Science.gov

Sample records for neutron pairing gap

  1. Pairing gap in the inner crust of neutron stars

    SciTech Connect

    Esbensen, H.; Broglia, R.A.; Vigezzi, E.; Barranco, F.

    1995-08-01

    The pairing gap in the inner crust of a neutron star can be strongly affected by the presence of heavy nuclei. The effect is commonly estimated in a semiclassical description, using the local density approximation. It was found that the nuclear specific heat can become comparable to the electronic specific heat at certain densities and temperatures. The quantitative result depends critically upon the magnitude of the pairing gap. We therefore decided to assess the validity of the semiclassical approach. This is done by solving the quantal BCS pairing gap equation for neutrons that are confined to the Wigner-Seitz cell that surrounds a heavy nucleus. We performed calculations that are based on the Gogny pairing force. They are feasible for realistic densities of neutrons and heavy nuclei that are expected to be found in the inner crust of neutron stars. The results will be compared to the semiclassical predictions. This work is in progress.

  2. Neutron-proton pairing correlations in odd mass systems

    SciTech Connect

    Fellah, M. Allal, N. H.; Oudih, M. R.

    2015-03-30

    An expression of the ground-state which describes odd mass systems within the BCS approach in the isovector neutron-proton pairing case is proposed using the blocked level technique. The gap equations as well as the energy expression are then derived. It is shown that they exactly generalize the expressions obtained in the pairing between like-particles case. The various gap parameters and the energy are then numerically studied as a function of the pairing-strength within the schematic one-level model.

  3. Temperature-dependent isovector pairing gap equations using a path integral approach

    SciTech Connect

    Fellah, M.; Allal, N. H.; Belabbas, M.; Oudih, M. R.; Benhamouda, N.

    2007-10-15

    Temperature-dependent isovector neutron-proton (np) pairing gap equations have been established by means of the path integral approach. These equations generalize the BCS ones for the pairing between like particles at finite temperature. The method has been numerically tested using the one-level model. It has been shown that the gap parameter {delta}{sub np} has a behavior analogous to that of {delta}{sub nn} and {delta}{sub pp} as a function of the temperature: one notes the presence of a critical temperature. Moreover, it has been shown that the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like particles.

  4. Triplet pairing in pure neutron matter

    NASA Astrophysics Data System (ADS)

    Srinivas, Sarath; Ramanan, S.

    2016-12-01

    We study the zero-temperature BCS gaps for the triplet channel in pure neutron matter using similarity renormalization group (SRG) evolved interactions. We use the dependence of the results on the SRG resolution scale as a tool to analyze medium and many-body corrections. In particular, we study the effects of including the three-body interactions at leading order, which appear at next-to-next-to leading order (N2LO) in the chiral effective field theory (EFT), as well as that of the first-order self-energy corrections on the zero-temperature gap. In addition we also extract the transition temperature as a function of densities and verify the BCS scaling of the zero-temperature gaps to the transition temperature. We observe that the self-energy effects are very crucial in order to reduce the SRG resolution scale dependence of the results, while the three-body effects at the leading order do not change the two-body resolution scale dependence. On the other hand, the results depend strongly on the three-body cutoff, emphasizing the importance of the missing higher-order three-body effects. We also observe that self-energy effects reduce the overall gap as well as shift the gap closure to lower densities.

  5. Triplet pairing in pure neutron matter

    NASA Astrophysics Data System (ADS)

    Srinivas, Sarath; Ramanan, Sunethra

    2016-09-01

    We study the zero temperature BCS gaps for the triplet channel in pure neutron matter using Similarity Renormalization Group (SRG) evolved interactions. We use the dependence of the results on the SRG resolution scale, as a tool to analyze medium and many-body corrections. In particular, we study the effects of including the three-body interactions at leading order, which appear at N2LO in the Chiral EFT, as well as that of the first-order self-energy corrections on the zero temperature gap. In addition we also extract the transition temperature as a function of densities and verify the BCS scaling of the zero temperature gaps to the transition temperature. We observe that the self-energy effects are very crucial in order to reduce the resolution scale dependence of the results, while the three-body effects at the leading order do not change the two-body resolution scale depdendence. On the other hand, the results depend strongly on the three-body cut-off, emphasizing the importance of the missing higher-order three-body effects. We also observe that self-energy effects reduce the overall gap as well as shift the gap closure to lower densities.

  6. Pair fireball precursors of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Zivancev, Charles

    2016-10-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction η of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. For η ˜ 1 the gamma-ray detection horizon of Dmax ≈ 10(Bd/1014 G)3/4 Mpc is much closer than the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo horizon of 200 Mpc, unless the NS surface magnetic field strength is very large, B_d ≲ 10^{15} G. Given the quasi-isotropic nature of the emission, mergers with weaker NS fields could contribute a nearby population of short gamma-ray bursts. Power not dissipated close to the binary is carried to infinity along the open field lines by a large-scale Poynting flux. Reconnection within this outflow, well outside of the pair photosphere, provides a potential site for non-thermal emission, such as a coherent millisecond radio burst.

  7. Neutron decay of the Giant Pairing Vibration in 15C

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; Agodi, C.; Assié, M.; Azaiez, F.; Cappuzzello, F.; Carbone, D.; de Séréville, N.; Foti, A.; Pandola, L.; Scarpaci, J. A.; Sgouros, O.; Soukeras, V.

    2016-06-01

    The neutron decay of the resonant states of light neutron-rich nuclei is an important and poorly explored property, useful to extract valuable nuclear structure information. The neutron decay of the 15C resonances populated via the two-neutron transfer reaction 13C(18O,16O n) at 84 MeV incident energy is studied using an innovative technique which couples the MAGNEX magnetic spectrometer and the EDEN neutron detector array. The data show that the recently observed 15C Giant Pairing Vibration at 13.7 MeV mainly decays via two-neutron emission.

  8. Induced spectral gap and pairing correlations from superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  9. Paired Ion Chamber Constants for Fission Gamma-Neutron Fields

    DTIC Science & Technology

    1984-12-01

    energy E. For neutrons with energies distributed over a spectrum, the above theory must be extended to define a spectrum-averaged neutron W-value...733, 1979. 21. DLC-31/(DPL-1/FEWG1), 37- neutrOn , 21-gamma ray coupled, P3, multigroup library in ANISN Format. ORNL/TM-4840. Oak Ridge National...ragMD©/^ ^i[p@^¥ Paired ion chamber constants for fission gamma- neutron fields G. H.Zeman K. P. Ferlic DEFENSE NUCLEAR AGENCY ARMED FORCES

  10. Oocyte triplet pairing for electrophysiological investigation of gap junctional coupling

    PubMed Central

    Hayar, Abdallah; Charlesworth, Amanda; Garcia-Rill, Edgar

    2010-01-01

    Gap junctions formed by expressing connexin subunits in Xenopus oocytes provide a valuable tool for revealing the gating properties of intercellular gap junctions in electrically coupled cells. We describe a new method that consists of simultaneous triple recordings from 3 apposed oocytes expressing exogenous connexins. The advantages of this method is that in one single experiment, one oocyte serves as control while a pair of oocytes, which have been manipulated differently, may be tested for different gap junctional properties. Moreover, we can study simultaneously the gap junctional coupling of 3 different pairs of oocytes in the same preparation. If the experiment consists of testing the effect of a single drug, this approach will reduce the time required, as background coupling in control pairs of oocytes does not need to be measured separately as with the conventional 2 oocyte pairing. The triplet approach also increases confidence that any changes seen in junctional communication are due to the experimental treatment and not variation in the preparation of oocytes or execution of the experiment. In this study, we show the example of testing the gap junctional properties among three oocytes, two of which are expressing rat connexin36. PMID:20230857

  11. Structure of the pairing gap from orbital nematic fluctuations

    NASA Astrophysics Data System (ADS)

    Agatsuma, Tomoaki; Yamase, Hiroyuki

    2016-12-01

    We study superconducting instability from orbital nematic fluctuations in a minimal model consisting of the dx z and dy z orbitals, and choose model parameters which capture the typical Fermi surface geometry observed in iron-based superconductors. We solve the Eliashberg equations down to low temperatures with keeping the renormalization function and a full momentum dependence of the pairing gap. When superconductivity occurs in the tetragonal phase, we find that the pairing gap exhibits a weak momentum dependence over the Fermi surfaces. The superconducting instability occurs also inside the nematic phase. When the dx z orbital is occupied more than the dy z orbital in the nematic phase, a larger (smaller) gap is realized on the Fermi-surface parts where the dx z (dy z) orbital component is dominant, leading to a substantial momentum dependence of the pairing gap on the hole Fermi surfaces. On the other hand, the momentum dependence of the gap is weak on the electron Fermi surfaces. We also find that while the leading instability is the so-called s++-wave symmetry, the second leading one is dx2-y2-wave symmetry. In particular, these two states are nearly degenerate in the tetragonal phase, whereas such quasidegeneracy is lifted in the nematic phase and the dx2-y2-wave symmetry changes to highly anisotropic s -wave symmetry.

  12. Exact Solutions for Pairing Correlations Among Protons and Neutrons

    NASA Astrophysics Data System (ADS)

    Miora, Madeleine; Launey, Kristina; Kekejian, David; Draayer, Jerry; Pan, Feng

    2017-01-01

    Using the nuclear shell model we are able to achieve, for the first time, exact solutions for pairing correlations for light to medium-mass nuclei, including the challenging proton-neutron pairs, while also identifying the primary physics involved. We utilize a new Hamiltonian with only two adjustable parameters. In addition to a single-particle energy term and the Coulomb potential, the shell-model Hamiltonian consists of isovector T=1 pairing interaction and average proton-neutron isoscalar T=0 interaction. The T=0 term describes the average interaction between non-paired protons and neutrons. This Hamiltonian is exactly solvable, but calculations represent a challenge, as they require highly non-linear equations to be computed. With this model, including from 3 to 7 single-particle energy levels, we can reproduce experimental data for 0+ state energies for isotopes with mass A=10 through A=62 exceptionally well including isotopes from He to Ge. These results provide a further understanding for the key role of proton-neutron pairing correlations in nuclei, which is especially important for waiting-point nuclei on the rp-path of nucleosynthesis. We acknowledge support from the National Science Foundation (grant #1262890, OCI-0904874, and ACI-1516338), DOE (DE-SC0005248), SURA, and CUSTIPEN.

  13. Exact Solution of the Isovector Proton Neutron Pairing Hamiltonian

    SciTech Connect

    Dukelsky, J; Gueorguiev, V G; Van Isacker, P; Dimitrova, S S; Errea, B; H., S L

    2005-12-02

    The complete exact solution of the T = 1 neutron-proton pairing Hamiltonian is presented in the context of the SO(5) Richardson-Gaudin model with non-degenerate single-particle levels and including isospin-symmetry breaking terms. The power of the method is illustrated with a numerical calculation for {sup 64}Ge for a pf + g{sub 9/2} model space which is out of reach of modern shell-model codes.

  14. Pairing in neutron matter: New uncertainty estimates and three-body forces

    NASA Astrophysics Data System (ADS)

    Drischler, C.; Krüger, T.; Hebeler, K.; Schwenk, A.

    2017-02-01

    We present solutions of the BCS gap equation in the channels S10 and P32-F32 in neutron matter based on nuclear interactions derived within chiral effective field theory (EFT). Our studies are based on a representative set of nonlocal nucleon-nucleon (NN) plus three-nucleon (3N) interactions up to next-to-next-to-next-to-leading order (N3LO ) as well as local and semilocal chiral NN interactions up to N2LO and N4LO , respectively. In particular, we investigate for the first time the impact of subleading 3N forces at N3LO on pairing gaps and also derive uncertainty estimates by taking into account results for pairing gaps at different orders in the chiral expansion. Finally, we discuss different methods for obtaining self-consistent solutions of the gap equation. Besides the widely used quasilinear method by Khodel et al., we demonstrate that the modified Broyden method is well applicable and exhibits a robust convergence behavior. In contrast to Khodel's method it is based on a direct iteration of the gap equation without imposing an auxiliary potential and is straightforward to implement.

  15. Rapidity Gap Events for Squark Pair Production at the LHC

    SciTech Connect

    Bornhauser, Sascha; Drees, Manuel; Dreiner, Herbert K.; Kim, Jong Soo

    2010-02-10

    The exchange of electroweak gauginos in the t- or u-channel allows squark pair production at hadron colliders without color exchange between the squarks. This can give rise to events where little or no energy is deposited in the detector between the squark decay products. We discuss the potential for detection of such rapidity gap events at the Large Hadron Collider (LHC). We present an analysis with full event simulation using PYTHIA as well as Herwig++, but without detector simulation. We analyze the transverse energy deposited between the jets from squark decay, as well as the probability of finding a third jet in between the two hardest jets. For the mSUGRA benchmark point SPS1a we find statistically significant evidence for a color singlet exchange contribution.

  16. Pair and single neutron transfer with Borromean 8He

    NASA Astrophysics Data System (ADS)

    Lemasson, A.; Navin, A.; Rejmund, M.; Keeley, N.; Zelevinsky, V.; Bhattacharyya, S.; Shrivastava, A.; Bazin, D.; Beaumel, D.; Blumenfeld, Y.; Chatterjee, A.; Gupta, D.; de France, G.; Jacquot, B.; Labiche, M.; Lemmon, R.; Nanal, V.; Nyberg, J.; Pillay, R. G.; Raabe, R.; Ramachandran, K.; Scarpaci, J. A.; Schmitt, C.; Simenel, C.; Stefan, I.; Timis, C. N.

    2011-03-01

    Direct observation of the survival of 199Au residues after 2n transfer in the 8He +197Au system and the absence of the corresponding 67Cu in the 8He +65Cu system at various energies are reported. The measurements of the surprisingly large cross sections for 199Au, coupled with the integral cross sections for the various Au residues, is used to obtain the first model-independent lower limits on the ratio of 2n to 1n transfer cross sections from 8He to a heavy target. A comparison of the transfer cross sections for 6,8He on these targets highlights the differences in the interactions of these Borromean nuclei. These measurements for the most neutron-rich nuclei on different targets highlight the need to probe the reaction mechanism with various targets and represent an experimental advance towards understanding specific features of pairing in the dynamics of dilute nuclear systems.

  17. Photoproduction of π0-pairs off protons and off neutrons

    NASA Astrophysics Data System (ADS)

    Dieterle, M.; Oberle, M.; Ahrens, J.; Annand, J. R. M.; Arends, H. J.; Bantawa, K.; Bartolome, P. A.; Beck, R.; Bekrenev, V.; Berghäuser, H.; Braghieri, A.; Branford, D.; Briscoe, W. J.; Brudvik, J.; Cherepnya, S.; Costanza, S.; Demissie, B.; Downie, E. J.; Drexler, P.; Fil'kov, L. V.; Fix, A.; Garni, S.; Glazier, D. I.; Hamilton, D.; Heid, E.; Hornidge, D.; Howdle, D.; Huber, G. M.; Jahn, O.; Jude, T. C.; Käser, A.; Kashevarov, V. L.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lisin, V.; Livingston, K.; MacGregor, I. J. D.; Maghrbi, Y.; Mancell, J.; Manley, D. M.; Marinides, Z.; McGeorge, J. C.; McNicoll, E.; Mekterovic, D.; Metag, V.; Micanovic, S.; Middleton, D. G.; Mushkarenkov, A.; Nikolaev, A.; Novotny, R.; Ostrick, M.; Otte, P.; Oussena, B.; Pedroni, P.; Pheron, F.; Polonski, A.; Prakhov, S.; Robinson, J.; Rostomyan, T.; Schumann, S.; Sikora, M. H.; Sober, D. I.; Starostin, A.; Strub, Th.; Supek, I.; Thiel, M.; Thomas, A.; Unverzagt, M.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Witthauer, L.

    2015-11-01

    Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of π0π0 pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557MeV, which produced bremsstrahlung in thin radiator foils. The tagged photon beam covered energies up to 1400MeV. The data from the free proton target are in good agreement with previous measurements and were only used to test the analysis procedures. The results for differential cross sections (angular distributions and invariant-mass distributions) for free and quasi-free protons are almost identical in shape, but differ in absolute magnitude up to 15%. Thus, moderate final-state interaction effects are present. The data for quasi-free neutrons are similar to the proton data in the second resonance region (final-state invariant masses up to ≈ 1550 MeV), where both reactions are dominated by the N(1520)3/2- → Δ(1232)3/2+π decay. At higher energies, angular and invariant-mass distributions are different. A simple analysis of the shapes of the invariant-mass distributions in the third resonance region is consistent with strong contributions of an N^{star}→ Nσ decay for the proton, while the reaction is dominated by a sequential decay via a Δπ intermediate state for the neutron. The data are compared to predictions from the Two-Pion-MAID model and the Bonn-Gatchina coupled-channel analysis.

  18. Urca Cooling Pairs in the Neutron Star Ocean and Their Effect on Superbursts

    NASA Astrophysics Data System (ADS)

    Deibel, Alex; Meisel, Zach; Schatz, Hendrik; Brown, Edward F.; Cumming, Andrew

    2016-11-01

    An accretion outburst onto a neutron star deposits hydrogen-rich and/or helium-rich material into the neutron star’s envelope. Thermonuclear burning of accreted material robustly produces Urca pairs—pairs of nuclei that undergo cycles of {e}--capture and {β }--decay. The strong T 5 dependence of the Urca cooling neutrino luminosity means that Urca pairs in the neutron star interior potentially remove heat from accretion-driven nuclear reactions. In this study, we identify Urca pairs in the neutron star’s ocean—a plasma of ions and electrons overlaying the neutron star crust—and demonstrate that Urca cooling occurs at all depths in the ocean. We find that Urca pairs in the ocean and crust lower the ocean’s steady-state temperature during an accretion outburst and that unstable carbon ignition, which is thought to trigger superbursts, occurs deeper than it would otherwise. Cooling superburst light curves, however, are only marginally impacted by cooling from Urca pairs because the superburst peak radiative luminosity {L}{peak} is always much greater than the Urca pair neutrino luminosity {L}ν in the hot post-superburst ocean.

  19. Molecular pairing and fully gapped superconductivity in Yb-doped CeCoIn(5).

    PubMed

    Erten, Onur; Flint, Rebecca; Coleman, Piers

    2015-01-16

    The recent observation of fully gapped superconductivity in Yb doped CeCoIn_{5} poses a paradox, for the disappearance of nodes suggests that they are accidental, yet d-wave symmetry with protected nodes is well established by experiment. Here, we show that composite pairing provides a natural resolution: in this scenario, Yb doping drives a Lifshitz transition of the nodal Fermi surface, forming a fully gapped d-wave molecular superfluid of composite pairs. The T^{4} dependence of the penetration depth associated with the sound mode of this condensate is in accordance with observation.

  20. Molecular Pairing and Fully Gapped Superconductivity in Yb-doped CeCoIn5

    NASA Astrophysics Data System (ADS)

    Erten, Onur; Flint, Rebecca; Coleman, Piers

    2015-01-01

    The recent observation of fully gapped superconductivity in Yb doped CeCoIn5 poses a paradox, for the disappearance of nodes suggests that they are accidental, yet d -wave symmetry with protected nodes is well established by experiment. Here, we show that composite pairing provides a natural resolution: in this scenario, Yb doping drives a Lifshitz transition of the nodal Fermi surface, forming a fully gapped d -wave molecular superfluid of composite pairs. The T4 dependence of the penetration depth associated with the sound mode of this condensate is in accordance with observation.

  1. Influence of pairing correlations on the radius of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Chen, Ying; Meng, Jie; Ring, Peter

    2017-01-01

    The influence of pairing correlations on the neutron root mean square (rms) radius of nuclei is investigated in the framework of self-consistent Skyrme Hartree-Fock-Bogoliubov calculations. The continuum is treated appropriately by the Green's function techniques. As an example the nucleus 124Zr is treated for a varying strength of pairing correlations. We find that, as the pairing strength increases, the neutron rms radius first shrinks, reaches a minimum, and beyond this point it expands again. The shrinkage is due to the the so-called pairing antihalo effect, i.e., due to the decrease of the asymptotic density distribution with increasing pairing. However, in some cases, increasing pairing correlations can also lead to an expansion of the nucleus due to a growing occupation of so-called halo orbits, i.e., weakly bound states and resonances in the continuum with low-ℓ values. In this case, the neutron radii are extended just by the influence of pairing correlations, since these halo orbits cannot be occupied without pairing. The term "antihalo effect" is not justified in such cases. For a full understanding of this complicated interplay, self-consistent calculations are necessary.

  2. Highly anisotropic but nodeless gap from a valence-fluctuation pairing mechanism

    SciTech Connect

    Brandow, B.H.

    1993-01-01

    We have refined and quantitatively explored a valence-fluctuation pairing mechanism, the finite-U mechanism introduced by Newns. This can provide an s-like (nodeless) gap. We use an Anderson-lattice Hamiltonian, with realistic parameter values derived from photoemission and BIS data. The Landau-Luttinger quasiparticle spectrum and the pairing interaction are obtained from a many-body variational formalism. Adequate pairing attraction is obtained, together with band narrowing (mass enhancement) and an extremely short coherence length, in reasonable agreement with experiment. These fully self-consistent results were obtained with an isotropic approximation to the band structure of a single CuO[sub 2] plane. Now, using a simplified treatment for a more realistic band structure, we find that the gap has strong in-plane anisotropy, although it should probably still remain nodeless. This conclusion is consistent with a variety of data.

  3. Density analysis of the neutron structure factor and the determination of the pair potential of krypton

    NASA Astrophysics Data System (ADS)

    Barocchi, F.; Zoppi, M.; Egelstaff, P. A.

    1985-04-01

    We propose a method of analysis of the density behavior of the experimental neutron scattering structure factor which permits us to derive directly from the experimental results an ``experimental'' pair potential. We apply the method to the recent results of Teitsma and Egelstaff in krypton gas and derive a pair potential which is in good agreement with the empirical potential of Barker et al. Some discrepancies in the range 4

  4. Proton-neutron pairing and alpha-type condensation in nuclei

    SciTech Connect

    Sandulescu, N.; Negrea, D.; Gambacurta, D.

    2015-10-15

    We summarize a recent work (N. Sandulescu et al, arXiv:1507.04144) on isoscalar and isovector proton-neutron pairing treated in a formalism which conserves exactly the particle number and the isospin. The formalism is designed for self-conjugate (N=Z) systems of nucleons moving in an axially deformed mean field and interacting through the most general isovector and isoscalar pairing interactions. The ground state of these systems is described by a superposition of two types of condensates, i.e., condensates of isovector quartets, built by two isovector pairs coupled to the total isospin T=0, and condensates of isoscalar proton-neutron pairs. The comparison with the exact solutions of realistic isovector-isoscalar pairing Hamiltonians shows that this formalism is able to describe accurately the pairing correlations energies. It is also shown that, contrary to the majority of HFB calculations, in the present formalism the isovector and isoscalar pairing correlations coexist together for any pairing interactions.

  5. New neutron imaging techniques to close the gap to scattering applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.

  6. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    PubMed

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging.

  7. Visualised predictions of gap anisotropy to test new electron pairing scheme

    NASA Astrophysics Data System (ADS)

    Zheng, X. H.; Walmsley, D. G.

    2017-03-01

    The rich and fertile but not yet adequately exploited ground of superconductor anisotropy is proposed as a test bed for a new empirical scheme of electron pairing. The scheme is directed to resolving a numerical and conceptual difficulty in the BCS theory. The original theoretical formulation of the anisotropy problem by Bennett is adopted and its outcomes extensively explored. Here the Bennett conclusion that in metallic superconductors phonon anisotropy is the principal source of gap anisotropy is accepted. Values of the energy gap are visualised globally in k-space with unprecedented detail and accuracy. Comparison is made between the anisotropy pattern from the new and the usual BCS pairing schemes. Differences are revealed for future experimental resolution.

  8. Rotochemical heating with a density-dependent superfluid energy gap in neutron stars

    SciTech Connect

    Gonzalez-Jimenez, Nicolas; Petrovich, Cristobal; Reisenegger, Andreas

    2010-08-04

    When a rotating neutron star loses angular momentum, the reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (rotochemical heating). This effect has previously been studied by Fernandez and Reisenegger for neutron stars of non-superfluid matter and by Petrovich and Reisenegger for superfluid matter, finding that the system in both cases reaches a quasi-steady state, corresponding to a partial equilibration between compression, due to the loss of angular momentum, and reactions that try to restore the equilibrium. However, Petrovich and Reisenegger assumes a constant value of the superfluid energy gap, whereas theoretical models predict density-dependent gap amplitudes, and therefore gaps that depend on the location in the star. In this work, we try to discriminate between several proposed gap models, comparing predicted surface temperatures to the value measured for the nearest millisecond pulsar, J0437-4715.

  9. Distinguishing S-plus-minus and S-plus-plus electron pairing symmetries by neutron spin resonances in superconducting Sodium-Iron-Cobalt-Arsenic (transitional temperature = 18 Kelvin)

    SciTech Connect

    Das, Tanmoy; Balatsky, Alexander V.; Zhang, Chenglin; Li, Haifeng; Su, Yiki; Nethertom, Tucker; Redding, Caleb; Carr, Scott; Schneidewind, Astrid; Faulhaber, Enrico; Li, Shiliang; Yao, Daoxin; Bruckel, Thomas; Dai, Pengchen; Sobolev, Oleg

    2012-06-05

    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s{sup {+-}}-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E {le} 2{Delta}). Although the resonances have been observed for various iron pnictide superconductors, they are broad in energy and can also be interpreted as arising from the s{sup ++}-pairing symmetry with E {ge} 2{Delta}. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe{sub 0.935}Co{sub 0.045}As (T{sub c} = 18 K). By comparing our experiments with calculated spin-excitations spectra within the s{sup {+-}} and s{sup ++}-pairing symmetries, we conclude that the resonance in NaFe{sub 0.935}Co{sub 0.045}As is consistent with the s{sup {+-}}-pairing symmetry, thus eliminating s{sup ++}-pairing symmetry as a candidate for superconductivity.

  10. Air bearing center cross gap of neutron stress spectrometer sample table support system

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wu, Yunxin; Gong, Hai; Feng, Xiaolei

    2016-12-01

    A support system is the main load-bearing component of sample table for neutron stress spectrometer, and air bearing is an important element of a support system. The neutron stress spectrometer sample table was introduced, and the scheme for air bearing combination was selected. To study the performance of air bearing center cross gap, finite element models (FEMs) were established based on air motion and Reynolds equations, effects of air supply pressure, and gap parameters on the overturning moment and bearing capacity of air bearing center cross gap were analyzed. Results indicate that the width, depth, and height differences of the marble floor gap played important roles in the performance of the air bearing. When gap width is lesser than 1 mm and gap depth is lower than 0.4 mm, bearing capacity and overturning moment would vary rapidly with the variation of the width and depth. A gap height difference results in the bearing capacity dropping rapidly. The FEM results agree well with experimental results. Further, findings of the study could guide the design of the support system and marble floor.

  11. Emission of neutron-proton and proton-proton pairs in neutrino scattering

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in (νμ ,μ-) scattering from 12C in the 2p-2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission (i.e., np in the initial state) is much larger than for neutron-proton emission (i.e., two neutrons in the initial state) by a (ω , q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.

  12. Dirac-Hartree-Bogoliubov calculation for spherical and deformed hot nuclei: Temperature dependence of the pairing energy and gaps, nuclear deformation, nuclear radii, excitation energy, and entropy

    NASA Astrophysics Data System (ADS)

    Lisboa, R.; Malheiro, M.; Carlson, B. V.

    2016-02-01

    Background: Unbound single-particle states become important in determining the properties of a hot nucleus as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the vapor phase that takes into account the unbound nucleon states. Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy, and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the limit of existence of the nucleus. Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas. Results: We show that p -p and n -n pairing gaps in the S10 channel vanish for low critical temperatures in the range Tcp≈0.6 -1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and 168Er. We found that superconducting phase transition occurs at Tcp=1.03 Δp p(0 ) for 90Zr, Tcp=1.16 Δp p(0 ) for 140Ce, Tcp=0.92 Δp p(0 ) for 150Sm, and Tcp=0.97 Δp p(0 ) for 168Er. The superfluidity phase transition occurs at Tcp=0.72 Δn n(0 ) for 124Sn, Tcp=1.22 Δn n(0 ) for 150Sm, and Tcp=1.13 Δn n(0 ) for 168Er. Thus, the nuclear superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs=2.0 -4.0 MeV , well above the

  13. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    SciTech Connect

    Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2012-10-20

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  14. Quarteting and spin-aligned proton-neutron pairs in heavy N =Z nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2015-06-01

    We analyze the role of maximally aligned isoscalar pairs in heavy N =Z nuclei by employing a formalism of quartets. Quartets are superpositions of two neutrons and two protons coupled to total isospin T =0 and given J . The study is focused on the contribution of spin-aligned pairs carrying the angular momentum J =9 to the structure of 96Cd and 92Pd . We show that the role played by the J =9 pairs is quite sensitive to the model space and, in particular, it decreases considerably by passing from the simple 0 g9 /2 space to the more complete 1 p1 /2,1 p3 /2,0 f5 /2,0 g9 /2 space. In the latter case the description of these nuclei in terms of only spin-aligned J =9 pairs turns out to be unsatisfactory while an important contribution, particularly in the ground state, is seen to arise from isovector J =0 and isoscalar J =1 pairs. Thus, contrary to previous studies, we find no compelling evidence of a spin-aligned pairing phase in 92Pd .

  15. Large Gap Size Paired-end Library Construction for Second Generation Sequencing

    SciTech Connect

    Peng, Ze; Hamilton, Matthew; Froula, Jeff; Ewing, Aren; Foster, Brian; Cheng, Jan-Fang

    2010-05-28

    Fosmid or BAC end sequencing plays an important role in de novo assembly of large genomes like fungi and plants. However construction and Sanger sequencing of fosmid or BAC libraries are laborious and costly. The current 454 Paired-End (PE) Library and Illumina Jumping Library construction protocols are limited with the gap sizes of approximately 20 kb and 8 kb, respectively. In the attempt to understand the limitations of constructing PE libraries with greater than 30Kb gaps, we have purified 18, 28, 45, and 65Kb sheared DNA fragments from yeast and circularized the ends using the Cre-loxP approach described in the 454 PE Library protocol. With the increasing fragment sizes, we found a general trend of decreasing library quality in several areas. First, redundant reads and reads containing multiple loxP linkers increase when the average fragment size increases. Second, the contamination of short distance pairs (<10Kb) increases as the fragment size increases. Third, chimeric rate increases with the increasing fragment sizes. We have modified several steps to improve the quality of the long span PE libraries. The modification includes (1) the use of special PFGE program to reduce small fragment contamination; (2) the increase of DNA samples in the circularization step and prior to the PCR to reduce redundant reads; and (3) the decrease of fragment size in the double SPRI size selection to get a higher frequency of LoxP linker containing reads. With these modifications we have generated large gap size PE libraries with a much better quality.

  16. Enhancement of high-spin collectivity in N = Z nuclei by the isoscalar neutron-proton pairing

    NASA Astrophysics Data System (ADS)

    Kaneko, K.; Sun, Y.; de Angelis, G.

    2017-01-01

    Pairing from different fermions, neutrons and protons, is unique in nuclear physics. The fingerprint for the isoscalar T = 0 neutron-proton (np) pairing has however remained a question. We study this exotic pairing mode in excited states of rotating N ≈ Z nuclei by applying the state-of-the-art shell-model calculations for 88Ru and the neighboring 90,92Ru isotopes. We show that the T = 0 np pairing is responsible for the distinct rotational behavior between the N = Z and N > Z nuclei. Our calculation suggests a gradual crossover from states with mixed T = 1 and T = 0 pairing near the ground state to those dominated by the T = 0 np pairing at high spins. It is found that the T = 0 np pairing plays an important role in enhancing the high-spin collectivity, thereby reducing shape variations along the N = Z line.

  17. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-03-01

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.

  18. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    SciTech Connect

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-03-28

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.

  19. Moment of inertia of even-even proton-rich nuclei using a particle-number conserving approach in the isovector neutron-proton pairing case

    NASA Astrophysics Data System (ADS)

    Hammache, Faiza; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2016-05-01

    An expression of the particle-number projected nuclear moment of inertia (MOI) has been established in the neutron-proton (np) isovector pairing case within the cranking model. It generalizes the one obtained in the like-particles pairing case. The formalism has been, as a first step, applied to the picket-fence model. As a second step, it has been applied to deformed even-even nuclei such as (N - Z) = 0, 2, 4, and of which the experimentally deduced values of the pairing gap parameters Δtt‧, t,t‧ = n,p, are known. The single-particle energies and eigenstates used are those of a deformed Woods-Saxon mean-field. It was shown, in both models, that the np pairing effect and the projection one are non-negligible. In realistic cases, it also appears that the np pairing effect strongly depends on (N - Z), whereas the projection effect is practically independent from the same quantity.

  20. Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Simkovic, F.; Schwieger, J.; Veselský, M.; Pantis, G.; Faessler, Amand

    1997-02-01

    Using the renormalized quasiparticle random phase approximation (RQRPA), we calculate the light neutrino mass mediated mode of neutrinoless double beta decay (0νββ-decay) of 76Ge, 100Mo, 128Te and 130Te. Our results indicate that the simple quasiboson approximation is not good enough to study the 0νββ-decay, because its solutions collapse for physical values of gpp. We find that extension of the Hilbert space and inclusion of the Pauli principle in the QRPA with proton-neutron pairing, allows us to extend our calculations beyond the point of collapse, for physical values of the nuclear force strength. As a consequence one might be able to extract more accurate values on the effective neutrino mass by using the best available experimental limits on the half-life of 0νββ-decay.

  1. Particle-number conservation in quasiparticle representation in the isovector neutron-proton pairing case

    NASA Astrophysics Data System (ADS)

    Fellah, M.; Allal, N. H.; Hammache, Faiza; Oudih, M. R.

    2015-12-01

    Until now, the Sharp-Bardeen-Cooper-Schrieffer (SBCS) particle-number projection method, in the isovector neutron-proton pairing case, has been developed in the particle representation. However, this formalism is sometimes complicated and cumbersome. In this work, the formalism is developed in the quasiparticle representation. An expression of the projected ground state wave function is proposed. Expressions of the energy as well as the expectation values of the total particle-number operator and its square are deduced. It is shown that these expressions are formally similar to their homologues in the pairing between like-particles case. They are easier to handle than the ones obtained using the particle representation and are more adapted to numerical calculations. The method is then numerically tested within the schematic one-level model, which allows comparisons with exact results, as well as in the case of even-even nuclei within the Woods-Saxon model. In each case, it is shown that the particle-number fluctuations that are inherent to the BCS method are completely eliminated by the projection. In the framework of the one-level model, the values of the projected energy are clearly closer to the exact values than the BCS ones. In realistic cases, the relative discrepancies between projected and unprojected values of the energy are small. However, the absolute deviations may reach several MeV.

  2. Evidence for a spin-aligned neutron-proton paired phase from the level structure of (92)Pd.

    PubMed

    Cederwall, B; Moradi, F Ghazi; Bäck, T; Johnson, A; Blomqvist, J; Clément, E; de France, G; Wadsworth, R; Andgren, K; Lagergren, K; Dijon, A; Jaworski, G; Liotta, R; Qi, C; Nyakó, B M; Nyberg, J; Palacz, M; Al-Azri, H; Algora, A; de Angelis, G; Ataç, A; Bhattacharyya, S; Brock, T; Brown, J R; Davies, P; Di Nitto, A; Dombrádi, Zs; Gadea, A; Gál, J; Hadinia, B; Johnston-Theasby, F; Joshi, P; Juhász, K; Julin, R; Jungclaus, A; Kalinka, G; Kara, S O; Khaplanov, A; Kownacki, J; La Rana, G; Lenzi, S M; Molnár, J; Moro, R; Napoli, D R; Singh, B S Nara; Persson, A; Recchia, F; Sandzelius, M; Scheurer, J-N; Sletten, G; Sohler, D; Söderström, P-A; Taylor, M J; Timár, J; Valiente-Dobón, J J; Vardaci, E; Williams, S

    2011-01-06

    Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.

  3. Analyses of interactions among pair-rule genes and the gap gene Krüppel in Bombyx segmentation.

    PubMed

    Nakao, Hajime

    2015-09-01

    In the short-germ insect Tribolium, a pair-rule gene circuit consisting of the Tribolium homologs of even-skipped, runt, and odd-skipped (Tc-eve, Tc-run and Tc-odd, respectively) has been implicated in segment formation. To examine the application of the model to other taxa, I studied the expression and function of pair-rule genes in Bombyx mori, together with a Bombyx homolog of Krüppel (Bm-Kr), a known gap gene. Knockdown embryos of Bombyx homologs of eve, run and odd (Bm-eve, Bm-run and Bm-odd) exhibited asegmental phenotypes similar to those of Tribolium knockdowns. However, pair-rule gene interactions were similar to those of both Tribolium and Drosophila, which, different from Tribolium, shows a hierarchical segmentation mode. Additionally, the Bm-odd expression pattern shares characteristics with those of Drosophila pair-rule genes that receive upstream regulatory input. On the other hand, Bm-Kr knockdowns exhibited a large posterior segment deletion as observed in short-germ insects. However, a detailed analysis of these embryos indicated that Bm-Kr modulates expression of pair-rule genes like in Drosophila, although the mechanisms appear to be different. This suggested hierarchical interactions between Bm-Kr and pair-rule genes. Based on these results, I concluded that the pair-rule gene circuit model that describes Tribolium development is not applicable to Bombyx.

  4. Steric Effects in Ionic Pairing and Polyelectrolyte Interdiffusion within Multilayered Films: A Neutron Reflectometry Study

    SciTech Connect

    Xu, Li; Ankner, John Francis; Sukhishvili, Prof. Svetlana A.

    2011-01-01

    Using a series of polycations synthesized by atom transfer radical polymerization (ATRP), we investigate the effects of the polymer charge density and hydrophobicity on salt-induced interdiffusion of polymer layers within polyelectrolyte multilayer (PEM) films. Polycations with two distinct hydrophobicities and various quaternization degrees (QPDMA and QPDEA) were derived from parent polymers of matched molecular weights poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and poly(2-(diethylamino)ethyl methacrylate) (PDEA) by quaternization with either methyl or ethyl sulfate. Multilayers of these polycations with polystyrene sulfonate (PSS) were assembled in low-salt conditions, and annealed in NaCl solutions to induce layer intermixing. As revealed by neutron reflectometry (NR), polycations with lower charge density resulted in a faster decay of film structure with distance from the substrate. Interestingly, when comparing polymer mobility in QPDEA/PSS and QPDMA/PSS films, layer intermixing was faster in the case of more hydrophobic QPDEA as compared to QPDMA, because of the weaker ionic pairing (due to the presence of a bulky ethyl spacer) between QPDEA and PSS.

  5. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe

    PubMed Central

    Du, Zengyi; Yang, Xiong; Lin, Hai; Fang, Delong; Du, Guan; Xing, Jie; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li1−xFex)OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li1−xFex)OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system. PMID:26822281

  6. Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    NASA Astrophysics Data System (ADS)

    Simo, I. Ruiz; Amaro, J. E.; Barbaro, M. B.; De Pace, A.; Caballero, J. A.; Megias, G. D.; Donnelly, T. W.

    2016-11-01

    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in (e ,e') scattering from 12C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate- to high-momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ isobar current. We also analyze the effect of the exchange contribution and show that the direct-exchange interference strongly affects the determination of the n p /p p ratio.

  7. Study of weakening of shell N = 28 for neutron rich nuclei through particle number fluctuation and pairing energy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Rupayan

    2017-03-01

    Evolution of shells has been studied through fluctuations of particle numbers, pairing energies of large number of isotopes and isotones of nuclei evaluated through Skyrme-Hartree-Fock theory after inclusion of optimized tensor interaction. For neutron rich isotopes of Mg, Si, S and Ar no indication of shell closure at N = 28 has been observed. Calculations show occurrence of a doubly shell closed nucleus 114 Fl 184 .

  8. Bonds, bands, and band gaps in tetrahedrally bonded ternary compounds: The role of group V lone pairs

    NASA Astrophysics Data System (ADS)

    Do, Dat T.; Mahanti, S. D.

    2014-04-01

    An interesting class of tetrahedrally coordinated ternary compounds has attracted considerable interest because of their potential as good thermoelectrics. These compounds, denoted as I3-V-VI4, contain three monovalent-I (Cu, Ag), one nominally pentavalent-V (P, As, Sb, Bi), and four hexavalent-VI (S, Se, Te) atoms; and can be visualized as ternary derivatives of the II-VI zincblende or wurtzite semiconductors, obtained by starting from four unit cells of (II-VI) and replacing four type II atoms by three type I and one type V atoms. We find that nominally pentavalent-V atoms are effectively trivalent and their lone (ns2) pairs play an active role in opening up a gap. The lowest conduction band is a strongly hybridized anti-bonding combination of the lone pair and chalcogen (VI) p-states. The magnitude of the gap is sensitive to the nature of the exchange interaction (local vs non-local) and the V-VI distance. We also find that the electronic structure near the gap can be reproduced extremely well within a local theory if one can manipulate the position of the filled d bands of Cu and Ag by an effectively large U.

  9. Lowering of Boson-Fermion System Energy with a Gapped Cooper Resonant-Pair Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Mamedov, T. A.; de Llano, M.

    2007-09-01

    Applying two-time Green-function techniques to the Friedberg-T.D. Lee phenomenological Hamiltonian of a many-fermion system, it is shown that positive-energy resonant bosonic pairs associated with four-fermion excitations above the Fermi sea are energetically lower in a ground-state that is a mixture of two coexisting and dynamically interacting many-particle subsystems: a) unpaired fermions and b) composite bosons. It is argued that an interaction between free fermions and bosons excited above the Fermi sea in the mixture, namely, the continuous processes of pair-formation from, and disintegration into, two unpaired electrons, results in a substantially lowering the total system energy. The positive-energy composite bosons begin to appear incoherently below a de-pairing temperature T* as their coupling- and temperature-dependent number density gradually increases from zero. This leads quite naturally to the pseudogap phenomenon observed in high-Tc cuprates

  10. Neutron Stars versus Black Holes: Probing the Mass Gap with LIGO/Virgo

    NASA Astrophysics Data System (ADS)

    Littenberg, Tyson B.; Farr, Ben; Coughlin, Scott; Kalogera, Vicky; Holz, Daniel E.

    2015-07-01

    Inspirals and mergers of black hole (BH) and/or neutron star (NS) binaries are expected to be abundant sources for ground-based gravitational-wave (GW) detectors. We assess the capabilities of Advanced LIGO and Virgo to measure component masses using inspiral waveform models including spin-precession effects using a large ensemble of GW sources randomly oriented and distributed uniformly in volume. For 1000 sources this yields signal-to-noise ratios between 7 and 200. We make quantitative predictions for how well LIGO and Virgo will distinguish between BHs and NSs and appraise the prospect of using LIGO/Virgo (LV) observations to definitively confirm, or reject, the existence of a putative “mass gap” between NSs (m≤slant 3 {M}⊙ ) and BHs (m≥slant 5 {M}⊙ ). We find sources with the smaller mass component satisfying {m}2≲ 1.5 {M}⊙ to be unambiguously identified as containing at least one NS, while systems with {m}2≳ 6 {M}⊙ will be confirmed binary BHs. Binary BHs with {m}2\\lt 5 {M}⊙ (i.e., in the gap) cannot generically be distinguished from NSBH binaries. High-mass NSs (2\\lt m\\lt 3 {M}⊙ ) are often consistent with low-mass BHs (m\\lt 5 {M}⊙ ), posing a challenge for determining the maximum NS mass from LV observations alone. Individual sources will seldom be measured well enough to confirm objects in the mass gap and statistical inferences drawn from the detected population will be strongly dependent on the underlying distribution. If nature happens to provide a mass distribution with the populations relatively cleanly separated in chirp mass space, as some population synthesis models suggest, then NSs and BHs will be more easily distinguishable.

  11. Effects of interlayer Sn-Sn lone pair interaction on the band gap of bulk and nanosheet SnO

    NASA Astrophysics Data System (ADS)

    Umezawa, Naoto; Zhou, Wei

    2015-03-01

    Effects of interlayer lone-pair interactions on the electronic structure of SnO are firstly explored by the density-functional theory. Our comprehensive study reveals that the band gap of SnO opens as increase in the interlayer Sn-Sn distance. The effect is rationalized by the character of band edges which consists of bonding and anti-bonding states from interlayer lone pair interactions. The band edges for several nanosheets and strained double-layer SnO are estimated. We conclude that the double-layer SnO is a promising material for visible-light driven photocatalyst for hydrogen evolution. This work is supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) program.

  12. Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshihiko; Matsuo, Masayuki

    2016-01-01

    We discuss the effects of pairing correlation on quasiparticle resonance. We analyze in detail how the width of the low-lying (Ex≲ 1 MeV) quasiparticle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the {}^{46}Si + n system to discuss the low-lying p-wave quasiparticle resonance. Solving the Hartree-Fock-Bogoliubov equation in coordinate space with the scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width, and the resonance energy. We find that the pairing correlation has the effect of reducing the width of the quasiparticle resonance that originates from a particle-like orbit in weakly bound nuclei.

  13. Lowering of Boson-Fermion System Energy with a Gapped Cooper Resonant-Pair Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Mamedov, T. A.; de Llano, M.

    Applying two-time Green-function techniques to the Friedberg-T.D. Lee phenomenological Hamiltonian of a many-fermion system, it is shown that positive-energy resonant bosonic pairs associated with four-fermion excitations above the Fermi sea are energetically lower in a ground-state that is a mixture of two coexisting and dynamically interacting many-particle subsystems: a) unpaired fermions and b) composite bosons. It is argued that an interaction between free fermions and bosons excited above the Fermi sea in the mixture, namely, the continuous processes of pair-formation from, and disintegration into, two unpaired electrons, results in a substantially lowering the total system energy. The positive-energy composite bosons begin to appear incoherently below a depairing temperature T* as their coupling- and temperature-dependent number density gradually increases from zero. This leads quite naturally to the pseudogap phenomenon observed in high-Tc cuprates.

  14. Fission Product Gamma-Ray Line Pairs Sensitive to Fissile Material and Neutron Energy

    SciTech Connect

    Marrs, R E; Norman, E B; Burke, J T; Macri, R A; Shugart, H A; Browne, E; Smith, A R

    2007-11-15

    The beta-delayed gamma-ray spectra from the fission of {sup 235}U, {sup 238}U, and {sup 239}Pu by thermal and near-14-MeV neutrons have been measured for delay times ranging from 1 minute to 14 hours. Spectra at all delay times contain sets of prominent gamma-ray lines with intensity ratios that identify the fissile material and distinguish between fission induced by low-energy or high-energy neutrons.

  15. Phase transitions of dense neutron matter with generalized Skyrme interaction to superfluid states with triplet pairing in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Tarasov, A. N.

    2012-12-01

    A generalized non-relativistic Fermi-liquid approach was used to find analytical formulas for temperatures Tc1(n, H) and Tc2(n, H) (which are functions nonlinear of density n and linear of magnetic field H) of phase transitions in spatially uniform dense pure neutron matter from normal to superfluid states with spin-triplet p-wave pairing (similar to anisotropic superfluid phases 3He-A1 and 3He-A2) in steady and homogeneous strong magnetic field (but |μn| H ll Ec < ɛF(n), where μn is the magnetic dipole moment of a neutron, Ec is the cutoff energy and ɛF(n) is the Fermi energy in neutron matter). General formulas for Tc1, 2 (n, H) (valid for arbitrary parameterization of the effective Skyrme interaction in neutron matter) are specified here for generalized BSk18 parameterization of the Skyrme forces (with additional terms dependent on density n) on the interval 0.3 n0 < n < nc (BSk18) ≍ 2.7952 · n0, where n0 = 0.17 fm-3 is nuclear density and at critical density nc(BSk18) triplet superfluidity disappears, Tc0(n, cH = 0) = 0. Expressions for phase transition temperatures Tc0(n)<0.09MeV (at Ec = 10MeV) and Tc1, 2(n, H) are realistic non-monotone functions of density n for BSk18 parameterization of the Skyrme forces (contrary to their monotone increase for all previous BSk parameterizations). Phase transitions to superfluid states of such type might occur in liquid outer core of magnetars (strongly magnetized neutron stars).

  16. General relativistic ray-tracing algorithm for the determination of the electron-positron energy deposition rate from neutrino pair annihilation around rotating neutron and quark stars

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2011-11-01

    We present a full general relativistic numerical code for estimating the energy-momentum deposition rate (EMDR) from neutrino pair annihilation (?). The source of the neutrinos is assumed to be a neutrino-cooled accretion disc around neutron and quark stars. We calculate the neutrino trajectories by using a ray-tracing algorithm with the general relativistic Hamilton's equations for neutrinos and derive the spatial distribution of the EMDR due to the annihilations of neutrinos and antineutrinos around rotating neutron and quark stars. We obtain the EMDR for several classes of rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the Massachusetts Institute of Technology (MIT) bag model equation of state and in the colour-flavour-locked (CFL) phase. The distribution of the total annihilation rate of the neutrino-antineutrino pairs around rotating neutron and quark stars is studied for isothermal discs and accretion discs in thermodynamical equilibrium. We demonstrate both the differences in the equations of state for neutron and quark matter and rotation with the general relativistic effects significantly modify the EMDR of the electrons and positrons generated by the neutrino-antineutrino pair annihilation around compact stellar objects, as measured at infinity.

  17. Isospin Dependent Pairing Interactions and BCS-BEC crossover

    SciTech Connect

    Sagawa, H.; Margueron, J.; Hagino, K.

    2008-11-11

    We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.

  18. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties.

    PubMed

    Stoumpos, Constantinos C; Frazer, Laszlo; Clark, Daniel J; Kim, Yong Soo; Rhim, Sonny H; Freeman, Arthur J; Ketterson, John B; Jang, Joon I; Kanatzidis, Mercouri G

    2015-06-03

    The synthesis and properties of the hybrid organic/inorganic germanium perovskite compounds, AGeI3, are reported (A = Cs, organic cation). The systematic study of this reaction system led to the isolation of 6 new hybrid semiconductors. Using CsGeI3 (1) as the prototype compound, we have prepared methylammonium, CH3NH3GeI3 (2), formamidinium, HC(NH2)2GeI3 (3), acetamidinium, CH3C(NH2)2GeI3 (4), guanidinium, C(NH2)3GeI3 (5), trimethylammonium, (CH3)3NHGeI3 (6), and isopropylammonium, (CH3)2C(H)NH3GeI3 (7) analogues. The crystal structures of the compounds are classified based on their dimensionality with 1–4 forming 3D perovskite frameworks and 5–7 1D infinite chains. Compounds 1–7, with the exception of compounds 5 (centrosymmetric) and 7 (nonpolar acentric), crystallize in polar space groups. The 3D compounds have direct band gaps of 1.6 eV (1), 1.9 eV (2), 2.2 eV (3), and 2.5 eV (4), while the 1D compounds have indirect band gaps of 2.7 eV (5), 2.5 eV (6), and 2.8 eV (7). Herein, we report on the second harmonic generation (SHG) properties of the compounds, which display remarkably strong, type I phase-matchable SHG response with high laser-induced damage thresholds (up to ∼3 GW/cm(2)). The second-order nonlinear susceptibility, χS(2), was determined to be 125.3 ± 10.5 pm/V (1), (161.0 ± 14.5) pm/V (2), 143.0 ± 13.5 pm/V (3), and 57.2 ± 5.5 pm/V (4). First-principles density functional theory electronic structure calculations indicate that the large SHG response is attributed to the high density of states in the valence band due to sp-hybridization of the Ge and I orbitals, a consequence of the lone pair activation.

  19. Evaluation of the β+-decay log ft value with inclusion of the neutron-proton pairing and particle-number projection

    NASA Astrophysics Data System (ADS)

    Kerrouchi, S.; Allal, N. H.; Fellah, M.; Oudih, M. R.

    2016-01-01

    The neutron-proton isovector pairing effect on the beta-plus decay log ft values is studied in typical mirror N≃Z nuclei. The log ft values are calculated by including or not the isovector pairing before and after a particle-number projection using the Sharp-Bardeen-Cooper-Schrieffer (SBCS) method. It is shown that the values obtained after projection in the isovector pairing case are the closest ones to experimental data. The effect of the deformation of the mother and daughter nuclei on the log ft is also studied.

  20. Effects of deformation and neutron-proton pairing on the Gamow-Teller transitions for Mg,2624 in a deformed quasiparticle random-phase approximation

    NASA Astrophysics Data System (ADS)

    Ha, Eunja; Cheoun, Myung-Ki

    2016-11-01

    We investigate effects of neutron-proton (n p ) pairing correlations on the Gamow-Teller (GT) transition of Mg,2624 by explicitly taking into account deformation effects. Our calculation is performed by a deformed quasiparticle random phase approximation (DQRPA) which includes the deformation at the Bardeen-Cooper-Schrieffer and RPA stage. In this paper, we include the n p pairing as well as neutron-neutron (n n ) and proton-proton (p p ) paring correlations to the DQRPA. Our new formalism is applied to the GT transition of well-known deformed Mg isotopes. The n p pairing effect is found to affect more or less the GT distribution of 24Mg and 26Mg. But the deformation effect turns out to be much larger than the n p paring effect because the Fermi surfaces smear more widely by the deformation rather than the n p pairing correlations. Correlations between the deformation and the n p pairing effects and their ambiguities are also discussed with the comparison to experimental GT strength data by triton and 3He beams.

  1. even-skipped has gap-like, pair-rule-like, and segmental functions in the cricket Gryllus bimaculatus, a basal, intermediate germ insect (Orthoptera).

    PubMed

    Mito, Taro; Kobayashi, Chiharu; Sarashina, Isao; Zhang, Hongjie; Shinahara, Wakako; Miyawaki, Katsuyuki; Shinmyo, Yohei; Ohuchi, Hideyo; Noji, Sumihare

    2007-03-01

    Developmental mechanisms of segmentation appear to be varied among insects in spite of their conserved body plan. Although the expression patterns of the segment polarity genes in all insects examined imply well conserved function of this class of genes, expression patterns and function of the pair-rule genes tend to exhibit diversity. To gain further insights into the evolution of the segmentation process and the role of pair-rule genes, we have examined expression and function of an ortholog of the Drosophila pair-rule gene even-skipped (eve) in a phylogenetically basal insect, Gryllus bimaculatus (Orthoptera, intermediate germ cricket). We find that Gryllus eve (Gb'eve) is expressed as stripes in each of the prospective gnathal, thoracic, and abdominal segments and as a broad domain in the posterior growth zone. Dynamics of stripe formation vary among Gb'eve stripes, representing one of the three modes, the segmental, incomplete pair-rule, and complete pair-rule mode. Furthermore, we find that RNAi suppression of Gb'eve results in segmentation defects in both anterior and posterior regions of the embryo. Mild depletion of Gb'eve shows a pair-rule-like defect in anterior segments, while stronger depletion causes a gap-like defect showing deletion of anterior and posterior segments. These results suggest that Gb'eve acts as a pair-rule gene at least during anterior segmentation and also has segmental and gap-like functions. Additionally, Gb'eve may be involved in the regulation of hunchback and Krüppel expression. Comparisons with eve functions in other species suggest that the Gb'eve function may represent an intermediate state of the evolution of pair-rule patterning by eve in insects.

  2. Thermodynamic study of gap structure and pair-breaking effect by magnetic field in the heavy-fermion superconductor CeCu2Si2

    NASA Astrophysics Data System (ADS)

    Kittaka, Shunichiro; Aoki, Yuya; Shimura, Yasuyuki; Sakakibara, Toshiro; Seiro, Silvia; Geibel, Christoph; Steglich, Frank; Tsutsumi, Yasumasa; Ikeda, Hiroaki; Machida, Kazushige

    2016-08-01

    This paper presents the results of specific-heat and magnetization measurements, in particular their field-orientation dependence, on the first discovered heavy-fermion superconductor CeCu2Si2 (Tc˜0.6 K). We discuss the superconducting gap structure and the origin of the anomalous pair-breaking phenomena, leading, e.g., to the suppression of the upper critical field Hc 2, found in the high-field region. The data show that the anomalous pair breaking becomes prominent below about 0.15 K in any field direction, but occurs closer to Hc 2 for H ∥c . The presence of this anomaly is confirmed by the fact that the specific-heat and magnetization data satisfy standard thermodynamic relations. Concerning the gap structure, field-angle dependencies of the low-temperature specific heat within the a b and a c planes do not show any evidence for gap nodes. From microscopic calculations in the framework of a two-band full-gap model, the power-law-like temperature dependencies of C and 1 /T1 , reminiscent of nodal superconductivity, have been reproduced reasonably. These facts further support multiband full-gap superconductivity in CeCu2Si2 .

  3. Structure of neutron-rich nuclei around the N = 50 shell-gap closure

    SciTech Connect

    Faul, T.; Duchene, G.; Nowacki, F.; Thomas, J.-C.; Huyse, M.; Van Duppen, P.

    2010-04-26

    The structure of neutron-rich nuclei in the vicinity of {sup 78}Ni have been investigated via the beta-decay of {sup 71,73,75}Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p{sub 3/2}1 f{sub 5/2}2 p{sub 1/2}1 g{sub 9/2}) valence space and a (56/28)Ni{sub 28} core.

  4. Gaps in nuclear spectra as traces of seniority changes in systems of both neutrons and protons

    NASA Astrophysics Data System (ADS)

    Zamick, Larry

    2016-03-01

    There has been a great deal of attention given to the low-lying energy spectrum in a nucleus because of the abundance of experimental data. Likewise, perhaps to a lesser extent but still significant, the high end for a given configuration has been examined. Here, using single j shell calculations as a guide, we examine the middle part of the spectrum resulting from single j shell calculations. Seniority arguments are used to partially explain the midshell behaviors even though in general seniority is not a good quantum number for mixed systems of neutrons and protons.

  5. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    SciTech Connect

    Chen, Y; Lin, Y; Tsai, H

    2015-06-15

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  6. Neutron-Proton Pairing Effects on the Gamow-Teller Transitions in 24,26Mg by Using the Deformed QRPA

    NASA Astrophysics Data System (ADS)

    Ha, Eunja; Cheoun, Myung-Ki

    We investigated the effects of the neutron-proton (np) pairing correlations on the Gamow-Teller (GT) transition of 24,26Mg by taking into account the deformation. Our calculations is performed within the deformed quasi-particle random phase approximation (DQRPA) which explicitly includes the deformation at the BCS and RPA stage. In this work, we include the np pairing as well as the nn and pp paring correlations to the DQRPA. Our new formalism is applied to the GT transition of the well known deformed Mg isotopes. The np pairing effect is found to affect the GT distribution of 24Mg and 26Mg. Correlations between the deformation and the np pairing are also discussed with the comparison to the experimental GT transition data by triton and 3He beams.

  7. Gap-bridging enhancement of modified Urca processes in nuclear matter

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Pangeni, Kamal

    2017-01-01

    In nuclear matter at neutron-star densities and temperatures, Cooper pairing leads to the formation of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing β processes, via the mechanism of "gap bridging." We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with P32 neutron pairing.

  8. Free-Energy-Gap Law for Ultrafast Charge Recombination of Ion Pairs Formed by Intramolecular Photoinduced Electron Transfer.

    PubMed

    Nazarov, Alexey E; Malykhin, Roman; Ivanov, Anatoly I

    2017-01-26

    In this article, regularities of ultrafast charge recombination (CR) kinetics in photoinduced intramolecular electron transfer in polar solvents are studied. The kinetics of charge separation and ensuing ultrafast CR are simulated within the framework of the multichannel stochastic model. This model accounts for the reorganization of both the solvent and a number of intramolecular high-frequency vibrational modes. The solvent relaxation is described in terms of two relaxation modes. For ultrafast CR, the free-energy-gap law strongly depends on the parameters: the electronic coupling, reorganization energy of intramolecular high-frequency vibrational modes, and the vibrational and solvent relaxation times. The semilog dependence of the CR rate constant on the free-energy gap varies from a parabolic shape to a nearly linear one with increasing the electronic coupling and decreasing the vibrational relaxation time. The dynamic solvent effect in CR is predicted to be large in the area of strong exergonicity and small in the area of weak exergonicity. This regularity is opposite to that observed for the thermal reactions.

  9. On the pairing effects in triaxial nuclei

    SciTech Connect

    Oudih, M. R.; Fellah, M.; Allal, N. H.

    2014-03-05

    Triaxial deformation effect on the pairing correlations is studied in the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Quantities such as binding energy, gap parameter and particle-number fluctuation are considered in neutron-rich Mo isotopes. The results are compared with those of axially symmetric calculation and with available experimental data. The role played by the particle-number projection is outlined.

  10. Neutron-Proton Pairing Correlation for the Rotational Motion of N = Z 72Kr, 76Sr, and 80Zr Nuclei

    NASA Astrophysics Data System (ADS)

    Roy, Prianka; Dhiman, Shashi K.

    The high-spin state properties of the neutron-proton (np) residual effective interaction are analyzed in N = Z 72Kr, 76Sr, and 80Zr nuclei. The self-consistent microscopic Hartree-Fock-Bogoliubov (HFB) equations have been solved by employing monopole corrected two-body effective interaction. A band crossing is observed in 72Kr nucleus at J = 14ℏ state with monopole corrected "HPU1" and "HPU2" effective interactions. The VAP-HFB theory suggests that the "4p-4h" excitations by np residual interaction are the essential ingredients of the mean-field description of the occurence of backbending in 72Kr nucleus.

  11. Neutron scattering studies of short-range order, atomic displacements, and effective pair interactions in a null-matrix Ni0.5262Pt0.48 crystal

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Moss, S. C.; Robertson, J. L.; Copley, J. R. D.; Neumann, D. A.; Major, J.

    2006-09-01

    The best known exception to the Heine-Sampson and Bieber-Gauthier arguments for ordering effects in transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, whose phase diagram is similar to that of the CuAu system. Using neutron scattering we have investigated the local atomic order in a null-matrix Ni0.5262Pt0.48 single crystal. In a null-matrix alloy, the isotopic composition is adjusted so that the average neutron scattering length vanishes ( Ni62 has a negative scattering length nearly equal in magnitude to that of Pt). Consequently, all contributions to the total scattering depending on the average lattice are suppressed. The only remaining components of the elastic scattering are the short-range order (SRO) and size effect terms. These data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss theory, we obtain the effective pair interactions (EPIs) between near neighbors in the alloy. The results can be used by theorists to model the alloy in the context of the electronic theory of alloy phase stability, including a preliminary evaluation of the local species-dependent displacements. Our maps of V(q) , the Fourier transform of the EPIs, show very similar shapes in the experimental and reconstructed data. This is of importance when comparing to electronic structure calculations.

  12. Effect of polarization on superfluidity in low density neutron matter

    NASA Technical Reports Server (NTRS)

    Clark, J. W.; Kallman, C.-G.; Yang, C.-H.; Chakkalakal, D. A.

    1976-01-01

    The singlet-state quasi-particle interaction in neutron matter is examined on the basis of results of a detailed evaluation of the Landau Fermi-liquid parameters for pure neutron effects, including polarization effects. This means that the interaction induced by exchange of density and spin-density excitations is taken into account. It is shown that polarization actually works to suppress the pairing matrix elements, owing to the spin dependence of the quasi-particle interaction and, ultimately, the balance of attraction, repulsion, and spin dependence in the fundamental two-neutron interaction. Since the isotropic energy gap and the condensation energy in low-density neutron-star matter are extremely sensitive functions of the pairing matrix elements, they will also be suppressed by the polarizability of the neutron medium.

  13. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-01

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe-Fe bonds but stiffens the Au-Au and Au-Fe bonds which results in a net stiffening relative to the elemental components.

  14. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    SciTech Connect

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-23

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.

  15. Orbital-selective pairing: a τ3 B1g pairing candidate state for the alkaline iron selenides

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Nica, Emilian M.; Si, Qimiao

    The iron-based unconventional superconductors are inherently multi-orbital systems and show remarkable variation in the Fermi-surfaces and pairing symmetries. In the alkaline iron selenides cases, ARPES experiments indicate fully gapped superconducting states, which suggests s-wave pairing, while neutron-scattering studies show resonances in the spin-spectrum with wave vectors across the electron Fermi pockets, suggesting d-wave pairing. We propose a novel superconducting state composed of a direct product of an s-wave form factor and a rotational symmetry-breaking orbital matrix in the dxz / yz sectors. It belongs to the B1 g representation of the D4h point group, allowing for the overall change in sign between the pairing field at the electron pockets close to the 1-Fe BZ edge. While it supports a spin resonance, it also produces a fully gapped quasiparticle spectrum, making it a candidate pairing state for the alkaline iron selenide compounds. Our results also show how such a state can become energetically competitive in the regime of quasi-degeneracy between the s and d-wave pairing states. In a broader context, this pairing provides an alternative to the s + idto reconstruct the degenerate pairing states, while preserving the time-reversal symmetry. We discuss possible analogs in other multi-band strong-coupling superconductors such as the heavy fermions. ''Emergent superconducting state from quasi-degenerate s - and d -wave pairing channels in iron-based superconductors,''.

  16. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    DOE PAGES

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; ...

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  17. Unified description of neutron superfluidity in the neutron-star crust with analogy to anisotropic multiband BCS superconductors

    SciTech Connect

    Chamel, N.; Goriely, S.; Pearson, J. M.; Onsi, M.

    2010-04-15

    The neutron superfluidity in the inner crust of a neutron star has traditionally been studied considering either homogeneous neutron matter or a small number of nucleons confined inside the spherical Wigner-Seitz cell. Drawing analogies with the recently discovered multiband superconductors, we have solved the anisotropic multiband BCS gap equations with Bloch boundary conditions, thus providing a unified description taking consistently into account both the free neutrons and the nuclear clusters. Calculations have been carried out using the effective interaction underlying our recent Hartree-Fock-Bogoliubov nuclear mass model HFB-16. We have found that even though the presence of inhomogeneities lowers the neutron pairing gaps, the reduction is much less than that predicted by previous calculations using the Wigner-Seitz approximation. We have studied the disappearance of superfluidity with increasing temperature. As an application we have calculated the neutron specific heat, which is an important ingredient for modeling the thermal evolution of newly born neutron stars. This work provides a new scheme for realistic calculations of superfluidity in neutron-star crusts.

  18. Dineutron correlations in quasi-two-dimensional systems in a simplified model, and possible relation to neutron-rich nuclei

    SciTech Connect

    Kanada-En'yo, Yoshiko; Hinohara, Nobuo; Suhara, Tadahiro; Schuck, Peter

    2009-05-15

    Two-neutron correlation in the {sup 1}S channel in quasi-two-dimensional (2D) neutron systems at zero temperature is studied by means of the BCS theory with finite-range effective nuclear forces. The dineutron correlation in low density neutron systems confined in an infinite slab is investigated in a simplified model that neutron motion of one direction is frozen. When the slab is thin enough, two neutrons form a tightly bound dineutron with a small size in the quasi-2D system, and a Bose dineutron gas is found in low density limit. With increase of Fermi momentum, the neutron system changes from the Bose-gas phase to the superfluid Cooper pair phase. The density dependence of the neutron pairing shows the BCS-BEC crossover phenomena at finite low-density region. In the transition region, the size shrinking of neutron pair and enhancement of pairing gap are found. The relation to dineutron correlation at surface of neutron-rich nuclei is also discussed.

  19. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  20. Switchable radioactive neutron source device

    DOEpatents

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  1. Switchable radioactive neutron source device

    DOEpatents

    Boyar, Robert E.; DeVolpi, Alexander; Stanford, George S.; Rhodes, Edgar A.

    1989-01-01

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons.

  2. Minding the Gap

    SciTech Connect

    Firestone, Millicent Anne

    2015-02-23

    Neutron & X-ray scattering provides nano- to meso-scale details of complex fluid structure; 1D electronic density maps dervied from SAXS yield molecular level insights; Neutron reflectivity provides substructure details of substrate supported complex fluids; Complex fluids composition can be optimized to support a wide variety of both soluble and membrane proteins; The water gap dimensions can be finely tuned through polymer component.

  3. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    SciTech Connect

    Wang, Ren-Bo; Hirotani, Kouichi E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit corresponds to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.

  4. Lattice EFT calculation of thermal properties of low-density neutron matter

    NASA Astrophysics Data System (ADS)

    Abe, T.; Seki, R.

    2011-09-01

    Thermal properties of low-density neutron matter are investigated by lattice calculation with nuclear effective field theory without pions up to the next-to-leading order. The 1S0 pairing gap is extracted near zero temperature at low densities. We find that the pairing gap is smaller than the BCS approximation with the conventional NN potentials, but not as small as those by various many-body calculations beyond BCS approximation. Our result is consistent with the recent Green's Function Monte Carlo calculation within the statistical errors. The critical temperature of the normal-to-superfluid phase transition and the pairing temperature scale are also extracted at low densities, and the phase diagram is given. We find that the physics of low-density neutron matter is clearly identified as being BCS-BEC crossover.

  5. Neutron spin evolution through broadband current sheet spin flippers

    NASA Astrophysics Data System (ADS)

    Stonaha, P.; Hendrie, J.; Lee, W. T.; Pynn, Roger

    2013-10-01

    Controlled manipulation of neutron spin is a critical tool for many neutron scattering techniques. We have constructed current-sheet, neutron spin flippers for use in Spin Echo Scattering Angle Measurement (SESAME) that comprise pairs of open-faced solenoids which introduce an abrupt field reversal at a shared boundary. The magnetic fields generated by the coils have been mapped and compared with both an analytical approximation and a numerical boundary integral calculation. The agreement is generally good, allowing the former method to be used for rapid calculations of the Larmor phase acquired by a neutron passing through the flipper. The evolution of the neutron spin through the current sheets inside the flipper is calculated for various geometries of the current-carrying conductors, including different wire shapes, arrangements, and common imperfections. The flipping efficiency is found to be sensitive to gaps between wires and between current sheets. SESAME requires flippers with high fields and flipping planes inclined to the neutron beam. To avoid substantial neutron depolarization, such flippers require an interdigitated arrangement of wires.

  6. Neutron spin evolution through broadband current sheet spin flippers.

    PubMed

    Stonaha, P; Hendrie, J; Lee, W T; Pynn, Roger

    2013-10-01

    Controlled manipulation of neutron spin is a critical tool for many neutron scattering techniques. We have constructed current-sheet, neutron spin flippers for use in Spin Echo Scattering Angle Measurement (SESAME) that comprise pairs of open-faced solenoids which introduce an abrupt field reversal at a shared boundary. The magnetic fields generated by the coils have been mapped and compared with both an analytical approximation and a numerical boundary integral calculation. The agreement is generally good, allowing the former method to be used for rapid calculations of the Larmor phase acquired by a neutron passing through the flipper. The evolution of the neutron spin through the current sheets inside the flipper is calculated for various geometries of the current-carrying conductors, including different wire shapes, arrangements, and common imperfections. The flipping efficiency is found to be sensitive to gaps between wires and between current sheets. SESAME requires flippers with high fields and flipping planes inclined to the neutron beam. To avoid substantial neutron depolarization, such flippers require an interdigitated arrangement of wires.

  7. GUIDE FOR POLARIZED NEUTRONS

    DOEpatents

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  8. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOEpatents

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  9. Superconductivity of the Sr2Ca12Cu24O41 spin-ladder system: are the superconducting pairing and the spin-gap formation of the same origin?

    PubMed

    Fujiwara, Naoki; Môri, Nobuo; Uwatoko, Yoshiya; Matsumoto, Takehiko; Motoyama, Naoki; Uchida, Shinichi

    2003-04-04

    Pressure-induced superconductivity in a spin-ladder cuprate Sr2Ca12Cu24O41 has not been studied on a microscopic level thus far although the superconductivity was already discovered in 1996. We have improved the high-pressure technique using a large high-quality crystal, and succeeded in studying the superconductivity using 63Cu nuclear magnetic resonance. We found that the anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses an s-wave-like character in the meaning that a finite gap exists in the quasiparticle excitation: At a pressure of 3.5 GPa, we observed two excitation modes in the normal state from the relaxation rate T-11. One gives rise to an activation-type component in T-11, and the other T-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.

  10. The Role of Three-Nucleon Forces and Many-Body Processes in Nuclear Pairing

    SciTech Connect

    Holt, Jason D.

    2013-01-01

    We present microscopic valence-shell calculations of pairing gaps in the calcium isotopes, focusing on the role of three-nucleon (3N) forces and manybody processes. In most cases, we find a reduction in pairing strength when the leading chiral 3N forces are included, compared to results with lowmomentum two-nucleon (NN) interactions only. This is in agreement with a recent energy density functional study. At the NN level, calculations that include particle particle and hole hole ladder contributions lead to smaller pairing gaps compared with experiment. When particle hole contributions as well as the normal-ordered one- and two-body parts of 3N forces are consistently included to third order, we find reasonable agreement with experimental three-point mass differences. This highlights the important role of 3N forces and manybody processes for pairing in nuclei. Finally, we relate pairing gaps to the evolution of nuclear structure in neutron-rich calcium isotopes and study the predictions for the 2+ excitation energies, in particular for 54Ca.

  11. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study.

    PubMed

    Bréger, Julien; Dupré, Nicolas; Chupas, Peter J; Lee, Peter L; Proffen, Thomas; Parise, John B; Grey, Clare P

    2005-05-25

    The local environments and short-range ordering of LiNi(0.5)Mn(0.5)O(2), a potential Li-ion battery positive electrode material, were investigated by using a combination of X-ray and neutron diffraction and isotopic substitution (NDIS) techniques, (6)Li Magic Angle Spinning (MAS) NMR spectroscopy, and for the first time, X-ray and neutron Pair Distribution Function (PDF) analysis, associated with Reverse Monte Carlo (RMC) calculations. Three samples were studied: (6)Li(NiMn)(0.5)O(2), (7)Li(NiMn)(0.5)O(2), and (7)Li(NiMn)(0.5)O(2) enriched with (62)Ni (denoted as (7)Li(ZERO)Ni(0.5)Mn(0.5)O(2)), so that the resulting scattering length of Ni atoms is null. LiNi(0.5)Mn(0.5)O(2) adopts the LiCoO(2) structure (space group Rm) and comprises separate lithium layers, transition metal layers (Ni, Mn), and oxygen layers. NMR experiments and Rietveld refinements show that there is approximately 10% of Ni/Li site exchange between the Li and transition metal layers. PDF analysis of the neutron data revealed considerable local distortions in the layers that were not captured in the Rietveld refinements performed using the Bragg diffraction data and the LiCoO(2) structure, resulting in different M-O bond lengths of 1.93 and 2.07 Angstroms for Mn-O and Ni/Li-O, respectively. Large clusters of 2400-3456 atoms were built to investigate cation ordering. The RMC method was then used to improve the fit between the calculated model and experimental PDF data. Both NMR and RMC results were consistent with a nonrandom distribution of Ni, Mn, and Li cations in the transition metal layers; both the Ni and Li atoms are, on average, close to more Mn ions than predicted based on a random distribution of these ions in the transition metal layers. Constraints from both experimental methods showed the presence of short-range order in the transition metal layers comprising LiMn(6) and LiMn(5)Ni clusters combined with Ni and Mn contacts resembling those found in the so-called "flower structure" or

  12. On Adiabatic Pair Creation

    NASA Astrophysics Data System (ADS)

    Pickl, Peter; Dürr, Detlef

    2008-08-01

    We give here a rigorous proof of the well known prediction of pair creation as it arises from the Dirac equation with an external time dependent potential. Pair creation happens with probability one if the potential changes adiabatically in time and becomes overcritical, which means that an eigenvalue curve (as a function of time) bridges the gap between the negative and positive spectral continuum. The potential can be thought of as being zero at large negative and large positive times. The rigorous treatment of this effect has been lacking since the pioneering work of Beck, Steinwedel and Süßmann [1] in 1963 and Gershtein and Zeldovich [8] in 1970.

  13. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  14. Lattice calculation of thermal properties of low-density neutron matter with pionless NN effective field theory

    SciTech Connect

    Abe, T.; Seki, R.

    2009-05-15

    Thermal properties of low-density neutron matter are investigated by determinantal quantum Monte Carlo lattice calculations on 3+1 dimensional cubic lattices. Nuclear effective field theory (EFT) is applied using the pionless single- and two-parameter neutron-neutron interactions, determined from the {sup 1}S{sub 0} scattering length and effective range. The determination of the interactions and the calculations of neutron matter are carried out consistently by applying EFT power counting rules. The thermodynamic limit is taken by the method of finite-size scaling, and the continuum limit is examined in the vanishing lattice filling limit. The {sup 1}S{sub 0} pairing gap at T{approx_equal}0 is computed directly from the off-diagonal long-range order of the spin pair-pair correlation function and is found to be approximately 30% smaller than BCS calculations with the conventional nucleon-nucleon potentials. The critical temperature T{sub c} of the normal-to-superfluid phase transition and the pairing temperature scale T* are determined, and the temperature-density phase diagram is constructed. The physics of low-density neutron matter is clearly identified as being a BCS-Bose-Einstein condensation crossover.

  15. β -Decay Half-Lives of 110 Neutron-Rich Nuclei across the N =82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Nishimura, S.; Xu, Z. Y.; Jungclaus, A.; Shimizu, Y.; Simpson, G. S.; Söderström, P.-A.; Watanabe, H.; Browne, F.; Doornenbal, P.; Gey, G.; Jung, H. S.; Meyer, B.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Wu, J.; Baba, H.; Benzoni, G.; Chae, K. Y.; Crespi, F. C. L.; Fukuda, N.; Gernhäuser, R.; Inabe, N.; Isobe, T.; Kajino, T.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Lane, G. J.; Li, Z.; Montaner-Pizá, A.; Moschner, K.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Sakurai, H.; Schaffner, H.; Schury, P.; Shibagaki, S.; Steiger, K.; Suzuki, H.; Takeda, H.; Wendt, A.; Yagi, A.; Yoshinaga, K.

    2015-05-01

    The β -decay half-lives of 110 neutron-rich isotopes of the elements from Rb 37 to Sn 50 were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r -process calculations and reinforce the notion that the second (A ≈130 ) and the rare-earth-element (A ≈160 ) abundance peaks may result from the freeze-out of an (n ,γ )⇄(γ ,n ) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r -process events.

  16. Pick a Pair. Pancake Pairs

    ERIC Educational Resources Information Center

    Miller, Pat

    2005-01-01

    Cold February weather and pancakes are a traditional pairing. Pancake Day began as a way to eat up the foods that were abstained from in Lent--traditionally meat, fat, eggs and dairy products. The best-known pancake event is The Pancake Day Race in Buckinghamshire, England, which has been run since 1445. This column describes pairs of books that…

  17. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  18. Simultaneous evaluation of the shell and pairing corrections to the nuclear deformation energy

    SciTech Connect

    Allal, N.H.; Fellah, M. )

    1993-10-01

    The microscopic corrections to the liquid drop energy are determined by a method that takes simultaneously into account shell and pairing effects. For this purpose, a level density with explicit dependence on pairing correlations is defined from the particle number conservation condition in the BCS theory. This density is expressed in terms of the Dirac [delta]-generalized function and its derivatives. This enables one to deduce the expansion of this density as a series of Hermite polynomials. The microscopic corrections are then determined by a procedure which is analogous to that of Strutinsky. The method permits also to define an average pairing gap which depends both on the nucleon type (neutron or proton) and on the nuclear shape. When applied to the ground state energy calculations for the even-even actinide nuclei, with a deformed Woods-Saxon mean field, this method leads to a very good agreement between the calculated and the experimental values.

  19. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  20. Controlled impurity study and observation of a bosonic mode in iron based superconductors by STM measurements: implications for the pairing symmetry and mechanism

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu

    2014-03-01

    The pairing mechanism in the iron pnictides remains unresolved yet. The pairing model based on the magnetic origin predicts a sign reversal gap on the electron and hole Fermi pockets, leading to the S+/- pairing, however, a more conventional S++ pairing gap was suggested based on the orbital fluctuation mediated pairing. Here we show the clear evidence of the in-gap quasi-particle states induced by the non- or very weak magnetic Cu impurities in Na(Fe0 . 97 - xCo0.03Cux) As by measuring the scanning tunneling spectroscopy, giving strong evidence of the S+/- pairing. Furthermore, we show the presence of the bosonic mode with the energy identical to that of the neutron resonance with a simple linear relation Ω/kBTc ~ 4.3 in several systems. This mode can also be explained very well as the consequence of the S+/- pairing. These observations strongly suggest that the antiferromagnetic spin fluctuation is the key factor for superconductivity. In collaboration with: Huan Yang, Zhenyu Wang, Delong Fang, Lei Shan, Qiangua Wang, Chenglin Zhang, and Pengcheng Dai, et al.

  1. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    SciTech Connect

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; Zhang, H.; Ellis, D.; Zhao, Yang; Clark, L.; Kallin, A. B.; Mazurek, E.; Dabkowska, H. A.; Gaulin, Bruce D.

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO

  2. Optical conductivity from pair density waves

    NASA Astrophysics Data System (ADS)

    Dai, Zhehao; Lee, Patrick A.

    2017-01-01

    We present a theory of optical conductivity in systems with finite-momentum Cooper pairs. In contrast to the BCS pairing where ac conductivity is purely imaginary in the clean limit, there is nonzero ac absorption across the superconducting gap for finite-momentum pairing if we break the Galilean symmetry explicitly in the electronic Hamiltonian. Vertex correction is crucial for maintaining the gauge invariance in the mean-field formalism and dramatically changes the optical conductivity in the direction of the pairing momentum. We carried out a self-consistent calculation and gave an explicit formula for optical conductivity in a simple case. This result applies to the Fulde-Ferrell-Larkin-Ovchinnikov state and candidates with pair density waves proposed for high-Tc cuprates. It may help detect pair density waves and determine the pairing gap as well as the direction of the pairing momentum in experiments.

  3. Gamma spectrum following neutron capture in {sup 167}Er

    SciTech Connect

    Visser, D.; Khoo, T.L.; Lister, C.J.

    1995-08-01

    Statistical decay from a highly excited state samples all the lower-lying states and, hence, provides a sensitive measure of the level density. Pairing has a major impact on the level density, e.g. creating a pair gap between the 0- and 2-quasiparticle configurations. Hence the shape of the statistical spectrum contains information on pairing, and can be used to provide information on the reduction of pairing with thermal excitation energy. For this reason, we measured the complete spectrum of {gamma}rays following thermal neutron capture in {sup 167}Er. The experiment was performed at the Brookhaven reactor using Compton-suppressed Ge detectors from TESSA. The spectrum, which was corrected for detector response and efficiency, reveals primary (first-step, high-energy) transitions up to nearly 8 MeV, secondary (last-step, lower-energy) transitions, as we as a continuous statistical component. Effort was expanded to identify all lines from contaminant sources and an upper limit of 5% was tentatively set for their contributions. The spectral shape of the statistical spectrum will be compared with theoretical spectra obtained from a calculation of pairing which accounts for a stepwise reduction of the pair correlations as the number of quasiparticles increases. The primary lines which decay directly to the near-yrast states will also be used to deduce the level densities.

  4. Junctionless Cooper pair transistor

    NASA Astrophysics Data System (ADS)

    Arutyunov, K. Yu.; Lehtinen, J. S.

    2017-02-01

    Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current-voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  5. Gap junctions.

    PubMed

    Goodenough, Daniel A; Paul, David L

    2009-07-01

    Gap junctions are aggregates of intercellular channels that permit direct cell-cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.

  6. Gap Junctions

    PubMed Central

    Goodenough, Daniel A.; Paul, David L.

    2009-01-01

    Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology. PMID:20066080

  7. TU-F-BRE-07: In Vivo Neutron Detection in Patients Undergoing Stereotactic Ablative Radiotherapy (SABR) for Primary Kidney Cancer Using 6Li and 7Li Enriched TLD Pairs

    SciTech Connect

    Lonski, P; Kron, T; Franich, R; Keehan, S; Siva, S; Taylor, M

    2014-06-15

    Purpose: Stereotactic ablative radiotherapy (SABR) for primary kidney cancer often involves the use of high-energy photons combined with a large number of monitor units. While important for risk assessment, the additional neutron dose to untargeted healthy tissue is not accounted for in treatment planning. This work aims to detect out-of-field neutrons in vivo for patients undergoing SABR with high-energy (>10 MV) photons and provides preliminary estimates of neutron effective dose. Methods: 3 variations of high-sensitivity LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) material, each with varying {sup 6}Li / {sup 7}Li concentrations, were used in custom-made Perspex holders for in vivo measurements. The variation in cross section for thermal neutrons between Li isotopes was exploited to distinguish neutron from photon signal. Measurements were made out-of-field for 7 patients, each undergoing 3D-conformal SABR treatment for primary kidney cancer on a Varian 21iX linear accelerator. Results: In vivo measurements show increased signal for the {sup 6}Li enriched material for patients treated with 18 MV photons. Measurements on one SABR patient treated using only 6 MV showed no difference between the 3 TLD materials. The out-of-field photon signal decreased exponentially with distance from the treatment field. The neutron signal, taken as the difference between {sup 6}Li enriched and {sup 7}Li enriched TLD response, remains almost constant up to 50 cm from the beam central axis. Estimates of neutron effective dose from preliminary TLD calibration suggest between 10 and 30 mSv per 1000 MU delivered at 18 MV for the 7 patients. Conclusion: TLD was proven to be a useful tool for the purpose of in vivo neutron detection at out-of-field locations. Further work is required to understand the relationship between TL signal and neutron dose. Dose estimates based on preliminary TLD calibration in a neutron beam suggest the additional neutron dose was <30 mSv per 1000 MU at 18 MV.

  8. Gap Junctions

    PubMed Central

    Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik

    2013-01-01

    Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031

  9. The Giant Pairing Vibration in Carbon isotopes

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; Cappuzzello, F.; Carbone, D.; Agodi, C.; Azaiez, F.; Assié, M.; de Séréville, N.; Scarpaci, J. A.

    2016-07-01

    The 13C(18O,16O)15C and 12C(18O,16O)14C reactions at 84 MeV incident energy were explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed in both nuclei, attributed to the Giant Pairing Vibration (GPV). The neutron decay of the 15C resonances, including the GPV, populated via the two- neutron transfer reaction has been studied using an innovative technique, which couples MAGNEX with the EDEN neutron detector array. The data show that the 15C GPV mainly decays via two-neutron emission.

  10. Novel neutron focusing mirrors for compact neutron sources

    NASA Astrophysics Data System (ADS)

    Khaykovich, B.; Gubarev, M. V.; Zavlin, V. E.; Katz, R.; Resta, G.; Liu, D.; Robertson, L.; Crow, L.; Ramsey, B. D.; Moncton, D. E.

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. A system containing four nested Ni mirror pairs was implemented and tested by focusing a polychromatic neutron beam at the MIT Reactor and conducting an imaging experiment at HFIR. The major advantage of the Wolter mirrors is the possibility of nesting for large angular collection. Using nesting, the relatively short optics can be made comparable to focusing guides in flux collection capabilities. We discuss how such optics can be used as polychromatic lenses to improve the performance of small-angle-scattering, imaging, and other instruments at compact neutron sources.

  11. Ensemble treatments of thermal pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quang; Dang, Nguyen Dinh

    2009-10-01

    A systematic comparison is conducted for pairing properties of finite systems at nonzero temperature as predicted by the exact solutions of the pairing problem embedded in three principal statistical ensembles, namely the grandcanonical ensemble, canonical ensemble and microcanonical ensemble, as well as the unprojected (FTBCS1+SCQRPA) and Lipkin-Nogami projected (FTLN1+SCQRPA) theories that include the quasiparticle number fluctuation and coupling to pair vibrations within the self-consistent quasiparticle random-phase approximation. The numerical calculations are performed for the pairing gap, total energy, heat capacity, entropy, and microcanonical temperature within the doubly-folded equidistant multilevel pairing model. The FTLN1+SCQRPA predictions are found to agree best with the exact grand-canonical results. In general, all approaches clearly show that the superfluid-normal phase transition is smoothed out in finite systems. A novel formula is suggested for extracting the empirical pairing gap in reasonable agreement with the exact canonical results.

  12. Short pulse neutron generator

    SciTech Connect

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  13. Pair-Starved Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Muslimov, Alex G.; Harding, Alice K.

    2009-01-01

    We propose a simple analytic model for the innermost (within the light cylinder of canonical radius, approx. c/Omega) structure of open-magnetic-field lines of a rotating neutron star (NS) with relativistic outflow of charged particles (electrons/positrons) and arbitrary angle between the NS spin and magnetic axes. We present the self-consistent solution of Maxwell's equations for the magnetic field and electric current in the pair-starved regime where the density of electron-positron plasma generated above the pulsar polar cap is not sufficient to completely screen the accelerating electric field and thus establish thee E . B = 0 condition above the pair-formation front up to the very high altitudes within the light cylinder. The proposed mode1 may provide a theoretical framework for developing the refined model of the global pair-starved pulsar magnetosphere.

  14. Nucleon-pair approximation to the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Arima, A.

    2014-12-01

    Atomic nuclei are complex systems of nucleons-protons and neutrons. Nucleons interact with each other via an attractive and short-range force. This feature of the interaction leads to a pattern of dominantly monopole and quadrupole correlations between like particles (i.e., proton-proton and neutron-neutron correlations) in low-lying states of atomic nuclei. As a consequence, among dozens or even hundreds of possible types of nucleon pairs, very few nucleon pairs such as proton and neutron pairs with spin zero, two (in some cases spin four), and occasionally isoscalar spin-aligned proton-neutron pairs, play important roles in low-energy nuclear structure. The nucleon-pair approximation therefore provides us with an efficient truncation scheme of the full shell model configurations which are otherwise too large to handle for medium and heavy nuclei in foreseeable future. Furthermore, the nucleon-pair approximation leads to simple pictures in physics, as the dimension of nucleon-pair subspace is always small. The present paper aims at a sound review of its history, formulation, validity, applications, as well as its link to previous approaches, with the focus on the new developments in the last two decades. The applicability of the nucleon-pair approximation and numerical calculations of low-lying states for realistic atomic nuclei are demonstrated with examples. Applications of pair approximations to other problems are also discussed.

  15. ACCELERATOR BASED CONTINUOUS NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; RUGGIERO,A.G.; LUDEWIG,H.

    2003-03-25

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate protons impinging on a heavy metal target. There do not appear to be any major technical challenges to the building of such a facility since a continuous spallation source has been operating in Switzerland for several years.

  16. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  17. Features of Superconducting Gaps Revealed by STM/STS in Iron Based Superconductors With and Without Hole Pockets

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Hai-Hu Wen Team

    The pairing mechanism and gap structure in iron based superconductors (IBS) remains unresolved. We have conducted extensive STM/STS study on the Na(Fe1-xTx) As (T =Co, Cu, Mn), Ba1-xKxFe2As2KFe2As2, and Li1-xFexOHFeSe single crystals. We found the clear evidence of the in-gap quasi-particle states induced by the non-magnetic Cu impurities in Na(Fe0.97- x Co0.03Cux) As, giving strong evidence of the S+/- pairing. Furthermore, we show the presence of the bosonic mode with the energy identical to that of the neutron resonance and a simple linear relation Ω/kBTc ~ 4.3, being explained a consequence of the S+/-pairing. The STS spectrum in Li1-x FexOHFeSe clearly indicates the presence of double superconducting gaps with Δ1 ~ 14.3 meV and Δ2 ~ 8.6 meV. Further analysis based on QPI allows us to assign the larger (smaller) gap to the outer (inner) hybridized electron pockets. The huge value 2Δ1/kBTc = 8.7 discovered here undoubtedly proves the strong coupling mechanism. This work was supported by the Ministry of Science and Technology of China, National Natural Science Foundation of China.

  18. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  19. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  20. Lattice HFB calculations for nuclei far from stability: neutron-rich sulfur and tin isotopes

    NASA Astrophysics Data System (ADS)

    Oberacker, Volker; Umar, Sait; Teran, Edgar

    2002-10-01

    We have developed a new Hartree-Fock-Bogoliubov (HFB) code to study ground state and pairing properties of nuclei near the neutron and proton drip lines. The unique feature of our code is that it takes into account the strong coupling to high energy continuum states (up to an equivalent s.p. energy of about 60 MeV). We solve the HFB equations for deformed, axially symmetric even-even nuclei on a two-dimensional lattice using high accuracy Basis-Spline methods (Galerkin and collocation schemes). The effective N-N interaction in the p-h channel is of Skyrme-type (SLy4), and in the p-p and h-h channel it is a (modified) delta interaction. We present results for binding energies, 2-neutron separation energies, Fermi levels, pairing gaps, normal densities and pairing densities, and other observables. In particular, we will discuss neutron-rich sulfur (S-48,S-52) and tin (Sn-150) isotopes. [1] E. Teran, V.E. Oberacker and A.S. Umar, "Axially symmetric Hartree-Fock-Bogoliubov Calculations for Nuclei Near the Drip-Lines; nucl-th/0205042 * Research supported by U.S. DOE grant DE-FG02-96ER40963, and by the National Energy Research Scientific Computing Center (NERSC)

  1. Pairing Learners in Pair Work Activity

    ERIC Educational Resources Information Center

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  2. Calculation of two-neutron multiplicity in photonuclear reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1990-01-01

    The most important particle emission processes for electromagnetic excitations in nucleus-nucleus collisions are the ejection of single neutrons and protons and also pairs of neutrons and protons. Methods are presented for calculating two-neutron emission cross sections in photonuclear reactions. The results are in a form suitable for application to nucleus-nucleus reactions.

  3. The effect of pair-instability mass loss on black-hole mergers

    NASA Astrophysics Data System (ADS)

    Belczynski, K.; Heger, A.; Gladysz, W.; Ruiter, A. J.; Woosley, S.; Wiktorowicz, G.; Chen, H.-Y.; Bulik, T.; O'Shaughnessy, R.; Holz, D. E.; Fryer, C. L.; Berti, E.

    2016-10-01

    Context. Mergers of two stellar-origin black holes are a prime source of gravitational waves and are under intensive investigation. One crucial ingredient in their modeling has been neglected: pair-instability pulsation supernovae with associated severe mass loss may suppress the formation of massive black holes, decreasing black-hole-merger rates for the highest black-hole masses. Aims: We demonstrate the effects of pair-instability pulsation supernovae on merger rate and mass using populations of double black-hole binaries formed through the isolated binary classical evolution channel. Methods: The mass loss from pair-instability pulsation supernova is estimated based on existing hydrodynamical calculations. This mass loss is incorporated into the StarTrack population synthesis code. StarTrack is used to generate double black-hole populations with and without pair-instability pulsation supernova mass loss. Results: The mass loss associated with pair-instability pulsation supernovae limits the Population I/II stellar-origin black-hole mass to 50 M⊙, in tension with earlier predictions that the maximum black-hole mass could be as high as 100 M⊙. In our model, neutron stars form with mass 1-2 M⊙. We then encounter the first mass gap at 2-5 M⊙ with the compact object absence due to rapid supernova explosions, followed by the formation of black holes with mass 5-50 M⊙, with a second mass gap at 50-135 M⊙ created by pair-instability pulsation supernovae and by pair-instability supernovae. Finally, black holes with masses above 135 M⊙ may potentially form to arbitrarily high mass limited only by the extent of the initial mass function and the strength of stellar winds. Suppression of double black-hole-merger rates by pair-instability pulsation supernovae is negligible for our evolutionary channel. Our standard evolutionary model, with the inclusion of pair-instability pulsation supernovae and pair-instability supernovae, is fully consistent with the Laser

  4. A slow neutron polarimeter for the measurement of parity-odd neutron rotary power

    SciTech Connect

    Snow, W. M.; Anderson, E.; Bass, T. D.; Dawkins, J. M.; Fry, J.; Haddock, C.; Horton, J. C.; Luo, D.; Micherdzinska, A. M.; Walbridge, S. B.; Barrón-Palos, L.; Maldonado-Velázquez, M.; Bass, C. D.; Crawford, B. E.; Crawford, C.; Esposito, D.; Gardiner, H.; Gan, K.; Heckel, B. R.; Swanson, H. E. [University of Washington and others

    2015-05-15

    We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10{sup −7} rad/m.

  5. Argonne potential and multi-neutron systems

    SciTech Connect

    Gridnev, D. K.; Gridnev, K. A.; Schramm, S.; Greiner, Walter

    2009-01-01

    Recently it was proved that the neutron matter interacting through Argonne V18 pair-potential plus modern variants of Urbana or Illinois three-body forces is unstable. For the energy of N neutrons E(N), which interact through these forces one has E(N) = −cN³⁺+O(N{sup 8/3}), where c > 0 is a constant. This means that: (i) the energy per particle and neutron density diverge rapidly for large neutron numbers; (ii) bound states of N neutrons exist for N large enough. The neutron matter collapse is possible due to the form of the repulsive core in three-body forces, which vanishes when three nucleons occupy the same site in space. The obtained results partly change the paradigm, in which the stability of neutron stars is attained through the Pauli principle; the strong repulsive core in the nucleon interactions is by no means less important.

  6. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  7. Single-spin fluid, spin gap, and [ital d]-wave pairing in YBa[sub 2]Cu[sub 4]O[sub 8]: A NMR and NQR study

    SciTech Connect

    Bankay, M.; Mali, M.; Roos, J.; Brinkmann, D. )

    1994-09-01

    We present results of [sup 17]O and [sup 63,65]Cu nuclear magnetic resonance (NMR) and nuclear quadrupolar resonance (NQR) studies in the normal and superconducting state of the 82-K superconductor YBa[sub 2]Cu[sub 4]O[sub 8]. The various components of the Cu and O Knight-shift tensors show strong but similar temperature dependences over the temperature range from 8.5 to 300 K in both the CuO[sub 2] planes and the chains, supporting the picture that there is only one spin component in the planes and the chains, although with different susceptibilities. The oxygen data obey the Korringa relation. This may be interpreted as Fermi-liquid behavior of the electronic system far away from the antiferromagnetic wave vector. The temperature dependence of both the planar Cu and O shift tensors and the planar Cu spin-lattice relaxation rate suggest the opening of a pseudo-spin-gap well above [ital T][sub [ital c

  8. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Moon, S.; White, R. S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron detector and additional analysis corrections lead to slightly changed neutron fluxes. The theoretical angular distributions of Merker (1975) are in general agreement with the reported experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current is in agreement with the experimental values from 10 to 100 MeV. The experimental fluxes obtained agree with those of Kanbach et al. (1974) in the overlap region from 70 to 100 MeV.

  9. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  10. Pairing in the BCS and LN approximations using continuum single particle level density

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Repetto, C. E.

    2017-04-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen-Cooper-Schrieffer (BCS) and Lipkin-Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  11. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  12. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  13. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  14. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  15. Pair Cascades and Deathlines in Offset Magnetic Dipole Fields

    NASA Technical Reports Server (NTRS)

    Harding, Alice; Muslimov, Alex

    2010-01-01

    We investigate electron-positron pair cascades in a dipole magnetic field whose axis is offset from the neutron star center. In such a field geometry, the polar cap is displaced from the neutron star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the polar cap of an offset dipole, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset parameter. We find that the pair multiplicity can change dramatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity.

  16. Intruder states and the onset of deformation in the neutron-deficient even-even polonium isotopes

    SciTech Connect

    The ISOLDE Collaboration

    1995-12-01

    Alpha- and beta-decay studies of mass-separated Rn and At nuclei reveal the existence of a low-lying 0{sup +} state in {sup 196,198,200,202}Po. The excited 0{sup +} states are interpreted as proton-pair excitations across the {ital Z}=82 shell gap leading to a deformed state, coexisting with the spherical ground state. It is shown that with decreasing neutron number the deformed configuration intrudes to lower excitation energy, increasingly mixing into the ground state. {copyright} {ital 1995 The American Physical Society.}

  17. NASA HET-DAP Award: Neutron star populations in X-rays and gamma-rays

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    1995-08-01

    The proposed goal of this High Energy Theory/Data Analysis Program grant was the study of neutron stars' emission in X-rays and gamma-rays and their resulting appearance as galactic source populations. In one of the main efforts of this proposal, substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase 1 of the work we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated that the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma-gamma pair production, and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. One main conclusion was that the original Cheng, Ho and Ruderman (1986) picture of outer magnetosphere radiation physics could not reproduce the fluxes seen from newly observed gamma-ray pulsars. Other work on the high energy pulsar emission examined the possibility of MeV-GeV polarization measurements and has developed a new picture of radiation physics and particle acceleration in neutron star magnetospheres. This scheme of radiation in the outer magnetosphere has now been sufficiently developed to provide a substantial new model for pulsar emissions above the radio band. A second major thrust of the neutron star modeling efforts has been a new theoretical study of neutron star atmospheres and models of their thermal surface emission. In Romani et. al. (1995) we reported on a series of model atmospheres based on new opacity data from the OPAL group. A complete description of this new family of models for low field neutron stars with various surface compositions was reported in Rajagopal and Romani (1995). There we also compared our results with X

  18. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  19. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  20. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  1. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  2. Neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Cousin, Fabrice; Menelle, Alain

    2015-10-01

    The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons) makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples) and two examples related to the materials for energy.

  3. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  4. Detecting a preformed pair phase: Response to a pairing forcing field

    NASA Astrophysics Data System (ADS)

    Tagliavini, A.; Capone, M.; Toschi, A.

    2016-10-01

    The normal state of strongly coupled superconductors is characterized by the presence of "preformed" Cooper pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair phase, and a repulsive model where s -wave superconductivity cannot be realized. Using dynamical mean-field theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is associated with the behavior of the second derivative of the order parameter with respect to the external field, as confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d -wave preformed pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

  5. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  6. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  7. Pure Pairing Modes in Trapped Fermion Systems

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2013-05-01

    We present numerical predictions for the shape of the pairing fluctuations in harmonically trapped atomic 6Li with two spin projections, based on the fluiddynamical description of cold fermions with pairing interactions. In previous works it has been shown that when the equilibrium of a symmetric mixture is perturbed, the linearized fluiddynamic equations decouple into two sets, one containing the sound mode of fermion superfluids and the other the pairing mode. The latter corresponds to oscillations of the modulus of the complex gap and is driven by the kinetic energy densities of the particles and of the pairs. Assuming proportionality between the heat flux and the energy gradient, the particle kinetic energy undergoes a diffusive behavior and the diffusion parameter is the key parameter for the relaxation time scale. We examine a possible range of values for this parameter and find that the shape of the pairing oscillation is rather insensitive to the precise value of the transport coefficient. Moreover, the pairing fluctuation is largely confined to the center of the trap, and the energy of the pairing mode is consistent with the magnitude of the equilibrium gap.

  8. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  9. a Portable Pulsed Neutron Generator

    NASA Astrophysics Data System (ADS)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  10. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  11. Nuclear pairing reduction due to rotation and blocking

    SciTech Connect

    Wu, X.; Zhang, Z. H.; Zeng, J. Y.; Lei, Y. A.

    2011-03-15

    Nuclear pairing gaps of normally deformed and superdeformed nuclei are investigated using the particle-number-conserving (PNC) formalism for the cranked shell model, in which the blocking effects are treated exactly. Both rotational frequency {omega} dependence and seniority (number of unpaired particles) {nu} dependence of the pairing gap {Delta}-tilde are investigated. For the ground-state bands of even-even nuclei, PNC calculations show that, in general, {Delta}-tilde decreases with increasing {omega}, but the {omega} dependence is much weaker than that calculated by the number-projected Hartree-Fock-Bogolyubov approach. For the multiquasiparticle bands (seniority {nu}>2), the pairing gaps stay almost {omega} independent. As a function of the seniority {nu}, the bandhead pairing gaps {Delta}-tilde({nu},{omega}=0) decrease slowly with increasing {nu}. Even for the highest seniority {nu} bands identified so far, {Delta}-tilde({nu},{omega}=0) remains greater than 70% of {Delta}-tilde({nu}=0,{omega}=0).

  12. Dual origin of pairing in nuclei

    NASA Astrophysics Data System (ADS)

    Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2016-11-01

    The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu-Gor'kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- ( v p bare) and long-range ( v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.

  13. Observation of a pairing pseudogap in a two-dimensional Fermi gas.

    PubMed

    Feld, Michael; Fröhlich, Bernd; Vogt, Enrico; Koschorreck, Marco; Köhl, Michael

    2011-11-30

    Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.

  14. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  15. Future of Semiconductor Based Thermal Neutron Detectors

    SciTech Connect

    Nikolic, R J; Cheung, C L; Reinhardt, C E; Wang, T F

    2006-02-22

    Thermal neutron detectors have seen only incremental improvements over the last decades. In this paper we overview the current technology of choice for thermal neutron detection--{sup 3}He tubes, which suffer from, moderate to poor fieldability, and low absolute efficiency. The need for improved neutron detection is evident due to this technology gap and the fact that neutrons are a highly specific indicator of fissile material. Recognizing this need, we propose to exploit recent advances in microfabrication technology for building the next generation of semiconductor thermal neutron detectors for national security requirements, for applications requiring excellent fieldability of small devices. We have developed an innovative pathway taking advantage of advanced processing and fabrication technology to produce the proposed device. The crucial advantage of our Pillar Detector is that it can simultaneously meet the requirements of high efficiency and fieldability in the optimized configuration, the detector efficiency could be higher than 70%.

  16. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  17. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  18. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  19. Prompt neutron fission spectrum mean energies for the fissile nuclides and /sup 252/Cf

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of /sup 252/Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, /sup 233/U, /sup 235/U, /sup 239/Pu, and /sup 241/Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs. (LEW)

  20. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  1. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  2. Ion pair receptors†

    PubMed Central

    Kim, Sung Kuk

    2010-01-01

    Compared with simple ion receptors, which are able to bind either a cation or an anion, ion pair receptors bearing both a cation and an anion recognition site offer the promise of binding ion pairs or pairs of ions strongly as the result of direct or indirect cooperative interactions between co-bound ions. This critical review focuses on the recent progress in the design of ion pair receptors and summarizes the various binding modes that have been used to accommodate ion pairs (110 references). PMID:20737073

  3. Hard Photodisintegration of a Proton Pair

    DOE PAGES

    Pomerantz, Ishay; Bubis, Nathaniel; Allada, Kalyan; ...

    2010-01-08

    We present the first study of high energy photodisintegration of proton-pairs through the gamma + 3He -> p+p+n channel. Photon energies from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. An s^{-11} scaling of the cross section was observed, as predicted by the constituent counting rule. The onset of the scaling is at a higher energy and the cross section is significantly lower then for pn pair photodisintegration. For photon energies below the scaling region, the scaled cross section was found to present a strongmore » energy-dependent structure not observed in deuteron photodisintegration.« less

  4. Hard photodisintegration of a proton pair

    NASA Astrophysics Data System (ADS)

    Pomerantz, I.; Bubis, N.; Allada, K.; Beck, A.; Beck, S.; Berman, B. L.; Boeglin, W.; Camsonne, A.; Canan, M.; Chirapatpimol, K.; Cisbani, E.; Cusanno, F.; de Jager, C. W.; Dutta, C.; Garibaldi, F.; Geagla, O.; Gilman, R.; Glister, J.; Higinbotham, D. W.; Jiang, X.; Katramatou, A. T.; Khrosinkova, E.; Lee, B. W.; LeRose, J. J.; Lindgren, R.; McCullough, E.; Meekins, D.; Michaels, R.; Moffit, B.; Petratos, G. G.; Piasetzky, E.; Qian, X.; Qiang, Y.; Rodriguez, I.; Ron, G.; Saha, A.; Sarty, A. J.; Sawatzky, B.; Schulte, E.; Shneor, R.; Sparveris, N.; Subedi, R.; Strauch, S.; Sulkosky, V.; Wang, Y.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Zhan, X.; Zheng, X.

    2010-02-01

    We present a study of high energy photodisintegration of proton-pairs through the γ+He3→p+p+n channel. Photon energies, Eγ, from 0.8 to 4.7 GeV were used in kinematics corresponding to a proton pair with high relative momentum and a neutron nearly at rest. The s scaling of the cross section, as predicted by the constituent counting rule for two nucleon photodisintegration, was observed for the first time. The onset of the scaling is at a higher energy and the cross section is significantly lower than for deuteron (pn pair) photodisintegration. For Eγ below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in deuteron photodisintegration.

  5. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  6. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  7. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  8. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  9. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  10. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  11. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  12. β-Decay Half-Lives of 110 Neutron-Rich Nuclei across the N=82 Shell Gap: Implications for the Mechanism and Universality of the Astrophysical r Process.

    PubMed

    Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K

    2015-05-15

    The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.

  13. Unconventional superconductivity in Ba(0.6)K(0.4)Fe2As2 from inelastic neutron scattering.

    PubMed

    Christianson, A D; Goremychkin, E A; Osborn, R; Rosenkranz, S; Lumsden, M D; Malliakas, C D; Todorov, I S; Claus, H; Chung, D Y; Kanatzidis, M G; Bewley, R I; Guidi, T

    2008-12-18

    A new family of superconductors containing layers of iron arsenide has attracted considerable interest because of their high transition temperatures (T(c)), some of which are >50 K, and because of similarities with the high-T(c) copper oxide superconductors. In both the iron arsenides and the copper oxides, superconductivity arises when an antiferromagnetically ordered phase has been suppressed by chemical doping. A universal feature of the copper oxide superconductors is the existence of a resonant magnetic excitation, localized in both energy and wavevector, within the superconducting phase. This resonance, which has also been observed in several heavy-fermion superconductors, is predicted to occur when the sign of the superconducting energy gap takes opposite values on different parts of the Fermi surface, an unusual gap symmetry which implies that the electron pairing interaction is repulsive at short range. Angle-resolved photoelectron spectroscopy shows no evidence of gap anisotropy in the iron arsenides, but such measurements are insensitive to the phase of the gap on separate parts of the Fermi surface. Here we report inelastic neutron scattering observations of a magnetic resonance below T(c) in Ba(0.6)K(0.4)Fe(2)As(2), a phase-sensitive measurement demonstrating that the superconducting energy gap has unconventional symmetry in the iron arsenide superconductors.

  14. Matched-pair classification

    SciTech Connect

    Theiler, James P

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  15. A number-projected model with generalized pairing interaction in application to rotating nuclei

    SciTech Connect

    Satula, W. |||; Wyss, R.

    1996-12-31

    A cranked mean-field model that takes into account both T=1 and T=0 pairing interactions is presented. The like-particle pairing interaction is described by means of a standard seniority force. The neutron-proton channel includes simultaneously correlations among particles moving in time reversed orbits (T=1) and identical orbits (T=0). The coupling between different pairing channels and nuclear rotation is taken into account selfconsistently. Approximate number-projection is included by means of the Lipkin-Nogami method. The transitions between different pairing phases are discussed as a function of neutron/proton excess, T{sub z}, and rotational frequency, {Dirac_h}{omega}.

  16. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  17. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  18. Neutrino-antineutrino pair production by hadronic bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Bacca, Sonia

    2016-09-01

    I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).

  19. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    NASA Astrophysics Data System (ADS)

    Khaykovich, B.; Gubarev, M. V.; Bagdasarova, Y.; Ramsey, B. D.; Moncton, D. E.

    2011-03-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  20. Superconducting Gap Anisotropy in Monolayer FeSe Thin Film

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Lee, J. J.; Moore, R. G.; Li, W.; Yi, M.; Hashimoto, M.; Lu, D. H.; Devereaux, T. P.; Lee, D.-H.; Shen, Z.-X.

    2016-09-01

    Superconductivity originates from pairing of electrons near the Fermi energy. The Fermi surface topology and pairing symmetry are thus two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1 ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature over 65 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1 ML FeSe using angle-resolved photoemission spectroscopy. Two ellipselike electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which puts strong constraint on determining the pairing symmetry. The gap maxima locate on the dx y bands along the major axis of the ellipse and four gap minima are observed at the intersections of electron pockets. The gap maximum location combined with the Fermi surface geometry deviate from a single d -wave, extended s -wave or s± gap function, suggesting an important role of the multiorbital nature of Fermi surface and orbital-dependent pairing in 1 ML FeSe. The gap minima location may be explained by a sign change on the electron pockets, or a competition between intra- and interorbital pairing.

  1. Cooper pairs and bipolarons

    NASA Astrophysics Data System (ADS)

    Lakhno, Victor

    2016-11-01

    It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found. Differences between the solutions for the model and initial two-particle problems are discussed.

  2. Pairing in the presence of a pseudogap

    NASA Astrophysics Data System (ADS)

    Scalapino, Douglas; Maier, Thomas; Staar, Peter; Mishra, Vivek

    After 30 years, the quest to experimentally identify the mechanism responsible for pairing in the high Tc superconductors continues. Here we discuss an approach in which angle resolved photoemission (ARPES)data for BSCCO 2212(Tc=89K) is used to extract the single particle spectral weight A(k,w). This spectral weight is then used to calculate the BCS kernel and estimate the RPA spin-fluctuation d-wave pairing strength. Previously A(k,w) results at T=140K, extrapolated to lower temperatures, found that the BSCCO pseudo gap suppressed the logarithmic singularity of the BCS kernel and the spin-fluctuation interaction was too weak to produce superconductivity [V.Mishra et al.,Nat.Phys.10,357]. Here using results for A(k,w) at T=40K for this same system, we find that while the BCS kernel is suppressed, there is a significant increase in the d-wave pairing strength for the spin-fluctuation interaction when the temperature drops from T=140K and 40K. These results are shown to be consistent with DCA calculations for a 2D Hubbard model of a BSCCO like system which has a pseudo gap. We conclude that in spite of the suppression of the usual BCS logarithmic instability by the pseudo gap, the increase in strength of the spin-fluctuation interaction is sufficient to lead to superconductivity. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory.

  3. Cooper Pairs in Insulators?!

    ScienceCinema

    James Valles

    2016-07-12

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions. 

  4. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  5. Transport coefficients in superfluid neutron stars

    SciTech Connect

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  6. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  7. Exotic Paired States with Anisotropic Spin-Dependent Fermi Surfaces

    SciTech Connect

    Feiguin, Adrian E.; Fisher, Matthew P. A.

    2009-07-10

    We propose a model for realizing exotic paired states in cold Fermi gases by using a spin-dependent optical lattice to engineer mismatched Fermi surfaces for each hyperfine species. The BCS phase diagram shows a stable paired superfluid state with coexisting pockets of momentum space with gapless unpaired carriers, similar to the Sarma state in polarized mixtures, but in our case the system is unpolarized. We propose the possible existence of an exotic 'Cooper-pair Bose-metal' phase, which has a gap for single fermion excitations but gapless and uncondensed 'Cooper-pair' excitations residing on a 'Bose surface' in momentum space.

  8. NEUTRON COUNTER

    DOEpatents

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  9. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  10. Neutron stars as type-I superconductors.

    PubMed

    Buckley, Kirk B W; Metlitski, Max A; Zhitnitsky, Ariel R

    2004-04-16

    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star, leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.

  11. Neutron generator (HIRRAC) and dosimetry study.

    PubMed

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  12. Neutron Spectra in a 15 MV LINAC

    SciTech Connect

    Vega-Carrillo, H. R.; Chu, Wei-Han; Tung, Chuan-Jong; Lan, Jen-Hong

    2010-12-07

    Neutron spectra were calculated inside the treatment hall of a 15 MV LINAC, calculations were carried out using Monte Carlo methods. With a Bonner sphere spectrometer with pairs of thermoluminiscent dosimeters the neutron spectrum at 100 cm from the isocenter was measured and compared with the calculated spectrum. All the spectra in the treatment hall show the presence of evaporation and knock-on neutrons; also the room-return due to the hall features is shown. In the maze the large contribution are due to epithermal and thermal neutrons. A good agreement between the calculated and measured spectrum at 100 cm was noticed, from this comparison the differences are attributed to the water content in the concrete of the hall.

  13. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  14. Pairing correlations in high-spin isomers

    SciTech Connect

    Odahara, A.; Gono, Y.; Fukuchi, T.; Wakabayashi, Y.; Sagawa, H.; Satula, W.; Nazarewicz, W.

    2005-12-15

    High-spin isomers with J{sup {pi}}=49/2{sup +} and 27{sup +} have been systematically observed in a number of N=83 isotones with 60{<=}Z{<=}67 at excitation energies {approx}9 MeV. Based on experimental excitation energies, an odd-even binding energy staggering has been extracted for the first time for these multi-quasiparticle states. Surprisingly, the magnitude of the odd-even effect in high-spin isomers turned out to be very close to that in ground states, thus challenging conventional wisdom that pairing correlations are reduced in highly excited states. Theoretical analysis based on mean-field theory explains the observed proton number dependence of the odd-even effect as a manifestation of strong pairing correlations in the highly excited states. Mean-field effects and the proton-neutron residual interaction on the odd-even staggering are also examined.

  15. Behind the Pay Gap

    ERIC Educational Resources Information Center

    Dey, Judy Goldberg; Hill, Catherine

    2007-01-01

    Women have made remarkable gains in education during the past three decades, yet these achievements have resulted in only modest improvements in pay equity. The gender pay gap has become a fixture of the U.S. workplace and is so ubiquitous that many simply view it as normal. "Behind the Pay Gap" examines the gender pay gap for college graduates.…

  16. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  17. Pulsar Pair Cascades in a Distorted Magnetic Dipole Field

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2010-01-01

    We investigate the effect of a distorted neutron star dipole magnetic field on pulsar pair cascade multiplicity and pair death lines. Using a simple model for a distorted dipole field that produces an offset polar cap (PC), we derive the accelerating electric field above the PC in space-charge-limited flow. We find that even a modest azimuthally asymmetric distortion can significantly increase the accelerating electric field on one side of the PC and, combined with a smaller field line radius of curvature, leads to larger pair multiplicity. The death line for producing pairs by curvature radiation moves downward in the P-P-dot diagram, allowing high pair multiplicities in a larger percentage of the radio pulsar population. These results could have important implications for the radio pulsar population, high energy pulsed emission, and the pulsar contribution to cosmic ray positrons.

  18. Cooper Pair Insulators

    NASA Astrophysics Data System (ADS)

    Valles, James

    One of the recent advances in the field of the Superconductor to Insulator Transition (SIT) has been the discovery and characterization of the Cooper Pair Insulator phase. This bosonic insulator, which consists of localized Cooper pairs, exhibits activated transport and a giant magneto-resistance peak. These features differ markedly from the weakly localized transport that emerges as pairs break at a ``fermionic'' SIT. I will describe how our experiments on films nano-patterned with a nearly triangular array of holes have enabled us to 1) distinguish bosonic insulators from fermionic insulators, 2) show that Cooper pairs, rather than quasi-particles dominate the transport in the Cooper Pair insulator phase, 3) demonstrate that very weak, sub nano-meter thickness inhomogeneities control whether a bosonic or fermionic insulator forms at an SIT and 4) reveal that Cooper pairs disintegrate rather than becoming more tightly bound deep in the localized phase. We have also developed a method, using a magnetic field, to tune flux disorder reversibly in these films. I will present our latest results on the influence of magnetic flux disorder and random gauge fields on phenomena near bosonic SITs. This work was performed in collaboration with M. D. Stewart, Jr., Hung Q. Nguyen, Shawna M. Hollen, Jimmy Joy, Xue Zhang, Gustavo Fernandez, Jeffrey Shainline and Jimmy Xu. It was supported by NSF Grants DMR 1307290 and DMR-0907357.

  19. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  20. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  1. Production of heavy and superheavy neutron-rich nuclei in neutron capture processes

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Karpov, A. V.; Mishustin, I. N.; Greiner, Walter

    2011-10-01

    The neutron capture process is considered as an alternative method for production of superheavy (SH) nuclei. Strong neutron fluxes might be provided by nuclear reactors and nuclear explosions in the laboratory frame and by supernova explosions in nature. All these cases are discussed in the paper. There are two gaps of short-lived nuclei (one is the well-known fermium gap and the other one is located in the region of Z=106-108 and N˜170) which impede the formation of SH nuclei by rather weak neutron fluxes realized at available nuclear reactors. We find that in the course of multiple (rather “soft”) nuclear explosions these gaps may be easily bypassed, and thus, a measurable amount of the neutron-rich long-living SH nuclei located at the island of stability may be synthesized. Existing pulsed reactors do not allow one to bypass these gaps. We formulate requirements for the pulsed reactors of the next generation that could be used for production of long-living SH nuclei. Natural formation of SH nuclei (in supernova explosions) is also discussed. The yield of SH nuclei relative to lead is estimated to be about 10-12, which is not beyond the experimental sensitivity for a search of SH elements in cosmic rays.

  2. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  3. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  4. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  5. Spectra and Neutron Dosimetry Inside a PET Cyclotron Vault Room

    SciTech Connect

    Vega-Carrillo, Hector Rene; Mendez, Roberto; Iniguez, Maria Pilar; Marti-Climent, Joseph; Penuelas, Ivan; Barquero, Raquel

    2006-09-08

    The neutron field around a PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Pairs of thermoluminescent dosemeters, TLD600 and TLD700, were used as thermal neutron detector inside a Bonner Spheres Spectrometer to measure the neutron spectra at three different positions inside the cyclotron's vault room. Neutron spectra were also determined by Monte Carlo calculations. The hardest spectrum was observed in front of cyclotron target and the softest was noticed at the antipode of target. Neutron doses derived from the measured spectra vary between 11 and 377 mSv/{mu}A-h of proton integrated current, Doses were also measured with a single-moderator remmeter, with an active thermal neutron detector, whose response in affected by the radiation field in the vault room.

  6. Superfluid hydrodynamics in the inner crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Martin, Noël; Urban, Michael

    2016-12-01

    The inner crust of neutron stars is supposed to be inhomogeneous and composed of dense structures (clusters) that are immersed in a dilute gas of unbound neutrons. Here we consider spherical clusters forming a body-centered cubic (BCC) crystal and cylindrical rods arranged in a hexagonal lattice. We study the relative motion of these dense structures and the neutron gas using superfluid hydrodynamics. Within this approach, which relies on the assumption that Cooper pairs are small compared to the crystalline structures, we find that the entrainment of neutrons by the clusters is very weak since neutrons of the gas can flow through the clusters. Consequently, we obtain a low effective mass of the clusters and a superfluid density that is even higher than the density of unbound neutrons. Consequences for the constraints from glitch observations are discussed.

  7. POPULATION STUDY FOR {gamma}-RAY PULSARS WITH THE OUTER GAP MODEL

    SciTech Connect

    Takata, J.; Wang, Y.; Cheng, K. S. E-mail: yuwang@hku.hk

    2011-01-01

    Inspired by the increase of the population of {gamma}-ray emitting pulsars by the Fermi telescope, we perform a population study for {gamma}-ray emitting canonical pulsars. We use a Monte Carlo technique to simulate the Galactic population of neutron stars and the radio pulsars. For each simulated neutron star, we consider the {gamma}-ray emission from the outer gap accelerator in the magnetosphere. In our outer gap model, we apply the gap closure mechanism proposed by Takata et al., in which both photon-photon pair-creation and magnetic pair-creation processes are considered. Simulating the sensitivities of previous major radio surveys, our simulation predicts that there are {approx}18-23 radio-loud and {approx}26-34 {gamma}-ray-selected {gamma}-ray pulsars, which can be detected with a {gamma}-ray flux F{sub {gamma}} {>=} 10{sup -10} erg cm{sup -2} s{sup -1}. Applying the sensitivity of the six month observation of the Fermi telescope, 40-61 radio-selected and 36-75 {gamma}-ray selected pulsars are detected within our simulation. We show that the distributions of various pulsar parameters for the simulated {gamma}-ray pulsars can be consistent with the observed distribution of the {gamma}-ray pulsars detected by the Fermi telescope. We also predict that {approx}64 radio-loud and {approx}340 {gamma}-ray-selected pulsars irradiate the Earth with a flux F{sub {gamma}} {>=} 10{sup -11} erg cm{sup -2} s{sup -1}, and most of those {gamma}-ray pulsars are distributed with a distance greater than 1 kpc and a flux F{sub {gamma}} {approx} 10{sup -11} erg cm{sup -2} s{sup -1}. The ratio between the radio-selected and {gamma}-ray-selected pulsars depends on the sensitivity of the radio surveys. We also discuss the Galactic distribution of the unidentified Fermi sources and the canonical {gamma}-ray pulsars.

  8. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  9. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  10. Pairing and specific heat in hot nuclei

    NASA Astrophysics Data System (ADS)

    Gambacurta, Danilo; Lacroix, Denis; Sandulescu, N.

    2013-09-01

    The thermodynamics of pairing phase-transition in nuclei is studied in the canonical ensemble and treating the pairing correlations in a finite-temperature variation after projection BCS approach (FT-VAP). Due to the restoration of particle number conservation, the pairing gap and the specific heat calculated in the FT-VAP approach vary smoothly with the temperature, indicating a gradual transition from the superfluid to the normal phase, as expected in finite systems. We have checked that the predictions of the FT-VAP approach are very accurate when compared to the results obtained by an exact diagonalization of the pairing Hamiltonian. The influence of pairing correlations on specific heat is analyzed for the isotopes 161,162Dy and 171,172Yb. It is shown that the FT-VAP approach, applied with a level density provided by mean field calculations and supplemented, at high energies, by the level density of the back-shifted Fermi gas model, can approximate reasonably well the main properties of specific heat extracted from experimental data. However, the detailed shape of the calculated specific heat is rather sensitive to the assumption made for the mean field.

  11. Pairing instabilities of Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Milovanović, M. V.; Ćirić, M. Dimitrijević; Juričić, V.

    2016-09-01

    Recently, a Dirac (particle-hole symmetric) description of composite fermions in the half-filled Landau level (LL) was proposed [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027], and we study its possible consequences on BCS (Cooper) pairing of composite fermions (CFs). One of the main consequences is the existence of anisotropic states in single-layer and bilayer systems, which was previously suggested in Jeong and Park [J. S. Jeong and K. Park, Phys. Rev. B 91, 195119 (2015), 10.1103/PhysRevB.91.195119]. We argue that in the half-filled LL in the single-layer case the gapped states may sustain anisotropy, because isotropic pairings may coexist with anisotropic ones. Furthermore, anisotropic pairings with the addition of a particle-hole symmetry-breaking mass term may evolve into rotationally symmetric states, i.e., Pfaffian states of Halperin-Lee-Read (HLR) ordinary CFs. On the basis of the Dirac formalism, we argue that in the quantum Hall bilayer at total filling factor 1, with decreasing distance between the layers, weak pairing of p -wave paired CFs is gradually transformed from Dirac to ordinary, HLR-like, with a concomitant decrease in the CF number. Global characterization of low-energy spectra based on the Dirac CFs agrees well with previous calculations performed by exact diagonalization on a torus. Finally, we discuss features of the Dirac formalism when applied in this context.

  12. Pulsar Pair Cascades in Magnetic Fields with Offset Polar Caps

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    Neutron star magnetic fields may have polar caps (PC) that are offset from the dipole axis, through field-line sweepback near the light cylinder or non-symmetric currents within the star. The effects of such offsets on electron-positron pair cascades are investigated, using simple models of dipole magnetic fields with small distortions that shift the PCs by different amounts or directions. Using a Monte Carlo pair cascade simulation, we explore the changes in the pair spectrum, multiplicity and energy flux across the PC, as well as the trends in pair flux and pair energy flux with spin-down luminosity, L(sub sd). We also give an estimate of the distribution of heating flux from returning positrons on the PC for different offsets. We find that even modest offsets can produce significant increases in pair multiplicity, especially for pulsars that are near or beyond the pair death lines for centered PCs, primarily because of higher accelerating fields. Pair spectra cover several decades in energy, with the spectral range of millisecond pulsars (MSPs) two orders of magnitude higher than for normal pulsars, and PC offsets allow significant extension of all spectra to lower pair energies. We find that the total PC pair luminosity L(sub pair) is proportional to L(sub sd), with L(sub pair) approximates 10(exp -3) L(sub sd) for normal pulsars and L(sub pair) approximates 10(exp -2) L(sub sd) for MSPs. Remarkably, the total PC heating luminosity for even large offsets increases by less than a factor of two, even though the PC area increases by much larger factors, because most of the heating occurs near the magnetic axis.

  13. Neutron field for boron neutron capture therapy

    SciTech Connect

    Kanda, K.; Kobayashi, T.

    1986-01-01

    Recently, the development of an epithermal neutron source has been required by medical doctors for deeper neutron penetrations, which is to be used for deep tumor treatment and diagnosis of metastasis. Several attempts have already been made to realize an epithermal neutron field, such as the undermoderated neutron beam, the filtered neutron beam, and the use of a fission plate. At present, these facilities can not be used for actual therapy. For the treatment of deep tumor, another method has been also proposed in normal water in the body is replaced by heavy water to attain a deeper neutron penetration. At Kyoto University's Research Reactor Institute, almost all physics problems have been settled relative to thermal neutron capture therapy that has been used for treating brain tumors and for biological experiments on malignant melanoma. Very recently feasibility studies to use heavy water have been started both theoretically and experimentally. The calculation shows the deeper penetration of neutrons as expected. Two kinds of experiments were done by using the KUR guide tube: 1. Thermal neutron penetration measurement. 2. Heavy water uptake in vitro sample. In addition to the above experiment using heavy water, the development of a new epithermal neutron source using a large fission plate is in progress, which is part of a mockup experiment of an atomic bomb field newly estimated.

  14. Triplet pairing and possible weak topological superconductivity in BiS2-based superconductors

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Wan-Sheng; Xiang, Yuan-Yuan; Li, Zheng-Zao; Wang, Qiang-Hua

    2013-09-01

    We show that the newly discovered BiS2-based superconductors may have a dominant triplet pairing component in addition to a subdominant singlet component arising from the spin-orbital coupling. The pairing respects time-reversal symmetry. The dominant triplet gap causes gap sign changes between the spin-split Fermi pockets. Within a pocket, the gap function respects dx2-y2*-wave symmetry where the asterisk indicates joint spin-lattice rotations. Below the Lifshitz filling level, the gap is nodeless, and the superconducting state is weak topological. Above the Lifshitz points, the gap becomes nodal. The superconducting pairing and the time-reversal symmetry result from the strong spin-orbital coupling and the ferromagneticlike spin fluctuations. The dx2-y2*-wave gap structure follows from the coexisting antiferromagnetic spin fluctuations. The relevance to experiments is discussed.

  15. Neutron angular distribution in plutonium-240 spontaneous fission

    NASA Astrophysics Data System (ADS)

    Marcath, Matthew J.; Shin, Tony H.; Clarke, Shaun D.; Peerani, Paolo; Pozzi, Sara A.

    2016-09-01

    Nuclear safeguards applications require accurate fission models that exhibit prompt neutron anisotropy. In the laboratory reference frame, an anisotropic neutron angular distribution is observed because prompt fission neutrons carry momentum from fully accelerated fission fragments. A liquid organic scintillation detector array was used with pulse shape discrimination techniques to produce neutron-neutron cross-correlation time distributions and angular distributions from spontaneous fission in a 252Cf, a 0.84 g 240Pueff metal, and a 1.63 g 240Pueff metal sample. The effect of cross-talk, estimated with MCNPX-PoliMi simulations, is removed from neutron-neutron coincidences as a function of the angle between detector pairs. Fewer coincidences were observed at detector angles near 90°, relative to higher and lower detector angles. As light output threshold increases, the observed anisotropy increases due to spectral effects arising from fission fragment momentum transfer to emitted neutrons. Stronger anisotropy was observed in Cf-252 spontaneous fission prompt neutrons than in Pu-240 neutrons.

  16. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs)

    NASA Astrophysics Data System (ADS)

    Fronk, Ryan G.; Bellinger, Steven L.; Henson, Luke C.; Ochs, Taylor R.; Smith, Colten T.; Kenneth Shultis, J.; McGregor, Douglas S.

    2015-12-01

    Microstructured semiconductor neutron detectors (MSNDs) have in recent years received much interest as high-efficiency replacements for thin-film-coated thermal neutron detectors. The basic device structure of the MSND involves micro-sized trenches that are etched into a vertically-oriented pvn-junction diode that are backfilled with a neutron converting material. Neutrons absorbed within the converting material induce fission of the parent nucleus, producing a pair of energetic charged-particle reaction products that can be counted by the diode. The MSND deep-etched microstructures produce good neutron-absorption and reaction-product counting efficiencies, offering a 10× improvement in intrinsic thermal neutron detection efficiency over thin-film-coated devices. Performance of present-day MSNDs are nearing theoretical limits; streaming paths between the conversion-material backfilled trenches, allow a considerable fraction of neutrons to pass undetected through the device. Dual-sided microstructured semiconductor neutron detectors (DSMSNDs) have been developed that utilize a complementary second set of trenches on the back-side of the device to count streaming neutrons. DSMSND devices are theoretically capable of greater than 80% intrinsic thermal neutron detection efficiency for a 1-mm thick device. The first such prototype DSMSNDs, presented here, have achieved 29.48±0.29% nearly 2× better than MSNDs with similar microstructure dimensions.

  17. Advanced passive detectors for neutron dosimetry and spectrometry.

    PubMed

    Tommasino, L

    2004-01-01

    Different neutron detectors have been developed in the past which exploit electrical and electrochemical processes in plastic foils and thin-film capacitors (namely metal-oxide-silicon devices) to trigger avalanche processes, which greatly facilitate the detection of neutron-induced charged particles. These detectors are: (i) spark-replica counter of neutron-induced fission-fragment holes in plastic films, thin-film breakdown counter of neutron-induced fission fragments, and electrochemically etched detectors of neutron-induced recoils in plastic foils. The major shortcomings of damage-track detectors for the measurement of low neutron fluencies, such as those of cosmic ray neutrons at civil aviation altitudes, are their large and unpredictable background and their small signal-to-noise ratio. These shortcomings have been overcome respectively by using long exposure times and large detector areas and counting coincidence-track events on matched pairs of detectors even for a few-micron-long tracks such as those of neutron recoils. The responses of all these detectors have been analysed both with neutrons with energy up to approximately 200 MeV and protons up to tens of gigaelectron volts. Applications of these detectors for the cosmic ray neutron dosimetry and/or spectrometry will be mentioned.

  18. A direct method for computing extreme value (Gumbel) parameters for gapped biological sequence alignments.

    PubMed

    Quinn, Terrance; Sinkala, Zachariah

    2014-01-01

    We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.

  19. Isovector Pairing within the so(5) Richardson-Gaudin Exactly Solvable Model

    SciTech Connect

    Dimitrova, S S; Dukelsky, J; Gueorguiev, V G; Van Isacker, P

    2005-10-10

    Properties of a nucleon system interacting via isovector proton-neutron pairing can be described within the so(5) generalized Richardson-Gaudin exactly-solvable model [1]. We present results for a system of 12 nucleon pairs within the full f{sub p} + g{sub 9/2} shell-model space. We discuss coupling constant dependence of the pair energies, total energy of the system, and the occupation numbers.

  20. Closing the Pay Gap

    DTIC Science & Technology

    2000-10-01

    the pay gap has been narrowed, hut only to just under 10 percent. And current military compensation legislation does not close the gap until 2026. There...will continue to be a pay gap until 2026 unless the next administration and the next Congress provide more for pay above the 1999 legislated ramp- up...of .5 percent (one half of one percent) per year to attain pay equality . That means that soldiers, sailors, airmen, marines and Coast Guardsmen

  1. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  2. Neutrinos from Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Torres, Diego F.; McCauley, Thomas P.; Romero, Gustavo E.; Aharonian, Felix A.

    2003-05-01

    The magnetospheres of accreting neutron stars develop electrostatic gaps with huge potential drops. Protons and ions, accelerated in these gaps along the dipolar magnetic field lines to energies greater than 100 TeV, can impact onto the surrounding accretion disk. A proton-induced cascade develops, and charged pion decays produce ν emission. With extensive disk shower simulations using DPMJET and GEANT4, we have calculated the resulting ν spectrum. We show that the spectrum produced out of the proton beam is a power law. We use this result to propose accretion-powered X-ray binaries (with highly magnetized neutron stars) as a new population of pointlike ν sources for kilometer-scale detectors such as ICECUBE. As a particular example, we discuss the case of A0535+26. We show that ICECUBE should find A0535+26 to be a periodic ν source, one for which the formation and loss of its accretion disk can be fully detected. Finally, we comment briefly on the possibility that smaller telescopes such as AMANDA could also detect A0535+26 by folding observations with the orbital period.

  3. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  4. Minimal Pairs: Minimal Importance?

    ERIC Educational Resources Information Center

    Brown, Adam

    1995-01-01

    This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)

  5. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)(3)He and D(d,n)(3)He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the (9)Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  6. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device

    PubMed Central

    Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-01-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118

  7. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: Application to a neutron spectrum similar to that from an improvised nuclear device

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-09-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  8. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  9. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  10. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  11. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  12. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  13. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  14. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  15. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    NASA Astrophysics Data System (ADS)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  16. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  17. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGES

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  18. LOW VOLTAGE 14 Mev NEUTRON SOURCE

    DOEpatents

    Little, R.N. Jr.; Graves, E.R.

    1959-09-29

    An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.

  19. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  20. Senseless Extravagance, Shocking Gaps

    ERIC Educational Resources Information Center

    Weissbourd, Richard; Dodge, Trevor

    2012-01-01

    Although most people in the United States believe, at least theoretically, in educational equality, fewer and fewer appear to care about the resource gaps between affluent and poor schools, says Weissbourd. He illustrates these gaps with vivid descriptions of what he calls an "opulence arms race" among affluent independent schools, but…

  1. Information Gap Activities.

    ERIC Educational Resources Information Center

    Cicekdag, Mehmet Ali

    1995-01-01

    Focuses on a real world technique used to teach language proficiency in the classroom. This method involves creating deliberate information and opinion gaps by administering pop quizzes and other communicative games and filling those gaps through cooperative action. Use of this technique generated heated discussion among students. (nine…

  2. Bridging a Cultural Gap

    ERIC Educational Resources Information Center

    Leviatan, Talma

    2008-01-01

    There has been a broad wave of change in tertiary calculus courses in the past decade. However, the much-needed change in tertiary pre-calculus programmes--aimed at bridging the gap between high-school mathematics and tertiary mathematics--is happening at a far slower pace. Following a discussion on the nature of the gap and the objectives of a…

  3. Narrowing Participation Gaps

    ERIC Educational Resources Information Center

    Hand, Victoria; Kirtley, Karmen; Matassa, Michael

    2015-01-01

    Shrinking the achievement gap in mathematics is a tall order. One way to approach this challenge is to think about how the achievement gap manifests itself in the classroom and take concrete action. For example, opportunities to participate in activities that involve mathematical reasoning and argumentation in a safe and supportive manner are…

  4. Confronting the Achievement Gap

    ERIC Educational Resources Information Center

    Gardner, David

    2007-01-01

    This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…

  5. The National "Expertise Gap"

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article discusses the Woodrow Wilson National Fellowship Foundation's report, "Diversity and the Ph.D.," released in May, which documents in troubling detail the exact dimensions of what the foundation's president, Dr. Robert Weisbuch, is calling the national "expertise gap." Weisbuch states that the expertise gap extends beyond the…

  6. The Parenting Gap

    ERIC Educational Resources Information Center

    Reeves, Richard V.; Howard, Kimberly

    2013-01-01

    The parenting gap is a big factor in the opportunity gap. The chances of upward social mobility are lower for children with parents struggling to do a good job--in terms of creating a supportive and stimulating home environment. Children lucky enough to have strong parents are more likely to succeed at all the critical life stages, which means…

  7. Which Achievement Gap?

    ERIC Educational Resources Information Center

    Anderson, Sharon; Medrich, Elliott; Fowler, Donna

    2007-01-01

    From the halls of Congress to the local elementary school, conversations on education reform have tossed around the term "achievement gap" as though people all know precisely what that means. As it's commonly used, "achievement gap" refers to the differences in scores on state or national achievement tests between various…

  8. States Address Achievement Gaps.

    ERIC Educational Resources Information Center

    Christie, Kathy

    2002-01-01

    Summarizes 2 state initiatives to address the achievement gap: North Carolina's report by the Advisory Commission on Raising Achievement and Closing Gaps, containing an 11-point strategy, and Kentucky's legislation putting in place 10 specific processes. The North Carolina report is available at www.dpi.state.nc.us.closingthegap; Kentucky's…

  9. Computational complexity of projected entangled pair states.

    PubMed

    Schuch, Norbert; Wolf, Michael M; Verstraete, Frank; Cirac, J Ignacio

    2007-04-06

    We determine the computational power of preparing projected entangled pair states (PEPS), as well as the complexity of classically simulating them, and generally the complexity of contracting tensor networks. While creating PEPS allows us to solve PP problems, the latter two tasks are both proven to be #P-complete. We further show how PEPS can be used to approximate ground states of gapped Hamiltonians and that creating them is easier than creating arbitrary PEPS. The main tool for our proofs is a duality between PEPS and postselection which allows us to use existing results from quantum complexity.

  10. Neutron anatomy

    SciTech Connect

    Bacon, G.E.

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  11. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  12. Structure and reactions of light neutron rich nuclei

    SciTech Connect

    Esbensen, H.

    1993-01-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for [sup 11]Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  13. Structure and reactions of light neutron rich nuclei

    SciTech Connect

    Esbensen, H.

    1993-04-01

    Radioactive beam experiments have made it possible to study the structure of nuclei at the neutron drip line. Pair correlations play a crucial role in such nuclei and characteristic features include an extended neutron halo density and a large dipole strength near threshold. The most detailed studies have been performed for {sup 11}Li. I will present a 3-body model that explains the main features of the data obtained for this nucleus.

  14. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGES

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; ...

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  15. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  16. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  17. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  18. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  19. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  20. Dose equivalent neutron dosimeter

    DOEpatents

    Griffith, Richard V.; Hankins, Dale E.; Tomasino, Luigi; Gomaa, Mohamed A. M.

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  1. Neutron Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Nico, J. S.

    2006-11-01

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  2. Neutron Lifetime Measurements

    SciTech Connect

    Nico, J. S.

    2006-11-17

    Precision measurements of neutron beta decay address basic questions in nuclear and particle physics, astrophysics, and cosmology. As the simplest semileptonic decay system, the free neutron plays an important role in understanding the physics of the weak interaction, and improving the precision of the neutron lifetime is fundamental to testing the validity of the theory. The neutron lifetime also directly affects the relative abundance of primordial helium in big bang nucleosynthesis. There are two distinct strategies for measuring the lifetime. Experiments using cold neutrons measure the absolute specific activity of a beam of neutrons by counting decay protons; experiments using confined, ultracold neutrons determine the lifetime by counting neutrons that remain after some elapsed time. The status of the recent lifetime measurements using both of these techniques is discussed.

  3. ULTRASONIC NEUTRON DOSIMETER

    DOEpatents

    Truell, R.; de Klerk, J.; Levy, P.W.

    1960-02-23

    A neutron dosimeter is described which utilizes ultrasonic waves in the megacycle region for determination of the extent of neutron damage in a borosilicate glass through ultrasonic wave velocity and attenuation measurements before and after damage.

  4. Molecular Driving Forces behind the Tetrahydrofuran-Water Miscibility Gap.

    PubMed

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-02-04

    The tetrahydrofuran-water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self-diffusion of water is significantly altered and the second virial coefficients (pair-interaction strengths) show parabolic-like behavior. Overall, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap.

  5. Molecular driving forces behind the tetrahydrofuran–water miscibility gap

    DOE PAGES

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; ...

    2016-01-06

    The tetrahydrofuran water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self diffusion of watermore » is significantly altered and the second virial coefficients (pair interaction strengths) show parabolic-like behavior. Altogether, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap.« less

  6. Molecular driving forces behind the tetrahydrofuran–water miscibility gap

    SciTech Connect

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-01-06

    The tetrahydrofuran water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self diffusion of water is significantly altered and the second virial coefficients (pair interaction strengths) show parabolic-like behavior. Altogether, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap.

  7. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    DOE PAGES

    Li, Yi; Liou, M. K.; Schreiber, W. M.; ...

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.

  8. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  9. Stationary Vortices and Pair Currents in a Trapped Fermion Superfluid

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2015-05-01

    We examine the effects of stationary vortices in superfluid Li atoms at zero temperature in the frame of the recently developed fluiddynamical scheme, that includes the pair density and its associated pair current and pair kinetic energy in addition to the fields appearing in the hydrodynamical description of normal fluids. In this frame, the presence of any particle velocity field gives rise to the appearance of a pair current. As an illustration, we consider a stationary vortex with cylindrical geometry in an unpolarized fluid, and examine the effects of the rotational velocity field on the spatial structure of the equilibrium gap and the profiles of the pair current. We show that the latter is intrinsically complex and its imaginary part is the source of a radial drift for the velocity field. We discuss the consequences on the stationary regime.

  10. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  11. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  12. Preparing projected entangled pair states on a quantum computer.

    PubMed

    Schwarz, Martin; Temme, Kristan; Verstraete, Frank

    2012-03-16

    We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.

  13. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  14. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  15. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  16. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  17. Perforated diode neutron sensors

    NASA Astrophysics Data System (ADS)

    McNeil, Walter J.

    A novel design of neutron sensor was investigated and developed. The perforated, or micro-structured, diode neutron sensor is a concept that has the potential to enhance neutron sensitivity of a common solid-state sensor configuration. The common thin-film coated diode neutron sensor is the only semiconductor-based neutron sensor that has proven feasible for commercial use. However, the thin-film coating restricts neutron counting efficiency and severely limits the usefulness of the sensor. This research has shown that the perforated design, when properly implemented, can increase the neutron counting efficiency by greater than a factor of 4. Methods developed in this work enable detectors to be fabricated to meet needs such as miniaturization, portability, ruggedness, and adaptability. The new detectors may be used for unique applications such as neutron imaging or the search for special nuclear materials. The research and developments described in the work include the successful fabrication of variant perforated diode neutron detector designs, general explanations of fundamental radiation detector design (with added focus on neutron detection and compactness), as well as descriptive theory and sensor design modeling useful in predicting performance of these unique solid-state radiation sensors. Several aspects in design, fabrication, and operational performance have been considered and tested including neutron counting efficiency, gamma-ray response, perforation shapes and depths, and silicon processing variations. Finally, the successfully proven technology was applied to a 1-dimensional neutron sensor array system.

  18. LGB neutron detector

    NASA Astrophysics Data System (ADS)

    Quist, Nicole

    2012-10-01

    The double pulse signature of the Gadolinium Lithium Borate Cerium doped plastic detector suggests its effectiveness for analyzing neutrons while providing gamma ray insensitivity. To better understand this detector, a californium gamma/neutron time of flight facility was constructed in our lab. Reported here are efforts to understand the properties and applications of the LGB detector with regards to neutron spectroscopy.

  19. Regimes of Pulsar Pair Formation and Particle Energetics

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; Zhang, Bing; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the conditions required for the production of electron-positron pairs above a pulsar polar cap (PC) and the influence of pair production on the energetics of the primary particle acceleration. Assuming space-charge limited flow acceleration including the inertial frame-dragging effect, we allow both one-photon and two-photon pair production by either curvature radiation (CR) photons or photons resulting from inverse-Compton scattering of thermal photons from the PC by primary electrons. We find that,, while only the younger pulsars can produce pairs through CR, nearly all known radio pulsars are capable of producing pairs through non-resonant inverse-Compton scatterings. The effect of the neutron star equations of state on the pair death lines is explored. We show that pair production is facilitated in more compact stars and more a massive stars. Therefore accretion of mass by pulsars in binary systems may allow pair production in most of the millisecond purser population. We also find that two-photon pair production may be important in millisecond pursers if their surface temperatures are above approx. or equal to three million degrees K. Pursers that produce pairs through CRT wilt have their primary acceleration limited by the effect of screening of the electric field. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sup 1/2, sub rot) dependence. The acceleration voltage drop in pursers that produce pairs only through inverse-Compton emission will not be limited by electric field screening. In this regime, the high-energy luminosity should follow a L(sub HE) proportional to dot-E(sub rot) dependence. Thus, older pursers will have significantly lower gamma-ray luminosity.

  20. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  1. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  2. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    SciTech Connect

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  3. Measurement of internal conversion electrons from Gd neutron capture

    NASA Astrophysics Data System (ADS)

    Kandlakunta, P.; Cao, L. R.; Mulligan, P.

    2013-03-01

    Gadolinium (Gd) is a suitable material for neutron conversion because of its superior neutron absorption cross-section. However, the principal secondary particles that generate electron-hole pairs in a semiconductor detector after Gd neutron capture are low-energy internal conversion (IC) electrons. We measured the IC electron spectrum due to Gd neutron capture by using a thermal neutron beam and a digitizer-based multidetector spectroscopy. We also discussed the effective use of the IC electrons in the context of a twin-detector design and the associated gamma-ray rejection issues. Extensive simulations of the spectra of IC electrons and gamma rays agreed well with the experimental results; both types of results support the feasibility of the proposed n-γ separation method.

  4. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Kobyakov, D. N.; Pethick, C. J.

    2017-02-01

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  5. Biological effectiveness of neutrons: Research needs

    SciTech Connect

    Casarett, G.W.; Braby, L.A.; Broerse, J.J.; Elkind, M.M.; Goodhead, D.T.; Oleinick, N.L.

    1994-02-01

    The goal of this report was to provide a conceptual plan for a research program that would provide a basis for determining more precisely the biological effectiveness of neutron radiation with emphasis on endpoints relevant to the protection of human health. This report presents the findings of the experts for seven particular categories of scientific information on neutron biological effectiveness. Chapter 2 examines the radiobiological mechanisms underlying the assumptions used to estimate human risk from neutrons and other radiations. Chapter 3 discusses the qualitative and quantitative models used to organize and evaluate experimental observations and to provide extrapolations where direct observations cannot be made. Chapter 4 discusses the physical principles governing the interaction of radiation with biological systems and the importance of accurate dosimetry in evaluating radiation risk and reducing the uncertainty in the biological data. Chapter 5 deals with the chemical and molecular changes underlying cellular responses and the LET dependence of these changes. Chapter 6, in turn, discusses those cellular and genetic changes which lead to mutation or neoplastic transformation. Chapters 7 and 8 examine deterministic and stochastic effects, respectively, and the data required for the prediction of such effects at different organizational levels and for the extrapolation from experimental results in animals to risks for man. Gaps and uncertainties in this data are examined relative to data required for establishing radiation protection standards for neutrons and procedures for the effective and safe use of neutron and other high-LET radiation therapy.

  6. Grazing incidence neutron optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2012-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20 .ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  7. Grazing Incidence Neutron Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  8. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  9. Neutron activation analysis system

    DOEpatents

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  10. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  11. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D.; Littlewood, Peter B.; Blagoev, Krastan B.; Swinhoe, Martyn T.; Smith, James L.; Sullivan, Clair J.; Alexandrov, Boian S.; Lashley, Jason Charles

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  12. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  13. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.

    PubMed

    Becker, J; Brunckhorst, E; Schmidt, R

    2007-11-07

    When radiotherapy with photon energies greater than 10 MV is performed neutrons contaminate the photon beam. In this paper the neutron contamination of the 15 MV photon mode of the Siemens Primus accelerator was studied. The Monte Carlo code MCNPX was used for the description of the treatment head and treatment room. The Monte Carlo results were verified by studying the photon depth dose curve and beam profiles in a water phantom. After these verifications the locations of neutron production were studied and the neutron source spectrum and strength were calculated. The neutron response of the paired Mg/Ar and MgB/Ar ionization chamber system was calculated and experimentally verified for two experimental set-ups. The paired chamber system allowed us to measure neutrons inside the field borders and allowed rapid and point wise measurement in contrast to other methods of neutron detection.

  14. Two-Neutron Separation Energies Of Even-Even Rare-Earth Neutron-Rich Nuclei

    SciTech Connect

    Benhamouda, N.; Oudih, M. R.; Allal, N. H.; Fellah, M.

    2007-04-23

    The variation of the two-neutron separation energy (S2N), as a function of N, is studied using a microscopic model that includes the pairing effects rigorously within the Fixed-Sharp-BCS method. The model has been tested for ''ordinary'' nuclei and has correctly reproduced the experimental data. The study has then been extended to the neutron-rich nuclei and has shown a relatively important variation of S2N when N= 100 which may be attributed to the existence of a new magic number.

  15. Pair of Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meters per pixel (5 ft/pixel) view of a pair of small meteor impact craters in the Arena Colles region of Mars, located north of Isidis Planitia.

    Location near: 22.7oN, 278.5oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  16. Odd frequency pairing of interacting Majorana fermions

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Woelfle, Peter; Balatsky, Alexandar

    Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing. Work supported by USDOE DE-AC52-06NA25396 E304, Knut and Alice Wallenberg Foundation, and ERC DM-321031.

  17. Semiconductor neutron detectors using depleted uranium oxide

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Craig A.; Mukhopadhyay, Sanjoy; Schwellenbach, David; Meek, Thomas; Shaver, Brandon; Cunningham, Taylor; Auxier, Jerrad Philip

    2014-09-01

    This paper reports on recent attempts to develop and test a new type of solid-state neutron detector fabricated from uranium compounds. It has been known for many years that uranium oxide (UO2), triuranium octoxide (U3O8) and other uranium compounds exhibit semiconducting characteristics with a broad range of electrical properties. We seek to exploit these characteristics to make a direct-conversion semiconductor neutron detector. In such a device a neutron interacts with a uranium nucleus, inducing fission. The fission products deposit energy-producing, detectable electron-hole pairs. The high energy released in the fission reaction indicates that noise discrimination in such a device has the potential to be excellent. Schottky devices were fabricated using a chemical deposition coating technique to deposit UO2 layers a few microns thick on a sapphire substrate. Schottky devices have also been made using a single crystal from UO2 samples approximately 500 microns thick. Neutron sensitivity simulations have been performed using GEANT4. Neutron sensitivity for the Schottky devices was tested experimentally using a 252Cf source.

  18. Ultracold neutron detector for neutron lifetime measurements

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Vassiljev, A.; Ivanov, E.; Ilyin, D.; Krivshich, A.; Serebrov, A.

    2017-02-01

    The gas-filled detector of ultracold neutrons has been designed and constructed for the spectrometer of the neutron lifetime measurements at the ILL, Grenoble, France. The detector has been successfully tested and is currently being used at this spectrometer. We could show that minimization of the ;wall; effect is a key factor to ensure efficient background suppression and to maximize the detection efficiency. This effect is primarily related to the composition of the gas mixture, which crucially depends on the neutron velocity spectrum.

  19. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  20. Type III burst pair

    NASA Astrophysics Data System (ADS)

    Ning, Zongjun; Fu, Qijun; Lu, Quankang

    2000-05-01

    We present a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0-2.0 GHz) of the Beijing Astronomical Observatory (BAO). Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. We call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is a nice interpretation of type III burst pair since the plasma beta β~=0.01 is much less than 1 and the beams have velocity of about 1.07×10^8 cm s^-1 after leaving the reconnection region if we assume that the ambient magnetic field strength is about 100 G.

  1. Type III burst pair.

    NASA Astrophysics Data System (ADS)

    Zongjun, Ning; Fu, Qijun; Quankang, Lu

    2000-05-01

    Presents a special solar radio burst detected on 5 January 1994 using the multi-channel (50) spectrometer (1.0 - 2.0 GHz) of the Beijing Astronomical Observatory. Sadly, the whole event could not be recorded since it had a broader bandwidth than the limit range of the instrument. The important part was obtained, however. The event is composed of a normal drift type III burst on the lower frequency side and a reverse drift type III burst appearing almost simultaneously on the high side. The authors call the burst type III a burst pair. It is a typical characteristic of two type III bursts that they are morphologically symmetric about some frequency from 1.64 GHz to 1.78 GHz on the dynamic spectra records, which indicates that there are two different electron beams from the same acceleration region travelling simultaneously in opposite directions (upward and downward). A magnetic reconnection mode is an interpretation of type III burst pair.

  2. Fluid-dynamical description of the gap fluctuations of two trapped fermion species

    NASA Astrophysics Data System (ADS)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2010-11-01

    We apply a recent generalisation of the fluid-dynamical scheme developed for two trapped fermion species with pairing interactions to examine the fluctuations of the gap density coupled to the particle transition density at low energy. The dynamical scheme satisfies Kohn's theorem for both the particle density and the pairing gap. We analyse the form of the gap fluctuations in a spherical trap in terms of their multipolarity and the interaction strength, and find that coupling to the particle density produces considerable stiffness of the gap transition density together with compression towards the centre of the trap.

  3. Replica neutron guides for experiments with ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Vasil'ev, A. V.; Lasakov, M. S.; Siber, E. V.; Murashkin, A. N.; Egorov, A. I.; Fomin, A. K.; Sbitnev, S. V.; Geltenbort, P.; Zimmer, O.

    2017-01-01

    The method for producing neutron guides for ultracold neutrons based on the replica method has been described. A comparative analysis of the quality of replica neutron guides, neutron guides made from polished anode-mechanical steel tubes, and neutron guides from electropolished tubes has been given.

  4. Neutron beam design, development, and performance for neutron capture therapy

    SciTech Connect

    Harling, O.K.; Bernard, J.A. ); Zamenhof, R.G. )

    1990-01-01

    The report presents topics presented at a workshop on neutron beams and neutron capture therapy. Topics include: neutron beam design; reactor-based neutron beams; accelerator-based neutron beams; and dosimetry and treatment planning. Individual projects are processed separately for the databases. (CBS)

  5. Anisotropic evolution of energy gap in Bi2212 superconductor

    NASA Astrophysics Data System (ADS)

    Durajski, A. P.

    2016-10-01

    We present a systematic analysis of the energy gap in underdoped Bi2212 superconductor as a function of temperature and hole doping level. Within the framework of the theoretical model containing the electron-phonon and electron-electron-phonon pairing mechanism, we reproduced the measurement results of modern ARPES experiments with very high accuracy. We showed that the energy-gap amplitude is very weakly dependent on the temperature but clearly dependent on the level of doping. The evidence for a non-zero energy gap above the critical temperature, referred to as a pseudogap, was also obtained.

  6. Surrogate ratio methodology for the indirect determination of neutron capture cross sections

    SciTech Connect

    Goldblum, B. L.; Prussin, S. G.; Bernstein, L. A.; Younes, W.; Guttormsen, M.; Nyhus, H. T.

    2010-05-15

    The relative gamma-decay probabilities of the {sup 162}Dy to {sup 161}Dy and {sup 162}Dy to {sup 164}Dy residual nuclei, produced using light-ion-induced direct reactions, were measured as a function of excitation energy using the CACTUS array at the Oslo Cyclotron Laboratory. The external surrogate ratio method (SRM) was used to convert these relative gamma-decay probabilities into the {sup 161}Dy(n,gamma) cross section in an equivalent neutron energy range of 130-560 keV. The directly measured {sup 161}Dy(n,gamma) cross section, obtained from the Evaluated Nuclear Data Files (ENDF/B-VII.0), was compared to the experimentally determined surrogate {sup 161}Dy(n,gamma) cross section obtained using compound-nucleus pairs with both similar ({sup 162}Dy to {sup 164}Dy) and dissimilar ({sup 162}Dy to {sup 161}Dy) nuclear structures. A gamma-ray energy threshold was identified, based upon pairing gap parameters, that provides a first-order correction to the statistical gamma-ray tagging approach and improves the agreement between the surrogate cross-section data and the evaluated result.

  7. Energy levels of odd-even nuclei using broken pair model

    SciTech Connect

    Hamammu, I. M.; Haq, S.; Eldahomi, J. M.

    2012-09-06

    A method to calculate energy levels and wave functions of odd-even nuclei, in the frame work of the broken pair model have been developed. The accuracy of the model has been tested by comparing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model, where there are two-proton/neutron + one-neutron/proton in the valence levels. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.

  8. Pairing in half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2015-03-01

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current-current interactions. Our results show that there can be a continuous transition from the Halperin-Lee-Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that l = 1 angular momentum channel is quite different from higher angular momentum channel l >= 3 . Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν =1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively. This work was supported by US NSF under the Grant DMR-1004520, the funds from the David S. Saxon Presidential Chair at UCLA(37952), and by the Institute for Basic Science in Korea through the Young Scientist grant (5199-2014003).

  9. Pairing in half-filled Landau level

    SciTech Connect

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2014-12-15

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current–current interactions. Our results show that there can be a continuous transition from the Halperin–Lee–Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that ℓ=1 angular momentum channel is quite different from higher angular momenta ℓ≥3. Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν=1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively.

  10. Extended AB period study of the electron pairing transition in t-J ladders

    SciTech Connect

    Kusakabe, Koichi; Aoki, Hideo

    1996-11-01

    The extended Aharonov-Bohm period test, recently proposed by the present authors, is used to study the electron pairing transition in the t-J ladders. The critical point is detected as a gap opening in the extended spectral flow. The result suggests a pairing prior to the onset of a phase separation, which is consistent with a recent Tomonaga-Luttinger analysis.

  11. Neutron metrology laboratory facility simulation.

    PubMed

    Pereira, Mariana; Salgado, Ana P; Filho, Aidano S; Pereira, Walsan W; Patrão, Karla C S; Fonseca, Evaldo S

    2014-10-01

    The Neutron Low Scattering Laboratory in Brazil has been completely rebuilt. Evaluation of air attenuation parameters and neutron component scattering in the room was done using Monte Carlo simulation code. Neutron fields produced by referenced neutron source were used to calculate neutron scattering and air attenuation.

  12. Neutron chopper development at LANSCE

    SciTech Connect

    Nutter, M.; Lewis, L.; Tepper, S.; Silver, R.N.; Heffner, R.H.

    1985-01-01

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs.

  13. Exact and approximate ensemble treatments of thermal pairing in a multilevel model

    NASA Astrophysics Data System (ADS)

    Hung, N. Quang; Dang, N. Dinh

    2009-05-01

    A systematic comparison is conducted for pairing properties of finite systems at nonzero temperature as predicted by the exact solutions of the pairing problem embedded in three principal statistical ensembles, as well as the unprojected (FTBCS1+SCQRPA) and Lipkin+Nogami projected (FTLN1+SCQRPA) theories that include the quasiparticle number fluctuation and coupling to pair vibrations within the self-consistent quasiparticle random-phase approximation. The numerical calculations are performed for the pairing gap, total energy, heat capacity, entropy, and microcanonical temperature within the doubly folded equidistant multilevel pairing model. The FTLN1+SCQRPA predictions agree best with the exact grand-canonical results. In general, all approaches clearly show that the superfluid-normal phase transition is smoothed out in finite systems. A novel formula is suggested for extracting the empirical pairing gap in reasonable agreement with the exact canonical results.

  14. Neutron radiography using neutron imaging plate.

    PubMed

    Chankow, Nares; Punnachaiya, Suvit; Wonglee, Sarinrat

    2010-01-01

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x10(5) ns/cm(2) s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10(-3) PSL/mm(2) per neutron and 6.7x10(-5) PSL/mm(2) per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable.

  15. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)

  16. Multiprocessor switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael K; Salapura, Valentina

    2014-03-11

    System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

  17. Activities on Nuclear Data Measurements at Pohang Neutron Facility

    NASA Astrophysics Data System (ADS)

    Kim, Guinyun

    2009-03-01

    We report the activities of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and a 12-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to few hundreds eV by using the neutron time-of-flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements of several samples (Ta, Mo) are in general agreement with the evaluated data in ENDF/B-VI. We measured the thermal neutron capture cross-sections and the resonance integrals of the 186W(n,γ)187W reaction and the 98Mo(n,γ)99Mo reaction by the activation method using the 197Au(n,γ)198Au monitor reaction as a single comparator. We also report the isomeric yield ratios for the 44 m, gSc isomeric pairs produced from four different photonuclear reactions 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)52m,gMn, and 103Rh(γ,4n)99m,gRh by using the activation method.

  18. Evaluation of Gnevyshev Gap Effects on Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Storini, Marisa; Laurenza, M.; Fujii, Z.

    2003-07-01

    Data from three neutron monitors (Climax, Rome, Huancayo/Haleakala) and from the Nagoya multidirectional muon telescope are used to investigate the energy dependence of the Gnevyshev Gap effects on galactic particles during solar activity cycle N. 22. Results suggest that the dual-peak shape of the modulation of galactic cosmic rays should be practically negligible for rigidity particles above 150 ± 20 GV.

  19. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  20. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  1. Microwave Type III Pair Bursts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Tan, Baolin; Mészárosová, Hana; Karlický, Marian; Huang, Guangli; Tan, Chengming

    2016-03-01

    A solar microwave type III pair burst is composed of normal and reverse-sloped (RS) burst branches with oppositely fast frequency drifts. It is the most sensitive signature of the primary energy release and electron accelerations in flares. This work reports 11 microwave type III pair events in 9 flares observed by radio spectrometers in China and the Czech Republic at a frequency of 0.80-7.60 GHz during 1994-2014. These type III pairs occurred in flare impulsive and postflare phases with separate frequencies in the range of 1.08-3.42 GHz and a frequency gap of 10-1700 MHz. The frequency drift increases with the separate frequency (fx), the lifetime of each burst is anti-correlated to fx, while the frequency gap is independent of fx. In most events, the normal branches are drifting obviously faster than the RS branches. The type III pairs occurring in flare impulsive phase have lower separate frequencies, longer lifetimes, wider frequency gaps, and slower frequency drifts than that occurring in postflare phase. Also, the latter always has strong circular polarization. Further analysis indicates that near the flare energy release sites the plasma density is about {10}10{--}{10}11 cm-3 and the temperature is higher than 107 K. These results provide new constraints to the acceleration mechanism in solar flares.

  2. Neutron sources and applications

    SciTech Connect

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  3. Prototype Stilbene Neutron Collar

    SciTech Connect

    Prasad, M. K.; Shumaker, D.; Snyderman, N.; Verbeke, J.; Wong, J.

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  4. Italian neutron sources

    NASA Astrophysics Data System (ADS)

    Prata, M.; Alloni, D.; De Felice, P.; Palomba, M.; Pietropaolo, A.; Pillon, M.; Quintieri, L.; Santagata, A.; Valente, P.

    2014-11-01

    Many research activities, instrumental analysis, studies of radiation damage, etc., require neutron sources. The main neutron sources present in Italy are described in three different sections: nuclear research reactors, accelerator driven, and metrology stations. The nuclear research reactors of LENA (University of Pavia) and ENEA Casaccia are described in terms of irradiation facilities available, neutron flux for each of them and the main activities carried out by each research centre. In the second section, the Frascati Neutron Generator (FNG), the Frascati Beam-Test Facility (BTF) and their main features are reported. In the last section there is a detailed description of the institutional role and the main activities carried out in the field of neutron metrology by the National Institute for Metrology of Ionizing Radiation (INMRI) with a brief description of neutron sources of which the institute is endowed.

  5. Neutron decay of 15C resonances by measurements of neutron time-of-flight

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; Agodi, C.; Assié, M.; Azaiez, F.; Cappuzzello, F.; Carbone, D.; de Séréville, N.; Foti, A.; Pandola, L.; Scarpaci, J. A.; Sgouros, O.; Soukeras, V.; Tropea, S.

    2016-06-01

    The neutron decay of the resonant states of light neutron-rich nuclei is an important and poorly explored property, useful to extract valuable nuclear structure information. In the present paper the neutron decay of the 15C resonances populated via the two-neutron transfer reaction 13C(18O,16On ) at 84-MeV incident energy is reported for the first time using an innovative technique which couples the MAGNEX magnetic spectrometer and the EDEN neutron detector array. Experimental data show that the resonances below the one-neutron emission threshold decay to the 14C ground state via one-neutron emission with an almost 100 % total branching ratio, whereas the recently observed 15C giant pairing vibration at 13.7 MeV mainly decays via two-neutron emission.

  6. Weird Stellar Pair Puzzles Scientists

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have discovered a speedy spinning pulsar in an elongated orbit around an apparent Sun-like star, a combination never seen before, and one that has them puzzled about how the strange system developed. Orbital Comparison Comparing Orbits of Pulsar and Its Companion to our Solar System. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for full caption information and available graphics. "Our ideas about how the fastest-spinning pulsars are produced do not predict either the kind of orbit or the type of companion star this one has," said David Champion of the Australia Telescope National Facility. "We have to come up with some new scenarios to explain this weird pair," he added. Astronomers first detected the pulsar, called J1903+0327, as part of a long-term survey using the National Science Foundation's Arecibo radio telescope in Puerto Rico. They made the discovery in 2006 doing data analysis at McGill University, where Champion worked at the time. They followed up the discovery with detailed studies using the Arecibo telescope, the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, the Westerbork radio telescope in the Netherlands, and the Gemini North optical telescope in Hawaii. The pulsar, a city-sized superdense stellar corpse left over after a massive star exploded as a supernova, is spinning on its axis 465 times every second. Nearly 21,000 light-years from Earth, it is in a highly-elongated orbit that takes it around its companion star once every 95 days. An infrared image made with the Gemini North telescope in Hawaii shows a Sun-like star at the pulsar's position. If this is an orbital companion to the pulsar, it is unlike any companions of other rapidly rotating pulsars. The pulsar, a neutron star, also is unusually massive for its type. "This combination of properties is unprecedented. Not only does it require us to figure out how this system was produced, but the large mass may help us understand how matter behaves at extremely

  7. The advanced neutron source

    SciTech Connect

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 8 {times} 10{sup 19} m{sup {minus}2} {center dot}s{sup {minus}1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research.

  8. The Advanced Neutron Source

    SciTech Connect

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux ({phi}{sub th} {approx} 9{center dot}10{sup 19} m{sup -2}{center dot}s{sup -1}) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs.

  9. The DIORAMA Neutron Emitter

    SciTech Connect

    Terry, James Russell

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  10. Neutron absorptiometric titration.

    PubMed

    Tölgyessy, J; Varga, S; Dillinger, P

    1967-03-01

    A method is outlined for detection of two-phase titration end-points by means of an abrupt change in the neutron-absorption characteristics of one of the phases. One of the components of the precipitate must have a large neutron absorption cross-section, and the disappearance or appearance of neutron absorption by the supernatant liquid from the precipitation reaction then marks the completion of precipitation.

  11. ATR neutron spectral characterization

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  12. Changes in the Black-White Test score Gap in the Elementary School Grades. CSE Report 715

    ERIC Educational Resources Information Center

    Koretz, Daniel; Kim, Young-Suk

    2007-01-01

    In a pair of recent studies, Fryer and Levitt (2004a, 2004b) analyzed the Early Childhood Longitudinal Study--Kindergarten Cohort (ECLS-K) to explore the characteristics of the Black-White test score gap in young children. They found that the gap grew markedly between kindergarten and the third grade and that they could predict the gap from…

  13. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  14. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  15. Rotational-translational fourier imaging system requiring only one grid pair

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2006-01-01

    The sky contains many active sources that emit X-rays, gamma rays, and neutrons. Unfortunately hard X-rays, gamma rays, and neutrons cannot be imaged by conventional optics. This obstacle led to the development of Fourier imaging systems. In early approaches, multiple grid pairs were necessary in order to create rudimentary Fourier imaging systems. At least one set of grid pairs was required to provide multiple real components of a Fourier derived image, and another set was required to provide multiple imaginary components of the image. It has long been recognized that the expense associated with the physical production of the numerous grid pairs required for Fourier imaging was a drawback. Herein one grid pair (two grids), with accompanying rotation and translation, can be used if one grid has one more slit than the other grid, and if the detector is modified.

  16. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  17. Broadband illumination of superconducting pair breaking photon detectors

    NASA Astrophysics Data System (ADS)

    Guruswamy, T.; Goldie, D. J.; Withington, S.

    2016-04-01

    Understanding the detailed behaviour of superconducting pair breaking photon detectors such as Kinetic Inductance Detectors (KIDs) requires knowledge of the nonequilibrium quasiparticle energy distributions. We have previously calculated the steady state distributions resulting from uniform absorption of monochromatic sub gap and above gap frequency radiation by thin films. In this work, we use the same methods to calculate the effect of illumination by broadband sources, such as thermal radiation from astrophysical phenomena or from the readout system. Absorption of photons at multiple above gap frequencies is shown to leave unchanged the structure of the quasiparticle energy distribution close to the superconducting gap. Hence for typical absorbed powers, we find the effects of absorption of broadband pair breaking radiation can simply be considered as the sum of the effects of absorption of many monochromatic sources. Distribution averaged quantities, like quasiparticle generation efficiency η, match exactly a weighted average over the bandwidth of the source of calculations assuming a monochromatic source. For sub gap frequencies, however, distributing the absorbed power across multiple frequencies does change the low energy quasiparticle distribution. For moderate and high absorbed powers, this results in a significantly larger η-a higher number of excess quasiparticles for a broadband source compared to a monochromatic source of equal total absorbed power. Typically in KIDs the microwave power absorbed has a very narrow bandwidth, but in devices with broad resonance characteristics (low quality factors), this increase in η may be measurable.

  18. Total scattering analysis of cation coordination and vacancy pair distribution in Yb substituted δ-Bi2O3.

    PubMed

    Leszczynska, M; Liu, X; Wrobel, W; Malys, M; Norberg, S T; Hull, S; Krok, F; Abrahams, I

    2013-11-13

    Reverse Monte Carlo (RMC) modelling of neutron total scattering data, combined with conventional Rietveld analysis of x-ray and neutron data, has been used to describe the cation coordination environments and vacancy pair distribution in the oxide ion conducting electrolyte Bi3YbO6. The thermal variation of the cubic fluorite unit cell volume, monitored by variable temperature x-ray and neutron experiments, reveals significant curvature, which is explained by changes in the oxide ion distribution. There is a significant increase in tetrahedral oxide ion vacancy concentration relative to δ-Bi2O3, due to the creation of Frenkel defects associated with the Yb(3+) cation. The tetrahedral oxide ion vacancy concentration increases from room temperature to 800 °C, but little change is observed in the vacancy pair distribution with temperature. The vacancy pair distributions at both temperatures are consistent with a favouring of [100] vacancy pairs.

  19. Stereo Pair, Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This stereoscopic image pair is a perspective view that shows the western part of the city of Pasadena, California, looking north toward the San Gabriel Mountains. Portions of the cities of Altadena and La Canada Flintridge are also shown. The cluster of large buildings left of center, at the base of the mountains, is the Jet Propulsion Laboratory. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Data shown in this image can be used to predict both how wildfires spread over the terrain and how mudflows are channeled down the canyons.

    The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation, U. S. Geological Survey digital aerial photography provided the image detail, and the Landsat Thematic Mapper provided the color. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data and the aerial photography. The image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration

  20. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  1. Rho GAPs and GEFs

    PubMed Central

    van Buul, Jaap D; Geerts, Dirk; Huveneers, Stephan

    2014-01-01

    Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease. PMID:24622613

  2. Closing the Performance Gap.

    ERIC Educational Resources Information Center

    Riggins, Cheryl G.

    2002-01-01

    Describes how the principal of a K-2, 400-student suburban elementary school near Flint, Michigan, worked with her staff and superintendent to develop and implement a strategic plan to close the student achievement gap. Reports significant improvement in reading and math scores after 1 year. (PKP)

  3. STEMMING the Gap

    ERIC Educational Resources Information Center

    Kahler, Jim; Valentine, Nancy

    2011-01-01

    America has a gap when it comes to youth pursuing science and technology careers. In an effort to improve the knowledge and application of science, technology, engineering, and math (STEM), after-school programs can work in conjunction with formal in-school curriculum to improve science education. One organization that actively addresses this…

  4. Confronting the Autonomy Gap

    ERIC Educational Resources Information Center

    Adamowski, Steven; Petrilli, Michael J.

    2007-01-01

    "The Autonomy Gap," a recent study by the American Institute for Research and the Thomas B. Fordham Institute, found that many public elementary school principals feel constrained by a bureaucracy that impedes their ability to raise student achievement. Unfortunately, those principals are still held accountable for their school's results--even…

  5. The Academic Generation Gap

    ERIC Educational Resources Information Center

    Dronzek, Anna

    2008-01-01

    The current generation gap in academia is different--fundamentally shaped by the structural problems of academic employment. The job market has especially exacerbated tensions between senior and junior faculty by ratcheting up expectations and requirements at every stage of the academic career. The disparities have been mentioned often enough to…

  6. Structuring the Information Gap.

    ERIC Educational Resources Information Center

    Edge, Julian

    1984-01-01

    Describes an information gap procedure to teach a new structure which requires students to look for and exchange information in order to complete a task in an English as a second language class. Illustrates the method with a set of materials and suggests ways for teachers to produce similar materials. (SED)

  7. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  8. Estimating Gender Wage Gaps

    ERIC Educational Resources Information Center

    McDonald, Judith A.; Thornton, Robert J.

    2011-01-01

    Course research projects that use easy-to-access real-world data and that generate findings with which undergraduate students can readily identify are hard to find. The authors describe a project that requires students to estimate the current female-male earnings gap for new college graduates. The project also enables students to see to what…

  9. California: Emigrant Gap

    Atmospheric Science Data Center

    2014-05-15

    ... Imaging SpectroRadiometer (MISR) images of the Central Valley and the Sierra Nevada Mountains show several smoke plumes from wildfires ... from the Emigrant Gap Fire, located about 40 kilometers west of Lake Tahoe. The animated panorama uses different MISR cameras to enable ...

  10. Bridging a Communication Gap

    ERIC Educational Resources Information Center

    Kahn, Ethel

    1972-01-01

    Description of a community program in cooperation with a regional extension service. The goals were to explore the generation gap, and conflict in life values, understand family role, increase self awareness, improve adult-youth communication, and understand the individual and his relationship to basic social principles. (Author/JB)

  11. Bridging the Development Gap.

    DTIC Science & Technology

    1999-11-01

    Bridging the Development Gap is contractual cooperative agreement between Mercury Computer Systems, Inc. and DARPA. This program was developed...processing, interfacing with I/O devices, memory constraints, as well as real-time throughput and latency challenges. Mercury has bridged the indicated

  12. Pygmy stars: first pair.

    PubMed

    Zwicky, F

    1966-07-01

    The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.

  13. Spin-polarized neutron matter: Critical unpairing and BCS-BEC precursor

    NASA Astrophysics Data System (ADS)

    Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W.

    2016-01-01

    We obtain the critical magnetic field required for complete destruction of S -wave pairing in neutron matter, thereby setting limits on the pairing and superfluidity of neutrons in the crust and outer core of magnetars. We find that for fields B ≥1017 G the neutron fluid is nonsuperfluid—if weaker spin 1 superfluidity does not intervene—a result with profound consequences for the thermal, rotational, and oscillatory behavior of magnetars. Because the dineutron is not bound in vacuum, cold dilute neutron matter cannot exhibit a proper BCS-BEC crossover. Nevertheless, owing to the strongly resonant behavior of the n n interaction at low densities, neutron matter shows a precursor of the BEC state, as manifested in Cooper-pair correlation lengths being comparable to the interparticle distance. We make a systematic quantitative study of this type of BCS-BEC crossover in the presence of neutron fluid spin polarization induced by an ultrastrong magnetic field. We evaluate the Cooper-pair wave function, quasiparticle occupation numbers, and quasiparticle spectra for densities and temperatures spanning the BCS-BEC crossover region. The phase diagram of spin-polarized neutron matter is constructed and explored at different polarizations.

  14. Non-Statistical Effects in Neutron Capture

    NASA Astrophysics Data System (ADS)

    Koehler, P. E.; Bredeweg, T. A.; Guber, K. H.; Harvey, J. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wiarda, D.; Wouters, J. M.

    2009-01-01

    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width (Γn0) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a 147Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the Γn0 distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,α) measurements had revealed that the α strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C6D6 γ-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a 95Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.

  15. Non-Statistical Effects in Neutron Capture

    SciTech Connect

    Koehler, P. E.; Guber, K. H.; Harvey, J. A.; Wiarda, D.; Bredeweg, T. A.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Reifarth, R.

    2009-01-28

    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width ({gamma}{sub n}{sup 0}) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a {sup 147}Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the {gamma}{sub n}{sup 0} distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,{alpha}) measurements had revealed that the {alpha} strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C{sub 6}D{sub 6}{gamma}-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a {sup 95}Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.

  16. Non-Statistical Effects in Neutron Capture

    SciTech Connect

    Koehler, Paul Edward; Bredeweg, t a; Guber, Klaus H; Harvey, John A; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wiarda, Dorothea; Wouters, J. M.

    2009-01-01

    There have been many reports of non-statistical effects in neutron-capture measurements. However, reports of deviations of reduced-neutron-width ({Gamma}n{sup 0}) distributions from the expected Porter-Thomas (PT) shape largely have been ignored. Most of these deviations have been reported for odd-A nuclides. Because reliable spin (J) assignments have been absent for most resonances for such nuclides, it is possible that reported deviations from PT might be due to incorrect J assignments. We recently developed a new method for measuring spins of neutron resonances by using the DANCE detector at the Los Alamos Neutron Science Center (LANSCE). Measurements made with a 147Sm sample allowed us to determine spins of almost all known resonances below 1 keV. Furthermore, analysis of these data revealed that the {Gamma}n{sup 0} distribution was in good agreement with PT for resonances below 350 eV, but in disagreement with PT for resonances between 350 and 700 eV. Our previous (n,{alpha}) measurements had revealed that the {alpha} strength function also changes abruptly at this energy. There currently is no known explanation for these two non-statistical effects. Recently, we have developed another new method for determining the spins of neutron resonances. To implement this technique required a small change (to record pulse-height information for coincidence events) to a much simpler apparatus: A pair of C6D6 ?-ray detectors which we have employed for many years to measure neutron-capture cross sections at the Oak Ridge Electron Linear Accelerator (ORELA). Measurements with a 95Mo sample revealed that not only does the method work very well for determining spins, but it also makes possible parity assignments. Taken together, these new techniques at LANSCE and ORELA could be very useful for further elucidation of non-statistical effects.

  17. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy

    PubMed Central

    Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Kusar, P.; Mihailovic, D.

    2014-01-01

    In classical superconductors an energy gap and phase coherence appear simultaneously with pairing at the transition to the superconducting state. In high-temperature superconductors, the possibility that pairing and phase coherence are distinct and independent processes has led to intense experimental search of their separate manifestations. Using femtosecond spectroscopy methods we now show that it is possible to clearly separate fluctuation dynamics of the superconducting pairing amplitude from the phase relaxation above the critical transition temperature. Empirically establishing a close correspondence between the superfluid density measured by THz spectroscopy and superconducting optical pump-probe response over a wide region of temperature, we find that in differently doped Bi2Sr2CaCu2O8+δ crystals the pairing gap amplitude monotonically extends well beyond Tc, while the phase coherence shows a pronounced power-law divergence as T → Tc, thus showing that phase coherence and gap formation are distinct processes which occur on different timescales. PMID:25014162

  18. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  19. pairing near a Lifshitz transition

    SciTech Connect

    Mishra, Vivek; Scalapino, Douglas J.; Maier, Thomas A.

    2016-08-26

    Observations of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point where a spin density wave instability is suppressed as the hole band drops below the Fermi energy raise questions for spin-fluctuation theories. In this paper we discuss spin-fluctuation pairing for a bilayer Hubbard model, which goes through such a Lifshitz transition. Our results show s± pairing with a transition temperature that peaks beyond the Lifshitz point and a gap function that has essentially the same magnitude but opposite sign on the incipient hole band as it does on the electron band that has a Fermi surface.

  20. pairing near a Lifshitz transition

    PubMed Central

    Mishra, Vivek; Scalapino, Douglas J.; Maier, Thomas A.

    2016-01-01

    Observations of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point where a spin density wave instability is suppressed as the hole band drops below the Fermi energy raise questions for spin-fluctuation theories. Here we discuss spin-fluctuation pairing for a bilayer Hubbard model, which goes through such a Lifshitz transition. We find s± pairing with a transition temperature that peaks beyond the Lifshitz point and a gap function that has essentially the same magnitude but opposite sign on the incipient hole band as it does on the electron band that has a Fermi surface. PMID:27561327

  1. Cooperon condensation and intravalley pairing states in honeycomb Dirac systems

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Shunji; Goryo, Jun; Arahata, Emiko; Sigrist, Manfred

    2016-09-01

    Motivated by recent developments in the experimental study of superconducting graphene and transition metal dichalcogenides, we investigate superconductivity of the Kane-Mele (KM) model with short-range attractive interactions on the two-dimensional honeycomb lattice. We show that intravalley spin-triplet pairing arises from nearest-neighbor (NN) attractive interaction and the intrinsic spin-orbit coupling. We demonstrate this in two independent approaches: We study superconducting instability driven by condensation of Cooperons, which are in-gap bound states of two conduction electrons, within the T -matrix approximation and also study the superconducting ground state within the mean-field theory. We find that Cooperons with antiparallel spins condense at the K and K' points. This leads to the emergence of an intravalley spin-triplet pairing state belonging to the irreducible representation A1 of the point group C6 v. The fact that this pairing state has opposite chirality for K and K' identifies this state as a "helical" valley-triplet state, the valley analog to the 3He -B phase in two dimensions. Because of the finite center of mass momentum of Cooper pairs, the pair amplitude in NN bonds exhibits spatial modulation on the length scale of lattice constant, such that this pairing state may be viewed as a pair-density wave state. We find that the pair amplitude spontaneously breaks the translational symmetry and exhibits a p -Kekulé pattern. We also discuss the selection rule for pairing states focusing the characteristic band structure of the KM model and the Berry phase effects to the emergence of the intravalley pairing state.

  2. SDSS DR2 Merging pairs

    NASA Astrophysics Data System (ADS)

    Allam, S. S.; Tucker, D. L.; SDSS Collaboration

    2004-05-01

    We present and analyze a catalog of 9,000 Merging pairs candidates to g=21 from the imaging data of the Sloan Digital Sky Survey (SDSS) Second Data Release (DR2). Candidates were selected using an automated algorithm (Allam et al. 2004) that is efficient in its selection of galaxy pairs. We highlight possible science applications of such a large photometric sample of merging pais and discuss future improvements, including incorporating magnitudes and pushing to higher redshifts and fainter pairs.

  3. Formalism for the determination of structural isotope effects with neutrons

    SciTech Connect

    Neuefeind, Joerg C; Benmore, Chris J

    2009-01-01

    In general the analysis of neutron isotopic substitution experiments in terms of partial structure factors and partial pair distribution functions is based on the assumption that the structure of isotopic variants of a molecule is identical. This assumption is clearly only an approximation especially in the case of hydrogen bonding molecular liquids like liquid water and structural isotope effects have been measured with X-rays for more than 20 years. A analysis method of neutron isotope data is presented that avoids the necessity to assume structural equality and allows the determination of the isotope effect in the hydrogen-hydrogen partial structure factor of liquid water from neutron data. It is shown that a combination of X-ray and neutron scattering measurements allows in principle the determination of the isotope effects on all all partials structure factors of liquid water.

  4. Neutron capture therapies

    SciTech Connect

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  5. Neutron capture therapies

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  6. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    Leysath, W.; Brown, R. L.

    1972-01-01

    Neutron radiographic viewing system consisting of camera head and control processor is developed for use in nondestructive testing applications. Camera head consists of neutron-sensitive image intensifier system, power supply, and SEC vidicon camera head. Both systems, with their optics, are housed on test mount.

  7. Shielding for thermal neutrons.

    PubMed

    McCall, R C

    1997-01-01

    The problem of calculating the neutron capture gamma-ray dose rate due to thermal neutron capture in a boron or cadmium rectangular shield is considered. An example is given for shielding for a door at the exit of medical accelerator room maze in order to determine the optimum location of lead relative to the borated polyethylene.

  8. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  9. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Untermyer, S.; Hutter, E.

    1959-08-01

    This patent relates to "shadow" control of a nuclear reactor. The control means comprises a plurality ot elongated rods disposed adjacent and parallel to each other, The morphology and effects of gases generated within sections of neutron absorbing materials and equal length sections of neutron permeable materials together with means for longitudinally pcsitioning the rcds relative to each other.

  10. Controversies in kidney paired donation.

    PubMed

    Gentry, Sommer E; Montgomery, Robert A; Segev, Dorry L

    2012-07-01

    Kidney paired donation represented 10% of living kidney donation in the United States in 2011. National registries around the world and several separate registries in the United States arrange paired donations, although with significant variations in their practices. Concerns about ethical considerations, clinical advisability, and the quantitative effectiveness of these approaches in paired donation result in these variations. For instance, although donor travel can be burdensome and might discourage paired donation, it was nearly universal until convincing analysis showed that living donor kidneys can sustain many hours of cold ischemia time without adverse consequences. Opinions also differ about whether the last donor in a chain of paired donation transplants initiated by a nondirected donor should donate immediately to someone on the deceased donor wait-list (a domino or closed chain) or should be asked to wait some length of time and donate to start another sequence of paired donations later (an open chain); some argue that asking the donor to donate later may be coercive, and others focus on balancing the probability that the waiting donor withdraws versus the number of additional transplants if the chain can be continued. Other controversies in paired donation include simultaneous versus nonsimultaneous donor operations, whether to enroll compatible pairs, and interactions with desensitization protocols. Efforts to expand public awareness of and participation in paired donation are needed to generate more transplant opportunities.

  11. Neutron filters for producing monoenergetic neutron beams

    SciTech Connect

    Harvey, J.A.; Hill, N.W.; Harvey, J.R.

    1982-01-01

    Neutron transmission measurements have been made on high-purity, highly-enriched samples of /sup 58/Ni (99.9%), /sup 60/Ni (99.7%), /sup 64/Zn (97.9%) and /sup 184/W (94.5%) to measure their neutron windows and to assess their potential usefulness for producing monoenergetic beams of intermediate energies from a reactor. Transmission measurements on the Los Alamos Sc filter (44.26 cm Sc and 1.0 cm Ti) have been made to determine the characteristics of the transmitted neutron beam and to measure the total cross section of Sc at the 2.0 keV minimum. When corrected for the Ti and impurities, a value of 0.35 +- 0.03 b was obtained for this minimum.

  12. Neutron measurements in radiotherapy: A method to correct neutron sensitive devices for parasitic photon response.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Jimenez-Ortega, E; Barbeiro, A R; Sánchez-Nieto, B; Sánchez-Doblado, F

    2017-02-12

    One of the major causes of secondary malignancies after radiotherapy treatments are peripheral doses, known to increase for some newer techniques (such as IMRT or VMAT). For accelerators operating above 10MV, neutrons can represent important contribution to peripheral doses. This neutron contamination can be measured using different passive or active techniques, available in the literature. As far as active (or direct-reading) procedures are concerned, a major issue is represented by their parasitic photon sensitivity, which can significantly affect the measurement when the point of test is located near to the field-edge. This work proposes a simple method to estimate the unwanted photon contribution to these neutrons. As a relevant case study, the use of a recently neutron sensor for "in-phantom" measurements in high-energy machines was considered. The method, called "Dual Energy Photon Subtraction" (DEPS), requires pairs of measurements performed for the same treatment, in low-energy (6MV) and high energy (e.g. 15MV) fields. It assumes that the peripheral photon dose (PPD) at a fixed point in a phantom, normalized to the unit photon dose at the isocenter, does not depend on the treatment energy. Measurements with ionization chamber and Monte Carlo simulations were used to evaluate the validity of this hypothesis. DEPS method was compared to already published correction methods, such as the use of neutron absorber materials. In addition to its simplicity, an advantage of DEPs procedure is that it can be applied to any radiotherapy machine.

  13. High-dose neutron detector project update

    SciTech Connect

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-08-10

    These are the slides for a progress review meeting by the sponsor. This is an update on the high-dose neutron detector project. In summary, improvements in both boron coating and signal amplification have been achieved; improved boron coating materials and procedures have increased efficiency by ~ 30-40% without the corresponding increase in the detector plate area; low dead-time via thin cell design (~ 4 mm gas gaps) and fast amplifiers; prototype PDT 8” pod has been received and testing is in progress; significant improvements in efficiency and stability have been verified; use commercial PDT 10B design and fabrication to obtain a faster path from the research to practical high-dose neutron detector.

  14. Pair Cascades and Deathlines in Magnetic Fields with Offset Polar Caps

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alex G.

    2012-01-01

    We present results of electron-positron pair cascade simulations in a dipole magnetic field whose polar cap is offset from the dipole axis. In such a field geometry, the polar cap is displaced a small fraction of the neutron star radius from the star symmetry axis and the field line radius of curvature is modified. Using the modified parallel electric field near the offset polar cap, we simulate pair cascades to determine the pair deathlines and pair multiplicities as a function of the offset. We find that the pair multiplicity can change dr;unatically with a modest offset, with a significant increase on one side of the polar cap. Lower pair deathlines allow a larger fraction of the pulsar population, that include old and millisecond pulsars, to produce cascades with high multiplicity. The results have some important implications for pulsar particle production, high-energy emission and cosmic-ray contribution.

  15. Steady streaming around a cylinder pair

    NASA Astrophysics Data System (ADS)

    Coenen, W.

    2016-11-01

    The steady streaming motion that appears around a pair of circular cylinders placed in a small-amplitude oscillatory flow is considered. Attention is focused on the case where the Stokes layer thickness at the surface of the cylinders is much smaller than the cylinder radius, and the streaming Reynolds number is of order unity or larger. In that case, the steady streaming velocity that persists at the edge of the Stokes layer can be imposed as a boundary condition to numerically solve the outer streaming motion that it drives in the bulk of the fluid. It is investigated how the gap width between the cylinders and the streaming Reynolds number affect the flow topology. The results are compared against experimental observations.

  16. Kinetics-Driven Superconducting Gap in Underdoped Cuprate Superconductors Within the Strong-Coupling Limit

    NASA Astrophysics Data System (ADS)

    Ku, Wei; Yildirim, Yucel

    2012-02-01

    A generic theory [1] of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental ``second gap'' in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering) processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure dx^2-y^2 wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity. [4pt] [1] Y. Yildirim and Wei Ku, PRX 1, 011011 (2011).

  17. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  18. Neutrons against cancer

    NASA Astrophysics Data System (ADS)

    Dovbnya, A. N.; Kuplennikov, E. L.; Kandybey, S. S.; Krasiljnikov, V. V.

    2014-09-01

    The review is devoted to the analysis and generalization of the research carried out during recent years in industrially advanced countries on the use of fast, epithermal, and thermal neutrons for therapy of malignant tumors. Basic facilities for neutron production used for cancer treatment are presented. Optimal parameters of therapeutic beams are described. Techniques using neutrons of different energy regions are discussed. Results and medical treatment efficiency are given. Comparison of the current state of neutron therapy of tumors and alternative treatments with beams of protons and carbon ions has been conducted. Main attention is given to the possibility of the practical use of accumulated experience of application of neutron beams for cancer therapy.

  19. THERMAL NEUTRON BACKSCATTER IMAGING.

    SciTech Connect

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  20. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  1. The Neutron Structure Function

    NASA Astrophysics Data System (ADS)

    Holt, Roy

    2013-10-01

    Knowledge of the neutron structure function is important for testing models of the nucleon, for a complete understanding of deep inelastic scattering (DIS) from nuclei, and for high energy experiments. As there exist no free neutron targets, neutron structure functions have been determined from deep inelastic scattering from the deuteron. Unfortunately, the short-range part of the deuteron wave function becomes important in extracting the neutron structure function at very high Bjorken x. New methods have been devised for Jefferson Lab experiments to mitigate this problem. The BONUS experiment involves tagging spectator neutrons in the deuteron, while the MARATHON experiment minimizes nuclear structure effects by a comparison of DIS from 3H and 3He. A summary of the status and future plans will be presented. This work supported by the U. S. Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  2. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  3. Odd-frequency pairing of interacting Majorana fermions

    DOE PAGES

    Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.

    2015-09-14

    In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical valuemore » gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.« less

  4. Odd-frequency pairing of interacting Majorana fermions

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Wölfle, P.; Balatsky, A. V.

    2015-09-01

    Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.

  5. Odd-frequency pairing of interacting Majorana fermions

    SciTech Connect

    Huang, Zhoushen; Wolfle, P.; Balatsky, Alexander V.

    2015-09-14

    In this study, Majorana fermions are rising as a promising key component in quantum computation. Although the prevalent approach is to use a quadratic (i.e., noninteracting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd-frequency behavior. It is stabilized when the coupling strength g is above a critical value gc. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory that allows discussing a possible subleading admixture of even-frequency pairing.

  6. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  7. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOEpatents

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  8. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    DOE PAGES

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  9. Pairing interaction near a nematic quantum critical point of a three-band CuO2 model

    SciTech Connect

    Maier, Thomas A.; Scalapino, Douglas J.

    2014-11-21

    In this paper, we calculate the pairing interaction and the k dependence of the gap function associated with the nematic charge fluctuations of a CuO2 model.We find that the nematic pairing interaction is attractive for small momentum transfer and that it gives rise to d-wave pairing. Finally, as the doping p approaches a quantum critical point, the strength of this pairing increases and higher d-wave harmonics contribute to the k dependence of the superconducting gap function, reflecting the longer range nature of the nematic fluctuations.

  10. Optical polarizing neutron devices designed for pulsed neutron sources

    SciTech Connect

    Takeda, M.; Kurahashi, K.; Endoh, Y.; Itoh, S.

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  11. Variable Gap Conjugated Polymers

    DTIC Science & Technology

    2005-12-01

    conducting gold interfacial layer interjected between the ITO glass electrode and the PEDOT/PSS hole transport layer . A family of low band gap, and near IR...which can be used as both electrochromics and as the hole transport layers in light emitting diodes. Hybrid electrochromic and electroluminescent (EC...MEH-PPV, P3HT, etc.) in order to blanket the solar spectrum. Initial device results on these multi-component blends are promising. In addition, we

  12. Customizable Gas-Gap Heat Switch

    NASA Astrophysics Data System (ADS)

    Martins, D.; Catarino, I.; Schroder, U.; Ricardo, J.; Patricio, R.; Duband, L.; Bonfait, G.

    2010-04-01

    The so-called gas gap heat switch, in which the pressure is managed by a coupled small cryopump having no moving parts, is known to be a very reliable and simple heat switch. Mechanical design improvements can lead to optimized ON or OFF characteristics of a gas-gap heat switch. Their ON conductance characteristics are mainly determined by the gas properties and the gap geometry. However, their operational temperature range is limited by the gas-sorbent pair adsorption characteristics. Traditionally the gas chosen is helium, since it is the best conductive one below 100 K, and the sorbent used is activated charcoal. Such a switch is limited to be used at cold end temperatures below ˜15 K. In order to obtain a customizable device working at the whole range below 100 K, a gas gap heat switch was studied and extensively characterized. Hydrogen, Neon and Nitrogen were used as conducting gas, under different sorption conditions. A thermal model was built in order to determine the ON and OFF conductances over each entire temperature range. This work presents the operational temperature windows established for each gas, depending on the amount of gas used. The experimental results and those predicted by the model are in quite good agreement. Such windows allow the tuning of a gas gap heat switch to be used under particular circumstances. The adsorption properties of various types of activated charcoals and their consequences on the operational temperature windows are being studied in order to allow a still larger customization of such heat switches.

  13. Reduction of Gap Junctional Conductance by Microinjection of Antibodies against the 27-kDa Liver Gap Junction Polypeptide

    NASA Astrophysics Data System (ADS)

    Hertzberg, E. L.; Spray, D. C.; Bennett, M. V. L.

    1985-04-01

    Antibody raised against isolated rat liver gap junctions was microinjected into coupled cells in culture to assess its influence on gap junctional conductance. A rapid inhibition of fluorescent dye transfer and electrical coupling was produced in pairs of freshly dissociated adult rat hepatocytes and myocardial cells as well as in pairs of superior cervical ganglion neurons from neonatal rats cultured under conditions in which electrotonic synapses form. The antibodies have been shown by indirect immunofluorescence to bind to punctate regions of the plasma membrane in liver. By immunoreplica analysis of rat liver homogenates, plasma membranes, and isolated gap junctions resolved on NaDodSO4/polyacrylamide gels, binding was shown to be specific for the 27-kDa major polypeptide of gap junctions. This and similar antibodies should provide a tool for further investigation of the role of cell-cell communication mediated by gap junctions and indicate that immunologically similar polypeptides comprise gap junctions in adult mammalian cells derived from all three germ layers.

  14. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  15. Super-Eddington winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1990-01-01

    Results are presented from a study of winds driven by a super-Eddington rate of energy deposition near the surface of a neutron star, a condition which may develop following a collision between two neutron stars when more than 10 to the 53rd ergs is radiated during a few seconds. A fraction of that energy, perhaps as large as 10 to the 50th ergs, may be transformed into electron-positron pairs and drive a powerful wind. Using a model of the highly super-Eddington wind, the fraction of energy injected into a wind that emerges as gamma rays is estimated. It is shown that it is possible to reach gamma-ray temperatures with the optically thick winds, provided the energy injection rate is sufficiently high.

  16. Neutron transmission and capture of 241Am

    NASA Astrophysics Data System (ADS)

    Lampoudis, C.; Kopecky, S.; Plompen, A.; Schillebeeckx, P.; Wynants, R.; Gunsing, F.; Sage, C.; Bouland, O.; Noguere, G.

    2013-03-01

    A set of neutron transmission and capture experiments based on the Time Of Flight (TOF) technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV.

  17. Neutron dosimetry, moderated energy spectrum, and neutron capture therapy for californium-252 medical sources

    NASA Astrophysics Data System (ADS)

    Rivard, Mark Joseph

    Examination of neutron dosimetry for 252Cf has been conducted using calculative and experimental means. Monte Carlo N-Particle (MCNP) transport code was used in a distributed computing environment as a parallel virtual machine (PVM) to determine the absorbed neutron dose and neutron energy spectrum from 252Cf in a variety of clinically relevant materials. Herein, a Maxwellian spectrum was used to model the 252Cf neutron emissions within these materials. 252Cf mixed-field dosimetry of Applicator Tube (AT) type sources was measured using 1.0 and 0.05 cm3 tissue-equivalent ion chambers and a miniature GM counter. A dosimetry protocol was formulated similar that of ICRU 45. The 252Cf AT neutron dosimetry was determined in the cylindrical coordinate system formalism recommended by the AAPM Task Group 43. These results demonstrated the overwhelming dependence of dosimetry on the source geometry factor as there was no significant neutron attenuation within the source or encapsulation. Gold foils and TLDs were used to measure the thermal flux in the vicinity of 252Cf AT sources to compare with the results calculated using MCNP. As the fast neutron energy spectrum did not markedly changed at increasing distances from the AT source, neutron dosimetry results obtained with paired ion chambers using fixed sensitivity factors agreed well with MCNP results and those in the literature. Calculations of moderated 252Cf neutron energy spectrum with various loadings of 10B and 157Gd were performed, in addition to analysis of neutron capture therapy dosimetry with these isotopes. Radiological concerns such as personnel exposure and shielding of 252Cf emissions were examined. Feasibility of a high specific-activity 252Cf HDR source was investigated through radiochemical and metallurgical studies using stand-ins such as Tb, Gd and 249Cf. Issues such as capsule burst strength due to helium production for a variety of proposed HDR sources were addressed. A recommended 252Cf source

  18. LiF crystals as high spatial resolution neutron imaging detectors

    NASA Astrophysics Data System (ADS)

    Matsubayashi, M.; Faenov, A.; Pikuz, T.; Fukuda, Y.; Kato, Y.; Yasuda, R.; Iikura, H.; Nojima, T.; Sakai, T.

    2011-09-01

    Neutron imaging by color center formation in LiF crystals was applied to a sensitivity indicator (SI) as a standard samples for neutron radiography. The SI was exposed to a 5 mm pinhole-collimated thermal neutron beam with an LiF crystal and a neutron imaging plate (NIP) for 120 min in the JRR-3M thermal neutron radiography facility. The image in the LiF crystal was read out using a laser confocal microscope. All gaps were clearly observed in images for both the LiF crystal and the NIP. The experimental results showed that LiF crystals have excellent characteristics as neutron imaging detectors in areas such as high spatial resolution.

  19. Electronic pairing in exotic superconductors

    SciTech Connect

    Cox, D.L. ); Maple, M.B. )

    1995-02-01

    Superconductivity in heavy-fermion materials and high T[sub c] cuprates may involve electronic pairing with unconventional symmetries and mechanisms. Although there has been no smoking-gun proof, numerous pieces of circumstantial evidence combined with heuristic theoretical arguments make a compelling case that these materials have pairs with exotic symmetry bound by nonphonon glue. 20 refs., 5 figs.

  20. Homologous pairing and the role of pairing centers in meiosis.

    PubMed

    Tsai, Jui-He; McKee, Bruce D

    2011-06-15

    Homologous pairing establishes the foundation for accurate reductional segregation during meiosis I in sexual organisms. This Commentary summarizes recent progress in our understanding of homologous pairing in meiosis, and will focus on the characteristics and mechanisms of specialized chromosome sites, called pairing centers (PCs), in Caenorhabditis elegans and Drosophila melanogaster. In C. elegans, each chromosome contains a single PC that stabilizes chromosome pairing and initiates synapsis of homologous chromosomes. Specific zinc-finger proteins recruited to PCs link chromosomes to nuclear envelope proteins--and through them to the microtubule cytoskeleton--thereby stimulating chromosome movements in early prophase, which are thought to be important for homolog sorting. This mechanism appears to be a variant of the 'telomere bouquet' process, in which telomeres cluster on the nuclear envelope, connect chromosomes through nuclear envelope proteins to the cytoskeleton and lead chromosome movements that promote homologous synapsis. In Drosophila males, which undergo meiosis without recombination, pairing of the largely non-homologous X and Y chromosomes occurs at specific repetitive sequences in the ribosomal DNA. Although no other clear examples of PC-based pairing mechanisms have been described, there is evidence for special roles of telomeres and centromeres in aspects of chromosome pairing, synapsis and segregation; these roles are in some cases similar to those of PCs.

  1. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  2. Stereo Pair, Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, at Los Menucos, Argentina shows remnants of relatively young volcanoes built upon an eroded plain of much older and contorted volcanic, granitic, and sedimentary rocks. The large purple, brown, and green 'butterfly' pattern is a single volcano that has been deeply eroded. Large holes on the volcano's flanks indicate that they may have collapsed soon after eruption, as fluid molten rock drained out from under its cooled and solidified outer shell. At the upper left, a more recent eruption occurred and produced a small volcanic cone and a long stream of lava, which flowed down a gully. At the top of the image, volcanic intrusions permeated the older rocks resulting in a chain of small dark volcanic peaks. At the top center of the image, two halves of a tan ellipse pattern are offset from each other. This feature is an old igneous intrusion that has been split by a right-lateral fault. The apparent offset is about 6.6 kilometers (4 miles). Color, tonal, and topographic discontinuities reveal the fault trace as it extends across the image to the lower left. However, young unbroken basalt flows show that the fault has not been active recently.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive

  3. Stereo Pair: Patagonia, Argentina

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This view of northern Patagonia, near El Cain, Argentina shows complexly eroded volcanic terrain, with basalt mesas, sinkholes, landslide debris, playas, and relatively few integrated drainage channels. Surrounding this site (but also extending far to the east) is a broad plateau capped by basalt, the Meseta de Somuncura. Here, near the western edge of the plateau, erosion has broken through the basalt cap in a variety of ways. On the mesas, water-filled sinkholes (lower left) are most likely the result of the collapse of old lava tubes. Along the edges of the mesas (several locations) the basalt seems to be sliding away from the plateau in a series of slices. Water erosion by overland flow is also evident, particularly in canyons where vegetation blankets the drainage channels (green patterns, bottom of image). However, overland water flow does not extend very far at any location. This entire site drains to local playas, some of which are seen here (blue). While the water can reach the playas and then evaporate, what becomes of the eroded rock debris? Wind might excavate some of the finer eroded debris, but the fate of much of the missing bedrock remains mysterious.

    This cross-eyed stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with an enhanced Landsat 7 satellite color image. The topography data are used to create two differing perspectives of a single image, one perspective for each eye. In doing so, each point in the image is shifted slightly, depending on its elevation. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

    Landsat satellites have provided visible light and infrared images of the Earth continuously since 1972. SRTM topographic data match the 30-meter (99-foot) spatial resolution of most Landsat images and provide a valuable complement for studying the historic and growing Landsat data archive. The

  4. Excitonic gap formation and condensation in the bilayer graphene structure

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2016-09-01

    We have studied the excitonic gap formation in the Bernal Stacked, bilayer graphene (BLG) structures at half-filling. Considering the local Coulomb interaction between the layers, we calculate the excitonic gap parameter and we discuss the role of the interlayer and intralayer Coulomb interactions and the interlayer hopping on the excitonic pair formation in the BLG. Particularly, we predict the origin of excitonic gap formation and condensation, in relation to the furthermost interband optical transition spectrum. The general diagram of excitonic phase transition is given, explaining different interlayer correlation regimes. The temperature dependence of the excitonic gap parameter is shown and the role of the chemical potential, in the BLG, is discussed in details.

  5. Pairing mechanism of heavily electron doped FeSe systems: dynamical tuning of the pairing cutoff energy

    NASA Astrophysics Data System (ADS)

    Bang, Yunkyu

    2016-11-01

    We studied the pairing mechanism of the heavily electron doped FeSe (HEDIS) systems, which commonly have one incipient hole band—a band top below the Fermi level by a finite energy distance ε b —at Γ point and ordinary electron bands at M points in Brillouin zone (BZ). We found that the system allows two degenerate superconducting solutions with the exactly same T c in clean limit: the incipient {s}{he}+/- -gap ({{{Δ }}}h-\

  6. The neutron channeling phenomenon.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials.

  7. Design of a boron neutron capture enhanced fast neutron therapy assembly

    SciTech Connect

    Wang, Zhonglu

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The measured

  8. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. 6Lil(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal.

  9. Fruits of neutron research

    SciTech Connect

    Krause, C.

    1994-12-31

    Car windshields that don`t break during accidents and jets that fly longer without making a refueling stop. Compact discs, credit cards, and pocket calculators. Refrigerator magnets and automatic car window openers. Beach shoes, food packaging, and bulletproof vests made of tough plastics. The quality and range of consumer products have improved steadily since the 1970s. One of the reasons: neutron research. Industries, employing neutron scattering techniques, to study materials properties, to act as diagnostics in tracing system performance, or as sources for radioactive isotopes used in medical fields for diagnostics or treatment, have all benefited from the fruits of advanced work with neutron sources.

  10. FABRICATION OF NEUTRON SOURCES

    DOEpatents

    Birden, J.H.

    1959-04-21

    A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.

  11. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  12. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  13. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    SciTech Connect

    Sleaford, B W; Firestone, R B; Summers, N; Escher, J; Hurst, A; Krticka, M; Basunia, S; Molnar, G; Belgya, T; Revay, Z; Choi, H D

    2010-11-04

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  14. SOUTHWEST REGIONAL GAP LAND COVER

    EPA Science Inventory

    The Gap Analysis Program is a national inter-agency program that maps the distribution

    of plant communities and selected animal species and compares these distributions with land

    stewardship to identify gaps in biodiversity protection. GAP uses remote satellite imag...

  15. Skills Gaps in Australian Firms

    ERIC Educational Resources Information Center

    Lindorff, Margaret

    2011-01-01

    This paper reports the results of a survey of more than 2000 managers examining perceptions of skills gaps in a range of Australian firms. It finds that three quarters report a skills gap, and almost one third report skills gaps across the whole organisation. Firm size and industry differences exist in perceptions of the effect of the skills gap…

  16. Richardson-Gaudin description of pairing in atomic nuclei

    NASA Astrophysics Data System (ADS)

    De Baerdemacker, Stijn

    2012-05-01

    The present contribution discusses a connection between the exact Bethe Ansatz eigenstates of the reduced Bardeen-Cooper-Schrieffer (BCS) Hamiltonian and the multi-phonon states of the Tamm-Dancoff Approximation (TDA). The connection is made on the algebraic level, by means of a deformed quasi-spin algebra with a bosonic Heisenberg-Weyl algebra in the contraction limit of the deformation parameter. Each exact Bethe Ansatz eigenstate is mapped on a unique TDA multi-phonon state, shedding light on the physics behind the Bethe Ansatz structure of the exact wave function. The procedure is illustrated with a model describing neutron pairing in 56Fe.

  17. Multi-quasiparticle isomers near stability and reduced pairing

    SciTech Connect

    Dracoulis, G.D.

    1996-12-31

    The proximity of high-{Omega} orbitals near both proton and neutron Fermi surfaces in nuclei near Z = 74 and N = 104 results in high-K states competing with collective rotation of low-seniority configurations to generate the yrast line. In favorable situations it is possible to observe both the intrinsic states and associated rotational bands. The band properties allow characterization of the configurations and evaluation of orbital and seniority-dependent effects, including pairing reduction and consequent loss of nuclear superfluidity.

  18. Hard Photodisintegration of Proton Pairs in {sup 3}He

    SciTech Connect

    Piasetzky, Eli; Pomerantz, Ishay; Higinbotham, D.; Strauch, S.; Gilman, R.

    2008-10-13

    Hard deuteron photodisintegration has been investigated for 20 years, as its cross section follows the constituent counting rule and it provides insight into the interplay between hadronic and quark-gluon degrees of freedom in high-momentum transfer exclusive reactions. We have now measured for the first time hard pp-pair disintegration in the reaction {gamma}{sup 3}He{yields}pp+n, using kinematics corresponding to a spectator neutron. Cross sections were measured for 90 deg. c.m. at 8 beam energies, from 0.8 to 4.7 GeV. Preliminary results will be presented and compared to the hard deuteron photodisintegration data.

  19. In-Situ Spectrometry of Neutrons

    NASA Technical Reports Server (NTRS)

    Maurer, Richard H.

    1999-01-01

    less damaging, but more prevalent, thermal and epithermal neutrons and to make the structure of the spectrum more accurate in the 20 KeV-2 MeV range; or a pair of tubes, one shielded and one unshielded, can be combined so that the difference in their counts yields the thermal neutron contribution. The spectrometer also uses a 5mm lithium drifted bulk silicon solid state detector in the medium energy range of 2-20 Mev and two standard silicon surface barrier detectors separated by tens of millimeters behind a I cm thick polyethylene moderator in a stack or telescope arrangement for the high energy neutrons (>20 MeV). In the medium and high energy regions equivalent damage factors are lower but hits from one or a small number of neutrons may prove to be important. The silicon detector systems for medium and high energy neutrons will discriminate against charged particles by using a plastic cesium iodide scintillator of an appropriate geometry monitored by a silicon PIN photodiode.

  20. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    DOE PAGES

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of thismore » excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  1. Isotope-Identifying neutron reflectometry

    SciTech Connect

    Nikitenko, Yu. V. Petrenko, A. V.; Gundorin, N. A.; Gledenov, Yu. M.; Aksenov, V. L.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  2. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  3. New Parameterization of Neutron Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-06-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  4. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  5. Pair production close to black hole horizon

    NASA Astrophysics Data System (ADS)

    Laurent, Philippe; Titarchuk, Lev

    2012-07-01

    Accreting stellar-mass black holes in Galactic binaries exhibit a ``bi-modal" spectral behavior - namely the so called high-soft and low-hard spectral states. An increase in the soft blackbody luminosity component leads to the appearance of an extended power law. An important observational fact is that this effect is seen as a persistent phenomenon only in BH candidates, and thus it is apparently a unique black hole signature. Although similar power law components are detected in the intermediate stages in neutron star systems, they are of a transient nature, i.e. disappearing with increasing luminosity. It thus seems a reasonable assumption that the unique spectral signature of the soft state of BH binaries is directly tied to the black hole event horizon. This is the primary motivation for the Bulk Motion Comptonization Model, introduced in several previous papers, and recently applied with striking success to a substantial body of observational data. We argued that the BH X-ray spectrum in the high-soft state is formed in the relatively cold accretion flow with a subrelativistic bulk velocity close to c and a temperature of a few keV. In such a flow the effect of the bulk Comptonization is indeed much stronger than the effect of the thermal ones. Another property of these accreted flow, that we will explore during this talk, is that, very close to horizon, X-ray photons may be upscattered by bulk electrons to MeV energy. Most of these photons fall down then in the black hole, but some of them anyway have time to interact with another X-ray photon by the photon-photon process to make an electron-positron pairs. We will then explore in details the consequences of this pair creation process close to horizon and what can be the observational evidences of this effect.

  6. The global drug gap.

    PubMed

    Reich, M R

    2000-03-17

    Global inequities in access to pharmaceutical products exist between rich and poor countries because of market and government failures as well as huge income differences. Multiple policies are required to address this global drug gap for three categories of pharmaceutical products: essential drugs, new drugs, and yet-to-be-developed drugs. Policies should combine "push" approaches of subsidies to support targeted drug development, "pull" approaches of financial incentives such as market guarantees, and "process" approaches aimed at improved institutional capacity. Constructive solutions are needed that can both protect the incentives for research and development and reduce the inequities of access.

  7. Mind the gap.

    SciTech Connect

    Bhagwat, M. S.; Krassnigg, A.; Maris, P.; Roberts, C. D.; Physics; Univ. Graz; Univ. of Pittsburgh

    2007-03-01

    In this summary of the application of Dyson-Schwinger equations to the theory and phenomenology of hadrons, some deductions following from a nonperturbative, symmetry-preserving truncation are highlighted, notable amongst which are results for pseudoscalar mesons. We also describe inferences from the gap equation relating to the radius of convergence of a chiral expansion, applications to heavy-light and heavy-heavy mesons, and quantitative estimates of the contribution of quark orbital angular momentum in pseudoscalar mesons; and recapitulate upon studies of nucleon electromagnetic form factors.

  8. Pairing Correlations at High Spins

    NASA Astrophysics Data System (ADS)

    Ma, Hai-Liang; Dong, Bao-Guo; Zhang, Yan; Fan, Ping; Yuan, Da-Qing; Zhu, Shen-Yun; Zhang, Huan-Qiao; Petrache, C. M.; Ragnarsson, I.; Carlsson, B. G.

    The pairing correcting energies at high spins in 161Lu and 138Nd are studied by comparing the results of the cranked-Nilsson-Strutinsky (CNS) and cranked-Nilsson-Strutinsky-Bogoliubov (CNSB) models. It is concluded that the Coriolis effect rather than the rotational alignment effect plays a major role in the reduction of the pairing correlations in the high spin region. Then we proposed an average pairing correction method which not only better reproduces the experimental data comparing with the CNS model but also enables a clean-cut tracing of the configurations thus the full-spin-range discussion on the various rotating bands.

  9. Bright transients from strongly-magnetized neutron star-black hole mergers

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Levin, Janna; Murray, Norman W.; Price, Larry

    2016-07-01

    Direct detection of black hole-neutron star pairs is anticipated with the advent of aLIGO. Electromagnetic counterparts may be crucial for a confident gravitational-wave detection as well as for extraction of astronomical information. Yet black hole-neutron star pairs are notoriously dark and so inaccessible to telescopes. Contrary to this expectation, a bright electromagnetic transient can occur in the final moments before merger as long as the neutron star is highly magnetized. The orbital motion of the neutron star magnet creates a Faraday flux and corresponding power available for luminosity. A spectrum of curvature radiation ramps up until the rapid injection of energy ignites a fireball, which would appear as an energetic blackbody peaking in the x ray to γ rays for neutron star field strengths ranging from 1012 to 1016 G respectively and a 10 M⊙ black hole. The fireball event may last from a few milliseconds to a few seconds depending on the neutron star magnetic-field strength, and may be observable with the Fermi Gamma-Ray Burst Monitor with a rate up to a few per year for neutron star field strengths ≳1014 G . We also discuss a possible decaying post-merger event which could accompany this signal. As an electromagnetic counterpart to these otherwise dark pairs, the black-hole battery should be of great value to the development of multi-messenger astronomy in the era of aLIGO.

  10. Neutron star equation of state and QPO observations

    NASA Astrophysics Data System (ADS)

    Urbanec, Martin; Stuchlík, Zdeněk; Török, Gabriel; Bakala, Pavel; Čermák, Petr

    2007-12-01

    Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilohertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density rho_{c}. These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR, rho_{c}, Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR, rho_{c}, Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR, rho_{c}, Ω, EOS) into the chromosome we use the Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  11. QPO observations related to neutron star equations of state

    NASA Astrophysics Data System (ADS)

    Stuchlik, Zdenek; Urbanec, Martin; Török, Gabriel; Bakala, Pavel; Cermak, Petr

    We apply a genetic algorithm method for selection of neutron star models relating them to the resonant models of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems. It was suggested that pairs of kilo-hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density ρc . These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR,ρc , Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR,ρc , Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR,ρ, Ω, EOS) into chromosome we used Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  12. Tetrahedral shapes of neutron-rich Zr isotopes from a multidimensionally constrained relativistic Hartree-Bogoliubov model

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Zhao, En-Guang; Zhou, Shan-Gui

    2017-01-01

    We develop a multidimensionally constrained relativistic Hartree-Bogoliubov (MDC-RHB) model in which the pairing correlations are taken into account by making the Bogoliubov transformation. In this model, the nuclear shape is assumed to be invariant under the reversion of x and y axes; i.e., the intrinsic symmetry group is V4 and all shape degrees of freedom βλ μ with even μ are included self-consistently. The RHB equation is solved in an axially deformed harmonic oscillator basis. A separable pairing force of finite range is adopted in the MDC-RHB model. The potential energy curves of neutron-rich even-even Zr isotopes are calculated with relativistic functionals DD-PC1 and PC-PK1 and possible tetrahedral shapes in the ground and isomeric states are investigated. The ground state shape of 110Zr is predicted to be tetrahedral with both functionals and so is that of 112Zr with the functional DD-PC1. The tetrahedral ground states are caused by large energy gaps around Z =40 and N =70 when β32 deformation is included. Although the inclusion of the β30 deformation can also reduce the energy around β20=0 and lead to minima with pear-like shapes for nuclei around 110Zr, these minima are unstable due to their shallowness.

  13. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  14. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  15. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  16. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  17. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  18. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  19. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  20. Cylindrical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  1. Neutron focusing system for the Texas Cold Neutron Source

    NASA Astrophysics Data System (ADS)

    Wehring, Bernard W.; Kim, Jong-Youl; Ünlü, Kenan

    1994-12-01

    A "converging neutron guide" focusing system located at the end of the Texas Cold Neutron Source (TCNS) "curved neutron guide" would increase the neutron flux for neutron capture experiments. Our design for a converging guide is based on using several rectangular truncated cone sections. Each rectangular truncated cone consists of four 20-cm long Si plates coated with NiC-Ti supermirrors. Dimensions of each section were determined by a three-dimensional Monte Carlo optimization calculation. The two slant angles of the truncated cones were varied to optimize the neutron flux at the focal area of the focusing system. Different multielement converging guides were designed and their performance analyzed. From the performance results and financial considerations, we selected a four-section 80-cm long converging guide focusing system for construction and use with the TCNS. The focused cold neutron beam will be used for neutron capture experiment, e.g., prompt gamma activation analysis and neutron depth profiling.

  2. FABRICATION OF NEUTRON SOURCES

    DOEpatents

    Birden, J.H.

    1959-01-20

    A method is presented for preparing a more efficient neutron source comprising inserting in a container a quantity of Po-210, inserting B powder coated with either Ag, Pt, or Ni. The container is sealed and then slowly heated to about 450 C to volatilize the Po and effect combination of the coated powder with the Po. The neutron flux emitted by the unit is moritored and the heating step is terminated when the flux reaches a maximum or selected level.

  3. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  4. Pulsed spallation Neutron Sources

    SciTech Connect

    Carpenter, J.M.

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  5. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  6. Pulsed spallation neutron sources

    SciTech Connect

    Carpenter, J.M.

    1996-05-01

    This paper reviews the early history of pulsed spallation neutron source development ar Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provide a few examples of applications in fundamental condensed matter physics, materials science and technology.

  7. Determination of the fermion pair size in a resonantly interacting superfluid.

    PubMed

    Schunck, Christian H; Shin, Yong-Il; Schirotzek, André; Ketterle, Wolfgang

    2008-08-07

    Fermionic superfluidity requires the formation of particle pairs, the size of which varies from the femtometre scale in neutron stars and nuclei to the micrometre scale in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in 'BCS-BEC crossover' theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS)-type superfluid of loosely bound, large Cooper pairs to Bose-Einstein condensates (BECs) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high-temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed using radio-frequency spectroscopy. However, previous work was difficult to interpret owing to strong final-state interactions that were not well understood. Here we realize a superfluid spin mixture in which such interactions have negligible influence and present fermion pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine that the spectroscopic pair size in the resonantly interacting gas is 20 per cent smaller than the interparticle spacing. These are the smallest pairs so far observed in fermionic superfluids, highlighting the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs to bound molecular states and to many-body bound states in the case of strong final-state interactions.

  8. Exotic modes of excitation in deformed neutron-rich nuclei

    SciTech Connect

    Yoshida, Kenichi

    2011-05-06

    Low-lying dipole excitation mode in neutron-rich Mg isotopes close to the drip line is investigated in the framework of the Hartree-Fock-Bogoliubov and the quasiparticle random-phase approximation employing the Skyrme and the pairing energy-density functionals. It is found that the low-lying dipole-strength distribution splits into the K{sup {pi}} = 0{sup -} and 1{sup -} components due to the nuclear deformation. The low-lying dipole strength increases as the neutron drip-line is approached.

  9. High voltage supply for neutron tubes in well logging applications

    DOEpatents

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  10. Neutron Speed Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ioffe, A.

    Neutron speed echo (NSPE) technique is in a way a generalization of the neutron spin echo (NSE) technique. Similar to NSE spectrometers, the resolution of such NSPE spectrometer is extremely high and is not connected with the monochromatization of the incoming beam. However, in contrast to NSE spectrometers, the operation of proposed spectrometer does not necessarily require a polarized neutron beam. Such decoupling the polarization and the resolution is in clear contrast to NSE technique. Because the resolution of a NSPE spectrometer can be a few orders higher than the resolution of NSE spectrometers, one can achieve the energy resolution of about 10-14 eV by the use of ultra cold neutrons; a fact that can be used in some fundamental physics experiments. Though the scattering on the sample impose limitations on the resolution of a NSPE spectrometer, the use of the proposed technique in a low-resolution mode can be useful in the combination with triple-axis spectrometers and allow for the significant improvement of their energy resolution, however, without the use of polarized neutrons. This fact opens new possibilities for the study of magnetic phenomena in solids, where the NSE method is principally not applicable because of the neutron precession in the sample, especially by combining polarization analysis with high-resolution spectroscopy. The proposed technique also allows for an easy implementation of the principle of the NSE focusing, when the resolution ellipse is aligned along a dispersion curve.

  11. Coded source neutron imaging

    SciTech Connect

    Bingham, Philip R; Santos-Villalobos, Hector J

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  12. Neutron scattering in Australia

    SciTech Connect

    Knott, R.B.

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  13. Coded source neutron imaging

    NASA Astrophysics Data System (ADS)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  14. Neutron Velocity Selector

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico

    This Patent presents a detailed description of the construction and operation of a velocity selector for neutrons with velocities up to 6000÷7000 m/s. This apparatus employs a rotating shutter designed in such a way that neutrons are passed during a portion of each rotation of the shutter, the shutter blocking all neutron radiation at other times. The selector is built up with alternate laminations of a material with high neutron capture cross section (such as, for example, cadmium, boron or gadolinium), and parallel laminations of a material with low capture probability (such as, for example, aluminium, magnesium or beryllium). This is required in order to provide a path through the shutter to the neutrons, which then pass into a ionization chamber. The timing mechanism, adopted to activate or deactivate the neutron detection, and measuring means at given times following each opening or closing of the shutter, is electronic (not mechanic), controlled by a photocell unit. The reference published article for the main topic of the present Patent is [Fermi (1947)].

  15. Tagging the Decay of Neutron Unbound States near the Dripline

    NASA Astrophysics Data System (ADS)

    Wersal, Alissa; Christian, Greg; Thoennessen, Michael; Spyrou, Artemis

    2010-11-01

    Near the neutron dripline the study of neutron-unbound states is a valuable spectroscopic tool. Neutron-decay spectroscopy experiments, however, only determine the relative energy of the resonances. If the neutron decays to a bound excited state, it is necessary to measure the γ-decay in order to determine the absolute excitation energy of the initial state. The CAESium iodide ARray (CAESAR) was used for the first time in coincidence with the MoNA/Sweeper setup at the NSCL to perform this type of experiment. A secondary 70 MeV/u ^32Mg beam produced at the Coupled Cyclotron Facility bombarded a 288 mg/cm^2 beryllium target. After the reaction, any charged particles were deflected by a superconducting 4T large-gap dipole magnet, and their positions, time of flight, and energy loss were measured. Neutrons were detected in coincidence with the Modular Neutron Array (MoNA) while CAESAR recorded any possible gamma rays. The Doppler shifted calibration of CAESAR was performed with gamma rays from Coulomb excited ^32Mg and from ^30Na fragments. Preliminary results will be presented.

  16. Pulsed neutron generator for use with pulsed neutron activation techniques

    SciTech Connect

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10/sup 10/ 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10/sup 10/ neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output.

  17. MAGNETIC NEUTRON SCATTERING

    SciTech Connect

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  18. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  19. Fundamental neutron physics at LANSCE

    SciTech Connect

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  20. Small Multiples with Gaps.

    PubMed

    Meulemans, Wouter; Dykes, Jason; Slingsby, Aidan; Turkay, Cagatay; Wood, Jo

    2017-01-01

    Small multiples enable comparison by providing different views of a single data set in a dense and aligned manner. A common frame defines each view, which varies based upon values of a conditioning variable. An increasingly popular use of this technique is to project two-dimensional locations into a gridded space (e.g. grid maps), using the underlying distribution both as the conditioning variable and to determine the grid layout. Using whitespace in this layout has the potential to carry information, especially in a geographic context. Yet, the effects of doing so on the spatial properties of the original units are not understood. We explore the design space offered by such small multiples with gaps. We do so by constructing a comprehensive suite of metrics that capture properties of the layout used to arrange the small multiples for comparison (e.g. compactness and alignment) and the preservation of the original data (e.g. distance, topology and shape). We study these metrics in geographic data sets with varying properties and numbers of gaps. We use simulated annealing to optimize for each metric and measure the effects on the others. To explore these effects systematically, we take a new approach, developing a system to visualize this design space using a set of interactive matrices. We find that adding small amounts of whitespace to small multiple arrays improves some of the characteristics of 2D layouts, such as shape, distance and direction. This comes at the cost of other metrics, such as the retention of topology. Effects vary according to the input maps, with degree of variation in size of input regions found to be a factor. Optima exist for particular metrics in many cases, but at different amounts of whitespace for different maps. We suggest multiple metrics be used in optimized layouts, finding topology to be a primary factor in existing manually-crafted solutions, followed by a trade-off between shape and displacement. But the rich range of possible

  1. Measurements for the JASPER Program Gap Streaming Experiment

    SciTech Connect

    Muckenthaler, F.J.; Spencer, R.R.; Hunter, H.T.; Hull, J.L.; Shono, A.

    1993-02-01

    The Gap Streaming Experiment was conducted at the Oak Ridge National Laboratory (ORNL) Tower Shielding Facility (TSF) during the three month period from February to April, 1992, as part of the continuing series of eight experiments planned for the Japanese-American Shielding Program for Experimental Research (JASPER) program that was started in 1986. This series of experiments which are intended to provide support in the development of current reactor shield designs proposed for Liquid Metal Reactor (LMR) systems both in Japan and the United States. The program is a cooperative effort between the United States Department of Energy (USDOE) and the Japanese Power Reactor and Nuclear Development Corporation (PNC). The program was designed to study neutron streaming in annular gaps typical of those anticipated in future reactor enclosure systems for advanced LMRs. The two configurations studied in this experiment were: (1) an iron-lined, concrete-filled, vessel that was designed to allow changes in annular gap widths and/or their locations; or (2) a solid piece of concrete. In two of the studies, Items IIID and IIIE, stainless steel slabs were added to simulate the effect of a cover plate above the reactor head. The configurations were preceded by either a spectrum modifier that modeled the sodium pool above the LMR core or the bare Tower Shielding Reactor H (TSR-II) beam. Bonner ball measurements were made behind each configuration and neutron spectra and Hornyak button measurements were made behind selected configurations.

  2. Gap Opening in 3D: Single-planet Gaps

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Chiang, Eugene

    2016-12-01

    Giant planets can clear deep gaps when embedded in 2D (razor-thin) viscous circumstellar disks. We show by direct simulation that giant planets are just as capable of carving out gaps in 3D. Surface density maps are similar between 2D and 3D, even in detail. In particular, the scaling {{{Σ }}}{gap}\\propto {q}-2 of gap surface density with planet mass, derived from a global “zero-dimensional” balance of Lindblad and viscous torques, applies equally well to results obtained at higher dimensions. Our 3D simulations reveal extensive, near-sonic, meridional flows both inside and outside the gaps; these large-scale circulations might bear on disk compositional gradients, in dust or other chemical species. At high planet mass, gap edges are mildly Rayleigh unstable and intermittently shed streams of material into the gap—less so in 3D than in 2D.

  3. The Gap-Tpc

    NASA Astrophysics Data System (ADS)

    Rossi, B.; Anastasio, A.; Boiano, A.; Catalanotti, S.; Cocco, A. G.; Covone, G.; Di Meo, P.; Longo, G.; Vanzanella, A.; Walker, S.; Wang, H.; Wang, Y.; Fiorillo, G.

    2016-02-01

    Several experiments have been conducted worldwide, with the goal of observing low-energy nuclear recoils induced by WIMPs scattering off target nuclei in ultra-sensitive, low-background detectors. In the last few decades noble liquid detectors designed to search for dark matter in the form of WIMPs have been extremely successful in improving their sensitivities and setting the best limits. One of the crucial problems to be faced for the development of large size (multi ton-scale) liquid argon experiments is the lack of reliable and low background cryogenic PMTs: their intrinsic radioactivity, cost, and borderline performance at 87 K rule them out as a possible candidate for photosensors. We propose a brand new concept of liquid argon-based detector for direct dark matter search: the Geiger-mode Avalanche Photodiode Time Projection Chamber (GAP-TPC) optimized in terms of residual radioactivity of the photosensors, energy and spatial resolution, light and charge collection efficiency.

  4. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  5. N = Z nuclei: a laboratory for neutron-proton collective mode

    NASA Astrophysics Data System (ADS)

    Qi, Chong; Wyss, Ramon

    2016-01-01

    The neutron-neutron and proton-proton pairing correlations have long been recognized to be the dominant many-body correlation beyond the nuclear mean field since the introduction of pairing mechanism by Bohr, Mottelson and Pines nearly 60 years ago. Nevertheless, few conclusions have been reached concerning the existence of analogous neutron-proton (np) pair correlated state. One can see a renaissance in np correlation studies in relation to the significant progress in radioactive ion beam facilities and detection techniques. The np pairs can couple isospin T = 1 (isovector) or 0 (isoscalar). In the isovector channel, the angular momentum zero component is expected to be the most important one. On the other hand, as one may infer from the general properties of the np two-body interaction, in the isoscalar channel, both the np pairs with minimum (J = 1) and maximum (J = 2j) spin values can be important. In this contribution, we will discuss the possible evidence for np pair coupling from a different perspective and analyze its influence on interesting phenomena including the Wigner effect and mass correlations in odd-odd nuclei. In particular, we will explain the spin-aligned pair coupling scheme and quartet coupling involving pairs with maximum (J = 2j) spin values.

  6. Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition.

    PubMed

    Härtling, T; Alaverdyan, Y; Hille, A; Wenzel, M T; Käll, M; Eng, L M

    2008-08-04

    We report on the in-situ controlled tuning of the particle gap in single pairs of gold nanodisks by photochemical metal deposition. The optically induced growth of nanodisk dimers fabricated by electron beam lithography leads to a decrease of the interparticle gap width down to 0 nm. Due to the increasing particle size and stronger plasmonic coupling, a smooth redshift of the localized surface plasmon (LSP) resonances is observed in such particle pairs during the growth process. The interparticle gap width, and hence the LSP resonance, can be tuned to any desired spectral position. The experimental results we obtain with this nanoscale fabrication technique are well described by the so-called plasmon ruler equation. Consequently, both the changes in particle diameter as well as in gap width can be characterized in-situ via far-field read-out of the optical properties of the dimers.

  7. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  8. Neutron-Induced Failures in Semiconductor Devices

    SciTech Connect

    Wender, Stephen Arthur

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  9. Laser generated neutron source for neutron resonance spectroscopy

    SciTech Connect

    Higginson, D. P.; Bartal, T.; McNaney, J. M.; Swift, D. C.; Hey, D. S.; Le Pape, S.; Mackinnon, A.; Kodama, R.; Tanaka, K. A.; Mariscal, D.; Beg, F. N.; Nakamura, H.; Nakanii, N.

    2010-10-15

    A neutron source for neutron resonance spectroscopy has been developed using high-intensity, short-pulse lasers. This technique will allow robust measurement of interior ion temperature of laser-shocked materials and provide insight into material equation of state. The neutron generation technique uses laser-accelerated protons to create neutrons in LiF through (p,n) reactions. The incident proton beam has been diagnosed using radiochromic film. This distribution is used as the input for a (p,n) neutron prediction code which is validated with experimentally measured neutron yields. The calculation infers a total fluence of 1.8x10{sup 9} neutrons, which are expected to be sufficient for neutron resonance spectroscopy temperature measurements.

  10. Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    SciTech Connect

    Serebrov, A. P.; Varlamov, V. E.; Kharitonov, A. G.; Fomin, A. K.; Krasnoschekova, I. A.; Lasakov, M. S.; Taldaev, R. R.; Vassiljev, A. V.; Zherebtsov, O. M.; Pokotilovski, Yu. N.; Geltenbort, P.

    2008-09-15

    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before: the probability of UCN losses from the trap was only 1% of that for neutron {beta} decay. The neutron lifetime obtained, 878.5{+-}0.7{sub stat}{+-}0.3{sub sys} s, is the most accurate experimental measurement to date.

  11. Proposed neutron activation analysis facilities in the Advanced Neutron Source

    SciTech Connect

    Robinson, L.; Dyer, F.F.; Emery, J.F.

    1990-01-01

    A number of analytical chemistry experimental facilities are being proposed for the Advanced Neutron Source. Experimental capabilities will include gamma-ray analysis and neutron depth profiling. This paper describes the various systems proposed and some of their important characteristics.

  12. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    SciTech Connect

    Cremer, Jr, Jay Theodore

    2011-06-25

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 to 2.6 neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313-315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  13. Saturation of the f -mode instability in neutron stars. II. Applications and results

    NASA Astrophysics Data System (ADS)

    Pnigouras, Pantelis; Kokkotas, Kostas D.

    2016-07-01

    We present the first results on the saturation of the f -mode instability in neutron stars due to nonlinear mode coupling. Emission of gravitational waves drives the f -mode (fundamental mode) unstable in fast-rotating, newborn neutron stars. The initial growth phase of the mode is followed by its saturation, because of energy leaking to other modes of the star. The saturation point determines the strain of the generated gravitational-wave signal, which can then be used to extract information about the neutron star's equation of state. The parent (unstable) mode couples via parametric resonances with pairs of daughter modes, with the triplets' evolution exhibiting a rich variety of behaviors. We study both supernova- and merger-derived neutron stars, simply modeled as polytropes in a Newtonian context, and show that the parent may couple to many different daughter pairs during the star's evolution through the instability window, with the saturation amplitude changing by orders of magnitude.

  14. Chiral Bands for Quasi-Proton and Quasi-Neutron Coupling with a Triaxial Rotor

    NASA Astrophysics Data System (ADS)

    Qi, B.; Zhang, S. Q.; Wang, S. Y.; Meng, J.

    2008-04-01

    A particle rotor model (PRM) with a quasi-proton and a quasi-neutron coupled with a triaxial rotor is developed and applied to study chiral doublet bands with configurations of an h11/2 proton and an h11/2 quasi-neutron. With pairing treated by the BCS approximation, the present quasi-particle PRM is aimed at simulating one proton and many neutron holes coupled with a triaxial rotor. It is found that aplanar rotation or equivalently chiral geometry exists beyond the usual one proton and one neutron hole coupled with a triaxial rotor. After including the pairing correlation, the model describes the candidate chiral bands in 126Cs successfully, which supports the interpretation of chirality geometry.

  15. Battery powered tabletop pulsed neutron source based on a sealed miniature plasma focus device

    NASA Astrophysics Data System (ADS)

    Rout, R. K.; Mishra, P.; Rawool, A. M.; Kulkarni, L. V.; Gupta, Satish C.

    2008-10-01

    The development of a novel and portable tabletop pulsed neutron source is presented. It is a battery powered neutron tube based on a miniature plasma focus (PF) device having all metal-sealed components. The tube, fuelled with deuterium gas, generates neutrons because of D-D fusion reactions. The inner diameter and the length of the tube are 3.4 cm and 8 cm, respectively. A single capacitor (200 J, 4.0 µF, 10 nH) of compact size (17 cm × 15 cm × 13 cm, 6.5 kg) is used as the energy driver. A power supply system charges the capacitor to 10 kV in 10 s and also provides a 30 kV trigger pulse to the spark gap. An input of 24 V dc (7.5 A) to the power supply system is provided by two rechargeable batteries (each 12 V, 7.5 A, 20 h). The device has produced neutrons for 150 shots within a period of 120 days in a very reliable manner without purging the deuterium gas between the shots. For the first 50 shots, the average yield is (1.6 ± 0.3) × 106 neutrons/shot in 4π sr with a pulse width of 23.4 ± 3.3 ns. The estimated neutron energy is 2.47 ± 0.22 MeV. The neutron production reduces slowly and reaches the detection threshold value of 3 × 105 neutrons/shot towards the last shots. The device produces neutrons in a similar manner on evacuation and refilling. The height of the mounted PF tube with the capacitor and the spark gap is 35 cm. The complete setup comprising the capacitor with spark gap, the PF tube, the power supply system with two batteries and the control panel weighs only 23 kg.

  16. Comparability of Results from Pair and Classical Model Formulations for Different Sexually Transmitted Infections

    PubMed Central

    Ong, Jimmy Boon Som; Fu, Xiuju; Lee, Gary Kee Khoon; Chen, Mark I-Cheng

    2012-01-01

    The “classical model” for sexually transmitted infections treats partnerships as instantaneous events summarized by partner change rates, while individual-based and pair models explicitly account for time within partnerships and gaps between partnerships. We compared predictions from the classical and pair models over a range of partnership and gap combinations. While the former predicted similar or marginally higher prevalence at the shortest partnership lengths, the latter predicted self-sustaining transmission for gonorrhoea (GC) and Chlamydia (CT) over much broader partnership and gap combinations. Predictions on the critical level of condom use (Cc) required to prevent transmission also differed substantially when using the same parameters. When calibrated to give the same disease prevalence as the pair model by adjusting the infectious duration for GC and CT, and by adjusting transmission probabilities for HIV, the classical model then predicted much higher Cc values for GC and CT, while Cc predictions for HIV were fairly close. In conclusion, the two approaches give different predictions over potentially important combinations of partnership and gap lengths. Assuming that it is more correct to explicitly model partnerships and gaps, then pair or individual-based models may be needed for GC and CT since model calibration does not resolve the differences. PMID:22761828

  17. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  18. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  19. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  20. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  1. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  2. Apollo 16 neutron stratigraphy.

    NASA Technical Reports Server (NTRS)

    Russ, G. P., III

    1973-01-01

    The Apollo 16 soils have the largest low-energy neutron fluences yet observed in lunar samples. Variations in the isotopic ratios Gd-158/Gd-157 and Sm-150/Sm-149 (up to 1.9 and 2.0%, respectively) indicate that the low-energy neutron fluence in the Apollo 16 drill stem increases with depth throughout the section sampled. Such a variation implies that accretion has been the dominant regolith 'gardening' process at this location. The data may be fit by a model of continuous accretion of pre-irradiated material or by models involving as few as two slabs of material in which the first slab could have been deposited as long as 1 b.y. ago. The ratio of the number of neutrons captured per atom by Sm to the number captured per atom by Gd is lower than in previously measured lunar samples, which implies a lower energy neutron spectrum at this site. The variation of this ratio with chemical composition is qualitatively similar to that predicted by Lingenfelter et al. (1972). Variations are observed in the ratio Gd-152/Gd-160 which are fluence-correlated and probably result from neutron capture by Eu-151.

  3. Neutron counting with cameras

    SciTech Connect

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  4. Pairing symmetry of the hydrated cobaltate superconductor

    NASA Astrophysics Data System (ADS)

    Zheng, Guo-Qing

    2008-03-01

    We report NMR/NQR measurements on the hydrated cobaltate superconductor NaxCoO2*1.3H2O at elevated pressures. The spin-lattice relaxation rate (1/T1) decreases below Tc with no coherence peak [1], and is in proportion to T^3 down to T˜Tc/10, which provides compelling evidence for the existence of line nodes in the gap function [2,3]. The spin susceptibility obtained from the Knight shift measurement in a single crystal decreases below Tc along all crystal-axis directions [4]. These results indicate anisotropic, spin-singlet pairing, and are most consistent with a d-wave gap. The electron correlations in the normal state are antiferromagnetic-like, which increases with decreasing Na-content [1,2]. The phase diagrams of Tc and various physical properties as functions of Na-content [2], and pressure [3] will be presented, and the inter-relation between the superconductivity and the spin correlations will be discussed. References: [1] T. Fujimoto, G. - q. Zheng, Y. Kitaoka, R.L. Meng, J. Cmaidalka, and C.W. Chu, Phys. Rev. Lett. 92, 047004 (2004). [2] G. - q. Zheng, K. Matano, R.L. Meng, J. Cmaidalka, and C.W. Chu, J. Phys.: Condens. Matter 18, L63 (2006). [3] E. Kusano, S. Kawasaki, K. Matano, G. - q. Zheng, R.L. Meng, J. Cmaidalka, and C.W. Chu, Phys. Rev. B 76, 100506 (R) (2007). [4] G. - q. Zheng, K. Matano, D.P. Chen and C.T. Lin, Phys. Rev. B73, 180503 (R) (2006).

  5. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  6. Axial gap rotating electrical machine

    DOEpatents

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  7. Gap and stripline combined monitor

    DOEpatents

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  8. Effect of isospin dependence of radius on transverse flow and fragmentation in isobaric pairs

    NASA Astrophysics Data System (ADS)

    Gautam, Sakshi

    2013-11-01

    We study the role of nuclear structure effects through radius in reaction dynamics via transverse flow and multifragmentation of isobaric colliding pairs. Our study reveals that isospin-dependent radius [proposed by Royer and Rousseau [Eur. Phys. J. A10.1140/epja/i2008-10745-8 42, 541 (2009)] has significant effect towards isospin effects. The collective flow behavior and fragmentation pattern of neutron-rich system with respect to neutron-deficient system is found to get reversed with isospin-dependent radius compared to that with liquid drop radius.

  9. Neutrino-pair bremsstrahlung from nucleon-α versus nucleon-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Bacca, Sonia; Schwenk, A.

    2015-04-01

    We study the impact of the nucleon-α P -wave resonances on neutrino-pair bremsstrahlung. Because of the noncentral spin-orbit interaction, these resonances lead to an enhanced contribution to the nucleon spin structure factor for temperatures T ≲4 MeV. If the α -particle fraction is significant and the temperature is in this range, this contribution is competitive with neutron-neutron bremsstrahlung. This may be relevant for neutrino production in core-collapse supernovae or other dense astrophysical environments. Similar enhancements are expected for resonant noncentral nucleon-nucleus interactions.

  10. Determining fragmentation dynamics through a study of neutron multiplicity at the NSCL

    NASA Astrophysics Data System (ADS)

    Stephenson, Sharon; Christ, Peter; Mazza, Maria; MoNA Collaboration

    2017-01-01

    In nuclear fragmentation reactions the number of neutrons and the excitation energy of the final fragment are related to the excitation energies of prefragments, which are produced in the reaction target but not directly observed. The MoNA Collaboration designed and performed an experiment to measure the number of neutrons in coincidence with charged projectile fragments to determine the excitation mechanisms of specific prefragments. All prior MoNA experimental campaigns concentrated on neutrons emitted from discrete levels in near dripline nuclei and treated any evaporation neutrons as an underlying background. This experiment capitalizes on those evaporation neutrons, focusing on sodium, neon and fluorine reaction products. For the experiment a 32Mg secondary beam with energy 86 MeV/u was incident on a Be reaction target. This target is upstream from the Sweeper, a superconducting dipole steering magnet with a bending angle of 43° and a vertical gap that permits forward-focused neutrons to get to the MoNA, the Modular Neutron Array. The rigidity of the Sweeper was varied during this experiment to increase the detection range. Analysis of the neutron-neutron hit distribution in coincidence with each sodium, neon, or fluorine charged fragment will be presented. This work was supported in part by the National Science Foundation Award 1613429 and the Howard Hughes Medical Institute Award 52007540.

  11. Neutron Star Compared to Manhattan

    NASA Video Gallery

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  12. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  13. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  14. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  15. Direction sensitive neutron detector

    DOEpatents

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  16. Hyperons and neutron stars

    SciTech Connect

    Vidaña, Isaac

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  17. Neutronic reactor construction

    DOEpatents

    Huston, Norman E.

    1976-07-06

    1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.

  18. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  19. Spherical neutron generator

    DOEpatents

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  20. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-02-01

    A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)