at En=11.5-16.5 MeV. The predicted trends of 230-232Pa(n, F) cross section up to En=20 MeV, are consistent with fissilities of Pa nuclides, extracted by 232Th(p,F) (Isaev et al., 2008) and 232Th(p,3n) (Morgenstern et al., 2008) data analysis. The excitation energy and nucleon composition dependence of the transition from asymmetric to symmetric scission for fission observables of Pa nuclei is defined by analysis of p-induced fission of 232Th at Ep=1-200 MeV. Predominantly symmetric fission in 232Th(p,F) at En( p)=200 MeV as revealed by experimental branching ratios (Dujvestijn et al., 1999) is reproduced. Steep transition from asymmetric to symmetric fission with increase of nucleon incident energy is due to fission of neutron-deficient Pa (A≤229) nuclei. A structure of the potential energy surface (a drop of f f symmetric and asymmetric fission barriers difierence (EfSYM - EfASYM) from ~3.5 MeV to ~1 MeV) of N-deficient Pa nuclides (A≤226) and available phase space at outer fission saddles, are shown to be responsible for the sharp increase with En( p) of the symmetric fission component contribution for 232Th(p,F) and 230-233 Pa(n, F) reactions. That is a strong evidence of emissive fission nature of moderately excited Pa nuclides, reliably quantified only up to En( p)~20(30) MeV. Predicted fission cross section of 232Pa(n,F) coincides

  7. 78 FR 5450 - Information Collection; Prompt Payment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... GENERAL SERVICES ADMINISTRATION NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Information Collection... and approve an extension to a previously approved information collection requirement concerning prompt... Information Collection 9000- 0102, Prompt Payment, by any of the following methods: Regulations.gov :...

  8. Prompt {gamma}-ray spectroscopy of isotopically identified fission fragments

    SciTech Connect

    Shrivastava, A.; Caamano, M.; Rejmund, M.; Navin, A.; Rejmund, F.; Lemasson, A.; Schmitt, C.; Derkx, X.; Fernandez-Dominguez, B.; Golabek, C.; Roger, T.; Sieja, K.; Audouin, L.; Bacri, C. O.; Barreau, G.; Jurado, B.

    2009-11-15

    Measurements of prompt Doppler-corrected deexcitation {gamma} rays from uniquely identified fragments formed in fusion-fission reactions of the type {sup 12}C({sup 238}U,{sup 134}Xe)Ru are reported. The fragments were identified in both A and Z using the variable-mode, high-acceptance magnetic spectrometer VAMOS. States built on the characteristic neutron configurations forming high-spin isomers (7{sup -} and 10{sup +}) in {sup 134}Xe are presented and compared with the predictions of shell-model calculations using a new effective interaction in the region of Z{>=}50 and N{<=}82.

  9. Ship Effect Neutron Measurements And Impacts On Low-Background Experiments

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Siciliano, Edward R.

    2013-10-01

    The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurements of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.

  10. Detection Of Special Nuclear Materials Tagged Neutrons

    SciTech Connect

    Deyglun, Clement; Perot, Bertrand; Carasco, Cedric; Sannie, Guillaume; Gameiro, Jordan; Corre, Gwenole; Boudergui, Karim; Konzdrasovs, Vladimir; Normand, Stephane; Cusset, Eric

    2015-07-01

    In order to detect Special Nuclear Materials (SNM) in unattended luggage or cargo containers in the field of homeland security, fissions are induced by 14 MeV neutrons produced by an associated particle DT neutron generator, and prompt fission particles correlated with tagged neutron are detected by plastic scintillators. SMN produce high multiplicity events due to induced fissions, whereas nonnuclear materials produce low multiplicity events due to cross-talk, (n,2n) or (n,n'γ) reactions. The data acquisition electronics is made of compact FPGA boards. The coincidence window is triggered by the alpha particle detection, allowing to tag the emission date and direction of the 14 MeV interrogating neutron. The first part of the paper presents experiment vs. calculation comparisons to validate MCNP-PoliMi simulations and the post-processing tools developed with the data analysis framework ROOT. Measurements have been performed using different targets (iron, lead, graphite), first with small plastic scintillators (10 x 10 x 10 cm{sup 3}) and then with large detectors (10 x 10 x 100 cm{sup 3}) to demonstrate that nuclear materials can be differentiated from nonnuclear dense materials (iron, lead) in iron and wood matrixes. A special attention is paid on SNM detection in abandoned luggage. In the second part of the paper, the performances of a cargo container inspection system are studied by numerical simulation, following previous work reported in. Detectors dimensions and shielding against the neutron generator background are optimized for container inspection. Events not correlated to an alpha particle (uncorrelated background), counting statistics, time and energy resolutions of the data acquisition system are all taken into account in a realistic numerical model. The impact of the container matrix (iron, ceramic, wood) has been investigated by studying the system capability to detect a few kilograms of SNM in different positions in the cargo container, within 10

  11. Fast neutron induced structural rearrangements at a soybean NAP1 locus result in gnarled trichomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A soybean (Glycine max (L.) Merr.) gnarled trichome mutant, exhibiting stunted trichomes compared to wild-type, was identified in a fast neutron mutant population. Genetic mapping using whole genome sequence-based bulked segregant analysis identified a 26.6 megabase interval on chromosome 20 that ...

  12. Evidence for Neutron Star Formation from Accretion Induced Collapse of a White Dwarf

    NASA Technical Reports Server (NTRS)

    Paradijis, J. Van; VanDenHeuvel, E. P. J.; Kouveliotou, C.; Fishman, G. J.; Finger, M. H.; Lewin, W. H. G.

    1997-01-01

    The orbital parameters of the recently discovered transient burster/pulsar GRO J1744-28 indicate that this system is a low-mass X-ray binary in an advanced stage of its mass transfer, with several tenths of a solar mass already transferred from the donor to the compact star. All neutron stars known to have accreted such an amount have very weak magnetic fields, and this has led to the idea that the magnetic fields of neutron stars decay as a result of accretion. The observation of a strongly magnetized neutron star in GRO J1744-28 then suggests that this neutron star was formed recently as a result of the collapse of a white dwarf during an earlier stage of the current phase of mass transfer. It is shown that this model can consistently explain the observed characteristics of GRO J1744-28. Attractive progenitors for such an evolution are the luminous supersoft X-ray sources detected with ROSAT.

  13. Analyses of cosmic ray induced-neutron based on spectrometers operated simultaneously at mid-latitude and Antarctica high-altitude stations during quiet solar activity

    NASA Astrophysics Data System (ADS)

    Hubert, G.

    2016-10-01

    In this paper are described a new neutron spectrometer which operate in the Concordia station (Antarctica, Dome C) since December 2015. This instrument complements a network including neutron spectrometers operating in the Pic-du-Midi and the Pico dos Dias. Thus, this work present an analysis of cosmic ray induced-neutron based on spectrometers operated simultaneously in the Pic-du-Midi and the Concordia stations during a quiet solar activity. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation and effects of local and seasonal changes, but also the short term dynamics during solar flare events. A first part is devoted to analyze the count rates, the spectrum and the neutron fluxes, implying cross-comparisons between data obtained in the both stations. In a second part, measurements analyses were reinforced by modeling based on simulations of atmospheric cascades according to primary spectra which only depend on the solar modulation potential.

  14. Neutron-induced fission cross section of natPb and Bi209 from threshold to 1 GeV: An improved parametrization

    NASA Astrophysics Data System (ADS)

    Tarrío, D.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Paradela, C.; Stephan, C.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lederer, C.; Lindote, A.; Lopes, I.; Losito, R.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2011-04-01

    Neutron-induced fission cross sections for natPb and Bi209 were measured with a white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. The experiment, using neutrons from threshold up to 1 GeV, provides the first results for these nuclei above 200 MeV. The cross sections were measured relative to U235 and U238 in a dedicated fission chamber with parallel plate avalanche counter detectors. Results are compared with previous experimental data. Upgraded parametrizations of the cross sections are presented, from threshold energy up to 1 GeV. The proposed new sets of fitting parameters improve former results along the whole energy range.

  15. Cross sections, momentum distributions, and neutron angular distributions for 11Be induced reactions on silicon

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Borcea, C.; Carstoiu, F.; Lewitowicz, M.; Saint-Laurent, M. G.; Anne, R.; Guillemaud-Mueller, D.; Mueller, A. C.; Pougheon, F.; Sorlin, O.; Fomitchev, A.; Lukyanov, S.; Penionzhkevich, Yu.; Skobelev, N.; Dlouhy, Z.

    1999-04-01

    The halo neutron breakup cross section for 11Be on Si has been obtained in a wide energy range by applying an integral method and separately determining the contributions of stripping and dissociation mechanisms. A new breakup mechanism, for which the core energy is strongly dumped, has also been observed. Parallel momentum distributions of 10Be resulting from breakup have been deduced for both stripping and dissociation and angular and energy distributions of the neutrons coincident with different reaction products have been measured. Charge changing cross sections for 10,11Be complemented the measurements. An extended Glauber model has been elaborated in order to provide a unitary interpretation for all the data. It takes into account both the specific structure of 11Be and the reaction mechanism, practically without free parameters. The effects of reaction mechanisms on the widths of observed momentum distributions are particularly important.

  16. Neutron Induced Reactions with the 17 Mev Facility at the Athens Tandem Accelerator NCSR 'Demokritos'

    NASA Astrophysics Data System (ADS)

    Vlastou, R.; Kalamara, A.; Serris, M.; Diakaki, M.; Kokkoris, M.; Paneta, V.; Axiotis, M.; Lagoyannis, A.

    In the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos" monoenergetic neutron beams have been produced in the energy range∼ 15-20 MeV using anew Ti-tritiated target of 373 GBq activity, by means of the 3H(d,n)4He reaction. The corresponding deuteron beam energies obtained from the accelerator, were in the 1.5-4.5MeV range.The maximum flux has been determined to be of the order of 106 n/cm2 s, implementing reference reactions. The 17.1MeV neutron beam has been used for the measurement of 197Au(n,2n) reaction cross section. Theoretical calculations have been performed via the statistical model code EMPIRE and compared to the experimental data of the present work and data from literature.

  17. Activation cross sections for reactions induced by 14 MeV neutrons on natural tantalum

    SciTech Connect

    Luo Junhua; Tuo Fei; Kong Xiangzhong

    2009-05-15

    Cross sections for (n,2n), (n,p), (n,n{sup '}{alpha}), (n,t), (n,d{sup '}), and (n,{alpha}) reactions have been measured on tantalum isotopes at the neutron energies of 13.5 to 14.7 MeV using the activation technique. Data are reported for the following reactions: {sup 181}Ta(n,2n){sup 180}Ta{sup g}, {sup 181}Ta(n,p){sup 181}Hf, {sup 181}Ta(n,n{sup '}{alpha}){sup 177}Lu{sup m}, {sup 181}Ta(n,t){sup 179}Hf{sup m2}, {sup 181}Ta(n,d{sup '}){sup 180}Hf{sup m}, and {sup 181}Ta(n,{alpha}){sup 178}Lu{sup m}. The neutron fluences were determined using the monitor reaction {sup 27}Al(n,{alpha}){sup 24}Na. Results were discussed and compared with the previous works.

  18. α and 2p2n emission in fast neutron-induced reactions on Ni60

    DOE PAGES

    Fotiades, N.; Devlin, M.; Haight, R. C.; ...

    2015-06-19

    The cross sections for populating the residual nucleus in the reaction AZX(n,x)A-4Z-2Y exhibit peaks as a function of incident neutron energy corresponding to the (n,n'α) reaction and, at higher energy, to the (n,2p3n) reaction. In addition, the relative magnitudes of these peaks vary with the Z of the target nucleus.

  19. Toward a New Evaluation of Neutron Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Capote, R.; Hale, G. M.; Hambsch, F.-J.; Kawano, T.; Kunieda, S.; Mannhart, W.; Nelson, R. O.; Neudecker, D.; Schillebeeckx, P.; Simakov, S.; Smith, D. L.; Talou, P.; Tao, X.; Wallner, A.; Wang, W.

    2016-02-01

    Measurements related to neutron cross section standards and certain prompt neutron fission spectra are being evaluated. In addition to the standard cross sections, investigations of reference data that are not as well known as the standards are being considered. Procedures and codes for performing this work are discussed. A number of libraries will use the results of this standards evaluation for new versions of their libraries. Most of these data have applications in neutron dosimetry.

  20. Possible error-prone repair of neoplastic transformation induced by fission-spectrum neutrons

    SciTech Connect

    Hill, C.K.; Han, A.; Elkind, M.M.

    1983-07-18

    We have examined the effect of fission-spectrum neutrons from the JANUS reactor at Argonne National Laboratory, delivered either as acute or protracted irradiation, on the incidence of neoplastic transformation in the C3H 1OT1/2 mouse embryo cell line. Acute exposures were delivered at 10 to 38 rads/min, protracted exposures at 0.086 or 0.43 rad/min. The total doses for both ranged from 2.4 to 350 rads. In the low dose region (2.4 to 80 rads), there was a large enhancement in transformation frequency when the neutrons were delivered at the low dose rates compared with the high dose rates, but the survival of the cells was not significantly different between the two exposure conditions. Analysis of the initial parts of the curves shows that the regression line for protracted doses is about 9 times steeper than that for single acute exposures. Finally, the possibility is discussed that an error-prone repair process may be causing the enhanced transformation frequency by protracted neutron exposures. 12 references, 2 figures, 1 table.

  1. Covalent isomeric state in {sup 12}Be induced by two-neutron transfers

    SciTech Connect

    Ito, M.; Itagaki, N.

    2008-07-15

    The {alpha}+{sup 8}He low-energy reactions and the exotic structures of {sup 12}Be are studied using the generalized two-center cluster ({alpha}+{alpha}+4N) model. In the two-neutron transfer reactions, {alpha}+{sup 8}He{sub g.s.}{yields}{sup 6}He{sub g.s.}+{sup 6}He{sub g.s.}, a resonant peak with J{sup {pi}}=0{sup +} appears around E {approx} 1.3 MeV above the {sup 6}He{sub g.s.}+{sup 6}He{sub g.s.} threshold as the result of the formation of the covalent superdeformation, which has a hybrid structure of covalent and ionic configurations for the valence neutrons. The covalent superdeformation gives rise to an isomeric state with a sharp width of {gamma}{approx}400 keV, which is smaller by about one order of magnitude than the typical width observed in molecular resonances above the Coulomb barrier. The energy-spin systematics for the two-neutron transfer reactions is investigated, and our calculation predicts a sequence of resonant structures in the range of 3-14 MeV in the center-of-mass energy with spins 0({Dirac_h}/2{pi})-8({Dirac_h}/2{pi})

  2. Improvements in neutron beam applications by using capillary neutron optics

    NASA Astrophysics Data System (ADS)

    Downing, Robert G.; Xiao, Qi-Fan; Sharov, V. A.; Ponomarev, Igor Y.; Ullrich, Johannes B.; Gibson, David M.; Chen-Mayer, Huaiyu H.; Mildner, David F. R.; Lamaze, G. P.

    1997-02-01

    Capillary neutron optics improve the capabilities of neutron beam techniques such as neutron depth profiling and prompt gamma activation analysis. Millions of glass capillaries are configured to capture and guide low-energy neutrons by grazing total reflection from the smooth inner surface of the hollow channels. By precise orientation of the capillaries, beams of neutrons are readily collimated with good angular control or can be finely focused - as required by the application. In addition, the optics can improve the signal-to-noise ratio by diverting a neutron beam to a convenient off-axis direction, thereby circumventing interferences from gamma rays and fast neutrons characteristic of simple aperture collimation. The focused intensity of neutrons obtained in an area of 0.03 mm2 may be increased up to a hundred times over that previously available for NDP or PGAA techniques. Furthermore, the spatial resolution can be improved by up to 100 times. Consequently, small samples, or small volumes within larger samples, may be better and more rapidly investigated with neutron probe techniques. We report on developments in the application of capillary neutron optics.

  3. Absolute cross section measurements of neutron-induced fission of 242Pu from 1 to 2.5 MeV

    NASA Astrophysics Data System (ADS)

    Matei, C.; Belloni, F.; Heyse, J.; Plompen, A. J. M.; Thomas, D. J.

    2017-02-01

    The absolute neutron-induced fission cross section of 242Pu was measured at five energies between 1 and 2.5 MeV at the low-scatter neutron measurement facility of the National Physical Laboratory, UK. The measurements are part of an effort to reduce uncertainties of nuclear data related to fast spectrum reactors. The neutron-induced fission results are in good agreement with the Evaluated Nuclear Data File/B-VII.1 but disagree with several recent measurements near the resonance-like structure around 1.1 MeV. Within the same experimental campaign, the spontaneous fission half-life of 242Pu was measured and it is in good agreement with previous results.

  4. Multimodal fission and neutron evaporation

    SciTech Connect

    Brosa, U.

    1988-10-01

    The average multiplicities nu-bar(A) of prompt neutrons emitted in the spontaneous fission of /sup 252/Cf and /sup 258/Fm are derived. Two new features are predicted: A simple sawtooth for /sup 258/Fm and a triple one for /sup 252/Cf. Experiments to check these predictions should be feasible now.

  5. Measurements and Monte Carlo simulations of the spectral variations of the cosmic-ray-induced neutrons at the Pic du Midi over a 2-y period.

    PubMed

    Cheminet, A; Hubert, G; Lacoste, V; Boscher, D

    2014-10-01

    In this paper, a Bonner Sphere Spectrometer extended to high energies (HERMEIS) was employed to measure continuously the cosmic-ray-induced neutron spectra over a long-term period (2 y) at mountain altitude and medium geomagnetic latitude (Pic du Midi de Bigorre in the French Pyrenees, +2885 m, 5.6 GV). The results showed 1-y sinusoidal oscillations in the integrated fluence rates. The amplitude of these oscillations depends on the neutron energetic domain. The fluence rate of thermal neutrons was 53 % higher in August than that in February. Those of epithermal neutrons with energies between 0.4 eV and 0.1 MeV and evaporation neutrons (from 0.1 to 20 MeV) were ∼25 % higher in the summer than those in the winter. Finally, the cascade neutron fluence rate (>20 MeV) remained quite the same (<10 % variation). To understand the effects of local and seasonal changes in the measurement environment, GEANT4 simulations were performed. The nature of rock and thickness of the snow cover during the winter period (given by meteorological data) were investigated. A reasonable agreement between experiments and calculations was found.

  6. Thermal neutron imaging support with other laboratories BL06-IM-TNI

    SciTech Connect

    Vanier,P.E.

    2008-06-17

    The goals of this project are: (1) detect and locate a source of thermal neutrons; (2) distinguish a localized source from uniform background; (3) show shape and size of thermalizing material; (4) test thermal neutron imager in active interrogation environment; and (5) distinguish delayed neutrons from prompt neutrons.

  7. Thermal-Neutron-Induced Fission of 243Cm: Light-Peak Data from the Lohengrin Mass Separator

    SciTech Connect

    Tsekhanovich, I.; Simpson, G.S.; Varapai, N.; Rochman, D.; Sokolov, V.; Fioni, G.; Al Mahamid, Ilham

    2005-05-24

    Thermal-neutron-induced fission of 243Cm was studied at the Lohengrin mass separator. The light-mass peak of the fission-yield curve was investigated, and mass (from A=72 to A=120) and independent-product (for Z=28-37) yields were obtained. A comparison was made of the results obtained on the mass yields with those from the fission of 245Cm as well as with the data given by the JEF-2.2 and ENDF/B-VI libraries. The yield of masses in the superasymmetric region was found to be identical to other fission reactions studied at Lohengrin. Experimental fission-product yields from the fission of 243Cm and 245Cm were able to be well described within a theoretical model, which incorporates standard and superasymmetric fission modes as well as a calculation of the charge-distribution parameters in isobaric chains and neutron multiplicities from primary fragments. A prediction of the yield of Ni isotopes in the fission of 243,245,247Cm was made.

  8. Trapping induced N{sub eff} and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    SciTech Connect

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p{sup +}) and back (n{sup +}) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N{sub eff}. The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N{sub eff} distortions among various detectors irradiated by different neutron fluences are compared.

  9. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  10. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  11. Principles and status of neutron-based inspection technologies

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2011-06-01

    Nuclear based explosive inspection techniques can detect a wide range of substances of importance for a wide range of objectives. For national and international security it is mainly the detection of nuclear materials, explosives and narcotic threats. For Customs Services it is also cargo characterization for shipment control and customs duties. For the military and other law enforcement agencies it could be the detection and/or validation of the presence of explosive mines, improvised explosive devices (IED) and unexploded ordnances (UXO). The inspection is generally based on the nuclear interactions of the neutrons (or high energy photons) with the various nuclides present and the detection of resultant characteristic emissions. These can be discrete gamma lines resulting from the thermal neutron capture process (n,γ) or inelastic neutron scattering (n,n'γ) occurring with fast neutrons. The two types of reactions are generally complementary. The capture process provides energetic and highly penetrating gamma rays in most inorganic substances and in hydrogen, while fast neutron inelastic scattering provides relatively strong gamma-ray signatures in light elements such as carbon and oxygen. In some specific important cases unique signatures are provided by the neutron capture process in light elements such as nitrogen, where unusually high-energy gamma ray is produced. This forms the basis for key explosive detection techniques. In some cases the elastically scattered source (of mono-energetic) neutrons may provide information on the atomic weight of the scattering elements. The detection of nuclear materials, both fissionable (e.g., 238U) and fissile (e.g., 235U), are generally based on the fissions induced by the probing neutrons (or photons) and detecting one or more of the unique signatures of the fission process. These include prompt and delayed neutrons and gamma rays. These signatures are not discrete in energy (typically they are continua) but temporally

  12. Recent accomplishments in neutron beam projects at the University of Texas Research Reactor

    SciTech Connect

    Uenlue, K.; Wehring, B.W.

    1994-12-31

    The design of a cold neutron source facility at the University of Texas TRIGA research reactor is described. The UT-TRIGA has 5 neutron beam ports. Because of the different characteristics of the ports, various research projects are being pursued. Among these projects, The Texas cold neutron source and neutron depth profiling are operational; neutron focusing, prompt gamma activation analysis, and neutron capture therapy research are progressing.

  13. Theoretical study on production of heavy neutron-rich isotopes around the N = 126 shell closure in radioactive beam induced transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2017-04-01

    In order to produce more unknown neutron-rich nuclei around N = 126, the transfer reactions 136Xe + 198Pt, 136-144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS) model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z = 72- 77 are predicted in the reactions 136-144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line) project as well, for production of neutron-rich nuclei around the N = 126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N = 126 and the advantages get more obvious for producing nuclei with less charge number.

  14. Inelastic neutron scattering study of light-induced dynamics of a photosynthetic membrane system

    SciTech Connect

    Furrer, A.; Stoeckli, A.

    2010-01-15

    Inelastic neutron scattering was employed to study photoeffects on the molecular dynamics of membranes of the photosynthetic bacterium Rhodopseudomonas viridis. The main photoactive parts of this biomolecular system are the chlorophyll molecules whose dynamics were found to be affected under illumination by visible light in a twofold manner. First, vibrational modes are excited at energies of 12(2) and 88(21) cm{sup -1}. Second, a partial 'freezing' of rotational modes is observed at energies of 1.2(3) and 2.9(5) cm{sup -1}. These results are attributed to a possible coupling between molecular motions and particular mechanisms in the photosynthetic process.

  15. Fusion/Fission Damage Ratios for Neutron-Induced Displacement Damage in Silicon.

    DTIC Science & Technology

    1978-05-01

    The fluence measurements at the APRF reactor were obtained using techniques given by McGarry et al. 24 The fluences for exposures at a californium ...Against Californium -252” , IEEE Trans. Nuci. Sci., NS-23, No. b. 2002-2006, December (1976). 25. E.D. McGarry, C.R. Heimbach, A .U. Kazi , and G.W...G.S. Davis, and D.M. Gilliam , “Absolute Neutron Flux Measurements at Fast Pulse Reactors With Calibration Against Californium -252”, IEEE Trans. Mud

  16. Energy-dependent RBE of neutrons to induce micronuclei in root-tip cells of Allium cepa onion irradiated as dry dormant seeds and seedlings.

    PubMed

    Zhang, Wenyi; Fujikawa, Kazuo; Endo, Satoru; Ishikawa, Masayori; Ohtaki, Megu; Ikeda, Hideo; Hoshi, Masaharu

    2003-06-01

    The relative biological effectiveness (RBE) of various energy neutrons produced from a Schenkel-type accelerator at the Research Institute for Radiation Biology and Medicine, Hiroshima University (HIRRAC), compared with 60Co gamma-ray radiation was determined. The neutron radiations and gamma-ray radiation produced good linear changes in the frequency of micronuclei induced in the root-tip cells of Allium cepa onion irradiated as dry dormant seeds (seed assay) and seedlings (seedling assay) with varying radiation doses. Therefore the RBE for radiation-induced micronuclei can be calculated as the ratio of the slopes of the fitted linear dose response for the neutron radiations and the 60Co gamma-ray radiation. The RBE values by seed assay and seedling assay decreased to 174 +/- 7, from 216 +/- 9, and to 31.4 +/- 1.0, from 45.3 +/- 1.3 (one standard error), respectively, when neutron energies increased to 1.0 MeV, from 0.2 MeV, in the present study. Furthermore, the ratio of the micronucleus induction rates of seed assay to seedling assay by gamma-ray radiation was much lower than that by neutron radiations.

  17. Prompt (n,γ) Mass Measurements for the AVOGADRO Project

    NASA Astrophysics Data System (ADS)

    Paul, Annette; Röttger, Stefan; Zimbal, Andreas; Keyser, Uwe

    2001-01-01

    The aim of the AVOGADRO project is to replace the kilogram artefact by a high-purity, perfect single crystal of natural or isotope-enriched silicon. The isotopic composition and the impurities of the silicon crystal must, therefore, be known with highest possible accuracy and precision. The only method to obtain all this information without destruction of the massive samples is prompt (n,γ)-spectrometry. The measurements are performed at a thermal neutron guide of the ILL (Institut Max von Laue Paul Langevin) in Grenoble, France. The spectrometry of γ-radiation emitted by a nucleus promptly after thermal neutron capture allows a highly precise determination of atomic mass differences, as well as the determination of isotope abundances leading to the molar mass. The uncertainties assigned to the results for the respective atomic masses determined by the mass differences amount to up to 10-10, while the molar mass of an isotope-enriched Si single crystal has so far been determined with an uncertainty of 1 ṡ 10-4. A direct comparison (for example, relative value of isotope abundances determined by (n,γ)-spectrometry omitting the thermal neutron cross section) furnishes a value of 7 ṡ 10-5. The final aim of the AVOGADRO project is to provide a well specified crystal, which allows a more accurate value of the Avogadro constant to be determined. This constant is the key input parameter for tabulated values of fundamental constants and for a new definition of the unit of mass - the kilogram itself.

  18. Neutron diffraction study of the magnetic-field-induced transition in Mn{sub 3}GaC

    SciTech Connect

    Çakir, Ö.; Acet, M.; Farle, M.; Senyshyn, A.

    2014-01-28

    The antiperovskite Mn{sub 3}GaC undergoes an isostructural cubic–cubic first order transition from a low-temperature, large-cell-volume antiferromagnetic state to a high-temperature, small-cell-volume ferromagnetic state at around 160 K. The transition can also be induced by applying a magnetic field. We study here the isothermal magnetic-field-evolution of the transition as ferromagnetism is stabilized at the expense of antiferromagnetism. We make use of the presence of the two distinct cell volumes of the two magnetic states as a probe to observe by neutron diffraction the evolution of the transition, as the external magnetic field carries the system from the antiferromagnetic to the ferromagnetic state. We show that the large-volume antiferromagnetic and the small-volume ferromagnetic states coexist in the temperature range of the transition. The ferromagnetic state is progressively stabilized as the field increases.

  19. Neutron-induced light-ion production from Fe, Pb and U at 96 MeV.

    PubMed

    Pomp, S; Blideanu, V; Blomgren, J; Eudes, Ph; Guertin, A; Haddad, F; Johansson, C; Klug, J; Le Brun, Ch; Lecolley, F R; Lecolley, J F; Lefort, T; Louvel, M; Marie, N; Prokofiev, A; Tippawan, U; Ohrn, A; Osterlund, M

    2007-01-01

    Double-differential cross-sections for light-ion production (up to A = 4) induced by 96 MeV neutrons have been measured for Fe, Pb and U. The experiments have been performed at The Svedberg Laboratory in Uppsala, using two independent devices, MEDLEY and SCANDAL. The recorded data cover a wide angular range (20 degrees -160 degrees ) with low energy thresholds. The data have been normalised to obtain cross-sections using np elastic scattering events. The latter have been recorded with the same setup, and results for this measurement are reported. The work was performed within the HINDAS collaboration with the primary aim of improving the database for three of the most important nuclei for incineration of nuclear waste with accelerator-driven systems. The obtained cross-section data are of particular interest for the understanding of the so-called pre-equilibrium stage in a nuclear reaction and will be compared with model calculations.

  20. Fluorine concentrations in bone biopsy samples determined by proton-induced gamma-ray emission and cyclic neutron activation.

    PubMed

    Spyrou, N M; Altaf, W J; Gill, B S; Jeynes, C; Nicolaou, G; Pietra, R; Sabbioni, E; Surian, M

    1990-01-01

    Fluorine concentrations in bone biopsy samples taken from the iliac crest of subjects, divided into four groups depending on the length of dialysis treatment, and aluminium levels in blood and bone pathology, in terms of osteoporosis, were determined by two instrumental methods. Proton-induced gamma-ray emission (PIGE), making use of the resonance reaction of 19F(p, alpha gamma)16O at 872 keV, and cyclic neutron activation analysis (CNAA), using the 19F(n, gamma)20F reaction in a reactor irradiation facility, were employed. Rutherford backscattering (RBS) was used to calculate the volume, and, hence, mass of the sample excited in PIGE by determining the major element composition of the samples in order to express results in terms of concentration. From this preliminary investigation, a relationship is suggested between fluorine concentrations in bone and aluminium levels in the system.

  1. Neutron-induced fission cross section of U234 measured at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Karadimos, D.; Vlastou, R.; Ioannidis, K.; Demetriou, P.; Diakaki, M.; Vlachoudis, V.; Pavlopoulos, P.; Konovalov, V.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Cennini, P.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2014-04-01

    The neutron-induced fission cross section of U234 has been measured at the CERN n_TOF facility relative to the standard fission cross section of U235 from 20 keV to 1.4 MeV and of U238 from 1.4 to 200 MeV. A fast ionization chamber (FIC) was used as a fission fragment detector with a detection efficiency of no less than 97%. The high instantaneous flux and the low background characterizing the n_TOF facility resulted in wide-energy-range data (0.02 to 200 MeV), with high energy resolution, high statistics, and systematic uncertainties bellow 3%. Previous investigations around the energy of the fission threshold revealed structures attributed to β-vibrational levels, which have been confirmed by the present measurements. Theoretical calculations have been performed, employing the talys code with model parameters tuned to fairly reproduce the experimental data.

  2. Prompt processes in heavy ion reactions

    SciTech Connect

    Blann, M.; Remington, B.A.

    1987-12-01

    We test a relaxation model based on two body nucleon-nucleon scattering processes to interpret phenomena observed in heavy ion reactions. We use the Boltzmann Master Equation to accomplish this. By assuming that the projectile nucleons partition the total excitation with equal a-priori probability of all configurations, we are able to reproduce several sets of neutron spectra from /sup 20/Ne and /sup 12/C induced reactions on /sup 165/Ho and from reactions of /sup 40/Ar or /sup 40/Ca. We point out ambiguities in deducing angle-integrated energy spectra from double differential spectra. With no additional free parameters, our model successfully reproduces a large body of high energy ..gamma..-ray spectra by assuming an incoherent n-p-bremsstrahlung mechanism. 45 refs., 13 figs.

  3. Hemorrhage in mouse tumors induced by dodecaborate cluster lipids intended for boron neutron capture therapy.

    PubMed

    Schaffran, Tanja; Jiang, Nan; Bergmann, Markus; Küstermann, Ekkehard; Süss, Regine; Schubert, Rolf; Wagner, Franz M; Awad, Doaa; Gabel, Detlef

    2014-01-01

    The potential of boron-containing lipids with three different structures, which were intended for use in boron neutron capture therapy, was investigated. All three types of boron lipids contained the anionic dodecaborate cluster as the headgroup. Their effects on two different tumor models in mice following intravenous injection were tested; for this, liposomes with boron lipid, distearoyl phosphatidylcholine, and cholesterol as helper lipids, and containing a polyethylene glycol lipid for steric protection, were administered intravenously into tumor-bearing mice (C3H mice for SCCVII squamous cell carcinoma and BALB/c mice for CT26/WT colon carcinoma). With the exception of one lipid (B-THF-14), the lipids were well tolerated, and no other animal was lost due to systemic toxicity. The lipid which led to death was not found to be much more toxic in cell culture than the other boron lipids. All of the lipids that were well tolerated showed hemorrhage in both tumor models within a few hours after administration. The hemorrhage could be seen by in vivo magnetic resonance and histology, and was found to occur within a few hours. The degree of hemorrhage depended on the amount of boron administered and on the tumor model. The observed unwanted effect of the lipids precludes their use in boron neutron capture therapy.

  4. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy.

    PubMed

    Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-07-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their (24)Na and (38)Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to (24)Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive (24)Na is mainly generated from (23)Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood (24)Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood (24)Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood (24)Na was determined using a germanium counter. The activity of (24)Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood (24)Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible.

  5. Neutron activation analysis of nuclides from stellar and man-induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Oliver, L. L.

    Neutron activation and gamma counting were used to determine the relative abundances of six stable tellurium isotopes in the acid-etched residues of the Allende meteorite. The results were correlated with the isotopic compositions of xenon and the elemental abundances of helium and neon in similarly prepared residues. Nucleosynthesis appears to be the only viable explanation or the anomalous isotopic and elemental compositions observed in these residues. Results suggest that the solar system condensed from an isotopically and chemically zoned nebula that was produced by the explosion of a supernova, concentric with the present Sun. A combination of neutron activation and mass spectrometry was used to determine the concentrations of fissiogenic iodine 129 and stable iodine 127 in rain, milk and the thyroids of man, cow and deer from Missouri. Rain and deer thyroids show the highest average values of the iodine 129/iodine 127 ratio. Milk and the thyroids of cattle and humans show successively lower values of the iodine 129/iodine 127 ratio due to dietary additives of mineral iodine and to biological averaging.

  6. Depth distribution of boron determined by slow neutron induced lithium ion emission

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, Huaiyu H.; Lamaze, George P.

    1998-02-01

    Neutron Depth Profiling (NDP) has been established as a non-destructive technique to determine the near surface distribution of light elements, particularly boron. By analyzing the residual energy spectrum of the emitted particles of known initial energy as a result of nuclear capture within the target material, information about the site and amount of the reactions can be deduced. In the event of 10B neutron capture, an alpha particle (1473 keV) and an excited 7Li ion (840 keV) are emitted, both conveying the same information. However, because the Li ion has a greater charge, the stopping power in a given matrix is higher than that for the alpha particle. Consequently, for boron near the surface, the location of the origin of the emission can be determined with better depth resolution. At the NIST NDP facility, routine analysis using the alpha particle has been established earlier. This paper reports the progress of using the 7Li ion stopping power to determine the boron depth distribution in the near surface of several matrices. This study has been performed on semiconductor device-related systems - boron in silicon glass, and carbon matrices. Various factors affecting the depth resolution are assessed when comparing the analysis of the alpha particle with that of the 7Li ion.

  7. Neutron transfer reactions induced by {sup 8}Li on {sup 9}Be

    SciTech Connect

    Guimaraes, V.; Lichtenthaeler, R.; Camargo, O.; Barioni, A.; Assuncao, M.; Kolata, J. J.; Amro, H.; Becchetti, F. D.; Jiang, Hao; Aguilera, E. F.; Lizcano, D.; Martines-Quiroz, E.; Garcia, H.

    2007-05-15

    Angular distributions for the elastic scattering of {sup 8}Li on {sup 9}Be and the neutron transfer reactions {sup 9}Be({sup 8}Li,{sup 7}Li){sup 10}Be and {sup 9}Be({sup 8}Li,{sup 9}Li){sup 8}Be were measured with a 27 MeV {sup 8}Li radioactive nuclear beam. Spectr- oscopic factors for {sup 8}Li (multiply-in-circle sign)n{sup 9}Li and {sup 7}Li (multiply-in-circle sign)n{sup 8}Li bound systems were obtained from the comparison between the experimental differential cross section and finite-range distorted-wave Born approximation calculations with the code FRESCO. The spectroscopic factors obtained were compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions {sup 7}Li(n,{gamma}){sup 8}Li and {sup 8}Li(n,{gamma}){sup 9}Li were calculated in the framework of a potential model.

  8. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy

    PubMed Central

    Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-01-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood 24Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood 24Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood 24Na was determined using a germanium counter. The activity of 24Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood 24Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible. PMID:23392825

  9. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.

    2005-05-01

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.

  10. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours.

    PubMed

    Medina, Daniel C; Li, Xin; Springer, Charles S

    2005-05-07

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against gamma-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 +/- 2% (p-value <0.001) was observed in the rat brain-this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as approximately 10% in the presence of a 9% water volume increase (oedema).

  11. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    SciTech Connect

    Talamo, Alberto; Gohar, Yousry

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  12. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

  13. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of (238)U at the National Ignition Facility.

    PubMed

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of (88)Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the (85m)Kr/(88)Kr ratio, which may be the result of incorrect nuclear data.

  14. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV ⩽ En ⩽ 20 MeV at n_TOF at CERN

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Milazzo, P. M.; Calviani, M.; Colonna, N.; Mastinu, P.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cerutti, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Kerveno, M.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Lederer, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martínez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wallner, A.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2012-10-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n_TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  15. 21 CFR 1401.7 - Prompt response.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Prompt response. 1401.7 Section 1401.7 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY PUBLIC AVAILABILITY OF INFORMATION § 1401.7 Prompt response... Control Policy....

  16. 21 CFR 1401.7 - Prompt response.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Prompt response. 1401.7 Section 1401.7 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY PUBLIC AVAILABILITY OF INFORMATION § 1401.7 Prompt response... Control Policy....

  17. 21 CFR 1401.7 - Prompt response.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 9 2014-04-01 2014-04-01 false Prompt response. 1401.7 Section 1401.7 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY PUBLIC AVAILABILITY OF INFORMATION § 1401.7 Prompt response... Control Policy....

  18. 21 CFR 1401.7 - Prompt response.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Prompt response. 1401.7 Section 1401.7 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY PUBLIC AVAILABILITY OF INFORMATION § 1401.7 Prompt response... Control Policy....

  19. 45 CFR 1701.5 - Prompt response.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Prompt response. 1701.5 Section 1701.5 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL COMMISSION ON LIBRARIES AND INFORMATION SCIENCE DISCLOSURE OF INFORMATION § 1701.5 Prompt response. (a) Within ten days...

  20. Generalized Instruction following with Pictorial Prompts

    ERIC Educational Resources Information Center

    Phillips, Cara L.; Vollmer, Timothy R.

    2012-01-01

    The benefits of permanent pictorial prompts in enhancing maintenance and generalization are likely dependent on their degree of stimulus control and the extent to which their use is generalized. Although several studies on the use of pictorial prompts have demonstrated their efficacy (e.g., Pierce & Schreibman, 1994; Wacker & Berg, 1983; Wacker,…

  1. Simultaneous Prompting: A Review of the Literature

    ERIC Educational Resources Information Center

    Morse, Timothy E.; Schuster, John W.

    2004-01-01

    Published literature pertaining to the simultaneous prompting teaching procedure is reviewed. Purposes of this review are to (a) present an initial analysis of effectiveness of this emerging response prompting procedure, (b) discuss work that has been conducted to date, and (c) provide directions for future research. Data from all published…

  2. 21 CFR 1401.7 - Prompt response.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Prompt response. 1401.7 Section 1401.7 Food and Drugs OFFICE OF NATIONAL DRUG CONTROL POLICY PUBLIC AVAILABILITY OF INFORMATION § 1401.7 Prompt response... Control Policy....

  3. Song Prompts: I Had a Cat

    ERIC Educational Resources Information Center

    Kenney, Susan Hobson

    2011-01-01

    This article discusses song prompts as a way to encourage children to sing during exploratory play. A song prompt for "I Had a Cat" is included for educators to try in their own classrooms or preschools. Educators are invited to share ideas they have used that encourage children to sing during free play.

  4. Pre-equilibrium emission in neutron induced reactions on54,56Fe

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Ivaşcu, M.; Avrigeanu, V.

    1988-06-01

    The experimentally well known ( n, p), ( n, α) and ( n, 2 n) reaction excitation functions, from threshold to 20 MeV incident energy, and neutron and proton emission spectra at 14.8 MeV from54,56Fe targets are calculated in the frame of the Geometry-Dependent Hybrid pre-equilibrium emission model, including angular momentum and parity conservation, and the Hauser-Feshbach statistical model. Use of a consistent statistical model parameter set enables the validation of the pre-equilibrium emission model. Moreover, an enhanced pre-equilibrium emission from higher spin composite system states, associated with higher incoming orbital momenta, has been evidenced. Higher orbital momenta involved also in the emergent channels of the process are suggested by calculations of the residual nuclei level populations.

  5. Chemical warfare agent and high explosive identification by spectroscopy of neutron-induced gamma rays

    SciTech Connect

    Caffrey, A.J.; Cole, J.D.; Gehrke, R.J.; Greenwood, R.C. )

    1992-10-01

    This paper reports on a non-destructive assay method to identify chemical warfare (CW) agents and high explosive (HE) munitions which was tested with actual chemical agents and explosives at the Tooele Army Depot, Tooele, Utah, from 22 April 1991 through 3 May 1991. The assay method exploits the gamma radiation produced by neutron interactions inside a container or munition to identify the elemental composition of its contents. The characteristic gamma-ray signatures of the chemical elements chlorine, phosphorus, and sulfur were observed form the CW agent containers and munitions, in sufficient detail to enable us to reliably discern agents GB (sarin), HD (mustard gas), and VX from one another, and from HE-filled munitions. By detecting of the presence of nitrogen, the key indictor of explosive compounds, and the absence of elements Cl, P, and S, HE shells were also clearly identified.

  6. Neutron-induced collision cascade mixing in Nb/V superlattices

    SciTech Connect

    Alexander, D.E.; Fullerton, E.E.; Baldo, P.M.; Sowers, C.H.; Rehn, L.E.

    1993-07-01

    High-angle X-ray diffraction was used to determine cascade mixing efficiencies, Dt/dpa, in Nb/V superlattices irradiated to small doses ({le}0.26 dpa). Samples were neutron irradiated in the core of the High Flux Beam Reactor at Brookhaven National Laboratory and ion irradiated with 1.5 MeV Ne. No significant differences were observed in cascade mixing efficiencies between the two types of irradiation. Values of Dt/dpa were observed to vary with the modulation wavelength of the superlattice, with thicker wavelength samples yielding values approaching that determined from ion mixing thick Nb/V bilayers (Dt/dpa{approx}110 {Angstrom}{sup 2}/dpa). The decrease in mixing efficiency observed at lower wavelengths may be related to an observed structural transition in which the interfaces of the superlattice become coherent.

  7. mBAND analysis of chromosome aberrations in human epithelial cells induced by gamma-rays and secondary neutrons of low dose rate.

    PubMed

    Hada, M; Gersey, B; Saganti, P B; Wilkins, R; Cucinotta, F A; Wu, H

    2010-08-14

    Human risks from chronic exposures to both low- and high-LET radiation are of intensive research interest in recent years. In the present study, human epithelial cells were exposed in vitro to gamma-rays at a dose rate of 17 mGy/h or secondary neutrons of 25 mGy/h. The secondary neutrons have a broad energy spectrum that simulates the Earth's atmosphere at high altitude, as well as the environment inside spacecrafts like the Russian MIR station and the International Space Station (ISS). Chromosome aberrations in the exposed cells were analyzed using the multicolor banding in situ hybridization (mBAND) technique with chromosome 3 painted in 23 colored bands that allows identification of both inter- and intrachromosome exchanges including inversions. Comparison of present dose responses between gamma-rays and neutron irradiations for the fraction of cells with damaged chromosome 3 yielded a relative biological effectiveness (RBE) value of 26+/-4 for the secondary neutrons. Our results also revealed that secondary neutrons of low dose rate induced a higher fraction of intrachromosome exchanges than gamma-rays, but the fractions of inversions observed between these two radiation types were indistinguishable. Similar to the previous findings after acute radiation exposures, most of the inversions observed in the present study were accompanied by other aberrations. The fractions of complex type aberrations and of unrejoined chromosomal breakages were also found to be higher in the neutron-exposed cells than after gamma-rays. We further analyzed the location of the breaks involved in chromosome aberrations along chromosome 3, and observed hot spots after gamma-ray, but not neutron, exposures.

  8. The Use of Picture Prompts and Prompt Delay to Teach Receptive Labeling

    ERIC Educational Resources Information Center

    Vedora, Joseph; Barry, Tiffany

    2016-01-01

    The current study extended research on picture prompts by using them with a progressive prompt delay to teach receptive labeling of pictures to 2 teenagers with autism. The procedure differed from prior research because the auditory stimulus was not presented or was presented only once during the picture-prompt condition. The results indicated…

  9. Determination of cross sections of 60Ni(n,2n)59Ni induced by 14 MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ming; Xu, Yongning; Guan, Yongjing; Shen, Hongtao; Du, Liang; Hongtao, Chen; Dong, Kejun; Jiang, Shan; Yang, Xuran; Wang, Xiaoming; Ruan, Xiang dong; Liu, Jiancheng; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The cross section of the 60Ni(n,2n)59Ni induced by neutron with energy around 14 MeV is important for a fusion environment. However, the published values are strongly discordant. By taking advantage of the high sensitivity of 59Ni measurement at China Institute of Atomic Energy (CIAE), determination of the cross section has been carried out. A natural Nickel foil was irradiated by neutrons produce by a T(D,n)α neutron generator. 57Co and 58Co which produced in the Nickel foil were chosen for the neutron fluence determination. Then the ratio of 59Ni/60Ni for the irradiated sample was determined via accelerator mass spectrometry (AMS) utilizing a 13MV tandem accelerator and a Q3D magnet spectrometry at CIAE. As a result, the cross section of 60Ni(n,2n)59Ni for the incident neutron energy of (14.60 ± 0.40) MeV was determined to be (426 ± 53) mb.

  10. Neutron induced reactions on aluminum-26, chloride-36 and calcium-41 and their astrophysical implications

    NASA Astrophysics Data System (ADS)

    de Smet, Liesbeth Paula

    In this work (n,p) and (n,a) reactions on 26 A1, 36 Cl and 41 Ca are studied as a function of the neutron energy. The measurements were performed at the high resolution GELINA time-of-flight facility of the IRMM in Geel, Belgium. Besides the nuclear physics information obtained from the resonance analysis of the reaction cross sections, these reactions are of importance in the understanding of the observed 36 S and 26 Al solar abundances. In the case of 26 Al, the 26 A1(n,a) 23 Na cross section up to 45 keV has been determined. Six resonances are observed. For three of them, the total level width and the spin could be calculated. For most of the resonances the obtained resonance parameters are in agreement with previous data. The calculated Maxwellian Averaged Cross Section values (MACS) used in stellar model calculations confirm that 26 Al is indeed severely depleted by neutron captures in AGB stars. In the (n,p) and (n,a) measurements on 36 Cl, eighteen resonances are observed in the energy region up to 250 keV, whereas eight were identified before. Only the lowest energy resonance shows a significant (n,(x)-contribution of (76±7)%, which is in perfect agreement with the value reported before. Furthermore, for four resonances, the resonance strength, spin, total and partial width G p could be determined. They are in good agreement with previous data, but the achieved accuracy is better. The calculated MACS values are used in stellar model calculations to trace the origin of 36 S and reveal that the weak component of the s-process occurring in massive stars accounts for almost the entire production of solar 36 S. The 41 Ca(n,a) 3 8Ar measurement is the first ever reported in the resonance region and affects the 36 S abundance through 41 Ca(n,a) 38 Ar(n,g) 39 Ar(n,a) 36 S. Twelve resonances are observed in the energy region up to 45 keV. For most of them the area, the total width, the spin and a value for G n /G p could be determined. After extension of the energy

  11. Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples

    NASA Technical Reports Server (NTRS)

    Lindstrom, David J.; Lindstrom, Richard M.

    1989-01-01

    Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.

  12. [Malignant transformation of human fibroblasts by neutrons and by gamma radiation: Relationship to mutations induced

    SciTech Connect

    1993-12-31

    A brief overview if provided of selected reports presented at the International Symposium on Molecular Mechanisms of Radiation- and Chemical Carcinogen-Induced Cell Transformation held at Mackinac Island, Michigan on September 19-23, 1993.

  13. Measurements of the neutron-induced fission cross section of sup 242 Cm and sup 238 Pu by lead slowing down time spectrometer

    SciTech Connect

    Alam, B.

    1987-01-01

    The neutron-induced fission cross section of {sup 242}Cm and {sup 238}Pu have been measured from 0.1 eV to 100 keV energy range using the Rensselaer Polytechnic Institute's Gaerttner Laboratory Electron Linac as a pulsed neutron source and the Rensselaer Intense Neutron Spectrometer (RINS) system to obtain an adequate ratio of the neutron-induced fission signal to that due to spontaneous fission background. A special fission chamber design employing multiple pairs of hemispherical electrodes coupled with fast electronics ({approx}nsec rise-time) combine to suppress the alpha pileup effects. The fission cross section of {sup 242}Cm and {sup 238}Pu reported in this thesis were obtained from simultaneous measurements on {sup 235}U, {sup 238}Pu and {sup 242}Cm, and these data were normalized to the resolution-broadened ENDF/B-V {sup 235} U fission cross section. The fission areas and the widths for the resolved low-energy resonances of {sup 242}Cm and {sup 238}Pu were determined. The resolution-broadened ENDF/B-V {sup 238}Pu fission data are generally in poor agreement with the measured fission data and a new evaluation on {sup 238}Pu has been recommended. The measured fission cross section of {sup 242}Cm cannot be compared because no evaluation or measurement on this nuclide is available in the energy region of the present measurements.

  14. Small angle neutron scattering study of fatigue induced grain boundary cavities

    SciTech Connect

    Page, R.; Roth, M.; Weertman, J.R.

    1982-07-01

    Small angle neutron scattering (SANS) has been used to study grain boundary cavitation in high purity copper fatigued at elevated temperatures. SANS is an extremely sensitive method for observing cavities. Void volume fractions of less than 10/sup -6/ can be detected. Analysis of scattering data yields values for the total void volume per unit volume and the total number of voids in a fatigued sample. The size distribution of the voids also can be calculated. From a series of specimens, each fatigued under identical conditions but for varying lengths of time, it is possible to obtain the void nucleation rate and the rate of growth of the total void volume and of the individual voids. Extrapolation of curves of void volume fraction vs time of fatigue to zero time shows that cavitation begins upon commencement of fatiguing without any measurable incubation time. Void nucleation is continuous throughout fatigue Calculated values of the individual void growth rate agree very well, as regards time dependence, temperature dependence, and even absolute value, with growth rates derived from a theory of fatigueinduced cavitation based on transient effects in vacancy diffusion.

  15. Simultaneous measurement of neutron-induced capture and fission reactions at CERN

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Berthoumieux, E.; Cano-Ott, D.; Mendoza, E.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Billowes, J.; Brugger, M.; Calviani, M.; Calviño, F.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Ganesan, S.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Jenkins, D.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kroll, J.; Krtička, M.; Lebbos, E.; Lederer, C.; Leeb, H.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P. F.; Meaze, M.; Mengoni, A.; Milazzo, P. M.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Roman, F.; Rubbia, C.; Sarmento, R.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeullen, M.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weiß, C.; Wright, T.

    2012-03-01

    The measurement of the capture cross-section of fissile elements, of utmost importance for the design of innovative nuclear reactors and the management of nuclear waste, faces particular difficulties related to the γ -ray background generated in the competing fission reactions. At the CERN neutron time-of-flight facility n_TOF we have combined the Total Absorption Calorimeter (TAC) capture detector with a set of three 235U loaded MicroMegas (MGAS) fission detectors for measuring simultaneously two reactions: capture and fission. The results presented here include the determination of the three detection efficiencies involved in the process: ensuremath \\varepsilon_{TAC}(n,f) , ensuremath \\varepsilon_{TAC}(n,γ) and ensuremath \\varepsilon_{MGAS}(n,f) . In the test measurement we have succeeded in measuring simultaneously with a high total efficiency the 235U capture and fission cross-sections, disentangling accurately the two types of reactions. The work presented here proves that accurate capture cross-section measurements of fissile isotopes are feasible at n_TOF.

  16. Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices

    NASA Astrophysics Data System (ADS)

    Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori

    2013-04-01

    Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.

  17. Production of the neutron-induced isotope, 73Ga, at the Davis Campus of the Sanford Underground Research Facility with the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Chu, Pinghan; Majorana Demonstrator Collaboration

    2016-09-01

    We report a study of the production of the neutron-induced isotope, 73Ga, in the MAJORANA DEMONSTRATOR array at the underground Davis Campus of the Sanford Underground Research Facility 4850 ft level. This isotope has a half-life time of 4.86 hours and can be generated through interactions between fast neutrons and germanium isotopes. Using its unique decay signature, we have identified three candidate events of 73Ga in the commissioning data of MAJORANA DEMONSTRATOR. Based on these three events, we estimate the corresponding neutron energy spectrum and the radioactive background generated by neutron-induced isotopes. The background from neutron-induced isotopes has been also calculated in the Region of Interest for 76Ge neutrinoless double beta decays. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program. U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DE-AC02-05CH11231, DE-AC52-06NA25396, DE-FG02-97ER41041, DE-FG02-97ER41033, DE-FG02-97ER41042, DE-SC0012612, DE-FG02-10ER41715, DE-SC0010254, and DE-FG02-97ER4102.

  18. Neutron-induced 63Ni in copper samples from Hiroshima and Nagasaki: a comprehensive presentation of results obtained at the Munich Maier-Leibnitz Laboratory.

    PubMed

    Rühm, W; Carroll, K L; Egbert, S D; Faestermann, T; Knie, K; Korschinek, G; Martinelli, R E; Marchetti, A A; McAninch, J E; Rugel, G; Straume, T; Wallner, A; Wallner, C; Fujita, S; Hasai, H; Hoshi, M; Shizuma, K

    2007-11-01

    Those inhabitants of Hiroshima and Nagasaki who were affected by the A-bomb explosions, were exposed to a mixed neutron and gamma radiation field. Few years later about 120,000 survivors of both cities were selected, and since then radiation-induced late effects such as leukemia and solid tumors are being investigated in this cohort. When the present study was initiated, the fast neutron fluences that caused the neutron doses of these survivors had never been determined experimentally. In principle, this would have been possible if radioisotopes produced by fast neutrons from the A-bomb explosions had been detected in samples from Hiroshima and Nagasaki at distances where the inhabitants survived. However, no suitable radioisotope had so far been identified. As a contribution to a large international effort to re-evaluate the A-bomb dosimetry, the concentration of the radionuclide (63)Ni (half-life 100.1 years) has been measured in copper samples from Hiroshima and Nagasaki. These measurements were mainly performed at the Maier-Leibnitz-Laboratory in Munich, Germany, by means of accelerator mass spectrometry. Because the (63)Ni had been produced in these samples by fast A-bomb neutrons via the reaction (63)Cu(n,p)(63)Ni, these measurements allow direct experimental validation of calculated neutron doses to the members of the LSS cohort, for the first time. The results of these efforts have already been published in a compact form. A more detailed discussion of the methodical aspects of these measurements and their results are given in the present paper. Eight copper samples that had been significantly exposed to fast neutrons from the Hiroshima A-bomb explosion were investigated. In general, measured (63)Ni concentrations decreased in these samples with increasing distance to the hypocenter, from 4 x 10(6 ) (63)Ni nuclei per gram copper at 391 m, to about 1 x 10(5 ) (63)Ni nuclei per gram copper at about 1,400 m. Additional measurements performed on three large

  19. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  20. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    SciTech Connect

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; Bond, Evelyn M.; Bredeweg, Todd Allen; Couture, Aaron Joseph; Daum, Jaimie Kay; Favalli, Andrea; Ianakiev, Kiril Dimitrov; Iliev, Metodi L.; Mosby, Shea Morgan; Roman, Audrey Rae; Springs, Rebecca Kristien; Ullmann, John Leonard; Walker, Carrie Lynn

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  1. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  2. Mining Archived HYSPEC User Data to Analyze the Prompt Pulse at the SNS

    SciTech Connect

    Smith, Michael B.; Iverson, Erik B.; Gallmeier, Franz X.; Winn, Barry L.

    2015-10-01

    The Hybrid-Spectrometer (HYSPEC) is one of 17 instruments currently operated at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratories (ORNL). The secondary spectrometer of this instrument is located inside an out-building off the north side of the SNS instrument hall. HYSPEC has experienced a larger background feature than similar inelastic instruments since its commissioning in 2011. This background feature is caused by a phenomenon known as the “prompt pulse” which is an essential part of neutron production in a pulsed spallation source but comes with unfortunate side effects.

  3. Prompting Sequences in Teaching Independent Living Skills.

    ERIC Educational Resources Information Center

    Walls, Richard T.; And Others

    1981-01-01

    The effects of three prompting sequences on the acquisition of independent living skills with 14 mild and moderately mentally retarded vocational rehabilitation clients (16 to 50 years old) are examined. (Author)

  4. School Phobia: The Importance of Prompt Intervention.

    ERIC Educational Resources Information Center

    McAnanly, Eileen

    1986-01-01

    The importance of prompt treatment of the school phobic child, and the need for good communication among those concerned, are addressed in this article. The manifestation of school phobia is described and intervention methods are reviewed. (Author/MT)

  5. Tragedy prompts depression awareness, suicide prevention campaigns.

    PubMed

    Rees, T

    1998-01-01

    The tragic suicide of Robert C. Goltz prompted associates at the integrated marketing and communications company he founded in Green Bay, Wis., to develop two multimedia campaigns, one focusing on depression awareness and the other on suicide prevention.

  6. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane.

    PubMed

    Goldhagen, P; Reginatto, M; Kniss, T; Wilson, J W; Singleterry, R C; Jones, I W; Van Steveninck, W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was eight times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56-201 g cm-2 atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.

  7. Neutron Capture Reactions for Stockpile Stewardship and Basic Science

    SciTech Connect

    Parker, W; Agvaanluvsan, U; Becker, J; Wilk, P; Wu, C; Bredeweg, T; Couture, A; Haight, R; Jandel, M; O'Donnell, J; Reifarth, R; Rundberg, R; Ullmann, J; Vieira, D; Wouters, J; Sheets, S; Mitchell, G; Becvar, F; Krticka, M

    2007-08-04

    present in neutron induced reactions. To reduce the background of scattered neutrons, a lithium hydride shell is placed inside the array. The purpose of using the spherical array of detectors is to cover all possible directions of emitted {gamma} rays, so we will come as close as possible to complete detection of all the prompt {gamma}-ray cascades emitted in a capture reaction. The sum of the energy of the {gamma} cascades is a measure of the binding energy of the capture neutron. The binding energy is the energy required to remove a bound neutron from the nucleus. The measured mass of the nucleus is smaller than the masses of the target nucleus plus the captured neutron, and the difference (converted to energy) is the binding energy of the capture neutron. Because the detector is segmented into a large number of independent detectors, additional information on event multiplicities (number of {gamma} rays emitted) and other properties can be determined.

  8. Coupling of laser excitation and inelastic neutron scattering: attempt to probe the dynamics of light-induced C-phycocyanin dynamics.

    PubMed

    Combet, Sophie; Pieper, Jörg; Coneggo, Frédéric; Ambroise, Jean-Pierre; Bellissent-Funel, Marie-Claire; Zanotti, Jean-Marc

    2008-06-01

    Excitation energy transfer (EET) in light-harvesting antennae is a highly efficient key event in photosynthesis, where light-induced dynamics of the antenna pigment-protein complexes may play a functional role. So far, however, the relationship between EET and protein dynamics remains unknown. C-phycocyanin (C-PC) is the main pigment/protein complex present in the cyanobacterial antenna, called "phycobilisome". The aim of the present study was to investigate light-induced C-PC internal thermal motions (ps timescale) measured by inelastic neutron scattering. To synchronize the beginning of the laser flash (6 ns duration) with that of the neutron test pulse ( approximately 87 micros duration), we developed a novel type of "time-resolved" experimental setup on MIBEMOL time-of-flight neutron spectrometer (LLB, France). Data acquisition has been modified to get quasi-simultaneously "light" and "dark" measurements (with and without laser, respectively) and eliminate many spurious effects that could occur on the sample during the experiment. The study was carried out on concentrated C-PC ( approximately 135 g/L protein in D(2)O phosphate buffer), contained in an aluminium/sapphire sample holder (almost "transparent" for neutrons) and homogeneously illuminated inside an "integrating sphere". We observed very similar incoherent dynamical structure factors of C-PC with or without light. The vibrational density of states showed two very slightly increased vibrational modes with light, at approximately 30 and approximately 50 meV ( approximately 240 and approximately 400 cm(-1), respectively). These effects have to be verified by further experiments before probing any temporal evolution, by introducing a time delay between the laser flash and the neutron test pulse.

  9. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemsitry in the region of Thulium, Lutetium, and Tantalum I. Results of Built in Spherical Symmetry in a Deformed Region

    SciTech Connect

    Hoffman, R. D.

    2013-09-06

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from Terbium (Z = 65) to Rhenium (Z = 75). Of particular interest are the cross sections on Tm, Lu, and Ta including reactions on isomeric targets.

  10. A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small fast neutron mutant population has been established from Phaseolus vulgaris cv. Red Hawk. We leveraged the available P. vulgaris genome sequence and high throughput next generation DNA sequencing to examine the genomic structure of five Phaseolus vulgaris cv. Red Hawk fast neutron mutants wi...

  11. ON THE INDUCED GRAVITATIONAL COLLAPSE OF A NEUTRON STAR TO A BLACK HOLE BY A TYPE Ib/c SUPERNOVA

    SciTech Connect

    Rueda, Jorge A.; Ruffini, Remo E-mail: ruffini@icra.it

    2012-10-10

    It is understood that the supernovae (SNe) associated with gamma-ray bursts (GRBs) are of Type Ib/c. The temporal coincidence of the GRB and the SN continues to represent a major enigma of Relativistic Astrophysics. We elaborate here, from the earlier paradigm, that the concept of induced gravitational collapse is essential to explain the GRB-SN connection. The specific case of a close (orbital period <1 hr) binary system composed of an evolved star with a neutron star (NS) companion is considered. We evaluate the accretion rate onto the NS of the material expelled from the explosion of the core progenitor as a Type Ib/c SN and give the explicit expression of the accreted mass as a function of the nature of the components and binary parameters. We show that the NS can reach, in a few seconds, critical mass and consequently gravitationally collapse to a black hole. This gravitational collapse process leads to the emission of the GRB.

  12. Neutron Scattering Stiudies

    SciTech Connect

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  13. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target

    DOE PAGES

    Sanami, T.; Iwamoto, Y.; Kajimoto, T.; ...

    2011-12-06

    Our methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 × 105 protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-proton beammore » events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90° with respect to the beam axis. Finally our obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment.« less

  14. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target

    SciTech Connect

    Sanami, T.; Iwamoto, Y.; Kajimoto, T.; Shigyo, N.; Hagiwara, M.; Lee, H. S.; Ramberg, E.; Coleman, R.; Soha, A.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Ishibashi, K.; Sakamoto, Y.; Nakashima, H.

    2011-12-06

    Our methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 × 105 protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-proton beam events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90° with respect to the beam axis. Finally our obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment.

  15. Rapid, non-destructive carbon analysis of forest soils using neutron-induced gamma-ray spectroscopy

    SciTech Connect

    Wielopolski, L.; Mitra, S.; Yanai, R. D.; Levine, C. R.; Vadeboncoeur, M. A.

    2010-08-01

    Forest soils are pivotal to understanding global carbon (C) cycling and evaluating policies for mitigating global change. However, they are very difficult to monitor because of the heterogeneity of soil characteristics, the difficulty of representative sampling, and the slow time scale of response to environmental change. Here we demonstrate that use of gamma-ray spectroscopy facilitates in situ non-destructive analysis of C and other elements in forest soils. In this approach the element-specific gamma-rays are induced by fast and thermal neutrons interacting with the nuclei of the elements present in the soil. Background gamma-rays emanating from naturally occurring radionuclides in the forest are recorded as well. We applied this approach in a mature northern hardwood forest on glacial till soils at the Bartlett Experimental Forest in New Hampshire, USA. The inelastic neutron scattering (INS) system yielded strong signals in gamma-ray counts/h, from C and other elements present in the soil matrix that included silicon, oxygen, hydrogen, iron, aluminum, manganese and potassium. The INS sensitivity for carbon was 20.656 counts h{sup -1} kg{sup -1} C m{sup -2} based on current net C gamma-ray counts and the data for the O horizon and mineral soil to a depth of 30 cm obtained from a nearby quantitative soil pit (7.35 kg C m{sup -2}). We estimate the minimum detectable change to be {approx}0.34 kg C m{sup -2}, which is {approx}5% of the current soil C content, and the minimum detectable limit to be {approx}0.23 kg C m{sup -1}. Eight % reproducibility from 11 measurements was limited, in part, by the large variability in the system counting geometry due to the uneven forest microtopography. The INS approach has the potential to revolutionize belowground monitoring of C and other elements, because the possibility of detecting a 5% change in forest soils has not been possible with destructive sampling methods.

  16. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  17. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  18. Operation GREENHOUSE. Scientific Director's report. Annex 1. 1. Prompt-gamma-ray measurements. Part 4. Installation drawings. Nuclear explosions 1951

    SciTech Connect

    Hall, W.C.

    1984-10-31

    This report consists of drawings and tabular data pertinent to the various measurements performed in Operation GREENHOUSE. The drawings represent the plans for the cable installations, recorder stations, power and signal lines, and other equipment used in the measurement of prompt gamma rays, alpha, transit time, neutron intensity (Tenex), and thermal radiation.

  19. Neutron angular distribution in plutonium-240 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  20. "Chiron": A Proposed Remote Sensing Prompt Gamma Ray Activation Analysis Instrument for a Nuclear Powered Prometheus Mission

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.

    2004-01-01

    Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.

  1. Sensitivity Upgrades to the Idaho Accelerator Center Neutron Time of Flight Spectrometer

    SciTech Connect

    Thompson, S. J.; Kinlaw, M. T.; Harmon, J. F.; Wells, D. P.; Hunt, A. W.

    2007-10-26

    Past experiments have shown that discrimination between between fissionable and non-fissionable materials is possible using an interrogation technique that monitors for high energy prompt fission neutrons. Several recent upgrades have been made to the neutron time of flight spectrometer at the Idaho Accelerator Center with the intent of increasing neutron detection sensitivity, allowing for system use in nonproliferation and security applications.

  2. Active Neutron Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-05-01

    Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.

  3. Prompt detonation of secondary explosives by laser

    SciTech Connect

    Paisley, D.L.

    1989-01-01

    Secondary high explosives have been promptly detonated by directing a laser beam of various wavelengths from 266 nanometers to 1.06 micron on the surface of the explosives. For this paper ''prompt'' means the excess transit time through an explosive charge is /approximately/250 nanoseconds (or less) less than the accepted full detonation velocity time. Timing between laser pulse, explosive initiation and detonation velocity and function time have been recorded. The laser parameters studied include: wavelength, pulse length, energy and power density, and beam diameter (spot size). Explosives evaluated include: PETN, HNS, HMX, and graphited PETN, HNS, and HMX. Explosive parameters that have been correlated with optical parameters include: density, surface area, critical diameter (spot size), spectral characteristics and enhance absorption. Some explosives have been promptly detonated over the entire range of wavelengths, possibly by two competing initiating mechanisms. Other explosives could not be detonated at any of the wavelengths or power densities tested. 8 refs., 12 figs., 1 tab.

  4. SHORT GAMMA-RAY BURSTS AND DARK MATTER SEEDING IN NEUTRON STARS

    SciTech Connect

    Perez-Garcia, M. Angeles

    2013-05-10

    We present a mechanism based on internal self-annihilation of dark matter accreted from the galactic halo in the inner regions of neutron stars that may trigger full or partial conversion into a quark star. We explain how this effect may induce a gamma-ray burst (GRB) that could be classified as short, according to the usual definition based on time duration of the prompt gamma-ray emission. This mechanism differs in many aspects from the most discussed scenario associating short GRBs with compact object binary mergers. We list possible observational signatures that should help distinguish between these two possible classes of progenitors.

  5. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    NASA Astrophysics Data System (ADS)

    Montoya, M.

    2016-07-01

    Even-odd effects of the maximal total kinetic energy (Kmax) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of 235U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, Kmax is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher Kmax-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher Kmax-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between Kmax and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  6. Thermal neutrons registration by xenon gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Chernysheva, I. V.; Dmitrenko, V. V.; Dukhvalov, A. G.; Krivova, K. V.; Novikov, A. S.; Petrenko, D. V.; Vlasik, K. F.; Ulin, S. E.; Uteshev, Z. M.

    2016-02-01

    Experimental results of thermal neutrons detection by high pressure xenon gamma- ray spectrometers are presented. The study was performed with two devices with sensitive volumes of 0.2 and 2 litters filled with compressed mixture of xenon and hydrogen without neutron-capture additives. Spectra from Pu-Be neutron source were acquired using both detectors. Count rates of the most intensive prompt neutron-capture gamma-ray lines of xenon isotopes were calculated in order to estimate thermal neutrons efficiency registration for each spectrometer.

  7. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  8. Evaluating the Effects of a Video Prompt in a System of Least Prompts Procedure

    ERIC Educational Resources Information Center

    Smith, Katie A.; Ayres, Kevin M.; Mechling, Linda C.; Alexander, Jennifer L.; Mataras, Theologia K.; Shepley, Sally B.

    2015-01-01

    The purpose of this study was to evaluate the effects of a system of least prompts procedure with a video prompt serving as the model in teaching office tasks to three high school students with moderate intellectual disability. A multiple probe across behaviors design replicated across participants was used to evaluate the intervention. The…

  9. Simmer analysis of prompt burst energetics experiments

    SciTech Connect

    Hitchcock, J.T.

    1982-03-01

    The Prompt Burst Energetics experiments are designed to measure the pressure behavior of fuel and coolant as working fluids during a hypothetical prompt burst disassembly in an LMFBR. The work presented in this report consists of a parametric study of PBE-5S, a fresh oxide fuel experiment, using SIMMER-II. The various pressure sources in the experiment are examined, and the dominant source identified as incondensable contaminant gasses in the fuel. The important modeling uncertainties and limitations of SIMMER-II as applied to these experiments are discussed.

  10. Non-destructive analysis of hydrogen-induced cracking of api steels using acoustic microscopy and small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Oh, S. B.; Choi, Y.; Jung, H. G.; Kho, S. W.; Lee, C. S.

    2014-12-01

    Acoustic microscopy and small-angle neutron scattering were applied to non-destructively evaluate the hydrogen-induced cracking of API steels and to find the initiation time of the crack. The API steels had equiaxed grains with about 4 to 12-μm average grain size along the rolling, sample-normal, and transverse directions. For 5 days of immersion in a sodium-acetic solution with chloride ions (NaCl: CH3COOH: H2O: FeCl2 = 50: 5: 944: 1, pH = 2.7), micro-sized cracks were not formed in the as-received specimen, but they did form in the 7% deformed specimen. Nano-sized cracks were observed in the specimen after 3 days of immersion by small-angle neutron scattering.

  11. Measurement of the neutron-induced fission cross-section of 241Am at the time-of-flight facility n_TOF

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Calviani, M.; Colonna, N.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tarrio, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2013-01-01

    The neutron-induced fission cross-section of 241Am has been measured relative to the standard fission cross-section of 235U between 0.5 and 20MeV. The experiment was performed at the CERN n_TOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the α-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the n_TOF facility enabled us to obtain uncertainties of ≈ 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up.

  12. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  13. Competing analysis of α and 2p2n-emission from compound nuclei formed in neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Sharma, Manoj K.

    2017-01-01

    The decay mechanism of compound system 61Ni* formed in fast neutron induced reactions is explored within the collective clusterization approach of the Dynamical Cluster-decay Model (DCM) in reference to a recent experiment over an energy spread of En = 1- 100 MeV. The excitation functions for the decay of the compound nucleus 61Ni* formed in the n +60Ni reaction show a double humped variation with incident beam energy where the peak at lower energy corresponds to α-emission while the one at higher energy originates from 2 p 2 n-emission. The experimentally observed transmutation of α-emission at lower energy into 2 p 2 n-emission at higher incident energies is explained on the basis of temperature dependence of the binding energies used within the framework of DCM. The cross-sections for the formation of the daughter nucleus 57Fe after emission of α-cluster from the 61Ni* nucleus are addressed by employing the neck length parameter (ΔR), finding decent agreement with the available experimental data. The calculations are done for non-sticking choice of moment of inertia (INS) in the centrifugal potential term, which forms the essential ingredient in DCM based calculations. In addition to this, the effect of mass (and charge) of the compound nucleus is exercised in view of α and 2 p 2 n emission and comparative study of the decay profiles of compound systems with mass A = 17-93 is employed to get better description of decay patterns.

  14. Probing the neutron-skin thickness by photon production from reactions induced by intermediate-energy protons

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng

    2015-07-01

    The photon from neutron-proton bremsstrahlung in p +Pb reactions is examined as a potential probe of the neutron-skin thickness in different centralities and at different proton incident energies. It is shown that the best choice of reaction environment is about 140 MeV for the incident proton and the 95%-100% centrality for the reaction system since the incident proton mainly interacts with neutrons inside the skin of the target and thus leads to different photon production to a maximal extent. Moreover, considering two main uncertainties from both photon production probability and nucleon-nucleon cross section in the reaction, I propose to use the ratio of photon production from two reactions to measure the neutron-skin thickness because of its cancellation effects on these uncertainties simultaneously, but preserved about 13%-15% sensitivities on the varied neutron-skin thickness from 0.1 to 0.3 fm within the current experimental uncertainty range of the neutron-skin size in 208Pb.

  15. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    SciTech Connect

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.; Kouzes, Richard T.; Lintereur, Azaree; Robinson, Sean M.; Stave, Sean C.; Siciliano, Edward R.; Wang, Zheming

    2016-10-06

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) with nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.

  16. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Hnatowicz, V.; Červená, J.; Peřina, V.; Mach, R.; Peka, I.

    1998-04-01

    Accelerator driven transmutation technology (ADTT) is a promissing way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a subcritical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600°C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration.

  17. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    % , with Ti and Fe emitting more fast neutrons than light elements like O and Si. Most elements moderate neutrons to thermal energies at similar rates. The main exception is when neutrons scatter from H, in which case neutrons can be rapidly thermalized. The cross sections for the absorption of thermal neutrons can vary widely among elements, with major elements like Ti and Fe having high-capture cross sections. Some trace elements, such as Sm and Gd, have such large neutron-absorption cross sections that, despite their low abundances, can absorb significant amounts of thermal neutrons in the Moon. Because the processes affecting neutrons are complicated, good modeling is needed to properly extract elemental information from measured neutron fluxes. The LAHET Code System (LCS) can be use to calculate neutron fluxes from GCR interactions in the Moon. Lunar Gamma-Ray Spectroscopy: The main sources of planetary gamma-rays are the decay of the naturally occurring radioactive isotopes of K, Th, and U and the interactions of GCRs with atomic nuclei in the planet's surface. Most "cosmogenic" gamma-rays are produced by fast and thermal neutrons made in the planet's surface by GCRs, and their production rates can vary with time. Over 300 gamma-ray lines have been identified that can be emitted from planetary surfaces by a variety of production mechanisms. There exist nuclear databases that can be used to identify and quantify other gamma-ray lines. Use will be made of gamma-rays from major elements, particularly those from Si and O, that have not been routinely used in the past. The fluxes of gamma-rays from a given element can vary depending on many factors besides the concentration of that element. For example, the fluxes of neutron-capture gamma-rays in the planetary region of interest depend on (1) the total cross section for elements to absorb thermalized neutrons and (2) the H content of the top meter of the surface. The fluxes of the fast neutrons that induce inelastic

  18. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Hao, Baolong; White, Roscoe; Wang, Jinfang; Zang, Qing; Han, Xiaofeng; Hu, Chundong

    2017-02-01

    Neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  19. Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST

    DOE PAGES

    Wu, Bin; Hao, Baolong; White, Roscoe; ...

    2016-12-09

    Here, neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel.

  20. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.