Science.gov

Sample records for neutron interactions progress

  1. Neutron Star - Magnetosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ponce, Marcelo; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2012-03-01

    In this work we report results of the interaction of a neutron star magnetosphere in both collapsing and moving scenarios interacting with an ambient magnetic field. In recent works [1,2], it has been shown the important role and realism associated with studies of electromagnetic environments in some particular regimes, such as: ideal-MHD, force-free, and electro-vacuum. Motivated by this and their astrophysical implications for BBH and hybrid BH-NS mergers [3,4], we study the following cases: collapse of a magnetized NS, head-on collision of a BH-NS, and orbiting merger of a BH-NS. Based in the results from our simulations, we draw some relevant conclusions to the production of jets as described within the force-free formalism. [4pt] [1] C.Palenzuela, L.Lehner and S.Liebling, Science 329, 927 (2010).[0pt] [2] C.Palenzuela, T.Garrett, et al., Phys.Rev.D 82, 044045 (2010).[0pt] [3] L.Lehner, C.Palenzuela, et al., 2011.[0pt] [4] S.Liebling, L.Lehner, et al., Phys.Rev.D 81, 124023 (2010).

  2. Direct Fast-Neutron Detection: A Progress Report

    SciTech Connect

    AJ Peurrung; DC Stromswold; PL Reeder; RR Hansen

    1998-10-18

    It is widely acknowledged that Mure neutron-detection technologies will need to offer increased performance at lower cost. One clear route toward these goals is rapid and direct detection of fast neutrons prior to moderation. This report describes progress to date in an effort to achieve such neutron detection via proton recoil within plastic scintillator. Since recording proton-recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the substantial difference in the speed of fission neutrons and gamma-ray photons. Should this effort ultimately prove successful, the resulting. technology would make a valuable contribution toward meeting the neutron-detection needs of the next century. This report describes the detailed investigations that have been part of Pacific Northwest National Laborato@s efforts to demonstrate direct fast-neutron detection in the laboratory. Our initial approach used a single, solid piece of scintillator along with the electronics needed for pulse-type differentiation. Work to date has led to the conclusion that faster scintillator and/or faster electronics will be necessary before satisfactory gamma-ray discrimination is achieved with this approach. Acquisition and testing of both faster scintillator and faster electronics are currently in progress. The "advanced" approach to direct fast-neutron detection uses a scintillating assembly with an overall density that is lower than that of ordinary plastic scintillator. The lower average density leads to longer interaction times for both neutrons and gamma rays, allowing easier discrimination. The modeling, optimization, and design of detection systems using this approach are described in detail.

  3. Research of fundamental interactions with use of ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2017-01-01

    Use of ultracold neutrons (UCN) gives unique opportunities of a research of fundamental interactions in physics of elementary particles. Search of the electric dipole moment of a neutron (EDM) aims to test models of CP violation. Precise measurement of neutron lifetime is extremely important for cosmology and astrophysics. Considerable progress in these questions can be reached due to supersource of ultracold neutrons on the basis of superfluid helium which is under construction now in PNPI NRC KI. This source will allow us to increase density of ultracold neutrons approximately by 100 times in respect to the best UCN source at high flux reactor of Institute Laue-Langevin (Grenoble, France). Now the project and basic elements of the source are prepared, full-scale model of the source is tested, the scientific program is developed. Increase in accuracy of neutron EDM measurements by order of magnitude, down to level 10-27 -10-28 e cm is planned. It is highly important for physics of elementary particles. Accuracy of measurement of neutron lifetime can be increased by order of magnitude also. At last, at achievement of UCN density ∼ 103 – 104 cm-3, the experiment search for a neutron-antineutron oscillations using UCN will be possible. The present status of the project and its scientific program will be discussed.

  4. Neutron Measurements and the Weak Nucleon-Nucleon Interaction

    PubMed Central

    Snow, W. M.

    2005-01-01

    The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120

  5. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  6. 2010 Neutron Review: ORNL Neutron Sciences Progress Report

    SciTech Connect

    Bardoel, Agatha A; Counce, Deborah M; Ekkebus, Allen E; Horak, Charlie M; Nagler, Stephen E; Kszos, Lynn A

    2011-06-01

    During 2010, the Neutron Sciences Directorate focused on producing world-class science, while supporting the needs of the scientific community. As the instrument, sample environment, and data analysis tools at High Flux Isotope Reactor (HFIR ) and Spallation Neutron Source (SNS) have grown over the last year, so has promising neutron scattering research. This was an exciting year in science, technology, and operations. Some topics discussed are: (1) HFIR and SNS Experiments Take Gordon Battelle Awards for Scientific Discovery - Battelle Memorial Institute presented the inaugural Gordon Battelle Prizes for scientific discovery and technology impact in 2010. Battelle awards the prizes to recognize the most significant advancements at national laboratories that it manages or co-manages. (2) Discovery of Element 117 - As part of an international team of scientists from Russia and the United States, HFIR staff played a pivotal role in the discovery by generating the berkelium used to produce the new element. A total of six atoms of ''ununseptium'' were detected in a two-year campaign employing HFIR and the Radiochemical Engineering Development Center at Oak Ridge National Laboratory (ORNL) and the heavy-ion accelerator capabilities at the Joint Institute for Nuclear Research in Dubna, Russia. The discovery of the new element expands the understanding of the properties of nuclei at extreme numbers of protons and neutrons. The production of a new element and observation of 11 new heaviest isotopes demonstrate the increased stability of super-heavy elements with increasing neutron numbers and provide the strongest evidence to date for the existence of an island of enhanced stability for super-heavy elements. (3) Studies of Iron-Based High-Temperature Superconductors - ORNL applied its distinctive capabilities in neutron scattering, chemistry, physics, and computation to detailed studies of the magnetic excitations of iron-based superconductors (iron pnictides and

  7. Neutrino interactions in neutron matter

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea

    2012-12-01

    Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)

  8. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  9. Progress on the Europium Neutron-Capture Study using DANCE

    SciTech Connect

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O'Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  10. Proton-neutron interaction and nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    The pervasive role of the proton-neutron interaction in nuclear structure is discussed. Particular emphasis is given to its influence on the onset of collectivity and deformation, on intruder states, and on the evolution of subshell structure. The N/sub p/N/sub n/ scheme is outlined and some applications of it to collective model calculations and to nuclei far off stability are described. The concept of N/sub p/N/sub n/ multiplets is introduced. 32 refs., 20 figs.

  11. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  12. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  13. Effective Interactions in Neutron-Rich Matter

    SciTech Connect

    Sammarruca, F.; Krastev, P.; Barredo, W.

    2005-10-14

    We are generally concerned with probing the behavior of the isospin-asymmetric equation of state. In particular, we will discuss the one-body potentials for protons and neutrons obtained from our Dirac-Brueckner-Hartree-Fock calculations of neutron-rich matter properties. We will also present predictions of proton-proton and neutron-neutron cross sections in the isospin-asymmetric nuclear medium.

  14. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  15. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report 1988

    SciTech Connect

    Zamenhof, R.G.

    1988-12-31

    This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

  16. Progress Update on Iterative Reconstruction of Neutron Tomographic Images

    SciTech Connect

    Hausladen, Paul; Gregor, Jens

    2016-09-15

    This report satisfies the fiscal year 2016 technical deliverable to report on progress in development of fast iterative reconstruction algorithms for project OR16-3DTomography-PD2Jb, "3D Tomography and Image Processing Using Fast Neutrons." This project has two overall goals. The first of these goals is to extend associated-particle fast neutron transmission and, particularly, induced-reaction tomographic imaging algorithms to three dimensions. The second of these goals is to automatically segment the resultant tomographic images into constituent parts, and then extract information about the parts, such as the class of shape and potentially shape parameters. This report addresses of the component of the project concerned with three-dimensional (3D) image reconstruction.

  17. Neutron interaction and their transport with bulk materials

    SciTech Connect

    Rani, Esther Kalpana; Radhika, K.

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  18. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  19. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  20. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    SciTech Connect

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; Gandolfi, Stefano; Gezerlis, A.; Schmidt, K. E.; Schwenk, A.

    2016-02-09

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.

  1. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...

    2016-02-09

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter, in contrastmore » to commonly used phenomenological 3N interactions.« less

  2. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    NASA Astrophysics Data System (ADS)

    Lynn, J. E.; Tews, I.; Carlson, J.; Gandolfi, S.; Gezerlis, A.; Schmidt, K. E.; Schwenk, A.

    2016-02-01

    We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3 N ) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO ). The two undetermined 3 N low-energy couplings are fit to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P -wave phase shifts. Furthermore, we investigate different choices of local 3 N -operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A =3 ,4 ,5 systems and of neutron matter, in contrast to commonly used phenomenological 3 N interactions.

  3. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter.

    PubMed

    Lynn, J E; Tews, I; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A

    2016-02-12

    We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N(2)LO). The two undetermined 3N low-energy couplings are fit to the (4)He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N(2)LO are able to simultaneously reproduce the properties of A=3,4,5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.

  4. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  5. Ultracold neutrons and the interaction of waves with moving matter

    NASA Astrophysics Data System (ADS)

    Frank, A. I.

    2016-07-01

    The present review is focused on the problem of interaction of neutron waves with moving matter. The validity of the 1/ v law for ultracold neutrons and the possibility to characterize the interaction of neutrons with matter using the effective potential were verified in the so-called null Fizeau experiments. A neutron wave in such experiments propagates through a flat sample that moves parallel to its edges. The observation of effects caused by this motion provides evidence that the concept of constant effective potential is not correct. The second part of the review deals with the prediction and the first observation of the accelerated matter effect (a change in the energy of neutrons in passing through a refractive sample that moves with an acceleration directed along or opposite the direction of neutron propagation). The characteristic features of this phenomenon in the case of birefringent material are considered. In conclusion, the problem of propagation of neutron waves in matter moving with giant acceleration is discussed.

  6. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)

  7. Progress toward a new beam measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Hoogerheide, Shannon Fogwell; BL2 Collaboration

    2017-01-01

    Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosynthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method is underway at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement, its current status, and the technical improvements will be discussed.

  8. Progress toward a new beam measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Hoogerheide, Shannon Fogwell

    2016-09-01

    Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosysnthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method will be performed at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement and the technical improvements will be discussed.

  9. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    SciTech Connect

    Croci, G.; Tardocchi, M.; Rebai, M.; Cippo, E. Perelli; Gorini, G.; Cazzaniga, C.; Palma, M. Dalla; Pasqualotto, R.; Tollin, M.; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Cavenago, M.

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  10. Effective spin-spin interaction in neutron matter

    SciTech Connect

    Zverev, M.V.; Khafizov, R.U.; Khodel, V.A.; Shaginyan, V.R.

    1995-09-01

    A set of equations for calculating the effective-interaction matrix R{sup ik}(q, {omega}) and the response function X{sup ik}(q, {omega}) is derived. These equations take into account the spin degrees of freedom of infinite neutron matter. For isotropic neutron matter with the Bethe interaction, the effective spin-spin interaction g(k) is calculated in the local approximation of the functional approach in the density range from {rho} = 0.17 to 25 fm{sup -3}. It is shown that this interaction weakly depends on the density within the range under consideration and that neither ferromagnetic nor antiferromagnetic phase transitions occur in the system. 7 refs., 2 figs.

  11. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  12. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect

    Not Available

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  13. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  14. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  15. Extended Skyrme interactions for nuclear matter, finite nuclei, and neutron stars

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Chen, Lie-Wen

    2016-12-01

    Recent progress in theory, experiment, and observation challenges the mean-field models by using the conventional Skyrme interaction, suggesting that the extension of the conventional Skyrme interaction is necessary. In this work, by fitting the experimental data of a number of finite nuclei together with a few additional constraints on nuclear matter using the simulated annealing method, we construct three Skyrme interaction parameter sets; namely, eMSL07, eMSL08, and eMSL09, based on an extended Skyrme interaction which includes additional momentum and density-dependent two-body forces to effectively simulate the momentum dependence of the three-body force. The three new interactions (i) can reasonably describe the ground-state properties and the isoscalar giant monopole resonance energies of various spherical nuclei used in the fit as well as the ground-state properties of many other spherical nuclei, (ii) nicely conform to the current knowledge on the equation of state of asymmetric nuclear matter, (iii) eliminate the notorious unphysical instabilities of symmetric nuclear matter and pure neutron matter up to a very high density of 1.2 fm-3 , and (iv) simultaneously support heavier neutron stars with mass larger than two times the solar mass. One important difference of the three new interactions involves the prediction of the symmetry energy at supra-saturation densities, and these new interactions are thus potentially useful for the future determination of the largely uncertain high-density symmetry energy. In addition, the predictions of nuclear matter, finite nuclei, and neutron stars made using the three new interactions are compared with those made using the three typical interactions BSk22, BSk24, and BSk26 from the Brussels group.

  16. Two-neutron "halo" from the low-energy limit of neutron-neutron interaction: Applications to drip-line nuclei 22C and 24O

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Otsuka, Takaharu; Yuan, Cenxi; Alahari, Navin

    2016-02-01

    The formation of two-neutron "halo", a low-density far-extended surface of weakly-bound two neutrons, is described using the neutron-neutron (nn) interaction fixed at the low-energy nn scattering limit. This method is tested for loosely-bound two neutrons in 24O, where a good agreement with experimental data is found. It is applied to halo neutrons in 22C in two ways: with the 20C core being closed or correlated (due to excitations from the closed core). This nn interaction is shown to be strong enough to produce a two-neutron halo in both cases, locating 22C on the drip line, while 21C remains unbound. A unique relation between the two neutron separation energy, S2n, and the radius of neutron halo is presented. New predictions for S2n and the radius of neutron halo are given for 22C. The appearance of Efimov states is also discussed.

  17. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Dolinski, Michelle Jean

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  18. Neutron scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1994

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1994-09-01

    During the period August 1, 1991 to July 31, 1994 the authors report progress on the following: (a) prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; (b) two-parameter measurement of nuclear lifetimes; (c) `black` neutron detector; (d) data reduction techniques for neutron scattering experiments; (e) elastic and inelastic neutron scattering studies in {sup 197}Au; (f) elastic and inelastic neutron scattering studies in {sup 239}Pu; (g) neutron induced defects in silicon dioxide MOS structures; (h) response of a {sup 235}U fission chamber near reaction thresholds; (i) efficiency calibration of a liquid scintillation detector using the WNR facility at LAMPF; (j) prompt fission neutron energy spectrum measurements below the incident neutron energy; (k) multi-parameter data acquisition system; (l) accelerator improvements; (m) non-DOE supported research. Eight Ph.D. dissertations and two M.S. theses were completed during the report period. Publications consisted of 6 journal articles, 10 conference proceedings, and 19 abstracts of presentations at scientific meetings. One invited talk was given.

  19. Study of neutron focusing at the Texas Cold Neutron Source: Progress report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1993-01-28

    The purpose of this three year study is to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility will also be designed, setup, and tested under this DOE grant. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the existing curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, they obtained gains of 4 to 5 for the neutron flux averaged over an area of 1 x 1 cm. Two graduate students were supported by the first year of the DOE grant. Both have passed the Nuclear Engineering qualifying examination and have been admitted to candidacy for the doctoral degree at The University of Texas at Austin. Their programs of study and dissertation projects have been approved by the appropriate committees.

  20. Potential of the neutron lloyd's mirror interferometer for the search for new interactions

    SciTech Connect

    Pokotilovski, Yu. N.

    2013-04-15

    We discuss the potential of the neutron Lloyd's mirror interferometer in a search for new interactions at small scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational interactions mediates an additional short-range potential between neutrons and bulk matter. These interactions between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves. We estimate the sensitivity and systematic effects of possible experiments.

  1. On the possibility of measuring the gravitational interaction of the neutron with a macroscopic body

    SciTech Connect

    Frank, A. I.

    2009-11-15

    The possibility of experimentally observing the gravitational interaction of the neutron with a macroscopic body is discussed. It is shown that the sensitivity of neutron-optics experiments may be one to two orders of magnitude higher than that which is necessary for observing the gravitational effect. Either the deflection of the neutron trajectory in the gravitational field of a heavy attractor or the gravitation-induced shift of the neutron-wave phase can be recorded experimentally.

  2. Neutron production from 200-500 MeV proton interaction with spacecraft materials.

    PubMed

    Maurer, Richard H; Kinnison, James D; Roth, David R

    2005-01-01

    We report on detailed energy spectra of neutron production > 14 MeV from collisions of 200-500 MeV protons with combinations of aluminium, graphite and polyethylene. Comparisons of normalised neutron spectra are made with respect to incident proton energy, angle of neutron production and material. In general, carbon (graphite) or polyethylene (by itself or in combination with aluminium) reduce secondary neutron production > 14 MeV relative to the production from interactions in aluminium.

  3. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  4. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  5. Advanced Neutron Source (ANS) Project progress report, FY 1994

    SciTech Connect

    Campbell, J.H.; King-Jones, K.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  6. Low Temperature and Neutron Physics Studies: Final Progress Report, March 1, 1986--May 31, 1987

    DOE R&D Accomplishments Database

    Shull, C.G.

    1989-07-27

    A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation.

  7. Neutron scatter studies of chromatin structures related to functions. Technical progress report, November 1, 1991--May 15, 1992

    SciTech Connect

    Bradbury, E.M.

    1992-06-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  8. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    SciTech Connect

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Micheal; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2014-07-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) provide harsh environments in and near the core that can severely test material performance and limit their operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration radiation performance of fuels and materials. In To reduce the amount of Material and Test Reactor (MTR) irradiations required, DOE is also funding development of enhanced instrumentation that will be able to obtain data, with unprecedented accuracy and resolution, that are required to validate new multi-scale multiphysics modeling tools . It is not feasible to obtain such data with the current state of instrumentation technology. To address this need, PSU and collaborators have started an experiment to test the potential for utilizing ultrasonic instruments in-pile. Ultrasonic sensors must be resistant to high neutron flux, high gamma radiation, and high temperature. PSU and collaborators have designed, fabricated, and started to irradiate piezoelectric and magnetostrictive transducers designed to perform in such harsh environments. Three piezoelectric transducers were fabricated with aluminum nitride, zinc oxide, and bismuth titanate as the active element. The transducers are coupled kovar and aluminum waveguides of which pulse-echo ultrasonic measurements are made in-situ. Two magnetostrictive transducers were fabricated with Remendur and Arnokrome as the active elements. These devices will be pulsed and monitored in-situ. (1) Selection of candidate sensor materials as well as optimization of test assembly parameters (2) High temperature benchmark testing and (3) initial data from the irradiation will be reported.

  9. Using Neutrons to Study Fluid-Rock Interactions in Shales

    NASA Astrophysics Data System (ADS)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  10. Description and evaluation of nuclear masses based on residual proton-neutron interactions

    SciTech Connect

    Fu, G. J.; Lei, Y.; Jiang, H.; Zhao, Y. M.; Sun, B.; Arima, A.

    2011-09-15

    In this paper we study the residual proton-neutron interactions and make use of the systematics of these interactions to describe experimental data of nuclear masses and to predict some of the unknown masses. The odd-even effect staggering of the residual proton-neutron interaction between the last proton and the last neutron is found and argued in terms of pairing interactions. Two local mass relations, which work very accurately for masses of four neighboring nuclei, are discovered. The accuracy of our predicted masses for medium and heavy nuclei is competitive with that of the AME2003 extrapolations, with the virtue of simplicity.

  11. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    SciTech Connect

    Artem’ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  12. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    NASA Astrophysics Data System (ADS)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  13. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-01

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  14. Progress towards developing neutron tolerant magnetostrictive and piezoelectric transducers

    SciTech Connect

    Reinhardt, Brian; Tittmann, Bernhard; Rempe, Joy; Daw, Joshua; Kohse, Gordon; Carpenter, David; Ames, Michael; Ostrovsky, Yakov; Ramuhalli, Pradeep; Montgomery, Robert; Chien, Hualte; Wernsman, Bernard

    2015-03-31

    Current generation light water reactors (LWRs), sodium cooled fast reactors (SFRs), small modular reactors (SMRs), and next generation nuclear plants (NGNPs) produce harsh environments in and near the reactor core that can severely tax material performance and limit component operational life. To address this issue, several Department of Energy Office of Nuclear Energy (DOE-NE) research programs are evaluating the long duration irradiation performance of fuel and structural materials used in existing and new reactors. In order to maximize the amount of information obtained from Material Testing Reactor (MTR) irradiations, DOE is also funding development of enhanced instrumentation that will be able to obtain in-situ, real-time data on key material characteristics and properties, with unprecedented accuracy and resolution. Such data are required to validate new multi-scale, multi-physics modeling tools under development as part of a science-based, engineering driven approach to reactor development. It is not feasible to obtain high resolution/microscale data with the current state of instrumentation technology. However, ultrasound-based sensors offer the ability to obtain such data if it is demonstrated that these sensors and their associated transducers are resistant to high neutron flux, high gamma radiation, and high temperature. To address this need, the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) is funding an irradiation, led by PSU, at the Massachusetts Institute of Technology Research Reactor to test the survivability of ultrasound transducers. As part of this effort, PSU and collaborators have designed, fabricated, and provided piezoelectric and magnetostrictive transducers that are optimized to perform in harsh, high flux, environments. Four piezoelectric transducers were fabricated with either aluminum nitride, zinc oxide, or bismuth titanate as the active element that were coupled to either Kovar or aluminum waveguides and two

  15. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and E sub parallel formation

    SciTech Connect

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs.

  16. Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter

    SciTech Connect

    Todd-Rutel, B.G.; Piekarewicz, J.

    2005-09-16

    An accurately calibrated relativistic parametrization is introduced to compute the ground state properties of finite nuclei, their linear response, and the structure of neutron stars. While similar in spirit to the successful NL3 parameter set, it produces an equation of state that is considerably softer--both for symmetric nuclear matter and for the symmetry energy. This softening appears to be required for an accurate description of several collective modes having different neutron-to-proton ratios. Among the predictions of this model are a symmetric nuclear-matter incompressibility of K=230 MeV and a neutron skin thickness in {sup 208}Pb of R{sub n}-R{sub p}=0.21 fm. The impact of such a softening on various neutron-star properties is also examined.

  17. Production of neutrons from interactions of GCR-like particles

    NASA Technical Reports Server (NTRS)

    Heilbronn, L.; Frankel, K.; Holabird, K.; Zeitlin, C.; McMahan, M. A.; Rathbun, W.; Cronqvist, M.; Gong, W.; Madey, R.; Htun, M.; Elaasar, M.; Anderson, B. D.; Baldwin, A. R.; Jiang, J.; Keane, D.; Scott, A.; Shao, Y.; Watson, J. W.; Zhang, W. M.; Galonsky, A.; Ronningen, R.; Zecher, P.; Kruse, J.; Wang, J.; Miller, J. (Principal Investigator)

    1998-01-01

    In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.

  18. Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface

    SciTech Connect

    Richard Maurer

    2008-09-18

    We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the flux of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented.

  19. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  20. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  1. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    SciTech Connect

    Marzec, B.

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  2. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    SciTech Connect

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  3. Interaction between vortices and nuclei in the inner crust of neutron stars

    SciTech Connect

    Avogadro, P.; Barranco, F.; Vigezzi, E.

    2009-05-04

    The inner crust of a neutron star is expected to contain a Coulomb lattice of nuclei immersed in a superfluid sea of free neutrons. The rotation of the star induces the formation of vortices in the neutron sea, whose dynamics is influenced by the interaction with the nuclei. In particular, this interaction is important to determine whether it is energetically advantageous for vortices to pin on nuclei or not. We find that the pinning energy is sensitive to quantal size effects. In fact, the nuclear shell structure tends to hinder the formation of vortices inside the nuclear volume.

  4. Neutron Generation through Ultra-Intense Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zulick, C.; Dollar, F.; Willingale, L.; Chvykov, V.; Kalintchenko, G.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.; Davis, J.; Petrov, G. M.; Glebov, V.; Nilson, P. M.; Sangster, T. C.; Stoeckl, C.; Craxton, R. S.; Norreys, P. A.; Cobble, J.; Chen, H.

    2012-10-01

    Fast neutrons ( 1 MeV) have important applications in biological imaging, materials testing, and active interrogation for homeland security. Experiments at the HERUCLES laser facility produced neutrons with energies up to 12 MeV in directional beams utilizing ^73Li(p,n)^74Be, and ^73Li(d,n)^84Be reactions. The neutrons were produced in a two-stage pitcher-catcher configuration by accelerating protons and deuterons from micron scale solid targets into bulk LiF. The neutron yield was measured to be up to 2.3 (±1.4) x10^7 neutrons/sr with a flux 6 times higher in the forward direction than at 90^o. Additionally, the kilojoule short-pulse OMEGA EP laser was used to investigate ^21D(d,n)^32He reactions from an underdense deuterated plastic plume. Fast neutron spectra were observed via time-of-flight measurements as a result of deuteron acceleration during the channel formation.

  5. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) Front Anti-Coincidence Counter (FACC) Testing

    NASA Astrophysics Data System (ADS)

    Chen, Mingqian

    The searching for proton decay (PDK) is going on current Water Cherenkov (WCh) detectors such as Super-Kamiokande. However, PDK-like backgrounds produced by the neutrino interactions will limit the sensitivity of the detectors. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is going to measure the neutron yield of neutrino interactions in gadolinium-loaded water by the Booster Neutrino Beam (BNB) with known characteristics. In this thesis, neutrino, neutrino oscillations, Dirac neutrino and Majorana neutrino and neutrino interactions are introduced. ANNIE experiment is also introduced. And two modes of proton decays are discussed. The ANNIE experiment requires detection of the neutrons produced by the BNB interactions with water. However, dirt muons produced by the interaction of the BNB with the rock and dirt upstream of the ANNIE hall will cause a correlated background. Therefore, the Front Anti-Coincidence Counter (FACC) was built to measure the rock muons. This thesis details the design, installation, and commissioning of the ANNIE FACC.

  6. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  7. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    SciTech Connect

    Farrer, R.; Longshore, A.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  8. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  9. The neutron alphabet: Exploring the properties of fundamental interactions

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut

    2009-12-01

    We present A, B, C, and other angular correlation coefficients in neutron β-decay. For the first time, they all have been measured. As these measurements address important open questions of particle physics and cosmology, they need to be done as precisely as possible.

  10. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  11. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  12. A Genetic Interaction Screen for Breast Cancer Progression Driver Genes

    DTIC Science & Technology

    2013-06-01

    AD_________________ Award Number: W81XWH-12-1-0082 TITLE: A Genetic Interaction Screen for Breast...COVERED 1 2012 - 3 2013 4. TITLE AND SUBTITLE A Genetic Interaction Screen for Breast Cancer Progression Driver Genes 5a. CONTRACT NUMBER...analysis of genetic alterations in human breast cancers has revealed that individual tumors accumulate mutations in approximately ninety different genes

  13. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    DOE PAGES

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; ...

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated.more » Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.« less

  14. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    SciTech Connect

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; Kierstead, James; Takai, Helio; Frojdh, Erik

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated. Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.

  15. Onset of isomers in Cd125,126,127,128 and weakened neutron-neutron interaction strength

    NASA Astrophysics Data System (ADS)

    Hoteling, N.; Walters, W. B.; Tomlin, B. E.; Mantica, P. F.; Pereira, J.; Becerril, A.; Fleckenstein, T.; Hecht, A. A.; Lorusso, G.; Quinn, M.; Pinter, J. S.; Stoker, J. B.

    2007-10-01

    The presence of isomeric levels with half-lives in the microsecond range has been identified in Cd125,126,127,128. Neutron-rich Cd isotopes were produced from the fragmentation of a 120 MeV/nucleon Xe136 beam and uniquely identified through their time-of-flight, energy loss, and total kinetic energy. γ rays from these isomeric levels were measured with an array of Ge detectors that were gated for 15 μs by a particle implantation trigger from a stack of Si detectors. The γ rays observed in the decay of Cd126,128 isomers populate low-energy levels previously identified in the β decay of Ag126,128. The γ rays found in the decay of Cd125,127 isomers are consistent with expected yrast structures observed in lighter, odd-mass Cd isotopes. The appearance of these isomers at the point where N/Z exceeds 1.6 is interpreted as an indication of the onset of a weakened neutron-neutron interaction that has been proposed for Sn134, whose N/Z also exceeds 1.6.

  16. The Crucial Role of Neutron β-DECAY Experiments in Establishing the Fundamental Symmetries of the V-A Description of Weak Interactions

    NASA Astrophysics Data System (ADS)

    Byrne, J.

    2011-03-01

    Experimental data from unpolarized and polarized neutron beta -decay yield accurate values for the basic parameters of the P-violating T-conserving charged current weak interaction, thereby posing a potentially stringent unitarity test of the CKM quark mixing matrix. Experimental studies of the radiative (BR ~3.10-3) and two-body (BR ~ 4.10-6) decay branches are currently in progress.

  17. Simulation code for the interaction of 14 MeV neutrons on cells.

    PubMed

    Nénot, M L; Alard, J P; Dionet, C; Arnold, J; Tchirkov, A; Meunier, H; Bodez, V; Rapp, M; Verrelle, P

    2002-01-01

    The structure of the survival curve of melanoma cells irradiated by 14 MeV neutrons displays unusual features at very low dose rate where a marked increase in cell killings at 0.05 Gy is followed by a plateau for survival from 0.1 to 0.32 Gy. In parallel a simulation code was constructed for the interaction of 14 MeV neutrons with cellular cultures. The code describes the interaction of the neutrons with the atomic nuclei of the cellular medium and of the external medium (flask culture and culture medium), and is used to compute the deposited energy into the cell volume. It was found that the large energy transfer events associated with heavy charged recoils can occur and that a large part of the energy deposition events are due to recoil protons emitted from the external medium. It is suggested that such events could partially explain the experimental results.

  18. Interactive Graphic User Interface to View Neutron and Gamma-Ray Interaction Cross Sections.

    SciTech Connect

    SUBBAIAH, K. V.

    2001-12-20

    Version 00 VIEW-CXS is an interactive, user-friendly interface to graphically view neutron and gamma-ray cross-sections of isotopes available in different data libraries. The names of isotopes for which the cross-sections are available is shown in a data base grid on the selection of a particular library. Routines have been developed in Visual Basic 6.0 to retrieve required information from each of the binary files or random access files. The present program can fetch data from: 1) ACE random access file used with MCNP code, 2) AMPX binary file used with KENO code, 3) ANISN group cross-sections used with discrete ordinate codes. It is possible to compare the data of cross-sections for any isotope from selected libraries. Besides it is possible to extract a particular nuclear reaction cross-section from ACE library files. Context sensitive help is an attractive feature of the program and aids the novice user to extract the required data.

  19. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  20. Uncertainty analysis of 208Pb neutron skin predictions with chiral interactions

    SciTech Connect

    Sammarruca, Francesca

    2015-09-14

    Here, we report predictions for the neutron skin in 208Pb using chiral two- and three-body interactions at increasing orders of chiral effective field theory and varying resolution scales. Closely related quantities, such as the slope of the symmetry energy, are also discussed. As a result, the sensitivity of the skin to just pure neutron matter pressure when going from order 2 to order 4 of chiral effective theory is singled out in a set of calculations that employ an empirical equation of state for symmetric nuclear matter.

  1. Uncertainty analysis of 208Pb neutron skin predictions with chiral interactions

    DOE PAGES

    Sammarruca, Francesca

    2015-09-14

    Here, we report predictions for the neutron skin in 208Pb using chiral two- and three-body interactions at increasing orders of chiral effective field theory and varying resolution scales. Closely related quantities, such as the slope of the symmetry energy, are also discussed. As a result, the sensitivity of the skin to just pure neutron matter pressure when going from order 2 to order 4 of chiral effective theory is singled out in a set of calculations that employ an empirical equation of state for symmetric nuclear matter.

  2. Constraints on Neutron Star Radii Based on Chiral Effective Field Theory Interactions

    SciTech Connect

    Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.

    2010-10-15

    We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R=9.7-13.9 km for a 1.4M{sub {center_dot}} star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.

  3. A search for nEDM and new constraints on short-range "pseudo-magnetic" interaction using neutron optics of noncentrosymmetric crystal

    NASA Astrophysics Data System (ADS)

    Fedorov, V. V.; Kuznetsov, I. A.; Voronin, V. V.

    2013-08-01

    New approach to measure both neutron electric dipole moment (EDM) and short-range pseudomagnetic nucleon-nucleon interaction using neutron optics of a crystal without center of symmetry is presented. This approach allows getting best direct constraint on the parameters of short range pseudomagnetic interaction of a free neutron with matter for the range of interaction distances λ<10-7 m.

  4. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    NASA Astrophysics Data System (ADS)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  5. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    PubMed

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging.

  6. Progress towards interaction-free all-optical devices

    NASA Astrophysics Data System (ADS)

    Strekalov, Dmitry V.; Kowligy, Abijith S.; Huang, Yu-Ping; Kumar, Prem

    2014-06-01

    We present an all-optical control device in which coupling a weak control optical field into a high-Q lithium niobate whispering-gallery-mode microcavity decouples it from a signal field due to nonlinear optical interactions. This results in switching and modulation of the signal with low-power control pulses. In the quantum limit, the underlying nonlinear-optical process corresponds to the quantum Zeno blockade. Its "interaction-free" nature effectively alleviates loss and decoherence for the signal waves. This work therefore presents experimental progress towards acquiring large phase shifts with few photons or even at the single-photon level.

  7. Neutron scatter studies of chromatin structures related to functions. Technical progress report, November 1, 1991--May 15, 1992

    SciTech Connect

    Bradbury, E.M.

    1992-11-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  8. The progress in the neutron diagnostics in the Fast Ignition experiment with GEKKO XII and LFEX

    NASA Astrophysics Data System (ADS)

    Arikawa, Yasunobu; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Fujioka, Shinsuke; Sarukura, Nobuhiko; Nakai, Mitsuo; Shiraga, Hiroyuki; Azechi, Hiroshi

    2012-10-01

    In the fast ignitor experiment the neutron diagnostics is very challenging due to too large backgrounds originated from hard X ray. In the Fast Ignition integrated experimental campaign held in 2010 in GEKKO XII and LFEX facility in Institute of Laser Engineering Osaka (ILE), the Xylen based new liquid scintillator coupled with the gated photomultiplier tube has successfully recorded neutron signal with heating the energy of up to 400 J. However there was significant large background in the signal originated from neutrons via (γ,n) reaction from the target chamber wall. The neutron collimator was developed and implemented to suppress these neutron backgrounds. We succeeded to record a very clear neutron signals in every shot in the fast ignitor experimental campaign held in July 2012 with the heating laser energy of around 1000 J with the pulse width of 2.2 ps. The details of the detector and the result of the fast ignition experiment will be presented.

  9. Neutrons scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1992

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from {sup 239}Pu; neutron scattering in {sup 181}Ta and {sup 197}Au; response of a {sup 235}U fission chamber near reaction thresholds; two-parameter data acquisition system; ``black`` neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory.

  10. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography.

    PubMed

    Chen, Julian C-H; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y

    2012-09-18

    The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data.

  11. M1 excitation in Sm isotopes and the proton-neutron sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Otsuka, Takaharu; Sugita, Michiaki

    1991-10-01

    The magnetic-dipole scissors mode in spherical to deformed Sm isotopes is studied in terms of the proton-neutron sdg interacting boson model, providing a good agreement with recent experiment by Ziegler et al. The present calculation correctly reproduces the increase of M1 excitation strength in going from spherical to deformed nuclei. It is suggested that there may be 1+ states which do not correspond to the scissors mode but absorb certain M1 strength from the ground state.

  12. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTAR

    SciTech Connect

    Tomita, H. Yamashita, F.; Nakayama, Y.; Morishima, K.; Yamamoto, Y.; Sakai, Y.; Hayashi, S.; Kawarabayashi, J.; Iguchi, T.; Cheon, M. S.; Isobe, M.; Ogawa, K.

    2014-11-15

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

  13. Neutron scatter studies of chromatin structure related to functions. Progress report, July 1, 1988--June 30, 1989

    SciTech Connect

    Bradbury, E.M.

    1989-12-31

    Neutron scatter studies have been performed at LANSCE, LANL and at the Institute Laue Langevin, Grenoble, France. In the previous progress report (April 1, 1988--July 1, 1988) the following objectives were listed: shape of the histone octamer; location of the N-terminal domains of histone in the nucleosome core particle (specific aim 1 of original grant proposal); effect of acetylation on nucleosome structure (specific aim 2); location of the globular domain of histone H1 (specific aim 6); and complexes of the transcription factor 3A with its DNA binding site. Progress is briefly discussed.

  14. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  15. Fast-neutron interactions with /sup 182/W, /sup 184/W and /sup 186/W

    SciTech Connect

    Guenther, P.T.; Smith, A.B.; Whalen, J.F.

    1981-06-01

    Neutron total cross sections of /sup 182/W, /sup 184/W and /sup 186/W are measured from approx. = 0.3 to 5.0 MeV at intervals of less than or equal to 50 keV to accuracies of 1 to 3%. Differential neutron elastic- and inelastic-scattering cross sections of the same three isotopes are measured at scattering angles in the range 20 to 160/sup 0/ and at incident-neutron energy intervals of approx. = 100 keV from 1.5 to 4.0 MeV. Approximately thirty scattered-neutron groups are observed for each of the isotopes. Prominent of these are excitations attributed to collective rotational and vibrational bands. The experimental results are interpreted in terms of optical-statistical and coupled-channels models with particular attention to the direct excitation of ground-state-rotational and ..beta..- and ..gamma..-vibrational bands. The strengths of the direct interactions and the magnitudes of the collective deformations are inferred from the interpretations and compared with similar values previously reported elsewhere. The experimental results are used to deduce experimentally-based evaluated data sets for /sup 182/W, /sup 184/W and /sup 186/W over the energy range 0.1 - approx. = 5.0 MeV.

  16. SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)

    SciTech Connect

    West, J.T.; Murphy, J.

    1988-01-01

    SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.

  17. Nuclear structure studies via neutron inteactions. Progress report, July 1, 1983-June 30, 1984

    SciTech Connect

    Carlton, R.F.

    1984-03-01

    The research performed during the reporting period consisted of (1) the publication of nuclear structure studies of /sup 31/Si, /sup 34/S, /sup 250/Bk, and /sup 250/Cf, (2) completion of the analysis of total neutron cross section measurements on the osmium isotopes and their interpretation in the contexts of astrophysics and the optical model, and (3) total cross section measurements on samples of /sup 86/Kr and natural tin. Two missing 1/2/sup +/ states in /sup 31/Si predicted by shell model calculations have been observed and spectroscopic factors are in good agreement with predicted values. In addition we observe a fragmentation of p strength in this nuclide in reasonable agreement with predictions. The use of external R-functions deduced from multilevel analyses to calculate the average scattering matrix for /sup 30/Si + n, /sup 34/S + n, and /sup 186/ /sup 187/ /sup 188/Os + n has demonstrated the requirement of an l-dependence for the real well depth of the optical model potential required to describe these interactions.

  18. Universality in the Neutron-^{19}C Scattering Using Finite-Range Separable Interactions

    NASA Astrophysics Data System (ADS)

    Shalchi, M. A.; Yamashita, M. T.; Hadizadeh, M. R.; Frederico, T.; Tomio, Lauro

    2017-03-01

    We report a study on the low-energy properties of the elastic s-wave scattering of a neutron ( n) in the carbon isotope ^{19}C near the critical condition for the occurrence of an excited Efimov state in the three-body n- n-^{18}C system. For the separation energy of the two halo neutrons in ^{20}C we use the available experimental data. We also investigate to which extent the universal scaling laws, strictly valid in the zero-range limit, will survive when using finite-range interactions. By allowing to vary the n-^{18}C binding energy, a scaling behavior for the real and imaginary parts of the s-wave phase-shift δ _0 is verified, emerging some universal characteristics given by the pole-position of k\\cot (δ _0^R) and effective-range parameters.

  19. Progress in development of the neutron profile monitor for the large helical device

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Takada, E.; Uchida, Y.; Ochiai, K.; Tomita, H.; Uritani, A.; Kobuchi, T.; Takeiri, Y.

    2014-11-01

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 105 counts per second.

  20. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    PubMed

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  1. Progress in development of the neutron profile monitor for the large helical device

    SciTech Connect

    Ogawa, K. Kobuchi, T.; Isobe, M.; Takeiri, Y.; Takada, E.; Uchida, Y.; Ochiai, K.; Tomita, H.; Uritani, A.

    2014-11-15

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 10{sup 5} counts per second.

  2. Progress in development of the neutron profile monitor for the large helical device.

    PubMed

    Ogawa, K; Isobe, M; Takada, E; Uchida, Y; Ochiai, K; Tomita, H; Uritani, A; Kobuchi, T; Takeiri, Y

    2014-11-01

    The neutron profile monitor stably operated at a high-count-rate for deuterium operations in the Large Helical Device has been developed to enhance the research on the fast-ion confinement. It is composed of a multichannel collimator, scintillation-detectors, and a field programmable gate array circuit. The entire neutron detector system was tested using an accelerator-based neutron generator. This system stably acquires the pulse data without any data loss at high-count-rate conditions up to 8 × 10(5) counts per second.

  3. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  4. Progress on realistic modeling of black hole-neutron star binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2011-04-01

    Black hole-neutron star (BHNS) binary mergers are important gravitational wave sources and (possibly) gamma ray burst progenitors. The current state of the art of BHNS simulations, while an impressive acheivement, is inadequate in a number of ways--most importantly in its treatment of neutron star matter and neutrino emission. We present a status report on the efforts of the Caltech-Cornell-CITA-WSU collaboration to accurately model BHNS binaries with realistic microphysics.

  5. Gamma-ray production cross sections from neutron interactions with iron.

    SciTech Connect

    Nelson, R. O.; Laymon, C. M.; Wender, S. A.; Drake, D. M.; Drosg, Manfred; Bobias, S. G.; McGrath, C. A.

    2002-01-01

    The initial purpose of this experiment was to provide a consistent data base of neutron-induced gamma-ray production cross sections over a large energy range for use in estimating elemental composition of the martian surface by observing gamma rays produced by cosmic ray interactions on the planet's surface [Bo02]. However, these data should be useful for other projects such as oil-well logging, accelerator transmutation of nuclear waste, shielding calculations, gamma-ray heating for nuclear reactors and verification of nuclear model calculations and databases. The goal of the measurements was to collect data on the strongest gamma rays from many samples of interest. Because of the available beam time this meant that many of the measurcments were rather short. Despite the short running time the large samples used and the good beam intensity resulted in very satisfactory results. The samples, chosen mainly as common constituents of rock and soil and measured in the same few week period, include: B&, BN, C, Al, Mg, Si, S, Cay Ti, Cr, Mn, and Fe. Be was also used as a neutron scatterer that only produces one gamma ray (478 keV from 7Li) with appreciable intensity. Thus Be can serve as a measure of neutron-induced backgrounds. In this first paper we present results for Fe.

  6. Odd-even staggering in the neutron-proton interaction and nuclear mass models

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Y.; Zhao, Y. M.; Arima, A.

    2015-02-01

    In this paper we study odd-even staggering of the empirical neutron-proton interaction between the last neutron and the last proton, denoted as δ V1 n -1 p , and its consequence in the Garvey-Kelson mass relations (GKs) and nuclear mass models. The root-mean-squared deviations of predicted masses respectively for even-A and odd-A nuclei by using two combinatorial GKs suggest a large odd-even staggering of δ V1 n -1 p between even-odd and odd-even nuclei, while the odd-even difference of δ V1 n -1 p between even-even and odd-odd nuclei is much smaller. The contribution of the odd-even staggering of δ V1 n -1 p between even-A and odd-A nuclei in deviations of theoretical δ V1 n -1 p values of the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model are well represented by an isospin-dependent term. The consideration of this odd-even staggering improves our description of binding energies and one-neutron separation energies in both the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model.

  7. Discussing Progress in Understanding Ice Sheet-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Herraiz Borreguero, Laura; Mottram, Ruth; Cvijanovic, Ivana

    2010-11-01

    Advanced Climate Dynamics Course 2010: Ice Sheet-Ocean Interactions; Lyngen, Norway, 8-19 June 2010; Sea level rise is one of many expected consequences of climate change, with accompanying complex social and economic challenges. Major uncertainties in sea level rise projections relate to the response of ice sheets to sea level rise and the key role that interactions with the ocean may play. Recognizing that probably no comprehensive curriculum currently exists at any single university that covers this novel and interdisciplinary subject, the Advanced Climate Dynamics Courses (ACDC) team brought together a group of 40 international students, postdocs, and lecturers from diverse backgrounds to provide an overview and discussion of state-of-the-art research into ocean-ice sheet interactions and to propose research priorities for the next decade. Among the key issues addressed were small-scale processes near the Antarctic ice shelves and Greenland outlet glaciers. These are fast changing components in the climate system, often related to large-scale forcings (atmospheric teleconnections and oceanic circulation). Progress in understanding and modeling is hampered by the range of scales involved, the lack of observations, and the difficulties in constraining, initializing, and providing adequate boundary conditions for ice sheet and ocean models.

  8. Progressive freezing of interacting spins in isolated finite magnetic ensembles

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kakoli; Dupuis, Veronique; Le-Roy, Damien; Deb, Pritam

    2017-02-01

    Self-organization of magnetic nanoparticles into secondary nanostructures provides an innovative way for designing functional nanomaterials with novel properties, different from the constituent primary nanoparticles as well as their bulk counterparts. Collective magnetic properties of such complex closed packing of magnetic nanoparticles makes them more appealing than the individual magnetic nanoparticles in many technological applications. This work reports the collective magnetic behaviour of magnetic ensembles comprising of single domain Fe3O4 nanoparticles. The present work reveals that the ensemble formation is based on the re-orientation and attachment of the nanoparticles in an iso-oriented fashion at the mesoscale regime. Comprehensive dc magnetic measurements show the prevalence of strong interparticle interactions in the ensembles. Due to the close range organization of primary Fe3O4 nanoparticles in the ensemble, the spins of the individual nanoparticles interact through dipolar interactions as realized from remnant magnetization measurements. Signature of super spin glass like behaviour in the ensembles is observed in the memory studies carried out in field cooled conditions. Progressive freezing of spins in the ensembles is corroborated from the Vogel-Fulcher fit of the susceptibility data. Dynamic scaling of relaxation reasserted slow spin dynamics substantiating cluster spin glass like behaviour in the ensembles.

  9. High fluence neutron source for nondestructive characterization of nuclear materials. 1997 mid-year progress report

    SciTech Connect

    Pickrell, M.M.

    1997-06-01

    'The author is addressing the need to measure nuclear wastes, residues, and spent fuel in order to process these for final disposition. For example, TRU wastes destined for the WIPP must satisfy extensive characterization criteria outlined in the Waste Acceptance Criteria, the Quality Assurance Program Plan, and the Performance Demonstration Plan. Similar requirements exist for spent fuel and residues. At present, no nondestructive assay instrumentation is capable of satisfying all of the PDP test cycles. One of the primary methods for waste assay is by active neutron intezrooation. The authors plan to improve the capability of all active neutron systems by providing a higher intensity neutron source (by about a factor of 1,000) for essentially the same cost, power, and space requirements as existing systems. This high intensity neutron source will be an electrostatically confined (IEC) plasma device. The IEC is a symmetric sphere that was originally developed in the 1950s as a possible fusion reactor. It operates as D-T neutron generator. Although it was not believed to scale to fusion reactor levels, these experiments demonstrated a neutron yield of 2 x 10 10 neutrons/second on table-top experiments that could be powered from ordinary laboratory circuits (1 kilowatt). Subsequently, the IEC physics has been extensively studied at the University of Illinois. The basis for scaling the output up to 1 x 10 11 n/s has been established. In addition, IEC devices have run for cumulative times approaching 10,000 hours. They have been operated in pulsed-and continuous mode.'

  10. Neutron star structure from a quark-model baryon-baryon interaction

    NASA Astrophysics Data System (ADS)

    Fukukawa, K.; Baldo, M.; Burgio, G. F.; Schulze, H.-J.

    2016-05-01

    We derive the equation of state (EOS) of nuclear matter from are alistic constituent quark model for the nucleon-nucleon interaction. We use the Brueckner-Bethe-Goldstone approach with the inclusion of the three hole-line contribution. We find that the resulting EOS reproduces correctly the saturation point, moreover the symmetry energy at low density, its slope, and the incompressibility turn out to be compatible with phenomenology. We calculate the mass-radius relation for neutron stars, and find maximum values close to two solar masses, in agreement with recent observational data.

  11. Informal progress report on neutron-scattering studies in the actinide region, August 1, 1982-July 31, 1983

    SciTech Connect

    Beghian, L.E.; Kegel, G.H.R.

    1983-01-01

    This informational techical progress report summarizes the principal results of the research performed during the period August 1, 1982 to July 31, 1983. The report covers two areas of neutron cross section measurements: (1) the excited states (E/sub x/ > 650 keV) of /sup 232/Th and /sup 238/U; and (2) the ground state rotational band (0/sup +/, 2/sup +/, 4/sup +/ states) of /sup 232/Th and /sup 238/U from 520 to 940-keV bombarding energy.

  12. Progress in alternative neutron detection to address the helium-3 shortage

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2015-06-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland security (since 2002), the supply could no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.

  13. Interactions between biomaterials and the sclera: Implications on myopia progression

    NASA Astrophysics Data System (ADS)

    Su, James

    Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon's skills and the patient's myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue-inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design. Second, poly(vinyl-pyrrolidone) as injectable gels and poly(2-hydroxyethyl methacrylate) as solid strips were implanted in chicks to demonstrate the concept of posterior pole scleral reinforcements. This second study found that placing appropriate biomaterials at the posterior pole of the eye could directly influence scleral remodeling by interacting with the host cells. Both studies advanced the idea that scleral tissue remodeling could be potentially controlled by well-designed biomaterials. These findings led to the exploration of biomimetic hydrogels comprising enzymatically-degradable semi-interpenetrating polymer networks (edsIPNs) to determine their biocompatibility and effects on the chick posterior eye wall. This third study demonstrated the feasibility of stimulating scleral growth by applying biomimetic

  14. Monte-Carlo gamma response simulation of fast/thermal neutron interactions with soil elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil elemental analysis using characteristic gamma rays induced by neutrons is an effective method of in situ soil content determination. The nuclei of soil elements irradiated by neutrons issue characteristic gamma rays due to both inelastic neutron scattering (e.g., Si, C) and thermal neutron capt...

  15. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography

    PubMed Central

    Chen, Julian C.-H.; Hanson, B. Leif; Fisher, S. Zoë; Langan, Paul; Kovalevsky, Andrey Y.

    2012-01-01

    The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data. PMID:22949690

  16. Data for the neutron interactions with /sup 6/Li and /sup 10/B

    SciTech Connect

    Poenitz, W.P.

    1984-01-01

    The /sup 10/B(n,..cap alpha..), /sup 10/B(n,..cap alpha../sub 1/) and, increasingly in more recent measurement, the /sup 6/Li(n,..cap alpha..) cross sections are the major references used in low energy experiments. Many data from modern measurements are available for the neutron interaction with /sup 6/Li, including total, scattering, and absolute and relative (n,..cap alpha..) cross sections. A consensus has been reached with these new /sup 6/Li + n data. In contrast, the data base for the /sup 10/B neutron interaction cross sections is unfortunately poor. This is even the case for the total cross section which is supposed to be the easiest quantity to be measured. The most serious deficiency is the absence of data from absolute measurements of the /sup 10/B(n,..cap alpha..) and /sup 10/B(n,..cap alpha../sub 1/) cross sections in the last 10 to 15 years. The available cross section data which were used for the ENDF/B-VI evaluation will be discussed. 43 references.

  17. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report, 1990

    SciTech Connect

    Zamenhof, R.G.

    1990-12-31

    This document briefly describes recent advances in the author`s laboratory. Topics described include neutron beam design, high- resolution autoradiography, boronated phenylalanine (BPA) distribution and survival studies in glioma bearing mice, computer- aided treatment planning, prompt gamma boron 10 analysis facility at MITI-II, non-rodent BPA toxicity studies, and preparations for clinical studies.

  18. [A clinical trial of neutron capture therapy for brain tumors]. Technical progress report 1989

    SciTech Connect

    Zamenhof, R.G.

    1989-12-31

    This report describes accomplishments by this laboratory concerning development of high-resolution alpha-autoradiography design of an optimized epithermal neutron beam dosimetry and treatment planning Using Monte Carlo techniques development of a prompt-gamma {sup 10}B analysis facility.

  19. Time of Flight Measurements for Neutrons Produced in Reactions Driven by Laser-Target Interactions at Petawatt level

    NASA Astrophysics Data System (ADS)

    Kisyov, S.; Negoita, F.; Gugiu, M. M.; Higginson, D. P.; Vassura, L.; Borghesi, M.; Bernstein, L.; Bleuel, D. L.; Gobet, F.; Goldblum, B. L.; Green, A.; Hannachi, F.; Kar, S.; Petrascu, H.; Pietreanu, D.; Quentin, L.; Schroer, A.-M.; Tarisien, M.; Versteegen, M.; Willi, O.; Antici, P.; Fuchs, J.

    Short intense pulses of fast neutrons were produced in a two stage laser-driven experiment. Protons were accelerated by means of the Target Normal Sheath Acceleration (TNSA) method using the TITAN facility at the Lawrence Livermore National Laboratory. Neutrons were obtained following interactions of the protons with a secondary lithium fluoride (LiF) target. The properties of the neutron flux were studied using BC-400 plastic scintillation detectors and the neutron time of flight (nTOF) technique. The detector setup and the experimental conditions were simulated with the Geant4 toolkit. The effects of different components of the experimental setup on the nTOF were studied. Preliminary results from a comparison between experimental and simulated nTOF distributions are presented.

  20. Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen.

    PubMed Central

    Velev, O D; Kaler, E W; Lenhoff, A M

    1998-01-01

    The effects of pH and electrolyte concentration on protein-protein interactions in lysozyme and chymotrypsinogen solutions were investigated by static light scattering (SLS) and small-angle neutron scattering (SANS). Very good agreement between the values of the virial coefficients measured by SLS and SANS was obtained without use of adjustable parameters. At low electrolyte concentration, the virial coefficients depend strongly on pH and change from positive to negative as the pH increases. All coefficients at high salt concentration are slightly negative and depend weakly on pH. For lysozyme, the coefficients always decrease with increasing electrolyte concentration. However, for chymotrypsinogen there is a cross-over point around pH 5.2, above which the virial coefficients decrease with increasing ionic strength, indicating the presence of attractive electrostatic interactions. The data are in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO)-type modeling, accounting for the repulsive and attractive electrostatic, van der Waals, and excluded volume interactions of equivalent colloid spheres. This model, however, is unable to resolve the complex short-ranged orientational interactions. The results of protein precipitation and crystallization experiments are in qualitative correlation with the patterns of the virial coefficients and demonstrate that interaction mapping could help outline new crystallization regions. PMID:9826592

  1. Low dose neutron late effects: Cataractogenesis. Final progress report, April 1, 1992--March 31, 1993

    SciTech Connect

    Worgul, B.V.

    1994-04-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({+-} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 keV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {+-} 5%. The fractionation regimen consisted of four exposures, each administered at three hour ({+-} 1 minute) intervals. The neutron irradiated groups were compared to rats irradiated with 250 kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals were examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follow-ups, which proceeded for over 2 years, are now complete. This proved essential inasmuch as given the extremely low doses which were utilized, clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. The results have exceeded all expectations.

  2. Low dose neutron late effects: Cataractogenesis. Progress report, April 1, 1991--December 15, 1991

    SciTech Connect

    Worgul, B.V.

    1991-12-01

    The work is formulated to resolve the uncertainty regarding the relative biological effectiveness (RBE) of low dose neutron radiation. The study exploits the fact that cataractogenesis is sensitive to the inverse dose-rate effect as has been observed with heavy ions and was an endpoint considered in the follow-up of the A-bomb survivors. The neutron radiations were initiated at the Radiological Research Accelerator facility (RARAF) of the Nevis Laboratory of Columbia University. Four week old ({plus_minus} 1 day) rats were divided into eight dose groups each receiving single or fractionated total doses of 0.2, 1.0, 5.0 and 25.0 cGy of monoenergetic 435 KeV neutrons. Special restraining jigs insured that the eye, at the midpoint of the lens, received the appropriate energy and dose with a relative error of {plus_minus}5%. The fractionation regimen consisted of four exposures, each administered at three hour ({plus_minus}) intervals. The neutron irradiated groups are being compared to rats irradiated with 250kVp X-rays in doses ranging from 0.5 to 7 Gy. The animals are being examined on a biweekly basis utilizing conventional slit-lamp biomicroscopy and the Scheimpflug Slit Lamp Imaging System (Zeiss). The follows-ups, entering their second year, will continue throughout the life-span of the animals. This is essential inasmuch as given the extremely low doses which are being utilized clinically detectable opacities were not anticipated until a significant fraction of the life span has lapsed. Current data support this contention. At this juncture cataracts in the irradiated groups are beginning to exceed control levels.

  3. High-pressure/low-temperature neutron scattering of gas inclusion compounds: Progress and prospects

    PubMed Central

    Zhao, Yusheng; Xu, Hongwu; Daemen, Luke L.; Lokshin, Konstantin; Tait, Kimberly T.; Mao, Wendy L.; Luo, Junhua; Currier, Robert P.; Hickmott, Donald D.

    2007-01-01

    Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H2O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H2–H2 distance of only 2.93 Å. This distance is much shorter than that in the solid/metallic hydrogen (3.78 Å), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu3[Co(CN)6]2 and Cu3(BTC)2 (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds. PMID:17389387

  4. Residue Coulomb Interaction Among Isobars and Its Influence in Symmetry Energy of Neutron-Rich Fragment

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wang, Shan-Shan; Zhang, Yan-Li; Zhao, Yi-Long; Wei, Hui-Ling

    2015-09-01

    The residue Coulomb interaction (RCI), which affects the result of symmetry-energy coefficient of neutron-rich nucleus in isobaric yield ratio (IYR) method, is difficult to be determined. Four RCI approximations are investigated: (i) The M1-RCI adopting the ac/T (the ratio of Coulomb energy coefficient to temperature) determined from the IYR of mirror-nucleus fragments; (ii) The M2-RCI by fitting the difference between IYRs; (iii) The M3-RCI adopting the standard Coulomb energy at a temperature T = 2 MeV; and (iv) Neglecting the RCI among isobars. The M1-, M2- and M3-RCI are no larger than 0.4. In particular, the M2-RCI is very close to zero. The effects of RCI in asym/T of fragment are also studied. The M1- and M4-asym/T are found to be the lower and upper limitations of asym/T, respectively. The M2-asym/T overlaps the M4-asym/T, which indicates that the M2-RCI is negligible in the IYR method, and the RCI among the three isobars can be neglected. The relative consistent low values of M3-asym/T (7.5 ± 2.5) are found in very neutron-rich isobars. Supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province (13HASTIT046), and Young Teacher Project in Henan Normal University (HNU), China

  5. D-T neutron generator development for cancer therapy. 1980 annual progress report

    SciTech Connect

    Bacon, F.M.; Walko, R.J.; Bickes, R.W. Jr.; Cowgill, D.F.; Riedel, A.A.; O'Hagan, J.B.

    1980-05-01

    This report summarizes the work completed during the first year of a two-year grant by NCI/HEW to investigate the feasibility of developing a D-T neutron generator for use in cancer therapy. Experiments have continued on the Target Test Facility (TTF) developed during a previous grant to investigate high-temperature metal hydrides for use as target materials. The high voltage reliability of the TTF has been improved so that 200 kV, 200 mA operation is now routine. In recent target tests, the D-D neutron production rate was measured to be > 1 x 10/sup 11//s, a rate that corresponds to a D-T neutron production rate of > 1 x 10/sup 13//s - the desired rate for use in cancer therapy. Deuterium concentration depth profiles in the target, measured during intense ion beam bombardment, show that deuterium is depleted near the surface of the target due to impurities implanted by the ion beam. Recent modifications of the duopigatron ion source to reduce secondary electron damage to the electrodes also improved the ion source efficiency by about 40%. An ultra high vacuum version of the TTF is now being constructed to determine if improved vacuum conditions will reduce ion source impurities to a sufficiently low level that the deuterium near the surface of the target is not depleted. Testing will begin in June 1980.

  6. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers.

    PubMed

    Luchini, Alessandra; Gerelli, Yuri; Fragneto, Giovanna; Nylander, Tommy; Pálsson, Gunnar K; Appavou, Marie-Sousai; Paduano, Luigi

    2017-03-01

    The safe application of nanotechnology devices in biomedicine requires fundamental understanding on how they interact with and affect the different components of biological systems. In this respect, the cellular membrane, the cell envelope, certainly represents an important target or barrier for nanosystems. Here we report on the interaction between functionalized SuperParamagnetic Iron Oxide Nanoparticles (SPIONs), promising contrast agents for Magnetic Resonance Imaging (MRI), and lipid bilayers that mimic the plasma membrane. Neutron Reflectometry, supported by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) experiments, was used to characterize this interaction by varying both SPION coating and lipid bilayer composition. In particular, the interaction of two different SPIONs, functionalized with a cationic surfactant and a zwitterionic phospholipid, and lipid bilayers, containing different amount of cholesterol, were compared. The obtained results were further validated by Dynamic Light Scattering (DLS) measurements and Cryogenic Transmission Electron Microscopy (Cryo-TEM) images. None of the investigated functionalized SPIONs were found to disrupt the lipid membrane. However, in all case we observed the attachment of the functionalized SPIONs onto the surface of the bilayers, which was affected by the bilayer rigidity, i.e. the cholesterol concentration.

  7. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  8. Two-quasineutron states in {sup 248}{sub 98}Cf and {sup 250}{sub 98}Cf and the neutron-neutron residual interactions.

    SciTech Connect

    Katori, K.; Ahmad, I.; Friedman, A. M.; Physics; Osaka Univ.

    2008-07-01

    Two-quasineutron states in {sup 248}Cf and {sup 250}Cf were investigated by single-neutron transfer reactions, {sup 249}Cf(d,t){sup 248}Cf and {sup 249}Cf(d,p){sup 250}Cf. The majority of levels observed were assigned to 12 bands in {sup 248}Cf and six bands in {sup 250}Cf, constructed from the single-particle states in neighboring Cf nuclei. The effective two-body interactions between two odd neutrons coupled outside a deformed core were deduced from the differences in the energies of the bandheads formed by the parallel and antiparallel coupling of the intrinsic spins of the two single-particle states.

  9. Two-quasineutron states in {sub 98}{sup 248}Cf and {sub 98}{sup 250}Cf and the neutron-neutron residual interactions

    SciTech Connect

    Katori, K.; Ahmad, I.; Friedman, A. M.

    2008-07-15

    Two-quasineutron states in {sup 248}Cf and {sup 250}Cf were investigated by single-neutron transfer reactions, {sup 249}Cf(d,t){sup 248}Cf and {sup 249}Cf(d,p){sup 250}Cf. The majority of levels observed were assigned to 12 bands in {sup 248}Cf and six bands in {sup 250}Cf, constructed from the single-particle states in neighboring Cf nuclei. The effective two-body interactions between two odd neutrons coupled outside a deformed core were deduced from the differences in the energies of the bandheads formed by the parallel and antiparallel coupling of the intrinsic spins of the two single-particle states.

  10. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle. Progress report

    SciTech Connect

    DiStravolo, M.A.

    1993-09-01

    This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation.

  11. Effective interactions in lysozyme aqueous solutions: a small-angle neutron scattering and computer simulation study.

    PubMed

    Abramo, M C; Caccamo, C; Costa, D; Pellicane, G; Ruberto, R; Wanderlingh, U

    2012-01-21

    We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r(-6) potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions.

  12. Progress with On-The-Fly Neutron Doppler Broadening in MCNP

    SciTech Connect

    Brown, Forrest B.; Martin, William R.; Yesilyurt, Gokhan; Wilderman, Scott

    2012-06-18

    The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University Programs project 'Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics Simulation of Nuclear Reactors.' This talk describes the project and provides results from the initial implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing. The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits are then used within MCNP during the neutron transport, for OTF broadening based on cell temperatures. It is straightforward to extend this capability to cover any temperature range of interest, allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges throughout the problem geometry.

  13. Neutron chopper development at LANSCE

    SciTech Connect

    Nutter, M.; Lewis, L.; Tepper, S.; Silver, R.N.; Heffner, R.H.

    1985-01-01

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs.

  14. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  15. Progress in Neutron Scattering Studies of Spin Excitations in High-Tc Cuprates

    NASA Astrophysics Data System (ADS)

    Fujita, Masaki; Hiraka, Haruhiro; Matsuda, Masaaki; Matsuura, Masato; Tranquada, John M.; Wakimoto, Shuichi; Xu, Guangyong; Yamada, Kazuyoshi

    2012-01-01

    Neutron scattering experiments continue to improve our knowledge of spin fluctuations in layered cuprates, excitations that are symptomatic of the electronic correlations underlying high-temperature superconductivity. Time-of-flight spectrometers, together with new and varied single crystal samples, have provided a more complete characterization of the magnetic energy spectrum and its variation with carrier concentration. While the spin excitations appear anomalous in comparison with simple model systems, there is clear consistency among a variety of cuprate families. Focusing initially on hole-doped systems, we review the nature of the magnetic spectrum, and variations in magnetic spectral weight with doping. We consider connections with the phenomena of charge and spin stripe order, and the potential generality of such correlations as suggested by studies of magnetic-field and impurity induced order. We contrast the behavior of the hole-doped systems with the trends found in the electron-doped superconductors. Returning to hole-doped cuprates, studies of translation-symmetry-preserving magnetic order are discussed, along with efforts to explore new systems. We conclude with a discussion of future challenges.

  16. Magnetic field instability in a neutron star driven by the electroweak electron-nucleon interaction versus the chiral magnetic effect

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim; Semikoz, Victor B.

    2015-03-01

    We show that the Standard Model electroweak interaction of ultrarelativistic electrons with nucleons (the e N interaction) in a neutron star (NS) permeated by a seed large-scale helical magnetic field provides its growth up to ≳1 015 G during a time comparable with the ages of young magnetars ˜1 04 yr . The magnetic field instability originates from the parity violation in the e N interaction entering the generalized Dirac equation for right and left massless electrons in an external uniform magnetic field. We calculate the average electric current given by the solution of the modified Dirac equation containing an extra current for right and left electrons (positrons), which turns out to be directed along the magnetic field. Such a current includes both a changing chiral imbalance of electrons and the e N potential given by a constant neutron density in a NS. Then we derive the system of the kinetic equations for the chiral imbalance and the magnetic helicity which accounts for the e N interaction. By solving this system, we show that a sizable chiral imbalance arising in a neutron protostar due to the Urca process eL-+p →N +νeL diminishes very rapidly because of a huge chirality-flip rate. Thus the e N term prevails over the chiral effect, providing a huge growth of the magnetic helicity and the helical magnetic field.

  17. Description of the neutron deficient Sr and Zr isotopes in the interacting boson model

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Cǎta, G.; Cutoiu, D.; Constantinescu, G.; Ivaşcu, M.; Zamfir, N. V.

    1983-05-01

    The available experimental data for the neutron deficient isotopes of Sr (78 to 86) and Zr (80 to 86) are collected and compared to the predictions of IBA-1 model calculations. The variations of the collectivity along these two isotopic chains is well reproduced with a set of smoothly varying parameters of the model. The description of both the energy levels and the B(E2) transition probabilities improves with decreasing N, the hamiltonian evolving towards an SU(3) dynamical symmetry. Both the large B(E2) value of the 2 1+ → 0 g.s.+ transition and the predicted prolate shape for the very light isotopes, agree well with the recent findings of superdeformed nuclei around Z, N ≈ 38. Transition strengths for the (p, t) reaction are calculated and compared to experimental observations for 0 + states, and a discussion is made about the possible intruder character of the 0 2+ state. The interacting boson-fermion approximation (IBFA) model is used to extend the calculations to some odd nuclei. Two shell (1g {9}/{2}, 2d {5}/{2}) calculations are performed for the positive-parity states in 83Sr, 81Sr and 85Y and they compare well with the experimental level scheme of these nuclei below 3 MeV excitation.

  18. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    DOE PAGES

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; ...

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) Xmore » 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.« less

  19. Composition dependence of chi from neutron scattering, compressibility, and a purely interaction chi

    NASA Astrophysics Data System (ADS)

    Gujrati, P. D.

    2000-03-01

    We demonstrate that the concept of a bare chi parameter as exchange energy is meaningful only within the context of a lattice theory. We introduce a simple ensemble to describe a compressible system. The ensemble shares many features present in the ensemble describing an incompressible system. This allows us to express the intensity in terms of fluctuations in only one species, a feature also present in the incompressible model. We demonstrate that the perplexing features seen experimentally and theoretically in the wings of small-angle-neutron-scattering (SANS) measured χSANS are spurious and unrelated to the energetics, and result from a definition that leaves behind some nonenergetic contribution, which dominates the behavior in the wings and controls the sign of the curvature. It is easy to identify an appropriate χscatt that properly characterizes the interactions without any superfluous composition dependence. We use our recently developed lattice theory, which gives rise to genuine composition dependence in χscatt due to nonrandomness. For a symmetric blend, χscatt depends only weakly on compressibility. This is not true of an asymmetric blend, where compressibility effects can be strong. In particular, we demonstrate that a linear χscatt results from the asymmetry in the model and not from the compressibility.

  20. Multivalent ion-DNA interaction: Neutron scattering estimates of polyamine distribution

    NASA Astrophysics Data System (ADS)

    Zakharova, S. S.; Egelhaaf, S. U.; Bhuiyan, L. B.; Outhwaite, C. W.; Bratko, D.; van der Maarel, J. R. C.

    1999-12-01

    The partial structure factors pertaining to DNA-DNA, DNA-polyamine, and polyamine-polyamine density correlations in DNA fragment (contour length 54 nm) solutions have been measured with small angle neutron scattering and contrast matching in water. The effect of the polyamines putrescine and spermidine on the DNA molecular structure is gauged from the limiting behavior of the DNA-DNA partial structure factor at high values of momentum transfer. The double layer structure and the extent to which the polyamines can approach the DNA are derived from the DNA-polyamine and polyamine-polyamine partial structure factors. For this purpose, the structure factors are interpreted with the correlation functions derived from the classical Poisson-Boltzmann and the modified Poisson-Boltzmann equations and/or Monte Carlo simulation. For simple salt free DNA with tetramethylammonium or putrescine counterions, spatial fluctuations in the charge density are discussed in terms of the charge structure factor. The structural arrangement of putrescine and spermidine can be fully rationalized in terms of their valence. In the case of spermidine, it is necessary to include ionic correlation effects, but this could be accomplished by modeling the ligands as hard spheres. The polyamines have no detectable effect on the DNA molecular structure and are too large to penetrate the grooves to any significant extent. These results imply that DNA condensation in the presence of polyamines is largely governed by electrostatic interactions, rather than by the binding of the multivalent cation per se.

  1. Interaction of substance P with phospholipid bilayers: A neutron diffraction study.

    PubMed Central

    Bradshaw, J P; Davies, S M; Hauss, T

    1998-01-01

    Neutron diffraction has been used to study the membrane-bound structure of substance P (SP), a member of the tachykinin family of neuropeptides. The depth of penetration of its C-terminus in zwitterionic and anionic phospholipid bilayers was probed by specific deuteration of leucine 10, the penultimate amino acid residue. The results show that the interaction of SP with bilayers, composed of either dioleoylphosphatidylcholine (DOPC), or a 50:50 mixture of DOPC and the anionic phospholipid dioleoylphosphatidylglycerol (DOPG), takes place at two locations. One requires insertion of the peptide into the hydrophobic region of the bilayer, the other is much more peripheral. The penetration of the peptide into the hydrophobic region of the bilayer is reflected in a marked difference in the water distribution profiles. SP is seen to insert into DOPC bilayers, but a larger proportion of the peptide is found at the surface when compared to the anionic bilayers. The positions of the two label populations show only minor differences between the two types of bilayer. PMID:9675189

  2. Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter

    NASA Astrophysics Data System (ADS)

    Wignall, G. D.; Melnichenko, Y. B.

    2005-08-01

    Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the

  3. Left–right asymmetry in integral spectra of γ-quanta in the interaction of nuclei with polarized thermal neutrons

    SciTech Connect

    Vesna, V. A.; Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.; Shul’gina, E. V.

    2015-10-15

    The paper presents results of preliminarymeasurements of the left–right asymmetry in integral spectra of γ-quanta emitted in the interaction of polarized thermal neutrons with nuclei. These results indicate that for all cases of measured statistically significant P-odd asymmetry, the left–right asymmetry coefficient is much smaller than the P-odd asymmetry coefficient. This observation is not consistent with the predictions of theoretical calculations.

  4. Host-pathogen interactions in progressive chronic periodontitis.

    PubMed

    Hernández, M; Dutzan, N; García-Sesnich, J; Abusleme, L; Dezerega, A; Silva, N; González, F E; Vernal, R; Sorsa, T; Gamonal, J

    2011-10-01

    Periodontitis is an infection characterized by the occurrence of supporting tissue destruction with an episodic nature. Disease progression is often determined by the loss of attachment level or alveolar bone, and sequential probing of periodontal attachment remains the most commonly utilized method to diagnose progressive destruction of the periodontium. The tolerance method has been the most extensive clinical method used in recent years to determine site-specific attachment level changes. There is abundant evidence that major tissue destruction in periodontal lesions results from the recruitment of immune cells. Considerable effort has been made to study the host cell and mediator profiles involved in the pathogenesis of chronic periodontitis, but the definition of active sites, where current periodontal breakdown occurs, and consecutive characterization of the mediators involved are still among the main concerns. In the present review, we summarize periodontopathic bacteria and host factors, including infiltrating cell populations, cytokines, and host matrix metalloproteinases, associated with under-going episodic attachment loss that could partly explain the mechanisms involved in destruction of the supporting tissues of the tooth.

  5. Schottky Mass Measurement of the {sup 208}Hg Isotope: Implication for the Proton-Neutron Interaction Strength around Doubly Magic {sup 208}Pb

    SciTech Connect

    Chen, L.; Plass, W. R.; Geissel, H.; Scheidenberger, C.; Litvinov, Yu. A.; Beckert, K.; Beller, P.; Bosch, F.; Caceres, L.; Franzke, B.; Gerl, J.; Gorska, M.; Knoebel, R.; Kozhuharov, C.; Litvinov, S. A.; Mandal, S.; Muenzenberg, G.; Nolden, F.; Saito, N.; Saito, T.

    2009-03-27

    Time-resolved Schottky mass spectrometry has been applied to uranium projectile fragments which yielded the mass value for the {sup 208}Hg (Z=80, N=128) isotope. The mass excess value of ME=-13 265(31) keV has been obtained, which has been used to determine the proton-neutron interaction strength in {sup 210}Pb, as a double difference of atomic masses. The results show a dramatic variation of the strength for lead isotopes when crossing the N=126 neutron shell closure, thus confirming the empirical predictions that this interaction strength is sensitive to the overlap of the wave functions of the last valence neutrons and protons.

  6. Measurement of spin-flip probabilities for ultracold neutrons interacting with nickel phosphorus coated surfaces

    SciTech Connect

    Tang, Zhaowen; Adamek, Evan Robert; Brandt, Aaron; Callahan, Nathan Brannan; Clayton, Steven M.; Currie, Scott Allister; Ito, Takeyasu M.; Makela, Mark F.; Masuda, Yasuhiro; Morris, Christopher L.; Pattie, Robert Wayne; Ramsey, John Clinton; Salvat, Daniel J.; Saunders, Alexander; Young, Albert R.

    2016-04-26

    In this paper, we report a measurement of the spin-flip probabilities for ultracold neutrons interacting with surfaces coated with nickel phosphorus. For 50 μm thick nickel phosphorus coated on stainless steel, the spin-flip probability per bounce was found to be βNiP on SS = (3.3 +1.8, -5.6) X 10-6. For 50 μm thick nickel phosphorus coated on aluminum, the spin-flip probability per bounce was found to be βNiP on Al = (3.6 +2.1, -5.9) X 10-6. For the copper guide used as reference, the spin flip probability per bounce was found to be βCu = (6.7 + 5.0, -2.5) X 10-6. The results on the nickel phosphorus-coated surfaces may be interpreted as upper limits, yielding βNiP on SS < 6.2 X 10-6 (90% C.L.) and βNiP on Al < 7.0 X 10-6 (90% C.L.) for 50 μm thick nickel phosphorus coated on stainless steel and 50 μm thick nickel phosphorus coated on aluminum, respectively. Finally, nickel phosphorus coated stainless steel or aluminum provides a solution when low-cost, mechanically robust, and non-depolarizing UCN guides with a high Fermi potential are needed.

  7. [Research in elementary particles and interactions]. Technical progress report

    SciTech Connect

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.

  8. Phase transitions of dense neutron matter with generalized Skyrme interaction to superfluid states with triplet pairing in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Tarasov, A. N.

    2012-12-01

    A generalized non-relativistic Fermi-liquid approach was used to find analytical formulas for temperatures Tc1(n, H) and Tc2(n, H) (which are functions nonlinear of density n and linear of magnetic field H) of phase transitions in spatially uniform dense pure neutron matter from normal to superfluid states with spin-triplet p-wave pairing (similar to anisotropic superfluid phases 3He-A1 and 3He-A2) in steady and homogeneous strong magnetic field (but |μn| H ll Ec < ɛF(n), where μn is the magnetic dipole moment of a neutron, Ec is the cutoff energy and ɛF(n) is the Fermi energy in neutron matter). General formulas for Tc1, 2 (n, H) (valid for arbitrary parameterization of the effective Skyrme interaction in neutron matter) are specified here for generalized BSk18 parameterization of the Skyrme forces (with additional terms dependent on density n) on the interval 0.3 n0 < n < nc (BSk18) ≍ 2.7952 · n0, where n0 = 0.17 fm-3 is nuclear density and at critical density nc(BSk18) triplet superfluidity disappears, Tc0(n, cH = 0) = 0. Expressions for phase transition temperatures Tc0(n)<0.09MeV (at Ec = 10MeV) and Tc1, 2(n, H) are realistic non-monotone functions of density n for BSk18 parameterization of the Skyrme forces (contrary to their monotone increase for all previous BSk parameterizations). Phase transitions to superfluid states of such type might occur in liquid outer core of magnetars (strongly magnetized neutron stars).

  9. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    SciTech Connect

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  10. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  11. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  12. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  13. A method to measure neutron polarization using P-even asymmetry of {gamma}-quantum emission in the neutron-nuclear interaction

    SciTech Connect

    Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.; Shul'gina, E. V.; Vesna, V. A.

    2012-07-15

    A new method to measure polarization of cold/thermal neutrons using P-even asymmetry in nuclear reactions induced by polarized neutrons is proposed. A scheme profiting from a large correlation of the neutron spin and the circular {gamma}-quantum polarization in the reaction (n, {gamma}) of polarized neutrons with nuclei is analyzed. This method could be used, for instance, to measure the neutron-beam polarization in experiments with frequently varying configuration. We show that high accuracy and reliability of measurements could be expected.

  14. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  15. Interaction of tumor cells and lymphatic vessels in cancer progression.

    PubMed

    Alitalo, A; Detmar, M

    2012-10-18

    Metastatic spread of cancer through the lymphatic system affects hundreds of thousands of patients yearly. Growth of new lymphatic vessels, lymphangiogenesis, is activated in cancer and inflammation, but is largely inactive in normal physiology, and therefore offers therapeutic potential. Key mediators of lymphangiogenesis have been identified in developmental studies. During embryonic development, lymphatic endothelial cells derive from the blood vascular endothelium and differentiate under the guidance of lymphatic-specific regulators, such as the prospero homeobox 1 transcription factor. Vascular endothelial growth factor-C (VEGF-C) and VEGF receptor 3 signaling are essential for the further development of lymphatic vessels and therefore they provide a promising target for inhibition of tumor lymphangiogenesis. Lymphangiogenesis is important for the progression of solid tumors as shown for melanoma and breast cancer. Tumor cells may use chemokine gradients as guidance cues and enter lymphatic vessels through intercellular openings between endothelial cell junctions or, possibly, by inducing larger discontinuities in the endothelial cell layer. Tumor-draining sentinel lymph nodes show enhanced lymphangiogenesis even before cancer metastasis and they may function as a permissive 'lymphovascular niche' for the survival of metastatic cells. Although our current knowledge indicates that the development of anti-lymphangiogenic therapies may be beneficial for the treatment of cancer patients, several open questions remain with regard to the frequency, mechanisms and biological importance of lymphatic metastases.

  16. Neutron Diffraction on NaNi2 BiO6 : Complex Interactions on a Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Scheie, Allen; Ross, Kate; Seibel, Elizabeth; Rodriguez-Rivera, Jose; Broholm, Collin; Cava, Robert; InstituteQuantum Matter Collaboration

    Magnetic crystals with a honeycomb lattice can have a very high degree of frustration when next-nearest neighbor interactions are strong. Such complex interactions can lead to Kitaev model physics, including a proposed spin liquid phase. Using neutron scattering, we studied the magnetic properties of a new spin-1/2 honeycomb compound, NaNi2BiO6, which was known to have heat capacity peaks indicative of a phase transition at 5 K. The magnetic order indicates beyond nearest-neighbor exchange as well as significant inter-plane interaction, which allows for a study of rich and complex structure. In this talk I report the magnetic structure of the compound as found with neutron powder diffraction, and discuss the exchanges necessary to lead to such a complex order. The work at IQM was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, under Grant No. DEFG02-08ER46544.

  17. Cross sections for fast-neutron interaction with Lu, Tb, and Ta isotopes

    SciTech Connect

    Dzysiuk, N.; Kadenko, I.; Yermolenko, R.; Koning, A. J.

    2010-01-15

    The cross sections for (n,x) reactions with Lu, Tb, and Ta isotopes were measured at (d,t) neutron energies around 14 MeV with the activation technique using metal foils of natural composition. Additionally, tantalum samples were irradiated with (d,d) neutrons and filtered neutron beams. To ensure an acceptable precision of the results all major sources of uncertainties were taken into account. Calculations of efficiency and correction factors were performed with the Monte Carlo technique. The cross section results obtained for the {sup 175}Lu(n,{alpha}){sup 172}Tm reaction at (d,t) neutron energies are reported for the first time. {sup 181}Ta(n,{gamma}){sup 182}Ta{sup m2} reaction cross sections were also measured for the first time at 1.9, 58.7, and 144.3 keV and at 2.85 MeV. The earlier evaluated cross section upper estimate for the nuclear reaction {sup 159}Tb(n,n{sup '}{alpha}){sup 155}Eu is reported in this article to be one order lower. Some other cross sections were obtained with higher precision. Theoretical calculations of excitation functions were performed with the TALYS-1.0 code and compared with the experimental cross section values.

  18. Physics of Neutron Interactions with 238U: New Developments and Challenges

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Herman, M.; Daskalakis, A.; Danon, Y.

    2014-04-01

    The latest release of the EMPIRE-3.1 system (codename Rivoli) is being used in the advanced modeling of neutron induced reactions on the 238U nucleus with the aim of improving our knowledge of neutron scattering. The reaction model includes: (i) a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides, (ii) the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects enhanced by a dispersive treatment of the optical model potential, (iii) a multi-humped fission barrier with absorption in the secondary well as described within the optical model for fission, and (iv) a modified Lorentzian model (MLO) of the radiative strength function. Impact of the advanced modeling on elastic and inelastic scattering cross section is being assessed by both comparison with selected microscopic experimental data and integral criticality benchmarks (e.g. FLATTOP, JEMIMA and BIGTEN assemblies). Benchmark calculations provide feedback to improve the reaction modeling and reduce both model and model-parameters uncertainties. Additionally, neutron scattering yields on 238U measured accurately at RPI by the time-of-flight technique at 29, 60, 112 and 153 degrees have been used as a further constraint on the incident energy dependence of elastic and inelastically scattered neutrons. Improvement of scattering cross sections in existing libraries is discussed.

  19. P-parity nonconservation in the total cross section for the interaction of thermal neutrons with /sup 233/U

    SciTech Connect

    Vesna, V.A.; Kolomenskii, A.; Okunev, I.S.; Pirozhkov, A.N.; Smotritskii, L.M.; Shul'gina, E.V.; Kornyushkin, A.F.; Titov, N.A.; Solov'ev, S.M.; Lobashev, V.M.

    1983-04-20

    An upper limit is found on the difference between the cross sections for the interactions of thermal neutrons with opposite helicities with /sup 233/U: P = (sigma/sup +//sub t/-sigma/sup -//sub t/)/(sigma/sup +//sub t/ +sigma/sup -//sub t/)<1.5 x 10/sup -6/ (at a 90% confidence level). This result contradicts the value P = 10/sup -4/--10/sup -5/ estimated under the assumption that the 0.17-eV level is a p-wave level.

  20. High intensity laser interactions with underdense plasma: a source of energetic electrons, ions, neutrons and gamma-rays

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2002-11-01

    With the rapid advances in laser technology, laser beams are now available that can be routinely focused to intensities approaching 10^20 Wcm-2. At these intensities all matter becomes ionised on a time scale close to the period of the laser. The subsequent interaction is therefore characterised by the interaction of an intense laser beam with a highly dissociated medium (plasma). The interaction is particularly interesting since at these intensities, the normalised momentum of the electrons in the laser field is given by a_0=0.89× I(10^18 Wcm-2× λ^2(μ m)). Hence the quiver velocity of the plasma electrons in the electric field of the laser beam becomes relativistic. The interaction of the laser beam with a plasma at such elevated intensities is highly non-linear, and can lead to a whole host of interesting phenomena. These include relativistic self-focusing, harmonic generation, and Raman type parametric instabilities. These processes are of interest, not only from a scientific perspective, but also a technological one, with the prospect that such an interaction can provide useful sources of energetic particles. In this context, plasma wave generation by laser beam self-modulation, proton acceleration by Coulomb explosions and thermonuclear fusion neutron generation by extreme heating of intense laser beams will be discussed. Recent highlights of this research include the detection of protons of energies in excess of 1 MeV, the heating of an underdense deuterium plasma to temperatures in excess of 1 keV, resulting in the detection in excess of 10^6 fusion neutrons; and the detection of electrons accelerated to greater than 200 MeV due to the generation of relativistically steepened plasma waves. The latter measurement is particularly noteworthy since it is obtained with a 1 J, 10 Hz laser system, (Salle Jaune, LOA).

  1. Generation of the magnetic helicity in a neutron star driven by the electroweak electron-nucleon interaction

    SciTech Connect

    Dvornikov, Maxim; Semikoz, Victor B. E-mail: semikoz@yandex.ru

    2015-05-01

    We study the instability of magnetic fields in a neutron star core driven by the parity violating part of the electron-nucleon interaction in the Standard Model. Assuming a seed field of the order 10{sup 12} G, that is a common value for pulsars, one obtains its amplification due to such a novel mechanism by about five orders of magnitude, up to 10{sup 17} G, at time scales ∼ (10{sup 3}–10{sup 5}) yr. This effect is suggested to be a possible explanation of the origin of the strongest magnetic fields observed in magnetars. The growth of a seed magnetic field energy density is stipulated by the corresponding growth of the magnetic helicity density due to the presence of the anomalous electric current in the Maxwell equation. Such an anomaly is the sum of the two competitive effects: (i) the chiral magnetic effect driven by the difference of chemical potentials for the right and left handed massless electrons and (ii) constant chiral electroweak electron-nucleon interaction term, which has the polarization origin and depends on the constant neutron density in a neutron star core. The remarkable issue for the decisive role of the magnetic helicity evolution in the suggested mechanism is the arbitrariness of an initial magnetic helicity including the case of non-helical fields from the beginning. The tendency of the magnetic helicity density to the maximal helicity case at large evolution times provides the growth of a seed magnetic field to the strongest magnetic fields in astrophysics.

  2. Maternal Environment Interacts with Modifier Genes to Influence Progression of Nephrotic Syndrome

    PubMed Central

    Ratelade, Julien; Lavin, Tiphaine Aguirre; Muda, Andrea Onetti; Morisset, Ludivine; Mollet, Géraldine; Boyer, Olivia; Chen, Deborah S.; Henger, Anna; Kretzler, Matthias; Hubner, Norbert; Théry, Clotilde; Gubler, Marie-Claire; Montagutelli, Xavier; Antignac, Corinne; Esquivel, Ernie L.

    2008-01-01

    Mutations in the NPHS2 gene, which encodes podocin, are responsible for some cases of sporadic and familial autosomal recessive steroid-resistant nephrotic syndrome. Inter- and intrafamilial variability in the progression of renal disease among patients bearing NPHS2 mutations suggests a potential role for modifier genes. Using a mouse model in which the podocin gene is constitutively inactivated, we sought to identify genetic determinants of the development and progression of renal disease as a result of the nephrotic syndrome. We report that the evolution of renal disease as a result of nephrotic syndrome in Nphs2-null mice depends on genetic background. Furthermore, the maternal environment significantly interacts with genetic determinants to modify survival and progression of renal disease. Quantitative trait locus mapping suggested that these genetic determinants may be encoded for by genes on the distal end of chromosome 3, which are linked to proteinuria, and on the distal end of chromosome 7, which are linked to a composite trait of urea, creatinine, and potassium. These loci demonstrate epistatic interactions with other chromosomal regions, highlighting the complex genetics of renal disease progression. In summary, constitutive inactivation of podocin models the complex interactions between maternal and genetically determined factors on the progression of renal disease as a result of nephrotic syndrome in mice. PMID:18385421

  3. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  4. Study on the Interactions of Nutrition and Infection. Progress Report 1970-71.

    ERIC Educational Resources Information Center

    Narangwal Rural Health Research Centre (India).

    This document reports progress made by the Narangwal Rural Health Research Center in understanding the interactions of nutrition and infection in India. As part of a longitudinal study, 11 Punjab villages were divided into groups and received health care, nurtitional supplements or a combination of both. A control group received only symptomatic…

  5. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint US/Russian Progress Report for Fiscal 1997. Volume 3 - Calculations Performed in the Russian Federation

    SciTech Connect

    1998-06-01

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the Russian Federation during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the contaminated benchmarks that the United States and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  6. Fast-neutron interaction with the fission product {sup 103}Rh

    SciTech Connect

    Smith, A.B. |; Guenther, P.T.

    1993-09-01

    Neutron total and differential elastic- and inelastic-scattering cross sections of {sup 103}Rh are measured from {approximately} 0.7 to 4.5 MeV (totals) and from {approximately} 1.5 to 10 MeV (scattering) with sufficient detail to define the energy-averaged behavior of the neutron processes. Neutrons corresponding to excitations of groups of levels at 334 {plus_minus} 13, 536 {plus_minus} 10, 648 {plus_minus} 25, 796 {plus_minus} 20, 864 {plus_minus} 22, 1120 {plus_minus} 22, 1279 {plus_minus} 60, 1481 {plus_minus} 27 and 1683 {plus_minus} 39 keV were observed. Additional groups at 1840 {plus_minus} 79 and 1991 {plus_minus} 71 key were tentatively identified. Assuming the target is a collective nucleus reasonably approximated by a simple one-phonon vibrator, spherical-optical, dispersive-optical, and coupled-channels models were developed from the data base with attention to the parameterization of the large inelastic-scattering cross sections. The physical properties of these models are compared with theoretical predictions and the systematics of similar model parameterizations in this mass region. In particular, it is shown that the inelastic-scattering cross section of the {sup 103}Rh fission product is large at the relatively low energies of applied interest.

  7. High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, J.; Petrov, G. M.; Nees, J. A.; He, Z.-H.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2016-10-01

    Using several-mJ energy pulses from a high-repetition rate (1/2 kHz), ultrashort (35 fs) pulsed laser interacting with a ˜ 10 μm diameter stream of free-flowing heavy water (D2O), we demonstrate a 2.45 MeV neutron flux of 105/s. Operating at high intensity (of order 1019 W/cm2), laser pulse energy is efficiently absorbed in the pre-plasma, generating energetic deuterons. These collide with deuterium nuclei in both the bulk target and the large volume of low density D2O vapor surrounding the target to generate neutrons through d ( d , n ) 3 He reactions. The neutron flux, as measured by a calibrated neutron bubble detector, increases as the laser pulse energy is increased from 6 mJ to 12 mJ. A quantitative comparison between the measured flux and the results derived from 2D-particle-in-cell simulations shows comparable neutron fluxes for laser characteristics similar to the experiment. The simulations reveal that there are two groups of deuterons. Forward moving deuterons generate deuterium-deuterium fusion reactions in the D2O stream and act as a point source of neutrons, while backward moving deuterons propagate through the low-density D2O vapor filled chamber and yield a volumetric source of neutrons.

  8. Power Burst Facility/Boron Neutron Capture Therapy program for cancer treatment, Volume 4, No. 7

    SciTech Connect

    Ackermann, A.L.

    1990-07-01

    This report discusses the monthly progress of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNLT) program for cancer treatment. Highlights of the PBF/BNCT Program during July 1990 include progress within the areas of: Gross boron analysis in tissue, blood, and urine; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support and PBF operations.

  9. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  10. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    SciTech Connect

    Timmins, P.A.; Pebay-Peyroula, E.

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  11. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation.

    PubMed

    Ruiz, C L; Chandler, G A; Cooper, G W; Fehl, D L; Hahn, K D; Leeper, R J; McWatters, B R; Nelson, A J; Smelser, R M; Snow, C S; Torres, J A

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  12. A Measurement of the Interaction of Neutrons With 7Be at Cosmological Energies

    NASA Astrophysics Data System (ADS)

    Kading, E. E.; Gai, M.; Palchan, T.; Paul, M.; Tessler, M.; Weiss, A.; Berkovits, D.; Halfon, Sh.; Kijel, D.; Kreisel, A.; Shor, A.; Silverman, I.; Weissman, L.; Dressler, R.; Heinitz, S.; Maugeri, E. A.; Schumann, D.; Hass, M.; Mukul, I.; Shachar, Y.; Seiffert, Ch,; Stora, Th.; Ticehurst, D.; Howell, C. R.; Kivel, N.

    2016-09-01

    We exposed the 4.4 GBq electroplated 7Be target prepared at the Paul Scherrer Institute in Switzerland to the high neutrons flux of 5x1010 /sec/cm2 generated by the LiLiT at the Soreq Applied Research Accelerator Facility (SARAF) in Israel. The so produced quasi-Maxwelian neutron spectrum with an equivalent kT = 49.2 keV simulate directly BBN conditions with T = 700 - 500 MK (kT = 60 - 43 keV), allowing the first measurement at Big Bang energies. The measured alpha-particles emanating from all possible 8Be states populated in the 7Be(n, α) and 7Be(n, γα) reaction, detected with a CR39 plastic track detectors, will be shown and discussed. This material is based upon work supported by the U.S - Israel Binational Science Foundation, under Award Number 2012098 and the US. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-94ER40870.

  13. On the Rutherford-Santilli neutron model

    SciTech Connect

    Burande, Chandrakant S.

    2015-03-10

    In 1920 H. Rutherford conjectured that the first particle synthesized in stars is neutron from a proton and an electron after which all known matter is progressively synthesized. However, Pauli objected Rutherford’s version of neutron synthesis because inability to represent spin 1/2 of the neutron. Using this objection E. Fermi proposed emission of massless particle, called “neutrino”. However, Santilli has dismissed the neutrino hypothesis following certain ambiguities such as positive binding energy required in synthesis of neutron. He found that celebrated Schrödinger’s equation of quantum physics is not suitable for obtaining positive binding energy for bound state at the dimension of 10{sup −13}cm. In order to remove these shortcomings, Santilli has developed isomathematics and then hadronic mechanics, which allowed the time invariant representation of Hamiltonian and non-Hamiltonian interactions as needed for the neutron synthesis (see for example: References cited at [1]).Thus the anomalies pertaining to the binding energy, the spin and the magnetic moment got resolved. He successfully calculated missing positive binding energy via isonormalization of the mass for electron when totally immersed within the hyper-dense medium inside the proton. Considering Rutherford’s compression of the isoelectron within the proton in the singlet coupling, he also identified the spin 1/2 for neutron and calculated the magnetic moment of the neutron. In order to verify his logical concept, he repeated the Don Carlo Borghi experiment of synthesis of the neutron from proton and electrons and verified that the said setup indeed produces neutron-type particles called “neutroids” which latter is absorbed by the activated detector substances that produces known nuclear reactions. He dismissed the neutrino hypothesis and replaced it with a longitudinal impulse originating from the ether as a universal substratum, named, “etherino”. He pointed out that all the

  14. Neutron field for boron neutron capture therapy

    SciTech Connect

    Kanda, K.; Kobayashi, T.

    1986-01-01

    Recently, the development of an epithermal neutron source has been required by medical doctors for deeper neutron penetrations, which is to be used for deep tumor treatment and diagnosis of metastasis. Several attempts have already been made to realize an epithermal neutron field, such as the undermoderated neutron beam, the filtered neutron beam, and the use of a fission plate. At present, these facilities can not be used for actual therapy. For the treatment of deep tumor, another method has been also proposed in normal water in the body is replaced by heavy water to attain a deeper neutron penetration. At Kyoto University's Research Reactor Institute, almost all physics problems have been settled relative to thermal neutron capture therapy that has been used for treating brain tumors and for biological experiments on malignant melanoma. Very recently feasibility studies to use heavy water have been started both theoretically and experimentally. The calculation shows the deeper penetration of neutrons as expected. Two kinds of experiments were done by using the KUR guide tube: 1. Thermal neutron penetration measurement. 2. Heavy water uptake in vitro sample. In addition to the above experiment using heavy water, the development of a new epithermal neutron source using a large fission plate is in progress, which is part of a mockup experiment of an atomic bomb field newly estimated.

  15. Dimerization of TRAF-interacting protein (TRAIP) regulates the mitotic progression.

    PubMed

    Park, I Seul; Jo, Ku-Sung; Won, Hyung-Sik; Kim, Hongtae

    2015-08-07

    The homo- or hetero-dimerization of proteins plays critical roles in the mitotic progression. The TRAF-interacting protein (TRAIP) is crucial in early mitotic progression and chromosome alignment defects in the metaphase. The TRAIP is a 469 amino acid protein, including the Really Interesting New Gene (RING), coiled-coil (CC), and leucine zipper (LZ) domain. In general, the CC or LZ domain containing proteins forms homo- or hetero-dimerization to achieve its activity. In this study, a number of TRAIP mutants were used to define the TRAIP molecular domains responsible for its homo-dimerization. A co-immunoprecipitation assay indicated that the TRAIP forms homo-dimerization through the CC domain. The cells, expressing the CC domain-deleted mutant that could not form a homo-dimer, increased the mitotic index and promoted mitotic progression.

  16. High Repetition-Rate Neutron Generation by Several-mJ, 35 fs pulses interacting with Free-Flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, Jungmoo; Petrov, George; Nees, John; He, Zhaohan; Hammig, Mark; Krushelnick, Karl; Thomas, Alexander

    2016-10-01

    Recent advance in ultra-high power laser technology allows a development of laser-based neutron sources. Here we demonstrate heavy-water based neutron source. Using several-mJ energy pulses from a high-repetition rate (½kHz), ultrashort (35 fs) pulsed laser interacting with a 10 μm diameter stream of free-flowing heavy water (D2O), we get a 2.45 MeV neutron flux of 105/s. In the intentionally generated pre-plasma, laser pulse energy is efficiently absorbed, and energetic deuterons are generated. As a convertor, the bulk heavy water stream target and the large volume of low density D2O vapor near the target are collided with accelerated deuterons, generating neutron through d(d,n)3He reactions. As laser pulse energy increased from 6mJ to 12mJ, the neutron flux increased. From the 2D particle-in-cell simulation, comparable neutron fluxes are shown at the similar laser characteristics to the experiment. Also, simulation shows forward and backward moving deuterons, which are main distributing ions impinging upon D2O stream and vapor, respectively. This material is based upon work supported by the Air Force Office of Scien- tific Research under Award Numbers FA9550-12-1-0310 (Young Investigator Program) and FA9550-14-1-0282.

  17. Odd-even {sup 147-153}Pm isotopes within the neutron-proton interacting boson-fermion model

    SciTech Connect

    Barea, J.; Alonso, C. E.; Arias, J. M.

    2011-02-15

    Low-lying energy states of the {sup 147-153}Pm isotopic chain are studied within the framework of the neutron-proton interacting boson-fermion model (IBFM-2). The spectra of these isotopes show a transition from a particle coupled to a vibrational core to a particle coupled to a deformed one. The calculation reproduces this behavior. In addition, reduced transition probabilities B(E2) and B(M1) and quadrupole and magnetic moments, as well as spectroscopic factors corresponding to stripping and pickup transfer reactions, are calculated. Obtained results compare well with the available experimental data, which reinforces the reliability of the wave functions obtained within the IBFM-2 model.

  18. Neutron Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Nico, J. S.

    2006-11-01

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  19. Neutron Lifetime Measurements

    SciTech Connect

    Nico, J. S.

    2006-11-17

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  20. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.

    PubMed

    2016-02-01

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.

  1. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges

    NASA Astrophysics Data System (ADS)

    Saffman, M.

    2016-10-01

    We present a review of quantum computation with neutral atom qubits. After an overview of architectural options and approaches to preparing large qubit arrays we examine Rydberg mediated gate protocols and fidelity for two- and multi-qubit interactions. Quantum simulation and Rydberg dressing are alternatives to circuit based quantum computing for exploring many body quantum dynamics. We review the properties of the dressing interaction and provide a quantitative figure of merit for the complexity of the coherent dynamics that can be accessed with dressing. We conclude with a summary of the current status and an outlook for future progress.

  2. New approximate orientation averaging of the water molecule interacting with the thermal neutron

    SciTech Connect

    Markovic, M.I.; Minic, D.M.; Rakic, A.D. . Elektrotehnicki Fakultet)

    1992-02-01

    This paper reports that exactly describing the time of thermal neutron collisions with water molecules, orientation averaging is performed by an exact method (EOA{sub k}) and four approximate methods (two well known and two less known). Expressions for the microscopic scattering kernel are developed. The two well-known approximate orientation averaging methods are Krieger-Nelkin (K-N) and Koppel-Young (K-Y). The results obtained by one of the two proposed approximate orientation averaging methods agree best with the corresponding results obtained by EOA{sub k}. The largest discrepancies between the EOA{sub k} results and the results of the approximate methods are obtained using the well-know K-N approximate orientation averaging method.

  3. Interactions of slow neutrons with nuclides of antimony, tellurium and iodine

    NASA Astrophysics Data System (ADS)

    Koester, L.; Knopf, K.; Waschkowski, W.

    1986-09-01

    Coherent neutron scattering lengths and total cross sections have been measured on samples of ordinary Sb, Te, I and on isotopically enriched compounds. From the experimental data for neutron energies of 0.57 meV, 1.26 eV and 5.2 eV the following data were obtained: the coherent scattering lengths (in fm) of the bound atoms Sb (5.57±0.03);121Sb(5.71±0.06),123Sb(5.38±0.07); Te(5.80±0.03) and for its isotopes of the mass number 122(3.8±0.2); 123(-0.05±0.25-i·0.100); 124(7.95±0.10); 125(5.01±0.08); 126(5.55±0.07); 128 (5.88±0.07); 130(6.01±0.07). the thermal absorption cross sections (in barn) for Sb(4.91±0.05);121Sb(5.77±0.12);123Sb(3.8±0.2); Te(4.05±0.05) and I(6.15±0.06). The combination of the measured values of scattering lengths and -cross sections resulted in data for coherent and incoherent cross sections. Taking account of resonance data a complete set of spin state- and reconance scattering lengths has been obtained and discussed.

  4. Identifying gene-environment and gene-gene interactions using a progressive penalization approach.

    PubMed

    Zhu, Ruoqing; Zhao, Hongyu; Ma, Shuangge

    2014-05-01

    In genomic studies, identifying important gene-environment and gene-gene interactions is a challenging problem. In this study, we adopt the statistical modeling approach, where interactions are represented by product terms in regression models. For the identification of important interactions, we adopt penalization, which has been used in many genomic studies. Straightforward application of penalization does not respect the "main effect, interaction" hierarchical structure. A few recently proposed methods respect this structure by applying constrained penalization. However, they demand very complicated computational algorithms and can only accommodate a small number of genomic measurements. We propose a computationally fast penalization method that can identify important gene-environment and gene-gene interactions and respect a strong hierarchical structure. The method takes a stagewise approach and progressively expands its optimization domain to account for possible hierarchical interactions. It is applicable to multiple data types and models. A coordinate descent method is utilized to produce the entire regularized solution path. Simulation study demonstrates the superior performance of the proposed method. We analyze a lung cancer prognosis study with gene expression measurements and identify important gene-environment interactions.

  5. Strong interactions studies with medium energy probes. Progress report, 1993--1994

    SciTech Connect

    Seth, K.K.

    1994-09-01

    This progress report refers to the period August 1993 to September 1994, which includes the second year of the three year period December 1, 1992--November 30, 1995 of our existing research contract. The budget proposal for the third year, December 1, 1994 to November 30, 1995 as originally approved, is also presented. As anticipated in our 1992--1995 proposal, Fermilab E760/E835 on high precision charmonium spectroscopy has remained a major part of our preoccupation and commitment during the last year, and it will remain so in the forthcoming year. In early 1994 we joined the collaboration of the Brookhaven experiment E852 on the spectroscopy of states with exotic quantum numbers. The first successful three month run of E852 was completed on July 31 and preliminary data analysis has been started. Some new commitments have resulted from this collaboration and a separate proposal for supplemental financial support is being prepared for them. At Los Alamos our experiment {number_sign}1274 on search of extremely neutron rich exotic nuclei by pion absorption began making initial measurements a month ago and is expected to take data during the period October 15--November 30, 1994. In addition to the above on-going programs, our Bates proposal (94-01) for a definitive measurement of the quenching of the longitudinal response in quasi-free scattering of electrons from nuclei has been approved with high priority for 600 hours of beam time, and we expect to start the experiment in late 1995.

  6. Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes

    NASA Astrophysics Data System (ADS)

    Foglia, Fabrizia; Lawrence, M. Jayne; Demeė, Bruno; Fragneto, Giovanna; Barlow, David

    2012-10-01

    Over the last 50 years or so, amphotericin has been widely employed in treating life-threatening systemic fungal infections. Its usefulness in the clinic, however, has always been circumscribed by its dose-limiting side-effects, and it is also now compromised by an increasing incidence of pathogen resistance. Combating these problems through development of new anti-fungal agents requires detailed knowledge of the drug's molecular mechanism, but unfortunately this is far from clear. Neutron diffraction studies of the drug's incorporation within lipid-sterol membranes have here been performed to shed light on this problem. The drug is shown to disturb the structures of both fungal and mammalian membranes, and co-localises with the membrane sterols in a manner consistent with trans-membrane pore formation. The differences seen in the membrane lipid ordering and in the distributions of the drug-ergosterol and drug-cholesterol complexes within the membranes are consistent with the drug's selectivity for fungal vs. human cells.

  7. Investigation of the interaction of dimethyl sulfoxide with lipid membranes by small-angle neutron scattering

    SciTech Connect

    Gorshkova, J. E. Gordeliy, V. I.

    2007-05-15

    The influence of dimethyl sulfoxide (CH{sub 3}){sub 2}SO (DMSO) on the structure of membranes of 1,2-dimiristoyl-sn-glycero-3-phosphatidylcholine (DMPC) in an excess of a water-DMSO solvent is investigated over a wide range of DMSO molar concentrations 0.0 {<=} X{sub DMSO} {<=} 1.0 at temperatures T = 12.5 and 55 deg. C. The dependences of the repeat distance d of multilamellar membranes and the thickness d{sub b} of single vesicles on the molar concentration X{sub DMSO} in the L{sub {beta}}{sub '} gel and L{sub {alpha}} liquid-crystalline phases are determined by small-angle neutron scattering. The intermembrane distance d{sub s} is determined from the repeat distance d and the membrane thickness d{sub b}. It is shown that an increase in the molar concentration X{sub DMSO} leads to a considerable decrease in the intermembrane distance and that, at X{sub DMSO} = 0.4, the neighboring membranes are virtually in steric contact with each other. The use of the deuterated phospholipid (DMSO-D6) and the contrast variation method makes it possible, for the first time, to determine the number of DMSO molecules strongly bound to the membrane.

  8. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer.

    PubMed

    Constanzo, Jerfiz D; Tang, Ke-Jing; Rindhe, Smita; Melegari, Margherita; Liu, Hui; Tang, Ximing; Rodriguez-Canales, Jaime; Wistuba, Ignacio; Scaglioni, Pier Paolo

    2016-05-01

    The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  9. Quasi-elastic neutron scattering studies of protein dynamics. Progress report, November 1, 1992--May 25, 1993

    SciTech Connect

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  10. Interaction between surfactants and colloidal latexes in nonpolar solvents studied using contrast-variation small-angle neutron scattering.

    PubMed

    Smith, Gregory N; Alexander, Shirin; Brown, Paul; Gillespie, David A J; Grillo, Isabelle; Heenan, Richard K; James, Craig; Kemp, Roger; Rogers, Sarah E; Eastoe, Julian

    2014-04-01

    The interaction between deuterium-labeled Aerosol OT surfactant (AOT-d34) and sterically stabilized poly(methyl methacrylate) (PMMA) latex particles dispersed in nonpolar solvents has been studied using contrast-variation small-angle neutron scattering (CV-SANS). The electrophoretic mobilities (μ) of the latexes have been measured by phase-analysis light scattering, indicating that μ is negative. Two analogues of the stabilizers for the particles have been studied as free polymers in the absence of PMMA latexes: poly(12-hydroxystearic acid) (PHSA) polyester and poly(methyl methacrylate)-graft-poly(12-hydroxystearic acid) (PMMA-graft-PHSA) stabilizer copolymer. The scattering from both PHSA in dodecane and PMMA-graft-PHSA in toluene is consistent with extended polymer chains in good solvents. In dodecane, PMMA-graft-PHSA forms polymer micelles, and SANS is consistent with ellipsoidal aggregates formed of around 50 polymer chains. CV-SANS measurements were performed by measuring SANS from systems of PHSA, PMMA-graft-PHSA, and PMMA latexes with 10 and 100 mM surfactant solutions of AOT-d34 in both polymer/particle and AOT contrast-matched solvent. No excess scattering above the polymer or surfactant was found for PHSA in dodecane or PMMA-graft-PHSA in dodecane and toluene. This indicates that AOT does not significantly interact with the free polymers. Excess scattering was observed for systems with AOT-d34 and PMMA latexes dispersed in particle contrast-matched dodecane, consistent with the penetration of AOT into the PMMA latexes. This indicates that AOT does not interact preferentially with the stabilizing layers but, rather, is present throughout the colloids. Previous research ( Langmuir 2010, 26, 6967-6976 ) suggests that AOT surfactant is located in the latex PHSA-stabilizer layer, but all the results in this study are consistent with AOT poorly interacting with alkyl-stabilizer polymers.

  11. Mechanical properties of interacting lipopolysaccharide membranes from bacteria mutants studied by specular and off-specular neutron scattering

    NASA Astrophysics Data System (ADS)

    Schneck, Emanuel; Oliveira, Rafael G.; Rehfeldt, Florian; Demé, Bruno; Brandenburg, Klaus; Seydel, Ulrich; Tanaka, Motomu

    2009-10-01

    Specular and off-specular neutron scattering are used to study the influence of molecular chemistry (mutation) on the intermembrane interactions and mechanical properties of the outer membrane of Gram-negative bacteria consisting of lipopolysaccharides (LPSs). For this purpose, solid-supported multilayers of mutant LPS membranes are deposited on silicon wafers and hydrated either at defined humidity or in bulk buffers. The planar sample geometry allows to identify out-of-plane and in-plane scattering vector components. The measured two-dimensional reciprocal space maps are simulated with membrane displacement correlation functions determined by two mechanical parameters (vertical compression modulus and bending rigidity) and an effective cutoff radius for the membrane fluctuation wavelength. Experiments at controlled humidity enable one to examine the influence of the disjoining pressure on the saccharide-mediated intermembrane interactions, while experiments in bulk buffers (i.e., in the absence of an external osmotic stress) reveal the effect of divalent cations on LPS membranes, highlighting the role of divalent cations in the survival mechanism of bacteria in the presence of antimicrobial molecules.

  12. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  13. Loss and spinflip probabilities for ultracold neutrons interacting with diamondlike carbon and beryllium surfaces

    SciTech Connect

    Atchison, F.; Brys, T.; Daum, M.; Henneck, R.; Kirch, K.; Pichlmaier, A.; Zsigmond, G.; Fierlinger, P.; Heule, S.; Geltenbort, P.; Plonka, C.; Kasprzak, M.; Straumann, U.; Wermelinger, C.

    2007-10-15

    The storage of ultracold neutrons (UCN) in a combined magnetic, gravitational, and material trap is described. Wall materials investigated were diamondlike carbon (DLC) coatings on solid and flexible foil substrates as well as beryllium coatings on solid substrates. The loss coefficient per wall collision, {eta}, and the depolarization probability {beta} were measured simultaneously as a function of temperature (from 70 to 400 K) and energy (from 30 to 80 neV). The results at 70 K are {eta}=(0.7{+-}0.1)x10{sup -4},{beta}=(15.4{+-}1.0)x10{sup -6} for DLC on polyethyleneterephtalate (PET) foil and {eta}=(1.7{+-}0.1)x10{sup -4},{beta}=(0.7{+-}0.3)x10{sup -6} for DLC on aluminum foil. At room temperature the loss coefficients are larger by a factor of about 2 whereas the depolarization probabilities are found to be independent of temperature. The corresponding values for Be at room temperature are {eta}{approx}5x10{sup -4},{beta}{approx}10x10{sup -6}. The DLC results for {beta} and for the temperature-dependent part of the loss coefficient, {eta}{sub T}, are interpreted in terms of incoherent scattering by hydrogen. The hydrogen admixture was measured independently by elastic recoil detection analysis to be about 1x10{sup 16} atoms/cm{sup 2}. The data do not support the hypothesis of hydrogen being chemically bound within the top layers of the DLC. Using two different models with a thin waterlike film on top of the substrate we obtain consistency between the temperature-dependent loss contribution and the measured hydrogen contamination.

  14. Charged particle and neutron backgrounds in an e-e- interaction region at the NLC

    SciTech Connect

    Gronberg, J

    2000-03-06

    We compare the detector background situation in an e{sup -} e{sup -} interaction region at the NLC with previous studies done of the NLC e{sup +} e{sup -} interaction region. We note from previous studies that the dominant source of detector backgrounds are the beamstrahlung pairs. Since these scale with luminosity, the reduction in luminosity in e{sup -} e{sup -} collisions leads to a reduction in detector backgrounds compared to the e{sup +} e{sup -} situation.

  15. Neutron/muon correlation functions to improve neutron detection capabilities outside nuclear facilities

    NASA Astrophysics Data System (ADS)

    Ordinario, Donald Thomas

    The natural neutron background rate is largely due to cosmic ray interactions in the atmosphere and the subsequent neutron emission from the interaction products. The neutron background is part of a larger cosmic radiation shower that also includes electrons, gamma rays, and muons. Since neutrons interact much differently than muons in building materials, the muon and neutron fluence rates in the natural background can be compared to the measured muon and neutron fluence rate when shielded by common building materials. The simultaneous measurement of muon and neutron fluence rates might allow for an earlier identification of man-made neutron sources, such as hidden nuclear materials. This study compares natural background neutron rates to computer simulated neutron rates shielded by common structural and building materials. The characteristic differences between neutrons and muons resulted in different attenuation properties under the same shielded conditions. Correlation functions between cosmic ray generated neutrons and muons are then used to predict neutron fluence rates in different urban environments.

  16. Interaction of workplace demands and cardiovascular reactivity in progression of carotid atherosclerosis: population based study.

    PubMed Central

    Everson, S. A.; Lynch, J. W.; Chesney, M. A.; Kaplan, G. A.; Goldberg, D. E.; Shade, S. B.; Cohen, R. D.; Salonen, R.; Salonen, J. T.

    1997-01-01

    OBJECTIVE: To examine the combined influence of workplace demands and changes in blood pressure induced by stress on the progression of carotid atherosclerosis. DESIGN: Population based follow up study of unestablished as well as traditional risk factors for carotid atherosclerosis, ischaemic heart disease, and other outcomes. SETTING: Eastern Finland. SUBJECTS: 591 men aged 42-60 who were fully employed at baseline and had complete data on the measures of carotid atherosclerosis, job demands, blood pressure reactivity, and covariates. MAIN OUTCOME MEASURES: Change in ultrasonographically assessed intima-media thickness of the right and left common carotid arteries from baseline to 4 year follow up. RESULTS: Significant interactions between workplace demands and stress induced reactivity were observed for all measures of progression (P < 0.04). Men with large changes in systolic blood pressure (20 mm Hg or greater) in anticipation of a maximal exercise test and with high job demands had 10-40% greater progression of mean (0.138 v 0.123 mm) and maximum (0.320 v 0.261 mm) intima-media thickness and plaque height (0.347 v 0.264) than men who were less reactive and had fewer job demands. Similar results were obtained after excluding men with prevalent ischaemic heart disease at baseline. Findings were strongest among men with at least 20% stenosis or non-stenotic plaque at baseline. In this subgroup reactive men with high job demands had more than 46% greater atherosclerotic progression than the others. Adjustment for atherosclerotic risk factors did not alter the results. CONCLUSIONS: Men who showed stress induced blood pressure reactivity and who reported high job demands experienced the greatest atherosclerotic progression, showing the association between dispositional risk characteristics and contextual determinants of disease and suggesting that behaviourally evoked cardiovascular reactivity may have a role in atherogenesis. PMID:9055713

  17. Fundamental neutron physics at LANSCE

    SciTech Connect

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  18. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1991--August 31, 1992

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1992-08-31

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo[a]pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described.

  19. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress. Progress report, June 1991--December 1991

    SciTech Connect

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters.

  20. Progress towards understanding heterotypic interactions in multi-culture models of breast cancer.

    PubMed

    Regier, Mary C; Alarid, Elaine T; Beebe, David J

    2016-06-13

    Microenvironments in primary tumors and metastases include multiple cell types whose dynamic and reciprocal interactions are central to progression of the disease. However, the literature involving breast cancer studied in vitro is dominated by cancer cells in mono-culture or co-cultured with one other cell type. For in vitro studies of breast cancer the inclusion of multiple cell types has led to models that are more representative of in vivo behaviors and functions as compared to more traditional monoculture. Here, we review foundational co-culture techniques and their adaptation to multi-culture (including three or more cell types). Additionally, while macroscale methods involving conditioned media, direct contact, and indirect interactions have been informative, we examined many advances that have been made more recently using microscale systems with increased control over cellular and structural complexity. Throughout this discussion we consider the benefits and limitations of current multi-culture methods and the significant results they have produced.

  1. Progress on the study of self-interaction of a bunch in a bend

    SciTech Connect

    Li, R.; Bohm, C.L.; Bisognano, J.J.

    1997-12-31

    When a short (mm-length) bunch with high (nC-regime) charge is transported through a magnetic bending system, self-interaction via coherent synchrotron radiation and space charge may cause emittance growth. Earlier the authors studied analytically the shielded transient self-interaction of a rigid-line bunch entering from a straight path to a circular orbit, and estimated the concomitant emittance degradation in parts of Jefferson Lab`s infrared free-electron laser (IR-FEL). In this paper, they generalize their earlier results by calculating the curvature-induced steady-state longitudinal wakefield on particles with transverse offsets from the design orbit. Recent progress in developing a self-consistent simulation are also presented.

  2. Interactions and phase transitions in micellar and microemulsion systems studied by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin

    1986-03-01

    Owing to their amphiphilic nature, surfactant molecules spontaneously self-assemble into various forms of aggregates in aqueous and hydrocarbon solvents. These aggregates are often so well defined and sufficiently uniform in size that the suspension can be treated effectively as one- or two-component supramolecular liquids. Ionic surfactants such as sodium dodecyl sulfate (SDS) form normal micelles in water. These micelles together with their counterions can be regarded as a strongly coupled two-component coulomb fluid. On the other hand sodium di-2-ethylhexylsulfosuccinate (AOT) forms reverse micelles in hydrocarbons (oils). These reverse micelles can solubilize large amounts of water and become microemulsions. These microemulsion droplets bear no net charge and interact with each other via Van der Waals forces analogous to atoms in simple liquids. Thus, AOT microemulsion system shows a gas-liquid type phase transition. By exploiting the existing liquid theories the SANS spectra can be satisfactorily analysed in terms of wel-defined interparticle interactions. For ionic micelles one can obtain the surface charge and aggregation number at arbitrary concentrations and for microemulsions one obtains the range and depth of the attractive interaction near the critical point.

  3. Monte Carlo Simulation of Atmospheric Neutron Transport at High Altitudes Using MCNP

    DTIC Science & Technology

    1990-08-01

    interaction data, (2) discrete reaction neutron interaction data, (3) multigroup neutron interaction data, (4) continuous photon interaction data and (5... multigroup photon interaction data. In neutron - only and coupled neutron /photon problems, one continuous-energy, multigroup or discrete reaction...as histograms rather than as continuous curves. The multigroup tables have been derived from the same sources as the other neutron interaction tables

  4. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016.

    PubMed

    United Nations Environment Programme Environmental Effects Assessment Panel

    2017-02-15

    The Parties to the Montreal Protocol are informed by three Panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable. Like the other Panels, the EEAP produces a detailed report every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Progress Reports of the relevant scientific findings. The most recent of these was for 2015 (Photochem. Photobiol. Sci., 2016, 15, 141-147). The present Progress Report for 2016 assesses some of the highlights and new insights with regard to the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. The more detailed Quadrennial Assessment will be made available in 2018.

  5. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles

    PubMed Central

    Juo, Liang-Yi; Liao, Wern-Chir; Shih, Yen-Ling; Yang, Bih-Ying; Liu, An-Bang

    2016-01-01

    ABSTRACT HSPB7 belongs to the small heat-shock protein (sHSP) family, and its expression is restricted to cardiac and skeletal muscles from embryonic stages to adulthood. Here, we found that skeletal-muscle-specific ablation of the HspB7 does not affect myogenesis during embryonic stages to postnatal day 1 (P1), but causes subsequent postnatal death owing to a respiration defect, with progressive myopathy phenotypes in the diaphragm. Deficiency of HSPB7 in the diaphragm muscle resulted in muscle fibrosis, sarcomere disarray and sarcolemma integrity loss. We identified dimerized filamin C (FLNC) as an interacting partner of HSPB7. Immunofluorescence studies demonstrated that the aggregation and mislocalization of FLNC occurred in the muscle of HspB7 mutant adult mice. Furthermore, the components of dystrophin glycoprotein complex, γ- and δ-sarcoglycan, but not dystrophin, were abnormally upregulated and mislocalized in HSPB7 mutant muscle. Collectively, our findings suggest that HSPB7 is essential for maintaining muscle integrity, which is achieved through its interaction with FLNC, in order to prevent the occurrence and progression of myopathy. PMID:26929074

  6. Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila.

    PubMed

    Lessing, Derek; Bonini, Nancy M

    2008-02-01

    The expansion of polyglutamine tracts in a variety of proteins causes devastating, dominantly inherited neurodegenerative diseases, including six forms of spinal cerebellar ataxia (SCA). Although a polyglutamine expansion encoded in a single allele of each of the responsible genes is sufficient for the onset of each disease, clinical observations suggest that interactions between these genes may affect disease progression. In a screen for modifiers of neurodegeneration due to SCA3 in Drosophila, we isolated atx2, the fly ortholog of the human gene that causes a related ataxia, SCA2. We show that the normal activity of Ataxin-2 (Atx2) is critical for SCA3 degeneration and that Atx2 activity hastens the onset of nuclear inclusions associated with SCA3. These activities depend on a conserved protein interaction domain of Atx2, the PAM2 motif, which mediates binding of cytoplasmic poly(A)-binding protein (PABP). We show here that PABP also influences SCA3-associated neurodegeneration. These studies indicate that the toxicity of one polyglutamine disease protein can be dramatically modulated by the normal activity of another. We propose that functional links between these genes are critical to disease severity and progression, such that therapeutics for one disease may be applicable to others.

  7. Structure and interparticle interactions of bovine serum albumin in solution studied by small-angle neutron scattering

    SciTech Connect

    Bendedouch, D.; Chen, S.H.

    1983-04-28

    A series of small-angle neutron scattering (SANS) measurements were carried out on dilute and moderately concentrated bovine serum albumin (BSA) solutions at two different pH values and at t = 35/sup 0/C. The amount of bound water to the protein was deduced from the zero-contrast point of dilute BSA solutions, in D/sub 2/O and H/sub 2/O solvent mixtures. Detailed analysis of the intensity spectrum from the most dilute BSA solution in D/sub 2/O yields a prolate ellipsoidal shape (a,b,b) of the protein molecule with a = 70 angstrom and b = 20 angstrom. At moderate concentrations, pH 7, with or without salt (LiCl) added, the intensity spectra can be fitted satisfactorily by taking into account both the ellipsoidal shape of the particle and an interparticle interference factor (S(Q)). Calculation of S(Q) assumes a model of equivalent charged hard spheres interacting through a repulsive potential. For moderately concentrated solutions at pH 5.1, S(Q) can be accounted for by introducing an attractive potential between the particles.

  8. Interactions of Endoglucanases with Amorphous Cellulose Films Resolved by Neutron Reflectometry and Quartz Crystal Microbalance with Dissipation Monitoring

    SciTech Connect

    Cheng, Gang; Liu, Zelin; Kent, Michael S; Majewski, Jaroslaw; Michael, Jablin; Jaclyn, Murton K; Halbert, Candice E; Datta, Supratim; Chao, Wang; Brown, Page

    2012-01-01

    A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.

  9. Neutron-proton final-state interaction in. pi. d breakup: Vector analyzing power

    SciTech Connect

    List, W.; Boschitz, E.T.; Garcilazo, H.; Gyles, W.; Ottermann, C.R.; Tacik, R.; Mango, S.; Konter, J.A.; van den Brandt, B.; Smith, G.R.; and others

    1988-04-01

    The vector analyzing power iT/sub 11/ has been measured for the ..pi..d breakup reaction in a kinematically complete experiment. The dependence of iT/sub 11/ on the momentum of the proton has been obtained for 36 pion-proton angle pairs at T/sub ..pi../ = 134 and 228 MeV. The data are compared with predictions from the new relativistic Faddeev theory of Garcilazo. The sensitivity of the observable iT/sub 11/, in particular in the np final-state interaction region, to details of the theory is investigated.

  10. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  11. JASMIN: Japanese-American study of muon interactions and neutron detection

    SciTech Connect

    Nakashima, Hiroshi; Mokhov, N.V.; Kasugai, Yoshimi; Matsuda, Norihiro; Iwamoto, Yosuke; Sakamoto, Yukio; Leveling, Anthony F.; Boehnlein, David J.; Vaziri, Kamran; Matsumura, Hiroshi; Hagiwara, Masayuki; /KEK, Tsukuba /Tohoku U. /Shimizu, Tokyo /Kyushu U. /Kyoto U. /Tsukuba U. /Pohang Accelerator Lab. /Tokai, ROIST

    2010-08-01

    Experimental studies of shielding and radiation effects at Fermi National Accelerator Laboratory (FNAL) have been carried out under collaboration between FNAL and Japan, aiming at benchmarking of simulation codes and study of irradiation effects for upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (1) acquisition of shielding data in a proton beam energy domain above 100GeV; (2) further evaluation of predictive accuracy of the PHITS and MARS codes; (3) modification of physics models and data in these codes if needed; (4) establishment of irradiation field for radiation effect tests; and (5) development of a code module for improved description of radiation effects. A series of experiments has been performed at the Pbar target station and NuMI facility, using irradiation of targets with 120 GeV protons for antiproton and neutrino production, as well as the M-test beam line (M-test) for measuring nuclear data and detector responses. Various nuclear and shielding data have been measured by activation methods with chemical separation techniques as well as by other detectors such as a Bonner ball counter. Analyses with the experimental data are in progress for benchmarking the PHITS and MARS15 codes. In this presentation recent activities and results are reviewed.

  12. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    SciTech Connect

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; Gregor, Jens; Bilheux, Hassina

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performed after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.

  13. Progression of soot cake layer properties during the systematic regeneration of diesel particulate filters measured with neutron tomography

    DOE PAGES

    Toops, Todd J.; Pihl, Josh A.; Finney, Charles E. A.; ...

    2015-01-16

    Although particulate filters (PFs) have been a key component of the emission control system for modern diesel engines, there remain significant questions about the basic regeneration behavior of the filters and how it changes with accumulation of increasing soot layers. This effort describes a systematic deposition and regeneration of particulate matter in 25-mm diameter × 76-mm long wall-flow PFs composed of silicon carbide (SiC) material. The initial soot distributions were analyzed for soot cake thickness using a nondestructive neutron imaging technique. With the PFs intact, it was then possible to sequentially regenerate the samples and reanalyze them, which was performedmore » after nominal 20, 50, and 70 % regenerations. The loaded samples show a relatively uniform distribution of particulate with an increasing soot cake thickness and nearly identical initial density of 70 mg/cm3. Throughout regeneration, the soot cake thickness initially decreases significantly while the density increases to 80–90 mg/cm3. After ~50 % regeneration, the soot cake thickness stays relatively constant, but instead, the density decreases as pores open up in the layer (~35 mg/cm3 at 70 % regeneration). Here, complete regeneration initially occurs at the rear of the PF channels. With this information, a conceptual model of the regeneration is proposed.« less

  14. Hans A. Bethe Prize Talk: Neutron stars and stellar collapse: the physics of strongly interacting Fermi systems

    NASA Astrophysics Data System (ADS)

    Pethick, C. J.

    2011-04-01

    The talk will touch on a number of themes in the application of many-body theory to neutron stars and stellar collapse. One of these will be the composition and equation of state of nuclear matter. Specific topics will include nuclei in neutron stars, superfluidity and superconductivity of nuclear matter, and inhomogeneous phases of nuclear matter. A second major theme will be neutrino processes in dense matter: neutrino emission is the most powerful cooling mechanism for young neutron stars, and rates of neutrino processes are a key ingredient in simulations of stellar collapse.

  15. Progress in sub-grid scale modeling of shock-turbulence interaction

    SciTech Connect

    Buckingham, A.C.; Grun, J.

    1994-12-01

    The authors report on progress in the development of sub grid scale (SGS) closure relationships for the unresolved motion scales in compressible large eddy simulations (LES). At present they are refining the SGS model and overall LES procedure to include: a linearized viscoelastic model for finite thickness shock distortions and shocked turbulence field response; multiple scale asymptotic considerations to improve predictions of average near-wall surface behavior; and a spectral statistical model simulating the effects of high wave number stochastic feed-back from the unresolved SGS nonlinear motion influences on the explicitly resolved grid scale motions. Predicted amplification levels, modal energy partition, shock translational to turbulence kinetic energy transfer, and viscoelastic spatio-temporal response of turbulence to shock interaction are examined in comparison with available experimental evidence. Supplemental hypersonic compressible turbulence experimental information is developed from sub nanosecond interval pulsed shadowgraph evidence of laser impulse generated hypervelocity shocks interacting with intense, previously developed and carefully characterized initial turbulence. Accurate description of the influence of shock-turbulence interactions is vital for predicting their influence on: Supersonic/hypersonic flow field analysis, aerodynamic design, and aerostructural materials selection. Practical applications also include interior supersonic combustion analysis and combustion chamber design. It is also the essential foundation for accurately predicting the development and evolution of flow-field generated thermal and electromagnetic radiation important to hypersonic flight vehicle survivability, detection and communication.

  16. Progress in sub-grid scale modeling of shock-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Buckingham, A. C.; Grun, J.

    1994-12-01

    The authors report on progress in the development of sub-grid scale (SGS) closure relationships for the unresolved motion scales in compressible large eddy simulations (LES). At present they are refining the SGS model and overall LES procedure to include: a linearized viscoelastic model for finite thickness shock distortions and shocked turbulence field response; multiple scale asymptotic considerations to improve predictions of average near-wall surface behavior; and a spectral statistical model simulating the effects of high wave number stochastic feed-back from the unresolved SGS nonlinear motion influences on the explicitly resolved grid scale motions. Predicted amplification levels, modal energy partition, shock translational to turbulence kinetic energy transfer, and viscoelastic spatio-temporal response of turbulence to shock interaction are examined in comparison with available experimental evidence. Supplemental hypersonic compressible turbulence experimental information is developed from sub nanosecond interval pulsed shadowgraph evidence of laser impulse generated hypervelocity shocks interacting with intense, previously developed and carefully characterized initial turbulence. Accurate description of the influence of shock-turbulence interactions is vital for predicting their influence on: Supersonic/hypersonic flow field analysis, aerodynamic design, and aerostructural materials selection. Practical applications also include interior supersonic combustion analysis and combustion chamber design. It is also the essential foundation for accurately predicting the development and evolution of flow-field generated thermal and electromagnetic radiation important to hypersonic flight vehicle survivability, detection and communication.

  17. MUC13 Interaction with Receptor Tyrosine Kinase HER2 Drives Pancreatic Ductal Adenocarcinoma Progression

    PubMed Central

    Khan, Sheema; Sikander, Mohammed; Ebeling, Mara C.; Ganju, Aditya; Kumari, Sonam; Yallapu, Murali M.; Hafeez, Bilal Bin; Ise, Tomoko; Nagata, Satoshi; Zafar, Nadeem; Behrman, Stephen W.; Wan, Jim Y.; Ghimire, Hemendra M.; Sahay, Peeyush; Pradhan, Prabhakar; Chauhan, Subhash C.; Jaggi, Meena

    2016-01-01

    Although MUC13, a transmembrane mucin, is aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC) and generally correlates with increased expression of HER2, the underlying mechanism remains poorly understood. Herein, we found that MUC13 co-localizes and interacts with HER2 in PDAC cells (reciprocal co-immunoprecipitation, immunofluorescence, proximity ligation, co-capping assays) and tissues (immunohistofluorescence). The results from this study demonstrate that MUC13 functionally interacts and activates HER2 at p1248 in PDAC cells, leading to stimulation of HER2 signaling cascade including, ERK1/2, FAK, AKT and PAK1 as well as regulation of the growth, cytoskeleton remodeling and motility and invasion of PDAC cells - all collectively contributing to PDAC progression. Interestingly, all of these phenotypic effects of MUC13-HER2 co-localization could be effectively compromised by depleting MUC13 and mediated by the first and second EGF-like domains of MUC13. Further, MUC13-HER2 co-localization also holds true in PDAC tissues with a strong functional correlation with events contributing to increased degree of disorder and cancer aggressiveness. In brief, findings presented here provide compelling evidence of a functional ramification of MUC13-HER2: this interaction could be potentially exploited for targeted therapeutics in a subset of patients harboring an aggressive form of PDAC. PMID:27321183

  18. Search for P-ODD asymmetry in the radiative cross-section of the interaction of neutrons with lead nuclei

    NASA Astrophysics Data System (ADS)

    Gledenov, Yu. M.; Nesvizhevsky, V. V.; Sedyshev, P. V.; Shul'gina, E. V.; Vesna, V. A.

    2014-03-01

    The P-odd effect in the radiation cross section of capture of longitudinally polarized neutrons in a sample of natural lead is measured. The experiment was performed at PF1B facility at the Institut Max von Laue-Paul Langevin. The neutron polarization P n was 92%, the total flux of polarized neutrons was ˜3 × 1010 n/s, and the mean neutron wavelength was λ = 4.7 Å. Taking into account "0-test" we estimated the asymmetry: a γ(natPb) = (2.3 ± 3.5) × 10-7, i.e., α γ ≤ 8.1 × 10-7 at 90% confidence level.

  19. Neural protein gamma-synuclein interacting with androgen receptor promotes human prostate cancer progression

    PubMed Central

    2012-01-01

    Background Gamma-synuclein (SNCG) has previously been demonstrated to be significantly correlated with metastatic malignancies; however, in-depth investigation of SNCG in prostate cancer is still lacking. In the present study, we evaluated the role of SNCG in prostate cancer progression and explored the underlying mechanisms. Methods First, alteration of SNCG expression in LNCaP cell line to test the ability of SNCG on cellular properties in vitro and vivo whenever exposing with androgen or not. Subsequently, the Dual-luciferase reporter assays were performed to evaluate whether the role of SNCG in LNCaP is through AR signaling. Last, the association between SNCG and prostate cancer progression was assessed immunohistochemically using a series of human prostate tissues. Results Silencing SNCG by siRNA in LNCaP cells contributes to the inhibition of cellular proliferation, the induction of cell-cycle arrest at the G1 phase, the suppression of cellular migration and invasion in vitro, as well as the decrease of tumor growth in vivo with the notable exception of castrated mice. Subsequently, mechanistic studies indicated that SNCG is a novel androgen receptor (AR) coactivator. It interacts with AR and promotes prostate cancer cellular growth and proliferation by activating AR transcription in an androgen-dependent manner. Finally, immunohistochemical analysis revealed that SNCG was almost undetectable in benign or androgen-independent tissues prostate lesions. The high expression of SNCG is correlated with peripheral and lymph node invasion. Conclusions Our data suggest that SNCG may serve as a biomarker for predicting human prostate cancer progression and metastasis. It also may become as a novel target for biomedical therapy in advanced prostate cancer. PMID:23231703

  20. Analyzing Systolic-Diastolic Interval Interaction Characteristics in Diabetic Cardiac Autonomic Neuropathy Progression

    PubMed Central

    Imam, Mohammad Hasan; Jelinek, Herbert F.; Palaniswami, Marimuthu; Khandoker, Ahsan H.

    2015-01-01

    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing’s Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing

  1. Analyzing Systolic-Diastolic Interval Interaction Characteristics in Diabetic Cardiac Autonomic Neuropathy Progression.

    PubMed

    Imam, Mohammad Hasan; Karmakar, Chandan K; Jelinek, Herbert F; Palaniswami, Marimuthu; Khandoker, Ahsan H

    2015-01-01

    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing's Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing

  2. Methods and progress in studying inelastic interactions between positrons and atoms

    NASA Astrophysics Data System (ADS)

    DuBois, R. D.

    2016-06-01

    Progress and methods used in positron based studies of inelastic atomic interactions are traced from the original discovery of the positron to the present. Following a historic overview and introduction, this review will show how new experimental techniques were critical in advancing experimental studies from total or integral cross section measurements to highly differential investigations that are now being performed. The primary emphasis is on ionization of atoms and simple molecules by low-energy (tens to hundreds of eV) positrons and in showing similarities and differences between positron, electron and proton impact data. Selected examples of Ps based studies are also included. Experimental techniques associated with the generation, moderation, and transport of low-energy positron beams plus an extensive reference list and tables summarizing existing experimental studies are provided. Comments with respect to future studies and directions, plus how they might be achieved, are presented.

  3. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2008.

    PubMed

    Andrady, Anthony; Aucamp, Pieter J; Bais, Alkiviadis; Ballaré, Carlos L; Björn, Lars Olof; Bornman, Janet F; Caldwell, Martyn; Cullen, Anthony P; Erickson, David J; de Gruijl, Frank R; Häder, Donat-P; Ilyas, Mohammad; Kulandaivelu, G; Kumar, H D; Longstreth, Janice; McKenzie, Richard L; Norval, Mary; Paul, Nigel; Redhwi, Halim Hamid; Smith, Raymond C; Solomon, Keith R; Sulzberger, Barbara; Takizawa, Yukio; Tang, Xiaoyan; Teramura, Alan H; Torikai, Ayako; van der Leun, Jan C; Wilson, Stephen R; Worrest, Robert C; Zepp, Richard G

    2009-01-01

    After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within the Montreal Protocol. This EEAP deals with the increase of the UV irradiance on the Earth's surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201-332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15-27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.

  4. Human Subperitoneal Fibroblast and Cancer Cell Interaction Creates Microenvironment That Enhances Tumor Progression and Metastasis

    PubMed Central

    Yokota, Mitsuru; Ishii, Genichiro; Saito, Norio; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi

    2014-01-01

    Backgrounds Peritoneal invasion in colon cancer is an important prognostic factor. Peritoneal invasion can be objectively identified as periotoneal elastic laminal invasion (ELI) by using elastica stain, and the cancer microenvironment formed by the peritoneal invasion (CMPI) can also be observed. Cases with ELI more frequently show distant metastasis and recurrence. Therefore, CMPI may represent a particular milieu that facilitates tumor progression. Pathological and biological investigations into CMPI may shed light on this possibly distinctive cancer microenvironment. Methods We analyzed area-specific tissue microarrays to determine the pathological features of CMPI, and propagated subperitoneal fibroblasts (SPFs) and submucosal fibroblasts (SMFs) from human colonic tissue. Biological characteristics and results of gene expression profile analyses were compared to better understand the peritoneal invasion of colon cancer and how this may form a special microenvironment through the interaction with SPFs. Mouse xenograft tumors, derived by co-injection of cancer cells with either SPFs or SMFs, were established to evaluate their active role on tumor progression and metastasis. Results We found that fibrosis with alpha smooth muscle actin (α-SMA) expression was a significant pathological feature of CMPI. The differences in proliferation and gene expression profile analyses suggested SPFs and SMFs were distinct populations, and that SPFs were characterized by a higher expressions of extracellular matrix (ECM)-associated genes. Furthermore, compared with SMFs, SPFs showed more variable alteration in gene expressions after cancer-cell-conditioned medium stimulation. Gene ontology analysis revealed that SPFs-specific upregulated genes were enriched by actin-binding or contractile-associated genes including α-SMA encoding ACTA2. Mouse xenograft tumors derived by co-injection of cancer cells with SPFs showed enhancement of tumor growth, metastasis, and capacity for

  5. Modeling fluid-rock interaction at Yucca Mountain, Nevada; A progress report, April 15, 1992

    SciTech Connect

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ``Geochemical Modeling of Clinoptilolite-Water Interactions,`` solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ``Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,`` describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement.

  6. Direct fast neutron detection: A status report

    SciTech Connect

    Peurrung, A.J.; Hansen, R.R.; Craig, R.A.; Hensley, W.K.; Hubbard, C.W.; Keller, P.E.; Reeder, P.L.; Sunberg, D.S.

    1997-12-01

    This report describes the status of efforts to develop direct fast-neutron detection via proton recoil within plastic scintillator. Since recording proton recoil events is of little practical use without a means to discriminate effectively against gamma-ray interactions, the present effort is concentrated on demonstrating a method that distinguishes between pulse types. The proposed method exploits the different pulse shapes that are to be expected primarily on the basis of the slower speed of the recoiling fission neutrons. Should this effort ultimately prove successful, the resulting novel technology will have the potential to significantly lower cost and increase capability for a number of critical neutron-detection applications. Considerable progress has been made toward a clear and compelling demonstration of this new technique. An exhaustive theoretical and numerical investigation of the method has been completed. The authors have been able to better understand the laboratory results and estimate the performance that could ultimately be achieved using the proposed technique. They have assessed the performance of a number of different algorithms for discriminating between neutron and gamma ray events. The results of this assessment will be critical when the construction of low-cost, field-portable neutron detectors becomes necessary. Finally, a laboratory effort to realize effective discrimination is well underway and has resulted in partial success.

  7. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    SciTech Connect

    Halbert, Candice E; Ankner, John Francis; Kent, Michael S; Jaclyn, Murton K; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  8. Boron nitride solid state neutron detector

    DOEpatents

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  9. Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.

    2017-03-01

    The finding of Gravitational Waves (GW) by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f (R) gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.

  10. Understanding the interaction between psychosocial stress and immune-related diseases: a stepwise progression.

    PubMed

    Kemeny, Margaret E; Schedlowski, Manfred

    2007-11-01

    For many years, anecdotal evidence and clinical observations have suggested that exposure to psychosocial stress can affect disease outcomes in immune-related disorders such as viral infections, chronic autoimmune diseases and tumors. Experimental evidence in humans supporting these observations was, however, lacking. Studies published in the last 2 decades in Brain, Behavior and Immunity and other journals have demonstrated that acute and chronic psychological stress can induce pronounced changes in innate and adaptive immune responses and that these changes are predominantly mediated via neuroendocrine mediators from the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal axis. In addition, psychological stress has predicted disease outcomes using sophisticated models such as viral challenge, response to vaccination, tracking of herpesvirus latency, exploration of tumor metastasis and healing of experimental wounds, as well as epidemiological investigations of disease progression and mortality. These studies have contributed significantly to our understanding that the neuroendocrine-immune interaction is disturbed in many pathophysiological conditions, that stress can contribute to this disturbance, and that malfunction in these communication pathways can play a significant role in the progression of disease processes. There are, however, significant gaps in the extant literature. In the coming decade(s), it will be essential to further analyze neuroendocrine-immune communication during disease states and to define the specific pathways linking the central nervous system to the molecular events that control important disease-relevant processes. This knowledge will provide the basis for new therapeutic pharmacological and non-pharmacological behavioral approaches to the treatment of chronic diseases via specific modulation of nervous system-immune system communication.

  11. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-98

    SciTech Connect

    Jammes, C.; Filliatre, P.; De Izarra, G.; Elter, Zs.; Pazsit, I.; Verma, V.; Hellesen, C.; Jacobsson, S.; Hamrita, H.; Bakkali, M.; Chapoutier, N.; Scholer, A-C.; Verrier, D.; Cantonnet, B.; Nappe, J-C.; Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E.; Jadot, F.

    2015-07-01

    The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)

  12. Revisiting a Progressive Pedagogy. The Developmental-Interaction Approach. SUNY Series, Early Childhood Education: Inquiries and Insights.

    ERIC Educational Resources Information Center

    Nager, Nancy, Ed.; Shapiro, Edna K., Ed.

    This book reviews the history of the developmental-interactive approach, a formulation rooted in developmental psychology and educational practice, progressively informing educational thinking since the early 20th century. The book describes and analyzes key assumptions and assesses the compatibility of new theoretical approaches, focuses on…

  13. Weak Interaction Rates of sd-SHELL Nuclei in Stellar Environments Calculated in the Proton-Neutron Quasiparticle Random-Phase Approximation

    NASA Astrophysics Data System (ADS)

    Nabi, J.-U.; Klapdor-Kleingrothaus, H. V.

    1999-03-01

    Allowed weak interaction rates for sd-shell nuclei in stellar environment are calculated using a generalized form of proton-neutron quasi-particle RPA model with separable Gamow-Teller forces. The calculated capture and decay rates take into consideration the latest experimental energy levels and ft-value compilations. Weak rates calculated are tabulated at the same points of density and temperature as those of Oda et al. [Atomic Data and Nuclear Data Tables 56, 231 (1994)]. The results are also compared with earlier works. Particle emission processes from excited states, previously ignored, are taken into account and are found to significantly affect some β decay rates.

  14. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2011.

    PubMed

    Andrady, Anthony L; Aucamp, Pieter J; Austin, Amy T; Bais, Alkiviadis F; Ballaré, Carlos L; Björn, Lars Olof; Bornman, Janet F; Caldwell, Martyn; Cullen, Anthony P; Erickson, David J; de Gruijl, Frank R; Häder, Donat-P; He, Walter; Ilyas, Mohammad; Longstreth, Janice; Lucas, Robyn; McKenzie, Richard L; Madronich, Sasha; Norval, Mary; Paul, Nigel D; Redhwi, Halim Hamid; Robinson, Sharon; Shao, Min; Solomon, Keith R; Sulzberger, Barbara; Takizawa, Yukio; Tang, Xiaoyan; Torikai, Ayako; van der Leun, Jan C; Williamson, Craig E; Wilson, Stephen R; Worrest, Robert C; Zepp, Richard G

    2012-01-01

    The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was published in 2010 (Photochem. Photobiol. Sci., 2011, 10, 173-300). In the years in between, the EEAP produces less detailed and shorter progress reports, which highlight and assess the significance of developments in key areas of importance to the parties. The next full quadrennial report will be published in 2014-2015.

  15. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2009.

    PubMed

    Andrady, Anthony; Aucamp, Pieter J; Bais, Alkiviadis F; Ballaré, Carlos L; Björn, Lars Olof; Bornman, Janet F; Caldwell, Martyn; Cullen, Anthony P; Erickson, David J; deGruijl, Frank R; Häder, Donat-P; Ilyas, Mohammad; Kulandaivelu, G; Kumar, H D; Longstreth, Janice; McKenzie, Richard L; Norval, Mary; Paul, Nigel; Redhwi, Halim Hamid; Smith, Raymond C; Solomon, Keith R; Sulzberger, Barbara; Takizawa, Yukio; Tang, Xiaoyan; Teramura, Alan H; Torikai, Ayako; van der Leun, Jan C; Wilson, Stephen R; Worrest, Robert C; Zepp, Richard G

    2010-03-01

    The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with UV radiation and its effects on human health, animals, plants, biogeochemistry, air quality and materials. Since 2000, the analyses and interpretation of these effects have included interactions between UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will likely be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was that for 2006 (Photochem. Photobiol. Sci., 2007, 6, 201-332). In the years in between, the EEAP produces a less detailed and shorter progress report, as is the case for this present one for 2009. A full quadrennial report will follow for 2010.

  16. Experimental studies of elementary particle interactions at high energies. Summary technical progress report

    SciTech Connect

    1992-03-31

    This is a report of the research activities of the Experimental High Energy Physics group of The Rockefeller University. As this is an annual progress report, the emphasis is on last year`s research activities. However, since it is the last of a series of 5 such reports to be submitted to the DOE under the present 5 year contract, an effort has been made to provide comprehensive coverage of the research activities of the group throughout the contract period. In the past 5 years, the research program encompassed three major areas: the UA-6 experiment at CERN, the CDF experiment at Fermilab, and several SSC projects. The UA-6 experiment studies direct-{gamma} and J/{Psi} production in pp and {bar p}p interactions at {radical}s = 22.5 GeV.4. In the CDFF experiment the authors have concentrated in the area of small angle physics, where the objective has been to measure the elastic, diffractive and total cross sections, and to provide an absolute calibration of the machine luminosity. The SSC research projects related to two experiments: The Solenoidal Detector Collaboration and the ``low p{sub T} physics`` experiment.

  17. CSE1L interaction with MSH6 promotes osteosarcoma progression and predicts poor patient survival

    PubMed Central

    Cheng, Dong-dong; Lin, He-chun; Li, Shi-jie; Yao, Ming; Yang, Qing-cheng; Fan, Cun-yi

    2017-01-01

    To discover tumor-associated proteins in osteosarcoma, a quantitative proteomic analysis was performed to identify proteins that were differentially expressed between osteosarcoma and human osteoblastic cells. Through clinical screening and a functional evaluation, chromosome segregation 1-like (CSE1L) protein was found to be related to the growth of osteosarcoma cells. To date, little is known about the function and underlying mechanism of CSE1L in osteosarcoma. In the present study, we show that knockdown of CSE1L inhibits osteosarcoma growth in vitro and in vivo. By co-immunoprecipitation and RNA-seq analysis, CSE1L was found to interact with mutS homolog 6 (MSH6) and function as a positive regulator of MSH6 protein in osteosarcoma cells. A rescue study showed that decreased growth of osteosarcoma cells by CSE1L knockdown was reversed by MSH6 overexpression, indicating that the activity of CSE1L was an MSH6-dependent function. In addition, depletion of MSH6 hindered cellular proliferation in vitro and in vivo. Notably, CSE1L expression was correlated with MSH6 expression in tumor samples and was associated with poor prognosis in patients with osteosarcoma. Taken together, our results demonstrate that the CSE1L-MSH6 axis has an important role in osteosarcoma progression. PMID:28387323

  18. Physics of Solar Neutron Production: Questionable Detection of Neutrons from the 2007 December 31 Flare

    DTIC Science & Technology

    2010-07-14

    Energy Neutron Production in Solar Flares Neutrons are produced in solar flares when accelerated ions interact in the chromosphere . There are a variety of...produce the neutron- capture line, unless the neutrons were produced well above the chromosphere in which case they could not efficiently be captured

  19. Recent progresses in understanding of water interacting with biomolecules, and inside living cells and tissues

    NASA Astrophysics Data System (ADS)

    Ford, R. C.; Li, J.

    Recent inelastic and quasi-elastic neutron scattering measurements of water in cell preparations has provided information on the interfacial (or bound) water molecules. The experiments show that the interfacial water molecules can be readily distinguished from those in the bulk (bulk water), especially using inelastic neutron scattering data over the 20-130 meV range. Studies of intact biological systems - whole cells and tissues - demonstrated the feasibility of using these methods to assess the degree of interfacial water and their potential for monitoring physiological changes. Here we also describe the effect of heat shock and osmotic stress on yeast and E. coli cells, and show that the interfacial water content increases with elevated osmolarity and heat shock, and decreases under hypoosmotic conditions.

  20. Helium 3 neutron precision polarimetry

    NASA Astrophysics Data System (ADS)

    Menard, Christopher

    2009-10-01

    Measuring neutron polarization to a high degree of precision is critical for the next generation of neutron decay correlation experiments. Polarized neutrons are also used in experiments to probe the hadronic weak interaction which contributes a small portion (˜10-7) of the force between nucleons. Using a beam of cold neutrons at Los Alamos Neutron Science Center (LANSCE), we polarized neutrons and measured their absolute polarization to ˜0.1%. Neutrons were polarized by passing them through a ^3He spin filter, relying on the maximally spin dependent 3He neutron absorption cross section. The neutron polarization can be determined by measuring the wavelength-dependent neutron transmission through the ^3He cell. An independent measurement of the neutron polarization was also obtained by passing the polarized beam through an RF spin flipper and a second polarized ^3He cell, used as an analyzer. To measure the efficiency of the spin flipper, the same measurements were made after reversing the ^3He polarization in the polarizer by using NMR techniques (adiabatic fast passage). We will show the consistency of these two measurements and the resulting precision of neutron polarimetry using these techniques.

  1. INTERACTION OF LASER RADIATION WITH MATTER: Coulomb explosion of deuterium clusters in a magnetic trap and generation of neutrons

    NASA Astrophysics Data System (ADS)

    Zaretsky, D. F.

    2004-07-01

    A new method is proposed for injecting hot ions into a magnetic trap, which is based on the Coulomb explosion of clusters ionised by radiation from a high-power femtosecond laser. The parameters of the trap required for the confinement of the hot plasma produced after the explosion of deuterium clusters are estimated. It is shown that the neutron yield in the d — d reaction in the trap can substantially exceed this yield directly in the laser beam focus.

  2. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  3. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  4. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  5. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2004

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. This progress report is the 2004 update by the Environmental Effects Assessment Panel.

  6. Neutron scattering studies of short-range order, atomic displacements, and effective pair interactions in a null-matrix Ni0.5262Pt0.48 crystal

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Moss, S. C.; Robertson, J. L.; Copley, J. R. D.; Neumann, D. A.; Major, J.

    2006-09-01

    The best known exception to the Heine-Sampson and Bieber-Gauthier arguments for ordering effects in transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, whose phase diagram is similar to that of the CuAu system. Using neutron scattering we have investigated the local atomic order in a null-matrix Ni0.5262Pt0.48 single crystal. In a null-matrix alloy, the isotopic composition is adjusted so that the average neutron scattering length vanishes ( Ni62 has a negative scattering length nearly equal in magnitude to that of Pt). Consequently, all contributions to the total scattering depending on the average lattice are suppressed. The only remaining components of the elastic scattering are the short-range order (SRO) and size effect terms. These data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss theory, we obtain the effective pair interactions (EPIs) between near neighbors in the alloy. The results can be used by theorists to model the alloy in the context of the electronic theory of alloy phase stability, including a preliminary evaluation of the local species-dependent displacements. Our maps of V(q) , the Fourier transform of the EPIs, show very similar shapes in the experimental and reconstructed data. This is of importance when comparing to electronic structure calculations.

  7. Radiation-Induced Carcinogenesis: Mechanistically Based Differences between Gamma-Rays and Neutrons, and Interactions with DMBA

    PubMed Central

    Shuryak, Igor; Brenner, David J.; Ullrich, Robert L.

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis. PMID:22194850

  8. On the mechanism of the interactions of neutrons and gamma radiation with nuclear graphite—Implications to HTGRs

    NASA Astrophysics Data System (ADS)

    Goodwin, C.; Barkatt, A.; Al-Sheikhly, M.

    2014-04-01

    Nuclear-grade varieties of graphite being considered for use in high-temperature gas reactors were exposed to gamma radiation (up to 87 MGy) and to fast neutrons (up to 5.4×1017 n/cm2 in air, 8.8×1011 n/cm2 in water-saturated helium). Results of XPS measurements indicated that gamma or mixed-field irradiation initially enhances the oxygen content in the surface region of the graphite, but this content decreases at higher doses, probably due to decomposition of surface CO complexes. Results of EPR measurements showed that gamma irradiation at low doses causes a decrease in the concentration of unpaired spins, but higher doses cause this concentration to rise. SQUID measurements of magnetic susceptibility support the EPR findings. At the dose range explored in this study, no structural changes were observed using XRD and Raman spectroscopy. In general, no significant differences were observed among the five varieties of graphite with respect to the effects of irradiation. Impurity analysis by means of GDMS and ICP-AES showed that impurity concentrations that concentrations of impurities, particularly those of neutron-absorbing impurities, were within the range specified for high-purity nuclear graphite. Activation relevant impurity concentrations, too, were very low.

  9. Radiation-induced carcinogenesis: mechanistically based differences between gamma-rays and neutrons, and interactions with DMBA.

    PubMed

    Shuryak, Igor; Brenner, David J; Ullrich, Robert L

    2011-01-01

    Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis.

  10. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  11. Ultra Low Level Environmental Neutron Measurements Using Superheated Droplet Detectors

    SciTech Connect

    Fernandes, A.C.; Felizardo, M.; Girard, T.A.; Kling, A.; Ramos, A.R.; Marques, J.G.; Prudencio, M.I.; Marques, R.; Carvalho, F.P.

    2015-07-01

    Through the application of superheated droplet detectors (SDDs), the SIMPLE project for the direct search for dark matter (DM) reached the most restrictive limits on the spin-dependent sector to date. The experiment is based on the detection of recoils following WIMP-nuclei interaction, mimicking those from neutron scattering. The thermodynamic operation conditions yield the SDDs intrinsically insensitive to radiations with linear energy transfer below ∼150 keVμm{sup -1} such as photons, electrons, muons and neutrons with energies below ∼40 keV. Underground facilities are increasingly employed for measurements in a low-level radiation background (DM search, gamma-spectroscopy, intrinsic soft-error rate measurements, etc.), where the rock overburden shields against cosmic radiation. In this environment the SDDs are sensitive only to α-particles and neutrons naturally emitted from the surrounding materials. Recently developed signal analysis techniques allow discrimination between neutron and α-induced signals. SDDs are therefore a promising instrument for low-level neutron and α measurements, namely environmental neutron measurements and α-contamination assays. In this work neutron measurements performed in the challenging conditions of the latest SIMPLE experiment (1500 mwe depth with 50-75 cm water shield) are reported. The results are compared with those obtained by detailed Monte Carlo simulations of the neutron background induced by {sup 238}U and {sup 232}Th traces in the facility, shielding and detector materials. Calculations of the neutron energy distribution yield the following neutron fluence rates (in 10{sup -8} cm{sup -2}s{sup -1}): thermal (<0.5 eV): 2.5; epithermal (0.5 eV-100 keV): 2.2; fast (>1 MeV): 3.9. Signal rates were derived using standard cross sections and codes routinely employed in reactor dosimetry. The measured and calculated neutron count rates per unit of active mass were 0.15 ct/kgd and 0.33 ct/kg-d respectively. As the major

  12. Gene-environment interaction in progression of AMD: the CFH gene, smoking and exposure to chronic infection.

    PubMed

    Baird, Paul N; Robman, Luba D; Richardson, Andrea J; Dimitrov, Peter N; Tikellis, Gabriella; McCarty, Catherine A; Guymer, Robyn H

    2008-05-01

    A number of risk factors including the complement factor H (CFH) gene, smoking and Chlamydia pneumoniae have been associated with age-related macular degeneration (AMD). However, the mechanisms underlying how these risk factors might be involved in disease progression and disease aetiology is poorly understood. A cohort series of 233 individuals followed for AMD progression over a mean period of 7 years underwent a full eye examination, blood was taken for DNA and antibody titre and individuals completed a standard medical and general questionnaire. Y402H variants of the CFH gene were assessed with disease progression as well as examination of interaction between Y402H variants and smoking and Y402H variants and the pathogen C. pneumoniae. The CC risk genotype of Y402H was significantly associated with increased AMD progression [odds ratio (OR) 2.43, 95% confidence interval (95% CI) 1.07-5.49] as was smoking (OR 2.28, 95% CI 1.26-4.12). However, the risk of progression was greatly increased to almost 12-fold (OR 11.8, 95% CI 2.1-65.8) when, in addition to having the C risk allele, subjects also presented with the upper tertile of antibodies to the bacterial pathogen C. pneumoniae compared with those with the T allele of Y402H and the lowest antibody tertile. This demonstrates for the first time the existence of a gene environment-interaction between pathogenic load of C. pneumoniae and the CFH gene in the aetiology of AMD.

  13. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells

    PubMed Central

    Chen, Xiaoxuan; Kong, Xiangyu; Zhuang, Wenxin; Teng, Bogang; Yu, Xiuyi; Hua, Suhang; Wang, Su; Liang, Fengchao; Ma, Dan; Zhang, Suhui; Zou, Xuan; Dai, Yue; Yang, Wei; Zhang, Yongxing

    2016-01-01

    Here we show that A-kinase anchoring protein 95 (AKAP95) and connexin 43 (Cx43) dynamically interact during cell cycle progression of lung cancer A549 cells. Interaction between AKAP95 and Cx43 at different cell cycle phases was examined by tandem mass spectrometry(MS/MS), confocal immunofluorescence microscopy, Western blot, and co-immunoprecipitation(Co-IP). Over the course of a complete cell cycle, interaction between AKAP95 and Cx43 occurred in two stages: binding stage from late G1 to metaphase, and separating stage from anaphase to late G1. The binding stage was further subdivided into complex binding to DNA in interphase and complex separating from DNA in metaphase. In late G1, Cx43 translocated to the nucleus via AKAP95; in anaphase, Cx43 separated from AKAP95 and aggregated between two daughter nuclei. In telophase, Cx43 aggregated at the membrane of the cleavage furrow. After mitosis, Cx43 was absent from the furrow membrane and was located in the cytoplasm. Binding between AKAP95 and Cx43 was reduced by N-(2-[P-Bromocinnamylamino]-ethyl)-5-isoquinolinesulfonmide (H89) treatment and enhanced by Forskolin. dynamic interaction between AKAP95 and Cx43 varies with cell cycle progression to regulate multiple biological processes. PMID:26880274

  14. (A clinical trial of neutron capture therapy for brain tumors)

    SciTech Connect

    Zamenhof, R.G.

    1988-01-01

    This report describes progress made in refining of neutron-induced alpha tract autoradiography, in designing epithermal neutron bean at MITR-II and in planning treatment dosimetry using Monte Carlo techniques.

  15. Long-range antiferromagnetic interactions in Ni-Co-Mn-Ga metamagnetic Heusler alloys: A two-step ordering studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Orlandi, F.; Fabbrici, S.; Albertini, F.; Manuel, P.; Khalyavin, D. D.; Righi, L.

    2016-10-01

    We report on the experimental observation of a long-range antiferromagnetic structure in the metamagnetic Ni-Co-Mn-Ga Heusler alloys. The accurate magnetic symmetry analysis based on experimental neutron diffraction data, exploiting the Shubnikov theory, allows the determination of the correct magnetic space group of the system. A two-step process, featuring the ordering of the Ni and Mn sublattices at different temperatures, leads to the antiferromagnetic structure in martensite. A perfect, constrained by the symmetry, antiferromagnetic ordering of the Ni sublattice in the "paramagnetic gap" is observed, followed by the ordering of the Mn sublattice at lower temperatures. The observation of such antiferromagnetic structure clarifies the current debate on the presence of antiferromagnetic interactions in the (Ni,Co)-Mn-X (X =Ga , Sn, Sb, and In) ferromagnetic shape memory alloys and yields new insights in understanding the magnetostructural properties of this relevant class of materials.

  16. Theoretical aspects of electroweak and other interactions in medium energy nuclear physics. Interim progress report

    SciTech Connect

    Mukhopadhyay, N.C.

    1994-12-05

    Significant progress has been made in the current project year in the development of chiral soliton model and its applications to the electroweak structure of the nucleon and the Delta (1232) resonance. Further progress also has been made in the application of the perturbative QCD (pQCD) and the study of physics beyond the standard model. The postdoctoral associate and the graduate student working towards his Ph.D. degree have both made good progress. The review panel of the DOE has rated this program as a ``strong, high priority`` one. A total of fifteen research communications -- eight journal papers and, conference reports and seven other communications -- have been made during the project year so far. The principal investigator is a member of the Physics Advisory Committee of two nuclear accelerator facilities.

  17. Recent Developments In Fast Neutron Detection And Multiplicity Counting With Verification With Liquid Scintillator

    SciTech Connect

    Nakae, L; Chapline, G; Glenn, A; Kerr, P; Kim, K; Ouedraogo, S; Prasad, M; Sheets, S; Snyderman, N; Verbeke, J; Wurtz, R

    2011-09-30

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, we used thermal neutron detectors (mainly {sup 3}He), taking advantage of the high thermal neutron interaction cross-sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics which respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production time-scales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array, and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  18. Recent Developments in Fast Neutron Detection and Multiplicity Counting with Liquid Scintillator

    SciTech Connect

    Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.

    2011-12-13

    For many years, LLNL researchers have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of the techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, thermal neutron detectors (mainly {sup 3}He) were used, taking advantage of the high thermal neutron interaction cross sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (ns versus tens of {mu}s) than thermal neutron detectors. Fast neutron detection offers considerable advantages since the inherent ns production timescales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  19. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect

    ,

    2012-06-24

    This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains μeV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

  20. Cosmic Coincidences: Investigations for Neutron Background Suppression

    PubMed Central

    Heimbach, Craig R.

    2007-01-01

    Two experimental investigations were made in order to reduce background counts in neutron detectors. Each investigation relied upon the fact that neutron background is largely due to cosmic ray interactions with the air and ground. The first attempt was to look at neutron arrival times. Neutron events close in time were taken to have been of a common origin due to cosmic rays. The second investigation was similar, but based on coincident neutron/muon events. The investigations showed only a small effect, not practical for the suppression of neutron background. PMID:27110457

  1. Cosmic Coincidences: Investigations for Neutron Background Suppression.

    PubMed

    Heimbach, Craig R

    2007-01-01

    Two experimental investigations were made in order to reduce background counts in neutron detectors. Each investigation relied upon the fact that neutron background is largely due to cosmic ray interactions with the air and ground. The first attempt was to look at neutron arrival times. Neutron events close in time were taken to have been of a common origin due to cosmic rays. The second investigation was similar, but based on coincident neutron/muon events. The investigations showed only a small effect, not practical for the suppression of neutron background.

  2. Reciprocal Interaction between Carcinoma-Associated Fibroblasts and Squamous Carcinoma Cells through Interleukin-1α Induces Cancer Progression12

    PubMed Central

    Bae, Jung Yoon; Kim, Eun Kyoung; Yang, Dong Hyun; Zhang, Xianglan; Park, Young-Jin; Lee, Doo Young; Che, Chung Min; Kim, Jin

    2014-01-01

    Crosstalk between cancer cells and carcinoma-associated fibroblasts (CAFs) has earned recognition as an interaction that plays a pivotal role in carcinogenesis. Thus, we attempted to clarify whether increase in the level of CAFs promotes cancer progression by proportionally enhancing the interaction between cancer cells and CAFs. We first analyzed clinical correlation between the levels of fibroblasts and cancer progression and found that the level of CAFs made a noticeable difference on the prognosis of patients with oral squamous cell carcinoma (OSCC). In vivo animal study also demonstrated that tumor volume depended on the dose of CAFs that was co-injected with OSCC cells. The same tendency was observed in an in vitro study. We also found that interleukin-1α (IL-1α) secreted from OSCC cells had dual effects on CAFs: IL-1α not only promoted the proliferation of CAFs but also upregulated the secretion of cytokines in CAFs such as CCL7, CXCL1, and IL-8. The induction activity of cytokine secretion by IL-1α surpassed that of proliferation in OSCC cells. In summary, we unraveled an important interactive mechanism of carcinogenesis: IL-1α released from carcinoma stimulates the proliferation of CAFs and the simultaneous increase in cytokine secretion from CAFs promotes cancer progression in human OSCC. On the basis of these findings, we propose that the level of CAFs is eligible for being selected as a prognostic factor that will be useful in routine diagnosis. We also propose that blockage of reciprocal interaction between cancer cells and CAFs will provide an insight for developing novel chemotherapeutic strategy. PMID:25425967

  3. Prospects for fusion neutron NPLs

    SciTech Connect

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D.

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  4. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  5. Static Response of Neutron Matter.

    PubMed

    Buraczynski, Mateusz; Gezerlis, Alexandros

    2016-04-15

    We generalize the problem of strongly interacting neutron matter by adding a periodic external modulation. This allows us to study from first principles a neutron system that is extended and inhomogeneous, with connections to the physics of both neutron-star crusts and neutron-rich nuclei. We carry out fully nonperturbative microscopic quantum Monte Carlo calculations of the energy of neutron matter at different densities, as well as different strengths and periodicities of the external potential. In order to remove systematic errors, we examine finite-size effects and the impact of the wave function ansatz. We also make contact with energy-density functional theories of nuclei and disentangle isovector gradient contributions from bulk properties. Finally, we calculate the static density-density linear response function of neutron matter and compare it with the response of other physical systems.

  6. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  7. [Strongly interacting fermion systems]. Progress report, November 15, 1992--November 14, 1993

    SciTech Connect

    Not Available

    1993-11-01

    Success was obtained in three fields: Optical properties in electronic structure program (optical activity; Se, Si); quasi-one-dimensional systems (CH{sub x}, fullerene tubule, polyaniline, etc.); other strongly interacting fermion systems (Kondo impurities interacting with conduction bands, phonon-induced decay rates for quasi-particle cyclotron orbits in simple metals, fluctuation conductivity above susperconducting transition).

  8. A DDB2 mutant protein unable to interact with PCNA promotes cell cycle progression of human transformed embryonic kidney cells.

    PubMed

    Perucca, Paola; Sommatis, Sabrina; Mocchi, Roberto; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2015-01-01

    DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.

  9. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Moon, S.; White, R. S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron detector and additional analysis corrections lead to slightly changed neutron fluxes. The theoretical angular distributions of Merker (1975) are in general agreement with the reported experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current is in agreement with the experimental values from 10 to 100 MeV. The experimental fluxes obtained agree with those of Kanbach et al. (1974) in the overlap region from 70 to 100 MeV.

  10. Neutron scattering in Australia

    SciTech Connect

    Knott, R.B.

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  11. Argonne potential and multi-neutron systems

    SciTech Connect

    Gridnev, D. K.; Gridnev, K. A.; Schramm, S.; Greiner, Walter

    2009-01-01

    Recently it was proved that the neutron matter interacting through Argonne V18 pair-potential plus modern variants of Urbana or Illinois three-body forces is unstable. For the energy of N neutrons E(N), which interact through these forces one has E(N) = −cN³⁺+O(N{sup 8/3}), where c > 0 is a constant. This means that: (i) the energy per particle and neutron density diverge rapidly for large neutron numbers; (ii) bound states of N neutrons exist for N large enough. The neutron matter collapse is possible due to the form of the repulsive core in three-body forces, which vanishes when three nucleons occupy the same site in space. The obtained results partly change the paradigm, in which the stability of neutron stars is attained through the Pauli principle; the strong repulsive core in the nucleon interactions is by no means less important.

  12. Mechanical interactions of rough surfaces. Quarterly progress report, July 1-September 30, 1986

    SciTech Connect

    McCool, J.I.

    1986-09-01

    Objectives are to study lubricated contacts of rough surfaces under combined rolling, sliding, and spinning, and to develop techniques for analyzing digitized rough surface profiles. A summary is presented of annual progress and of the papers presented at conferences and those published. An example is given of the use of the computer tool MICROCOND. Rq (surface roughness), q, and microfracture data are discussed for silicon nitride coupons. (DLC)

  13. Mechanical interactions of rough surfaces. Progress report, July 1, 1984-September 30, 1984

    SciTech Connect

    McCool, J.I.

    1984-09-01

    This report is a Quarterly Report of Progress. The status of optical rig tests performed under fully flooded and starved conditions is summarized. Procedures for relating fringegram color and film thickness are described. A scheme is described for estimating the spectral moment by a modern profile measurement device. A computer program implementing the scheme and performing a microcontact analysis is discussed and sample output is given.

  14. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  15. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    SciTech Connect

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  16. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1991-12-31

    This report summarizes the work on experimental research in intermediate energy nuclear physics carried out at New Mexico State University in 1991 under a great from the US Department of Energy. Most of these studies have involved investigations of various pion-nucleus interactions. The work has been carried out both with the LAMPF accelerator at the Los Alamos National Laboratory and with the cyclotron at the Paul Scherrer Institute (PSI) near Zurich, Switzerland. Part of the experimental work involves measurements of new data on double-charge-exchange scattering, using facilities at LAMPF which we helped modify, and on pion absorption, using a new detector system at PSI that covers nearly the full solid-angle region which we helped construct. Other work involved preparation for future experiments using polarized nuclear targets and a new high-resolution spectrometer system for detecting {pi}{sup 0} mesons. We also presented several proposals for works to be done in future years, involving studies related to pi-mesonic atoms, fundamental pion-nucleon interactions, studies of the difference between charged and neutral pion interactions with the nucleon, studies of the isospin structure of pion-nucleus interactions, and pion scattering from polarized {sup 3}He targets. This work is aimed at improving our understanding of the pion-nucleon interaction, of the pion-nucleus interaction mechanism, and of nuclear structure.

  17. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory

    SciTech Connect

    Chen, Wei-Ren; Do, Changwoo; Hong, Kunlun; Liu, Yun; Porcar, L.; Shew, Chwen-Yang; Smith, Greg

    2012-01-01

    We present small angle neutron scattering (SANS) measurements of deuterium oxide (D2O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.

  18. In-situ neutron diffraction study of cathode/electrolyte interactions under electrical load and elevated temperature

    NASA Astrophysics Data System (ADS)

    Tonus, F.; Skinner, S. J.

    2016-05-01

    Fuel cells are proposed as a future energy conversion technology that will reduce greenhouse gas emissions at the point of operation due to their ability to produce electrical energy from non-hydrocarbon fuel sources. The Solid Oxide Fuel Cell (SOFC) is amongst the most efficient fuel cell types, however, due to the high cell operating temperature cation diffusion occurs between the different components of the cell, resulting in rapid degradation of the power output. In this paper we investigate cation migration between the promising intermediate temperature-SOFC cathode La1-xSrxCo1-yFeyO3-δ (LSCF) and a fluorite type electrolyte Ce1-xPrxO2-δ (CPO). The crystallographic structure evolution and degradation of the materials were studied by neutron diffraction in-situ under pseudo-operating conditions, i.e. at 600 °C under air and under electrical polarisation. The lattice parameter and cation occupancy evolution were analysed by Rietveld refinement as a function of time and applied potential. The materials were found to be stable, as no impurity formation, lattice parameter or site occupancy evolution was observed during the experiment. However La migration prior to the experiment from LSCF to CPO was observed as well as B-site vacancies in LSCF.

  19. HOTSPUR progress report: neutron source spectrum characterization, and /sup 6/Li(n,x. cap alpha. ) and /sup 7/Li(n,x. cap alpha. ) cross section determination

    SciTech Connect

    Goldberg, E.; Haight, R.

    1984-04-02

    As a prerequisite to high accuracy measurements involving the bulk configuration of /sup 6/LiD we must have a good grasp of the details of the RTNS-I neutron source energy spectrum. Experiments to this end involving neutron yield vs deuteron energy, ratios of foil activation of selected elements, and pulse height distributions of a Si surface barrier detector are described. With this knowledge, the /sup 4/He-production cross sections for /sup 6/Li and /sup 7/Li are found experimentally to be 0.512b and 0.336b, respectively, at anti E/sub N/ = 15.0 MeV in free-field geometry. 14 references.

  20. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors. Technical progress report No. 1, May 1, 1990--January 31, 1991

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-12-31

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  1. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  2. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  3. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  4. Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations [ANIMMA--2015-IO-392

    SciTech Connect

    Jammes, C.; Filliatre, P.; Izarra, G. de; Elter, Zs.; Verma, V.; Hamrita, H.; Bakkali, M.; Chapoutier, N.; Scholer, A.C.; Verrier, D.; Hellesen, C.; Jacobsson, S.; Pazsit, I.; Cantonnet, B.; Nappe, J.C.; Molinie, P.; Dessante, P.; Hanna, R.; Kirkpatrick, M.; Odic, E.

    2015-07-01

    France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of an SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under

  5. Close shell interactions in 3-ethoxycarbonyl-4-hydroxy-6-methoxymethyleneoxy-1-methyl-2-quinolone: 100 K single crystal neutron diffraction study and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pozzi, C. G.; Fantoni, A. C.; Goeta, A. E.; Wilson, C. C.; Autino, J. C.; Punte, G.

    2005-10-01

    The molecular and crystal structures of the title compound have been determined from a single crystal neutron diffraction experiment at 100 K. A comparison between the main geometrical features and related properties of the in-crystal and the ab initio optimized free molecule structures has shown that crystal packing induces a significant distortion in the molecular geometry. Packing instead would only have a moderate effect on the observed intramolecular resonance assisted hydrogen bond. Supermolecular ab initio molecular orbital calculations have been performed on the six different dimers one molecule forms with its nine nearest neighbours. The obtained results clearly show that dispersion contributions dominate in the most strongly interacting dimers, in good qualitative accord with the predictions made by using different empirical potentials. A qualitative description of the most prominent inductive effects determined from the electron density deformation upon dimer formation is presented. Topological analyses of the dimers charge densities have been performed in the framework of the Bader's AIM theory and all the intermolecular bond critical points have been identified. An attempt to determine some of the interaction energies only from topological quantities made evident the practical limitations of such an approach.

  6. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  7. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  8. Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small-angle neutron scattering study.

    PubMed

    Granite, Meirav; Radulescu, Aurel; Pyckhout-Hintzen, Wim; Cohen, Yachin

    2011-01-18

    The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D(2)O/H(2)O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D(2)O solvent composition, which is much higher than the expected value of 17% D(2)O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pederson's block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.

  9. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  10. Current progress on genetic interactions of rice with rice blast and sheath blight fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of genetic interactions between rice and its pathogenic fungi Magnaporthe oryzae and Rhizoctonia solani should lead to a better understanding of molecular mechanisms of host resistance, and the improvement of strategies to manage rice blast and sheath blight diseases. Presently dozens of ri...

  11. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  12. Mechanical interactions of rough surfaces. Progress report, April 1-June 30, 1984

    SciTech Connect

    McCool, J.I.

    1984-06-01

    Mechanical interaction studies and signal processing for surface roughness parameters are reported. Rig modifications that have been implemented are reviewed along with the status of load fluctuation improvement efforts. The status of initial traction/film thickness tests which were conducted with both ball and roller test elements is reviewed. An expository paper comparing models for the contact of rough surfaces is included.

  13. Neutron-Mirror Neutron Oscillations in a Residual Gas Environment

    NASA Astrophysics Data System (ADS)

    Varriano, Louis; Kamyshkov, Yuri

    2017-01-01

    A precise measurement of the neutron lifetime is important for calculating the rate at which nucleosynthesis occurred after the Big Bang. The history of neutron lifetime measurements has demonstrated impressive continuous improvement in experimental technique and in accuracy. However, two most precise recent measurements performed by different techniques differ by about 3 standard deviations. This difference of 9.2 seconds can possibly be resolved by future experiments, but it may also be evidence of a mirror matter effect present in these experiments. Both mirror matter, a candidate for dark matter, and ordinary matter can have similar properties and self-interactions but will interact only gravitationally with each other, in accordance with observational evidence of dark matter. Three separate experiments have been performed in the last decade to detect the possibility of neutron-mirror neutron oscillations. This work provides a formalism for understanding the interaction of the residual gas in an experiment with ultra-cold neutrons. This residual gas effect was previously considered negligible but can have a significant impact on the probability of neutron-mirror neutron transition.

  14. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  15. Radii of neutron drops probed via the neutron skin thickness of nuclei

    SciTech Connect

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops from the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.

  16. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  17. Neutron Scattering Studies of the Effects of Formulating Amphotericin B with Cholesteryl Sulfate on the Drug's Interactions with Phospholipid and Phospholipid-Sterol Membranes.

    PubMed

    Foglia, F; Rogers, S E; Webster, J R P; Akeroyd, F A; Gascoyne, K F; Lawrence, M J; Barlow, D J

    2015-07-28

    Langmuir surface pressure, small-angle neutron scattering (SANS), and neutron reflectivity (NR) studies have been performed to determine how formulation of the antifungal drug amphotericin B (AmB), with sodium cholesteryl sulfate (SCS)-as in Amphotec-affects its interactions with ergosterol-containing (model fungal cell) and cholesterol-containing (model mammalian cell) membranes. The effects of mixing AmB in 1:1 molar ratio with cholesteryl sulfate (yielding AmB-SCS micelles) are compared against those of free AmB, using monolayers and bilayers formed from palmitoyloleoylphosphatidylcholine (POPC) in the absence and presence of 30 mol % ergosterol or cholesterol, in all cases employing a 1:0.05 molar ratio of lipid:AmB. Analyses of the (bilayer) SANS and (monolayer) NR data indicate that the equilibrium changes in membrane structure induced in sterol-free and sterol-containing membranes are the same for free AmB and AmB-SCS. Stopped-flow SANS experiments, however, reveal that the structural changes to vesicle membranes occur far more rapidly following exposure to AmB-SCS vs free drug, with the kinetics of these changes varying with membrane composition. With POPC vesicles, the structural changes induced by AmB-SCS become apparent only after several minutes, and equilibrium is reached after ∼30 min. The corresponding onset of changes in POPC-ergosterol and POPC-cholesterol vesicles, however, occurs within ∼5 s, with equilibrium reached after 10 and 120 s, respectively. The rate of insertion of AmB into POPC-sterol membranes is thus increased through formulation as AmB-SCS. Moreover, the differences in monolayer surface pressure and SANS structure-change equilibration times suggest significant rearrangement of AmB within these membranes following insertion. The reduced times to equilibrium for the POPC-ergosterol vs POPC-cholesterol systems are consistent with the known differences in affinity of AmB for these two sterols, and the reduced time to equilibrium for

  18. MAGNETIC NEUTRON SCATTERING

    SciTech Connect

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  19. PROGRESS ON THE INTERACTION REGION DESIGN AND DETECTOR INTEGRATION AT JLAB'S MEIC

    SciTech Connect

    Morozov, Vasiliy; Brindza, Paul; Camsonne, Alexandre; Derbenev, Yaroslav; Ent, Rolf; Gaskell, David; Lin, Fanglei; Nadel-Turonski, Pawel; Ungaro, Maurizio; Zhang, Yuhong; Hyde, Charles; Park, Kijun; Sullivan, Michael; Zhao, Zhiwen

    2014-07-01

    One of the unique features of JLab's Medium-energy Electron-Ion Collider (MEIC) is a full-acceptance detector with a dedicated, small-angle, high-resolution detection system, capable of covering a wide range of momenta (and charge-to-mass ratios) with respect to the original ion beam to enable access to new physics. We present an interaction region design developed with close integration of the detection and beam dynamical aspects. The dynamical aspect of the design rests on a symmetry-based concept for compensation of non-linear effects. The optics and geometry have been optimized to accommodate the detection requirements and to ensure the interaction region's modularity for ease of integration into the collider ring lattices. As a result, the design offers an excellent detector performance combined with the necessary provisions for non-linear dynamical optimization.

  20. [The interaction of ferredoxin:NADP{sup +} oxidoreductase and ferredoxin:thioredoxin reductase with substrates]. Progress report

    SciTech Connect

    Not Available

    1992-09-01

    We seek to map the ferredoxin-binding sites on three soluble enzymes located in spinach chloroplasts which utilize ferredoxin as an electron donor:Ferredoxin:NADP{sup +}oxidoreductase (FNR); ferredoxin:thioredoxin reductase (FTR) and glutamate synthase. As the availability of amino acid sequences for the enzymes are important in such studies, that the amino acid sequence of glutamate synthase needs be determined, the amino acid sequences of FNR, FTR and ferredoxin are already known. Related to an aim elucidate the binding sites for ferredoxin to determine whether there is a common binding site on all of these ferredoxin-dependent chloroplast enzymes and, if so, to map it. Additionally thioredoxin binding by FTR needs be determine to resolve whether the same site on FTR is involved in binding both ferredoxin and thioredoxin. Considerable progress is reported on the prosthetic groups of glutamate synthase, in establishing the role of arginine and lysine residues in ferredoxin binding by, ferredoxin:nitrite oxidoreductase nitrite reductase, labelling carboxyl groups on ferredoxin with taurine and labelling lysine residues biotinylation, and low potential heme proteins have been isolated and characterized from a non-photosynthetic plant tissue. Although the monoclonal antibodies raised against FNR turned out not to be useful for mapping the FNR/ferredoxin or FNR/NADPinteraction domains, good progress has been made on mapping the FNR/ferredoxin interaction domains by an alternative technique. The techniques developed for differential chemical modification of these two proteins - taurine modification of aspartate and glutamate residues and biotin modification of lysine residues - should be useful for mapping the interaction domains of many proteins that associate through electrostatic interactions.

  1. Direction sensitive neutron detector

    DOEpatents

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  2. The Fundamental Neutron Physics Facilities at NIST.

    PubMed

    Nico, J S; Arif, M; Dewey, M S; Gentile, T R; Gilliam, D M; Huffman, P R; Jacobson, D L; Thompson, A K

    2005-01-01

    The program in fundamental neutron physics at the National Institute of Standards and Technology (NIST) began nearly two decades ago. The Neutron Interactions and Dosimetry Group currently maintains four neutron beam lines dedicated to studies of fundamental neutron interactions. The neutrons are provided by the NIST Center for Neutron Research, a national user facility for studies that include condensed matter physics, materials science, nuclear chemistry, and biological science. The beam lines for fundamental physics experiments include a high-intensity polychromatic beam, a 0.496 nm monochromatic beam, a 0.89 nm monochromatic beam, and a neutron interferometer and optics facility. This paper discusses some of the parameters of the beam lines along with brief presentations of some of the experiments performed at the facilities.

  3. Numerical and laboratory experiments on the dynamics of plume-ridge interaction. Progress report

    SciTech Connect

    Kincaid, C.; Gable, C.W.

    1995-09-01

    Mantle plumes and passive upwelling beneath ridges are the two dominant modes of mantle transport and thermal/chemical fluxing between the Earth`s deep interior and surface. While plumes and ridges independently contribute to crustal accretion, they also interact and the dispersion of plumes within the upper mantle is strongly modulated by mid-ocean ridges. The simplest mode of interaction, with the plume centered on the ridge, has been well documented and modeled. The remaining question is how plumes and ridges interact when the plume is located off-axis; it has been suggested that a pipeline-like flow from the off-axis plume to the ridge axis at the base of the rigid lithosphere may develop. Mid-ocean ridges migrating away from hot mantle plumes can be affected by plume discharges over long times and ridge migration distances. Salient feature of this model is that off-axis plumes communicate with the ridge through a channel resulting from the refraction and dispersion of an axi-symmetric plume conduit along the base of the sloping lithosphere. To test the dynamics of this model, a series of numerical and laboratory dynamic experiments on the problem of a fixed ridge and an off-axis buoyant upwelling were conducted. Results are discussed.

  4. Interaction of radiation with matter. Research progress report, November 1, 1979-October 31, 1980

    SciTech Connect

    1980-09-01

    The mechanisms of dissipation of energy in organic and inorganic materials, and the application of the technique developed to a study of selected problems of environmental concern in the production of energy from fossil fuels were studied. In the Inorganic Phase of the work the research involves (1) measurements of cross-sections for K and L-shell ionization processes for heavy projectiles in the low velocity region, (2) experimental tests of target dependence of the effective-charge theory for light projectiles, (3) theoretical studies on the energy loss of swift particles in plasmas over a broad density and temperature range. The organic phase of the work falls into a series of closely related areas, all derived from a study of the interaction of radiation with matter. (1) New techniques for the study of small particulates (approx. 1..mu..); composition, mass (to +-1 pg) and charge (+-1 electron) can be determined. (2) External photoelectric effects as a tool in arriving at the electronic structure of organic crystals. (3) The interaction of water with charge carriers in organic crystals, producing reactive chemical species, such as Oh and HSO/sub 3/ radicals. (4) Mechanisms of interaction of air-pollutant polycyclic aromatic carcinogens with DNA and the study of the conformation of the adducts.

  5. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  6. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  7. New experimental possibility to search for the ratio of a possible T-violating amplitude to the weak-interaction amplitude in polarized neutron transmission through a polarized nuclear target

    SciTech Connect

    Lukashevich, V. V.; Aldushchenkov, A. V.; Dallman, D.

    2011-03-15

    This paper considers a spin-dependent neutron interaction with optical potentials (fields) from the strong interaction, the weak interaction, and an assumed T-violating interaction. The vector sum of these fields and their interferences determines an effective field of the target with an angular position in space due to polar and azimuthal angles. The phase of the azimuthal component is found to be the sum of two angles. The tangent of the first angle is equal to the ratio of the T-violating forward-scattering amplitude D to the weak-interaction amplitude C. The quantity is of interest. The tangent of the second angle depends on the spin rotation in the residual pseudomagnetic field of the target, and it can be treated as a background effect. This paper shows that the second angle has different signs in measurements with polarized and unpolarized neutrons; thus, two measurements allow it to be compensated for. In addition, the use of the Ramsey method of separated oscillatory fields for measurement of the neutron spin rotation angle, depending on the phase of the rf field in the Ramsey cell, allows a cosine-like spectrum to be measured. This spectrum is called a phase spectrum. The phase spectra measured with polarized and unpolarized targets have a phase shift. The measurements of this phase shift with polarized and nonpolarized neutrons at a p-wave resonance enable the ratio D/C to be isolated. We also describe the algorithm for separating the ratio D/C, taking into account the influence of the fringing fields of the Ramsey coil magnet and the target magnet.

  8. In Vivo Analysis of Protein-Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects.

    PubMed

    Sun, Sihuai; Yang, Xiaobing; Wang, Yao; Shen, Xihui

    2016-10-11

    Proteins are the elementary machinery of life, and their functions are carried out mostly by molecular interactions. Among those interactions, protein-protein interactions (PPIs) are the most important as they participate in or mediate all essential biological processes. However, many common methods for PPI investigations are slightly unreliable and suffer from various limitations, especially in the studies of dynamic PPIs. To solve this problem, a method called Bioluminescence Resonance Energy Transfer (BRET) was developed about seventeen years ago. Since then, BRET has evolved into a whole class of methods that can be used to survey virtually any kinds of PPIs. Compared to many traditional methods, BRET is highly sensitive, reliable, easy to perform, and relatively inexpensive. However, most importantly, it can be done in vivo and allows the real-time monitoring of dynamic PPIs with the easily detectable light signal, which is extremely valuable for the PPI functional research. This review will take a comprehensive look at this powerful technique, including its principles, comparisons with other methods, experimental approaches, classifications, applications, early developments, recent progress, and prospects.

  9. In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects

    PubMed Central

    Sun, Sihuai; Yang, Xiaobing; Wang, Yao; Shen, Xihui

    2016-01-01

    Proteins are the elementary machinery of life, and their functions are carried out mostly by molecular interactions. Among those interactions, protein–protein interactions (PPIs) are the most important as they participate in or mediate all essential biological processes. However, many common methods for PPI investigations are slightly unreliable and suffer from various limitations, especially in the studies of dynamic PPIs. To solve this problem, a method called Bioluminescence Resonance Energy Transfer (BRET) was developed about seventeen years ago. Since then, BRET has evolved into a whole class of methods that can be used to survey virtually any kinds of PPIs. Compared to many traditional methods, BRET is highly sensitive, reliable, easy to perform, and relatively inexpensive. However, most importantly, it can be done in vivo and allows the real-time monitoring of dynamic PPIs with the easily detectable light signal, which is extremely valuable for the PPI functional research. This review will take a comprehensive look at this powerful technique, including its principles, comparisons with other methods, experimental approaches, classifications, applications, early developments, recent progress, and prospects. PMID:27727181

  10. Photon doses in NPL standard neutron fields.

    PubMed

    Roberts, N J; Horwood, N A; McKay, C J

    2014-10-01

    Standard neutron fields are invariably accompanied by a photon component due to the neutron-generating reactions and secondary neutron interactions in the surrounding environment. A set of energy-compensated Geiger-Müller (GM) tubes and electronic personal dosemeters (EPDs) have been used to measure the photon dose rates in a number of standard radionuclide and accelerator-based neutron fields. The GM tubes were first characterised in standard radioisotope and X-ray photon fields and then modelled using MCNP to determine their photon dose response as a function of energy. Values for the photon-to-neutron dose equivalent ratios are presented and compared with other published values.

  11. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  12. Neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice; Menelle, Alain

    2015-10-01

    The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples) and two examples related to the materials for energy.

  13. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  14. Polycyclic aromatic hydrocarbon: protein interactions. Progress report, March 1, 1980-February 28, 1981

    SciTech Connect

    Fujimori, E.

    1980-11-01

    Interacting with bovine serum albumin (BSA), both the very weak carcinogenic hydrocarbon benzo(e)pyrene (Bep) and the powerful carcinogen benzo(a)pyrene (BaP) form pyrene-type compounds, indicating chemical modification at the bay region of the molecules. In constrast to the BaP-BSA reaction apparently similar to the metabolic activation to the bay region oxidation product, the BeP-BSA reaction differs from the known metabolic change of BeP which occurs at the K-region. While the BaP-BSA reaction also produces a BaP radical as well as other uv-fluorescent species, no BeP radical is formed in interaction with BSA and two sharp uv fluorescences at about 330 and 350 nm probably come from the higher excited states of BeP. Furthermore, from fluorescence and excitation spectral studies particularly at low temperature, it is suggested that the uv fluorescences at 320 to 380 nm of the BaP-BSA complex originate from a few distinct species. A new uv fluorescence at 330 nm (preferentially excited at 295 nm), as well as a new excitation peak at 325 nm for the longer wavelength uv fluorescences at 357 and 378 nm, has been found. The extract from the aqueous BaP-BSA solution also emits phosphorescence at 400-440 nm (excited at 310 nm) in EPA solution.

  15. Progress in Spacecraft Environment Interactions: International Space Station (ISS) Development and Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos

    2007-01-01

    The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting

  16. Recent accomplishments in neutron beam projects at the University of Texas Research Reactor

    SciTech Connect

    Uenlue, K.; Wehring, B.W.

    1994-12-31

    The design of a cold neutron source facility at the University of Texas TRIGA research reactor is described. The UT-TRIGA has 5 neutron beam ports. Because of the different characteristics of the ports, various research projects are being pursued. Among these projects, The Texas cold neutron source and neutron depth profiling are operational; neutron focusing, prompt gamma activation analysis, and neutron capture therapy research are progressing.

  17. Evolution of the one-phonon 21,ms+ mixed-symmetry state in N = 80 isotones as a local measure for the proton-neutron quadrupole interaction

    NASA Astrophysics Data System (ADS)

    Ahn, T.; Coquard, L.; Pietralla, N.; Rainovski, G.; Costin, A.; Janssens, R. V. F.; Lister, C. J.; Carpenter, M.; Zhu, S.; Heyde, K.

    2009-08-01

    An inverse kinematics Coulomb excitation experiment was performed to obtain absolute E2 and M1 transition strengths in 134Xe. The measured transition strengths indicate that the 23+ state of 134Xe is the dominant fragment of the one-phonon 21,ms+ mixed-symmetry state. Comparing the energy of the 21,ms+ mixed-symmetry state in 134Xe to that of the 21,ms+ levels in the N = 80 isotonic chain indicates that the separation in energy between the fully-symmetric 21+ state and the 21,ms+ level increases as a function of the number of proton pairs outside the Z = 50 shell closure. This behavior can be understood as resulting from the mixing of the basic components of a two-fluid quantum system. A phenomenological fit based on this concept was performed. It provides the first experimental estimate of the strength of the proton-neutron quadrupole interaction derived from nuclear collective states with symmetric and antisymmetric nature.

  18. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  19. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  20. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression.

    PubMed

    Mir, Riyaz A; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A; Ammons, Shalis A; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-12-28

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function.

  1. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression

    PubMed Central

    Mir, Riyaz A.; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A.; Ammons, Shalis A.; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B.; Qiu, Fang; Band, Hamid

    2015-01-01

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. PMID:26711270

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  3. Time reversal tests in polarized neutron reactions

    SciTech Connect

    Asahi, Koichiro; Bowman, J.D.; Crawford, B.

    1998-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In recent years the nuclear weak interaction has been studied in the compound nucleus via parity violation. The observed parity-violating effects are strongly enhanced by nuclear structure. The predictions are that the interaction of polarized neutrons with polarized nuclear targets could be also used to perform sensitive tests of time-reversal-violation because of the nuclear enhancements. The author has designed experiments to search for time-reversal violation in neutron-nucleus interactions. He has also developed techniques to polarize neutrons with laser-polarized {sup 3}He gas targets. Using the polarized {sup 3}He neutron spin filter, he has performed two experiments at LANSCE: an absolute neutron beam polarization measurement with an accuracy of 0.2--0.3% and a neutron spin-rotation measurement on a {sup 139}La sample.

  4. Experimental studies of pion-nucleus interactions at intermediate energies. Annual progress report

    SciTech Connect

    Not Available

    1992-12-31

    This report summarizes investigations of various pion-nucleus interactions and nucleon-nucleus charge-exchange reactions. The work was carried out with the LAMPF accelerator at the Los Alamos National Laboratory and the cyclotrons at the Paul Scherrer Institute (PSI) near Zurich, Switzerland, and at Indiana University (IUCF), as a collaborative effort among several laboratories and universities. The experimental activity at LAMPF involved measurements of new data on pion double-charge-exchange scattering, some initial work on a new Neutral Meson Spectrometer system, a search for deeply-bound pionic atoms, measurements of elastic scattering, and studies of the (n,p) reaction on various nuclei. At PSI measurements of pion quasielastic scattering were carried out, with detection of the recoil proton. Work on the analysis of data from a previous experiment at PSI on pion absorption in nuclei was continued. This experiment involved using a detector system that covered nearly the full solid angle.

  5. Progress in the epidemiological understanding of gene-environment interactions in major diseases: cancer.

    PubMed

    Clavel, Jacqueline

    2007-04-01

    Cancer epidemiology has undergone marked development since the 1950s. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking on the occurrence of lung, larynx, and bladder cancer. Major chemical, physical, and biological carcinogenic agents have been identified in the working environment and in the overall environment. The chain of events from environmental exposures to cancer requires hundreds of polymorphic genes coding for proteins involved in the transport and metabolism of xenobiotics, or in repair, or in an immune or inflammatory response. The multifactorial and multistage characteristics of cancer create the theoretical conditions for statistical interactions that have been exceptionally detected. Over the last two decades, a considerable mass of data has been generated, mostly addressing the interactions between smoking and xenobiotic-metabolizing enzymes in smoking-related cancers. They were sometimes considered disappointing, but they actually brought a lot of information and raised many methodological issues. In parallel, the number of polymorphisms that can be considered candidate per function increased so much that multiple testing has become a major issue, and genome wide-screening approaches have more and more gained in interest. Facing the resulting complexity, some instruments are being set up: our studies are now equipped with carefully sampled biological collections, high-throughput genotyping systems are becoming available, work on statistical methodologies is ongoing, bioinformatics databases are growing larger and access to them is becoming simpler; international consortiums are being organized. The roles of environmental and genetic factors are being jointly elucidated. The basic rules of epidemiology, which are demanding with respect to sampling, with respect to the histological and molecular criteria for cancer classification, with respect to the evaluation of environmental exposures

  6. Progress in the epidemiological understanding of gene-environment interactions in major diseases: cancer

    PubMed Central

    Clavel, Jacqueline

    2007-01-01

    Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking on the occurrence of lung, larynx and bladder cancer. Major chemical, physical and biological carcinogenic agents have been identified in the working environment and in the overall environment. The chain of events from environmental exposures to cancer requires hundreds of polymorphic genes coding for proteins involved in the transport and metabolism of xenobiotics, or in repair, or in an immune or inflammatory response. The multifactorial and multistage characteristics of cancer create the theoretical conditions for statistical interactions which have been exceptionnally detected. Over the last two decades, a considerable mass of data has been generated, mostly addressing the interactions between smoking and xenobiotic-metabolizing enzymes in smoking-related cancers. They are sometimes considered disappointing but they actually brought a lot of information and raised many methodological issues. In parallel, the number of polymorphisms which can be considered candidate per function increased so much that multiple testing has become a major issue, and genome wide screening approaches have more and more gained in interest. Facing the resulting complexity, some instruments are being set up: our studies are now equipped with carefully sampled biological collections, high-throughput genotyping systems are becoming available, work on statistical methodologies is ongoing, bioinformatics databases are growing larger and access to them is becoming simpler; international consortiums are being organized. The roles of environmental and genetic factors are being jointly elucidated. The basic rules of epidemiology, which are demanding with respect to sampling, with respect to the histological and molecular criteria for cancer classification, with respect to the evaluation of environmental

  7. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  8. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  9. Tbx5 and Osr1 interact to regulate posterior second heart field cell cycle progression for cardiac septation

    PubMed Central

    Zhou, Lun; Liu, Jielin; Olson, Patrick; Zhang, Ke; Wynne, Joshua; Xie, Linglin

    2015-01-01

    Rationale Mutations of TBX5 cause Holt–Oram syndrome (HOS) in humans, a disease characterized by atrial or occasionally ventricular septal defects in the heart and skeletal abnormalities of the upper extremity. Previous studies have demonstrated that Tbx5 regulates Osr1 expression in the second heart field (SHF) of E9.5 mouse embryos. However, it is unknown whether and how Tbx5 and Osr1 interact in atrial septation. Objective To determine if and how Tbx5 and Osr1 interact in the posterior SHF for cardiac septation. Methods and Results In the present study, genetic inducible fate mapping showed that Osr1-expressing cells contribute to atrial septum progenitors between E8.0 and E11.0. Osr1 expression in the pSHF was dependent on the level of Tbx5 at E8.5 and E9.5 but not E10.5, suggesting that the embryo stage before E10.5 is critical for Tbx5 interacting with Osr1 in atrial septation. Significantly more atrioventricular septal defects (AVSDs) were observed in embryos with compound haploinsufficiency for Tbx5 and Osr1. Conditional compound haploinsufficiency for Tbx5 and Osr1 resulted in a significant cell proliferation defect in the SHF, which was associated with fewer cells in the G2 and M phases and a decreased level of Cdk6 expression. Remarkably, genetically targeted disruption of Pten expression in atrial septum progenitors rescued AVSDs caused by Tbx5 and Osr1 compound haploinsufficiency. There was a significant decrease in Smo expression, which is a Hedgehog (Hh) signaling pathway modulator, in the pSHF of Osr1 knockout embryos at E9.5, implying a role for Osr1 in regulating Hh signaling. Conclusions Tbx5 and Osr1 interact to regulate posterior SHF cell cycle progression for cardiac septation. PMID:25986147

  10. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  11. Interaction of carbon and sulfur on metal catalysts: Technical progress report

    SciTech Connect

    McCarty, J.G.; Vajo, J.

    1989-02-17

    At high coverage, sulfur generally deactivates metal catalysts, but at low coverage, chemisorbed sulfur can have a more subtle effect on catalyst activity and selectivity. The general goal of the current project is to examine fundamental aspects of selective poisoning by fractional monolayers of chemisorbed sulfur on a variety of metal catalysts used for commercially important reactions such as hydrocarbon re-forming, light alkane steam re-forming, and hydrocarbon synthesis. Specific objectives of the research program are to experimentally measure as a function of coverage the influence of chemisorbed sulfur on the thermodynamics, reactivity, and structure of surface and bulk carbon occupying both dispersed and well-characterized metal catalyst surfaces. Special methods, such as reversible sulfur chemisorption on supported metals and temperature-programmed reaction (TPR) characterization of catalyst carbon, have been developed that are well suited to examining the interaction of sulfur and carbon on metal surfaces. New analytical instruments with greatly improved sensitivity have been recently developed and applied: a helium discharge ionization detector (DID) is being used with a gas recirculation thermodynamic system, and the surface analysis by laser ionization (SALI) technique is used with surface carbon segregation systems.

  12. Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods

    PubMed Central

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-01-01

    We review the first successes and failures of a “new wave” of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of “enhanced”, dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects. PMID:27196893

  13. Numerical simulations of the discontinuous progression of cerebral aneurysms based on fluid-structure interactions study

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoqi; Wang, Yueshe; Yu, Fangjun; Wang, Guoxiang

    2010-05-01

    Investigations into the characteristics of hemodynamics will provide a better understanding of the pathology of cerebral aneurysms for clinicians. In this work, a steady state discontinuous-growth model of the cerebral aneurysms was proposed. With the assumption of the fluid-structure interaction between the wall of blood vessel and blood, a fluid-structure coupling numerical simulation for this model was built using software ANSYS and CFX. The simulation results showed that as the aneurysm volume increased, a blood flow vortex came forth, the vortex region became asymptotically larger, and eddy density became gradually stronger in it. After the emergence of the vortex region, the blood flow in the vicinity of the downstream in the aneurysms volume turned into bifurcated flow, and the location of the flow bifurcated point was shifted with the aneurysm volume growing while directions of the shear stress applied to two sides of the bifurcated point were opposite. The Von Mises stress distribution along the wall of aneurysm volume decreased in the prior period and increased gradually in the later period. The maximum stress was in the neck of the volume and the minimum was on the distal end in the whole process of growth. It was shown that as the aneurysm increased the maximum deformation location of the aneurysm, vertical to the streamline, was transferred from the distal end of the aneurysm to its neck, then back to its distal end of the aneurysm again.

  14. Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.

    PubMed

    Yilmazer, Nusret Duygu; Korth, Martin

    2016-05-16

    We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects.

  15. Mechanical interactions of rough surfaces. Quarterly progress report, April 1, 1985-June 30, 1985

    SciTech Connect

    McCool, J.I.; Hadden, G.B.

    1985-07-01

    The project, Mechanical Interactions of Rough Surfaces addresses a number of unresolved issues which impact the design of mechanical systems in which surface microtopography per se or events which occur on the microgeometric scale play a critical role. The project is an experimental/analytical investigation to: (1) Explore the behavior of lubricated concentrated contacts involving microscopically rough surfaces under conditions of combined rolling, sliding and spinning with and without the presence of contaminating particles. (2) Develop processing principles and techniques for the analysis of digitized rough surface profiles to yield surface descriptors that are predictive of functional performance and which have acceptable systematic and random error. The work is being conducted within two distinct tasks: In Task I, a rig designed and built by SKF is used to provide optical interferograms of the lubricated contact of rough surfaces along with measurements of the traction transmitted under conditions of combined rolling, sliding and spinning. The objective of Task II is to develop guidelines and techniques for the processing of surface roughness data generated in analog form by a stylus profile instrument to provide interpretable predictions of surface performance in contact.

  16. Natural gas storage and end user interaction: A progress report, September 30, 1994--March 31, 1995

    SciTech Connect

    Crook, L.R. Jr.; Reich, S.; Godec, M.L.

    1995-07-01

    In late 1994, ICF Resources began a contract with the Morgantown Energy Technology Center (METC) to conduct a study of natural gas storage and end user interaction. This study is being conducted in three phases: the first phase is an assessment of the market requirements for natural gas storage and in particular to identify those end user requirements for storage that could benefit from METC-sponsored research and development (R&D) in storage technology; the second phase will address the particular technical and economic feasibility for expanding conventional storage; and the third phase will address alternative, unconventional technologies. ICF is approaching the conclusion of the first phase of the study and the second phase has begun. This paper summarizes the scope of the study and reports some of the preliminary findings of the first phase. We begin by providing an overview of the goals of the effort and of natural gas storage. We will address the evolving market requirements for storage and the regulatory and institutional changes that are having a major impact on the use of natural gas storage. We address the demand for storage and the alternatives for meeting this demand, with specific reference to regional and end use issues.

  17. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007.

    PubMed

    2008-01-01

    This year the Montreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the Montreal Protocol on Substances that Deplete the Ozone Layer. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important.

  18. Heterofunctionality interaction with donor solvent coal liquefaction. Final progress report, August 1982-April 1984

    SciTech Connect

    Cronauer, D.C.

    1984-05-01

    This project was undertaken to understand the role of the coal liquefaction solvent through a study of the interaction between the hydrogen donor solvent characteristics and the heterofunctionality of the solvent. Specifically, hydroxyl- and nitrogen-containing solvents were studied and characterized. A series of coal liquefaction experiments were carried out at 450/sup 0/C in a continuous feed stirred-tank reactor (CSTR) to observe the effect of adding phenolics to anthracene oil (AO) and SRC-II recycle solvents. The addition of phenol to AO at a ratio of 5/65 resulted in a nominal increase in coal conversion to THF solubles, but the amount of asphaltenes more than doubled resulting in a sizable net loss of solvent. The addition of m-cresol to both AO and SRC-II solvents had a positive effect on coal conversion to both THF and pentane solubles (oils). The partial removal of an OH-concentrate from SRC-II solvent was carried out using Amberlyst IRA-904 ion exchange resin. The resin-treated oil was only marginally better than raw SRC-II recycle solvent for coal liquefaction. Hydroaromatics having nitrogen functionality should be good solvents for coal liquefaction considering their effective solvent power, ability to penetrate and swell coal, and their ability to readily transfer hydrogen, particularly in the presence of oxygen functionality. However, these benefits are overshadowed by the strong tendency of the nitrogen-containing species to adduct with themselves and coal-derived materials.

  19. Space experiment BTN-NEUTRON on INTERNATIONAL SPACE STATION - CURRENT STATUS and future stages

    NASA Astrophysics Data System (ADS)

    Tretyakov, V. I.; Kozyrev, A. S.; Laygushin, V. I.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Pronin, M. A.; Vostrukhin, A. A.; Sanin, A. B.

    2009-04-01

    Space experiment BTN (Board Telescope of Neutrons) was suggested in 1997 for the Russian segment of International Space Station. The first stage of this experiment was started in February 2007 with instrumentation BTN-M1, which contain two separate units: 1) the electronics unit for commanding and data handling, which is installed inside the Station; 2) the detector unit, which is installed at the outer surface of Russian Service Module "Zvezda". The total mass of this instrument without cables is about 15 kg and total power consumption is about 18 Watts. Detector unit of BTN-M1 has the set of four neutron detectors: three proportional counters of epithermal neutrons with 3He covered by cadmium shields and polyethylene moderators with different thickness and stylbene scintillator for fast neutrons at the energy range 0.4 Mev - 10 Mev. There are three sources of neutrons in the near-Earth space. Permanent flux of neutrons is produced due to interaction of energetic particles of galactic and solar cosmic rays with the upper atmosphere of the Earth ("natural neutrons") and with the body of the spacecraft ("technogenic neutrons"). The third transient sources of neutrons are active regions of the Sun, which may sporadically emit energetic neutrons during strong flares. Some of these particles have sufficiently high energy to neutrons cover the distance to the Earth before decay Data from BTN-M1 after 2 years of space operations is sufficient for preliminary estimation of neutron component of radiation environment in the near-Earth space. BTN-M1 detector unit is equal to the Russian instrument HEND, which also operates now onboard NASA's Mars Odyssey orbiter since May 2001. Simultaneous measurements of neutron radiation on orbits around Mars and Earth give the unique opportunity to compare neutron radiation environment around two planets. The technogenic component of neutron background may be estimated by analysis of data for different stages of flight. After evaluation

  20. Fundamental Structure of Matter and Strong Interaction

    SciTech Connect

    Jian-Ping Chen

    2011-11-01

    More than 99% of the visible matter in the universe are the protons and neutrons. Their internal structure is mostly governed by the strong interaction. Understanding their internal structure in terms of fundamental degrees-of-freedom is one of the most important subjects in modern physics. Worldwide efforts in the last few decades have lead to numerous surprises and discoveries, but major challenges still remain. An overview of the progress will be presented with a focus on the recent studies of the proton and neutron's electromagnetic and spin structure. Future perspectives will be discussed.

  1. Properties and uses of cold neutron beams

    SciTech Connect

    Clark, David D.

    1992-07-01

    Cold neutrons are conventionally defined as those with energy below 0.005 eV; the corresponding velocity and wavelength arc 980 m/s and 4 angstroms. The first extensive use of cold neutrons was in the 1960's by condensed matter physicists for investigations of spatial structure and internal dynamics of solids and liquids. Different experiments place different requirements on neutron beams, but it is usually advantageous to eliminate the faster neutrons and the gamma rays that are present in normal reactor beams. Several types of filters that pass only the low-energy portion of an incident Maxwellian spectrum have been developed and will be discussed. Examples include single crystal quartz or bismuth (room temperature or cooled), polycrystalline beryllium, and neutron guides. For any of these shifting the incident neutrons to a lower energy spectrum by use of a cold moderator leads to large increases in the intensity of cold neutrons. The properties of the beams resulting from the particular combination of a cold moderator and a neutron guide will be discussed. These include the changes in beam intensity and spectral shape as warm neutrons in a typical reactor spectrum first interact with a cold moderator and then pass through a straight or curved neutron guide. The spatial and angular distribution of the neutrons at the exit of the guide will be described. One further important effect for cold neutron beam experiments involving nuclear reactions is the increase in reaction rates because of the usual 1/v dependence of reaction cross sections and another is the considerable simplification with cold neutrons in the problems of collimating, shielding, and stopping the beam. The resulting benefits for studies of nuclear energy levels by neutron capture gamma-ray and conversion electron experiments and for the analysis of materials by PGNAA will be discussed. Neutron depth profiling is also improved with cold neutrons. (author)

  2. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  3. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  4. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  5. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  6. Neutron Crystallography for Macromolecular Structure Analysis

    NASA Astrophysics Data System (ADS)

    Kuroki, Ryota

    Hydrogen atoms in proteins as well as protein-bound water molecules play a significant role in many chemical reaction processes in living systems, such as catalytic reaction and molecular recognition. Neutron crystallography is a powerful tool to identify locations of light atoms like hydrogen. In the field of neutron crystallography, the development of diffractometers and techniques for preparation and crystallization of target samples has been developed to complement the low flux of neutron sources. In Japan, single-crystal diffractometers named BIX-3 and BIX-4 have been developed, and contribute to the effective collection of neutron diffraction data. Recent developments on the complementary use of neutron and X-ray diffraction data have begun solving previously undetermined problems of protein function. Further efforts to acquire higher measurement performance are now in progress to increase the application of neutron crystallographic studies.

  7. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  8. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  9. Aerial Neutron Detection: Neutron Signatures for Nonproliferation and Emergency Response Applications

    SciTech Connect

    Maurer, Richard J.; Stampahar, Thomas G.; Smith, Ethan X.; Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Rourke, Timothy J.; LeDonne, Jeffrey P.; Avaro, Emanuele; Butler, D. Andre; Borders, Kevin L.; Stampahar, Jezabel; Schuck, William H.; Selfridge, Thomas L.; McKissack, Thomas M.; Duncan, William W.; Hendricks, Thane J.

    2012-10-17

    From 2007 to the present, the Remote Sensing Laboratory has been conducting a series of studies designed to expand our fundamental understanding of aerial neutron detection with the goal of designing an enhanced sensitivity detection system for long range neutron detection. Over 35 hours of aerial measurements in a helicopter were conducted for a variety of neutron emitters such as neutron point sources, a commercial nuclear power reactor, nuclear reactor spent fuel in dry cask storage, depleted uranium hexafluoride and depleted uranium metal. The goals of the project were to increase the detection sensitivity of our instruments such that a 5.4 × 104 neutron/second source could be detected at 100 feet above ground level at a speed of 70 knots and to enhance the long-range detection sensitivity for larger neutron sources, i.e., detection ranges above 1000 feet. In order to increase the sensitivity of aerial neutron detection instruments, it is important to understand the dynamics of the neutron background as a function of altitude. For aerial neutron detection, studies have shown that the neutron background primarily originates from above the aircraft, being produced in the upper atmosphere by galactic cosmic-ray interactions with air molecules. These interactions produce energetic neutrons and charged particles that cascade to the earth’s surface, producing additional neutrons in secondary collisions. Hence, the neutron background increases as a function of altitude which is an impediment to long-range neutron detection. In order to increase the sensitivity for long range detection, it is necessary to maintain a low neutron background as a function of altitude. Initial investigations show the variation in the neutron background can be decreased with the application of a cosmic-ray shield. The results of the studies along with a representative data set are presented.

  10. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  11. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  12. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

    PubMed Central

    Cornil, I; Theodorescu, D; Man, S; Herlyn, M; Jambrosic, J; Kerbel, R S

    1991-01-01

    It is known from a variety of experimental systems that the ability of tumor cells to grow locally and metastasize can be affected by the presence of adjacent normal tissues and cells, particularly mesenchymally derived stromal cells such as fibroblasts. However, the comparative influence of such normal cell-tumor cell interactions on tumor behavior has not been thoroughly investigated from the perspective of different stages of tumor progression. To address this question we assessed the influence of normal dermal fibroblasts on the growth of human melanoma cells obtained from different stages of tumor progression. We found that the in vitro growth of most (4 out of 5) melanoma cell lines derived from early-stage radial growth phase or vertical growth phase metastatically incompetent primary lesions is repressed by coculture with normal dermal fibroblasts, suggesting that negative homeostatic growth controls are still operative on melanoma cells from early stages of disease. On the other hand, 9 out of 11 melanoma cell lines derived from advanced metastatically competent vertical growth phase primary lesions, or from distant metastases, were found to be consistently stimulated to grow in the presence of dermal fibroblasts. Evidence was obtained to show that this discriminatory fibroblastic influence is mediated by soluble inhibitory and stimulatory growth factor(s). Taken together, these results indicate that fibroblast-derived signals can have antithetical growth effects on metastatic versus metastatically incompetent tumor subpopulations. This resultant conversion in responsiveness to host tissue environmental factors may confer upon small numbers of metastatically competent cells a growth advantage, allowing them to escape local growth constraints both in the primary tumor site and at distant ectopic tissue sites. PMID:2068080

  13. Small Angle Neutron Scattering

    SciTech Connect

    Urban, Volker S

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  14. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    SciTech Connect

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  15. Neutron multiplicity distributions for 30 MeVu {sup 14}N reactions with the indicated targets. Progress in research, April 1, 1991--March 31, 1992

    SciTech Connect

    Not Available

    1992-06-01

    This report contains short papers on the following topics: Heavy ion reactions; nuclear structure and fundamental interactions; nuclear theory; atomic molecular and materials science; and superconducting cyclotron and instrumentation. (LSP)

  16. AKAP95 promotes cell cycle progression via interactions with cyclin E and low molecular weight cyclin E

    PubMed Central

    Kong, Xiang-Yu; Zhang, Deng-Cheng; Zhuang, Wen-Xin; Hua, Su-Hang; Dai, Yue; Yuan, Yang-Yang; Feng, Li-Li; Huang, Qian; Teng, Bo-Gang; Yu, Xiu-Yi; Liu, Wen-Zhi; Zhang, Yong-Xing

    2016-01-01

    AKAP95 in lung cancer tissues showed higher expression than in paracancerous tissues. AKAP95 can bind with cyclin D and cyclin E during G1/S cell cycle transition, but its molecular mechanisms remain unclear. To identify the mechanism of AKAP95 in cell cycle progression, we performed AKAP95 transfection and silencing in A549 cells, examined AKAP95, cyclin E1 and cyclin E2 expression, and the interactions of AKAP95 with cyclins E1 and E2. Results showed that over-expression of AKAP95 promoted cell growth and AKAP95 bound cyclin E1 and E2, low molecular weight cyclin E1 (LWM-E1) and LWM-E2. Additionally AKAP95 bound cyclin E1 and LMW-E2 in the nucleus during G1/S transition, bound LMW-E1 during G1, S and G2/M, and bound cyclin E2 mainly on the nuclear membrane during interphase. Cyclin E2 and LMW-E2 were also detected. AKAP95 over-expression increased cyclin E1 and LMW-E2 expression but decreased cyclin E2 levels. Unlike cyclin E1 and LMW-E2 that were nuclear located during the G1, S and G1/S phases, cyclin E2 and LMW-E1 were expressed in all cell cycle phases, with cyclin E2 present in the cytoplasm and nuclear membrane, with traces in the nucleus. LMW-E1 was present in both the cytoplasm and nucleus. The 20 kDa form of LMW-E1 showed only cytoplasmic expression, while the 40 kDa form was nuclear expressed. The expression of AKAP95, cyclin E1, LMW-E1 and -E2, might be regulated by cAMP. We conclude that AKAP95 might promote cell cycle progression by interacting with cyclin E1 and LMW-E2. LMW-E2, but not cyclin E2, might be involved in G1/S transition. The binding of AKAP95 and LMW-E1 was found throughout cell cycle. PMID:27158371

  17. AKAP95 promotes cell cycle progression via interactions with cyclin E and low molecular weight cyclin E.

    PubMed

    Kong, Xiang-Yu; Zhang, Deng-Cheng; Zhuang, Wen-Xin; Hua, Su-Hang; Dai, Yue; Yuan, Yang-Yang; Feng, Li-Li; Huang, Qian; Teng, Bo-Gang; Yu, Xiu-Yi; Liu, Wen-Zhi; Zhang, Yong-Xing

    2016-01-01

    AKAP95 in lung cancer tissues showed higher expression than in paracancerous tissues. AKAP95 can bind with cyclin D and cyclin E during G1/S cell cycle transition, but its molecular mechanisms remain unclear. To identify the mechanism of AKAP95 in cell cycle progression, we performed AKAP95 transfection and silencing in A549 cells, examined AKAP95, cyclin E1 and cyclin E2 expression, and the interactions of AKAP95 with cyclins E1 and E2. Results showed that over-expression of AKAP95 promoted cell growth and AKAP95 bound cyclin E1 and E2, low molecular weight cyclin E1 (LWM-E1) and LWM-E2. Additionally AKAP95 bound cyclin E1 and LMW-E2 in the nucleus during G1/S transition, bound LMW-E1 during G1, S and G2/M, and bound cyclin E2 mainly on the nuclear membrane during interphase. Cyclin E2 and LMW-E2 were also detected. AKAP95 over-expression increased cyclin E1 and LMW-E2 expression but decreased cyclin E2 levels. Unlike cyclin E1 and LMW-E2 that were nuclear located during the G1, S and G1/S phases, cyclin E2 and LMW-E1 were expressed in all cell cycle phases, with cyclin E2 present in the cytoplasm and nuclear membrane, with traces in the nucleus. LMW-E1 was present in both the cytoplasm and nucleus. The 20 kDa form of LMW-E1 showed only cytoplasmic expression, while the 40 kDa form was nuclear expressed. The expression of AKAP95, cyclin E1, LMW-E1 and -E2, might be regulated by cAMP. We conclude that AKAP95 might promote cell cycle progression by interacting with cyclin E1 and LMW-E2. LMW-E2, but not cyclin E2, might be involved in G1/S transition. The binding of AKAP95 and LMW-E1 was found throughout cell cycle.

  18. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  19. Remote Sensing of Aerosols from Satellites: Why Has It Been Do Difficult to Quantify Aerosol-Cloud Interactions for Climate Assessment, and How Can We Make Progress?

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2015-01-01

    The organizers of the National Academy of Sciences Arthur M. Sackler Colloquia Series on Improving Our Fundamental Understanding of the Role of Aerosol-Cloud Interactions in the Climate System would like to post Ralph Kahn's presentation entitled Remote Sensing of Aerosols from Satellites: Why has it been so difficult to quantify aerosol-cloud interactions for climate assessment, and how can we make progress? to their public website.

  20. Direct Experimental Limit on Neutron-Mirror-Neutron Oscillations

    SciTech Connect

    Ban, G.; Lefort, T.; Naviliat-Cuncic, O.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Knecht, A.; Mtchedlishvili, A.; Zsigmond, G.; Khomutov, N.; Knowles, P.; Rebetez, M.; Weis, A.; Plonka, C.

    2007-10-19

    In case a mirror world with a copy of our ordinary particle spectrum would exist, the neutron n and its degenerate partner, the mirror neutron n{sup '}, could potentially mix and undergo nn{sup '} oscillations. The interaction of an ordinary magnetic field with the ordinary neutron would lift the degeneracy between the mirror partners, diminish the n{sup '} amplitude in the n wave function and, thus, suppress its observability. We report an experimental comparison of ultracold neutron storage in a trap with and without superimposed magnetic field. No influence of the magnetic field is found and, assuming negligible mirror magnetic fields, a limit on the oscillation time {tau}{sub nn{sup '}}>103 s (95% C.L.) is derived.

  1. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    SciTech Connect

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B.; Barrón-Palos, L.; Maldonado-Velázquez, M.; Bass, C. D.; Crawford, B. E.; Crawford, C.; Esposito, D.; Gardiner, H.; Gan, K.; Heckel, B. R.; Swanson, H. E. [University of Washington and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10{sup −7} rad/m.

  2. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  3. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  4. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  5. Characterization of HPGe gamma spectrometric detectors systems for Instrumental Neutron Activation Analysis (INAA) at the Colombian Geological Survey

    NASA Astrophysics Data System (ADS)

    Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.

    2016-07-01

    This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.

  6. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  7. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  8. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  9. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  10. γ-decay of {}_{8}^{16}{{\\rm{O}}}_{8}\\,{and}\\,{}_{7}^{16}{{\\rm{N}}}_{9} in proton-neutron Tamm-Dancoff and random phase approximations with optimized surface δ interaction

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Firoozi, B.

    2016-09-01

    γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.

  11. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    SciTech Connect

    Talamo, Alberto; Gohar, Yousry

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  12. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; DeNolfo, Georgia; Floyd, Sam; Krizmanic, John; Link, Jason; Son, Seunghee; Guardala, Noel; Skopec, Marlene; Stark, Robert

    2008-01-01

    We describe the Neutron Imaging Camera (NIC) being developed for DTRA applications by NASA/GSFC and NSWC/Carderock. The NIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution. 3-D tracking of charged particles. The incident direction of fast neutrons, E(sub N) > 0.5 MeV. arc reconstructed from the momenta and energies of the proton and triton fragments resulting from 3He(n,p)3H interactions in the 3-DTI volume. We present angular and energy resolution performance of the NIC derived from accelerator tests.

  13. Neutron Scattering Stiudies

    SciTech Connect

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  14. US/Japan collaborative program on fusion reactor materials: Summary of the tenth DOE/JAERI Annex I technical progress meeting on neutron irradiation effects in first wall and blanket structural materials

    SciTech Connect

    Rowcliffe, A.F.

    1989-03-17

    This meeting was held at Oak Ridge National Laboratory on March 17, 1989, to review the technical progress on the collaborative DOE/JAERI program on fusion reactor materials. The purpose of the program is to determine the effects of neutron irradiation on the mechanical behavior and dimensional stability of US and Japanese austenitic stainless steels. Phase I of the program focused on the effects of high concentrations of helium on the tensile, fatigue, and swelling properties of both US and Japanese alloys. In Phase II of the program, spectral and isotropic tailoring techniques are fully utilized to reproduce the helium:dpa ratio typical of the fusion environment. The Phase II program hinges on a restart of the High Flux Isotope Reactor by mid-1989. Eight target position capsules and two RB* position capsules have been assembled. The target capsule experiments will address issues relating to the performance of austenitic steels at high damage levels including an assessment of the performance of a variety of weld materials. The RB* capsules will provide a unique and important set of data on the behavior of austenitic steels irradiated under conditions which reproduce the damage rate, dose, temperature, and helium generation rate expected in the first wall and blanket structure of the International Thermonuclear Experimental Reactor.

  15. Interaction of a cationic gemini surfactant with DNA and with sodium poly(styrene sulphonate) at the air/water interface: a neutron reflectometry study.

    PubMed

    Vongsetskul, T; Taylor, D J F; Zhang, J; Li, P X; Thomas, R K; Penfold, J

    2009-04-07

    The interactions between a dicationic gemini surfactant with a six-hydrocarbon spacer (1,2-bis(dodecyldimethyl-ammonio)hexane dibromide, C12C6C12Br2) and anionic polyelectrolyte DNA or sodium (polystyrene sulfonate) (NaPSS) at the air/solution interface have been studied and compared using neutron reflectometry together with surface tension. In the presence of the dichained cationic gemini surfactant, DNA and NaPSS display very different adsorption behaviors. The DNA/gemini mixtures show adsorption behavior very similar to that of DNA/C12TAB mixtures, with enhanced surfactant adsorption at low concentrations and thick structured layers at higher concentrations. However, for the NaPSS/gemini mixtures the amount of gemini at the surface is reduced relative to that in the absence of NaPSS at concentrations below the cmc. These differences in adsorption behavior are attributed to differences in the molecular structure and flexibility of the two polyanions. NaPSS is relatively hydrophobic and flexible enough to form bulk-phase polymer-micelle complexes with the gemini surfactant at low surfactant concentrations, whereas the adsorption of surface complexes is much less favorable because the dications on the gemini would require adjacent bulky pendant charges on the NaPSS to be oriented toward the surface. This would force the NaPSS to bend significantly whereas it is more favorable for the NaPSS to adopt an extended conformation at the surface. Thus, surfactant is actually removed from the surface to form bulk-phase complexes. In contrast with NaPSS, DNA has a far more rigid structure, and the charges on the backbone are at fixed intervals, factors that make the formation of surface DNA-monomer complexes much more favorable than bulk-phase DNA-micelle complexes. Finally, a short-chain sample of NaPSS consisting of only five to six segments adsorbs very strongly at the surface with the gemini to form more extensive layered structures than have previously been observed

  16. Two neutron correlations in photo-fission

    NASA Astrophysics Data System (ADS)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  17. Two neutron correlations in photo-fission

    SciTech Connect

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-01-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  18. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    SciTech Connect

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4..pi.. required for a spectral measurement with this system is approx. 10/sup 10/ n where the neutron yield is predominantly below 4 MeV and approx. 10/sup 8/ n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described.

  19. Experimental Neutron Source Facility Based on Accelerator Driven System

    NASA Astrophysics Data System (ADS)

    Gohar, Yousry

    2010-06-01

    An experimental neutron source facility has been developed for producing medical isotopes, training young nuclear professionals, providing capability for performing reactor physics, material research, and basic science experiments. It uses a driven subcritical assembly with an electron accelerator. The neutrons driving the subcritical assembly were generated from the electron interactions with a target assembly. Tungsten or uranium target material is used for the neutron production through photonuclear reactions. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  20. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  1. Cross sections for production of 70 discrete-energy gamma rays created by neutron interactions with sup 56 Fe for E sub n to 40 MeV: Tabulated data

    SciTech Connect

    Dickens, J.K.; Todd, J.H.; Larson, D.C.

    1990-09-01

    Inelastic and nonelastic neutron interactions with {sup 56}Fe have been studied for incident neutron energies between 0.8 and 41 MeV. An iron sample isotopically enriched in the mass 56 isotope was used. Gamma rays representing 70 transitions among levels in residual nuclei were identified, and production cross sections were deduced. The reactions studied were {sup 56}Fe(n,n{prime}){sup 56}Fe, {sup 56}Fe(n,p){sup 56}Mn, {sup 56}Fe(n,2n){sup 55}Fe, {sup 56}Fe(n,d + n,np){sup 55}Mn, {sup 56}Fe(n,t + n,nd + n,2np){sup 54}Mn, {sup 56}Fe(n,{alpha}){sup 53}Cr, {sup 56}Fe(n,n{alpha}){sup 52}Cr, and {sup 56}Fe(n,3n){sup 54}Fe. Values obtained for production cross sections as functions of incident neutron energy are presented in tabular form. 38 refs., 7 figs., 12 tabs.

  2. Neutron Lifetime Measurement Using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Huffer, Craig; Huffman, P. R.; Schelhammer, K. W.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Coakley, K.; Yue, A. T.; O'Shaughnessy, C. M.

    2017-01-01

    The neutron beta-decay lifetime is important in both nuclear astrophysics and in understanding weak interactions in the framework of the Standard Model. An experiment based at the NIST Center for Neutron Research was designed to address statistical and systematic limitations of former measurements. In our approach, a beam of 0.89 nm neutrons is incident on a superfluid 4He target within the minimum field region of an Ioffe-type magnetic trap. Some of the neutrons are subsequently downscattered by single phonons in the helium to low energies (< 100 neV) and those in the appropriate spin state become trapped. The inverse process, upscattering of UCN, is suppressed by the low phonon density in the < 300 mK helium, allowing the neutron to travel undisturbed through the helium. When the neutron decays the energetic electron produces a scintillation signal in the helium that is detected in real time using photomultiplier tubes. The current measurement is limited by larger than expected systematic corrections. We will discuss the result of the latest dataset and comment on the potential of future measurements.

  3. Capture-Gated Fast Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mumm, H. P.; Abdurashitov, J. N.; Beise, E. J.; Breuer, H.; Gavrin, V. N.; Heimbach, C. R.; Langford, T. J.; Mendenhall, M.; Nico, J. S.; Shikhin, A. A.

    2015-10-01

    We present recent developments in fast neutron detection using segmented spectrometers based on the principle of capture-gating. Our approach employs an organic scintillator to detect fast neutrons through their recoil interaction with protons in the scintillator. The neutrons that thermalize and are captured produce a signal indicating that the event was due to a neutron recoil and that the full energy of the neutron was deposited. The delayed neutron capture also serves to discriminate against uncorrelated background events. The segmentation permits reconstruction of the initial neutron energy despite the nonlinear response of the scintillator. We have constructed spectrometers using both He-3 proportional counters and Li-6 doping as capture agents in plastic and liquid organic scintillators. We discuss the operation of the spectrometers for the measurement of low levels of fast neutrons for several applications, including the detection of very low-activity neutron sources and the characterization of the flux and spectrum of fast neutrons at the Earth's surface and in the underground environment.

  4. Magnetic field decay in isolated neutron stars

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Reisenegger, Andreas

    1992-01-01

    Three mechanisms that promote the loss of magnetic flux from an isolated neutron star - Ohmic decay, ambipolar diffusion, and Hall drift - are investigated. Equations of motions are solved for charged particles in the presence of a magnetic field and a fixed background of neutrons, while allowing for the creation and destruction of particles by weak interactions. Although these equations apply to normal neutrons and protons, the present interpretations of their solutions are extended to cover cases of neutron superfluidity and proton superconductivity. The equations are manipulated to prove that, in the presence of a magnetic force, the charged particles cannot be simultaneously in magnetostatic equilibrium and chemical equilibrium with the neutrons. The application of the results to real neutron stars is discussed.

  5. A New Neutron Interferometry Facility at NCNR

    NASA Astrophysics Data System (ADS)

    Shahi, Chandra; Wietfeldt, Fred; Huber, Michael; Pushin, Dmitry; Arif, Muhammad

    2013-10-01

    A neutron interferometer splits an incoming neutron beam into two coherent partial beams, which travel on different paths and then recombine to form an interference pattern. This pattern is used to precisely determine the phase shift of a sample in one of the paths, thus the neutron interaction potential in the sample can be measured with high precision. A new neutron interferometry setup (NIOFa) has been constructed at the NIST Center for Neutron Research (NCNR). This new facility is mainly focused on spin based interferometry, which will expand its applications in both quantum computation and material research. New spin-control mechanisms are being tested; including thin-film spin flippers and efficient polarizing double cavity super mirrors. Doubling the neutron's degrees of freedom inside the interferometer promises exciting new quantum mechanical experiments and research capabilities. This work is supported by the National Science Foundation.

  6. Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity

    PubMed Central

    McDonald, Karin R.; Pourbozorgi-Langroudi, Parham; Cristea, Ileana M.; Zakian, Virginia A.; Capra, John A.; Sabouri, Nasim

    2016-01-01

    Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5’-to-3’ DNA helicase Pfh1 is known to promote fork progression, its genomic targets, dynamics, and mechanisms of action are largely unknown. Here we address these questions by integrating genome-wide identification of Pfh1 binding sites, comprehensive analysis of the effects of Pfh1 depletion on replication and DNA damage, and proteomic analysis of Pfh1 interaction partners by immunoaffinity purification mass spectrometry. Of the 621 high confidence Pfh1-binding sites in wild type cells, about 40% were sites of fork slowing (as marked by high DNA polymerase occupancy) and/or DNA damage (as marked by high levels of phosphorylated H2A). The replication and integrity of tRNA and 5S rRNA genes, highly transcribed RNA polymerase II genes, and nucleosome depleted regions were particularly Pfh1-dependent. The association of Pfh1 with genomic integrity at highly transcribed genes was S phase dependent, and thus unlikely to be an artifact of high transcription rates. Although Pfh1 affected replication and suppressed DNA damage at discrete sites throughout the genome, Pfh1 and the replicative DNA polymerase bound to similar extents to both Pfh1-dependent and independent sites, suggesting that Pfh1 is proximal to the replication machinery during S phase. Consistent with this interpretation, Pfh1 co-purified with many key replisome components, including the hexameric MCM helicase, replicative DNA polymerases, RPA, and the processivity clamp PCNA in an S phase dependent manner. Thus, we conclude that Pfh1 is an accessory DNA helicase that interacts with the replisome and promotes replication and suppresses DNA damage at hard-to-replicate sites. These

  7. Progressive interdigital cell death: regulation by the antagonistic interaction between fibroblast growth factor 8 and retinoic acid.

    PubMed

    Hernández-Martínez, Rocío; Castro-Obregón, Susana; Covarrubias, Luis

    2009-11-01

    The complete cohort of molecules involved in interdigital cell death (ICD) and their interactions are yet to be defined. Bmp proteins, retinoic acid (RA) and Fgf8 have been previously identified as relevant factors in the control of ICD. Here we determined that downregulation of Fgf8 expression in the ectoderm overlying the interdigital areas is the event that triggers ICD, whereas RA is the persistent cell death-inducing molecule that acts on the distal mesenchyme by a mechanism involving the induction of Bax expression. Inhibition of the mitogen-activated protein kinase (Mapk) pathway prevents the survival effect of Fgf8 on interdigital cells and the accompanying Erk1/2 phosphorylation and induction of Mkp3 expression. Fgf8 regulates the levels of RA by both decreasing the expression of Raldh2 and increasing the expression of Cyp26b1, whereas RA reduces Fgfr1 expression and Erk1/2 phosphorylation. In the mouse limb, inhibition of Bmp signaling in the mesenchyme does not affect ICD. However, noggin in the distal ectoderm induces Fgf8 expression and reduces interdigit regression. In the chick limb, exogenous noggin reduces ICD, but, when applied to the distal mesenchyme, this reduction is associated with an increase in Fgf8 expression. In agreement with the critical decline in Fgf8 expression for the activation of ICD, distal interdigital cells acquire a proximal position as interdigit regression occurs. We identified proliferating distal mesenchymal cells as those that give rise to the interdigital cells fated to die. Thus, ICD is determined by the antagonistic regulation of cell death by Fgf8 and RA and occurs through a progressive, rather than massive, cell death mechanism.

  8. Liquid Lithium Divertor and Scrape-Off-Layer Interactions on the National Spherical Torus Experiment:2010 ₋2013 Progress Report

    SciTech Connect

    Ruzic, David N.; Andruczyk, Daniel

    2013-08-27

    The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not be used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.

  9. The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress

    NASA Astrophysics Data System (ADS)

    Schmitz, L.

    2017-02-01

    Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E   ×   B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E   ×   B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.

  10. Overview of Spallation Neutron Source Physics

    NASA Astrophysics Data System (ADS)

    Russell, G. J.; Pitcher, E. J.; Muhrer, G.; Mezei, F.; Ferguson, P. D.

    In December 1971 , the world's most advanced steady-state research reactor, the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble, France, reached full power operation. The reactor has recently undergone an extensive renovation, is equipped with hot and cold sources, and has a complement of word class instruments. As such, the ILL reactor is the worldwide center for neutron research at a reactor installation. With present technology, the constraints of heat removal and fuel cost place a limit on the available flux of a steadystate research reactor at levels not much higher than that of the ILL reactor. There has been extensive progress worldwide to realize new high-flux neutron facilities using the technology of spallation. When coupled with the spallation process in appropriate target materials, highpower accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation technology has recently become increasingly focussed on pulsed spallation neutron sources. Pulsed spallation neutron sources avoid the limitations of high time-average heat removal by producing neutrons for only a small fraction of the time. Also, the amount of energy deposited per useful neutron produced from spallation is less than that from fission. During the pulse, the available neutron flux from a pulsed spallation source can be much more intense than that obtainable in a steady-state reactor. Furthermore, pulsed neutron sources have certain unique features, which open up qualitatively new areas of science, which are not accessible to steady-state reactors. We discuss here the spallation process and spallation neutron sources. We compare the qualitative differences between fission and spallation and provide absolute neutron intensities for cold neutron production from a liquid H2, moderator at the Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) short-pulse pulsed spallation

  11. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  12. Precision Neutron Scattering Length Measurements with Neutron Interferometry

    NASA Astrophysics Data System (ADS)

    Huber, M. G.; Arif, M.; Jacobson, D. L.; Pushin, D. A.; Abutaleb, M. O.; Shahi, C. B.; Wietfeldt, F. E.; Black, T. C.

    2011-10-01

    Since its inception, single-crystal neutron interferometry has often been utilized for precise neutron scattering length, b, measurements. Scattering length data of light nuclei is particularly important in the study of few nucleon interactions as b can be predicted by two + three nucleon interaction (NI) models. As such they provide a critical test of the accuracy 2+3 NI models. Nuclear effective field theories also make use of light nuclei b in parameterizing mean-field behavior. The NIST neutron interferometer and optics facility has measured b to less than 0.8% relative uncertainty in polarized 3He and to less than 0.1% relative uncertainty in H, D, and unpolarized 3He. A neutron interferometer consists of a perfect silicon crystal machined such that there are three separate blades on a common base. Neutrons are Bragg diffracted in the blades to produce two spatially separate (yet coherent) beam paths much like an optical Mach-Zehnder interferometer. A gas sample placed in one of the beam paths of the interferometer causes a phase difference between the two paths which is proportional to b. This talk will focus on the latest scattering length measurement for n-4He which ran at NIST in Fall/Winter 2010 and is currently being analyzed.

  13. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  14. [Effects of both folic acid, p16 protein expression and their interaction on progression of cervical cancerization].

    PubMed

    Jia, W L; Ding, L; Ren, Z Y; Wu, T T; Zhao, W M; Fan, S L; Wang, J T

    2016-12-10

    Objective: To explore the effects of both folic acid, p16 protein expression and their interaction on progression of cervical cancerization. Methods: Participants were pathologically diagnosed new cases, including 80 women with normal cervical (NC), 55 patients with low-grade cervical intraepithelial neoplasia (CINⅠ), 55 patients with high-grade cervical intraepithelial neoplasia (CINⅡ/Ⅲ) and 64 patients with cervical squamous cell carcinoma (SCC). Serum folate levels were detected by microbiological assay method while p16 protein expression levels were measured by Western-blot. In vitro, cervical cancer cell lines C33A (HPV negative) and Caski (HPV16 positive) were treated with different concentrations of folate. Proliferation and apoptosis of cells and the levels of p16 protein expression were measured in groups with different folic acid concentrations. Results: Results showed that the levels of serum folate were (5.96±3.93) ng/ml, (5.08±3.43) ng/ml, (3.92±2.59) ng/ml and (3.18±2.71) ng/ml, and the levels of p16 protein were 0.80±0.32, 1.33±0.52, 1.91±0.77, and 2.09±0.72 in the group of NC, CINⅠ, CINⅡ/Ⅲ and SCC, respectively. However, the levels of serum folate decreased (trend χ(2)=32.71, P<0.001) and p16 protein expression increased (trend χ(2)=56.06, P<0.001) gradually along with the severity of cervix lesions. An additive interaction was seen between serum folate deficiency and high expression of p16 protein in the CINⅠ, CINⅡ/Ⅲ and SCC group. Results in vitro showed that, with the increase of folate concentration, the inhibition rate of cell proliferation (C33A: r=0.928, P=0.003; Caski: r=0.962, P=0.001) and the rate on cell apoptosis (C33A: r=0.984, P<0.001; Caski: r=0.986, P<0.001) all increased but the levels of p16 protein expression (C33A: r=-0.817, P=0.025; Caski: r=-0.871, P=0.011) reduced. The proliferation inhibition rate (C33A: r=-0.935, P=0.002; Caski: r=-0.963, P=0.001) and apoptosis rate of cells (C33A: r=-0.844, P=0

  15. Neutron cross section measurements using the ORELA: /sup 40/Ar(n,x), /sup 40/Ca(n,x), /sup 22/Ne(n,. gamma. ), /sup 187/Os(n,n') /sup 186/ /sup 187/ /sup 188/Os(n,nn'. gamma. ), the stable tellurium isotopes (n,. gamma. ), and /sup 205/Tl(n,n. gamma. ). Progress report, September 1, 1982-August 31, 1983

    SciTech Connect

    Winters, R.R.

    1983-09-01

    The research performed during this reporting period consisted primarily of (1) measurement, analysis, and publication of the /sup 187/Os(n,n') cross section near 30 keV, (2) measurement and analysis of the /sup 148/ /sup 149/ /sup 159/Sm(n,..gamma..) cross sections, (3) development and publication of a significantly better approximation to the average neutron scattering function as determined by total cross section measurements at the Oak Ridge Electron Linear Accelerator (ORELA), and (4) providing support for the neutron capture facility at ORELA as in the corrections made to the /sup 60/Ni(n,..gamma..) data discussed in a paper included with this report. The major result of the /sup 187/Os(n,n') cross section measurement was the 30 keV average value for that cross section anti sigma/sub nn'/ approx. = 1.5 +- 0.2 b and the implication that the duration of stellar nucleosynthesis, as derived from the /sup 187/Re ..-->.. /sup 187/Os beta decay, is estimated to be (8.9 +- 2.0) x 10/sup 9/ year consistent with an earlier estimate reported by Winters and Macklin. The Sm(n,..gamma..) measurement has already resulted in an estimate of the importance of branching in the s-process in the samarium mass region. We estimate the average neutron density during s-process nucleosynthesis in the vicinity of the solar system to be between less than or equal to (1.1 + 0.7) and (1.1 - 0.6) x 10/sup 8/ neutrons/cm/sup 3/. In the optical model analysis of neutron total cross sections we continue to find that orbital angular momentum dependent well depths are required if the spherical optical model is used to describe the neutron-nucleus interaction at low neutron energies.

  16. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  17. The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay

    NASA Astrophysics Data System (ADS)

    Hickerson, Kevin Peter

    In the first component of this thesis, we investigate the physics of ultacold neutrons (UCN). UCN are neutrons so cold they can be stored inside of material, magnetic and gravitational bottles. Using this property we use UCN nonimaging optics to design a type of reflector that directs UCN upward in to vertical paths. Next we examine UCN passing through thin, multilayered foils. In the remaining sections we investigate the so-called Fierz interference term of free neutron beta decay, denoted bn. It is theorized that contributions to scalar and tensor interactions from physics beyond the Standard Model could be detectable in the spectrum of neutron beta decay, manifest as a nonzero value for bn. We investigate three techniques for measuring bn. The first is to use the primordial helium abundance fraction and compare that to predictive Big Bang nucleosynthesis calculations. Second we extract bn from the spectral shape generated by the 2010 data set of the UCNA experiment. Third, we discuss progress toward constructing the UCNb experimental prototype. We present the design of this new experiment that uses the UCN source at LANSCE for measuring bn, in which UCN are guided into a shielded 4π calorimeter where they are stored and decay. From Big Bang nucleosynthesis we can place the limit 0.021 < bn < 0.277 (90% C.L.) on the neutron Fierz term and from the UCNA 2010 data we set -0.044 < bn < 0.218 (90% C.L.).

  18. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  19. NEUTRON COUNTER

    DOEpatents

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  20. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  1. Advanced Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    Christl, Mark; Dobson, Chris; Norwood, Joseph; Kayatin, Matthew; Apple, Jeff; Gibson, Brian; Dietz, Kurt; Benson, Carl; Smith, Dennis; Howard, David; Rodriquez, Miguel; Watts, John; Sabra, Mohammed; Kuznetsov, Evgeny

    2013-01-01

    Energetic neutron measurements remain a challenge for space science investigations and radiation monitoring for human exploration beyond LEO. We are investigating a new composite scintillator design that uses Li6 glass scintillator embedded in a PVT block. A comparison between Li6 and Boron 10 loaded scintillators are being studied to assess the advantages and shortcomings of these two techniques. We present the details of the new Li6 design and results from the comparison of the B10 and Li6 techniques during exposures in a mixed radiation field produced by high energy protons interacting in a target material.

  2. A Scoping Analysis Of The Impact Of SiC Cladding On Late-Phase Accident Progression Involving Core–Concrete Interaction

    SciTech Connect

    Farmer, M. T.

    2015-11-01

    The overall objective of the current work is to carry out a scoping analysis to determine the impact of ATF on late phase accident progression; in particular, the molten core-concrete interaction portion of the sequence that occurs after the core debris fails the reactor vessel and relocates into containment. This additional study augments previous work by including kinetic effects that govern chemical reaction rates during core-concrete interaction. The specific ATF considered as part of this study is SiC-clad UO2.

  3. Studies of particle interactions in bubble chamber, spark chambers and counter experiments: Task P. Annual progress report

    SciTech Connect

    Jones, L.M.; Holloway, L.; O'Halloran, T.A. Jr.; Simmons, R.O.

    1983-07-01

    Our current work reflects the general aim of this task, which is to calculate phenomenological theories of interest to present experiments. Recently, this has emphasized the jet calculus approach to properties of quark and gluon jets. Progress is reviewed.

  4. Small-Angle Neutron Scattering Studies on the Multilamellae Formed by Mixing Lamella-Forming Cationic Diblock Copolymers with Lipids and Their Interaction with DNA.

    PubMed

    Yang, Po-Wei; Lin, Tsang-Lang; Liu, I-Ting; Hu, Yuan; Jeng, U-Ser; Gilbert, Elliot Paul

    2016-02-23

    We demonstrate that the lamella-forming polystyrene-block-poly(N-methyl-4-vinylpyridinium iodine) (PS-b-P4VPQ), with similar sizes of the PS and P4VPQ blocks, can be dispersed in the aqueous solutions by forming lipid/PS-b-P4VPQ multilamellae. Using small-angle neutron scattering (SANS) and 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (d62-DPPC) in D2O, a broad correlation peak is found in the scattering profile that signifies the formation of the loosely ordered d62-DPPC/PS-b-P4VPQ multilamellae. The thicknesses of the hydrophobic and hydrophilic layers of the d62-DPPC/PS-b-P4VPQ multilamellae are close to the PS layer and the condensed brush layer thicknesses as determined from previous neutron reflectometry studies on the PS-b-P4VPQ monolayer at the air-water interface. Such well-dispersed d62-DPPC/PS-b-P4VPQ multilamellae are capable of forming multilamellae with DNA in aqueous solution. It is found that the encapsulation of DNA in the hydrophilic layer of the d62-DPPC/PS-b-P4VPQ multilamellae slightly increases the thickness of the hydrophilic layer. Adding CaCl2 can enhance the DNA adsorption in the hydrophilic brush layer, and it is similar to that observed in the neutron reflectometry study of the DNA adsorption by the PS-b-P4VPQ monolayer.

  5. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  6. First Measurement of the Neutron β Asymmetry with Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Pattie, R. W., Jr.; Anaya, J.; Back, H. O.; Boissevain, J. G.; Bowles, T. J.; Broussard, L. J.; Carr, R.; Clark, D. J.; Currie, S.; Du, S.; Filippone, B. W.; Geltenbort, P.; García, A.; Hawari, A.; Hickerson, K. P.; Hill, R.; Hino, M.; Hoedl, S. A.; Hogan, G. E.; Holley, A. T.; Ito, T. M.; Kawai, T.; Kirch, K.; Kitagaki, S.; Lamoreaux, S. K.; Liu, C.-Y.; Liu, J.; Makela, M.; Mammei, R. R.; Martin, J. W.; Melconian, D.; Meier, N.; Mendenhall, M. P.; Morris, C. L.; Mortensen, R.; Pichlmaier, A.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; Sabourov, K.; Sallaska, A. L.; Saunders, A.; Schmid, R.; Seestrom, S.; Servicky, C.; Sjue, S. K. L.; Smith, D.; Sondheim, W. E.; Tatar, E.; Teasdale, W.; Terai, C.; Tipton, B.; Utsuro, M.; Vogelaar, R. B.; Wehring, B. W.; Xu, Y. P.; Young, A. R.; Yuan, J.

    2009-01-01

    We report the first measurement of an angular correlation parameter in neutron β decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for ˜30s in a Cu decay volume. The interaction of the neutron magnetic dipole moment with a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage spin flipper and enter a decay volume, situated within a 1 T field in a 2×2π solenoidal spectrometer. We determine a value for the β-asymmetry parameter A0=-0.1138±0.0046±0.0021.

  7. Production and applications of neutrons using particle accelerators

    SciTech Connect

    Chichester, David L.

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  8. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  9. Accelerator system for neutron radiography

    SciTech Connect

    Rusnak, B; Hall, J

    2000-09-21

    The field of x-ray radiography is well established for doing non-destructive evaluation of a vast array of components, assemblies, and objects. While x-rays excel in many radiography applications, their effectiveness diminishes rapidly if the objects of interest are surrounded by thick, high-density materials that strongly attenuate photons. Due to the differences in interaction mechanisms, neutron radiography is highly effective in imaging details inside such objects. To obtain a high intensity neutron source suitable for neutron imaging a 9-MeV linear accelerator is being evaluated for putting a deuteron beam into a high-pressure deuterium gas cell. As a windowless aperture is needed to transport the beam into the gas cell, a low-emittance is needed to minimize losses along the high-energy beam transport (HEBT) and the end station. A description of the HEBT, the transport optics into the gas cell, and the requirements for the linac will be presented.

  10. Method and apparatus for detecting neutrons

    DOEpatents

    Perkins, Richard W.; Reeder, Paul L.; Wogman, Ned A.; Warner, Ray A.; Brite, Daniel W.; Richey, Wayne C.; Goldman, Don S.

    1997-01-01

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO.sub.2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation.

  11. Method and apparatus for detecting neutrons

    DOEpatents

    Perkins, R.W.; Reeder, P.L.; Wogman, N.A.; Warner, R.A.; Brite, D.W.; Richey, W.C.; Goldman, D.S.

    1997-10-21

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO{sub 2} with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. 5 figs.

  12. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  13. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  14. Neutron detection and characterization for non-proliferation applications using 3D computer optical memories [Use of 3D optical computer memory for radiation detectors/dosimeters. Final progress report

    SciTech Connect

    Gary W. Phillips

    2000-12-20

    We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.

  15. Coupled cluster calculations of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, Gaute

    2016-09-01

    In this talk I will present recent highlights from ab initio computations of atomic nuclei using coupled-cluster methods with state-of-the-art interactions from chiral effective field theory (EFT). The recent progress in computing nuclei from scratch is based on new optimizations of interactions from chiral EFT, and ab initio methods with a polynomial computational cost together with available super computing resources. The physics advancements I will discuss include: (i) accurate nuclear binding energies and radii of light and medium-mass nuclei, (ii) the neutron distribution and electric dipole polarizability of the nucleus 48Ca, (iii) and the structure of the rare nucleus 78Ni from first principles. All these quantities are currently targeted by precision measurements worldwide.

  16. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  17. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  18. Investigations of the dynamics and electromagnetic interactions of few-body systems. Progress report, June 30, 1994--September 30, 1995

    SciTech Connect

    Lehman, D.R.

    1995-10-01

    This progress report summarizes the work of The George Washington University (GW) nuclear theory group during the period 1 July 1994 - 30 September 1995 under DOE Grant No. DE-FG02-95-ER40907 mainly dealing with photonuclear reactions and few-body problems of nuclei. This report contains: papers published or in press, submitted for publication, and in preparation; invited talks at conferences and meetings; invited talks at universities and laboratories; contributed papers or abstracts at conferences; visitors to the group; and research progress by topic.

  19. From the similarities between neutrons and radon to advanced radon-detection and improved cold fusion neutron-measurements

    NASA Astrophysics Data System (ADS)

    Tommasino, L.; Espinosa, G.

    2014-07-01

    Neutrons and radon are both ubiquitous in the earth's crust. The neutrons of terrestrial origin are strongly related to radon since they originate mainly from the interactions between the alpha particles from the decays of radioactive-gas (namely Radon and Thoron) and the light nuclei. Since the early studies in the field of neutrons, the radon gas was used to produce neutrons by (α, n) reactions in beryllium. Another important similarity between radon and neutrons is that they can be detected only through the radiations produced respectively by decays or by nuclear reactions. These charged particles from the two distinct nuclear processes are often the same (namely alpha-particles). A typical neutron detector is based on a radiator facing a alpha-particle detector, such as in the case of a neutron film badge. Based on the similarity between neutrons and radon, a film badge for radon has been recently proposed. The radon film badge, in addition to be similar, may be even identical to the neutron film badge. For these reasons, neutron measurements can be easily affected by the presence of unpredictable large radon concentration. In several cold fusion experiments, the CR-39 plastic films (typically used in radon and neutron film-badges), have been the detectors of choice for measuring neutrons. In this paper, attempts will be made to prove that most of these neutron-measurements might have been affected by the presence of large radon concentrations.

  20. Spacecraft-produced neutron fluxes on Skylab

    NASA Technical Reports Server (NTRS)

    Quist, T. C.; Furst, M.; Burnett, D. S.; Baum, J. H.; Peacock, C. L., Jr.; Perry, D. G.

    1977-01-01

    Estimates of neutron fluxes in different energy ranges are reported for the Skylab spacecraft. Detectors composed of uranium, thorium, and bismuth foils with mica as a fission track recorder, as well as boron foils with cellulose acetate as an alpha-particle recorder, were deployed at different positions in the Orbital Workshop. It was found that the Skylab neutron flux was dominated by high energy (greater than 1 MeV) contributions and that there was no significant time variation in the fluxes. Firm upper limits of 7-15 neutrons/sq cm-sec, depending on the detector location in the spacecraft, were established for fluxes above 1 MeV. Below 1 MeV, the neutron fluxes were about an order of magnitude lower. The neutrons are interpreted as originating from the interactions of leakage protons from the radiation belt with the spacecraft.

  1. Nonequilibrium Dynamics and the Evolution of Superfluid Neutron Stars

    NASA Astrophysics Data System (ADS)

    Sauls, Jame

    2016-07-01

    The interior crust and the liquid core of neutron stars are predicted to be a mixture of neutron and proton superfluids and a liquid of relativistic electrons and muons. Quantized vortices in the neutron superfluid and quantized flux lines in the proton superconductor are topological defects of these hadronic condensates. I discuss the roles of nucleation, interaction and evolution of topological defects under non-equilibrium conditions in the context of our current understanding and models of the rotational dynamics of pulsars, as well as thermal and magnetic field evolution of neutron stars. I include some speculative ideas on possibile turbulent vortex states in neutron star interiors.

  2. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  3. Progressive Dysarthria and Augmentative and Alternative Communication in Conversation: Establishing the Reliability of the Dysarthria-in-Interaction Profile

    ERIC Educational Resources Information Center

    Bloch, Steven; Tuomainen, Jyrki

    2017-01-01

    Background: The Dysarthria-in-Interaction Profile's potential contribution to the clinical assessment of dysarthria-in-conversation has been outlined in the literature, but its consistency of use across different users has yet to be reported. Aims: To establish the level of consistency across raters on four different interaction categories. That…

  4. Interaction of the Full-length Bax Protein with Biomimetic Mitochondrial Liposomes: A Small-Angle Neutron Scattering and Fluorescence Study

    SciTech Connect

    Satsoura, D; Kucerka, Norbert; Shivakumar, S; Pencer, J; Griffiths, C; Leber, B; Andrews, D.W; Katsaras, John; Fradin, C

    2012-01-01

    In response to apoptotic stimuli, the pro-apoptotic protein Bax inserts in the outer mitochondrial membrane, resulting in the formation of pores and the release of several mitochondrial components, and sealing the cell's fate. To study the binding of Bax to membranes, we used an in vitro system consisting of 50 nm diameter liposomes prepared with a lipid composition mimicking that of mitochondrial membranes in which recombinant purified full-length Bax was inserted via activation with purified tBid. We detected the association of the protein with the membrane using fluorescence fluctuation methods, and found that it could well be described by an equilibrium between soluble and membrane-bound Bax and that at a high protein-toliposome ratio the binding seemed to saturate at about 15 Bax proteins per 50 nm diameter liposome. We then obtained structural data for samples in this saturated binding regime using small-angle neutron scattering under different contrast matching conditions. Utilizing a simple model to fit the neutron data, we observed that a significant amount of the protein mass protrudes above the membrane, in contrast to the conjecture that all of the membrane-associated Bax states are umbrella-like. Upon protein binding, we also observed a thinning of the lipid bilayer accompanied by an increase in liposome radius, an effect reminiscent of the action of antimicrobial peptides on membranes.

  5. Intercomparison of high energy neutron personnel dosimeters

    SciTech Connect

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the {sup 9}Be(p,n){sup 9}B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work.

  6. Small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice

    2015-10-01

    Small Angle Neutron Scattering (SANS) is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ˜ 1 nm up to ˜ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ˜ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area…) through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer), form factor analysis (I(q→0), Guinier regime, intermediate regime, Porod regime, polydisperse system), structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates), and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast). It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of spectrometer

  7. Interactive radiopharmaceutical facility between Yale Medical Center and Brookhaven National Laboratory. Progress report, June 1981-July 1982

    SciTech Connect

    Gottschalk, A

    1982-01-01

    Progress is reported in the following research areas: (1) evaluation of /sup 14/C-labelled carboxyethyl ester 2-cardoxy methyl ester of arachidonic acid; (2) the effects of drug intervention on cardiac inflammatory response following experimental myocardial infarction using indium-111 labeled autologous leukoyctes; (3) the evaluation of /sup 97/Ru-oxine to label human platelets in autologous plasma; and (4) the specific in vitro radiolabeling of human neutrophils. (ACR)

  8. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  9. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, February 16, 1993--April 15, 1994

    SciTech Connect

    Kostroun, V.O.

    1994-04-27

    Experimental study of low energy, highly charged ions with other atomic species requires an advanced ion source such as an electron beam ion source, EBIS or an electron cyclotron ion source, ECRIS. Five years ago we finished the design and construction of the Cornell superconducting solenoid, cryogenic EBIS (CEBIS). Since then, this source has been in continuous operation in a program whose main purpose is the experimental study of interactions of highly charged ions with atoms at keV energies. This progress report for the period February 16, 1993 to April 15, 1994 describes the work accomplished during this time in the form of short abstracts.

  10. Recent advances in fast neutron radiography for cargo inspection

    NASA Astrophysics Data System (ADS)

    Sowerby, B. D.; Tickner, J. R.

    2007-09-01

    Fast neutron radiography techniques are attractive for screening cargo for contraband such as narcotics and explosives. Neutrons have the required penetration, they interact with matter in a manner complementary to X-rays and they can be used to determine elemental composition. Compared to neutron interrogation techniques that measure secondary radiation (neutron or gamma-rays), neutron radiography systems are much more efficient and rapid and they are much more amenable to imaging. However, for neutron techniques to be successfully applied to cargo screening, they must demonstrate significant advantages over well-established X-ray techniques. This paper reviews recent developments and applications of fast neutron radiography for cargo inspection. These developments include a fast neutron and gamma-ray radiography system that utilizes a 14 MeV neutron generator as well as fast neutron resonance radiography systems that use variable energy quasi-monoenergetic neutrons and pulsed broad energy neutron beams. These systems will be discussed and compared with particular emphasis on user requirements, sources, detector systems, imaging ability and performance.

  11. High efficiency proportional neutron detector with solid liner internal structures

    SciTech Connect

    Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.

    2014-08-05

    A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.

  12. The identification of Pcl1-interacting proteins that genetically interact with Cla4 may indicate a link between G1 progression and mitotic exit.

    PubMed Central

    Keniry, Megan E; Kemp, Hilary A; Rivers, David M; Sprague, George F

    2004-01-01

    In budding yeast, Cla4 and Ste20, two p21-activated kinases, contribute to numerous morphogenetic processes. Loss of Ste20 or Cla4 individually confers distinct phenotypes, implying that they regulate different processes. However, loss of both proteins is lethal, suggesting some functional overlap. To explore the role(s) of Cla4, we and others have sought mutations that are lethal in a cla4 Delta strain. These mutations define >60 genes. Recently, both Ste20 and Cla4 have been implicated in mitotic exit. Here, we identify a genetic interaction between PHO85, which encodes a cyclin-dependent kinase, and CLA4. We further show that the Pho85-coupled G(1) cyclins Pcl1 and Pcl2 contribute to this Pho85 role. We performed a two-hybrid screen with Pcl1. Three Pcl1-interacting proteins were identified: Ncp1, Hms1, and a novel ATPase dubbed Epa1. Each of these proteins interacts with Pcl1 in GST pull-down experiments and is specifically phosphorylated by Pcl1.Pho85 complexes. NCP1, HMS1, and EPA1 also genetically interact with CLA4. Like Cla4, the proteins Hms1, Ncp1, and Pho85 appear to affect mitotic exit, a conclusion that follows from the mislocalization of Cdc14, a key mitotic regulator, in strains lacking these proteins. We propose a model in which the G(1) Pcl1.Pho85 complex regulates mitotic exit machinery. PMID:15082539

  13. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  14. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  15. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  16. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  17. A new compact neutron/gamma ray scintillation detector

    NASA Astrophysics Data System (ADS)

    Buffler, A.; Comrie, A. C.; Smit, F. D.; Wörtche, H. J.

    2016-09-01

    Progress towards the realization of a new compact neutron spectrometer is described. The detector is based on EJ299-33 plastic scintillator coupled to silicon photomultipliers, and a digital implementation of pulse shape discrimination is used to separate events associated with neutrons from those associated with gamma rays. The spectrometer will be suitable over the neutron energy range 1-100 MeV, illustrated in this work with measurements made using an AmBe radioisotopic source and quasi-monoenergetic neutron beams produced using a cyclotron.

  18. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  19. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  20. Advances in personnel neutron dosimetry: part 3

    SciTech Connect

    Vallario, E.J.; Faust, L.G.

    1983-09-01

    DOE-sponsored evaluation and upgrading of personnel neutron dosimetry includes a review of new devices involving unique concepts: resonance ionization spectroscopy and organic semiconductor detectors. Resonance ionization spectroscopy uses a laser to detect atoms released by neutron interactions, while organic semiconductors contain large amounts of hydrogen. Although these and other research and evaluation projects reviewed in the first two articles appear promising, there is much more research needed, such as finding a chemically stable organic semiconductor that will be suitable.

  1. Efimov physics around the neutron-rich 60Ca isotope.

    PubMed

    Hagen, G; Hagen, P; Hammer, H-W; Platter, L

    2013-09-27

    We calculate the neutron-60Ca S-wave scattering phase shifts using state of the art coupled-cluster theory combined with modern ab initio interactions derived from chiral effective theory. Effects of three-nucleon forces are included schematically as density dependent nucleon-nucleon interactions. This information is combined with halo effective field theory in order to investigate the 60Ca-neutron-neutron system. We predict correlations between different three-body observables and the two-neutron separation energy of 62Ca. This provides evidence of Efimov physics along the calcium isotope chain. Experimental key observables that facilitate a test of our findings are discussed.

  2. Probing nucleon-nucleon interactions in breakup of the one-neutron halo nucleus {sup 11}Be on a proton target

    SciTech Connect

    Cravo, E.; Deltuva, A.; Crespo, R.; Moro, A. M.

    2010-03-15

    A comparison between full few-body Faddeev/Alt-Grassberger-Sandhas (Faddeev/AGS) and continuum-discretized coupled-channels calculations is made for the resonant and nonresonant breakup of {sup 11}Be on proton target at 63.7 MeV/u incident energy. A simplified two-body model is used for {sup 11}Be which involves an inert {sup 10}Be(0{sup +}) core and a valence neutron. The sensitivity of the calculated observables to the nucleon-nucleon potential dynamical input is analyzed. We show that with the present NN and N-core dynamics the results remain a puzzle for the few-body problem of scattering from light exotic halo nuclei.

  3. Neutron anatomy

    SciTech Connect

    Bacon, G.E.

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  4. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    SciTech Connect

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  5. Performance of a gas target neutron source for radiotherapy.

    PubMed

    Deluca, P M; Torti, R P; Chenevert, G M; Detorie, N A; Tesmer, J R; Kelsey, C A

    1978-09-01

    The performance of a compact and efficient neutron generator, using the 3H(d, n) reaction and a gas target, is reported. The target is formed in a windowless, differentially pumped vessel pressurised to 7.5 Torr. An extended source of 15 MeV neutrons is produced when the target is bombarded by a 10 mA beam of 210 keV deuterons. Measurements are reported of the neutron energy spectra, neutron and gamma-ray dose rates, target lifetime and tritium handling. The neutron flux distribution of the extended target was measured and compared with the predictions of a simple beam-gas interaction model. The measured neutron source strength is 1.7 +/- 0.4 X 10(12) neutrons per second. The source output is limited by target beam current, not target power considerations.

  6. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  7. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  8. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  9. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  10. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  11. Advances in neutron based bulk explosive detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Strellis, Dan

    2007-08-01

    Neutron based explosive inspection systems can detect a wide variety of national security threats. The inspection is founded on the detection of characteristic gamma rays emitted as the result of neutron interactions with materials. Generally these are gamma rays resulting from thermal neutron capture and inelastic scattering reactions in most materials and fast and thermal neutron fission in fissile (e.g.235U and 239Pu) and fertile (e.g.238U) materials. Cars or trucks laden with explosives, drugs, chemical agents and hazardous materials can be detected. Cargo material classification via its main elements and nuclear materials detection can also be accomplished with such neutron based platforms, when appropriate neutron sources, gamma ray spectroscopy, neutron detectors and suitable decision algorithms are employed. Neutron based techniques can be used in a variety of scenarios and operational modes. They can be used as stand alones for complete scan of objects such as vehicles, or for spot-checks to clear (or validate) alarms indicated by another inspection system such as X-ray radiography. The technologies developed over the last two decades are now being implemented with good results. Further advances have been made over the last few years that increase the sensitivity, applicability and robustness of these systems. The advances range from the synchronous inspection of two sides of vehicles, increasing throughput and sensitivity and reducing imparted dose to the inspected object and its occupants (if any), to taking advantage of the neutron kinetic behavior of cargo to remove systematic errors, reducing background effects and improving fast neutron signals.

  12. Effect of polarization on superfluidity in low density neutron matter

    NASA Technical Reports Server (NTRS)

    Clark, J. W.; Kallman, C.-G.; Yang, C.-H.; Chakkalakal, D. A.

    1976-01-01

    The singlet-state quasi-particle interaction in neutron matter is examined on the basis of results of a detailed evaluation of the Landau Fermi-liquid parameters for pure neutron effects, including polarization effects. This means that the interaction induced by exchange of density and spin-density excitations is taken into account. It is shown that polarization actually works to suppress the pairing matrix elements, owing to the spin dependence of the quasi-particle interaction and, ultimately, the balance of attraction, repulsion, and spin dependence in the fundamental two-neutron interaction. Since the isotropic energy gap and the condensation energy in low-density neutron-star matter are extremely sensitive functions of the pairing matrix elements, they will also be suppressed by the polarizability of the neutron medium.

  13. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  14. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  15. Investigation of syngas interaction in alcohol synthesis catalysts. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Akundi, M.A.

    1995-10-01

    Work is described on the investigations of the interaction of syngas in the preparation of alcohols. The analysis of work performed on copper/cobalt/chromium catalysts and the effect of the method of preparation on magnetic properties of the catalysts is discussed.

  16. Chemical interactions between protein molecules and polymer membrane materials. Annual progress report, August 1, 1992--July 30, 1993

    SciTech Connect

    Belfort, G.; Koehler, J.; Wood, J.

    1993-07-15

    The Surface Force Apparatus is now operable; data collection is automatic. Hen egg lysozyme was chosen as model protein. Protein-protein, protein-mica, protein-polymer, and protein-surfactant interactions were studied. Circular dichroism was used to study changes in protein structure during adsorption.

  17. Investigation of syngas interaction in alcohol synthesis catalysts. Quartery technical progress report, July 1, 1995--September 31, 1995

    SciTech Connect

    Akundi, M.A.

    1996-02-01

    This report presents the work done on {open_quotes}Investigation of Syngas Interaction in Alcohol Synthesis Catalysts{close_quotes} during the last three months. In this report the results of the work done on the effect of CO adsorption on the magnetic character of cobalt in the Cu/Co/Cr catalysts is discussed.

  18. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 August 1991--31 July 1992

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.

    1992-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the George Washington University (GWU) theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions axe the issue, numerically accurate calculations axe always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework, i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art fewbody calculations that wig serve as a means of determining at what point standard nuclear physics requires quark degrees of freedom in order to understand the phenomena in question. So far, in the problems considered, there has been no evidence of the necessity to go beyond the traditional approach, though we always keep in mind that possibility. As our work is involved with questions in the intermediate-energy realm, moving from a nonrelativistic framework to a relativistic one is always a consideration. Currently, for the problems that have been pursued in this domain of energy, the issues concern far more the mechanisms of the reactions and structural questions than the need to move to relativistic dynamics.

  19. Investigations of the structure and electromagnetic interactions of few-body systems. Progress report, 1 July 1991--30 June 1994

    SciTech Connect

    Lehman, D.R.; Haberzettl, H.; Maximon, L.C.; Parke, W.C.; Bennhold, C.; Ito, Hiroshi; Pratt, R.K.; Najmeddine, M.; Rakei, A.

    1994-07-01

    In order to make it easy for the reader to see the specific research carried out and the progress made, the following report of progress is done by topic. Each item has a format layout of Topic, Investigators, Objective, Significance, and Description of Progress, followed at the end by the relevant references. As is clear from the topics listed, the emphasis of the GW nuclear theory group has been on the structure and electromagnetic interactions of few-body nuclei. Both low- and intermediate-energy electromagnetic disintegration of these nuclei is considered, including coherent photoproduction of {pi} mesons. When the excitation energy of the target nucleus is low, the aim has been to handle the continuum part of the theoretical work numerically with no approximations, that is, by means of full three- or four-body dynamics. When structure questions are the issue, numerically accurate calculations are always carried through, limited only by the underlying two-body or three-body interactions used as input. Implicit in our work is the question of how far one can go within the traditional nuclear physics framework i.e., nucleons and mesons in a nonrelativistic setting. Our central goal is to carry through state-of-the-art few-body calculations that will serve as a means of determining at what point standard nuclear physics requires introduction of relativity and/or quark degrees of freedom in order to understand the phenomena in question. So far, the problems considered were mostly concerned with low- to medium-energy regimes where little evidence was found that requires going beyond the traditional approach.

  20. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  1. Neutron and X-ray Detectors

    SciTech Connect

    Carini, Gabriella; Denes, Peter; Gruener, Sol; Lessner, Elianne

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  2. Characterization of Neutron Backgrounds for Direct Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Sweany, Melinda Dominique

    Direct dark matter experiments generally cannot distinguish between nuclear recoils caused by Weakly Interacting Massive Particles (WIMPs) and those caused by neutron backgrounds. It is therefore crucial that all sources of neutron background are well understood and accounted for when claiming a discovery or reporting limits on the WIMP-nucleon cross section. One source of neutrons that is not well understood results from cosmogenic muon interactions in the material surrounding a detector. The Neutron Multiplicity Meter in the Soudan cavern is a gadolinium-doped water Cherenkov detector capable of detecting high multiplicity neutron showers resulting from fast neutrons incident on a lead target. This measurement is the first such measurement obtained without a liquid scintillator detector medium; muon and neutron spallation is media-dependent, and because neutron shield technology for dark matter detectors is moving towards water, this is an important measurement. The integrated fast neutron flux in the Soudan cavern is reported as a linear function of the power, alpha, of the neutron angular distribution with the zenith angle: F = 4.8x10-9 +/- 3.5x10-10 + (5.4x10-10 +/- 1.5x10-10)alpha. Technological studies of neutron detection with gadolinium-doped water are also reported here. The neutron detection efficiency of a cylindrical 3.5 kL detector is measured at 70% for neutrons in the center of the detector. In addition, other improvements to water Cherenkov technology are explored, namely the addition of water-soluble wavelength-shifting chemicals. The wavelength-shifting chemical 4-Methylumbelliferone has been shown here to increase the measured light output of Cherenkov radiation resulting from neutron capture showers by a factor of 1.7.

  3. Local magnetic structure determination using polarized neutron holography

    SciTech Connect

    Szakál, Alex Markó, Márton Cser, László

    2015-05-07

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  4. Local magnetic structure determination using polarized neutron holography

    NASA Astrophysics Data System (ADS)

    Szakál, Alex; Markó, Márton; Cser, László

    2015-05-01

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  5. Iodine regulates G2/M progression induced by CCL21/CCR7 interaction in primary cultures of papillary thyroid cancer cells with RET/PTC expression.

    PubMed

    Zhang, You-Yuan; Liu, Ze-Bing; Ye, Xuan-Guang; Ren, Wei-Min

    2016-10-01

    Treatment with high iodine concentrations can delay oncogenic activation effects, reduce cell growth and return thyroid-specific gene and protein expression levels to normal. During rearranged during transfection (RET)/papillary thyroid carcinoma (PTC) 3 activation, excess iodine can act as a protective agent in thyroid follicular cells. The chemokine receptor CCR7 serves a critical role in lymphocyte trafficking into and within lymph nodes, the preferential metastatic site for PTC. However, the potential associations between chemokine (C‑C motif) ligand 21 (CCL21)/C‑C chemokine receptor type 7 (CCR7) interaction and iodine concentrations in primary cultures of PTC with RET/PTC expression remain unclear. Proliferation assays of primary cultures of PTC cells with RET/PTC1 and RET/PTC3 expression indicated that CCR7 activation by its specific ligand, CCL21, was associated with significantly increased cell proliferation. Flow cytometry data indicated that CCL21/CCR7 interaction significantly increased the fraction of cells in the G2/M phase of the cell cycle. Western blotting indicated that CCL21/CCR7 interaction significantly upregulated cyclin A, cyclin B1 and cyclin‑dependent kinase 1 (CDK1) expression. Western blotting determined that CCL21/CCR7 interaction significantly enhanced the levels of phosphorylated extracellular signal‑regulated kinase (P‑ERK). Co-immunoprecipitation confirmed that there was interaction between P‑ERK and cyclin A, cyclin B1 or CDK1, particularly in the presence of CCL21. Sodium iodide (NaI, 10-5 M) significantly abolished the effects of exogenous CCL21. These results suggest that CCL21/CCR7 interaction contributes to G2/M progression of RET/PTC‑expressing cells via the ERK pathway in association with 10‑5 M NaI.

  6. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  7. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  8. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  9. Perforated diode neutron sensors

    NASA Astrophysics Data System (ADS)

    McNeil, Walter J.

    A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

  10. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  11. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  12. Neutron interferometry with cold stage

    NASA Astrophysics Data System (ADS)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  13. C7LYC Scintillators and Fast Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Wilson, G. L.; D'Olympia, N.; Devlin, M.; Mosby, S.

    2016-09-01

    Cs2 LiYCl6 (CLYC) scintillators detect both gammas and neutrons with excellent pulse shape discrimination. At UML, fast neutron measurements with a 16-element 1''x1'' CLYC array show promise for low energy nuclear science. CLYC detects fast neutrons via the 35Cl (n,p) reaction (resolution < 10 % at < 8 MeV). In our 7Li-enriched C7LYC, the thermal neutron response from the 6Li(n, α)t reaction is virtually eliminated. The low intrinsic efficiency of CLYC for fast neutrons (< 1 %) is offset by increased solid angle with the array placed near the target, since TOF is not needed for energy resolution. The array was tested at LANL for measuring elastic and inelastic neutron scattering on 56Fe. The incident energy from the white neutron source was measured via TOF, and the scattered neutron energy via the pulse height in CLYC. The array was also tested at CARIBU for measuring beta-delayed neutrons. Larger CLYC crystals are now a reality. Measurements with the first 3'' x 3'' C7LYC crystal are in progress at UML. Results will be discussed in the context of constructing a C7LYC array at FRIB for reaction and decay spectroscopy of neutron-rich fragments. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.

  14. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy.

    PubMed

    Musolino, S V; McGinley, P H; Greenwood, R C; Kliauga, P; Fairchild, R G

    1991-01-01

    An epithermal neutron filter using iron, aluminum, and sulfur was evaluated to determine if the therapeutic performance could be improved with respect to aluminum-sulfur-based filters. An empirically optimized filter was developed that delivered a 93% pure beam of 24-keV epithermal neutrons. It was expected that a thick filter using iron with a density thickness greater than 200 g/cm2 would eliminate the excess gamma contamination found in Al-S filters. This research showed that prompt gamma production from neutron interactions in iron was the dominant dose component. Dosimetric parameters of the beam were determined from the measurement of absorbed dose in air, thermal neutron flux in a head phantom, neutron and gamma spectroscopy, and microdosimetry.

  15. NEUTRONIC REACTOR

    DOEpatents

    McGarry, R.J.

    1958-04-22

    Fluid-cooled nuclear reactors of the type that utilize finned uranium fuel elements disposed in coolant channels in a moderater are described. The coolant channels are provided with removable bushings composed of a non- fissionable material. The interior walls of the bushings have a plurality of spaced, longtudinal ribs separated by grooves which receive the fins on the fuel elements. The lands between the grooves are spaced from the fuel elements to form flow passages, and the size of the now passages progressively decreases as the dlstance from the center of the core increases for the purpose of producing a greater cooling effect at the center to maintain a uniform temperature throughout the core.

  16. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  17. Ionization signals from diamond detectors in fast-neutron fields

    NASA Astrophysics Data System (ADS)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  18. Scoping assessments of ATF impact on late-stage accident progression including molten core-concrete interaction

    NASA Astrophysics Data System (ADS)

    Farmer, M. T.; Leibowitz, L.; Terrani, K. A.; Robb, K. R.

    2014-05-01

    Simple scoping models that can be used to evaluate ATF performance under severe accident conditions have been developed. The methodology provides a fundamental technical basis (a.k.a. metric) based on the thermodynamic boundary for evaluating performance relative to that of traditional Zr-based claddings. The initial focus in this study was on UO2 fuel with the advanced claddings 310 SS, D9, FeCrAl, and SiC. The evaluation considered only energy release with concurrent combustible gas production from fuel-cladding-coolant interactions and, separately, molten core-concrete interactions at high temperatures. Other important phenomenological effects that can influence the rate and extent of cladding decomposition (e.g., eutectic interactions, degradation of other core constituents) were not addressed. For the cladding types addressed, potential combustible gas production under both in-vessel and ex-vessel conditions was similar to that for Zr. However, exothermic energy release from cladding oxidation was substantially less for iron-based alloys (by at least a factor of 4), and modestly less (by ∼20%) for SiC. Data on SiC-clad UO2 fuel performance under severe accident conditions are sparse in the literature; thus, assumptions on the nature of the cladding decomposition process were made in order to perform this initial screening evaluation. Experimental data for this system under severe accident conditions is needed for a proper evaluation and comparison to iron-based claddings.

  19. Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges.

    PubMed

    Wang, Shaomeng; Zhao, Yujun; Aguilar, Angelo; Bernard, Denzil; Yang, Chao-Yie

    2017-03-07

    MDM2 is a primary cellular inhibitor of p53. It inhibits p53 function by multiple mechanisms, each of which, however, is mediated by their direct interaction. It has been proposed that small-molecule inhibitors designed to block the MDM2-p53 interaction may be effective in the treatment of human cancer retaining wild-type p53 by reactivating the p53 tumor suppressor function. Through nearly two decades of intense efforts, a number of structurally distinct, highly potent, nonpeptide, small-molecule inhibitors of the MDM2-p53 interaction (MDM2 inhibitors) have been successfully designed and developed, and at least seven such compounds have now been advanced into human clinical trials as new anticancer drugs. This review offers a perspective on the design and development of MDM2 small-molecule inhibitors and discusses early clinical data for some of the MDM2 small-molecule inhibitors and future challenges for the successful clinical development of MDM2 inhibitors for cancer treatment.

  20. A new polarized neutron interferometry facility at the NCNR

    NASA Astrophysics Data System (ADS)

    Shahi, C. B.; Arif, M.; Cory, D. G.; Mineeva, T.; Nsofini, J.; Sarenac, D.; Williams, C. J.; Huber, M. G.; Pushin, D. A.

    2016-03-01

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  1. Neutron and x-ray scattering studies of the interactions between Ca{sup 2+}-binding proteins and their regulatory targets: Comparisons of troponin C and calmodulin

    SciTech Connect

    Trewhella, J.; Olah, G.A.

    1993-11-01

    The regulatory proteins calmodulin and troponin C share a strikingly unusual overall structure. Their crystal structures show each protein consists of two structurally homologous globular domains connected by an extended, solvent exposed alpha-helix of = 8 turns. Calmodulin regulates a variety of enzymes that show remarkable functional and structural diversity. This diversity extends to the amino acid sequences of the calmodulin-binding domains in the target enzymes. In contrast with calodulin, troponin C appears to have a single very specialized function. It is an integral part of the troponin complex, and Ca{sup 2+} binding to troponin c results in the release of the inhibitory function of troponin I, which eventually leads to actin-binding to myosin and the triggering of muscle contraction. Small-angle scattering has been particularly useful for studying the dumbbell shaped proteins because the technique is very sensitive to changes in the relative dispositions of the two globular domains. Small-angle scattering, using x-rays or neutrons, gives information on the overall shapes of proteins in solution. Small-angle scattering studies of calmodulin and its complexes with calmodulin-binding domains from various target enzymes have played an important role in helping us understand the functional role of its unusual solvent exposed helix. Likewise, small-angle scattering has been used to study troponin C with various peptides, to shed light on the similarities and differences between calmodulin and troponin C.

  2. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    DOE PAGES

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; ...

    2015-10-26

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs+). SANS profiles obtained for the complex of ace-DB20C6 and Cs+ (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs+ coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that the SANS analysis experimentallymore » supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs+ is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs+ above the center of the crown ether ring of ace-DB20C6.« less

  3. Small-angle neutron scattering study of specific interaction and coordination structure formed by mono-acetyl-substituted dibenzo-20-crown-6-ether and cesium ions

    SciTech Connect

    Motokawa, Ryuhei; Kobayashi, Tohru; Endo, Hitoshi; Ikeda, Takashi; Yaita, Tsuyoshi; Suzuki, Shinichi; Narita, Hirokazu; Akutsu, Kazuhiro; Heller, William T.

    2015-10-26

    This study uses small-angle neutron scattering (SANS) to elucidate the coordination structure of the complex of mono-acetyl-substituted dibenzo-20-crown-6-ether (ace-DB20C6) with cesium ions (Cs+). SANS profiles obtained for the complex of ace-DB20C6 and Cs+ (ace-DB20C6/Cs) in deuterated dimethyl sulfoxide indicated that Cs+ coordination resulted in a more compact structure than the free ace-DB20C6. The data were fitted well with SANS profiles calculated using Debye function for scattering on an absolute scattering intensity scale. For this theoretical calculation of the scattering profiles, the coordination structure proposed based on density functional theory calculation was used. Furthermore, we conclude that the SANS analysis experimentally supports the proposed coordination structure of ace-DB20C6/Cs and suggests the following: (1) the complex of ace-DB20C6 and Cs+ is formed with an ace-DB20C6/Cs molar ratio of 1/1 and (2) the two benzene rings of ace-DB20C6 fold around Cs+ above the center of the crown ether ring of ace-DB20C6.

  4. Neutrons in biology - a perspective

    SciTech Connect

    Schoenborn, B.P.

    1994-12-31

    After almost a decade of uncertainty, the field of neutrons in biology is set to embark on an era of stability and renewed vitality. As detailed in this volume, methodologies have been refined, new tools are now being added to the array, the two largest reactor sources have long term programs in place, and spoliation sources are making an impact. By way of introduction, it is pertinent to reflect on the origins of the field and to highlight some aspects that have influenced the progress of the field. In an increasingly competitive environment, it is extremely important that the future capitalize on the substantial investment made over the last two to three decades.

  5. Neutron Detection Improvements for Measurement of Neutron Lifetime

    NASA Astrophysics Data System (ADS)

    Manus, Gregory; Liu, Chen-Yu; Salvat, Daniel; Cude, Christopher; Hanson, Aaron; Sawtelle, Sonya

    2010-11-01

    Ultra Cold Neutrons (UCN) have energies low enough to be confined in material and magnetic traps, yet it makes transmission into typical neutron detectors a nontrivial task. The neutron lifetime experiment at LANL may require improvements to a standard ionization chamber detector or an entirely different approach to UCN detection [1]. We compare Si and Zr ionization chamber windows to their Al counterparts. Si's smooth surface and uniform bulk density reduces the total elastic scattering cross-section. Zr's mechanical strength enables thinner, more transparent detector windows than Al. Also, various geometries of electrode grid planes are simulated in Garfield and built. Furthermore, to minimize time and spectrum dependent systematic errors of collection efficiency, we bypass transporting the UCN from trap to detector by detecting UCN directly in the trap. Here we empty BF3 and Ar into the trap where UCN capture in B releases Li and α particles detected by their ionization of Ar. The B capture also emits a gamma which can be detected. Details and progress will be presented at the conference. [4pt] [1] Nucl Instrum Meth A 599 (2009) 82-92

  6. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  7. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  8. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  9. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  10. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  11. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D.; Littlewood, Peter B.; Blagoev, Krastan B.; Swinhoe, Martyn T.; Smith, James L.; Sullivan, Clair J.; Alexandrov, Boian S.; Lashley, Jason Charles

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  12. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  13. Are the SSB-Interacting Proteins RecO, RecG, PriA and the DnaB-Interacting Protein Rep Bound to Progressing Replication Forks in Escherichia coli?

    PubMed Central

    Matelot, Mélody; Allemand, Jean-François; Michel, Bénédicte

    2015-01-01

    In all organisms several enzymes that are needed upon replication impediment are targeted to replication forks by interaction with a replication protein. In most cases these proteins interact with the polymerase clamp or with single-stranded DNA binding proteins (SSB). In Escherichia coli an accessory replicative helicase was also shown to interact with the DnaB replicative helicase. Here we have used cytological observation of Venus fluorescent fusion proteins expressed from their endogenous loci in live E. coli cells to determine whether DNA repair and replication restart proteins that interact with a replication protein travel with replication forks. A custom-made microscope that detects active replisome molecules provided that they are present in at least three copies was used. Neither the recombination proteins RecO and RecG, nor the replication accessory helicase Rep are detected specifically in replicating cells in our assay, indicating that either they are not present at progressing replication forks or they are present in less than three copies. The Venus-PriA fusion protein formed foci even in the absence of replication forks, which prevented us from reaching a conclusion. PMID:26244508

  14. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    SciTech Connect

    Chen, Yu

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  15. Neutron environments on the Martian surface.

    PubMed

    Clowdsley, M S; Wilson, J W; Kim, M H; Singleterry, R C; Tripathi, R K; Heinbockel, J H; Badavi, F F; Shinn, J L

    2001-01-01

    Radiation is a primary concern in the planning of a manned mission to Mars. Recent studies using NASA Langley Research Center's HZETRN space radiation transport code show that the low energy neutron fluence on the Martian surface is larger than previously expected. The upper atmosphere of Mars is exposed to a background radiation field made up of a large number of protons during a solar particle event and mixture of light and heavy ions caused by galactic cosmic rays at other times. In either case, these charged ions interact with the carbon and oxygen atoms of the Martian atmosphere through ionization and nuclear collisions producing secondary ions and neutrons which then interact with the atmospheric atoms in a similar manner. In the past, only these downward moving particles have been counted in evaluating the neutron energy spectrum on the surface. Recent enhancements in the HZETRN code allow for the additional evaluation of those neutrons created within the Martian regolith through the same types of nuclear reactions, which rise to the surface. New calculations using this improved HZETRN code show that these upward moving neutrons contribute significantly to the overall neutron spectrum for energies less than 10 MeV.

  16. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  17. Producing Mono-energetic Neutrons for Research

    NASA Astrophysics Data System (ADS)

    Jepeal, Steven

    2014-09-01

    Free neutrons are seldom produced in nature and are unstable, decaying back to protons with a mean life of 881s. The only natural sources are spontaneous fission of actinides and cosmic ray interactions, both of which are rare processes. The detection of neutrons indicates unusual nuclear activity, allowing neutron detection the roll of the ``smoking gun'' for seeking potential nuclear terrorism. Recently, there has been a push for the development of new neutron detectors, ideally sufficiently inexpensive that a detector can be carried by all first responders such as police and fire fighters. One promising new material is the inorganic scintillator CLYC, a crystal of chlorine, lithium, yttrium and cesium. CLYC has a high energy resolution not only for gamma rays, but also for fast neutrons. At the University of Massachusetts, Lowell, CLYC is being developed in collaboration with local industrial companies. To evaluate its response to neutrons, in to 500 keV to 4 MeV energy range, the CN Van de Graaff generator is used to produce neutrons, via the 7Li(p,n)7Be reaction. However, the important energy regime of 4--10 MeV is currently inaccessible. This current project is to build a gas-cell target to enable the D(d,n)3He reaction and produce neutrons of energy up to 9 MeV, an approach that has been used successfully at the University of Kentucky. The project involves some mechanical engineering management, then chamber construction, vacuum testing, developing thin window technology, and finally commissioning of the gas cell using accelerated beams. The commissioning will be physics rich in quantifying the flux and energy resolution of the neutron beam produced. Free neutrons are seldom produced in nature and are unstable, decaying back to protons with a mean life of 881s. The only natural sources are spontaneous fission of actinides and cosmic ray interactions, both of which are rare processes. The detection of neutrons indicates unusual nuclear activity, allowing

  18. Selectivity, activity, and metal-support interactions of Rh bimetallic catalysts. Progress report, 15 November 1981-15 August 1982

    SciTech Connect

    Haller, G L

    1982-08-01

    We report on a detailed investigation of the effect of TiO/sub 2/ support on Rh-Ag interaction as exhibited in catalytic activity. The temporal evolution of activity over Rh-Ag/TiO/sub 2/ for ethane hydrogenolysis and hydrogen chemisorption as a function of temperature, Ag to Rh ratio, the Rh particle size, Rh loading, and ambient gas were studied. Preliminary extended x-ray absorption fine structure (EXAFS) analysis of Rh/TiO/sub 2/ catalysts indicate that 100% exposed (dispersed) catalyst prepared by ion exchange may be atomically dispersed after low temperature reduction. 7 figures, 1 table.

  19. The phospholipid code: a key component of dying cell recognition, tumor progression and host–microbe interactions

    PubMed Central

    Baxter, A A; Hulett, M D; Poon, I KH

    2015-01-01

    A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the ‘phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host–microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes. PMID:26450453

  20. Neutron and proton activation measurements from Skylab

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1974-01-01

    Radioactivity induced by high-energy protons and secondary neutrons (from nuclear interactions) in various samples returned from different locations in Skylab was measured directly by gamma-ray spectroscopy measurements of decay gamma rays from the samples. Incident fluxes were derived from the activation measurements, using known nuclear cross-section. Neutron and proton flux values were found to range from 0.2 to 5 particles/sq cm-sec, depending on the energy range and location in Skylab. The thermal neutron flux was less than 0.07 neutrons/sq cm-sec. The results are useful for data analysis and planning of future high-energy astronomy experiments.