Science.gov

Sample records for neutron reference field

  1. Neutron Reference Benchmark Field Specification: ACRR Free-Field Environment (ACRR-FF-CC-32-CL).

    SciTech Connect

    Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity free-field reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  2. Characterization of neutron reference fields at US Department of Energy calibration fields.

    PubMed

    Olsher, R H; McLean, T D; Mallett, M W; Seagraves, D T; Gadd, M S; Markham, Robin L; Murphy, R O; Devine, R T

    2007-01-01

    The Health Physics Measurements Group at the Los Alamos National Laboratory (LANL) has initiated a study of neutron reference fields at selected US Department of Energy (DOE) calibration facilities. To date, field characterisation has been completed at five facilities. These fields are traceable to the National Institute for Standards and Technology (NIST) through either a primary calibration of the source emission rate or through the use of a secondary standard. However, neutron spectral variation is caused by factors such as room return, scatter from positioning tables and fixtures, source anisotropy and spectral degradation due to source rabbits and guide tubes. Perturbations from the ideal isotropic point source field may impact the accuracy of instrument calibrations. In particular, the thermal neutron component of the spectrum, while contributing only a small fraction of the conventionally true dose, can contribute a significant fraction of a dosemeter's response with the result that the calibration becomes facility-specific. A protocol has been developed to characterise neutron fields that relies primarily on spectral measurements with the Bubble Technology Industries (BTI) rotating neutron spectrometer (ROSPEC) and the LANL Bonner sphere spectrometer. The ROSPEC measurements were supplemented at several sites by the BTI Simple Scintillation Spectrometer probe, which is designed to extend the ROSPEC upper energy range from 5 to 15 MeV. In addition, measurements were performed with several rem meters and neutron dosemeters. Detailed simulations were performed using the LANL MCNPX Monte Carlo code to calculate the magnitude of source anisotropy and scatter factors.

  3. Neutron Reference Benchmark Field Specifications: ACRR Polyethylene-Lead-Graphite (PLG) Bucket Environment (ACRR-PLG-CC-32-CL).

    SciTech Connect

    Vega, Richard Manuel; Parm, Edward J.; Griffin, Patrick J.; Vehar, David W.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the Polyethylene-Lead-Graphite (PLG) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 37 integral dosimetry measurements in the neutron field are reported.

  4. Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields.

    PubMed

    Luszik-Bhadra, M; Bolognese-Milsztajn, T; Boschung, M; Coeck, M; Curzio, G; d'Errico, F; Fiechtner, A; Lacoste, V; Lindborg, L; Reginatto, M; Schuhmacher, H; Tanner, R; Vanhavere, F

    2007-01-01

    Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presented. PMID:17369265

  5. Neutron Reference Benchmark Field Specification: ACRR 44 Inch Lead-Boron (LB44) Bucket Environment (ACRR-LB44-CC-32-CL).

    SciTech Connect

    Vega, Richard Manuel; Parma, Edward J.; Griffin, Patrick J.; Vehar, David W.

    2015-07-01

    This report was put together to support the International Atomic Energy Agency (IAEA) REAL- 2016 activity to validate the dosimetry community’s ability to use a consistent set of activation data and to derive consistent spectral characterizations. The report captures details of integral measurements taken in the Annular Core Research Reactor (ACRR) central cavity with the 44 inch Lead-Boron (LB44) bucket, reference neutron benchmark field. The field is described and an “a priori” calculated neutron spectrum is reported, based on MCNP6 calculations, and a subject matter expert (SME) based covariance matrix is given for this “a priori” spectrum. The results of 31 integral dosimetry measurements in the neutron field are reported.

  6. Simulated workplace neutron fields

    NASA Astrophysics Data System (ADS)

    Lacoste, V.; Taylor, G.; Röttger, S.

    2011-12-01

    The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields.

  7. Evaluation of the characteristics of the neutron reference field using D2O-moderated 252Cf source.

    PubMed

    Kowatari, M; Fujii, K; Takahashi, M; Yoshizawa, M; Shimizu, S; Kawasaki, K; Yamaguchi, Y

    2007-01-01

    The ambient/personal dose equivalent per fluence for D(2)O moderated (252)Cf neutron source was determined by measurement. An appropriate subtraction of the scattered neutrons is required for the accurate measurement of direct neutrons. A cubic shadow object was used for the subtraction of the scattered neutrons from the surroundings. The scattered neutrons to be subtracted vary with the position of the shadow object due to the large volume of the source. Using the Monte Carlo code MCNP-4C, the optimum positions of the shadow object were surveyed for subtracting the scattered neutrons. The energy spectra of direct neutrons were measured in the optimum position. The dosimetric parameters for the D(2)O moderated (252)Cf neutron source were reasonable, taking into account the uncertainties of the parameters.

  8. Characterization of neutron field in a NPP workplace.

    PubMed

    Breznik, B; Pochat, J L; Muller, H; Asselineau, B; Pavlin, M

    2007-01-01

    At the Krsko Nuclear Power Plant (NPP), albedo dosimeters are used for personal neutron dosimetry. Spectrometric measurements allow determination of reference dosimetric values of realistic neutron fields to be used for calibration of albedo dosimeters. The Laboratory for Neutron Metrology and Dosimetry from the Institute for Radiological Protection and Nuclear Safety (IRSN) was in charge of characterising neutron fields in the plant at two representative points with high neutron and gamma dose rate. Calibration of the dosimeters in the workplace used to be performed only by a spherical survey meter. Based on the reference dosimetric values, the Plant Dosimetry Laboratory has verified the response of albedo dosimeters.

  9. Characterization of neutron field in a NPP workplace.

    PubMed

    Breznik, B; Pochat, J L; Muller, H; Asselineau, B; Pavlin, M

    2007-01-01

    At the Krsko Nuclear Power Plant (NPP), albedo dosimeters are used for personal neutron dosimetry. Spectrometric measurements allow determination of reference dosimetric values of realistic neutron fields to be used for calibration of albedo dosimeters. The Laboratory for Neutron Metrology and Dosimetry from the Institute for Radiological Protection and Nuclear Safety (IRSN) was in charge of characterising neutron fields in the plant at two representative points with high neutron and gamma dose rate. Calibration of the dosimeters in the workplace used to be performed only by a spherical survey meter. Based on the reference dosimetric values, the Plant Dosimetry Laboratory has verified the response of albedo dosimeters. PMID:17416593

  10. FIELD CORRECTION FACTORS FOR PERSONAL NEUTRON DOSEMETERS.

    PubMed

    Luszik-Bhadra, M

    2016-09-01

    A field-dependent correction factor can be obtained by comparing the readings of two albedo neutron dosemeters fixed in opposite directions on a polyethylene sphere to the H*(10) reading as determined with a thermal neutron detector in the centre of the same sphere. The work shows that the field calibration technique as used for albedo neutron dosemeters can be generalised for all kind of dosemeters, since H*(10) is a conservative estimate of the sum of the personal dose equivalents Hp(10) in two opposite directions. This result is drawn from reference values as determined by spectrometers within the EVIDOS project at workplace of nuclear installations in Europe. More accurate field-dependent correction factors can be achieved by the analysis of several personal dosimeters on a phantom, but reliable angular responses of these dosemeters need to be taken into account. PMID:26493946

  11. Characterisation of neutron fields at Cernavoda NPP.

    PubMed

    Cauwels, Vanessa; Vanhavere, Filip; Dumitrescu, Dorin; Chirosca, Alecsandru; Hager, Luke; Million, Marc; Bartz, James

    2013-04-01

    Near a nuclear reactor or a fuel container, mixed neutron/gamma fields are very common, necessitating routine neutron dosimetry. Accurate neutron dosimetry is complicated by the fact that the neutron effective dose is strongly dependent on the neutron energy and the direction distribution of the neutron fluence. Neutron field characterisation is indispensable if one wants to obtain a reliable estimate for the neutron dose. A measurement campaign at CANDU nuclear power plant located in Cernavoda, Romania, was set up to characterise the neutron fields in four different locations and to investigate the behaviour of different neutron personal dosemeters. This investigation intends to assist in choosing a suitable neutron dosimetry system at this nuclear power plant.

  12. Reference Dosimetry for Fast Neutron and Proton Therapy

    SciTech Connect

    Jones, D.T.L.

    2005-05-24

    Fast neutrons and protons undergo fundamentally different interactions in tissue. The former interact with nuclei, while the latter, as in the case of photons, interact mainly with atomic electrons. Protons do, however, also undergo some nuclear interactions, the probability of which increases with energy. For both modalities the practical instruments for determining the reference absorbed dose in a patient are ionization chambers. These provide indirect determination of absorbed dose because calibration factors measured in standard radiation fields, as well as conversion factors that require knowledge of various physical data, have to be applied. All dosimetry protocols recommend that reference absorbed dose measurements in the clinical situation be made with ionization chambers having 60Co calibration factors traceable to standards laboratories. Neutron doses determined with the current internationally accepted protocol (ICRU Report 45 [1989]) have a relative uncertainty of {+-}4.3% (1{sigma}), while proton doses determined with the two protocols (ICRU Report 59 [1998] and IAEA Report TRS 398 [2000]) presently in use have relative uncertainties (1{sigma}) of {+-}2.6 % and {+-}2.0%, respectively.

  13. Photon doses in NPL standard neutron fields.

    PubMed

    Roberts, N J; Horwood, N A; McKay, C J

    2014-10-01

    Standard neutron fields are invariably accompanied by a photon component due to the neutron-generating reactions and secondary neutron interactions in the surrounding environment. A set of energy-compensated Geiger-Müller (GM) tubes and electronic personal dosemeters (EPDs) have been used to measure the photon dose rates in a number of standard radionuclide and accelerator-based neutron fields. The GM tubes were first characterised in standard radioisotope and X-ray photon fields and then modelled using MCNP to determine their photon dose response as a function of energy. Values for the photon-to-neutron dose equivalent ratios are presented and compared with other published values.

  14. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  15. Benchmark field study of deep neutron penetration

    SciTech Connect

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  16. Polarized neutron reflectometry in high magnetic fields

    SciTech Connect

    Fritzsche, H.

    2005-11-15

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.

  17. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  18. One directional polarized neutron reflectometry with optimized reference layer method

    SciTech Connect

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-09-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  19. Characterization of a Pulse Neutron Source Yield under Field Conditions

    SciTech Connect

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip C.; Hopper, Lindsay

    2009-03-10

    Technique of rapid evaluation of a pulse neutron sources such as neutron generators under field conditions has been developed. The phoswich sensor and pulse-shape discrimination techniques have been used for the simultaneous measurements of fast neutrons, thermal neutrons, and photons. The sensor has been calibrated using activation neutron detectors and a pulse deuterium-tritium fusion neutron source.

  20. Review of neutron calibration facilities and monitoring techniques: new needs for emerging fields.

    PubMed

    Gressier, V

    2014-10-01

    Neutron calibration facilities and monitoring techniques have been developed since the middle of the 20th century to support research and nuclear power energy development. The technical areas needing reference neutron fields and related instruments were mainly cross section measurements, radiation protection, dosimetry and fission reactors, with energy ranging from a few millielectronvolts to about 20 MeV. The reference neutron fields and calibration techniques developed for these purposes will be presented in this paper. However, in recent years, emerging fields have brought new needs for calibration facilities and monitoring techniques. These new challenges for neutron metrology will be exposed with their technical difficulties.

  1. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    NASA Astrophysics Data System (ADS)

    Caresana, M.; Denker, A.; Esposito, A.; Ferrarini, M.; Golnik, N.; Hohmann, E.; Leuschner, A.; Luszik-Bhadra, M.; Manessi, G.; Mayer, S.; Ott, K.; Röhrich, J.; Silari, M.; Trompier, F.; Volnhals, M.; Wielunski, M.

    2014-02-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  2. Use of Neutron Benchmark Fields for the Validation of Dosimetry Cross Sections

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick

    2016-02-01

    The evolution of validation metrics for dosimetry cross sections in neutron benchmark fields is explored. The strength of some of the metrics in providing validation evidence is examined by applying them to the 252Cf spontaneous fission standard neutron benchmark field, the 235U thermal neutron fission reference benchmark field, the ACRR pool-type reactor central cavity reference benchmark fields, and the SPR-III fast burst reactor central cavity. The IRDFF dosimetry cross section library is used in the validation study and observations are made on the amount of coverage provided to the library contents by validation data available in these benchmark fields.

  3. International Geomagnetic Reference Field: the third generation.

    USGS Publications Warehouse

    Peddie, N.W.

    1982-01-01

    In August 1981 the International Association of Geomagnetism and Aeronomy revised the International Geomagnetic Reference Field (IGRF). It is the second revision since the inception of the IGRF in 1968. The revision extends the earlier series of IGRF models from 1980 to 1985, introduces a new series of definitive models for 1965-1976, and defines a provisional reference field for 1975- 1980. The revision consists of: 1) a model of the main geomagnetic field at 1980.0, not continuous with the earlier series of IGRF models together with a forecast model of the secular variation of the main field during 1980-1985; 2) definitive models of the main field at 1965.0, 1970.0, and 1975.0, with linear interpolation of the model coefficients specified for intervening dates; and 3) a provisional reference field for 1975-1980, defined as the linear interpolation of the 1975 and 1980 main-field models.-from Author

  4. Magnetic field evolution in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Graber, Vanessa; Andersson, Nils; Glampedakis, Kostas; Lander, Samuel K.

    2015-10-01

    The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multifluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two time-scales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.

  5. Anomalies of neutron field of the Earth.

    NASA Astrophysics Data System (ADS)

    Plotnikova, Natalia

    This work is devoted to the researches of time and spatial heterogeneity of thermal neurtron flux (Fn) density in the troposphere of the Earth. We had already received the values of thermal neutron flux density on the surface of the Earth in the European part of Russia. The large-scale monitoring of thermal neutron flux density was carried out on structural cross-section from Drake Strait in the Atlantic Ocean to the high latitudes of Arctic. We observe the increase of Fn from 44о N to 59о N, from 0,4 to 2,9 •10-3 н/(c•cм2). The values of Fn were received in latitude Novorossiysk (0,4•10-3 n/(c•sm2)) , Moskow (0,7-1,5•10-3 n/(c•sm2)), Arhangelsk (1,3•10-3 n/(c•sm2)). High-rise dependance of the thermal neutron flux density on the surface of the Earth and in troposphere during transcontinental flights was researched. With the increasing of height from 0 to 8000 m the thermal neutron flux density rises to 180•10-3 н/(c•cм2) The measurements were carried out in latitude of Spitsbergen. The value of thermal neutron flux density on the North pole was measured. Fn is equal to 0,7•10-3 n/(c•sm2)) 890 20/ in North latitude. Recently it has been shown, that thermal neutrons render appreciable influence on alive organisms [Matveeva and etc., 2004, Masunaga S., 2001]. Abmormal increases of thermal neutron flux density are revealed in flora biogeocenosis. Daily background Fn demonstrate the specific abnormal flares for every biocenosis or biotope long-lasting (for tens of minutes) Fn - meaning during the «flares» in biogeocenosis depends on the contains of flora community and can reach 104 n/(с m2). [Plotnikova N.V., Siroeshkin A.V., 2005]. The researches of the neutron field in the World Ocean were received at the time of transatlantic expedition by the programme of RAS «Meridian» (2006, 2008). Abnormal increasing Fn had being observed in the area of equator and between 310N to 540N and 330S to 530S Moreover, the coordinates of these

  6. Field ion source development for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.

  7. Field Ion Source Development for Neutron Generators

    SciTech Connect

    B. Bargsten Johnson; P. R. Schwoebel; C. E. Holland; P. J. Resnick; K. L. Hertz; D. L. Chichester

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  8. Advanced neutron source final preconceptual reference core design

    SciTech Connect

    Copeland, G.L.; Gambill, W.R.; Harrington, R.M.; Johnson, J.A.; Peretz, F.J.; Reutler, H.; Ryskamp, J.M.; Selby, D.L.; West, C.D.; Yoder, G.L.

    1989-08-01

    The preconceptual design phase of the Advanced Neutron Source (ANS) Project ended with the selection of a reference reactor core that will be used to begin conceptual design work. The new reference core consists of two involute fuel elements, of different diameters, aligned axially with a small axial gap between them. The use of different element diameters permits a separate flow of coolant to be provided for each one, thus enhancing the heat removal capability and increasing the thermal-hydraulic margins. The improved cooling allows the elements to be relatively long and thin, so self-shielding is reduced and an acceptable core life can be achieved with a relatively small loading of highly enriched uranium silicide fuel clad in aluminium. The new reference design has a fueled volume 67.4 L, each element having a heated length of 474 mm and a radial fuel thickness of 66 mm. The end-of-cycle peak thermal flux in the large heavy-water reflector tank around the core is estimated to be in the range of 0.8 to 1.0 /times/ 10/sup 20/ m/sup /minus/2/ /center dot/ s/sup /minus/1/. 7 refs., 23 figs., 15 tabs.

  9. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  10. A comparison of the response of PADC neutron dosemeters in high-energy neutron fields.

    PubMed

    Trompier, F; Boschung, M; Buffler, A; Domingo, C; Cale, E; Chevallier, M-A; Esposito, A; Ferrarini, M; Geduld, D R; Hager, L; Hohmann, E; Mayer, S; Musso, A; Romero-Esposito, M; Röttger, S; Smit, F D; Sashala Naik, A; Tanner, R; Wissmann, F; Caresana, M

    2014-10-01

    Within the framework of the EURADOS Working Group 11, a comparison of passive neutron dosemeters in high-energy neutron fields was organised in 2011. The aim of the exercise was to evaluate the response of poly-allyl-glycol-carbonate neutron dosemeters from various European dosimetry laboratories to high-energy neutron fields. Irradiations were performed at the iThemba LABS facility in South Africa with neutrons having energies up to 66 and 100 MeV. PMID:24298170

  11. The International Geomagnetic Reference Field, 2005

    USGS Publications Warehouse

    Rukstales, Kenneth S.; Love, Jeffrey J.

    2007-01-01

    This is a set of five world charts showing the declination, inclination, horizontal intensity, vertical component, and total intensity of the Earth's magnetic field at mean sea level at the beginning of 2005. The charts are based on the International Geomagnetic Reference Field (IGRF) main model for 2005 and secular change model for 2005-2010. The IGRF is referenced to the World Geodetic System 1984 ellipsoid. Additional information about the USGS geomagnetism program is available at: http://geomag.usgs.gov/

  12. Characterization of neutron calibration fields at the TINT's 50 Ci americium-241/beryllium neutron irradiator

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.

    2015-05-01

    Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.

  13. Icy Schwedeneck field may provide reference

    SciTech Connect

    Not Available

    1985-05-01

    Situated in an icy region of the Baltic Sea, Germany's first offshore field may provide the nation with the reference needed to encroach the arctic market. Production began last winter from one platform in the Schwedeneck-See field, located about three miles off the Baltic Coast. Total reserves have been estimated at more than 18 million bbl. Yearly production by the end of 1986 has been estimated at 294,000 bbl. The first two production platforms were installed in late 1983 in water depths ranging from 50 to 80 ft. Because of the ice hazards inherent in the Baltic, the platforms are concrete designed with steel decks.

  14. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    PubMed

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  15. Does mass accretion lead to field decay in neutron stars?

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, J.; Nomoto, K.

    1989-01-01

    Adopting the hypothesis of accretion-induced magnetic field decay in neutron stars, the consequent evolution of a neutron star's spin and magnetic field are calculated. The results are consistent with observations of binary and millisecond radio pulsars. Thermomagnetic effects could provide a possible physical mechanism for such accretion-induced field decay.

  16. An in-phantom comparison of neutron fields for BNCT

    SciTech Connect

    Woollard, J.E.; Blue, T.E.; Capala, J.

    1998-01-01

    Previously, the authors have developed the in-phantom neutron field assessment parameters T and D (Tumor) for the evaluation of epithermal neutron fields for use in BNCT. These parameters are based on an energy-spectrum-dependent neutron normal-tissue RBE and the treatment planning methodology of Gahbauer and his co-workers, which includes the effects of dose fractionation. In this paper, these neutron field assessment parameters were applied to The Ohio State University (OSU) design of an Accelerator Based Neutron Source (ABNS) (hereafter called the OSU-ABNS) and the Brookhaven Medical Research Reactor (BMRR) epithermal neutron beam (hereafter called the BMRR-ENB), in order to judge the suitability of the OSU-ABNS for BNCT. The BMRR-ENB was chosen as the basis for comparison because it is presently being used in human clinical trials of BNCT and because it is the standard to which other neutron beams are most often compared.

  17. Characterization of Bonner sphere systems at monoenergetic and thermal neutron fields.

    PubMed

    Lacoste, V; Gressier, V; Pochat, J-L; Fernández, F; Bakali, M; Bouassoule, T

    2004-01-01

    The Institute for Radiological Protection and Nuclear Safety (IRSN) and the GFR, Universitat Autónoma de Barcelona (UAB) use Bonner spheres (BS) for neutron spectrometry at workplaces. The two systems, equipped with similar cylindrical 3He proportional counters, were simulated with the MCNP Monte-Carlo code to determine the response to neutrons of different energies for each polyethylene sphere. The BS systems were characterized at monoenergetic and thermal neutron fields. Measurements were performed at the Physikalisch-Technische Bundesanstalt (PTB) and at the National Physical Laboratory (NPL) standard laboratories, and with the newly characterized IRSN 'SIGMA' thermal neutron facility. The energy distribution of the reference neutron fluence was folded with the response functions for comparison purposes with the experimental data. In almost all cases related to monoenergetic neutrons, a good agreement between the experimental and the calculated count rates was found, and some discrepancies of a few per cent were observed in the thermal region.

  18. Use of passive detectors to characterize neutron field hardness.

    PubMed

    Aroua, A; Grecescu, M; Prêtre, S; Valley, J F

    1997-05-01

    Most personnel neutron dosimeters and field monitors suffer from an energy dependence. The knowledge of the energy distribution of the measured neutron field is necessary to correct the response of the detectors. However, the response of the detectors can be significantly improved when only a simple idea of the spectrum hardness is available. This paper describes a way of characterizing the neutron spectrum hardness in a large variety of neutron fields (with energies extending from thermal to 100 MeV) by using the various indications of different types of passive neutron detectors. These indications allow the choice of the appropriate factors established by calibration measurements or taken from the literature to correct the energy dependent response of personnel neutron dosimeters and field monitors.

  19. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  20. The neutron imaging system fielded at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fittinghoff, D. N.; Atkinson, D. P.; Bower, D. E.; Drury, O. B.; Dzenitis, J. M.; Frank, M.; Liddick, S. N.; Moran, M. J.; Roberson, G. P.; Weiss, P. B.; Grim, G. P.; Aragonez, R. J.; Archuleta, T. N.; Batha, S. H.; Clark, D. D.; Clark, D. J.; Danly, C. R.; Day, R. D.; Fatherley, V. E.; Finch, J. P.; Garcia, F. P.; Gallegos, R. A.; Guler, N.; Hsu, A. H.; Jaramillo, S. A.; Loomis, E. N.; Mares, D.; Martinson, D. D.; Merrill, F. E.; Morgan, G. L.; Munson, C.; Murphy, T. J.; Oertel, J. A.; Polk, P. J.; Schmidt, D. W.; Tregillis, I. L.; Valdez, A. C.; Volegov, P. L.; Wang, T. F.; Wilde, C. H.; Wilke, M. D.; Wilson, D. C.; Buckles, R. A.; Cradick, J. R.; Kaufman, M. I.; Lutz, S. S.; Malone, R. M.; Traille, A.

    2013-11-01

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  1. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  2. Reference data file for neutron spectrum adjustment and related radiation damage calculations

    SciTech Connect

    Zsolnay, E.M. ); Nolthenius, H.J.; Greenwood, L.R.; Szondi, E.J. )

    1990-08-01

    The REAL-88 interlaboratory exercise organized by IAEA resulted in a neutron metrology file. (NMF-90) comprising problem dependent data for benchmark neutron fields, furthermore, nuclear data and computer programs for neutron spectrum adjustment and radiation damage parameter calculations for the service life assessment of nuclear facilities. Calculation results of some experienced laboratories are also present. This paper describes and analyses the content of the neutron metrology file and outlines the most important problems and tasks to be solved in the field of radiation damage parameter calculations. 14 refs., 2 figs., 1 tab.

  3. Does mass accretion lead to field decay in neutron stars

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.

    1989-01-01

    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  4. International key comparison of neutron fluence measurements in monoenergetic neutron fields: CCRI(III)-K11

    NASA Astrophysics Data System (ADS)

    Gressier, V.; Bonaldi, A. C.; Dewey, M. S.; Gilliam, D. M.; Harano, H.; Masuda, A.; Matsumoto, T.; Moiseev, N.; Nico, J. S.; Nolte, R.; Oberstedt, S.; Roberts, N. J.; Röttger, S.; Thomas, D. J.

    2014-01-01

    To ensure the validity of their national standards, National Metrology Institutes (NMIs) participate regularly in international comparisons. In the area of neutron metrology, Section III of the Consultative Committee for Ionizing Radiation is in charge of the organization of these comparisons. From September 2011 to October 2012, the eleventh key comparison, named CCRI(III)-K11, took place at the AMANDE facility of the LNE-IRSN, in France. Participants from nine NMIs came with their own primary reference instruments, or instruments traceable to primary standards, with the aim of determining the neutron fluence, at 1 m distance from the target in vacuum, per monitor count at four monoenergetic neutron fields: 27 keV, 565 keV, 2.5 MeV and 17 MeV. The key comparison reference values (KCRV) were evaluated as the weighted mean values of the results provided by seven participants. The uncertainties of each KCRV are between 0.9% and 1.7%. The degree of equivalence (DoE), defined as the deviation of the result reported by the laboratories for each energy from the corresponding KCRV, and the associated expanded uncertainty are also reported and discussed. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. NEUTRON STAR STRUCTURE IN THE PRESENCE OF SCALAR FIELDS

    SciTech Connect

    Crawford, James P.; Kazanas, Demosthenes

    2009-08-20

    Motivated by the possible presence of scalar fields on cosmological scales, suggested by the recent measurement of the deceleration parameter by supernovae surveys, we present models of neutron star structure under the assumption that a scalar field makes a significant contribution to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein-scalar field-hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter-scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field does affect both the maximum neutron star mass and its radius, the latter increasing with the value of the above coupling constant. Our results can provide limits to the scalar field-matter coupling through spectro-temporal observations of accreting or isolated neutron stars.

  6. Personnel neutron dose assessment upgrade: Volume 2, Field neutron spectrometer for health physics applications

    SciTech Connect

    Brackenbush, L.W.; Reece, W.D.; Miller, S.D.; Endres, G.W.R.; Durham, J.S.; Scherpelz, R.I.; Tomeraasen, P.L.; Stroud, C.M.; Faust, L.G.; Vallario, E.J.

    1988-07-01

    Both the (ICRP) and the (NCPR) have recommended an increase in neutron quality factors and the adoption of effective dose equivalent methods. The series of reports entitled Personnel Neutron Dose Assessment Upgrade (PNL-6620) addresses these changes. Volume 1 in this series of reports (Personnel Neutron Dosimetry Assessment) provided guidance on the characteristics, use, and calibration of personnel neutron dosimeters in order to meet the new recommendations. This report, Volume 2: Field Neutron Spectrometer for Health Physics Applications describes the development of a portable field spectrometer which can be set up for use in a few minutes by a single person. The field spectrometer described herein represents a significant advance in improving the accuracy of neutron dose assessment. It permits an immediate analysis of the energy spectral distribution associated with the radiation from which neutron quality factor can be determined. It is now possible to depart from the use of maximum Q by determining and realistically applying a lower Q based on spectral data. The field spectrometer is made up of two modules: a detector module with built-in electronics and an analysis module with a IBM PC/reg sign/-compatible computer to control the data acquisition and analysis of data in the field. The unit is simple enough to allow the operator to perform spectral measurements with minimal training. The instrument is intended for use in steady-state radiation fields with neutrons energies covering the fission spectrum range. The prototype field spectrometer has been field tested in plutonium processing facilities, and has been proven to operate satisfactorily. The prototype field spectrometer uses a /sup 3/He proportional counter to measure the neutron energy spectrum between 50 keV and 5 MeV and a tissue equivalent proportional counter (TEPC) to measure absorbed neutron dose.

  7. Ionization signals from diamond detectors in fast-neutron fields

    NASA Astrophysics Data System (ADS)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  8. Reference Service: A Field with a View.

    ERIC Educational Resources Information Center

    McCann, Linda; Wallach, Ruth

    1999-01-01

    Discusses new technologies and the value of one-on-one personalized interaction in the reference environment and reports results of an informal survey of practitioners that investigated their views on the influences of theoretical models and new technologies on reference service. Highlights include collection development; interpersonal relations;…

  9. Rotational and magnetic field instabilities in neutron stars

    SciTech Connect

    Kokkotas, Kostas D.

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  10. ESR investigation of joint use of dentin and tooth enamel to estimate photon and neutron dose components of a mixed field.

    PubMed

    Trompier, F; Tikunov, D D; Ivannikov, A; Clairand, I

    2006-01-01

    In the case of mixed photon and neutron field, estimation of photon and neutron dose components from the ESR signal of tooth enamel alone is impossible. To differentiate neutron and photon components using the method described in ICRU 26 for twin chambers, enamel and dentin sensitivities to photon and to neutron were investigated. Enamel and dentin relative sensitivities were, respectively, estimated at 0.03 +/- 0.02 and 0.14 +/- 0.10 for fission neutrons. Basing on this result, calculation of neutron and photon doses was performed in realistic case of criticality accident. Estimation of neutron and photon dose components was found in good agreement with reference dosimetry.

  11. {sup 208}Pb neutron density: A mean field problem?

    SciTech Connect

    Gmuca, Stefan

    1998-12-21

    The ground-state nuclear densities and radii of {sup 208}Pb doubly-magic nucleus have been evaluated within the framework of the relativistic mean-field approach. It is pointed out that the neutron density and the neutron radius in the RMF approach are quite different from both, the empirical data and the predictions of the Skyrme-Hartree-Fock model.

  12. Characteristics of the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators.

    PubMed

    Tsujimura, N; Yoshida, T

    2004-01-01

    The authors established the simulated workplace neutron fields using a 252Cf source surrounded with cylindrical moderators at the Japan Nuclear Cycle Development Institute (JNC), Tokai Works. The moderators are annular cylinders made of polymethyl methacrylate and steel. The neutron energy spectrum at the reference calibration point was evaluated from the calculations by MCNP-4B and the measurements by the Bonner multisphere spectrometer and the hydrogen-filled proportional counters. The calculated neutron spectra were in good agreements with the measured ones. These fields can provide the realistic neutron spectra similar to those encountered around the glove-boxes of the fabrication process of MOX (PuO2-UO2 mixed oxide) fuel.

  13. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  14. Physics in strong magnetic fields near neutron stars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1991-01-01

    Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed a trillion gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on earth.

  15. Reference Materials for Reactor Neutron Fluence Rate and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Ingelbrecht, C.

    2003-06-01

    Certified reference materials are distributed by the European Commission through the BCR® programme (over 500 CRMs) including a series of activation and fission monitor materials originally proposed by the Euratom Working Group on Reactor Dosimetry. The current range (18 CRMs) includes materials to cover the complete energy spectrum, and suitable for different irradiation times. Fission monitors are 238UO2 or 237NpO2 in the form of microspheres. Activation monitors are high purity metals (Ni, Cu, Al, Fe, Nb, Rh, or Ti), certified for interfering trace impurities, or dilute aluminium-based alloys. Reference materials newly certified are IRMM-530R A1-0.1%Au, replacing the exhausted IRMM-530 material, used as comparator for k0- standardisation, and three new Al-Co alloys (0.01, 0.1 and 1.0%Co). Others in the process of certification are A1-0.1%Ag and A1-2%Sc for thermal and epithermal fluence rate measurements and two uranium-doped glass materials intended for dosimetry by the fission-track technique. Various alloy compositions have been prepared for use as melt-wire temperature monitors with melting points ranging from 198 to 327ºC.

  16. A method for evaluating personal dosemeters in workplace with neutron fields.

    PubMed

    de Freitas Nascimento, Luana; Cauwels, Vanessa; Vanhavere, Filip

    2012-04-01

    Passive detectors, as albedo or track-etch, still dominate the field of neutron personal dosimetry, mainly due to their low-cost, high-reliability and elevated throughput. However, the recent appearance in the market of electronic personal dosemeters for neutrons presents a new option for personal dosimetry. In addition to passive detectors, electronic personal dosemeters necessitate correction factors, concerning their energy and angular response dependencies. This paper reports on the results of a method to evaluate personal dosemeters for workplace where neutrons are present. The approach here uses few instruments and does not necessitate a large mathematical workload. Qualitative information on the neutron energy spectrum is acquired using a simple spectrometer (Nprobe), reference values for H*(10) are derived from measurements with ambient detectors (Studsvik, Berthold and Harwell) and angular information is measured using personal dosemeters (electronic and bubbles dosemeters) disposed in different orientations on a slab phantom. PMID:21565843

  17. Producing ultrastrong magnetic fields in neutron star mergers.

    PubMed

    Price, D J; Rosswog, S

    2006-05-01

    We report an extremely rapid mechanism for magnetic field amplification during the merger of a binary neutron star system. This has implications for the production of the short class of gamma-ray bursts, which recent observations suggest may originate in such mergers. In detailed magnetohydrodynamic simulations of the merger process, the fields are amplified by Kelvin-Helmholtz instabilities beyond magnetar field strength and may therefore represent the strongest magnetic fields in the universe. The amplification occurs in the shear layer that forms between the neutron stars and on a time scale of only 1 millisecond, that is, long before the remnant can collapse into a black hole.

  18. Evaluation of thermal neutron irradiation field using a cyclotron-based neutron source for alpha autoradiography.

    PubMed

    Tanaka, H; Sakurai, Y; Suzuki, M; Masunaga, S; Mitsumoto, T; Kinashi, Y; Kondo, N; Narabayashi, M; Nakagawa, Y; Watanabe, T; Fujimoto, N; Maruhashi, A; Ono, K

    2014-06-01

    It is important to measure the microdistribution of (10)B in a cell to predict the cell-killing effect of new boron compounds in the field of boron neutron capture therapy. Alpha autoradiography has generally been used to detect the microdistribution of (10)B in a cell. Although it has been performed using a reactor-based neutron source, the realization of an accelerator-based thermal neutron irradiation field is anticipated because of its easy installation at any location and stable operation. Therefore, we propose a method using a cyclotron-based epithermal neutron source in combination with a water phantom to produce a thermal neutron irradiation field for alpha autoradiography. This system can supply a uniform thermal neutron field with an intensity of 1.7×10(9) (cm(-2)s(-1)) and an area of 40mm in diameter. In this paper, we give an overview of our proposed system and describe a demonstration test using a mouse liver sample injected with 500mg/kg of boronophenyl-alanine.

  19. The Covariance and Biocovariance of the Stochartic Neutron Field

    SciTech Connect

    Perez, R.B.

    1998-01-01

    The use of stochastic neutron field theory (neutron noise) for the measurement of reactor physics parameters goes back to the early work of Serber, Feynmann, and Orndoff. Since then, a large variety of methods and applications has been developed. In the majority of these methods, some form of modified one-point reactor kinetics was used for the interpretation of the measurements. In fact, the high level of sophistication of the instrumentation used was not matched by the theory. In 1965, Bell developed a general theory of the stochastic neutron field, and in 1987, Munoz-Cobo et al enlarged this treatment to include the effect of the detectors in the neutron field. In both instances, the complexity of the theoretical results were beyond the computing capabilities then available thus, the mismatch between experimental and theoretical methods remained in existence because the powerful Monte-Carlo methods then at work, were only applicable to static neutron fields. This problem was eliminated by the development of a time-dependent Monte-Carlo code specially written by T. E. Valentine for the analysis of stochastic measurements that gave them relevance to the results of the general theory. The purpose of this work is to illustrate the derivation of observables of the stochastic neutron filed from its general treatment.

  20. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect

    Gangopadhyay, G.; Bhattacharya, Madhubrata; Roy, Subinit

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  1. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    SciTech Connect

    Schmitz, T.; Bassler, N.; Blaickner, M.; Ziegner, M.; Hsiao, M. C.; Liu, Y. H.; Koivunoro, H.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Palmans, H.; Sharpe, P.; Langguth, P.; Hampel, G.

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  2. Determination of elements in National Bureau of Standards' geological Standard Reference Materials by neutron activation analysis

    SciTech Connect

    Graham, C.C.; Glascock, M.D.; Carni, J.J.; Vogt, J.R.; Spalding, T.G.

    1982-08-01

    Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGNAA) have been used to determine elemental concentrations in two recently issued National Bureau of Standards (NBS) Standard Reference Materials (SRM's). The results obtained are in good agreement with the certified and information values reported by NBS for those elements in each material for which comparisons are available. Average concentrations of 35 elements in SRM 278 obsidian rock and 32 elements in SRM 688 basalt rock are reported for comparison with results that may be obtained by other laboratories.

  3. GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.

    2015-01-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.

  4. Determination of TFTR far-field neutron detector efficiencies by local neutron flux spectrum measurement

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.; Ascione, G.; Kugel, H. W.; Roquemore, A. L.; Barcelo, T. W.; Kumar, A.

    1997-01-01

    Neutron detectors have often been located on the tokamak fusion test reactor (TFTR) test cell floor 3 m or more from the vacuum vessel for ease of detector access, to reduce radiation damage, minimize count saturation problems, and to avoid high magnetic fields. These detectors include Si surface-barrier diodes, fission chambers, natural diamond detectors, and T2 production in a moderated 3He cell. To evaluate the performance of these detectors during deuterium-tritium (D-T) operation, we determined the neutron flux spectrum incident on the principal detector enclosure using nuclide sample sets containing Al, Ti, Fe, Co, Cu, Zn, Ni, Zr, Nb, In, and Au activation foils. Foils were installed and then removed after ample exposure to TFTR D-T neutrons. High efficiency, high purity Ge detectors were used for gamma spectroscopy of the irradiated foils. The incident neutron fluence and spectral distribution were unfolded from the measured results, and used to derive absolute detector efficiencies.

  5. A compact neutron scatter camera for field deployment.

    PubMed

    Goldsmith, John E M; Gerling, Mark D; Brennan, James S

    2016-08-01

    We describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources. PMID:27587113

  6. A compact neutron scatter camera for field deployment

    NASA Astrophysics Data System (ADS)

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-01

    We describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  7. A proposed International Geomagnetic Reference Field for 1965- 1985.

    USGS Publications Warehouse

    Peddie, N.W.; Fabiano, E.B.

    1982-01-01

    A set of spherical harmonic models describing the Earth's main magnetic field from 1965 to 1985 has been developed and is proposed as the next revision of the International Geomagnetic Reference Field (IGRF). A tenth degree and order spherical harmonic model of the main field was derived from Magsat data. A series of eighth degree and order spherical harmonic models of the secular variation of the main field was derived from magnetic observatory annual mean values. Models of the main field at 1965, 1970, 1975, and 1980 were obtained by extrapolating the main-field model using the secular variation models.-Authors spherical harmonic models Earth main magnetic field Magsat data

  8. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  9. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  10. Neutron activation analysis for reference determination of the implantation dose of cobalt ions

    SciTech Connect

    Garten, R.P.H.; Bubert, H.; Palmetshofer, L.

    1992-05-15

    The authors prepared depth profilling reference materials by cobalt ion implantation at an ion energy of 300 keV into n-type silicon. The implanted Co dose was then determined by instrumental neutron activation analysis (INAA) giving an analytical dynamic range of almost 5 decades and uncertainty of 1.5%. This form of analysis allows sources of error (beam spreading, misalignment) to be corrected. 70 refs., 3 tabs.

  11. Evaluation of homogeneity of a certified reference material by instrumental neutron activation analysis

    SciTech Connect

    Kratochvil, B.; Duke, M.J.M.; Ng, D.

    1986-01-01

    The homogeneity of the marine reference material TORT-1, a spray-dried and acetone-extracted hepatopancreatic material from the lobster, was tested for 26 elements by instrumental neutron activation analysis (INAA). Through a one-way analysis of variance based on six analyses on each of six bottles of TORT-1, it was concluded that the between-bottle heterogeneity is no greater than the within-bottle heterogeneity. The analytical results for those elements for which values were provided by NRC agree with the NRC values within 95% confidence limits. 8 references, 6 tables.

  12. A compact neutron generator using a field ionization source

    SciTech Connect

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  13. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  14. A comparison of neutron beams for BNCT based on in-phantom neutron field assessment parameters.

    PubMed

    Woollard, J E; Albertson, B J; Reed, M K; Blue, T E; Capala, J; Gupta, N; Gahbauer, R A

    2001-02-01

    In this paper our in-phantom neutron field assessment parameters, T and DTumor, were used to evaluate several neutron sources for use in BNCT. Specifically, neutron fields from The Ohio State University (OSU) Accelerator-Based Neutron Source (ABNS) design, two alternative ABNS designs from the literature (the Al/AIF3-Al2O3 ABNS and the 7LiF-AI2O3 ABNS), a fission-convertor plate concept based on the 500-kW OSU Research Reactor (OSURR), and the Brookhaven Medical Research Reactor (BMRR) facility were evaluated. In order to facilitate a comparison of the various neutron fields, values of T and DTumor were calculated in a 14 cm x 14 cm x 14 cm lucite cube phantom located in the treatment port of each neutron source. All of the other relevant factors, such as phantom materials, kerma factors, and treatment parameters, were kept the same. The treatment times for the OSURR, the 7LiF-Al2O3 ABNS operating at a beam current of 10 mA, and the BMRR were calculated to be comparable and acceptable, with a treatment time per fraction of approximately 25 min for a four fraction treatment scheme. The treatment time per fraction for the OSU ABNS and the Al/AlF3-Al2O3 ABNS can be reduced to below 30 min per fraction for four fractions, if the proton beam current is made greater than approximately 20 mA. DTumor was calculated along the bean centerline for tumor depths in the phantom ranging from 0 to 14 cm. For tumor depths ranging from 0 to approximately 1.5 cm, the value of DTumor for the OSURR is largest, while for tumor depths ranging from 1.5 to approximately 14 cm, the value of DTumor for the OSU-ABNS is the largest. PMID:11243342

  15. Temperature compensated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by a separate but identical magnetic field sensor and is used to correct variations in the output signal due to temperature variations and aging.

  16. Neutron interference in the gravitational field of a ring laser

    NASA Astrophysics Data System (ADS)

    Fischetti, Robert D.; Mallett, Ronald L.

    2015-07-01

    The neutron split-beam interferometer has proven to be particularly useful in measuring Newtonian gravitational effects such as those studied by Colella, Overhauser, and Werner (COW). The development of the ring laser has led to numerous applications in many areas of physics including a recent general relativistic prediction of frame dragging in the gravitational field produced by the electromagnetic radiation in a ring laser. This paper introduces a new general technique based on a canonical transformation of the Dirac equation for the gravitational field of a general linearized spacetime. Using this technique it is shown that there is a phase shift in the interference of two neutron beams due to the frame-dragging nature of the gravitational field of a ring laser.

  17. Quantum states of neutrons in the Earth's gravitational field.

    PubMed

    Nesvizhevsky, Valery V; Börner, Hans G; Petukhov, Alexander K; Abele, Hartmut; Baessler, Stefan; Ruess, Frank J; Stöferle, Thilo; Westphal, Alexander; Gagarski, Alexei M; Petrov, Guennady A; Strelkov, Alexander V

    2002-01-17

    The discrete quantum properties of matter are manifest in a variety of phenomena. Any particle that is trapped in a sufficiently deep and wide potential well is settled in quantum bound states. For example, the existence of quantum states of electrons in an electromagnetic field is responsible for the structure of atoms, and quantum states of nucleons in a strong nuclear field give rise to the structure of atomic nuclei. In an analogous way, the gravitational field should lead to the formation of quantum states. But the gravitational force is extremely weak compared to the electromagnetic and nuclear force, so the observation of quantum states of matter in a gravitational field is extremely challenging. Because of their charge neutrality and long lifetime, neutrons are promising candidates with which to observe such an effect. Here we report experimental evidence for gravitational quantum bound states of neutrons. The particles are allowed to fall towards a horizontal mirror which, together with the Earth's gravitational field, provides the necessary confining potential well. Under such conditions, the falling neutrons do not move continuously along the vertical direction, but rather jump from one height to another, as predicted by quantum theory.

  18. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    PubMed

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  19. Relativistic mean field models for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia

    In this dissertation we have created theoretical models for finite nuclei, nuclear matter, and neutron stars within the framework of relativistic mean field (RMF) theory, and we have used these models to investigate the elusive isovector sector and related physics, in particular, the neutron-skin thickness of heavy nuclei, the nuclear symmetry energy, and the properties of neutron stars. To build RMF models that incorporate collective excitations in finite nuclei in addition to their ground-state properties, we have extended the non-relativistic sum rule approach to the relativistic domain. This allows an efficient estimate of giant monopole energies. Moreover, we have combined an exact shell-model-like approach with the mean-field calculation to describe pairing correlations in open-shell nuclei. All the ingredients were then put together to establish the calibration scheme. We have also extended the transformation between model parameters and pseudo data of nuclear matter within the RMF context. Performing calibration in this pseudo data space can not only facilitate the searching algorithm but also make the pseudo data genuine model predictions. This calibration scheme is also supplemented by a covariance analysis enabling us to extract the information content of a model, including theoretical uncertainties and correlation coefficients. A series of RMF models subject to the same isoscalar constraints but one differing isovector assumption were then created using this calibration scheme. By comparing their predictions of the nuclear matter equation of state to both experimental and theoretical constraints, we found that a small neutron skin of about 0.16 fm in Pb208 is favored, indicating that the symmetry energy should be soft. To obtain stronger evidence, we proceeded to examine the evolution of the isotopic chains in both oxygen and calcium. Again, it was found that the model with such small neutron skin and soft symmetry energy can best describe both isotopic

  20. Small-Angle Neutron Scattering study of the NIST mAb reference material

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Liu, Yun; Krueger, Susan; Curtis, Joseph

    Monoclonal antibodies (mAbs) are of great interest to the biopharmaceutical industry because they can be engineered to target specific antigens. Due to their importance, the biomanufacturing initiative at NIST is developing an IgG1 mAb reference material `NIST mAb', which can be used by industry, academia, and regulatory authorities. As part of this collaborative effort, we aim at characterizing the reference material using neutron scattering techniques. We have studied the small-angle scattering profile of the NIST mAb in a histidine buffer at 0 and 150 mM NaCl. Using Monte Carlo simulations, we generate an ensemble of structures and calculate their theoretical scattering profile, which can be directly compared with experimental data. Moreover, we analyze the structure factor to understand the effect of solution conditions on the protein-protein interactions. Finally, we have measured the solution scattering of the NIST mAb, while simultaneously performing freeze/thaw cycles, in order to investigate if the solution structure was affected upon freezing. The results from neutron scattering not only support the development of the reference material, but also provide insights on its stability and guide efforts for its development under different formulations.

  1. Microdosimetry of neutron field for boron neutron capture therapy at Kyoto university reactor.

    PubMed

    Endo, S; Onizuka, Y; Ishikawa, M; Takada, M; Sakurai, Y; Kobayashi, T; Tanaka, K; Hoshi, M; Shizuma, K

    2004-01-01

    Microdosimetric single event spectrum in a human body simulated by an acrylic phantom has been measured for the clinical BNCT field at the Kyoto University Reactor (KUR). The recoil particles resulting from the initial reaction and subsequent interactions, namely protons, electrons, alpha particles and carbon nuclei are identified in the microdosimetric spectrum. The relative contributions to the neutron dose from proton, alpha particles and carbon are estimated to be about 0.9, 0.07 and 0.3, respectively, four depths between 5 and 41 mm. We estimate that the dose averaged lineal energy, yD decreased with depth from 64 to 46 keV microm(-1). Relative biological effectiveness (RBE) of this neutron field using a response function for the microdosimetric spectrum was estimated to decrease from 3.6 to 2.9 with increasing depth. PMID:15353723

  2. The freedom to choose neutron star magnetic field equilibria

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Lasky, Paul D.

    2016-08-01

    Our ability to interpret and glean useful information from the large body of observations of strongly magnetised neutron stars rests largely on our theoretical understanding of magnetic field equilibria. We answer the following question: is one free to arbitrarily prescribe magnetic equilibria such that fluid degrees of freedom can balance the equilibrium equations? We examine this question for various models for neutron star matter; from the simplest single-fluid barotrope to more realistic non-barotropic multifluid models with superfluid/superconducting components, muons and entropy. We do this for both axi- and non-axisymmetric equilibria, and in Newtonian gravity and general relativity. We show that, in axisymmetry, the most realistic model allows complete freedom in choosing a magnetic field equilibrium whereas non-axisymmetric equilibria are never completely arbitrary.

  3. Instrument intercomparison in the high-energy mixed field at the CERN-EU reference field (CERF) facility.

    PubMed

    Caresana, Marco; Helmecke, Manuela; Kubancak, Jan; Manessi, Giacomo Paolo; Ott, Klaus; Scherpelz, Robert; Silari, Marco

    2014-10-01

    This paper discusses an intercomparison campaign performed in the mixed radiation field at the CERN-EU (CERF) reference field facility. Various instruments were employed: conventional and extended-range rem counters including a novel instrument called LUPIN, a bubble detector using an active counting system (ABC 1260) and two tissue-equivalent proportional counters (TEPCs). The results show that the extended range instruments agree well within their uncertainties and within 1σ with the H*(10) FLUKA value. The conventional rem counters are in good agreement within their uncertainties and underestimate H*(10) as measured by the extended range instruments and as predicted by FLUKA. The TEPCs slightly overestimate the FLUKA value but they are anyhow consistent with it when taking the comparatively large total uncertainties into account, and indicate that the non-neutron part of the stray field accounts for ∼30 % of the total H*(10).

  4. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    PubMed

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  5. Fission of 232Th in a spallation neutron field

    NASA Astrophysics Data System (ADS)

    Yurevich, V. I.; Nikolaev, V. A.; Yakovlev, R. M.

    2016-03-01

    The spatial distributions of thorium fission reaction rate in a spallation neutron field of thick lead target bombarded by protons or deuterons with energy between 1.0 and 3.7 GeV were measured. Approximately a linear dependence of the thorium fission rate on the beam energy is observed. The mean fission cross section of 232Th <σ f > ≈ 123 mb and it does not depend on energy and type of the beam particles.

  6. Determination of multielements in a typical Japanese diet certified reference material by instrumental neutron activation analysis.

    PubMed

    Suzuki, Shogo; Okada, Yukiko; Hirai, Shoji

    2003-08-01

    Multielements in a typical Japanese diet certified reference material prepared at the National Institute for Environmental Studies (NIES) of Japan, in collaboration with the National Institute of Radiological Sciences (NIRS) of Japan were determined by instrumental neutron activation analysis (INAA). Five samples (ca. 510-1000 mg) and comparative standards were irradiated for a short time (10 s) at a thermal neutron flux of 1.5 x 10(12) n cm(-2) s(-1) (pneumatic transfer) and for a long time (6 h) at a thermal neutron flux of 3.7 x 10(12) n cm(-2) s(-1) (central thimble) in the Rikkyo University Research Reactor (TRIGA Mark-II, 100 kW). The irradiated samples were measured by conventional gama-ray spectrometry using a coaxial Ge detector, and by anti-coincidence and coincidence gamma-ray spectrometry with a coaxial Ge detector and a well-type NaI(Tl) detector. The concentrations of 38 elements were determined by these methods. PMID:12945682

  7. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.

    PubMed

    Goorley, J T; Kiger, W S; Zamenhof, R G

    2002-02-01

    As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of <1% (1 std. dev.) in the center of the head model. In addition, a "generic" epithermal neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data

  8. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    NASA Astrophysics Data System (ADS)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  9. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor.

    PubMed

    Rogus, R D; Harling, O K; Yanch, J C

    1994-10-01

    During the past several years, there has been growing interest in Boron Neutron Capture Therapy (BNCT) using epithermal neutron beams. The dosimetry of these beams is challenging. The incident beam is comprised mostly of epithermal neutrons, but there is some contamination from photons and fast neutrons. Within the patient, the neutron spectrum changes rapidly as the incident epithermal neutrons scatter and thermalize, and a photon field is generated from neutron capture in hydrogen. In this paper, a method to determine the doses from thermal and fast neutrons, photons, and the B-10(n, alpha)Li-7 reaction is presented. The photon and fast neutron doses are measured with ionization chambers, in realistic phantoms, using the dual chamber technique. The thermal neutron flux is measured with gold foils using the cadmium difference technique, the thermal neutron and B-10 doses are determined by the kerma factor method. Representative results are presented for a unilateral irradiation of the head. Sources of error in the method as applied to BNCT dosimetry, and the uncertainties in the calculated doses are discussed.

  10. Torsional oscillations of neutron stars with highly tangled magnetic fields

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2015-11-01

    To determine the frequencies of magnetic oscillations in neutron stars with highly tangled magnetic fields, we derive the perturbation equations. We assume that the field strength of the global magnetic structure is so small that such fields are negligible compared with tangled fields, which may still be far from a realistic configuration. Then, we systematically examine the spectra of the magnetic oscillations, as varying the magnetic field strength and stellar mass. The frequencies without crust elasticity are completely proportional to the strength of the magnetic field, whose proportionality constant depends strongly on the stellar mass. On the other hand, the oscillation spectra with crust elasticity become more complicated, where the frequencies even for weak magnetic fields are different from the crustal torsional oscillations without magnetic fields. For discussing spectra, the critical field strength can play an important role, and it is determined in such a way that the shear velocity is equivalent to the Alfvén velocity at the crust basis. Additionally, we find that the effect of the crust elasticity can be seen strongly in the fundamental oscillations with a lower harmonic index, ℓ. Unlike the stellar models with a pure dipole magnetic field, we also find that the spectra with highly tangled magnetic fields become discrete, where one can expect many of the eigenfrequencies. Maybe these frequencies could be detected after the violent phenomena breaking the global magnetic field structure.

  11. High electric field deuterium ion sources for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and

  12. Neutron spectrometry in mixed fields: superheated drop (bubble) detectors.

    PubMed

    d'Errico, F; Matzke, M

    2003-01-01

    The BINS neutron threshold spectrometer permits the analysis of the main features of a neutron field for radiation protection purposes. The system offers a virtually complete photon discrimination and nested threshold responses to neutrons, which allow the use of very effective 'few-channel' unfolding procedures. To date, the practical operating energy range of a BINS is 0.1-10 MeV, over which a resolving power of 20-30% can be expected when the deconvolution is performed without explicit pre-information. Spectrum unfolding results in relatively high uncertainties on the differential fluence distributions, but due to negative correlations in adjacent energy groups the uncertainties on integral quantities such as dose equivalent are small and of the order of 5% to 10%, similar to the results of other active spectrometers. In comparison with most radiation detectors, the BINS is an extremely slow system due to the intrinsic duration of a bubble pulse and to the time associated with pulse analysis. For example, the maximum sustainable fluence rate of 1 MeV neutrons is about 10(4) cm(-2) s(-1), which is low for many neutron physics experiments. However, this rate corresponds to an ambient dose equivalent rate of about 1 mSv h(-1), making the active device adequate for radiation protection applications in the workplaces described in Section 1. There are ample margins for improvement of the spectrometer. In particular, in the low-energy region a thermal-epithermal neutron group may be added by using chlorine-bearing emulsions stabilised at suitable temperatures. In fact, the latest version of the system achieves this goal by using a single superheated emulsion of dichlorotetrafluoroethane (R-114) operated at temperatures up to 55 degrees C. This extends the range of the spectrometer and at the same time removes the undue enhancement of the UNFANA output in the low energy region. Above 10 MeV, the resolution can be improved by adding more thresholds, e.g. by starting from

  13. A militarily fielded thermal neutron activation sensor for landmine detection

    NASA Astrophysics Data System (ADS)

    Clifford, E. T. H.; McFee, J. E.; Ing, H.; Andrews, H. R.; Tennant, D.; Harper, E.; Faust, A. A.

    2007-08-01

    The Canadian Department of National Defence has developed a teleoperated, vehicle-mounted, multi-sensor system to detect anti-tank landmines on roads and tracks in peacekeeping operations. A key part of the system is a thermal neutron activation (TNA) sensor which is placed above a suspect location to within a 30 cm radius and confirms the presence of explosives via detection of the 10.835 MeV gamma ray associated with thermal neutron capture on 14N. The TNA uses a 100 μg252Cf neutron source surrounded by four 7.62 cm×7.62 cm NaI(Tl) detectors. The system, consisting of the TNA sensor head, including source, detectors and shielding, the high-rate, fast pulse processing electronics and the data processing methodology are described. Results of experiments to characterize detection performance are also described. The experiments have shown that anti-tank mines buried 10 cm or less can be detected in roughly a minute or less, but deeper mines and mines significantly displaced horizontally take considerably longer time. Mines as deep as 30 cm can be detected for long count times (1000 s). Four TNA detectors are now in service with the Canadian Forces as part of the four multi-sensor systems, making it the first militarily fielded TNA sensor and the first militarily fielded confirmation sensor for landmines. The ability to function well in adverse climatic conditions has been demonstrated, both in trials and operations.

  14. Neutron Interference in the Gravitational Field of a Ring Laser

    NASA Astrophysics Data System (ADS)

    Fischetti, Robert

    2013-04-01

    A number of analyses of neutron interference effects due to various metric perturbations have been found in the literature [1,2]. However, the approach of each author depends on a specific metric. I will present a new general technique giving the Foldy-Wouthuysen transformed Hamiltonian for a Dirac particle in the most general linearized space-time metric. I will then apply this new technique to calculate the phase shift on a neutron beam interferometer due to the gravitational field of a ring laser [3].[4pt] [1] D. M Greenberger and A. W. Overhauser, Rev. Mod. Phys. 51, 43--78 (1979).[0pt] [2] F. W. Hehl and W. T. Ni, Phys. Rev. D, vol 42, no. 6, pp. 2045-2048, 1990.[0pt] [3] R. L. Mallett, Phys. Lett. A 269, 214 (2000).

  15. Long-term evolution of crustal neutron star magnetic fields

    NASA Technical Reports Server (NTRS)

    Urpin, V. A.; Chanmugam, G.; Sang, Yeming

    1994-01-01

    We have derived an analytic solution to the asymptotic behavior of dipolar magnetic fields that are generated in the crusts of neutron stars. We show that if the conductivity is due to impurity scattering, as expected for late stages of evolution, the surface field strength at the magnetic pole declines with the power law B(sub p) approximately = (t/t(sub 0))(exp -2/3). The results are shown to be qualitatively consistent with detailed numerical calculations. These latter results are consistent with some recent analyses of pulsar statistics and the magnetic fields of several binary pulsars with white dwarf companions whose ages have been determined. The dependence of the surface magnetic field on spin period of the pulsar is derived.

  16. A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Blattnig, Steve R.; Walker, Steven A.; Norbury, John W.

    2015-01-01

    Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.

  17. Neutron-activation analysis of several US Geological Survey and National Bureau of Standards reference materials

    SciTech Connect

    Daly, A.T.

    1981-01-01

    In this work, several US Geological Survey (U.S.G.S.) and National Bureau of Standards (N.B.S.) reference samples have been analyzed in an effort to improve the quality of elemental concentration data available on these materials, so they can be used in a program of verification of factor analysis source resolution procedures. The analyses of these samples were performed by instrumental neutron activation analysis (INAA). The samples analyzed were: U.S.G.S. Green River Shale, N.B.S. 45b Homogeneous River Sediment, U.S.G.S. Analyzed Peridotite N.B.S. 1579 Powdered Lead-based Paint, U.S.G.S. Hawaian Basalt U.S.G.S. Marine Mud, U.S.G.S. Analyzed Cody Shale U.S.G.S. Glass Mountain Rhyolite, N.B.S. Argillaceous Limestone No. 1, and a sample of Spex ultrapure graphite. Neutron activation analysis was employed because of the high sensitivity that can be attained in determining elemental concentrations. Although INAA is a relatively simple method and the reproducibility of the data is good, the method shows some inaccuracies. The basic theory and technique are reviewed in an attempt to show where problems can arise and how they can be dealt with.

  18. A field evaporation deuterium ion source for neutron generators

    SciTech Connect

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 10{sup 9}-10{sup 10} n/cm{sup 2} of tip array area.

  19. A field evaporation deuterium ion source for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 109-1010 n/cm2 of tip array area.

  20. Dose homogeneity specification for reference dosimetry of nonstandard fields

    SciTech Connect

    Chung, Eunah; Soisson, Emilie; Seuntjens, Jan

    2012-01-15

    Purpose: To investigate the sensitivity of the plan-class specific correction factor to dose distributions in composite nonstandard field dosimetry. Methods: A cylindrical water-filled PMMA phantom was constructed at the center of which reference absorbed dose could be measured. Ten different TomoTherapy-based IMRT fields were created on the CT images of the phantom. The dose distribution for each IMRT field was estimated at the position of a radiation detector or ionization chamber. The dose in each IMRT field normalized to that in a reference 10 x 10 cm{sup 2} field was measured using a PTW micro liquid ion chamber. Based on the new dosimetry formalism, a plan-class specific correction factor k{sub Q{sub p{sub c{sub s{sub r,Q}{sup f{sub p}{sub c}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}}} for each field was measured for two Farmer-type chambers, Exradin A12 and NE2571, as well as for a smaller Exradin A1SL chamber. The dependence of the measured correction factor on parameters characterizing dose distribution was analyzed. Results: Uncertainty on the plan-class specific correction factor measurement was in the range of 0.3%-0.5% and 0.3%-0.8% for the Farmer-type chambers and the Exradin A1SL, respectively. When the heterogeneity of the central region of the target volume was less than 5%, the correction factor did not differ from unity by more than 0.7% for the three air-filled ionization chambers. For more heterogeneous dose deliveries, the correction factor differed from unity by up to 2.4% for the Farmer-type chambers. For the Exradin A1SL, the correction factor was closer to unity due to the reduced effect of dose gradients, while it was highly variable in different IMRT fields because of a more significant impact of positioning uncertainties on the response of this chamber. Conclusions: The authors have shown that a plan-class specific correction factor can be specified as a function of plan evaluation parameters especially for Farmer-type chambers. This work

  1. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields

    DOE PAGES

    Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; Kienzle, Paul A.; Majkrzak, Charles F.; Liu, Yaohua; Dennis, Cindi L.

    2016-06-09

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample,more » however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. In conclusion, the theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.« less

  2. Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields

    PubMed Central

    Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; Kienzle, Paul A.; Majkrzak, Charles F.; Liu, Yaohua; Dennis, Cindi L.

    2016-01-01

    The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement. PMID:27504074

  3. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  4. Characteristics of the KUR Heavy Water Neutron Irradiation Facility as a neutron irradiation field with variable energy spectra

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2000-10-01

    The Heavy Water Neutron Irradiation Facility (HWNIF) of the Kyoto University Research Reactor (KUR) was updated in March 1996, mainly for the improvement in neutron capture therapy (NCT). A striking feature of the updated facility is that the energy spectrum of the neutron beam can be controlled from almost pure thermal to epi-thermal, within 5 min by remote control under a continuous reactor operation. This feature is advantageous not only to medical science such as NCT, but also to the other research fields such as physics, engineering, biology, etc. The performance of the updated facility as a neutron irradiation field with variable energy spectra, was characterized. Thermal neutron flux, cadmium ratio, gamma-ray dose rate, etc., at the normal irradiation position for various irradiation modes were determined, mainly on the basis of the measurement using gold activation foils and thermo-luminescent dosimeters (TLDs). The emphasis was on the performance of the new neutron energy spectrum shifter and cadmium thermal neutron filter, that control the mixing ratio of thermal and epi-thermal neutrons, through the change in the heavy water thickness of the spectrum shifter and the aperture size of the cadmium filter. The evaluation of neutron energy spectra at the normal irradiation position was also performed for three representative irradiation modes, in which the neutron intensities are largest of all the irradiation modes. In addition, the irradiation characteristics of two irradiation devices, namely the Irradiation Rail Device and the Remote Patient Carrier, which were updated concurrently with the facility update, were evaluated.

  5. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well

  6. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    PubMed

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  7. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    PubMed

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme. PMID:12212904

  8. DEVELOPMENT OF SIMULATED WORKPLACE FIELDS AT KRISS FOR PERFORMANCE TEST OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Kim, Jungho; Park, Hyeonseo; Kim, Yunho

    2016-09-01

    Simulated workplace neutron fields have been developed at the Korea Research Institute of Standards and Science (KRISS). An (241)Am-Be neutron source and a cylindrical moderator composed of stainless steel and heavy water were installed in a 10-cm-thick concrete block with dimensions of 150 × 120 × 120 cm(3) The neutron energy spectrum at a distance of 66.5 cm was measured using a Bonner sphere spectrometer and was found to agree with the spectrum obtained from the Monte Carlo N-Particle Extended simulation to within 5 %. The neutron fluence-to-personal dose equivalent conversion coefficients were (20.8-43.6) pSv·cm(2) and were thus in good agreement with those of reactor fields. The results showed that the KRISS-simulated workplace neutron fields can be used for performance tests and the calibration service of neutron personal dosemeters. PMID:26541186

  9. Cryogen free high magnetic field sample environment for neutron scattering

    NASA Astrophysics Data System (ADS)

    Down, R. B. E.; Kouzmenko, G.; Kirichek, O.; Wotherspoon, R.; Brown, J.; Bowden, Z. A.

    2010-11-01

    Cryogenic equipment can be found in the majority of neutron scattering experiments. Recent increases in liquid helium cost caused by global helium supply problems lead to significant concern about affordability of conventional cryogenic equipment. However the latest progress in cryo-cooler technology offers a new generation of cryogenic systems in which the cryogen consumption can be significantly reduced and in some cases completely eliminated. These systems also offer the advantage of operational simplicity, require less space than conventional cryogen-cooled systems and can significantly improve user safety. At the ISIS facility it is possible to substitute conventional cryostats with cryogen free systems. Such systems are based on the pulse tube refrigerator (PTR) which possesses no cold moving parts. Oxford Instruments in collaboration with ISIS have developed new high magnetic field sample environment equipment based on re-condensing technology. This project includes 9T wide angle chopper magnet for spectrometry and 14T magnet for diffraction. The main advantage of these systems is that all magnet operating procedures, for example cooling, running up to the field and quenching remain the same as for a standard magnet in a bath cryostat. This approach also provides a homogeneous temperature distribution, which is crucial for optimum magnet performance.

  10. Internal composition of proto-neutron stars under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Dexheimer, V.; Schramm, S.

    2016-08-01

    In this work, we study the effects of magnetic fields and rotation on the structure and composition of proto-neutron stars. A hadronic chiral SU(3) model is applied to cold neutron stars and proto-neutron stars with trapped neutrinos and at fixed entropy per baryon. We obtain general relativistic solutions for neutron and proto-neutron stars endowed with a poloidal magnetic field by solving Einstein-Maxwell field equations in a self-consistent way. As the neutrino chemical potential decreases in value over time, this alters the chemical equilibrium and the composition inside the star, leading to a change in the structure and in the particle population of these objects. We find that the magnetic field deforms the star and significantly alters the number of trapped neutrinos in the stellar interior, together with strangeness content and temperature in each evolution stage.

  11. Dosimeter incorporating radiophotoluminescent detectors for thermal neutrons and γ-rays in n-γ fields

    NASA Astrophysics Data System (ADS)

    Salem, Y. O.; Nachab, A.; Roy, C.; Nourreddine, A.

    2016-10-01

    We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H∗(10) and Hp(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.

  12. Calculation verification of the utilization of LR-0 for reference neutron spectra

    NASA Astrophysics Data System (ADS)

    Ján, Milčák; Michal, Košťál; Marie, Švadlenková; Michal, Koleška; Vojtěch, Rypar

    2014-11-01

    Well-defined neutron spectrum is crucial for calibration and testing of detectors for spectrometry and dosimetry purposes. As a possible source of neutrons nuclear reactors can be utilized. In reactor core most of the neutrons are originated from fission and neutron spectra is usually some form of moderated spectra of fast neutrons. The reactor LR-0 is an experimental light-water zero-power pool-type reactor originally designed for research of the VVER type reactor cores, spent-fuel storage lattices and benchmark experiments. The main reactor feature that influences the performance of experiments is the flexible arrangement of the core. Special types of the possible core arrangements on the reactor LR-0 can provide different neutron spectra in special experimental channels. These neutron spectra are modified by inserting different materials around the channel and whole core is driven by standard fuel assemblies. Fast, epithermal or thermal spectra can be simulated using graphite, H2O, D2O insertions, air, Cd foils or fuel with different enrichment.

  13. Position sensitive detection of neutrons in high radiation background field

    SciTech Connect

    Vavrik, D.; Jakubek, J.; Pospisil, S.; Vacik, J.

    2014-01-15

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.

  14. Neutron Scattering at Highest Magnetic Fields at the Helmholtz Centre Berlin

    NASA Astrophysics Data System (ADS)

    Smeibidl, P.; Tennant, A.; Ehmler, H.; Bird, M.

    2010-04-01

    The Helmholtz Centre Berlin (HZB), formerly Hahn-Meitner Institute is a user facility for the study of structure and dynamics with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. At HZB a dedicated instrument for neutron scattering at extreme fields is under construction, the Extreme Environment Diffractometer ExED. It is projected according to the “time-of-flight” principle for elastic and inelastic neutron scattering and for the special geometric constraints of analysing samples in a high field magnet. The new magnet will not only allow for novel experiments, it will be at the forefront of development in magnet technology itself. The design of the magnet will follow the Series Connected Hybrid System Technology (SCH) developed at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, Florida. To compromise between the needs of the magnet design for highest fields and the concept of the neutron instrument, the magnetic field will be generated by means of a coned solenoid with horizontal field orientation. By using resistive insert coils, which are mounted in the room temperature bore of a superconducting cable-in-conduit (CIC) magnet, fields above 30 Tesla can be obtained in a geometry optimised for the demands of neutron scattering.

  15. Time-dependent neutron and photon dose-field analysis

    NASA Astrophysics Data System (ADS)

    Wooten, Hasani Omar

    2005-11-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The code Pandemonium, originally designed to determine flux and dose rates only, has been improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. The photon model has been significantly enhanced by expanding the energy range to 10 MeV to include fission photons, and by including a set of new buildup factors, the result of an extensive study into the previously unknown "purely-angular effect" on photon buildup. Purely-angular photon buildup factors are determined using discrete ordinates and coupled electron-photon cross sections to account for coherent and incoherent scattering and secondary photon effects of bremsstrahlung and florescence. Improvements to Pandemonium result in significant modeling capabilities for processing facilities using intense neutron and photon sources, and the code obtains comparable results to Monte Carlo calculations but within a fraction of the time required to run such codes as MCNPX.

  16. Compact deuterium-tritium neutron generator using a novel field ionization source

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Sanchez, J.; Tang, V.; Wang, H.

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  17. Polarisation Analysis Neutron Spectrometer, POLANO, at J-PARC - Concept and Magnetic Field Optimisation

    NASA Astrophysics Data System (ADS)

    Ohoyama, K.; Yokoo, T.; Itoh, S.; Nanbu, M.; Iwasa, K.; Ohkawara, M.; Kaneko, N.; Ino, T.; Hayashida, H.; Oku, T.; Kira, H.; Tasaki, S.; Takeda, M.; Kimura, H.; Sato, T. J.

    2016-04-01

    The status of the polarised neutron spectrometer constructed at the Japan Proton Accelerator Research Complex through a collaboration between Tohoku University and KEK will be reported. In particular, the optimisation of magnetic fields to minimise neutron- beam depolarisation using the finite element method will be discussed on the basis of several simulations using the finite element method.

  18. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and E sub parallel formation

    SciTech Connect

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs.

  19. Quantification of the sensitivity range in neutron dark-field imaging

    SciTech Connect

    Betz, B.; Harti, R. P.; Hovind, J.; Kaestner, A.; Lehmann, E.; Grünzweig, C.; Strobl, M.; Van Swygenhoven, H.

    2015-12-15

    In neutron grating interferometry, the dark-field image visualizes the scattering properties of samples in the small-angle and ultra-small-angle scattering range. These angles correspond to correlation lengths from several hundred nanometers up to several tens of micrometers. In this article, we present an experimental study that demonstrates the potential of quantitative neutron dark-field imaging. The dark-field signal for scattering from different particle sizes and concentrations of mono-dispersive polystyrene particles in aqueous solution is compared to theoretical predictions and the good agreement between measurements and calculations underlines the quantitative nature of the measured values and reliability of the technique with neutrons.

  20. Auxiliary-field quantum Monte Carlo simulations of neutron matter in chiral effective field theory.

    PubMed

    Wlazłowski, G; Holt, J W; Moroz, S; Bulgac, A; Roche, K J

    2014-10-31

    We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear forces. The ground-state wave function of neutron matter, containing nonperturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10(3) discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of the chiral nuclear force. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of Λ=414  MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction (Entem and Machleidt Λ=414  MeV [L. Coraggio et al., Phys. Rev. C 87, 014322 (2013).

  1. A method for comparing degradation of boron trifluoride and helium detectors in neutron and gamma fields

    SciTech Connect

    Qian, T.; Tonner, P.; Keller, N.; Buyers, W.J.L.

    1998-06-01

    A method developed to measure the degradation of neutron detectors in neutron and gamma fields has been applied to five models of boron trifluoride (BF{sub 3}) detectors from major suppliers, and to a special helium ({sup 3}He) detector model. The detectors tested all have about the same nominal thermal neutron sensitivity and overall dimensions. The results showed widely different neutron and gamma durability for BF{sub 3} models, an undesirable time-dependent gamma degradation followed by recovery for some BF{sub 3} models, and very robust performance of the modified {sup 3}He detector.

  2. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  3. Study of the neutron field in the vicinity of an unshielded PET cyclotron.

    PubMed

    Méndez, R; Iñiguez, M P; Martí-Climent, J M; Peñuelas, I; Vega-Carrillo, H R; Barquero, R

    2005-11-01

    The neutron field in the proximity of an unshielded PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Thermoluminescent detector (TLD) models TLD600 and TLD700 as well as Bonner moderating spheres were irradiated at different positions inside the vault room where the cyclotron is located to determine the thermal neutron flux, neutron spectrum and dose equivalent. Furthermore, from a combination of measurements and Monte Carlo simulations the neutron source intensity at the target was estimated. The resulting intensity is in good agreement with the IAEA recommendations. Neutron doses derived from the measured spectra were found to vary between 7 and 320 mSv per 1 microA h of proton-integrated current. Finally, gamma doses were determined from TLD700 readings and amounted to around 10% of the neutron doses.

  4. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  5. Time-Dependent Neutron and Photon Dose-Field Analysis

    SciTech Connect

    Wooten, Hasani Omar

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  6. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    SciTech Connect

    Charbonneau, James; Zhitnitsky, Ariel E-mail: arz@phas.ubc.ca

    2010-08-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation.

  7. Reference Ten. The Pleasure of Mirror Games: References to the Field in Educational Video Feedback.

    ERIC Educational Resources Information Center

    Gioux, Anne-Marie

    1999-01-01

    By organizing the research reference game as a mirror, educational video feedback contributes toward creating a new pleasure. The representations of teaching arouse reflection on the action among novices; joint viewing of sessions shot in classrooms are called stimulated recall sessions, case studies, or reflective practice workshops. They allow…

  8. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    PubMed Central

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern–Gerlach gradient devices and compound material and magnetic refractive prisms. PMID:20113108

  9. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    SciTech Connect

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-15

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  10. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    PubMed

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  11. Development of a compact neutron source based on field ionization processes

    SciTech Connect

    Persaud, Arun; Allen, Ian; Dickinson, Michael R.; Schenkel, Thomas; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali

    2010-11-25

    The authors report on the use of carbon nanofiber nanoemitters to ionize deuterium atoms for the generation of neutrons in a deuterium-deuterium reaction in a preloaded target. Acceleration voltages in the range of 50-80 kV are used. Field emission of electrons is investigated to characterize the emitters. The experimental setup and sample preparation are described and first data of neutron production are presented. Ongoing experiments to increase neutron production yields by optimizing the field emitter geometry and surface conditions are discussed.

  12. The effect of thermal neutron field slagging caused by cylindrical BF3 counters in diffusion media

    NASA Technical Reports Server (NTRS)

    Gorshkov, G. V.; Tsvetkov, O. S.; Yakovlev, R. M.

    1975-01-01

    Computations are carried out in transport approximation (first collision method) for the attenuation of the field of thermal neutrons formed in counters of the CHM-8 and CHMO-5 type. The deflection of the thermal neutron field is also obtained near the counters and in the air (shade effect) and in various decelerating media (water, paraffin, plexiglas) for which the calculations are carried out on the basis of diffusion theory. To verify the calculations, the distribution of the density of the thermal neutrons at various distances from the counter in the water is measured.

  13. The optimization study of Bonner sphere in the epi-thermal neutron irradiation field for BNCT.

    PubMed

    Ueda, H; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y

    2011-12-01

    The optimization study on the Bonner sphere in the epi-thermal neutron irradiation field for BNCT was done for the moderator material, moderator size, and activation foils as a neutron detector in the sphere. The saturated activity for the activation foil was obtained from the calculated response, and the effective energy range for each Bonner sphere was determined from the saturated activity. We can see that boric acid solution moderator is suitable for the spectrum measurement of a epi-thermal neutron irradiation field.

  14. Response of a lithium gadolinium borate scintillator in monoenergetic neutron fields.

    PubMed

    Williams, A M; Beeley, P A; Spyrou, N M

    2004-01-01

    Accurate estimation of neutron dose requires knowledge of the neutron energy distribution in the working environment. Existing neutron spectrometry systems, Bonner spheres for example, are large and bulky, and require long data acquisition times. A portable system that could indicate the approximate neutron energy spectrum in a short time would be extremely useful in radiation protection. A composite scintillator, consisting of lithium gadolinium borate crystals in a plastic scintillator matrix, produced by Photogenics is being tested for this purpose. A prototype device based on this scintillator and digital pulse processing electronics has been calibrated using quasi-monoenergetic neutron fields at the low-scatter facility of the UK National Physical Laboratory (NPL). Energies selected were 144, 250, 565, 1400, 2500 and 5000 keV, with correction for scattered neutrons being made using the shadow cone technique. Measurements were also made in the NPL thermal neutron field. Pulse distributions collected with the digitiser in capture-gated mode are presented, and detection efficiency and energy resolution derived. For comparison, neutron spectra were also collected using the commercially available Microspec N-Probe from Bubble Technology Industries, which consists of an NE213 scintillator and a 3He proportional counter.

  15. Neutron field measurements of the CRNA OB26 irradiator using a Bonner sphere spectrometer for radiation protection purposes.

    PubMed

    Mazrou, H; Allab, M

    2012-08-01

    The present work deals with the Bonner sphere spectrometer (BSS) measurements performed, to support the authors' Monte-Carlo calculations, to estimate accurately the main characteristics of the neutron field of the (241)Am-Be-based OB26 irradiator acquired for radiation protection purposes by the Nuclear Research Centre of Algiers. The measurements were performed at a reference irradiation position selected at 150 cm from the geometrical centre of the neutron source. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter. The response matrix of the present spectrometer has been taken to be similar to the original Physikalisch-Technische Bundesanstalt (PTB) (Braunschweig, Germany) BSS's response matrix, with a five bins per decade energy group structure, as there is no significant difference in the BSS's physical characteristics. Thereafter, the authors' BSS measurements were used together with MCNP5 results to unfold the neutron spectrum by means of MAXED and GRAVEL computer codes from the U.M.G. 3.3 package, developed at PTB. Besides, sensitivity analysis has been performed to test the consistency of the unfolding procedure. It reveals that no significant discrepancy was observed in the total neutron fluence and total ambient dose values following the perturbation of some pertinent unfolding parameters except for the case where a 10 bins energy structure was assumed for the guess spectrum. In this latter case, a 5 % difference was observed in the ambient dose equivalent compared with the reference case. Finally, a comparative study performed between different counting systems together with MCNP5 and predictive formulas results shows that they were globally satisfactory, highlighting thereby the relevance of the unfolding procedure and the reliability of the obtained results.

  16. Effects of Magnetic Field Topology on Secondary Neutron Spectra in MagLIF

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian; Chittenden, Jeremy

    2015-11-01

    Ignition in Magneto-Inertial Fusion schemes requires both inertial and magnetic confinement of the fuel and charged fusion products. Recent theoretical and experimental work has demonstrated the confinement of charged fusion products by magnetic fields in Magnetized Liner Inertial Fusion (MagLIF) experiments. This confinement can be inferred from the ratio of secondary to primary neutron yields and the shape of secondary neutron spectra. In this work we investigate the effects of magnetic field topology on the shape of secondary neutron spectra. The MagLIF design has a cylindrical geometry and includes both axial and azimuthal magnetic fields. The azimuthal field is initially in the liner surrounding the fuel but instability growth may cause it to penetrate into the fuel. Charged fusion products (such as tritons or alpha particles) that are isotropically emitted and then confined by an axial field will flow parallel and anti-parallel to the field with equal intensities. In the case of tritons, this motion results in a secondary neutron spectrum emitted in the axial direction that is symmetric. However, in an azimuthal field such particles exhibit singular orbits and there is a net ion drift along the axis. This ion drift can cause the secondary neutron spectrum to be asymmetric. We examine the effects on the spectrum shape of confinement by a combination of axial and azimuthal fields.

  17. Estimating field-scale root zone soil moisture using the cosmic-ray neutron probe

    NASA Astrophysics Data System (ADS)

    Peterson, Amber M.; Helgason, Warren D.; Ireson, Andrew M.

    2016-04-01

    Many practical hydrological, meteorological, and agricultural management problems require estimates of soil moisture with an areal footprint equivalent to field scale, integrated over the entire root zone. The cosmic-ray neutron probe is a promising instrument to provide field-scale areal coverage, but these observations are shallow and require depth-scaling in order to be considered representative of the entire root zone. A study to identify appropriate depth-scaling techniques was conducted at a grazing pasture site in central Saskatchewan, Canada over a 2-year period. Area-averaged soil moisture was assessed using a cosmic-ray neutron probe. Root zone soil moisture was measured at 21 locations within the 500 m × 500 m study area, using a down-hole neutron probe. The cosmic-ray neutron probe was found to provide accurate estimates of field-scale surface soil moisture, but measurements represented less than 40 % of the seasonal change in root zone storage due to its shallow measurement depth. The root zone estimation methods evaluated were: (a) the coupling of the cosmic-ray neutron probe with a time-stable neutron probe monitoring location, (b) coupling the cosmic-ray neutron probe with a representative landscape unit monitoring approach, and (c) convolution of the cosmic-ray neutron probe measurements with the exponential filter. The time stability method provided the best estimate of root zone soil moisture (RMSE = 0.005 cm3 cm-3), followed by the exponential filter (RMSE = 0.014 cm3 cm-3). The landscape unit approach, which required no calibration, had a negative bias but estimated the cumulative change in storage reasonably. The feasibility of applying these methods to field sites without existing instrumentation is discussed. Based upon its observed performance and its minimal data requirements, it is concluded that the exponential filter method has the most potential for estimating root zone soil moisture from cosmic-ray neutron probe data.

  18. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-01

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 1014 G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 1018 G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  19. Thermoluminescence dosimetry of a thermal neutron field and comparison with Monte Carlo calculations.

    PubMed

    Fernandes, A C; Santos, J P; Kling, A; Marques, J G; Gonçalves, I C; Carvalho, A Ferro; Santos, L; Cardoso, J; Osvay, M

    2004-01-01

    The characteristics of thermoluminescence dosemeters (TLDs) regarding the determination of photon and neutron absorbed doses were investigated in a thermal neutron beam. Harshaw TLD-100 (LiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti) were compared with similar materials from Solid Dosimetric Detector and Method Laboratory (People's Republic of China). Harshaw TLD-700H (7LiF:Mg,Cu,P) and aluminium oxide (Al2O3:Mg,Y) from Hungary were also considered for photon dose measurement. The neutron sensitivity of the investigated materials was measured and found to be consistent with values reported by other authors. A comparison was made between the TL dose measurements and results obtained via conventional methods. An agreement within 20% was obtained, which demonstrates the ability of TLD for measuring neutron and photon doses in a mixed field, using careful calibration procedures and determining the neutron sensitivity for the usage conditions. PMID:15367765

  20. Alanine blends for ESR measurements of thermal neutron fluence in a mixed radiation field.

    PubMed

    Marrale, M; Brai, M; Gennaro, G; Triolo, A; Bartolotta, A; D'Oca, M C; Rosi, G

    2007-01-01

    In this paper, the results of a study on the electron spin resonance (ESR) dosimetry to measure thermal neutron fluence in a mixed radiation field (neutron and photons) are presented. The ESR responses of alanine dosemeters with different additives are compared. In particular, the (10)B-acid boric and the Gd-oxide were chosen to enhance the sensitivity of alanine dosemeters to thermal neutrons. Irradiations were carried out inside the thermal column of the TAPIRO reactor of the ENEA center, Casaccia Rome. The main results are a greater neutron sensitivity and a smaller lowest detectable fluence for the dosemeters with gadolinium than for dosemeters of alanine with (10)B, which is well known to be much more sensitive to thermal neutrons than simple alanine.

  1. Asymmetric neutrino production in magnetized proto-neutron stars in fully relativistic mean-field approach

    SciTech Connect

    Maruyama, Tomoyuki; Kajino, Toshitaka; Hidaka, Jun; Takiwaki, Tomoya; Yasutake, Nobutoshi; Kuroda, Takami; Cheoun, Myung-Ki; Ryu, Chung-Yeol; Mathews, Grant J.

    2014-05-02

    We calculate the neutrino production cross-section in the proto-neutron-star matter under a strong magnetic field in the relativistic mean-field approach. We introduce a new parameter-set which can reproduce the 1.96 solar mass neutron star. We find that the production process increases emitted neutrinos along the direction parallel to the magnetic field and decrease those along its opposite direction. It means that resultant asymmetry due to the neutrino absorption and scattering process in the magnetic field becomes larger by the addition of the neutrino production process.

  2. Development of monitoring method of spatial neutron distribution in neutrons-gamma rays mixed field using imaging plate for NCT--depression of the field.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu; Takada, Jun

    2011-12-01

    The degree of depression in the neutron field caused by neutron absorption in the materials of an imaging plate (IP) was investigated using MCNP-4C. Consequently, the IP doped with Gd, which reproduced the distribution of (157)Gd(n,γ)(158)Gd reaction rate in the previous study, depresses the relative distribution by about 50%. The depression for the IP in which Gd is replaced with similar amount of B atoms was estimated to be about 10%. The signal intensity for this IP is estimated to be at a similar level with that for Gd-doped IP.

  3. Performance of a PADC personal neutron dosemeter at simulated and real workplace fields of the nuclear industry.

    PubMed

    Fiechtner, A; Boschung, M; Wernli, C

    2007-01-01

    In the framework of the EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields) project, funded by the EC, measurements with PADC personal neutron dosemeters were carried out at several workplace fields of the nuclear industry and at simulated workplace fields. The measured personal neutron dose equivalents of the PADC personal neutron dosemeter are compared with values that were assessed within the EVIDOS project by other partners. The detection limits for different spectra types are given. In cases were the neutron dose was too low to be measured by the PADC personal neutron dosemeter, the response is estimated by convoluting the responses to monoenergetic neutrons with the dose energy distribution measured within EVIDOS. The advantages and limitations of the PADC personal neutron dosemeter are discussed. PMID:17578876

  4. Spin precession of slow neutrons in Einstein-Cartan gravity with torsion, chameleon, and magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Wellenzohn, M.

    2016-02-01

    We analyze a spin precession of slow neutrons in the Einstein-Cartan gravity with torsion, chameleon and magnetic field. For the derivation of the Heisenberg equation of motion of the neutron spin we use the effective low-energy potential, derived by Ivanov and Wellenzohn [Phys. Rev. D 92, 125004 (2015)] for slow neutrons, coupled to gravitational, chameleon, and torsion fields to order 1 /m , where m is the neutron mass. In addition to these low-energy interactions we switch on the interaction of slow neutrons with a magnetic field. We show that to linear order approximation with respect to gravitational, chameleon, and torsion fields the Dirac Hamilton operator for fermions (neutrons), moving in spacetimes created by rotating coordinate systems, contains the anti-Hermitian operators of torsion-fermion (neutron) interactions, caused by torsion scalar and tensor space-space-time and time-space-space degrees of freedom. Such anti-Hermitian operators violate C P and T invariance. In the low-energy approximation the C P and T violating torsion-fermion (neutron) interactions appear only to order O (1 /m ). One may assume that in the rotating Universe and galaxies the obtained anti-Hermitian torsion-fermion interactions might be an origin of (i) violation of C P and T invariance in the Universe and (ii) of baryon asymmetry. We show that anti-Hermitian torsion-fermion interactions of relativistic fermions, violating C P and T invariance, (i) cannot be removed by nonunitary transformations of the Dirac fermion wave functions and (ii) are conformal invariant. According to general requirements of conformal invariance of massive particle theories in gravitational fields [see R. H. Dicke, Phys. Rev. 125, 2163 (1962) and A. J. Silenko, Phys. Rev. D 91, 065012 (2015)], conformal invariance of anti-Hermitian torsion-fermion interactions is valid only if the fermion mass is changed by a conformal factor.

  5. Calibration approaches of cosmic-ray neutron sensing for soil moisture measurement in cropped fields

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose-zone hydrology and catchment hydrology. This study evaluates the applicability of the cosmic-ray neutron sensing for soil moisture in cropped fields. Measurements of cosmic-ray neutrons (fast neutrons) were performed at a lowland farmland in Bornim (Brandenburg, Germany) cropped with sunflower and winter rye. Three field calibration approaches and four different ways of integration the soil moisture profile to an integral value for cosmic-ray neutron sensing were evaluated in this study. The cosmic-ray sensing (CRS) probe was calibrated against a network of classical point-scale soil moisture measurements. A large CRS parameter variability was observed by choosing calibration periods within the different growing stages of sunflower and winter rye. Therefore, it was not possible to identify a single set of parameters perfectly estimating soil moisture for both sunflower and winter rye periods. On the other hand, CRS signal and its parameter variability could be understood by some crop characteristics and by predicting the attenuated neutrons by crop presence. This study proves the potentiality of the cosmic-ray neutron sensing at the field scale; however, its calibration needs to be adapted for seasonal vegetation in cropped fields.

  6. Parity violation in neutron deuteron scattering in pionless effective field theory

    NASA Astrophysics Data System (ADS)

    Vanasse, Jared J.

    In this dissertation the parity violating neutron deuteron scattering amplitudes are calculated using pionless effective field theory to leading order. The five low energy parity violating constants present in pionless effective field theory are estimated by matching onto the ``best" values for the parameters of the model by Desplanques, Donoghue, and Holstein (DDH). Using these estimates and the calculated amplitudes, predictions for the spin rotation of a neutron through a deuteron target are given with a value of 1.8 × 10-8 rad cm-1. Also given are the longitudinal analyzing power in neutron deuteron scattering with a polarized neutron yielding 2.2 × 10-8, and a polarized deuteron giving 4.0 × 10-8. These observables are discussed in the broader context of hadronic parity violation and as possible future experiments to determine the values of the five low energy parity violating constant present in pionless effective theory.

  7. ON THE MAGNETIC FIELD OF PULSARS WITH REALISTIC NEUTRON STAR CONFIGURATIONS

    SciTech Connect

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R. E-mail: jorge.rueda@icra.it

    2015-01-20

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M {sub ☉}, radius R = 10 km, and moment of inertia I = 10{sup 45} g cm{sup 2}. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  8. On the Magnetic Field of Pulsars with Realistic Neutron Star Configurations

    NASA Astrophysics Data System (ADS)

    Belvedere, R.; Rueda, Jorge A.; Ruffini, R.

    2015-01-01

    We have recently developed a neutron star model fulfilling global and not local charge neutrality, both in the static and in the uniformly rotating cases. The model is described by the coupled Einstein-Maxwell-Thomas-Fermi equations, in which all fundamental interactions are accounted for in the framework of general relativity and relativistic mean field theory. Uniform rotation is introduced following Hartle's formalism. We show that the use of realistic parameters of rotating neutron stars, obtained from numerical integration of the self-consistent axisymmetric general relativistic equations of equilibrium, leads to values of the magnetic field and radiation efficiency of pulsars that are very different from estimates based on fiducial parameters that assume a neutron star mass M = 1.4 M ⊙, radius R = 10 km, and moment of inertia I = 1045 g cm2. In addition, we compare and contrast the magnetic field inferred from the traditional Newtonian rotating magnetic dipole model with respect to the one obtained from its general relativistic analog, which takes into account the effect of the finite size of the source. We apply these considerations to the specific high-magnetic field pulsar class and show that, indeed, all of these sources can be described as canonical pulsars driven by the rotational energy of the neutron star, and have magnetic fields lower than the quantum critical field for any value of the neutron star mass.

  9. Summary Report: First Research Coordination Meeting on ReferenceDatabase for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B.; Trkov, Andrej

    2005-10-31

    Potential problems associated with nuclear data for neutronactivation analysis were identified, the scope of the work to beundertaken was defined together with its priorities, and tasks wereassigned to participants. Data testing and measurements refer to gammaspectrum peak evaluations, detector efficiency calibration, neutronspectrum characteristics and reference materials analysis.

  10. Summary Report: First Research Coordination Meeting on ReferenceDatabase for Neutron Activation Analysis

    SciTech Connect

    Firestone, Richard B.; Trkov, Andrej

    2005-10-01

    Potential problems associated with nuclear data for neutronactivation analysis were identified, the scope of the work to beundertaken was defined together with its priorities, and tasks wereassigned to participants. Data testing and measurements refer to gammaspectrumpeak evaluations, detector efficiency calibration, neutronspectrum characteristics and reference materials analysis.

  11. Dipole magnetic field of neutron stars in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Bakirova, Elizat; Folomeev, Vladimir

    2016-10-01

    The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.

  12. LiCaAlF6 scintillators in neutron and gamma radiation fields

    NASA Astrophysics Data System (ADS)

    Viererbl, L.; Klupák, V.; Vinš, M.; Koleška, M.; Šoltés, J.; Yoshikawa, A.; Nikl, M.

    2016-09-01

    Intentionally doped LiCaAlF6 (LiCAF) single crystals are prospective scintillators, especially for thermal neutron detection through the 6Li(n,t)4He nuclear reaction. Four different LiCAF scintillator samples were tested in various neutron and gamma fields. Two of the tested samples were LiCAF:Eu and LiCAF:Eu,Na single crystals, and another two samples were made of LiCAF:Eu micro crystals dispersed in transparent rubber, with different rubber dimensions. All LiCAF samples contain lithium enriched to6Li. A plutonium-beryllium source was used as a neutron source. The neutron spectrum was modified by moderator and filter to get different ratios between thermal, epithermal and fast neutron fluence rates. The MCNP code was used for calculations of the fluence rates for different configurations. Radionuclides 137Cs and 60Co were applied as gamma radiation sources. The light signal from the scintillator was evaluated with a photomultiplier and a multichannel analyzer. The purpose of this work was to study the characteristics of LiCAF scintillators, especially the ability to discriminate signals from neutron and gamma radiation, which is the basic scintillator condition for neutron detection in mixed neutron-gamma radiation fields. Generally, the discrimination can be done by the pulse height and/or the pulse shape of the evaluated signals. Both methods can be used for a LiCAF scintillator. However, only the pulse height discrimination method is discussed in this paper. The possibility of fast neutron detection with LiCAF scintillators was also tested.

  13. Possible theoretical explanations for occasional days of non-field-aligned diffusion at neutron monitor energies

    NASA Technical Reports Server (NTRS)

    Forman, M. A.

    1975-01-01

    It has been shown previously (Anath et al., 1973 and Kane, 1974) that 20 to 25% of days, the diffusion component of the cosmic-ray neutron diurnal anisotropy is directed more than 30 degrees away from the ecliptic projection of the interplanetary magnetic field averaged over the same 24 hours. A number of explanations for this deviation are discussed and it is concluded that transverse gradient drifts due to gradients perpendicular to the ecliptic are likely, that diurnal variations in the diffusion component of the neutron anisotropy may affect results from single stations and that the 24 hour mean interplanetary magnetic field may not be the field appropriate to the streaming equation at neutron monitor energies.

  14. Benchmarking of activation reaction distribution in an intermediate energy neutron field.

    PubMed

    Ogawa, Tatsuhiko; Morev, Mikhail N; Hirota, Masahiro; Abe, Takuya; Koike, Yuya; Iwai, Satoshi; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    Neutron-induced reaction rate depth profiles inside concrete shield irradiated by intermediate energy neutron were calculated using a Monte-Carlo code and compared with an experiment. An irradiation field of intermediate neutron produced in the forward direction from a thick (stopping length) target bombarded by 400 MeV nucleon(-1) carbon ions was arranged at the heavy ion medical accelerator in Chiba. Ordinary concrete shield of 90 cm thickness was installed 50 cm downstream the iron target. Activation detectors of aluminum, gold and gold covered with cadmium were inserted at various depths. Irradiated samples were extracted after exposure and gamma-ray spectrometry was performed for each sample. Comparison of experimental and calculated shows good agreement for both low- and high-energy neutron-induced reaction except for (27)Al(n,X)(24)Na reaction at the surface. PMID:21515619

  15. Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Popchev, Dimitar

    2016-04-01

    In the scalar-tensor theories with a massive scalar field, the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper, we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined—the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak-field limit. In the latter case, we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastically compared to the massless case. It turns out that mass, radius, and moment of inertia for neutron stars in massive scalar-tensor theories can differ drastically from the pure general relativistic solutions if sufficiently large masses of the scalar field are considered.

  16. Quantitative Neutron Dark-field Imaging through Spin-Echo Interferometry

    PubMed Central

    Strobl, Markus; Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Kaestner, Anders; Pappas, Catherine; Habicht, Klaus

    2015-01-01

    Neutron dark-field imaging constitutes a seminal progress in the field of neutron imaging as it combines real space resolution capability with information provided by one of the most significant neutron scattering techniques, namely small angle scattering. The success of structural characterizations bridging the gap between macroscopic and microscopic features has been enabled by the introduction of grating interferometers so far. The induced interference pattern, a spatial beam modulation, allows for mapping of small-angle scattering signals and hence addressing microstructures beyond direct spatial resolution of the imaging system with high efficiency. However, to date the quantification in the small angle scattering regime is severely limited by the monochromatic approach. To overcome such drawback we here introduce an alternative and more flexible method of interferometric beam modulation utilizing a spin-echo technique. This novel method facilitates straightforward quantitative dark-field neutron imaging, i.e. the required quantitative microstructural characterization combined with real space image resolution. For the first time quantitative microstructural reciprocal space information from small angle neutron scattering becomes available together with macroscopic image information creating the potential to quantify several orders of magnitude in structure sizes simultaneously. PMID:26560644

  17. Statistics of magnetic fields and fluxes of massive OB stars and the origin of neutron star magnetic fields

    NASA Astrophysics Data System (ADS)

    Igoshev, A. P.; Kholtygin, A. F.

    2011-12-01

    Based on the newest measurements, statistical properties of rms mean magnetic fields of OB and neutron stars (NSs) were investigated. The magnetic field distribution function f(B) for OB stars was determined and a sharp decrease of f(B) for weak magnetic fields was found. The mean magnetic fluxes F for all massive stars and NSs with measured magnetic fields was estimated, and it was found that log F = 27.7 for OB stars and log F = 24.5 for NSs. To explain the large differences of the fluxes from normal and neutron stars we studied the birth and evolution of isolated neutron stars in the whole volume of our Galaxy with our new code of population synthesis. We started modeling %with our code from the birth of massive OB stars and followed their motion within the spiral arms to the point of supernova explosion. Next we considered the evolution of NS up to the death line with considering the magnetic field decay. We found that a significant magnetic field decay occurs during the first million years of a NS's life. We have estimated the mean time of the Ohmic decay for NS. We modeled the distributions of pulsar periods P, of period derivatives \\dot P, and of pulsar magnetic fields B, and found that they are in a good agreement with those taken from \\cite{ATNF}.

  18. Temperature compensated and self-calibrated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by the magnetic field sensors and is used to correct variations in the output signal due to temperature variations and aging.

  19. INVESTIGATION OF THE EXTENDED RANGE REM-COUNTER SMARTREM-LINUS IN REFERENCE AND WORKPLACE FIELDS EXPECTED AROUND HIGH-ENERGY ACCELERATORS.

    PubMed

    Hohmann, Eike; Trovati, S; Strauch, U; Mayer, S

    2016-09-01

    Radiation survey instrumentation is adequate for the use around high-energy accelerators if capable to measure the dose arising from neutrons with energies ranging from thermal up to a few gigaelectronvolts. The SmartREM-LINUS is a commercial extended range rem-counter, consisting of a central (3)He-proportional counter surrounded by a spherical moderator made of borated polyethylene with an internal shield made of lead. The dose rate indicated by the SmartREM-LINUS was investigated for two different irradiation conditions. The linearity and the angular dependence of the indicated dose rate were investigated using reference neutron fields produced by (241)AmBe and (252)Cf. Additional measurements were performed in two different workplace fields with a component of neutrons with energies >20 MeV, namely the CERN-EU high-energy reference field and near the beam dump of the SwissFEL injector test facility. The measured dose rates were compared to a commercial rem-counter (WENDI2) and the results of Monte Carlo simulations. PMID:27315828

  20. Neutron production using a pyroelectric driven target coupled with a gated field ionization source

    SciTech Connect

    Ellsworth, J. L.; Tang, V.; Falabella, S.; Naranjo, B.; Putterman, S.

    2013-04-19

    A palm sized, portable neutron source would be useful for widespread implementation of detection systems for shielded, special nuclear material. We present progress towards the development of the components for an ultracompact neutron generator using a pulsed, meso-scale field ionization source, a deuterated (or tritiated) titanium target driven by a negative high voltage lithium tantalate crystal. Neutron production from integrated tests using an ion source with a single, biased tungsten tip and a 3 Multiplication-Sign 1 cm, vacuum insulated crystal with a plastic deuterated target are presented. Component testing of the ion source with a single tip produces up to 3 nA of current. Dielectric insulation of the lithium tantalate crystals appears to reduce flashover, which should improve the robustness. The field emission losses from a 3 cm diameter crystal with a plastic target and 6 cm diameter crystal with a metal target are compared.

  1. A toroidal vortex field as an origin of the narrow mass spectrum of neutron stars

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2016-03-01

    The evolution and collapse of a gaseous, self-gravitating sphere in the presence of an internal massive toroidal vortex analogous to the vortex created by the toroidal magnetic field of the Sun is considered. When thermal pressure is taken into account, for sufficiently high masses, the instability is preserved even for a polytropic index γ < 4/3. In the case of a degenerate gas, the evolution of the electrons and neutrons differs appreciably. In the ultrarelativistic limit, an interval of stablemasses arises in a neutron gas, between a minimum mass that depends on the circulation velocity in the vortex and the critical mass for the formation of a black hole. This suggests toroidal vortex fields as a possible physical origin for the observed narrow spectrum of neutron-star masses.

  2. Field ionization characteristics of an ion source array for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  3. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    B. Bargsten Johnson; P. R. Schwoebel; P. J. Resnick; C. E. Holland; L. Hertz; D. L. Chichester

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77?K and 293?K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293?K was demonstrated for the first time from microfabricated array structures with integrated gates.

  4. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-07

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  5. Reproducibility of TL measurements in a mixed field of thermal neutrons and photons.

    PubMed

    Fernandes, A C; Gonçalves, I C; Ferro Carvalho, A; Santos, J; Cardoso, J; Santos, L; Osvay, M

    2002-01-01

    The reproducibility of measurements performed with GR-100 (LiF:Mg,Ti) from the Solid Dosimetric Detector and Method Laboratory (DML) China, GR-107 (7LiF:Mg,Ti, DML), TLD-700H (7LiF:Mg.Cu,P, Harshaw) and Al2O3:Mg,Y (Hungary) in photon and mixed photon-neutron fields was investigated. Mixed-field irradiations were performed in a thermal neutron field generated at a nuclear reactor. GR-100 sensitivity decreased after mixed-field irradiations, while no significant change was found for the other materials. Using GR-100 for the dosimetry of mixed and high-intensity fields requires careful procedures. PMID:12382796

  6. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    covered, particularly as a compendium of papers on spectrometry for radiation protection has been published relatively recently [1]. The CIPM Mutual Recognition Arrangement (CIPM MRA), whereby national measurement standards and certificates issued by different national metrology institutes (NMIs) can be recognized internationally, is covered only briefly, although the key comparisons which underpin the CIPM MRA are highlighted. The papers included in this issue concentrate on the primary physical quantities—neutron source emission rate and neutron fluence, papers on the latter quantity covering the wide range of neutron energies for which standards are required. Neutron cross sections are fundamental to neutron physics and their importance in neutron metrology is also covered. A large amount of work by acknowledged experts in neutron metrology has gone into the preparation of this special issue and we are indebted to them for their time and effort. The list of contributors begins with the authors of the papers but also includes the referees who provided invisible but invaluable input. We are grateful for the support and encouragement of Professor Georgio Moscati, president of the CCRI when the work was proposed, Dr Kim Carneiro the current president, and Dr Penny Allisy-Roberts the executive secretary of the CCRI. When this work was first proposed a list of potential topics was drawn up by the then chairman of Section (III) Dr Horst Klein. It is a measure of his insight and knowledge of the field that the resulting document matches almost exactly the original plan he drew up. This special issue is thus a tribute to his very extensive contribution to the field. We sincerely hope its contents provide an accurate picture of the present state of neutron metrology in view of Dr Klein's conviction of the importance in metrology of getting things right. Reference [1] Thomas D J and Klein H (ed) 2003 Neutron and photon spectrometry techniques for radiation protection Radiat

  7. Monte Carlo simulation of the operational quantities at the realistic mixed neutron-photon radiation fields CANEL and SIGMA.

    PubMed

    Lacoste, V; Gressier, V

    2007-01-01

    The Institute for Radiological Protection and Nuclear Safety owns two facilities producing realistic mixed neutron-photon radiation fields, CANEL, an accelerator driven moderator modular device, and SIGMA, a graphite moderated americium-beryllium assembly. These fields are representative of some of those encountered at nuclear workplaces, and the corresponding facilities are designed and used for calibration of various instruments, such as survey meters, personal dosimeters or spectrometric devices. In the framework of the European project EVIDOS, irradiations of personal dosimeters were performed at CANEL and SIGMA. Monte Carlo calculations were performed to estimate the reference values of the personal dose equivalent at both facilities. The Hp(10) values were calculated for three different angular positions, 0 degrees, 45 degrees and 75 degrees, of an ICRU phantom located at the position of irradiation. PMID:17578872

  8. Novel reference radiation fields for pulsed photon radiation installed at PTB.

    PubMed

    Klammer, J; Roth, J; Hupe, O

    2012-09-01

    Currently, ∼70 % of the occupationally exposed persons in Germany are working in pulsed radiation fields, mainly in the medical sector. It has been known for a few years that active electronic dosemeters exhibit considerable deficits or can even fail completely in pulsed fields. Type test requirements for dosemeters exist only for continuous radiation. Owing to the need of a reference field for pulsed photon radiation and accordingly to the upcoming type test requirements for dosemeters in pulsed radiation, the Physikalisch-Technische Bundesanstalt has developed a novel X-ray reference field for pulsed photon radiation in cooperation with a manufacturer. This reference field, geared to the main applications in the field of medicine, has been well characterised and is now available for research and type testing of dosemeters in pulsed photon radiation.

  9. Atomic parity nonconservation, neutron radii, and effective field theories of nuclei

    SciTech Connect

    Sil, Tapas; Centelles, M.; Vinas, X.; Piekarewicz, J.

    2005-04-01

    Accurately calibrated effective field theories are used to compute atomic parity nonconserving (APNC) observables. Although accurately calibrated, these effective field theories predict a large spread in the neutron skin of heavy nuclei. Whereas the neutron skin is strongly correlated to numerous physical observables, in this contribution we focus on its impact on new physics through APNC observables. The addition of an isoscalar-isovector coupling constant to the effective Lagrangian generates a wide range of values for the neutron skin of heavy nuclei without compromising the success of the model in reproducing well-constrained nuclear observables. Earlier studies have suggested that the use of isotopic ratios of APNC observables may eliminate their sensitivity to atomic structure. This leaves nuclear structure uncertainties as the main impediment for identifying physics beyond the standard model. We establish that uncertainties in the neutron skin of heavy nuclei are at present too large to measure isotopic ratios to better than the 0.1% accuracy required to test the standard model. However, we argue that such uncertainties will be significantly reduced by the upcoming measurement of the neutron radius in {sup 208}Pb at the Jefferson Laboratory.

  10. A new formalism for reference dosimetry of small and nonstandard fields.

    PubMed

    Alfonso, R; Andreo, P; Capote, R; Huq, M Saiful; Kilby, W; Kjäll, P; Mackie, T R; Palmans, H; Rosser, K; Seuntjens, J; Ullrich, W; Vatnitsky, S

    2008-11-01

    The use of small fields in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fields that are composed of small fields such as for intensity modulated radiation therapy (IMRT). This has been facilitated by the increased availability of standard and add-on multileaf collimators and a variety of new treatment units. For these fields, dosimetric errors have become considerably larger than in conventional beams mostly due to two reasons; (i) the reference conditions recommended by conventional Codes of Practice (CoPs) cannot be established in some machines and (ii) the measurement of absorbed dose to water in composite fields is not standardized. In order to develop standardized recommendations for dosimetry procedures and detectors, an international working group on reference dosimetry of small and nonstandard fields has been established by the International Atomic Energy Agency (IAEA) in cooperation with the American Association of Physicists in Medicine (AAPM) Therapy Physics Committee. This paper outlines a new formalism for the dosimetry of small and composite fields with the intention to extend recommendations given in conventional CoPs for clinical reference dosimetry based on absorbed dose to water. This formalism introduces the concept of two new intermediate calibration fields: (i) a static machine-specific reference field for those modalities that cannot establish conventional reference conditions and (ii) a plan-class specific reference field closer to the patient-specific clinical fields thereby facilitating standardization of composite field dosimetry. Prior to progressing with developing a CoP or other form of recommendation, the members of this IAEA working group welcome comments from the international medical physics community on the formalism presented here.

  11. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    NASA Astrophysics Data System (ADS)

    Bergmann, B.; Caicedo, I.; Leroy, C.; Pospisil, S.; Vykydal, Z.

    2016-10-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  12. Magnetic Field R&D for the neutron EDM experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Mammei, Russell R.

    2014-09-01

    The neutron EDM experiment at TRIUMF aims to constrain the EDM with a precision of 1 ×10-27 e-cm by 2018. The experiment will use a spallation ultracold neutron (UCN) source employing superfluid helium coupled to a room-temperature EDM apparatus. In the previous best experiment, conducted at ILL, effects related to magnetic field homogeneity and instability were found to dominate the systematic error. This presentation will cover our R&D efforts on passive and active magnetic shielding, magnetic field generation within shielded volumes, and precision magnetometry. The neutron EDM experiment at TRIUMF aims to constrain the EDM with a precision of 1 ×10-27 e-cm by 2018. The experiment will use a spallation ultracold neutron (UCN) source employing superfluid helium coupled to a room-temperature EDM apparatus. In the previous best experiment, conducted at ILL, effects related to magnetic field homogeneity and instability were found to dominate the systematic error. This presentation will cover our R&D efforts on passive and active magnetic shielding, magnetic field generation within shielded volumes, and precision magnetometry. Supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, and the Canada Research Chairs program.

  13. Dependence of TLD thermoluminescence yield on absorbed dose in a thermal neutron field.

    PubMed

    Gambarini, G; Roy, M S

    1997-01-01

    The emission from 6LiF and 7LiF thermoluminescence dosimeters (TLDs) exposed to the mixed field of thermal neutrons and gamma-rays of the thermal facility of a TRIGA MARK II nuclear reactor has been investigated for various thermal neutron fluences of the order of magnitude of those utilised in radiotherapy, with the purpose of investigating the reliability of TLD readouts in such radiation fields and of giving some information for better obtainment of the absorbed dose values. The emission after exposure in this mixed field is compared with the emission after gamma-rays only. The glow curves have been deconvoluted into gaussian peaks, and the differences in the characteristics of the peaks observed for the two radiation fields, having different linear energy transfers, and for different doses are shown. Irreversible radiation damage in dosimeters having high sensitivity to thermal neutrons is also reported, showing a memory effect of the previous thermal neutron irradiation history which is not restored by anneal treatment. PMID:9463872

  14. HYPERCRITICAL ACCRETION ONTO A NEWBORN NEUTRON STAR AND MAGNETIC FIELD SUBMERGENCE

    SciTech Connect

    Bernal, Cristian G.; Page, Dany; Lee, William H. E-mail: page@astro.unam.mx

    2013-06-20

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the newborn neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non-magnetized, and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly, and once it becomes convectively stable, the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulations we find the transition from total to partial submergence to occur around M-dot {approx}10 M{sub sun} yr{sup -1}. Back-diffusion of the submerged magnetic field toward the surface, and the resulting growth of the dipolar component, may result in a delayed switch-on of a pulsar on timescales of centuries to millennia.

  15. TEPC performance for a reference standard.

    PubMed

    Zhang, Weihua; Wang, Zhiqiang; Liu, Yina; Li, Chunjuan; Xiao, Xuefu; Luo, Hailong; Chen, Jun; Li, Wei

    2014-01-01

    A portable tissue-equivalent proportional counter (TEPC)-based system was developed, which will be used as a reference standard in the neutron mixed field for radiation protection. In this paper, microdosimetry of the TEPC system was studied both in neutron ((252)Cf and (241)Am-Be sources) and gamma ((137)Cs and (60)Co sources) reference radiation fields. The measured neutron and gamma-dose equivalent rates were, respectively, compared with those of the reference ambient dose equivalent rate H(*)(10). And the measured microdosimetric spectra were compared with the Monte Carlo code FLUKA simulated results. All of the comparisons primarily agreed well. PMID:24036657

  16. TEPC performance for a reference standard.

    PubMed

    Zhang, Weihua; Wang, Zhiqiang; Liu, Yina; Li, Chunjuan; Xiao, Xuefu; Luo, Hailong; Chen, Jun; Li, Wei

    2014-01-01

    A portable tissue-equivalent proportional counter (TEPC)-based system was developed, which will be used as a reference standard in the neutron mixed field for radiation protection. In this paper, microdosimetry of the TEPC system was studied both in neutron ((252)Cf and (241)Am-Be sources) and gamma ((137)Cs and (60)Co sources) reference radiation fields. The measured neutron and gamma-dose equivalent rates were, respectively, compared with those of the reference ambient dose equivalent rate H(*)(10). And the measured microdosimetric spectra were compared with the Monte Carlo code FLUKA simulated results. All of the comparisons primarily agreed well.

  17. Constraints on Neutron Star Radii Based on Chiral Effective Field Theory Interactions

    SciTech Connect

    Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.

    2010-10-15

    We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R=9.7-13.9 km for a 1.4M{sub {center_dot}} star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.

  18. The Reversed-Field-Pinch (RFP) fusion neutron source: A conceptual design

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Miller, R. L.; Werley, K. A.

    The conceptual design of an ohmically heated, reversed-field pinch (RFP) operating at approximately 5-MW/m(2) steady-state DT fusion neutron wall loading and approximately 124-MW total fusion power is presented. These results are useful in projecting the development of a cost effective, low input power, approximately 206 MW, source of DT neutrons for large-volume approximately 10 m(3), high-fluence, 3.4 MW yr/m(2), fusion nuclear materials and technology testing.

  19. Measurement of energy and direction distribution of neutron and photon fluences in workplace fields.

    PubMed

    Luszik-Bhadra, M; Reginatto, M; Lacoste, V

    2004-01-01

    Within the EU Project EVIDOS, a spectrometer with 24 silicon detectors mounted on the surface of a polyethylene sphere is used for the determination of the energy and direction distribution of neutrons and photons. It has been characterized with respect to neutron radiation with energies from thermal up to 15 MeV and to photon radiation with energies from 65 keV to 6 MeV. The first measurements described here were performed in the simulated workplace field, CANEL, at Cadarache, with the purpose of checking the instrument and the unfolding procedures.

  20. On observation of neutron quantum states in the Earth's gravitational field

    NASA Astrophysics Data System (ADS)

    Vankov, Anatoli Andrei

    2010-03-01

    Observation of neutron gravitational quantum states En=mgzn in the peV energy range (z1 is about 10μm in the vertical direction) in the experiment conducted at Laue-Langevin Institute, Grenoble, with ultracold neutrons was recently reported in a series of publications. The purpose of the present work is to analyze the experiment. The experimental apparatus is designed to measure a transmission function T(za), namely, a horizontal flux of relatively fast neutrons (k≫kz in wavelength terms) passing through a slit of variable height za of upper absorbing wall. The quantum states in question are defined by the so-called Airy functions, which are solutions to the stationary 1D equation for a neutron “bouncing” above the perfect mirror in a linear potential field. The Airy functions describe the quantum bouncer (QB), the concept of which is subject to theoretical study of toy 1D models of gravitationally bound particles in nonrelativistic quantum mechanics (QM). This is essentially different from the 3D nonstationary QM object, “the running QB,” investigated in the experiment. The authors assume that there is a connection between T(za) and the probability density distribution P(z,za) for QB states. They devised the “phenomenological model,” in which the quantum pattern should be visible in the transmission curve. We argue, however, that the measured curve T(za) is not sensitive to QB states. Instead, it is sensitive to dynamics of neutron horizontal transport inside the absorbing slit for neutrons of energy values about 105 times greater than eigenvalues En. The latter are related to the neutron transverse mode kz and cannot be termed “energies of neutron gravitational quantum states.” We conclude that the experiment setup and real conditions are not adequate to the claimed objective, and the methodology of measured data treatment is flawed. The authors’ claim that “neutron gravitational quantum states are observed” is neither theoretically nor

  1. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.

    PubMed

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H (*)(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H (*)(10) value of 2.7 μSv Gy(-1) was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H (*)(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy(-1) at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to

  2. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H *(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H *(10) value of 2.7 μSv Gy-1 was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H *(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy-1 at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal

  3. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H *(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H *(10) value of 2.7 μSv Gy‑1 was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H *(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy‑1 at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal

  4. Sensitivity Reach of the Neutron EDM Experiment: The Electric Field Strength

    SciTech Connect

    Hennings-Yeomans, R.; Cooper, M.; Currie, S. A.; Makela, M. F.; Ramsey, J. C.; Tajima, S.; Womack, T. L.; Long, J. C.; Stanislaus, S.

    2010-08-04

    The search for an electric dipole moment of the neutron tests physics beyond the Standard Model such as new sources of CP-violation and Supersymmetry. The nEDM experiment aims to improve the sensitivity on the current limit of the electric dipole moment of the neutron to <10{sup -27} e{center_dot}cm. The experiment will use a flux of Ultra Cold Neutrons (UCNs) produced and stored in a bath of superfluid He-II. A change in precession frequency is expected for a non-zero EDM when an electric field is applied parallel and antiparallel to a magnetic field across the neutron storage cell. A dominant parameter in terms of reducing the statistical uncertainty of this measurement is the strength of the applied electric field. An experiment to measure if superfluid He-II can sustain up to 50 kV/cm for a volume and electrode spacings comparable to the nEDM experiment has been constructed at Los Alamos National Laboratory. It consists in a large-area parallel plate capacitor immersed in a 200 liter central volume inside a suitable cryostat that in turn is connected to a dilution refrigerator unit. A description of test runs and the status of the experiment is presented.

  5. Keplerian Frequency of Uniformly Rotating Neutron Stars in Relativistic Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Zhang, N. B.; Qi, B.; Wang, S. Y.; Ge, S. L.; Sun, B. Y.

    2013-11-01

    Adopting the equation of states (EOSs) from the relativistic mean field (RMF) theory, the relationships among the keplerian frequency fK, gravitational mass M and radius R for the rapidly rotating neutron stars with and without hyperons are presented and analyzed. For various RMF EOSs, the empirical formula fK(M) = 1.08 (M/M⊙)1/2(R_S/10 km)-3/2 kHz, proposed by P. Haensel et al. [Astron. Astrophys.502 (2009) 605], is found to be an approximation with the error at most 13% and such approximation is worse for the neutron stars with hyperons. It indicates that the errors should be considered when the empirical formula is used to discuss the properties of neutron stars.

  6. X-ray studies of neutron stars and their magnetic fields

    PubMed Central

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  7. Neutron field parameter measurements on the JET tokamak by means of super-heated fluid detectors

    SciTech Connect

    Gherendi, M.; Craciunescu, T.; Pantea, A.; Zoita, V. L.; Johnson, M. Gatu; Hellesen, C.; Conroy, S.; Baltog, I.; Edlington, T.; Kiptily, V.; Popovichev, S.; Murari, A.; Collaboration: JET EFDA Contributors

    2012-10-15

    The neutron field parameters (fluence and energy distribution) at a specific location outside the JET Torus Hall have been measured by means of super-heated fluid detectors (or 'bubble detectors') in combination with an independent, time-of-flight, technique. The bubble detector assemblies were placed at the end of a vertical line of sight at about 16 m from the tokamak mid plane. Spatial distributions of the neutron fluence along the radial and toroidal directions have been obtained using two-dimensional arrays of bubble detectors. Using a set of three bubble detector spectrometers the neutron energy distribution was determined over a broad energy range, from about 10 keV to above 10 MeV, with an energy resolution of about 30% at 2.5 MeV. The very broad energy response allowed for the identification of energy features far from the main fusion component (around 2.45 MeV for deuterium discharges).

  8. Inelastic neutron scttering study o fcrystal field levels in PrOs4As12

    SciTech Connect

    Chi, Songxue; Dai, Pengcheng; Barnes, Ted {F E }; Kang, H. J.; Lynn, J. W.; Ye, Feng; Maple, M. B.

    2008-01-01

    We use neutron scattering to study the Pr$^{3+}$ crystalline electric field (CEF) excitations in the filled skutterudite PrOs$_4$As$_{12}$. By comparing the observed levels and their strengths under neutron excitation with the theoretical spectrum and neutron excitation intensities, we identify the Pr$^{3+}$ CEF levels, and show that the ground state is a magnetic $\\Gamma_4^{(2)}$ triplet, and the excited states $\\Gamma_1$, $\\Gamma_4^{(1)}$ and $\\Gamma_{23}$ are at 0.4, 13 and 23~meV, respectively. A comparison of the observed CEF levels in PrOs$_4$As$_{12}$ with the heavy fermion superconductor PrOs$_4$Sb$_{12}$ reveals the microscopic origin of the differences in the ground states of these two filled skutterudites.

  9. APPLICATION OF A "VITURAL FIELD REFERENCE DATABASE" TO ASSESS LAND-COVER MAP ACCURACIES

    EPA Science Inventory

    An accuracy assessment was performed for the Neuse River Basin, NC land-cover/use
    (LCLU) mapping results using a "Virtual Field Reference Database (VFRDB)". The VFRDB was developed using field measurement and digital imagery (camera) data collected at 1,409 sites over a perio...

  10. AN ASSESSMENT OF GROUND TRUTH VARIABILITY USING A "VIRTUAL FIELD REFERENCE DATABASE"

    EPA Science Inventory



    A "Virtual Field Reference Database (VFRDB)" was developed from field measurment data that included location and time, physical attributes, flora inventory, and digital imagery (camera) documentation foy 1,01I sites in the Neuse River basin, North Carolina. The sampling f...

  11. Experimental setup for the determination of the correction factors of the neutron doseratemeters in fast neutron fields

    SciTech Connect

    Iliescu, Elena; Bercea, Sorin; Dudu, Dorin; Celarel, Aurelia

    2013-12-16

    The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.

  12. Medium effects of magnetic moments of baryons on neutron stars under strong magnetic fields

    SciTech Connect

    Ryu, C. Y.; Cheoun, Myung-Ki; Kim, K. S.

    2010-08-15

    We investigate medium effects caused by density-dependent magnetic moments of baryons on neutron stars under strong magnetic fields. If we allow the variation of anomalous magnetic moments (AMMs) of baryons in dense matter under strong magnetic fields, AMMs of nucleons are enhanced to be larger than those of hyperons. The enhancement naturally causes the chemical potentials of the baryons to be large and leads to the increase of the proton fraction. Consequently, it causes the suppression of hyperons, resulting in stiffness of the equation of state. Under the presumed strong magnetic fields, we evaluate the relevant particle populations, the equation of state, and the maximum masses of neutron stars by including density-dependent AMMs and compare them with those obtained from AMMs in free space.

  13. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    PubMed

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to

  14. Impacts of Parameters Adjustment of Relativistic Mean Field Model on Neutron Star Properties

    NASA Astrophysics Data System (ADS)

    Kasmudin; Sulaksono, A.

    Analysis of the parameters adjustment effects in isovector as well as in isoscalar sectors of effective field based relativistic mean field (E-RMF) model in the symmetric nuclear matter and neutron-rich matter properties has been performed. The impacts of the adjustment on slowly rotating neutron star are systematically investigated. It is found that the mass-radius relation obtained from adjusted parameter set G2** is compatible not only with neutron stars masses from 4U 0614+09 and 4U 1636-536, but also with the ones from thermal radiation measurement in RX J1856 and with the radius range of canonical neutron star of X7 in 47 Tuc, respectively. It is also found that the moment inertia of PSR J073-3039A and the strain amplitude of gravitational wave at the Earth's vicinity of PSR J0437-4715 as predicted by the E-RMF parameter sets used are in reasonable agreement with the extracted constraints of these observations from isospin diffusion data.

  15. Use of D-T-produced fast neutrons for in vivo body composition analysis: a reference method for nutritional assessment in the elderly.

    PubMed

    Kehayias, J J

    2004-05-01

    Body composition has become the main outcome of many nutritional intervention studies including osteoporosis, malnutrition, obesity, AIDS, and aging. Traditional indirect body composition methods developed with healthy young adults do not apply to the elderly or diseased. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used to assess in vivo elements characteristic of specific body compartments. Non-bone phosphorus for muscle is measured by the (31)P(n, alpha)(28)Al reaction, and nitrogen for protein via the (14)N(n,2n)(13)N fast neutron reaction. Inelastic neutron scattering is used to measure total body carbon and oxygen. Body fat is derived from carbon after correcting for contributions from protein, bone, and glycogen. Carbon-to-oxygen ratio (C/O) is used to measure the distribution of fat and lean tissue in the body and to monitor small changes of lean mass. A sealed, D-T neutron generator is used for the production of fast neutrons. Carbon and oxygen mass and their ratio are measured in vivo at a radiation exposure of less than 0.06 mSv. Gamma-ray spectra are collected using large BGO detectors and analyzed for the 4.43 MeV state of carbon and 6.13 MeV state of oxygen, simultaneously with the irradiation. P and N analysis by delayed fast neutron activation is performed by transferring the patient to a shielded room equipped with an array of NaI(Tl) detectors. A combination of measurements makes possible the assessment of the "quality" of fat-free mass. The neutron generator system is used to evaluate the efficacy of new treatments, to study mechanisms of lean tissue depletion with aging, and to investigate methods for preserving function and quality of life in the elderly. It is also used as a reference method for the validation of portable instruments of nutritional assessment. PMID:14747891

  16. Use of a spherical albedo system for correcting the readings of albedo dosimeters in JINR phasotron neutron radiation fields

    NASA Astrophysics Data System (ADS)

    Mokrov, Yu. V.; Morozova, S. V.

    2014-03-01

    Results of calibrating a spherical albedo system in the radiation fields of a Pu-Be radionuclide neutron source are presented. It is shown that it can be used for correcting the readings of the DVGN-01 albedo dosimeter. The results of measurements with the system in JINR phasotron neutron fields for the purpose of correcting the DVGN-01 readings in these fields are given. The values of the correction factors for DVGN-01 albedo dosimeters when used in personnel neutron dosimetry (PD) on the JINR phasotron are determined.

  17. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation.

    PubMed

    Slaba, Tony C; Blattnig, Steve R; Norbury, John W; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed

  18. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed

  19. Spectra of photons and neutrons generated in a heterogeneous head of a 15 MV LINAC at differents field sizes

    SciTech Connect

    Benites-Rengifo, J. L.; Vega-Carrillo, H. R.; Velazquez-Fernandez, J. B.

    2012-10-23

    Spectra of photons and neutrons were calculated, using the Monte Carlo code MCNP-5 using the e/p/n mode. A heterogeneous model was used to define the linac head where the collimators were modeled to produce five different treatment fields at the isocenter. Photon and neutron spectra were estimated in several points along two directions from the isocenter. The total photon fluence beyond 60 cm behaves according to 1/r{sup 2} rule, while total neutron fluence, beyond 80 cm, can be described by diffusion theory using an infinite plane as a neutron source.

  20. SU-E-T-471: Small Field Jaw/MLC Reference Data

    SciTech Connect

    Kerns, J; Alvarez, P; Followill, D; Lowenstein, J; Molineu, A; Summers, P; Kry, S

    2014-06-01

    Purpose: In recent years the need for small field data of MLCs has increased due to the use of intensity-modulated radiation (IMRT), but moreover the use of stereotactic body radiation (SBRT) has increased, which uses not simply small field sizes, but small jaw and field sizes together. Having reference data for these small fields that is reliable would be invaluable to the physics community. Our study has gathered these values and the data distributions from the Radiological Physics Center's (RPC) site visits between 1990 and the present. Methods: For all measurements, the RPC used a 25 × 25 × 25cm water phantom placed at 100cm SSD. All measurements were made with an Exradin A16 cylindrical ion chamber at an effective depth of 10 cm. A total of 42 Varian machine measurements were used to compose the data for a 6 MV beam and 5 TrueBeam 6 MV flattening filter free (FFF) beams were used for FFF data. Results: Jaw/MLC fields were measured for both 6 MV and 6 MF FFF beams with the jaws and MLCs both at the following field sizes: 6×6, 4×4, 3×3, and 2×2cm. Measurements were normalized to the 10×10 field readings (defined by the jaws and MLC). Spread in the data was minimal and demonstrates a high level of accuracy of acquired data. Conclusion: Small field Jaw/MLC reference data for Varian 6MV and 6 MV FFF beams has been analyzed and presented here, composed of the aggregation of numerous RPC site visits. Obtaining reliable small field data remains difficult, however the RPC has collected high fidelity small field Jaw/MLC data. The data are presented as a reference along with their distributions, in such a way that the physicist can act based upon their own desired agreement with the reference data.

  1. Hydrogen Concentration and Strain Fields Near Fatigue Cracks in Pipeline Steel Measured Via Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team

    Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. In order to improve current modeling efforts, experimental determination of hydrogen concentration, hydrogen diffusion rates, and strain fields are required to inform and validate the model. Here we report neutron imaging measurements of the hydrogen concentration near a fatigue crack and the corresponding strain field, measured via neutron transmission Bragg edge spectroscopy. Nist Materials Measurement Laboratory, Applied Chemicals and Materials Division.

  2. Field-dependent neutron depolarization study of the ferrite formation in medium-carbon steels

    SciTech Connect

    Te Velthuis, S.G.E.; Van Dijk, N.H.; Rekveldt, M.T.; Sietsma, J.; Van Der Zwaag, S.

    2000-03-14

    Neutron depolarization experiments have been performed on the ferrite and pearlite phase transformations of the medium-carbon C60 and C35 steels. The interaction of the polarized neutron beam with the ferromagnetic ferrite grains gives information on the mean magnetization and the magnetic correlation length. From these parameters the ferrite fraction and the mean ferrite grain size are determined in situ as a function of time and temperature during the phase transformation. The applied magnetic field was varied periodically in order to record a full hysteresis curve of the magnetization, which gives essential information on the microstructure of the ferromagnetic ferrite grains. The field dependence of the mean particle size during the early stages of the pearlite formation is a strong indication of multi-domain behavior, which is absent in the austenite-ferrite transformation and at the end of the pearlite formation.

  3. Sensitivity of neutron radii in a {sup 208}Pb nucleus and a neutron star to nucleon-{sigma}-{rho} coupling corrections in relativistic mean field theory

    SciTech Connect

    Shen, G.; Li, J.; Hillhouse, G.C.; Meng, J.

    2005-01-01

    We study the sensitivity of the neutron skin thickness S in a {sup 208}Pb nucleus to the addition of nucleon-{sigma}-{rho} coupling corrections to a selection (PK1, NL3, S271, and Z271) of interactions in a relativistic mean field model. The PK1 and NL3 effective interactions lead to a minimum value of S= 0.16 fm in comparison with the original value of S= 0.28 fm. The S271 and Z271 effective interactions yield even smaller values of S= 0.11 fm, which are similar to those for nonrelativistic mean field models. A precise measurement of the neutron radius, and therefore S, in {sup 208}Pb will place an important constraint on both relativistic and nonrelativistic mean field models. We also study the correlation between the radius of a 1.4-solar-mass neutron star and S.

  4. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    SciTech Connect

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can; Keleş, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.

  5. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    SciTech Connect

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  6. Spin-Down Mechanisms in Neutron Stars with ``Anomalous'' Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2015-08-01

    Energy losses from isolated neutron stars are attributed to a number of factors, the most common assumption being the emission of electromagnetic radiation from a rotating point-like magnetic dipole in vacuum. This energy loss mechanism predicts a braking index n = 3, which is not observed in highly magnetized neutron stars. Despite this fact, the assumptions of a dipole field and rapid early rotation are often assumed a priori. This typically causes a discrepancy in the characteristic age of these objects and the age of their associated Supernova Remnants (SNRs). In this work we consider neutron stars with ``anomalous'' magnetic fields - namely magnetars, high-B radio pulsars, and the Central Compact Objects (proposed to be `anti-magnetars’) that are securely associated with SNRs. Without making any assumptions about the initial spin periods of these objects and by constraining the SNR ages to match their associated pulsar ages, we compare the predictions of distinct energy loss mechanisms, such as field decay and the emission of relativistic winds using all observed data on the braking indices. This study has important implications on the proposed emission models for these exotic objects and helps in resolving the PSR-SNR age discrepancy.

  7. Interior Vector Magnetic Field Monitoring for the SNS Neutron EDM Experiment

    NASA Astrophysics Data System (ADS)

    Nouri, Nima; Plaster, Brad

    2014-09-01

    A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. A concept has been developed which provides for a real-time determination of the spatial dependence of the vector components of the magnetic field (and, hence, the ∂Bi / ∂xj field gradients) within the interior fiducial volume of the SNS neutron EDM experiment solely from exterior measurements at fixed discrete locations. This technique will be especially important during the operation of the experiment, when direct measurements of the field gradients present within the fiducial volume will not be physically possible. Our method, which is based on the solution to the Laplace Equation, is completely general and does not require the field to possess any type of symmetry. We describe the concept and our systematic approach for optimizing the locations of these exterior measurements. We also present results from prototyping studies of a field monitoring system deployed within a half-scale prototype of the experiment's magnetic field environment. This work was supported in part by the U.S. Department of Energy Office of

  8. Fluence measurement of fast neutron fields with a highly efficient recoil proton telescope using active pixel sensors.

    PubMed

    Taforeau, J; Higueret, S; Husson, D; Kachel, M; Lebreton, L

    2014-10-01

    The spectrometer ATHENA (Accurate Telescope for High-Energy Neutron metrology Applications) is being developed at the LNE-IRSN and aims at characterising energy and fluence of fast neutron fields. The detector is a recoil proton telescope and measures neutron fields in the range of 5-20 MeV. This telescope is intended to become a primary standard for both energy and fluence measurements. The neutron detection is achieved by a polyethylene radiator for n-p conversion, three 50-µm-thick silicon sensors that use CMOS technology for proton tracking and a 3-mm-thick silicon diode to measure the residual proton energy. The use of CMOS sensors and silicon diode, owing to a large detection solid angle, increases the intrinsic efficiency of the detector by a factor of 10 compared with conventional designs. The ability of the spectrometer to determine the neutron energy was demonstrated and reported elsewhere. This paper focuses on the fluence measurement of monoenergetic neutron fields in the range of 5-20 MeV. Experimental investigations, performed at the AMANDE facility, indicate a good estimation of neutron fluence at various energies. In addition, a complete description of uncertainties budget is presented in this paper and a Monte Carlo propagation of uncertainty sources leads to a fluence measurement with a precision ∼3-5 % depending on the neutron energy.

  9. Frontal eye fields involved in shifting frame of reference within working memory for scenes.

    PubMed

    Wallentin, Mikkel; Roepstorff, Andreas; Burgess, Neil

    2008-01-31

    Working memory (WM) evoked by linguistic cues for allocentric spatial and egocentric spatial aspects of a visual scene was investigated by correlating fMRI BOLD signal (or "activation") with performance on a spatial-relations task. Subjects indicated the relative positions of a person or object (referenced by the personal pronouns "he/she/it") in a previously shown image relative to either themselves (egocentric reference frame) or shifted to a reference frame anchored in another person or object in the image (allocentric reference frame), e.g. "Was he in front of you/her?" Good performers had both shorter response time and more correct responses than poor performers in both tasks. These behavioural variables were entered into a principal component analysis. The first component reflected generalised performance level. We found that the frontal eye fields (FEF), bilaterally, had a higher BOLD response during recall involving allocentric compared to egocentric spatial reference frames, and that this difference was larger in good performers than in poor performers as measured by the first behavioural principal component. The frontal eye fields may be used when subjects move their internal gaze during shifting reference frames in representational space. Analysis of actual eye movements in three subjects revealed no difference between egocentric and allocentric recall tasks where visual stimuli were also absent. Thus, the FEF machinery for directing eye movements may also be involved in changing reference frames within WM. PMID:17915262

  10. Constraints on Non-Newtonian Gravity From the Experiment on Neutron Quantum States in the Earth's Gravitational Field.

    PubMed

    Nesvizhevsky, V V; Protasov, K V

    2005-01-01

    An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.

  11. Transient particle acceleration in strongly magnetized neutron stars. II - Effects due to a dipole field geometry

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1991-01-01

    Sheared Alfven waves generated by nonradial crustal disturbances above the polar cap of a strongly magnetized neutron star induce an electric field component parallel to B. An attempt is made to determine the manner in which the strong radial dependence of B affects the propagation of these sheared Alfven waves, and whether this MHD process is still an effective particle accelerator. It is found that although the general field equation is quite complicated, a simple wavelike solution can still be obtained under the conditions of interest for which the Alfven phase velocity decouples from the wave equation. The results may be applicable to gamma-ray burst sources.

  12. Neutron scattering studies of crude oil viscosity reduction with electric field

    NASA Astrophysics Data System (ADS)

    Du, Enpeng

    topic. Dr. Tao with his group at Temple University, using his electro or magnetic rheological viscosity theory has developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. After we successfully reduced the viscosity of crude oil with field and investigated the microstructure changing in various crude oil samples with SANS, we have continued to reduce the viscosity of heavy crude oil, bunker diesel, ultra low sulfur diesel, bio-diesel and crude oil and ultra low temperature with electric field treatment. Our research group developed the viscosity electrorheology theory and investigated flow rate with laboratory and field pipeline. But we never visualize this aggregation. The small angle neutron scattering experiment has confirmed the theoretical prediction that a strong electric field induces the suspended nano-particles inside crude oil to aggregate into short chains along the field direction. This aggregation breaks the symmetry, making the viscosity anisotropic: along the field direction, the viscosity is significantly reduced. The experiment enables us to determine the induced chain size and shape, verifies that the electric field works for all kinds of crude oils, paraffin-based, asphalt-based, and mix-based. The basic physics of such field induced viscosity reduction is applicable to all kinds of suspensions.

  13. Religious Studies: The Shaping of a Field and a Guide to Reference Resources.

    ERIC Educational Resources Information Center

    Lippy, Charles H.

    1992-01-01

    Discusses the development of religious studies as an academic discipline. Examines the work of leading thinkers in the field, including anthropologists Sir James Fraser and Edward Burnett Taylor, sociologist Max Weber, and psychologist Erik Erikson. Identifies some of the many reference works that deal with religious studies. (SG)

  14. Medical reference databases used by Army primary care physicians in field environments.

    PubMed

    Harris, M D; Johnson, B; Patience, T; Miser, F

    1998-11-01

    A cross-sectional survey of U.S. Army primary care physicians was done to answer two questions: (1) which medical reference materials are Army primary care physicians currently using when deployed to a field environment? and (2) what would they like to have for medical reference in a field environment? Of 740 surveys delivered to their intended recipients, 445 (60%) were returned. Currently, 96% of primary care physicians use books, 37% use journals, and 11% use computer software in their medical reference database. Of those now using books, 72% were satisfied with them, compared with 61% of those using journals and 45% of those using software. The most common book used was the Merck Manual. The most important characteristics desired in a field medical database were broad coverage, ease of use, and light weight. The majority of respondents believe that a good medial reference database is important but that current medical databases limit the quality of the medicine they practice in the field. PMID:9819534

  15. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Joynt, R.

    2003-07-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of “relativistic”: relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro’s number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.

  16. Evaluation of models proposed for the 1991 revision of the International Geomagnetic Reference Field

    USGS Publications Warehouse

    Peddie, N.W.

    1992-01-01

    The 1991 revision of the International Geomagnetic Reference Field (IGRF) comprises a definitive main-field model for 1985.0, a main-field model for 1990.0, and a forecast secular-variation model for the period 1990-1995. The five 1985.0 main-field models and five 1990.0 main-field models that were proposed have been evaluated by comparing them with one another, with magnetic observatory data, and with Project MAGNET aerial survey data. The comparisons indicate that the main-field models proposed by IZMIRAN, and the secular-variation model proposed jointly by the British Geological Survey and the US Naval Oceanographic Office, should be assigned relatively lower weight in the derivation of the new IGRF models. -Author

  17. Astronomers Use X-Rays To Probe Gravitational Field Of A Neutron Star

    NASA Astrophysics Data System (ADS)

    2002-06-01

    With NASA's Chandra X-ray Observatory, astronomers have detected features that may be the first direct evidence of the effect of gravity on radiation from a neutron star. This finding, if confirmed, could enable scientists to measure the gravitational field of neutron stars and determine whether they contain exotic forms of matter not seen on Earth. A team led by George Pavlov of Penn State University in University Park observed 1E 1207.4-5209, a neutron star in the center of a supernova remnant about 7,000 light years from Earth. The results were presented on June 6, 2002, at the American Astronomical Society in Albuquerque, NM. Pavlov's group found two dips, or absorption features, in the spectrum of X-rays from the star. If these dips are due to the absorption of X-rays near the star by helium ions in a strong magnetic field, they indicate that the gravitational field reduces the energies of X-rays escaping from near the surface of a neutron star. "This interpretation is consistent with the data," said Pavlov, "but the features may be a blend of many other features. More precise measurements, preferably with Chandra's grating spectrometer, are needed." "These absorption features may be the first evidence of the effect of gravity on radiation near the surface of an isolated neutron star," said Pavlov. "This is particularly important because it would allow us to set limits on the type of matter that comprises this star." Neutron stars are formed when a massive star runs out of fuel and its core collapses. A supernova explosion occurs and the collapsed core is compressed to a hot object about 12 miles in diameter, with a thin atmosphere of hydrogen and possibly heavier ions in a gravitational field 100 billion times as strong as Earth's. These objects, which have a density of more than 1 billion tons per teaspoonful, are called neutron stars because they have been thought to be composed mostly of neutrons. Although neutron stars have been studied extensively for

  18. ATR neutron spectral characterization

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  19. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new

  20. Full QCD calculation of neutron electric dipole moment with the external electric field method

    SciTech Connect

    Shintani, E.; Aoki, S.; Kuramashi, Y.

    2008-07-01

    We have calculated the neutron electric dipole moment (EDM) in the presence of the CP violating {theta} term in lattice QCD with two-flavor dynamical clover quarks, using the external electric field method. Accumulating a large number of statistics by the averages over 16 different source points and over forward and backward nucleon propagators, we have obtained nonzero signals of neutron and proton EDM beyond 1 standard deviation at each quark mass in full QCD. We have investigated the quark mass dependence of nucleon EDM in full QCD, and have found that nucleon EDM in full QCD does not decrease toward the chiral limit, as opposed to the theoretical expectation. We briefly discuss possible reasons for this behavior.

  1. Antikaons in neutron star studied with recent versions of relativistic mean-field models

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Arumugam, P.

    2013-03-01

    We study the impact of additional couplings in the relativistic mean field (RMF) models, in conjunction with antikaon condensation, on various neutron star properties. We analyze different properties such as in-medium antikaon and nucleon effective masses, antikaon energies, chemical potentials and the mass-radius relations of neutron star (NS). We calculate the NS properties with the RMF (NL3), E-RMF (G1, G2) and FSU2.1 models, which are quite successful in explaining several finite nuclear properties. Our results show that the onset of kaon condensation in NS strongly depends on the parameters of the Lagrangian, especially the additional couplings which play a significant role at higher densities where antikaons dominate the behavior of equation of state.

  2. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-04-01

    Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  3. Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-01-01

    Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Qimp . Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

  4. Magnetic domains in multiferroic YMn$2O5 probed by Spherical Neutron Polarimetry under electric field

    NASA Astrophysics Data System (ADS)

    Vecchini, Carlo; Chapon, Laurent; Radaelli, Paolo; Daoud-Aladine, Aziz; Brown, Jane; Chatterji, Tapan; Park, Soonyong; Cheong, Sang-Wook

    2008-03-01

    Precise determination of the magnetic structures in multiferroics RMn2O5 (R: Y, Ho, Bi) have been obtained by single crystal neutron diffraction. The analysis shows the presence of zig-zag antiferromagnetic chains in the ab-plane. An additional weak magnetic component parallel to the c-axis was detected which is modulated in phase quadrature with the a-b components. The nature and population of the coexisting antiferromagnetic domains in YMn2O5 have been determined by Spherical Neutron Polarimetry under an external electric field. We have proved that reversing the electrical polarity results in the inversion of the population of two types of antiferromagnetic domains, with opposite in-plane spin components. This analysis strongly supports theories in which the coupling of the magnetic configuration to the ferroelectric polarisation is due to magnetic exchange striction and likely not related to the small cycloidal modulation in the bc-plane.

  5. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars.

    PubMed

    Horowitz, C J; Berry, D K; Briggs, C M; Caplan, M E; Cumming, A; Schneider, A S

    2015-01-23

    Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Q_{imp}. Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Q_{imp}, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

  6. Pair production and annihilation in strong magnetic fields. [of neutron stars and pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1983-01-01

    Electromagnetic phenomena occurring in the presence of strong magnetic fields are currently of great interest in high-energy astrophysics. In particular, the process of pair production by single photons in the presence of fields of order 10 to the 12th power Gauss is of importance in cascade models of pulsar gamma ray emission, and may also become significant in theories of other radiation phenomena whose sources may be neutron stars (e.g., gamma ray bursts). In addition to pair production, the inverse process of pair annihilation is greatly affected by the presence of superstrong magnetic fields. The most significant departures from annihilation processes in free space are a reduction in the total rate for annihilation into two photons, a broadening of the familiar 511-keV line for annihilation at rest, and the possibility for annihilation into a single photon which dominates the two-photon annihilation for B (10 to 13th power Gauss) The physics of these pair conversion processes, which is reviewed briefly, can become quite complex in the teragauss regime, and can involve calculations which are technically difficult to incorporate into models of emission mechanisms in neutron star magnetospheres. However, theoretical work, especially the case of pair annihilation, also suggests potential techniques for more direct measurements of field strengths near the stellar surface.

  7. Complementarity with neutron two-path interferences and separated-oscillatory-field resonances

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    1993-07-01

    The implications of complementarity on two-path neutron interferences and on separated-oscillatory-field resonances are discussed. The studies are extensions of those by Furry and Ramsey [Phys. Rev. 118, 623 (1960)] on two-path electron interferences which showed that an apparatus used to determine the electron path introduces uncertainties in the scalar and vector potentials which in turn disturb the phase of the electron wave function so much through the Aharonov-Bohm effects [Phys. Rev. 115, 485 (1959)] that the interference fringes disappear. A similar result is derived here for the neutron, but with the phase uncertainties coming from the magnetic moment's motion through an electric field as discussed by Anandan [Phys. Rev. Lett. 48, 1660 (1982)], and Aharonov and Casher [Phys. Rev. Lett. 53, 319 (1984)]. A corresponding result is also obtained for separated-oscillatory-fields resonances, which can be interpreted as an interference between two different paths in spin space. An interesting difference between the separated-path and separated-oscillatory-field experiments is that the latter may be interpreted classically.

  8. Generalized Reference Fields and Source Interpolation for the Difference Formulation of Radiation Transport

    SciTech Connect

    Luu, T C; Brooks, E D; Szoke, A

    2009-02-05

    In the difference formulation for the transport of thermally emitted photons, the photon intensity is defined relative to a reference field, the black body at the local material temperature. This choice of reference field combines the separate emission and absorption terms that nearly cancel, removing the dominant cause of noise in the Monte Carlo solution of thick systems, but introduces time and space derivative source terms that can not be determined until the end of the time step. The space derivative source term can also lead to noise induced crashes under certain conditions where the real physical photon intensity differs strongly from a black body at the local material temperature. In this paper, we consider a difference formulation relative to the material temperature at the beginning of the time step, or in cases where an alternative temperature better describes the radiation field, that temperature. The result is a method where iterative solution of the material energy equation is efficient and noise induced crashes are avoided. We couple our generalized reference field scheme with an ad hoc interpolation of the space derivative source, resulting in an algorithm that produces the correct flux between zones as the physical system approaches the thick limit.

  9. X-ray studies of neutron stars and their magnetic fields.

    PubMed

    Makishima, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1-7) × 10(8) T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  10. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    PubMed

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  11. Determination of canine dose conversion factors in mixed neutron and gamma radiation fields. Technical report

    SciTech Connect

    Torres, B.A.; Bhatt, R.C.; Myska, J.C.; Holland, B.K.

    1996-07-01

    The primary objective of mixed-field neutron/gamma radiation dosimetry in canine irradiation experiments conducted at the Armed Forces Radiobiology Research Institute (AFRRI) is to determine the absorbed midline tissue dose (MLT) at the region of interest in the canine. A dose conversion factor (DCF) can be applied to free-in-air (FIA) dose measurements to estimate the MLT doses to canines. This report is a summary of the measured DCFs that were used to determine the MLT doses in canines at AFRRI from 1979 to 1992.

  12. Determining the neutron star surface magnetic field strength of two Z sources

    NASA Astrophysics Data System (ADS)

    Ding, Guoqiang; Huang, Chunping; Wang, Yanan

    2013-02-01

    From the extreme position of disk motion, we infer the neutron star (NS) surface magnetic field strength (B 0) of Z-source GX 17+2 and Cyg X-2. The inferred B 0 of GX 17+2 and Cyg X-2 are ~(1-5)×108 G and ~(1-3)×108 G, respectively, which are not inferior to that of millisecond X-ray pulsars or atoll sources. It is likely that the NS magnetic axis of Z sources is parallel to the axis of rotation, which could result in the lack of pulsations in these sources.

  13. Physical processes in the strong magnetic fields of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  14. Non-axisymmetric magnetic modes of neutron stars with purely poloidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Asai, Hidetaka; Lee, Umin; Yoshida, Shijun

    2016-01-01

    We calculate non-axisymmetric oscillations of neutron stars magnetized by purely poloidal magnetic fields. We use polytropes of index n = 1 and 1.5 as a background model, where we ignore the equilibrium deformation due to the magnetic field. Since separation of variables is not possible for the oscillation of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. Solving the oscillation equations as the boundary and eigenvalue problem, we find two kinds of discrete magnetic modes, that is, stable (oscillatory) magnetic modes and unstable (monotonically growing) magnetic modes. For isentropic models, the frequency or the growth rate of the magnetic modes is exactly proportional to BS, the strength of the field at the surface. The oscillation frequency and the growth rate are affected by the buoyant force in the interior, and the stable stratification tends to stabilize the unstable magnetic modes.

  15. Interior Vector Magnetic Field Monitoring via External Measurements for the SNS Neutron EDM Experiment

    NASA Astrophysics Data System (ADS)

    Nouri, Nima; Brown, Michael; Carr, Robert; Filippone, Bradley; Osthelder, Charles; Plaster, Bradley; Slutsky, Simon; Swank, Christopher

    2015-10-01

    A prototype of a magnetic field monitoring system designed to reconstruct the vector magnetic field components (and, hence, all nine of the ∂Bi / ∂xj field gradients) within the interior measurement fiducial volume solely from external measurements is under development for the SNS neutron EDM experiment. A first-generation room-temperature prototype array has already been tested. A second-generation prototype array consisting of 12 cryogenic-compatible fluxgate magnetometer probes will be deployed within the cold region of the experiment's 1 / 3 -scale cryogenic magnet testing apparatus. We will report progress towards the development of this second-generation prototype. This work was supported in part by the U. S. Department of Energy Office of Nuclear Physics under Award No. DE-FG02-08ER41557.

  16. Limiting P-odd interactions of cosmic fields with electrons, protons, and neutrons.

    PubMed

    Roberts, B M; Stadnik, Y V; Dzuba, V A; Flambaum, V V; Leefer, N; Budker, D

    2014-08-22

    We propose methods for extracting limits on the strength of P-odd interactions of pseudoscalar and pseudovector cosmic fields with electrons, protons, and neutrons, by exploiting the static and dynamic parity-nonconserving amplitudes and electric dipole moments they induce in atoms. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by Lorentz-violating standard model extensions. Atomic calculations are performed for H, Li, Na, K, Rb, Cs, Ba(+), Tl, Dy, Fr, and Ra(+). From these calculations and existing measurements in Dy, Cs, and Tl, we constrain the interaction strengths of the parity-violating static pseudovector cosmic field to be 7 × 10(-15) GeV with an electron, and 3 × 10(-8) GeV with a proton. PMID:25192086

  17. Effect of Reference Scheme on Power and Phase of the Local Field Potential.

    PubMed

    Shirhatti, Vinay; Borthakur, Ayon; Ray, Supratim

    2016-05-01

    Brain signals are often analyzed in the spectral domain, where the power spectral density (PSD) and phase differences and consistency can reveal important information about the network. However, for proper interpretation, it is important to know whether these measures depend on stimulus/behavioral conditions or the reference scheme used to analyze data. We recorded local field potential (LFP) from an array of microelectrodes chronically implanted in area V1 of monkeys under different stimulus/behavioral conditions and computed PSD slopes, coherence, and phase difference between LFPs as a function of frequency and interelectrode distance while using four reference schemes: single wire, average, bipolar, and current source density. PSD slopes were dependent on reference scheme at low frequencies (below 200 Hz) but became invariant at higher frequencies. Average phase differences between sites also depended critically on referencing, switching from 0 degrees for single-wire to 180 degrees for average reference. Results were consistent across different stimulus/behavioral conditions. We were able to account for these results based on the coherence profile across sites and properties of the spectral estimator. Our results show that using different reference schemes can have drastic effects on phase differences and PSD slopes and therefore must be interpreted carefully to gain insights about network properties.

  18. Implications of X-ray tube parameter deviations in X-ray reference fields.

    PubMed

    Behnke, B; Hupe, O; Ambrosi, P

    2016-02-01

    For the purpose of radiation protection, ICRU Report 57/ICRP Publication 74 provides a list of monoenergetic conversion coefficients to be used with, among others, photon reference fields generated with X-ray tubes. A comprehensive definition of these photon reference fields can be found in international standard ISO 4037; however, it lacks thorough indication of the allowed deviations of essential parameters that influence these X-ray reference fields. These parameters are the high-voltage tube potential, the thickness of the beryllium window and the purity and thickness of the filter materials used to create different radiation qualities. Small variations of these parameters can lead to significant changes in the created X-ray spectra and, hence, the spectra-dependent conversion coefficients for phantom-related radiation-protection quantities. This can lead to situations in which the conversion coefficients listed in ISO 4037 cannot be used, resulting in time-consuming spectrometry measurements. In this work, the impact on the resulting conversion coefficients is investigated using a simplified mathematical approximation model. The findings are validated with an independent X-ray spectra calculation programme. As a result, well-founded upper limit values on the allowed deviations of the essential X-ray tube parameters are proposed to be used in a future revision of ISO 4037. PMID:25889609

  19. Neutron distribution, electric dipole polarizability and weak form factor of 48Ca from chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Wendt, Kyle

    2016-03-01

    How large is the 48Ca nucleus? While the electric charge distribution of this nucleus was accurately measured decades ago, both experimental and ab initio descriptions of the neutron distribution are deficient. We address this question using ab initio calculations of the electric charge, neutron, and weak distributions of 48Ca based on chiral effective field theory. Historically, chiral effective field theory calculations of systems larger than 4 nucleons have been plagued by strong systematic errors which result in theoretical descriptions that are too dense and over bound. We address these errors using a novel approach that permits us to accurately reproduce binding energy and charge radius of 48Ca, and to constrain electroweak observables such as the neutron radius, electric dipole polarizability, and the weak form factor. For a full list of contributors to this work, please see ``Neutron and weak-charge distributions of the 48Ca nucleus,'' Nature Physics (2015) doi:10.1038/nphys3529.

  20. Different resistance patterns of reference and field strains of Brucella abortus.

    PubMed

    Miranda, Karina L; Dorneles, Elaine M S; Poester, Fernando P; Martins Filho, Paulo S; Pauletti, Rebeca B; Lage, Andrey P

    2015-03-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75-0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus.

  1. Different resistance patterns of reference and field strains of Brucella abortus

    PubMed Central

    Miranda, Karina L.; Dorneles, Elaine M. S.; Poester, Fernando P.; Martins, Paulo S.; Pauletti, Rebeca B.; Lage, Andrey P.

    2015-01-01

    The aim of this study was to evaluate the growth of the B. abortus reference strains and field isolates on media containing different inhibitor agents. Reference strains were seeded on tryptose agar containing: i-erythritol (1.0 mg/mL), fuchsin (20 μg/mL and 80 μg/mL), thionin (2.5 μg/mL and 10 μg/mL), rifampicin (200 μg/mL) and safranin O (200 μg/mL). Field isolates were tested only on media containing i-erythritol, rifampicin and thionin. Furthermore, each suspension was also inoculated on tryptose agar incubated in air, to test its ability to grow without CO 2 . Sensitivity to fuchsin was similar among reference strains evaluated. Growth of S19, 544 and 2308 but not RB51 were inhibited on media containing rifampicin. Medium with safranin O showed no inhibition for RB51, 544 and 2308, but it partially inhibited the S19 growth as well as medium containing i-erythritol. Treatment/control growth ratio for 2308 on tryptose agar containing thionin (2.5 μg/mL) was approximatelly 1.0, whereas S19 and RB51 showed 0.85 and 0.89 ratios, respectively. Growth of 544, S19 and RB51 but not 2308 was completely inhibited on medium with thionin (10 μg/mL). All field strains grew on medium containing i-erythritol, but were completelly inhibited by rifampicin. With exception of A1 ( B. abortus biovar 3) all field isolates grew on medium with thionin, although some strains showed a treatment/control growth ratio of 0.75–0.80 (10 μg/mL). These results showed that tryptose agar with thionin, i-erythritol or rifampicin could be useful for differentiating vaccine, challenge and field strains of B. abortus. PMID:26221116

  2. Characterization of neutron fields from bare and heavy water moderated (252)Cf spontaneous fission source using Bonner Sphere Spectrometer.

    PubMed

    Atanackovic, Jovica; Yonkeu, Andre; Dubeau, Jacques; Witharana, Sampath Hakmana; Priest, Nicholas

    2015-05-01

    In this work a calibrated Bonner Sphere Spectrometer (BSS), together with ISO shadow cones, was used to quantify the total and scattered components of bare and heavy water moderated (252)Cf neutron fields. All measurements were performed with a BSS that was calibrated at the National Physical Laboratory (NPL), Teddington, UK, which is a global primary standard laboratory and world-leading facility for neutron metrology and neutron instruments calibration. The fields were characterized for source-spectrometer distances of 80, 100, 150 and 200cm; and at heights of 103 and 200cm from the facility floor. As expected, the scattered contribution was greatest at the farthest distance from the source and closer to the floor. Hence, at a distance of 200cm and a height of 103cm, the scatter added to the direct field up to 162% of the total neutron fluence and up to 61% of the ambient dose equivalent, while at the same distance and height of 200cm above the floor, these values were up to 146% and 52%, respectively. In the case of heavy water moderated (252)Cf neutron fields, a shadow cone subtraction technique could not be implemented, however Monte Carlo simulations were utilized in order to differentiate between the direct and scatter components of the neutron fields. In this case, at a source-detector distance of 200cm and a height of 103cm, the scatter added to the direct field up to 148% of the total neutron fluence and up to 45% of the ambient dose equivalent, while at the same distance and a height of 200cm above the floor, these values were up to 134% and 42%, respectively.

  3. Neutron contribution to CaF2:Mn thermoluminescent dosimeter response in mixed (n/y) field environments.

    SciTech Connect

    DePriest, Kendall Russell; Griffin, Patrick Joseph

    2003-07-01

    Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by postexperiment analysis because the TLD reading system cannot distinguish between photon- and neutron-produced response. Using a model of an aluminum-equilibrated TLD-400 (CaF{sub 2}:Mn) chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determine the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.

  4. Neutron Contribution to CaF2:Mn Thermoluminescent Dosimeter Response in Mixed (n/y) Field Environments

    SciTech Connect

    DEPRIEST, KENDALL R.

    2002-11-01

    Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by post-experiment analysis because the TLD reading system cannot distinguish between photon and neutron produced response. Using a model of an aluminum-equilibrated TLD-400 chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have dosimetry quality experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determined the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.

  5. ESR response of CFQ-Gd2O3 dosimeters to a mixed neutron-gamma field: Monte Carlo simulation.

    PubMed

    Hoseininaveh, M; Ranjbar, A H

    2015-11-01

    Clear fused quartz (CFQ) may be considered a suitable material for electron and gamma dose measurements using electron spin resonance (ESR) technique. Research has been ongoing to optimize the neutron capture therapy (NCT) mechanism and its effects in cancer treatment. Neutron sources of the mixed neutron-gamma field are a challenge for this treatment method. A reliable dosimetric measurement and treatment should be able to determine various components of this mixed field. In this study, the ESR response of cylindrical and spherical shells of CFQ dosimeters, filled with Gd2O3, when exposed to a thermal neutron beam, has been investigated using Monte Carlo simulation. In order to maximize the ESR response, the dimensions of the outer and inner parts of the samples have been chosen as variables, and the amount of energy deposited in the samples has been determined. The optimum size of the samples has been determined, and the capability of discriminating gamma and neutron dose in a mixed neutron-gamma field regarding the CFQ-Gd2O3 dosimeter has also been widely studied.

  6. NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Chulliat, Arnaud; Manoj, Chandrasekharan

    2015-05-01

    The International Geomagnetic Reference Field (IGRF) is a model of the geomagnetic main field and its secular variation, produced every 5 years from candidate models proposed by a number of international research institutions. For this 12th generation IGRF, three candidate models were solicited: a main field model for the 2010.0 epoch, a main field model for the 2015.0 epoch, and the predicted secular variation for the five-year period 2015 to 2020. The National Geophysical Data Center (NGDC), part of the National Oceanic and Atmospheric Administration (NOAA), has produced three candidate models for consideration in IGRF-12. The 2010 main field candidate was produced from Challenging Minisatellite Payload (CHAMP) satellite data, while the 2015 main field and secular variation candidates were produced from Swarm and Ørsted satellite data. Careful data selection was performed to minimize the influence of magnetospheric and ionospheric fields. The secular variation predictions of our parent models, from which the candidate models were derived, have been validated against independent ground observatory data.

  7. Spectrum evaluation at the filter-modified neutron irradiation field for neutron capture therapy in Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2004-10-01

    The Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor (KUR-HWNIF) was updated in March 1996, mainly to improve the facility for neutron capture therapy (NCT). In this facility, neutron beams with various energy spectra, from almost pure thermal to epithermal, are available. The evaluation of the neutron energy spectra by multi-activation-foil method was performed as a series of the facility characterization. The spectra at the normal irradiation position were evaluated for the combinations of heavy-water thickness of the spectrum shifter and the open-close condition of the cadmium and boral filters. The initial spectra were made mainly using a two-dimensional transport code, and the final spectra were obtained using an adjusting code. For the verification of the evaluated spectra, simulation calculations using a phantom were performed on the assumption of NCT-clinical-irradiation conditions. It resulted that the calculated data for the depth neutron-flux distributions were in good agreement with the experimental ones.

  8. Neutron spectrometry using LNL bonner spheres and FLUKA

    NASA Astrophysics Data System (ADS)

    Sarchiapone, L.; Zafiropoulos, D.

    2013-07-01

    The characterization of neutron fields has been made with a system based on a scintillation detector and multiple moderating spheres. The system, together with the unfolding procedure, have been tested in quasi-monochromatic neutron energy fields and in complex, mixed, cyclotron based environments. FLUKA simulations have been used to produce response functions and reference energy spectra.

  9. Preequilibrium neutron emission in heavy ion reaction: Mean field effect and multiple emission

    NASA Astrophysics Data System (ADS)

    Paul, Sabyasachi; Nandy, Maitreyee; Mohanty, A. K.; Gambhir, Y. K.

    2016-09-01

    Effects of nuclear mean field and of multiple preequilibrium (PEQ) emission on double differential neutron multiplicity distribution from heavy ion reactions (12C+165Ho and 20Ne+165Ho ) at 10-30 MeV/u have been investigated in the framework of the semiclassical formalism for heavy ion reaction (henceforth termed "HION") developed earlier. HION follows the equilibration of a target+projectile composite system through the kinematics of two-body scattering. In the present work nuclear density distribution in the composite system is estimated in the relativistic mean field (RMF) approach. The nucleon-nucleon collision rates and subsequently the nucleon emission probability are calculated from this density distribution. A second approach based on a semiphenomenological formalism is also used for nuclear density distribution. Energy-angle distribution of neutron multiplicities calculated with this modified HION model coupled with multiple PEQ emission could reproduce the measured data of earlier workers in the projectile energy range of 10-30 MeV/u.

  10. Electrical conductivity of a warm neutron star crust in magnetic fields

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Arus; Sedrakian, Armen

    2016-08-01

    We study the electrical conductivity of finite-temperature crust of a warm compact star which may be formed in the aftermath of a supernova explosion or a binary neutron star merger as well as when a cold neutron star is heated by accretion of material from a companion. We focus on the temperature-density regime where plasma is in the liquid state and, therefore, the conductivity is dominated by the electron scattering off correlated nuclei. The dynamical screening of this interaction is implemented in terms of the polarization tensor computed in the hard-thermal-loop effective field theory of QED plasma. The correlations of the background ionic component are accounted for via a structure factor derived from Monte Carlo simulations of one-component plasma. With this input we solve the Boltzmann kinetic equation in relaxation time approximation taking into account the anisotropy of transport due to the magnetic field. The electrical conductivity tensor is studied numerically as a function of temperature and density for carbon and iron nuclei as well as density-dependent composition of zero-temperature dense matter in weak equilibrium with electrons. We also provide accurate fit formulas to our numerical results as well as supplemental tables which can be used in dissipative magneto-hydrodynamics simulations of warm compact stars.

  11. Assessment of models proposed for the 1985 revision of the international geomagnetic reference field

    USGS Publications Warehouse

    Peddie, N.W.; Zunde, A.K.

    1987-01-01

    Geomagnetic measurements from land, marine and aerial surveys conducted in the years 1945-1964 were used to test the 14 models proposed as additions, for that period, to the series of definitive geomagnetic reference field (DGRF) models. Overall, NASA's 'SFAS' models and the BGS (British Geological Survey) models agree best with these data. Comparisons of the two proposed definitive main-field models for 1980.0, with each other and with the existing IGRF 1980 main-field model, show mostly close agreement, with the greatest absolute differences (several tens of nanotesla) occurring in the region of Antarctica. Comparison of the the three proposed forecast secular-variation models for 1985-1990 with estimates of recent rates of change at 148 magnetic observatories shows that the IZMIRAN (U.S.S.R.) and USGS models are in closest agreement with these data. ?? 1987.

  12. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-01-01

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases. PMID:27455499

  13. Reference-ellipsoid and the normal gravity field in post-Newtonian geodesy

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Mazurova, Elena

    2016-07-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting relativistic calculation of the geoid undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry. We reformulate and extend hydrodynamic calculations of rotating fluids done by previous researchers to the realm of relativistic geodesy to set up the algebraic equations defining the shape of the post-Newtonian reference ellipsoid. We explicitly perform all integrals characterizing gravitational field inside and outside the fluid body and represent them in terms of the elementary functions depending on its eccentricity. We fully explore the coordinate freedom of the equations describing the post-Newtonian ellipsoid and evaluate the deviation of the post-Newtonian level surface from the Newtonian (Maclaurin) ellipsoid. We also derive the post-Newtonian normal gravity field of the rotating fluid in terms of the parameters characterizing the post-Newtonian ellipsoid including relativistic mass, angular velocity and eccentricity. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the Earth figure to physically measurable force of gravity at its pole and equator.

  14. The role of the brain's frontal eye fields in constructing frame of reference.

    PubMed

    Wallentin, Mikkel

    2012-08-01

    Establishing contextual reference during discourse is a vital part of language function. Personal pronouns (e.g., he/she/it) are used to refer to previously experienced objects, utterances and events. These items, however, are often no longer present in the environment and have to be maintained and manipulated in working memory (WM). One aspect of this is the construction of a spatial frame of reference (e.g., "He was in front of it" where "he" is established as figure and "it" is the ground). The WM processes underlying this function may be different from those involved in establishing a non-spatial relation (e.g., "He was older than her"). The brain's frontal eye fields (FEFs), responsible for eye movement control, are known to be involved in processing spatial WM. This paper reviews both functional magnetic resonance imaging experiments and a subsequent behavioral interference study demonstrating a specific role for the FEFs and the brain's eye movement control system in manipulation of WM content for establishing object-centered spatial reference frames during verbally cued recall of recent visual and linguistic experiences.

  15. Neutron scattering study of the field-induced tricritical point in MnSi

    NASA Astrophysics Data System (ADS)

    Kindervater, J.; Bauer, A.; Garst, M.; Janoschek, M.; Martin, N.; Mühlbauer, S.; Häussler, W.; Böni, P.; Pfleiderer, C.

    The intermetallic compound MnSi attracts great scientific interest due to two unusual phase transitions, namely the transition from the conical phase to a skyrmion lattice in small fields and the transition from the helical to the paramagnetic phase without external magnetic field that was recently identified to be a fluctuation induced first-order transition, i.e. a so called Brazovskii-transition. Recent measurements of the specific heat provide striking evidence for a tricritical point (TCP), were the first order transition alters to second order. We report neutron spin echo measurements using the MIEZE technique. The recorded quasi elastic linewidth shows a change of the characteristic spin fluctuations at the TCP. The combination with additional SANS measurements and a generalized Brazovskii theory establishes a consistent picture of the statics and dynamics of the transition. Financial support by ERC-AdG (291079 TOPFIT) and through DFG TRR80 is greatfully acknowledged.

  16. Ernst formulation of axisymmetric fields in f (R ) gravity: Applications to neutron stars and gravitational waves

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2016-08-01

    The Ernst formulation of the Einstein equations is generalized to accommodate f (R ) theories of gravity. It is shown that, as in general relativity, the axisymmetric f (R ) field equations for a vacuum spacetime that is either stationary or cylindrically symmetric reduce to a single, nonlinear differential equation for a complex-valued scalar function. As a worked example, we apply the generalized Ernst equations to derive a f (R ) generalization of the Zipoy-Voorhees metric, which may be used to describe the gravitational field outside of an ellipsoidal neutron star. We also apply the theory to investigate the phase speed of large-amplitude gravitational waves in f (R ) gravity in the context of solitonlike solutions that display shock-wave behavior across the causal boundary.

  17. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally

  18. Realistic exact solution for the exterior field of a rotating neutron star

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Rueda, Jorge A.; Sanabria-Gómez, José D.

    2006-05-01

    A new six-parametric, axisymmetric, and asymptotically flat exact solution of Einstein-Maxwell field equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular momentum, mass-quadrupole moment, current octupole moment, electric charge, and magnetic dipole, so it can represent the exterior field of a rotating, deformed, magnetized, and charged object; some properties of the closed-form analytic solution such as its multipolar structure, electromagnetic fields, and singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical interior solutions representing neutron stars, calculated by Berti and Stergioulas [E. Berti and N. Stergioulas, Mon. Not. R. Astron. Soc.MNRAA40035-8711 350, 1416 (2004)10.1111/j.1365-2966.2004.07740.x], imposing that the multipole moments be the same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we present an extensive comparison of the radii of innermost stable circular orbits (ISCOs) obtained from the Berti and Stergioulas numerical solutions, the Kerr solution [R. P. Kerr, Phys. Rev. Lett.PRLTAO0031-9007 11, 237 (1963)10.1103/PhysRevLett.11.237], the Hartle and Thorne solution [J. B. Hartle and K. S. Thorne, Astrophys. J.ASJOAB0004-637X 153, 807 (1968)10.1086/149707], an analytic series expansion derived by Shibata and Sasaki [M. Shibata and M. Sasaki, Phys. Rev. DPRVDAQ0556-2821 58, 104011 (1998)10.1103/PhysRevD.58.104011], and our exact solution. We found that radii of ISCOs from our solution fits better than others with realistic numerical interior solutions.

  19. Field-Scale Soil Moisture Observations in Irrigated Agriculture Fields Using the Cosmic-ray Neutron Rover

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.; Wang, T.; Brocca, L.

    2014-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 11 x11 km study domain also contained 3 stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong inverted parabolic relationship between the mean and variance of soil moisture. The relationship between the mean and higher order moments were not as strong. Geostatistical analysis indicated the range of the soil moisture semi-variogram was significantly shorter during periods of heavy irrigation as compared to non-irrigated periods. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. Statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  20. In-situ neutron scattering studies of magnetic shape memory alloys under stress, temperature, and magnetic fields

    SciTech Connect

    Brown, Donald W; Sisneros, Thomas A; Kabra, Saurabh; Schlagel, Deborah

    2010-01-01

    We have utilized the SMARTS engineering neutron diffractometer to study the crystallographic orientation and phase transformations in the ferromagnetic shape memory alloy Ni 2MnGa under conditions of temperature (200-600K), stress (500MPa), and magnetic field (2T). Neutrons are uniquely suited to probe the crystallographic response of materials to external stimuli because of their high penetration, which allows them to sample the bulk of the material (as opposed to the surface) as well as pass through environmental chambers. A single crystal of Ni{sub 5}MnGa was repeatedly thermally cycled through the Austenitic-Martensitic phase transformation under varying conditions of applied stress, magnetic field or both. In-situ neutron diffraction was used to quantitatively monitor the population of the crystallographic variants in the martensitic phase as a function of the external stimuli during cooling. Neutron diffraction was used to monitor variant selection in the Ferromagnetic Shape Memory Alloy Ni{sub 2}Mn Ga during austenitic to martensitic transformation under varying conditions of externally applied stress and magnetic field. Qualitatively, the results were to be expected in this simple example. The shorter and magnetically soft c-axis of the tetragonal martensitic phase aligned with the compressive stress or magnetic field. However, neutron diffraction proved useful in directly quantifying the selection of the preferred variant by external influence. For instance, by quantifying the variant selection, the neutron diffraction results made apparent that the sample 'remembered' a loading cycle following a 'reset' cycle with no external applied stress. Moreover, the power of in-situ neutron diffraction will become more apparent when applied to more complex, less understood, samples such as polycrystalline samples or composite samples.

  1. Comparison of Reference Values in Whole Blood of DMDmdx/J and C57BL/6J Mice Using Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Metairon, S.; Zamboni, C. B.; Suzuki, M. F.; Júnior, C. R. B.; Sant'Anna, O. A.

    2011-08-01

    The Br, Ca, Cl, K, Na and S concentrations in whole blood of DMDmdx/J and C57BL/6J mice were determined using Neutron Activation Analysis technique. Reference values obtained from twenty one whole blood samples of these strains were analyzed in the IEA-R1 nuclear reactor at IPEN (São Paulo, Brasil). These data contribute for applications in veterinary medicine related to biochemistry analyses using whole blood as well as to evaluate the performance of treatments in muscular dystrophy.

  2. The ΣΣ secondary intermediate-energy standard neutron field development at the Romania TRIGA Reactor

    NASA Astrophysics Data System (ADS)

    Roth, C.; Gârlea, I.; Dobrea, D.; Aioanei, L.; Kelerman, C.; Gârlea, C.; Gugiu, D.; Datcu, A.; Preda, M.; Pavelescu, M.

    2004-04-01

    The ΣΣ intermediate-energy reference spectrum irradiation facility, operated until 1998 at the VVR-S Reactor from Bucharest, was put into operation at the Romania TRIGA Reactor. This paper presents the experimental devices developed for the ΣΣ system operating at the Steady State Reactor (SSR)-TRIGA core, including the monitoring system, and preliminary neutron characterization results. These results show that the spectrum characteristics are slowly deviating from those for the recommended ΣΣ spectrum. The high-energy neutron tail is slowly increasing, compared with the recommended ΣΣ spectrum and other similar facilities.

  3. Can magnetic-field windup kill the r-mode instability of neutron stars?

    NASA Astrophysics Data System (ADS)

    Friedman, John; Lindblom, Lee; Rezzolla, Luciano

    2016-03-01

    At second order in perturbation theory, the unstable r-mode of a rotating star includes growing differential rotation whose form and growth rate are determined by gravitational radiation reaction. With no magnetic field, the angular velocity of a fluid element grows exponentially until the mode reaches its nonlinear saturation amplitude and remains nonzero after saturation. With a background magnetic field, the differential rotation winds up and amplifies the field, and previous work suggests that the amplification may damp out the instability. A background magnetic field, however, turns the time-independent perturbations corresponding to adding differential rotation into perturbations with characteristic frequencies of order the Alfven frequency. We argue that magnetic field growth stops soon after the mode reaches its saturation amplitude. We show that this is the case for a toy model, where magnetic amplification for small saturation amplitude is too small to damp the r-mode. For a more realistic model of a cold, rotating neutron star, an analogous upper limit depends on the assumption that there are no marginally unstable perturbations.

  4. Cosmic Rays and Clouds, 2. Atmospheric Electric Field Effect In Different Neutron Multiplicities According To Emilio Segre' Observatory One Minute Data

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'Eman, Yu.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities m=1, m=2, m=3, m=4, m=5, m=6, and m=7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM of University "Roma Tre" (about sea level, cut-off rigidity 6.7 GV). In February 2000 were observed 14 periods of thun- derstorms with different durations (up to about 1000 min), the maximum strength of electric field was 110 kV/m. Thunderstorms were observed also in March 2000 (6 pe- riods with maximal field 112 kV/m), in April 2000 (9; 70 kV/m), in May 2000 (4; 10 kV/m), in October 2000 (10; 70 kV/m), in November 2000 (5; 50 kV/m), in De- cember 2000 (7; 88 kV/m), in January 2001 (12; 62 kV/m), in February 2001 (10; 88 kV/m). According to the theoretical calculations of Dorman and Dorman (1995) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman et al. (1999), the biggest electric field effect is expected in the multiplicity m=1, much smaller in m=2 and negligible effect is expected in higher multiplicities. We will control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443. L.I. Dorman, I.V. Dorman, N. Iucci, M. Parisi, G. Villoresi, and I.G. Zuk- erman, 1999. "Emilio Segre' Observatory and Expected Time-Variations of Neutron Monitor Total and Multiplicities Counting Rates Caused by Cosmic Ray Particle

  5. MeV-GeV neutrino propagation as a signal of magnetic field amplification in neutron star merger

    NASA Astrophysics Data System (ADS)

    Fraija, N.

    2016-09-01

    Short gamma-ray bursts (sGRBs) have widely been accepted to arise from a compact object binary merger; neutron star-neutron star or neutron star-black hole. During the merger of a binary neutron star system, magnetic field can be amplified beyond magnetar field strength (∼1015-1016 G) by Kelvin-Helmholtz instabilities. Considering this effect on the GRB "fireball" dynamics, we study the emission, propagation and oscillation of multi MeV-GeV neutrinos through their self-energies and using these we compute the neutrino effective potential up to order MW-4. Additionally, we calculate the number of neutrino events and neutrino flavor ratios that we would expect on Hyper-Kamiokande and DeepCore experiments. We found that MeV neutrinos in a strong magnetic field could provide information of the topology of the field, and that the number of GeV neutrinos expected in DeepCore detector would be directly affected by the strength of the field. It is worth noting that our estimates correspond to the only trustworthy method for verifying the effect of the magnetic field amplification.

  6. Neutron study of crystal field excitations in single crystal CeCu2Ge2

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2010-03-01

    CeCu2Ge2 is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN= 4.1 K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/molK^2 [1]. Inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet at 16.5 meV [1] though a splitting of the 4f^1 (J=5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce^3+ ions. We performed detailed inelastic neutron scattering experiments on the thermal triple-axis spectrometer PUMA at FRM II at temperatures between 10 K and 300 K and for different crystallographic directions from low to high momentum transfers. In this way we obtained a reliable separation of magnetic and phonon contributions. From our results we infer that the quasi-quartet consists in fact of two doublets at 17 and 18 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally we will present a new set of crystal field parameters and their implications on other magnetic properties. [1] G. Knopp et al., Z. Physik B 77 (1989) 95

  7. Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation.

    PubMed

    Maire, D; Billard, J; Bosson, G; Bourrion, O; Guillaudin, O; Lamblin, J; Lebreton, L; Mayet, F; Médard, J; Muraz, J F; Richer, J P; Riffard, Q; Santos, D

    2014-10-01

    In order to measure the energy and fluence of neutron fields, in the energy range of 8 to 1 MeV, a new primary standard is being developed at the Institute for Radioprotection and Nuclear Safety (IRSN). This project, Micro Time Projection Chamber (µ-TPC), carried out in collaboration with the Laboratoire de Physqique Subatomique et de Cosmologie (LPSC), is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few kiloelectronvolts, which can be achieved using a micro-pattern gaseous detector. A gas mixture, mainly isobutane, is used as an n-p converter to detect neutrons within the detection volume. Then electrons, coming from the ionisation of the gas by the proton recoil, are collected by the pixelised anode (2D projection). A self-triggered electronics system is able to perform the anode readout at a 50-MHz frequency in order to give the third dimension of the track. Then, the scattering angle is deduced from this track using algorithms. The charge collection leads to the proton energy, taking into account the ionisation quenching factor. This article emphasises the neutron energy measurements of a monoenergetic neutron field produced at 127 keV. The fluence measurement is not shown in this article. The measurements are compared with Monte Carlo simulations using realistic neutron fields and simulations of the detector response. The discrepancy between experiments and simulations is 5 keV mainly due to the calibration uncertainties of 10 %. PMID:24594906

  8. Modeling the structure of magnetic fields in Neutron Stars: from the interior to the magnetosphere

    NASA Astrophysics Data System (ADS)

    Bucciantini, Niccolò; Pili, Antonio G.; Del Zanna, Luca

    2016-05-01

    The phenomenology of the emission of pulsars and magnetars depends dramatically on the structure and properties of their magnetic field. In particular it is believed that the outbursting and flaring activity observed in AXPs and SRGs is strongly related to their internal magnetic field. Recent observations have moreover shown that charges are present in their magnetospheres supporting the idea that their magnetic field is tightly twisted in the vicinity of the star. In principle these objects offer a unique opportunity to investigate physics in a regime beyond what can be obtained in the laboratory. We will discuss the properties of equilibrium models of magnetized neutron stars, and we will show how internal and external currents can be related. These magnetic field configurations will be discussed considering also their stability, relevant for their origin and possibly connected to events like SNe and GRBs. We will also show what kind of deformations they induce in the star, that could lead to emission of gravitational waves. In the case of a twisted magnetosphere we will show how the amount of twist regulates their general topology. A general formalism based on the simultaneous numerical solution of the general relativistic Grad-Shafranov equation and Einstein equations will be presented.

  9. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    PubMed Central

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  10. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGES

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  11. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    NASA Astrophysics Data System (ADS)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  12. Characterisation of neutron fields around high-energy x-ray radiotherapy machines.

    PubMed

    Králík, M; Turek, K

    2004-01-01

    Photoneutron spectra around the treatment bed of a Varian Clinac 2100C machine were measured using a Bonner sphere spectrometer. To overcome problems with pulse pile-up and detection of non-neutron-induced events, the active detector of thermal neutrons normally used at the centre of the spheres was replaced by a sandwich of four CR-39 track detectors interleaved with 10B radiators. Track densities measured for the CR-39 detectors in Bonner spheres were used for the unfolding of neutron spectra. Neutron fluence and ambient dose equivalent for the whole energy range and partial energy intervals were derived from the neutron spectra.

  13. The field evaporation of deuterated titanium as a neutron generator ion source

    NASA Astrophysics Data System (ADS)

    Reichenbach, B.; Johnson, B. Bargsten; Schwoebel, P. R.

    2010-11-01

    The field evaporation of deuterated titanium films is being investigated as a deuterium ion source for deuterium-tritium neutron generators. It has been found that titanium and deuterated titanium films having thicknesses of up to at least 70 layers assume a body-centered-cubic crystal structure when grown on ⟨110⟩ oriented tungsten substrates. Deuterated titanium films having thicknesses exceeding 50 atomic layers have been controllably field evaporated from the surface of tungsten tips in less than 20 ns. At ion current densities exceeding ˜106 A/cm2 and film thicknesses greater than ˜20 layers, space charge effects decrease the ratio of D to TiDx ions to less than 1. Decreasing the evaporation rate such that ion current densities are of the order of 105 A/cm2 increases the D to TiDx ratio for the evaporation of a film thickness of greater than ˜20 layers by the reduction in space charge effects that can inhibit the dissociation of titanium-deuterium complexes. Atomic deuterium ion yields of ˜10-7 μC of D+/tip have been observed and yields of >10-6 μC of D+/tip should be possible using larger tip radii. The field evaporation of titanium from an array of microfabricated tips has been demonstrated for the first time.

  14. Does the Earth's Magnetic Field Serve as a Reference for Alignment of the Honeybee Waggle Dance?

    PubMed Central

    Lambinet, Veronika; Hayden, Michael E.; Bieri, Marco; Gries, Gerhard

    2014-01-01

    The honeybee (Apis mellifera) waggle dance, which is performed inside the hive by forager bees, informs hive mates about a potent food source, and recruits them to its location. It consists of a repeated figure-8 pattern: two oppositely directed turns interspersed by a short straight segment, the “waggle run”. The waggle run consists of a single stride emphasized by lateral waggling motions of the abdomen. Directional information pointing to a food source relative to the sun's azimuth is encoded in the angle between the waggle run line and a reference line, which is generally thought to be established by gravity. Yet, there is tantalizing evidence that the local (ambient) geomagnetic field (LGMF) could play a role. We tested the effect of the LGMF on the recruitment success of forager bees by placing observation hives inside large Helmholtz coils, and then either reducing the LGMF to 2% or shifting its apparent declination. Neither of these treatments reduced the number of nest mates that waggle dancing forager bees recruited to a feeding station located 200 m north of the hive. These results indicate that the LGMF does not act as the reference for the alignment of waggle-dancing bees. PMID:25541731

  15. Assessment of soil moisture dynamics on an irrigated maize field using cosmic ray neutron sensing

    NASA Astrophysics Data System (ADS)

    Scheiffele, Lena Maria; Baroni, Gabriele; Oswald, Sascha E.

    2015-04-01

    In recent years cosmic ray neutron sensing (CRS) developed as a valuable, indirect and non-invasive method to estimate soil moisture at a scale of tens of hectares, covering the gap between point scale measurements and large scale remote sensing techniques. The method is particularly promising in cropped and irrigated fields where invasive installation of belowground measurement devices could conflict with the agricultural management. However, CRS is affected by all hydrogen pools in the measurement footprint and a fast growing biomass provides some challenges for the interpretation of the signal and application of the method for detecting soil moisture. For this aim, in this study a cosmic ray probe was installed on a field near Braunschweig (Germany) during one maize growing season (2014). The field was irrigated in stripes of 50 m width using sprinkler devices for a total of seven events. Three soil sampling campaigns were conducted throughout the growing season to assess the effect of different hydrogen pools on calibration results. Additionally, leaf area index and biomass measurements were collected to provide the relative contribution of the biomass on the CRS signal. Calibration results obtained with the different soil sampling campaigns showed some discrepancy well correlated with the biomass growth. However, after the calibration function was adjusted to account also for lattice water and soil organic carbon, thus representing an equivalent water content of the soil, the differences decreased. Soil moisture estimated with CRS responded well to precipitation and irrigation events, confirming also the effective footprint of the method (i.e., radius 300 m) and showing occurring water stress for the crop. Thus, the dynamics are in agreement with the soil moisture determined with point scale measurements but they are less affected by the heterogeneous moisture conditions within the field. For this reason, by applying a detailed calibration, CRS proves to be a

  16. Frequency-Induced Bulk Magnetic Domain-Wall Freezing Visualized by Neutron Dark-Field Imaging

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Harti, R. P.; Schäfer, R.; Van Swygenhoven, H.; Kaestner, A.; Hovind, J.; Lehmann, E.; Grünzweig, C.

    2016-08-01

    We use neutron dark-field imaging to visualize and interpret the response of bulk magnetic domain walls to static and dynamic magnetic excitations in (110)-Goss textured iron silicon high-permeability steel alloy. We investigate the domain-wall motion under the influence of an external alternating sinusoidal magnetic field. In particular, we perform scans combining varying levels of dcoffset (0 - 30 A /m ) , oscillation amplitude Aac (0 - 1500 A /m ) , and frequency fac ((0 - 200 Hz ) . By increasing amplitude Aac while maintaining constant values of dcoffset and fac , we record the transition from a frozen domain-wall structure to a mobile one. Vice versa, increasing fac while keeping Aac and dcoffset constant led to the reverse transition from a mobile domain-wall structure into a frozen one. We show that varying both Aac and fac shifts the position of the transition region. Furthermore, we demonstrate that higher frequencies require higher oscillation amplitudes to overcome the freezing phenomena. The fundamental determination and understanding of the frequency-induced freezing process in high-permeability steel alloys is of high interest to the further development of descriptive models for bulk macromagnetic phenomena. Likewise, the efficiency of transformers can be improved based on our results, since these alloys are used as transformer core material.

  17. Evaluation of the spectrometric and dose characteristics of neutron fields inside the Russian segment of the ISS by fission detectors

    NASA Astrophysics Data System (ADS)

    Shurshakov, V. A.; Vorob'ev, I. B.; Nikolaev, V. A.; Lyagushin, V. I.; Akatov, Yu. A.; Kushin, V. V.

    2016-03-01

    The results of measuring the dose and the energy spectrum of neutrons inside the Russian segment of the International Space Station (ISS) from March 21 until November 10, 2002 are presented. Statistically reliable results of measurement are obtained by using thorium- and uranium-based fission detectors with cadmium and boron filters. The kits of the detectors with filters have been arranged in three compartments within assembled passive detectors in the BRADOS space experiment. The ambient dose rate H* = 139 μSv day and an energy spectrum of neutrons in the range of 10-2-104 MeV is obtained as average for the ISS compartments and is compared with the measurements carried out inside the compartments of the MIR space station. Recommendations on how to improve the procedure for using the fission detectors to measure the characteristics of neutron fields inside the compartments of space stations are formulated.

  18. SU-E-T-560: Monte Carlo Simulation of the Neutron Radiation Field Around a Medical 18 MV Linac

    SciTech Connect

    Horst, F; Czarnecki, D; Zink, K

    2015-06-15

    Purpose: Today the majority of radiation therapy treatments are performed at medical electron linear accelerators (linacs). The accelerated electrons are used for the generation of bremsstrahlung photons. The use of higher electron respectively photon energies has some advantages over lower energies such as the longer dose build-up. However photons with energies higher than ∼7 MeV can additionally to the interaction with bound electrons undergo inelastic reactions with nuclei. These photonuclear reactions lead to the emission of fast neutrons which contaminate the primary photon field. The neutrons might penetrate through the collimators and deliver out-of-field dose to the patient. Furthermore the materials inside the linac head as well as the air inside the treatment room get activated which might deliver dose to the medical employees even when the linac is not in operation. A detailed knowledge of these effects is essential for adequate radiation protection of the employees and an optimal patient treatment. Methods: It is a common method to study the radiation fields of such linacs by means of Monte Carlo simulations. For the investigation of the effects caused by photonuclear reactions a typical linac in high energy mode (Varian Clinac 18 MV-X) as well as the surrounding bunker were modelled and simulated using the Monte Carlo code FLUKA which includes extensive nuclear reaction and neutron transport models additional to electron-photon transport as well as capabilities for a detailed study of effective dose distributions and activation yields. Results: Neutron spectra as well as neutron effective dose distributions within the bunker were obtained, reaching up to some mSv/Gy in the patient’s plane. The results are normalized per Gy in the depth dose maximum at 10×10 cm{sup 2} field size. Therefore an absolute interpretation is possible. Conclusion: The obtained data gives a better understanding of the photonuclear reaction caused effects.

  19. Risk of Developing Second Cancer From Neutron Dose in Proton Therapy as Function of Field Characteristics, Organ, and Patient Age

    SciTech Connect

    Zacharatou Jarlskog, Christina; Paganetti, Harald

    2008-09-01

    Purpose: To estimate the risk of a second malignancy after treatment of a primary brain cancer using passive scattered proton beam therapy. The focus was on the cancer risk caused by neutrons outside the treatment volume and the dependency on the patient's age. Methods and Materials: Organ-specific neutron-equivalent doses previously calculated for eight different proton therapy brain fields were considered. Organ-specific models were applied to assess the risk of developing solid cancers and leukemia. Results: The main contributors (>80%) to the neutron-induced risk are neutrons generated in the treatment head. Treatment volume can influence the risk by up to a factor of {approx}2. Young patients are subject to significantly greater risks than are adult patients because of the geometric differences and age dependency of the risk models. Breast cancer should be the main concern for females. For males, the risks of lung cancer, leukemia, and thyroid cancer were significant for pediatric patients. In contrast, leukemia was the leading risk for an adult. Most lifetime risks were <1% (70-Gy treatment). The only exceptions were breast, thyroid, and lung cancer for females. For female thyroid cancer, the treatment risk can exceed the baseline risk. Conclusion: The risk of developing a second malignancy from neutrons from proton beam therapy of a brain lesion is small (i.e., presumably outweighed by the therapeutic benefit) but not negligible (i.e., potentially greater than the baseline risk). The patient's age at treatment plays a major role.

  20. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    SciTech Connect

    Barrera, M. T. Barros, H.; Pino, F.; Sajo-Bohus, L.; Dávila, J.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  1. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  2. Photon and neutron fluence-to-kerma conversion factors for ICRP-1975 reference man using improved elemental compositions for bone and marrow of the skeleton

    SciTech Connect

    Kerr, G.D.

    1982-11-01

    A twelve-element approximation of the total-body, soft-tissue and skeletal components of ICRP-1975 Reference Man is used to investigate particle fluence-to-kerma conversion factors for photons with energies between 1 keV and 20 MeV and neutrons with energies between 0.0253 eV and 20 MeV. Several recent ICRP revisions to the elemental composition of Reference Man, which have not been included in other kerma-factor calculations, are taken into account. This work suggests some additional revisions to the major-element content (i.e., H, C, N, and O) and to the mineral and trace-element content (i.e., Na, Mg, P, S, Cl, K, Ca, and Fe) of various total-body, soft-tissue, and skeletal components of Reference Man. The revisions to the bone and red marrow of the skeleton offer significant new refinements in red-bone-marrow dosimetry.

  3. Cosmic rays, thunderstorm clouds, and possible influence on climate, 2. Atmospheric electric field effect in different neutron multiplicities according to Emilio Segre Observatory one minute data

    NASA Astrophysics Data System (ADS)

    Dorman, L.; Dorman, I.; Iucci, N.; Eman, Y. Ne; Parisi, M.; Pustil Nik, L.; Signoretti, F.; Sternlieb, A.; Villoresi, G.; Zukerman, I.

    On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR fortotal neutron intensity and for multiplicities m 1, m 2, m 3, m 4, m 5, m 6, m7, and m8, as well as for m=1, m=2, m=3, m=4, m=5, m=6, and m=7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM of University "Roma Tre" (about sea level, cut-off rigidity 6.7 GV). In February 2000 were observed 14 periods of thunderstorms with different durations (up to about 1000 min), the maximum strength of electric field was 110 kV/m. Thunderstorms were observed also in March 2000 (6 periods with maximal field 112 kV/m), in April 2000 (9; 70 kV/m), in May 2000 (4; 10 kV/m), in October 2000 (10; 70 kV/m), in November 2000 (5; 50 kV/m), in December 2000 (7; 88 kV/m), in January 2001 (12; 62 kV/m), in February 2001 (10; 88 kV/m). According to the theoretical calculations of Dorman and Dorman (2002) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman and Dorman (2002), the biggest electric field effect is expected in the multiplicity m=1, much smaller in m=2 and negligible effect is expected in higher multiplicities. We control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. We consider also the possible influence of CR air ionization (especially by secondary energetic electrons) on thunderstorms and lightnings, and through this - on climate. REFERENCES: Dorman L.I. and Dorman I.V., 2002. Report on COSPAR2002

  4. TIME-RESOLVED ANALYSES OF MICROSTRUCTURE IN ADVANCED MATERIALS UNDER MAGNETIC FIELDS AT ELEVATED TEMPERATURES USING NEUTRONS

    SciTech Connect

    Ludtka, Gerard Michael; Klose, Frank Richard; Kisner, Roger A; Fernandez-Baca, Jaime A; Ludtka, Gail Mackiewicz-; Wilgen, John B; Jaramillo, Roger A; Santodonato, Louis J; Wang, Xun-Li; Hubbard, Camden R; Tang, Fei

    2007-01-01

    Fundamental science breakthroughs are being facilitated by high magnetic field studies in a broad spectrum of research disciplines. Furthermore, processing of materials under high magnetic fields is a novel technique with very high science and technological potential. However, currently the capability does not exist to do in-situ time-resolved quantitative analyses at high magnetic field strengths and elevated temperatures. Therefore, most measurements are performed ex situ and do not capture the microstructural evolution of the samples during high field exposure. To address this deficiency, we are developing high field magnet processing and analyses systems at the High Flux Isotope Reactor and the Spallation Neutron Source at the Oak Ridge National Laboratory which will link the analytical capabilities inherent in neutron science to the needs of magnetic processing research. Our goal is to apply advanced neutron scattering techniques to explore time-resolved characterizations of magnetically driven alloy phase transformations under transient conditions. This paper will provide an overview of the current status of this research endeavor with preliminary results obtained on ferrous alloys.

  5. Neutron Damage in Mechanically-Cooled High-Purity Germanium Detectors for Field-Portable Prompt Gamma Neutron Activation Analysis (PGNAA) Systems

    SciTech Connect

    E.H. Seabury; C.J. Wharton; A.J. Caffrey; J.B. McCabe; C. DeW. Van Siclen

    2013-10-01

    Prompt Gamma Neutron Activation (PGNAA) systems require the use of a gamma-ray spectrometer to record the gamma-ray spectrum of an object under test and allow the determination of the object’s composition. Field-portable systems, such as Idaho National Laboratory’s PINS system, have used standard liquid-nitrogen-cooled high-purity germanium (HPGe) detectors to perform this function. These detectors have performed very well in the past, but the requirement of liquid-nitrogen cooling limits their use to areas where liquid nitrogen is readily available or produced on-site. Also, having a relatively large volume of liquid nitrogen close to the detector can impact some assessments, possibly leading to a false detection of explosives or other nitrogen-containing chemical. Use of a mechanically-cooled HPGe detector is therefore very attractive for PGNAA applications where nitrogen detection is critical or where liquid-nitrogen logistics are problematic. Mechanically-cooled HPGe detectors constructed from p-type germanium, such as Ortec’s trans-SPEC, have been commercially available for several years. In order to assess whether these detectors would be suitable for use in a fielded PGNAA system, Idaho National Laboratory (INL) has been performing a number of tests of the resistance of mechanically-cooled HPGe detectors to neutron damage. These detectors have been standard commercially-available p-type HPGe detectors as well as prototype n-type HPGe detectors. These tests compare the performance of these different detector types as a function of crystal temperature and incident neutron fluence on the crystal.

  6. Comparison of Haemophilus parasuis reference strains and field isolates by using random amplified polymorphic DNA and protein profiles

    PubMed Central

    2012-01-01

    Background Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping. This study was done to compare random amplified polymorphic DNA (RAPD) profiles and whole cell protein (WCP) lysate profiles as methods for distinguishing H. parasuis reference strains and field isolates. Results The DNA and WCP lysate profiles of 15 reference strains and 31 field isolates of H. parasuis were analyzed using the Dice and neighbor joining algorithms. The results revealed unique and reproducible DNA and protein profiles among the reference strains and field isolates studied. Simpson’s index of diversity showed significant discrimination between isolates when three 10mer primers were combined for the RAPD method and also when both the RAPD and WCP lysate typing methods were combined. Conclusions The RAPD profiles seen among the reference strains and field isolates did not appear to change over time which may reflect a lack of DNA mutations in the genes of the samples. The recent field isolates had different WCP lysate profiles than the reference strains, possibly because the number of passages of the type strains may affect their protein expression. PMID:22703293

  7. Radioactivity measurements of ITER materials using the TFTR D-T neutron field

    SciTech Connect

    Kumar, A.; Abdou, M.A.; Barnes, C.W.; Kugel, H.W.; Loughlin, M.J.

    1994-08-01

    The availability of high D-T fusion neutron yields at TFTR has provided a useful opportunity to directly measure D-T neutron-induced radioactivity in a realistic tokamak fusion reactor environment for materials of vital interest to ITER. These measurements are valuable for characterizing radioactivity in various ITER candidate materials. for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR involve potential ITER materials including stainless steel 316, vanadium, titanium, chromium, silicon, iron, cobalt, nickel, molybdenum, aluminum, copper, zinc. zirconium, niobium, and tungsten. Small samples of these materials were irradiated close to the plasma and just outside the vacuum vessel wall of TFTR, locations of different neutron energy spectra. Saturation activities for both threshold and capture reactions were measured. Data from dosimetric reactions have been used to obtain preliminary neutron energy spectra. Spectra from the first wall were compared to calculations from ITER and to measurements from accelerator-based tests.

  8. Molecular dynamics force-field refinement against quasi-elastic neutron scattering data

    DOE PAGES

    Borreguero Calvo, Jose M.; Lynch, Vickie E.

    2015-11-23

    Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulationmore » due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. In addition, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.« less

  9. Decay heat measurement of fusion related materials in an ITER-like neutron field

    NASA Astrophysics Data System (ADS)

    Morimoto, Y.; Ochiai, K.; Maekawa, F.; Wada, M.; Nishitani, T.; Takeuchi, H.

    2002-12-01

    Decay heat is one of the most important factors for the safety aspect of ITER. Especially, the prediction of decay heat with an uncertainty less than 15% for the three most important materials, i.e., copper, type-316 stainless steel (SS316) and tungsten, is strongly requested by designers of ITER. To provide experimental decay heat data needed for validation of decay heat calculations for SS316 and copper, an experiment was conducted as the ITER/EDA task T-426. An ITER-like neutron field was constructed, and decay heat source distributions in thick copper and SS316 plates were measured with the whole energy absorption spectrometer. The measured decay heat distributions in the thick sample plates were compared with the predicted values by MCNP calculations. It was found that the use of an effective activation cross-section calculated by MCNP was needed to consider the self-shielding effects and, for both cases, MCNP calculations could predict the decay heat adequately.

  10. Molecular dynamics force-field refinement against quasi-elastic neutron scattering data

    SciTech Connect

    Borreguero Calvo, Jose M.; Lynch, Vickie E.

    2015-11-23

    Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulation due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. In addition, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.

  11. Asymmetric nuclear matter and neutron skin in an extended relativistic mean-field model

    SciTech Connect

    Agrawal, B. K.

    2010-03-15

    The density dependence of the symmetry energy, instrumental in understanding the behavior of the asymmetric nuclear matter, is investigated within the extended relativistic mean-field (ERMF) model, which includes the contributions from the self- and mixed-interaction terms for the scalar-isoscalar ({sigma}), vector-isoscalar ({omega}), and vector-isovector ({rho}) mesons up to the quartic order. Each of the 26 different parametrizations of the ERMF model employed is compatible with the bulk properties of the finite nuclei. The behavior of the symmetry energy for several parameter sets is found to be consistent with the empirical constraints on them as extracted from the analyses of the isospin diffusion data. The neutron-skin thickness in the {sup 208}Pb nucleus for these parameter sets of the ERMF model lies in the range of {approx}0.20-0.24 fm, which is in harmony with the thickness predicted by the Skyrme Hartree-Fock model. We also investigate the role of various mixed-interaction terms that are crucial for the density dependence of the symmetry energy.

  12. Crystal electric field excitations in quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Flint, R.; Kong, T.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; de Boissieu, M.; Lory, P.-F.; Beutier, G.; Hiroto, T.

    All of the known quasicrystals with local moments exhibit frustration and spin glass-like behavior at low temperature. The onset of the spin freezing temperature is believed to be affected by the crystal electric field (CEF) splitting of the local moments. The quasicrystal approximant TbCd6 and its related icosahedral quasicrystal phase, i-Tb-Cd, form a set of model systems to explore how magnetism evolves from a conventional lattice (approximant phase) to an aperiodic quasicrystal. Though TbCd6 shows long-range antiferromagnetic ordering (TN = 24 K), only spin glass like behavior is observed in i-Tb-Cd with a spin freezing temperature of TF = 6 K. To investigate further, we have performed inelastic neutron scattering measurements on powder samples of TbCd6 and observed two distinct CEF excitations at low energies which points to a high degeneracy of the CEF levels related to the Tb surrounding with almost icosahedral symmetry. Work at Ames Laboratory was supported by the DOE, BES, Division of Materials Sciences & Engineering, under Contract No. DE-AC02-07CH11358. This research used resources at Institut Laue-Langevin, France.

  13. Significant change in the construction of a door to a room with slowed down neutron field by means of commonly used inexpensive protective materials.

    PubMed

    Konefał, Adam; Łaciak, Marcin; Dawidowska, Anna; Osewski, Wojciech

    2014-12-01

    The detailed analysis of nuclear reactions occurring in materials of the door is presented for the typical construction of an entrance door to a room with a slowed down neutron field. The changes in the construction of the door were determined to reduce effectively the level of neutron and gamma radiation in the vicinity of the door in a room adjoining the neutron field room. Optimisation of the door construction was performed with the use of Monte Carlo calculations (GEANT4). The construction proposed in this paper bases on the commonly used inexpensive protective materials such as borax (13.4 cm), lead (4 cm) and stainless steel (0.1 and 0.5 cm on the side of the neutron field room and of the adjoining room, respectively). The improved construction of the door, worked out in the presented studies, can be an effective protection against neutrons with energies up to 1 MeV. PMID:24324249

  14. Significant change in the construction of a door to a room with slowed down neutron field by means of commonly used inexpensive protective materials.

    PubMed

    Konefał, Adam; Łaciak, Marcin; Dawidowska, Anna; Osewski, Wojciech

    2014-12-01

    The detailed analysis of nuclear reactions occurring in materials of the door is presented for the typical construction of an entrance door to a room with a slowed down neutron field. The changes in the construction of the door were determined to reduce effectively the level of neutron and gamma radiation in the vicinity of the door in a room adjoining the neutron field room. Optimisation of the door construction was performed with the use of Monte Carlo calculations (GEANT4). The construction proposed in this paper bases on the commonly used inexpensive protective materials such as borax (13.4 cm), lead (4 cm) and stainless steel (0.1 and 0.5 cm on the side of the neutron field room and of the adjoining room, respectively). The improved construction of the door, worked out in the presented studies, can be an effective protection against neutrons with energies up to 1 MeV.

  15. Synchronous scanning of reference mirror and objective lens for high-resolution full-field interferometry

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Ken; Kasuya, Yosuke; Kojima, Shuto; Kurokawa, Takashi

    2015-03-01

    We realized a long-scanning-range and high-resolution interferometry in a time-domain full-field microscopic scheme by adopting a simple configuration. A reference mirror was synchronously scanned with an objective lens, which was installed in a common path, to prevent lateral resolution degradation due to defocus at the mirror. High axial resolution was obtained using a broadband supercontinuum (SC) generated by a 1.55 µm pump. The SC was generated by propagating a femtosecond pulse at 1.55 µm through a highly nonlinear dispersion shifted fiber with a small dispersion slope. We designed and constructed an interferometer carefully to utilize the entire bandwidth. The broad bandwidth of the interferometer achieved an axial resolution of 2.50 µm in air. The synchronous scanning maintained a lateral resolution longer than 1 mm. The system successfully yielded a cross-sectional image of two layers of scotch tape along the 400-µm-depth and 90-nm-step surface profiles.

  16. Characteristics of the Neutron Irradiation Facilities of the PSI Calibration Laboratory

    SciTech Connect

    Hoedlmoser, H.; Schuler, Ch.; Butterweck, G.; Mayer, S.

    2011-12-13

    The neutron radiation fields of the Calibration Laboratory at Paul Scherrer Institute (PSI) are traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. A Berthold LB6411 neutron dose rate meter for neutron radiation is used as a secondary standard. Recently, a thorough characterization of the neutron irradiation fields of the {sup 241}Am-Be and {sup 252}Cf sources by means of reference measurements and a detailed MCNPX simulation of the irradiation facility has been initiated. In this work, the characteristics of the neutron radiation fields are summarized and presented together with model equations and an uncertainty analysis. MCNPX results are shown for the {sup 241}Am-Be source. A comparison of measured and simulated data shows an excellent agreement. From the simulation, valuable information about the neutron fields like the contribution of scattered neutrons in the fields and the energy spectra could be obtained.

  17. The application of preirradiation combustion and neutron activation analysis technique for the determination of iodine in food and environmental reference materials.

    PubMed

    Norman, B R; Iyengar, V

    1998-09-01

    The pre-irradiation combustion (PC) of samples to liberate iodine, followed by trapping the iodine on charcoal and quantifying the element by neutron activation analysis (NAA), has been used at the National Institute of Standards and Technology for the determination of iodine in biological materials. The applicability of this technique to numerous environmental and dietary matrices is illustrated by analysis of a range of certified reference materials (CRMs) and a powdered grass material that was prepared as an in-house reference material (RM). Because of the combustion step involved, samples with low or no fat content (e.g., cereal products, selected botanical specimens, and nonfat milk powder) and inorganic materials (e.g., coal fly ash and dried sediments) are more suited for analysis by this method. In general, the results for several types of samples obtained by this method agreed with those obtained by a second radiochemical (R) NAA, as well as by a third method using inductively coupled plasma mass spectrometry (ICP-MS). PC-NAA is a useful technique for determining iodine in biological and environmental samples, especially for verification of iodine results obtained from other methods.

  18. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    PubMed

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  19. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    PubMed

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring.

  20. Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity

    NASA Astrophysics Data System (ADS)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Jiménez Bello, Miguel Ángel; Rosolem, Rafael; Bogena, Heye; Alzamora, Fernando Martínez; Chanzy, André; Vereecken, Harry

    2016-08-01

    Neutron intensity measured by the aboveground cosmic-ray neutron intensity probe (CRP) allows estimating soil moisture content at the field scale. In this work, synthetic neutron intensities were used to remove the bias of simulated soil moisture content or update soil hydraulic properties (together with soil moisture) in the Community Land Model (CLM) using the Local Ensemble Transform Kalman Filter. The cosmic-ray forward model COSMIC was used as the non-linear measurement operator which maps between neutron intensity and soil moisture. The novel aspect of this work is that synthetically measured neutron intensity was used for real time updating of soil states and soil properties (or soil moisture bias) and posterior use for the real time scheduling of irrigation (data assimilation based real-time control approach). Uncertainty of model forcing and soil properties (sand fraction, clay fraction and organic matter density) were considered in the ensemble predictions of the soil moisture profiles. Horizontal and vertical weighting of soil moisture was introduced in the data assimilation in order to handle the scale mismatch between the cosmic-ray footprint and the CLM grid cell. The approach was illustrated in a synthetic study with the real-time irrigation scheduling of fields of citrus trees. After adjusting soil moisture content by assimilating neutron intensity, the irrigation requirements were calculated based on the water deficit method. Model bias was introduced by using coarser soil texture in the data assimilation experiments than in reality. A series of experiments was done with different combinations of state, parameter and bias estimation in combination with irrigation scheduling. Assimilation of CRP neutron intensity improved soil moisture characterization. Irrigation requirement was overestimated if biased soil properties were used. The soil moisture bias was reduced by 35% after data assimilation. The scenario of joint state-parameter estimation

  1. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere).

  2. A passive neutron dosemeter based on a CR-39 track detector with multi-field evaluation

    NASA Astrophysics Data System (ADS)

    Savvidis, E.; Alberts, W. G.; Luszik-Bhadra, M.; Zamani, M.

    1994-11-01

    A passive neutron personal dosemeter is proposed which is based on a single CR-39 track detector, covered at four positions with different converters and absorbers. Its dose equivalent response has been investigated with respect to its energy and angle dependence, covering energies from thermal up to 15 MeV and angles of incidence up to 85°. A position-related readout of the electrochemically etched CR-39 detector resulted in four response functions with significant differences for thermal, intermediate and fast neutrons. By an appropriate linear combination of the readings a dose equivalent response has been achieved which varies only within a factor of 2 for thermal neutrons and in the energy range from 20 keV to 15 MeV and shows an acceptable over-response of a factor of 4 for intermediate energy neutrons.

  3. Organ dose conversion coefficients for pediatric reference computational phantoms in external photon radiation fields

    NASA Astrophysics Data System (ADS)

    Chang, Lienard A.

    In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.

  4. The Wrapping of Magnetic Field Lines due to Frame Dragging around a Neutron Star

    NASA Astrophysics Data System (ADS)

    Herbst, Rhameez S.; Qadir, Asghar; Momoniat, Ebrahim

    2015-01-01

    In this short paper we report on the results found in modeling of a relativistically rotating neutron star. The star is modeled as a rotating magnetic dipole in a static spherical mass. It is found that the radiation for these relativistically rotating stars is severely reduced due to general relativistic effects. It is also found that in the limit, as the mass of the neutron star approaches 3.2M⊙, no radiation is emitted; this essentially signifies a black hole.

  5. Digitized two-parameter spectrometer for neutron-gamma mixed field

    SciTech Connect

    Matej, Z.; Cvachovec, J.; Prenosil, V.; Cvachovec, F.; Zaritski, S.

    2011-07-01

    This paper shows the results of digital processing of output pulses from combined photon-neutron detector using a commercially available digitizer ACQUIRIS DP 210. The advantage of digital processing is reduction of the apparatus in weight and size, acceleration of measurement, and increased resistance to pile-up of pulses. The neutron and photon spectrum of radionuclide source {sup 252}Cf is presented. (authors)

  6. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    NASA Astrophysics Data System (ADS)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  7. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.

    PubMed

    Puchalska, Monika; Sihver, Lembit

    2015-06-21

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  8. Enhanced Magnetism in Field-Cooled [Ni80Fe20/Mn]3 Multilayers Studied Using Polarized Neutron Reflectometry

    NASA Astrophysics Data System (ADS)

    Uilhoorn, W.; Callori, S. J.; Cortie, D. L.; Su, H.-C.; Khaydukov, Y.; Lin, K.-W.; Klose, F.

    2016-04-01

    Here, the interfacial magnetic coupling in an exchange biased [Ni80Fe20/Mn]3 multilayer system has been studied using polarized neutron reflectometry. Previous results on this system indicate the importance of the coupling between the Fe-Mn and Ni-Mn orbitals at the layer interfaces. Magnetic depth profiles of the multilayer were measured at low temperatures under field-cooled and zero-field-cooled conditions. While no definitive interfacial state was found, a magnetic moment enhancement of roughly 20-30% in the applied field direction was observed throughout the bulk of the NiFe layers in the field-cooled state as compared to the zero-field-cooled measurements. The origin of this enhancement also likely stems from Fe-Mn and Ni-Mn orbital coupling, but due to the interfacial roughnesses of the sample, the areas where this coupling plays an important role is no longer confined to the interface.

  9. Magnetic Order and Crystal Field Excitations in Er2Ru2O7: A Neutron Scattering Study

    SciTech Connect

    Ehlers, Georg; Gardner, Jason

    2009-01-01

    The magnetic pyrochlore Er{sub 2}Ru{sub 2}O{sub 7} has been studied with neutron scattering and susceptibility measurements down to a base temperature of 270 mK. For the low temperature phase in which the Er sublattice orders, new magnetic Bragg peaks are reported which can be indexed with integer (hkl) for a face centered cubic cell. Inelastic measurements reveal a wealth of crystal field levels of the Er ion and a copious amount of magnetic scattering below 15 meV. The three lowest groups of crystal field levels are at 6.7, 9.1 and 18.5 meV.

  10. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Lord, J S; McKenzie, I; Baker, P J; Blundell, S J; Cottrell, S P; Giblin, S R; Good, J; Hillier, A D; Holsman, B H; King, P J C; Lancaster, T; Mitchell, R; Nightingale, J B; Owczarkowski, M; Poli, S; Pratt, F L; Rhodes, N J; Scheuermann, R; Salman, Z

    2011-07-01

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  11. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  12. Measuring soil moisture content using cosmic-ray fast neutrons emitted from soils: a near-field remote sensing tool

    NASA Astrophysics Data System (ADS)

    Desilets, Darin; Zreda, Marek; Zweck, Chris; Ferre, Ty

    2010-05-01

    Average soil moisture over a footprint of hectometers and a depth of decimeters can be inferred from measurements of cosmic-ray fast neutrons that are generated in air and soil, moderated mainly by hydrogen atoms present in the soil, and emitted back to the atmosphere, where they travel in all directions and form a well-mixed reservoir of neutrons. The intensity of neutrons above the ground surface depends strongly on soil moisture content, and does not depend on soil chemistry and texture. The measurement with a cosmic-ray soil moisture probe placed above the ground takes minutes to hours, permitting high-resolution, long-term monitoring of undisturbed soil moisture. Neutron transport modeling using the MCNPX code shows that the footprint is approximately 600 m at sea level, and the measurement depth from 15 cm for saturated soils to 70 cm for dry soils. The footprint size has been confirmed empirically using field measurements of neutron intensity along water-land transects. The cosmic-ray soil moisture probe is calibrated using a theoretical calibration function in which one parameter is constrained by gravimetric soil moisture determinations on multiple samples collected within the footprint, If local calibration samples are not available, the same theoretical calibration function can be constrained using the knowledge of cosmic-ray variations, providing less accurate but still reasonable soil moisture estimates. The large footprint makes the method ideal for bridging the gap between remote sensing methods (such as SMOS and SMAP) and point or small-scale measurements on the ground.

  13. USE OF FAST GC/TOFMS AS REFERENCE STANDARD FOR FIELD COMPARISON STUDIES WITH ON-SITE INSTRUMENTS

    EPA Science Inventory

    A faster reference standard for field comparison studies of portable gas chromatographs (PGC) is needed. A performance evaluation of a high-speed GCMS (FGC/MS) system conducted during 1998 demonstrated generally satisfactory performance, but it was evident that performance of b...

  14. Building relativistic mean field models for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Piekarewicz, J.

    2014-10-01

    Background: Theoretical approaches based on density functional theory provide the only tractable method to incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear matter, and neutron stars. Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various physical observables. Methods: We implement the model optimization by minimizing a suitably constructed χ2 objective function using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance analysis that includes both uncertainty estimates and correlation coefficients. Results: A new model, "FSUGold2," is created that can well reproduce the ground-state properties of finite nuclei, their monopole response, and that accounts for the maximum neutron-star mass observed up to date. In particular, the model predicts both a stiff symmetry energy and a soft equation of state for symmetric nuclear matter, suggesting a fairly large neutron-skin thickness in Pb208 and a moderate value of the nuclear incompressibility. Conclusions: We conclude that without any meaningful constraint on the isovector sector, relativistic EDFs will continue to predict significantly large neutron skins. However, the calibration scheme adopted here is flexible enough to create models with different assumptions on various observables. Such a scheme—properly supplemented by a covariance analysis—provides a powerful tool to identify the critical measurements required to place meaningful constraints on theoretical models.

  15. Mineralogy and instrumental neutron activation analysis of seven National Bureau of Standards and three Instituto de Pesquisas Tecnologicas clay reference samples

    USGS Publications Warehouse

    Hosterman, John W.; Flanagan, F.J.; Bragg, Anne; Doughten, M.W.; Filby, R.H.; Grimm, Catherine; Mee, J.S.; Potts, P.J.; Rogers, N.W.

    1987-01-01

    The concentrations of 3 oxides and 29 elements in 7 National Bureau of Standards (NBS) and 3 Instituto de Pesquisas Techno16gicas (IPT) reference clay samples were etermined by instrumental neutron activation analysis. The analytical work was designed to test the homogeneity of constituents in three new NBS reference clays, NBS-97b, NBS-98b, and NBS-679. The analyses of variance of 276 sets of data for these three standards show that the constituents are distributed homogeneously among bottles of samples for 94 percent of the sets of data. Three of the reference samples (NBS-97, NBS-97a, and NBS-97b) are flint clays; four of the samples (NBS-98, NBS-98a, NBS-98b, and IPT-32) are plastic clays, and three of the samples (NBS-679, IPT-28, and IPT-42) are miscellaneous clays (both sedimentary and residual). Seven clays are predominantly kaolinite; the other three clays contain illite and kaolinite in the approximate ratio 3:2. Seven clays contain quartz as the major nonclay mineral. The mineralogy of the flint and plastic clays from Missouri (NBS-97a and NBS-98a) differs markedly from that of the flint and plastic clays from Pennsylvania (NBS-97, NBS-97b, NBS-98, and NBS-98b). The flint clay NBS-97 has higher average chromium, hafnium, lithium, and zirconium contents than its replacement, reference sample NBS-97b. The differences between the plastic clay NBS-98 and its replacement, NBS-98b, are not as pronounced. The trace element contents of the flint and plastic clays from Missouri, NBS-97a and NBS-98a, differ significantly from those of the clays from Pennsylvania, especially the average rare earth element (REE) contents. The trace element contents of clay sample IPT-32 differ from those of the other plastic clays. IPT-28 and IPT-42 have some average trace element contents that differ not only between these two samples but also from all the other clays. IPT-28 has the highest summation of the average REE contents of the 10 samples. The uranium content of NBS-98a, 46

  16. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji

    2009-04-01

    The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.

  17. Comparison of the performance of different instruments in the stray neutron field around the CERN Proton Synchrotron.

    PubMed

    Aza, Eleni; Caresana, Marco; Cassell, Christopher; Colombo, Valeria; Damjanovic, Sanja; Gilardoni, Simone; Manessi, Giacomo Paolo; Pangallo, Michel; Perrin, Daniel; Silari, Marco

    2014-10-01

    This paper discusses an intercomparison campaign carried out in several locations around the CERN Proton Synchrotron. The locations were selected in order to perform the measurements in different stray field conditions. Various neutron detectors were employed: ionisation chambers, conventional and extended range rem counters, both commercial and prototype ones, including a novel instrument called LUPIN, specifically conceived to work in pulsed fields. The attention was focused on the potential differences in the instrument readings due to dead-time losses that are expected to affect most commercial units. The results show that the ionisation chambers and LUPIN agree well with the expected H*(10) values, as derived from FLUKA simulations, showing no relevant underestimations even in strongly pulsed fields. On the contrary, the dead-time losses of the other rem counters induced an underestimation in pulsed fields that was more important for instruments characterised by a higher dead time.

  18. Kagome staircase compound Co3V2O8 in an applied magnetic field: Single-crystal neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Petrenko, O. A.; Wilson, N. R.; Balakrishnan, G.; Paul, D. Mck; McIntyre, G. J.

    2010-09-01

    The magnetic properties of Co3V2O8 have been studied by single-crystal neutron diffraction. In zero magnetic field, the observed broadening of the magnetic Bragg peaks suggests the presence of disorder both in the low-temperature ferromagnetic and in the higher temperature antiferromagnetic state. The field dependence of the intensity and position of the magnetic reflections in Co3V2O8 reveals a complex sequence of phase transitions in this Kagome staircase compound. For H∥a , a commensurate-incommensurate-commensurate transition is found in a field of 0.072 T in the antiferromagnetic phase at 7.5 K. For H∥c at low temperature, an applied field induces an unusual transformation from a ferromagnetic to an antiferromagnetic state at about 1 T accompanied by a sharp increase in magnetization.

  19. Dynamic stabilization of the magnetic field surrounding the neutron electric dipole moment spectrometer at the Paul Scherrer Institute

    SciTech Connect

    Afach, S.; Fertl, M.; Franke, B. E-mail: bernhard.lauss@psi.ch; Kirch, K.; Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B. E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G.; Bodek, K.; Zejma, J.; Grujic, Z.; Kasprzak, M.; Weis, A.; Hélaine, V.; Koch, H.-C.; and others

    2014-08-28

    The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.

  20. The fission track detector revisited: application to individual neutron dosimetry.

    PubMed

    Prêtre, S; Aroua, A; Boschung, M; Grecescu, M; Valley, J F; Wernli, C

    1996-08-01

    A system based on fission fragment tracks had previously been developed for individual neutron dosimetry. The dosimeter detects both fast neutrons by means of the 232Th(n,f) reaction, and thermal and albedo neutrons by means of the 235U(n,f) reaction. The fission tracks produced in a plastic foil are chemically etched and counted by spark discharges. The response of the dosimeter has recently been re-investigated in 36 different neutron fields: monoenergetic beams, reference fields near isotopic sources, and radiation fields encountered in a variety of situations inside nuclear power plants. The results obtained have been compared to those computed by convolution of the neutron spectra with the energy response functions of the dosimeters. In practical situations, it is essential to know the shape of the neutron spectrum, approximately at least, in order to perform an acceptably accurate dose evaluation. For that purpose, the neutron fields encountered inside nuclear power plants have been grouped into four categories, for which algorithms for dose evaluation have been developed. Concerning the neutron equivalent dose, the error associated with this approach does not exceed a factor of 2, a performance which is comparable to other detection systems used in the field of individual neutron dosimetry. PMID:8690594

  1. Neutron metrology laboratory facility simulation.

    PubMed

    Pereira, Mariana; Salgado, Ana P; Filho, Aidano S; Pereira, Walsan W; Patrão, Karla C S; Fonseca, Evaldo S

    2014-10-01

    The Neutron Low Scattering Laboratory in Brazil has been completely rebuilt. Evaluation of air attenuation parameters and neutron component scattering in the room was done using Monte Carlo simulation code. Neutron fields produced by referenced neutron source were used to calculate neutron scattering and air attenuation.

  2. Neutron metrology laboratory facility simulation.

    PubMed

    Pereira, Mariana; Salgado, Ana P; Filho, Aidano S; Pereira, Walsan W; Patrão, Karla C S; Fonseca, Evaldo S

    2014-10-01

    The Neutron Low Scattering Laboratory in Brazil has been completely rebuilt. Evaluation of air attenuation parameters and neutron component scattering in the room was done using Monte Carlo simulation code. Neutron fields produced by referenced neutron source were used to calculate neutron scattering and air attenuation. PMID:24864318

  3. Magnetic field optimization and design of a superconducting neutron Wollaston prism

    NASA Astrophysics Data System (ADS)

    Li, F.; Parnell, S. R.; Wang, T.; Baxter, D. V.; Pynn, R.

    2016-04-01

    We present finite element simulations of a superconducting magnetic Wollaston prism (WP) for neutron scattering with high encoding efficiency and low Larmor phase aberrations. To achieve this, we develop and quantify the design criteria. The validation of simulation tools used for this work are investigated by using two software packages: RADIA and MagNet©. Based on the optimization criteria, various possible configurations of WP are explored with MagNet, from which the best configuration is chosen for further optimization. To optimize the best configuration, the influence of various physical parameters is investigated, including the dimensions, shapes and arrangements of components of the device. The optimum WP was built and measured at both pulsed and constant wavelength neutron sources. In flipping mode, a neutron spin flipping efficiency of ∼98.5% was measured independent of neutron wavelength and applied current. In a precession mode, measurements showed a highly linear Larmor phase variation along the horizontal direction with low depolarization. Simulations of the device agree well with the experimental measurements. Possible applications of the device are also discussed.

  4. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  5. Field Characterization of Potential Reference Sediments in the Gulf of Mexico: Chemical and Biological Quality

    EPA Science Inventory

    Lewis, Michael A., Jed G. Campbell, Peggy S. Harris, Darrin D. Dantin, Steve S. Foss, Robert L. Quarles, James C. Moore and Cynthia A. Chancy. Submitted. Characterization of Potential Reference Areas in the Gulf of Mexico: Near-Coastal Sediment Chemical and Biological Quality. En...

  6. Neutron and photon fields in the BNCT room with closed beam shutters.

    PubMed

    Marek, Milan; Viererbl, Ladislav

    2005-01-01

    The epithermal neutron beam at the LVR-15 reactor was designed for the Boron Neutron Capture Therapy (BNCT) of cancers, but it has also been used for material testing. In the case where the beam is closed with two designed shutters, there is still an indispensable background in the irradiation room, which limits the movement of persons during patient positioning before exposure or during the preparation of the samples. Because the epithermal filter of the beam was designed in a former thermal column, as a multi-layer system, it was suspected that both fast neutrons and photons penetrated the filter shielding into the room. The purpose of this study was to determine the causes of potential faulty shielding and to estimate the doses to persons who perform the irradiation experiments and/or exposure of patients. The quality of the shielding was evaluated from two-dimensional measurements of both neutron and photon distribution on the surface of the beam shutter. During the measurement both the shutters of the epithermal beam were closed and the reactor was operated at the nominal power of 9 MW. This experimental arrangement is similar to the conditions that exist when either the irradiation experiments or the exposure of patients is performed in this room. The neutron space distribution was measured using a Bonner sphere of phi 76.2 mm diameter with an LiI(TI) scintillation detector of phi 4 x 8 mm. A small Geiger-Muller tube was used for the measurement of photon distribution. The detectors were placed on a three-dimensional positioning equipment controlled by a computer, which enabled automatic measurement with 1 cm mesh step. Results of the measurement show that the background profile in the irradiation room has reasonable maximum only at the beam aperture.

  7. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days.

  8. Compounds of 6Li and natural Li for EPR dosimetry in photon/neutron mixed radiation fields.

    PubMed

    Lund, E; Gustafsson, H; Danilczuk, M; Sastry, M D; Lund, A

    2004-05-01

    Formates and dithionates of 6Li, enriched and 7Li in natural composition of Li offer a possibility to measure the absorbed dose from photons and thermal neutrons in a mixed radiation field for instance at a boron neutron capture therapy (BNCT) facility. Tests with formates and dithionates of enriched 6Li and lithium compounds with natural composition have been performed at the BNCT facility at Studsvik, Sweden. Irradiations have been performed at 3 cm depth in a Perspex phantom in a fluence rate of thermal neutrons 1.8 x 10(9) n cm(-2) s(-1). The compounds were also irradiated in a pure X-ray field from a 4MV linear accelerator at 5 cm depth in a phantom with accurately determined absorbed doses. The signal intensity and shape was investigated within 3 h after the irradiation. A single line spectrum attributed to the CO2- radical was observed after irradiation of lithium formate. An increase in line width occurring after neutron irradiation in comparison with photon irradiation of the 6Li sample was attributed to dipolar broadening between CO2- radicals trapped in the tracks of the alpha particles. A spectrum due to the SO3- radical anion was observed after irradiation of lithium dithionate. The signal amplitude increased using the 6Li in place of the Li with natural composition of isotopes, in studies with low energy X-ray irradiation. Due to the decreased line width, caused by the difference in g(N) and I between the isotopes, the sensitivity with 6Li dithionate may be enhanced by an order of magnitude compared to alanine dosimetry. After comprehensive examination of the different combinations of compounds with different amounts of 6Li and 7Li regarding dosimetry, radiation chemistry and EPR properties these dosimeter material might be used for dose determinations at BNCT treatments and for biomedical experiments. Interesting properties of the radical formation might be visible due to the large difference in ionization density of neutrons compared to photons.

  9. POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION

    SciTech Connect

    Fu, Lei; Li, Xiang-Dong

    2013-10-01

    The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range.

  10. Non-invasive Field Measurements of Soil Water Content Using a Pulsed 14 MeV Neutron Generator

    SciTech Connect

    Mitra S.; Wielopolski L.; Omonode, R.; Novak, J.; Frederick, J.; Chan, A.

    2012-01-26

    Current techniques of soil water content measurement are invasive and labor-intensive. Here, we demonstrate that an in situ soil carbon (C) analyzer with a multi-elemental analysis capability, developed for studies of terrestrial C sequestration, can be used concurrently to non-invasively measure the water content of large-volume ({approx}0.3 m{sup 3}) soil samples. Our objectives were to investigate the correlations of the hydrogen (H) and oxygen (O) signals with water to the changes in the soil water content in laboratory experiments, and in an agricultural field. Implementing prompt gamma neutron activation analyses we showed that in the field, the signal from the H nucleus better indicates the soil water content than does that from the O nucleus. Using a field calibration, we were able to use the H signal to estimate a minimum detectable change of {approx}2% volumetric water in a 0-30 cm depth of soil.

  11. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  12. An apparatus for the study of high temperature water radiolysis in a nuclear reactor: calibration of dose in a mixed neutron/gamma radiation field.

    PubMed

    Edwards, Eric J; Wilson, Paul P H; Anderson, Mark H; Mezyk, Stephen P; Pimblott, Simon M; Bartels, David M

    2007-12-01

    The cooling water of nuclear reactors undergoes radiolytic decomposition induced by gamma, fast electron, and neutron radiation in the core. To model the process, recombination reaction rates and radiolytic yields for the water radical fragments need to be measured at high temperature and pressure. Yields for the action of neutron radiation are particularly hard to determine independently because of the beta/gamma field also present in any reactor. In this paper we report the design of an apparatus intended to measure neutron radiolysis yields as a function of temperature and pressure. A new methodology for separation of neutron and beta/gamma radiolysis yields in a mixed radiation field is proposed and demonstrated.

  13. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb2Ti2O7

    DOE PAGES

    Gaudet, J.; Maharaj, D. D.; Sala, G.; Kermarrec, E.; Ross, K. A.; Dabkowska, H. A.; Kolesnikov, A. I.; Granroth, G. E.; Gaulin, B. D.

    2015-10-27

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field Hamiltonian, eigenvalues and eigenvectors appropriate to the J=7/2 Yb3+ ion in the candidate quantum spin ice pyrochlore magnet Yb2Ti2O7. The precise ground state of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak “stuffing,” wherein a small proportion, approximately 2%, of the nonmagnetic Ti4+ sites are occupied by excess Yb3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Yb2Ti2O7, as well as a crushed singlemore » crystal with weak stuffing and an approximate composition of Yb2+xTi2–xO7+y with x = 0.046. All samples display three crystalline electric field transitions out of the ground state, and the ground state doublet itself is identified as primarily composed of mJ = ±1/2, as expected. However, stuffing at low temperatures in Yb2+xTi2–xO7+y induces a similar finite crystalline electric field lifetime as is induced in stoichiometric Yb2Ti2O7 by elevated temperature. In conclusion, an extended strain field exists about each local “stuffed” site, which produces a distribution of random crystalline electric field environments in the lightly stuffed Yb2+xTi2–xO7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different crystalline electric field eigenvalues and eigenvectors.« less

  14. [Dietary reference intakes of trace elements for Japanese and problems in clinical fields].

    PubMed

    Inoue, Yoshifumi

    2016-07-01

    In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.

  15. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  16. Characterization of Neutron Fields in the Experimental Fast Reactor Joyo Mk-Iii Core

    NASA Astrophysics Data System (ADS)

    Maeda, Shigetaka; Ito, Chikara; Ohkawachi, Yasushi; Sekine, Takashi; Aoyama, Takafumi

    2009-08-01

    In 2003, Joyo MK-III core was upgraded to increase the irradiation testing capability. This paper describes the details of distributions of neutron flux and reaction rate in the MK-III core that was measured by characterization tests during the first two operating cycles. The calculation accuracy of the core management codes HESTIA, TORT and MCNP, was also evaluated by the measured data. The calculated fission rates of 235U by HESTIA agreed well with the measured one within approximately 4% in the fuel region. MCNP could simulate within 6% in the central non-fuel irradiation test subassembly and the radial reflector region, while large discrepancies were obtained in TORT results. Hence, the precise geometry model was effective in evaluating the neutron spectrum and the flux at such locations.

  17. Neutron Spectrometer Prospecting in the Mojave Volatiles Project Analog Field Test

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Heldmann, J. L.; Colaprete, A.; Hunt, D. R.; Deans, M. C.; Lim, D. S.; Foil, G.; Fong, T.

    2015-01-01

    We know that volatiles are sequestered at the poles of the Moon. While we have evidence of water ice and a number of other compounds based on remote sensing, the detailed distribution, and physical and chemical form are largely unknown. Additional orbital studies of lunar polar volatiles may yield further insights, but the most important next step is to use landed assets to fully characterize the volatile composition and distribution at scales of tens to hundreds of meters. To achieve this range of scales, mobility is needed. Because of the proximity of the Moon, near real-time operation of the surface assets is possible, with an associated reduction in risk and cost. This concept of operations is very different from that of rovers on Mars, and new operational approaches are required to carry out such real-time robotic exploration. The Mojave Volatiles Project (MVP) was a Moon-Mars Analog Mission Activities (MMAMA) program project aimed at (1) determining effective approaches to operating a real-time but short-duration lunar surface robotic mission, and (2) performing prospecting science in a natural setting, as a test of these approaches. Here we describe some results from the first such test, carried out in the Mojave Desert between 16 and 24 October, 2014. The test site was an alluvial fan just E of the Soda Mountains, SW of Baker, California. This site contains desert pavements, ranging from the late Pleistocene to early-Holocene in age. These pavements are undergoing dissection by the ongoing development of washes. A principal objective was to determine the hydration state of different types of desert pavement and bare ground features. The mobility element of the test was provided by the KREX-2 rover, designed and operated by the Intelligent Robotics Group at NASA Ames Research Center. The rover-borne neutron spectrometer measured the neutron albedo at both thermal and epithermal energies. Assuming uniform geochemistry and material bulk density, hydrogen as

  18. Shell structure in neutron-rich Ca and Ni nuclei under semi-realistic mean fields

    SciTech Connect

    Nakada, H.

    2010-05-15

    Shell structure in the neutron-rich Ca and Ni nuclei is investigated by the spherical Hartree-Fock calculations with semi-realistic NN interactions. Specific ingredients of the effective interaction, particularly the tensor force, often play a key role in the Z dependence of the neutron shell structure. Such examples are found in N=32 and N=40; N=32 becomes magic or submagic in {sup 52}Ca while its magicity is broken in {sup 60}Ni, and N=40 is submagic (though not magic) in {sup 68}Ni but not in {sup 60}Ca. Comments are given on the doubly magic nature of {sup 78}Ni. We point out that the loose binding can lead to a submagic number N=58 in {sup 86}Ni, assisted by the weak pair coupling.

  19. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading.

    PubMed

    Smit, K; van Asselen, B; Kok, J G M; Aalbers, A H L; Lagendijk, J J W; Raaymakers, B W

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  20. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading.

    PubMed

    Smit, K; van Asselen, B; Kok, J G M; Aalbers, A H L; Lagendijk, J J W; Raaymakers, B W

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953. PMID:23938362

  1. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

    NASA Astrophysics Data System (ADS)

    Smit, K.; van Asselen, B.; Kok, J. G. M.; Aalbers, A. H. L.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  2. Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons

    NASA Astrophysics Data System (ADS)

    Köhli, M.; Schrön, M.; Zreda, M.; Schmidt, U.; Dietrich, P.; Zacharias, S.

    2015-07-01

    Cosmic-ray neutron probes are widely used to monitor environmental water content near the surface. The method averages over tens of hectares and is unrivaled in serving representative data for agriculture and hydrological models at the hectometer scale. Recent experiments, however, indicate that the sensor response to environmental heterogeneity is not fully understood. Knowledge of the support volume is a prerequisite for the proper interpretation and validation of hydrogeophysical data. In a previous study, several physical simplifications have been introduced into a neutron transport model in order to derive the characteristics of the cosmic-ray probe's footprint. We utilize a refined source and energy spectrum for cosmic-ray neutrons and simulate their response to a variety of environmental conditions. Results indicate that the method is particularly sensitive to soil moisture in the first tens of meters around the probe, whereas the radial weights are changing dynamically with ambient water. The footprint radius ranges from 130 to 240 m depending on air humidity, soil moisture, and vegetation. The moisture-dependent penetration depth of 15 to 83 cm decreases exponentially with distance to the sensor. However, the footprint circle remains almost isotropic in complex terrain with nearby rivers, roads or hill slopes. Our findings suggest that a dynamically weighted average of point measurements is essential for accurate calibration and validation. The new insights will have important impact on signal interpretation, sensor installation, data interpolation from mobile surveys, and the choice of appropriate resolutions for data assimilation into hydrological models.

  3. Development of neutron measurement in high gamma field using new nuclear emulsion

    SciTech Connect

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.; Tomita, H.; Iguchi, T.; Naka, T.; Morishima, K.; Maeda, S.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14 MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)

  4. Spatiotemporal characterization of soil moisture fields in agricultural areas using cosmic-ray neutron probes and data fusion

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; Wang, Tiejun

    2015-04-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  5. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.

    PubMed

    Takada, Masashi; Mihara, Erika; Sasaki, Michiya; Nakamura, Takashi; Honma, Toshihiko; Kono, Koji; Fujitaka, Kazunobu

    2004-01-01

    Biological data is necessary for estimation of protection from neutrons, but there is a lack of data on biological effects of neutrons for radiation protection. Radiological study on fast neutrons has been done at the National Institute of Radiological Sciences. An intense neutron source has been produced by 25 MeV deuterons on a thick beryllium target. The neutron energy spectrum, which is essential for neutron energy deposition calculation, was measured from thermal to maximum energy range by using an organic liquid scintillator and multi-sphere moderated 3He proportional counters. The spectrum of the gamma rays accompanying the neutron beam was measured simultaneously with the neutron spectrum using the organic liquid scintillator. The transmission by the shield of the spurious neutrons originating from the target was measured to be less than 1% by using the organic liquid scintillator placed behind the collimator. The measured neutron energy spectrum is useful in dose calculations for radiobiology studies.

  6. Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields

    NASA Astrophysics Data System (ADS)

    Bakker, J. F.; Paulides, M. M.; Neufeld, E.; Christ, A.; Chen, X. L.; Kuster, N.; van Rhoon, G. C.

    2012-04-01

    To avoid potentially adverse health effects, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined reference levels for time varying magnetic fields. Restrictions on the electric fields induced in the human body are provided based on biological response data for peripheral nerve stimulation and the induction of phosphenes. Numerical modeling is commonly used to assess the induced electric fields for various exposure configurations. The objective of this study was to assess the variations of the electric fields induced in children and adults and to compare the exposure at reference levels with the basic restrictions as function of anatomy. We used the scalar potential finite element method to calculate the induced electric fields in six children and two adults when exposed to uniform magnetic fields polarized in three orthogonal directions. We found that the induced electric fields are within the ICNIRP basic restrictions in nearly all cases. In PNS tissues, we found electric fields up to 95% (upper uncertainty limit due to discretization errors, k = 2) of the ICNIRP basic restrictions for exposures at the general public reference levels. For occupational reference levels, we found an over-exposure of maximum 79% (k = 2) in PNS tissues. We further found that the ICNIRP recommendations on spatial averaging in 2 × 2 × 2 mm3 contiguous tissue volumes and removal of peak values by the 99th percentile cause the results to depend strongly on the grid discretization step (i.e. an uncertainty of more than 50% at 2 mm) and the number of distinguished tissues in the anatomical models. The computational results obtained by various research institutes should be robust for different discretization settings and various anatomical models. Therefore, we recommend considering alternative routines for small anatomical structures such as non-contiguous averaging without taking the 99th percentile in future guidelines leading to consistent

  7. Children and adults exposed to low-frequency magnetic fields at the ICNIRP reference levels: theoretical assessment of the induced electric fields.

    PubMed

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Chen, X L; Kuster, N; van Rhoon, G C

    2012-04-01

    To avoid potentially adverse health effects, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined reference levels for time varying magnetic fields. Restrictions on the electric fields induced in the human body are provided based on biological response data for peripheral nerve stimulation and the induction of phosphenes. Numerical modeling is commonly used to assess the induced electric fields for various exposure configurations. The objective of this study was to assess the variations of the electric fields induced in children and adults and to compare the exposure at reference levels with the basic restrictions as function of anatomy. We used the scalar potential finite element method to calculate the induced electric fields in six children and two adults when exposed to uniform magnetic fields polarized in three orthogonal directions. We found that the induced electric fields are within the ICNIRP basic restrictions in nearly all cases. In PNS tissues, we found electric fields up to 95% (upper uncertainty limit due to discretization errors, k = 2) of the ICNIRP basic restrictions for exposures at the general public reference levels. For occupational reference levels, we found an over-exposure of maximum 79% (k = 2) in PNS tissues. We further found that the ICNIRP recommendations on spatial averaging in 2 × 2 × 2 mm³ contiguous tissue volumes and removal of peak values by the 99th percentile cause the results to depend strongly on the grid discretization step (i.e. an uncertainty of more than 50% at 2 mm) and the number of distinguished tissues in the anatomical models. The computational results obtained by various research institutes should be robust for different discretization settings and various anatomical models. Therefore, we recommend considering alternative routines for small anatomical structures such as non-contiguous averaging without taking the 99th percentile in future guidelines leading to consistent

  8. Neutron scattering studies of crude oil viscosity reduction with electric field

    NASA Astrophysics Data System (ADS)

    Du, Enpeng

    Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for

  9. Neutron diffraction texture analysis for α-Al2O3 oriented by high magnetic field and sintering

    NASA Astrophysics Data System (ADS)

    Terada, N.; Suzuki, H. S.; Suzuki, T. S.; Kitazawa, H.; Sakka, Y.; Kaneko, K.; Metoki, N.

    2009-05-01

    We have performed neutron diffraction experiments on highly oriented α-Al2O3, obtained by slip casting under a magnetic field and sintering. In order to investigate the magnetic field, B, and sintering temperature, Tsint, dependence of the degree of alignment of the orientation, we used samples treated with systematically varied B up to 12 T and Tsint up to 1600 °C. The degree of alignment of the magnetic easy axis (the hexagonal c-axis) is rapidly enhanced by sintering above 1200 °C, which is coincident with the temperature at which crystal grains start to grow. The angular distribution of the c-axis for the sample sintered at 1600 °C, obtained by ω-scan neutron diffraction profiles, is almost coincident with the probability distribution calculated for the particle size two times larger than that in the starting material. We discuss the orientation process mechanism with sintering in light of the results of this analysis.

  10. Asymmetric Neutrino Emissions in Relativistic Mean-Field Approach and Observables: Pulsar Kick and Rapid Spin-Deceleration of Magnetized Proto-Neutron Stars

    NASA Astrophysics Data System (ADS)

    Maruyama, T.; Kajino, T.; Yasutake, N.; Hidaka, J.; Kuroda, T.; Cheoun, M. K.; Ryu, C. Y.; Mathews, G. J.

    2015-11-01

    We calculate absorption cross-sections of neutrino in proto-neutron stars with strong magnetic field in the relativistic mean-field theory. Then, we apply this result to the neutrino transfer in the matter, and study the pulsar kick and the rapid spin down of magnetars.

  11. Study of a nTHGEM-based thermal neutron detector

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao

    2016-07-01

    With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)

  12. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field.

    PubMed

    Klokkenburg, M; Erné, B H; Wiedenmann, A; Petukhov, A V; Philipse, A P

    2007-05-01

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe3O4) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg, Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids. PMID:17677066

  13. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field

    SciTech Connect

    Klokkenburg, M.; Erne, B. H.; Petukhov, A. V.; Philipse, A. P.; Wiedenmann, A.

    2007-05-15

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe{sub 3}O{sub 4}) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg et al., Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids.

  14. Old and new neutron stars

    SciTech Connect

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  15. Parallax studies of four selected fields. [and their central and reference stars

    NASA Technical Reports Server (NTRS)

    Russell, J. L.; Gatewood, G. D.; Worek, T. F.

    1982-01-01

    Astrometric studies have been completed for four central stars Wolf 294, 39 Com, Case 2, and Vega - and selected reference stars in each of those regions. The parallax of Wolf 294 was measured as 0.1806 + or - 0.0033 arcsec. 39 Com is a visual/astrometric binary with an estimated period of 125 yr and a parallax of 0.0297 + or - 0.0044 arcsec. C 2 was measured as a white dwarf from a Warner and Swasey Observatory spectral survey; its white dwarf status is confirmed by its parallax of 0.0186 + or - 0.0109 arcsec. Vega's parallax was measured as 0.1243 + or - 0.0049 arcsec; a small apparent nonrandom distribution in the residuals is most likely an error from the neutral density filter used for magnitude reduction of the central star.

  16. Neutron-Resonance Capture Analysis of Materials

    SciTech Connect

    Postma, H.; Bode, P.; Blaauw, M.; Corvi, F.

    1999-11-14

    Epithermal neutron activation analysis is a well-established approach to improve the sensitivity for certain elements by suppressing the activation of interfering elements. If epithermal neutrons of a given energy could be selected, the signal-to-noise ratio might be further improved by taking advantage of resonance capture. This reaction occurs mainly by intermediate and heavy nuclei. Moreover, most of these reactions take place with epithermal or fast neutrons. Intense epithermal neutrons are available as ''white'' beams at accelerator-driven neutron sources. Neutron resonance capture offers interesting analytical opportunities. Low-Z elements have little capture of epithermal neutrons and are thus virtually absent in the time-of-flight spectrum. Relatively large objects can be placed in the neutron beam and analyzed nondestructively. The induced radioactivity is relatively low. If an element has several stable isotopes, each of these isotopes can be recognized by its specific resonances. This would allow for multitracer studies with several isotopically labeled compounds. Different from mass spectrometry, the sample remains intact and can be used for further studies after analysis. Applications may be in the field of archaeology, metallurgy, and certification of reference materials.

  17. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    SciTech Connect

    Chen, Y; Lin, Y; Tsai, H

    2015-06-15

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure is 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)

  18. NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY

    SciTech Connect

    Banik, Sarmistha; Hempel, Matthias; Bandyopadhyay, Debades

    2014-10-01

    We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.

  19. An assessment of the near-surface accuracy of the international geomagnetic reference field 1980 model of the main geomagnetic field

    USGS Publications Warehouse

    Peddie, N.W.; Zunde, A.K.

    1985-01-01

    The new International Geomagnetic Reference Field (IGRF) model of the main geomagnetic field for 1980 is based heavily on measurements from the MAGSAT satellite survey. Assessment of the accuracy of the new model, as a description of the main field near the Earth's surface, is important because the accuracy of models derived from satellite data can be adversely affected by the magnetic field of electric currents in the ionosphere and the auroral zones. Until now, statements about its accuracy have been based on the 6 published assessments of the 2 proposed models from which it was derived. However, those assessments were either regional in scope or were based mainly on preliminary or extrapolated data. Here we assess the near-surface accuracy of the new model by comparing it with values for 1980 derived from annual means from 69 magnetic observatories, and by comparing it with WC80, a model derived from near-surface data. The comparison with observatory-derived data shows that the new model describes the field at the 69 observatories about as accurately as would a model derived solely from near-surface data. The comparison with WC80 shows that the 2 models agree closely in their description of D and I near the surface. These comparisons support the proposition that the new IGRF 1980 main-field model is a generally accurate description of the main field near the Earth's surface in 1980. ?? 1985.

  20. SUPER STRONG MAGNETIC FIELDS OF NEUTRON STARS IN BE X-RAY BINARIES ESTIMATED WITH NEW TORQUE AND MAGNETOSPHERE MODELS

    SciTech Connect

    Shi, Chang-Sheng; Zhang, Shuang-Nan; Li, Xiang-Dong

    2015-11-10

    We re-estimate the surface magnetic fields of neutron stars (NSs) in Be X-ray binaries (BeXBs) with different models of torque, improved beyond Klus et al. In particular, a new torque model is applied to three models of magnetosphere radius. Unlike the previous models, the new torque model does not lead to divergent results for any fastness parameter. The inferred surface magnetic fields of these NSs for the two compressed magnetosphere models are much higher than that for the uncompressed magnetosphere model. The new torque model using the compressed magnetosphere radius leads to unique solutions near spin equilibrium in all cases, unlike other models that usually give two branches of solutions. Although our conclusions are still affected by the simplistic assumptions about the magnetosphere radius calculations, we show several groups of possible surface magnetic field values with our new models when the interaction between the magnetosphere and the infalling accretion plasma is considered. The estimated surface magnetic fields for NSs BeXBs in the Large Magellanic Cloud, the Small Magellanic Cloud and the Milk Way are between the quantum critical field and the maximum “virial” value by the spin equilibrium condition.

  1. Traceable calibration of a horizontally polarised reference antenna with omnidirectional pattern at VHF frequencies for ILS field strength validation

    NASA Astrophysics Data System (ADS)

    Schrader, T.; Kleine-Ostmann, T.; Bredemeyer, J.

    2013-07-01

    We present a traceable calibration of a specially designed horizontally polarised reference antenna with an omnidirectional pattern in the E-plane for the frequency range between 105 MHz and 120 MHz. This antenna is used as a validation tool for absolute field strength measurements at the localizer transmitter of an instrument landing system (ILS) at airports and is carried by a helicopter. We investigate whether we can treat it as a dipole-like antenna in the calibration setup despite its disk-shape body. We also investigate the suitability of an anechoic chamber for antenna calibration though it was not designed for that purpose. The measurements are based on scattering parameters (S-parameters) which we apply in the 3-antenna-method (TAM or 3-AM) to obtain the antenna gain and the antenna factor, respectively. An uncertainty budget for the antenna gain calibration is derived. We also report on the first practical application of the calibrated reference antenna.

  2. Methods for preparing comparative standards and field samples for neutron activation analysis of soil

    SciTech Connect

    Glasgow, D.C.; Dyer, F.F.; Robinson, L.

    1994-06-01

    One of the more difficult problems associated with comparative neutron activation analysis (CNAA) is the preparation of standards which are tailor-made to the desired irradiation and counting conditions. Frequently, there simply is not a suitable standard available commercially, or the resulting gamma spectrum is convoluted with interferences. In a recent soil analysis project, the need arose for standards which contained about 35 elements. In response, a computer spreadsheet was developed to calculate the appropriate amount of each element so that the resulting gamma spectrum is relatively free of interferences. Incorporated in the program are options for calculating all of the irradiation and counting parameters including activity produced, necessary flux/bombardment time, counting time, and appropriate source-to-detector distance. The result is multi-element standards for CNAA which have optimal concentrations. The program retains ease of use without sacrificing capability. In addition to optimized standard production, a novel soil homogenization technique was developed which is a low cost, highly efficient alternative to commercially available homogenization systems. Comparative neutron activation analysis for large scale projects has been made easier through these advancements. This paper contains details of the design and function of the NAA spreadsheet and innovative sample handling techniques.

  3. New calculations of the atmospheric cosmic radiation field--results for neutron spectra.

    PubMed

    Clem, J M; De Angelis, G; Goldhagen, P; Wilson, J W

    2004-01-01

    The propagation of primary cosmic rays through the Earth's atmosphere and the energy spectra of the resulting secondary particles have been calculated using the Monte Carlo transport code FLUKA with several novel auxiliary methods. Solar-modulated primary cosmic ray spectra were determined through an analysis of simultaneous proton and helium measurements made on spacecraft or high-altitude balloon flights. Primary protons and helium ions are generated within the rigidity range of 0.5 GV-20 TV, uniform in cos2theta. For a given location, primaries above the effective angle-dependent geomagnetic cut-off rigidity, and re-entrant albedo protons, are transported through the atmosphere. Helium ions are initially transported using a separate transport code called HEAVY to simulate fragmentation. HEAVY interfaces with FLUKA to provide interaction starting points for each nucleon originating from a helium nucleus. Calculated cosmic ray neutron spectra and consequent dosimetric quantities for locations with a wide range of altitude (atmospheric depth) and geomagnetic cut-off are presented and compared with measurements made on a high-altitude aeroplane. Helium ion propagation using HEAVY and inclusion of re-entrant albedo protons with the incident primary spectra significantly improved the agreement of the calculated cosmic ray neutron spectra with measured spectra. These cosmic ray propagation calculations provide the basis for a new atmospheric ionising radiation (AIR) model for air-crew dosimetry, calculation of effects on microelectronics, production of cosmogenic radionuclides and other uses. PMID:15353685

  4. Vertical Field of View Reference Point Study for Flight Path Control and Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Rudisill, Marianne; Kramer, Lynda J.; Busquets, Anthony M.

    2002-01-01

    Researchers within the eXternal Visibility System (XVS) element of the High-Speed Research (HSR) program developed and evaluated display concepts that will provide the flight crew of the proposed High-Speed Civil Transport (HSCT) with integrated imagery and symbology to permit path control and hazard avoidance functions while maintaining required situation awareness. The challenge of the XVS program is to develop concepts that would permit a no-nose-droop configuration of an HSCT and expanded low visibility HSCT operational capabilities. This study was one of a series of experiments exploring the 'design space' restrictions for physical placement of an XVS display. The primary experimental issues here was 'conformality' of the forward display vertical position with respect to the side window in simulated flight. 'Conformality' refers to the case such that the horizon and objects appear in the same relative positions when viewed through the forward windows or display and the side windows. This study quantified the effects of visual conformality on pilot flight path control and hazard avoidance performance. Here, conformality related to the positioning and relationship of the artificial horizon line and associated symbology presented on the forward display and the horizon and associated ground, horizon, and sky textures as they would appear in the real view through a window presented in the side window display. No significant performance consequences were found for the non-conformal conditions.

  5. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  6. Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Athar, Basit S.; Bednarz, Bryan; Seco, Joao; Hancox, Cindy; Paganetti, Harald

    2010-05-01

    The purpose of this study was to assess lateral out-of-field doses in 6 MV IMRT (intensity modulated radiation therapy) and compare them with secondary neutron equivalent dose contributions in proton therapy. We simulated out-of-field photon doses to various organs as a function of distance, patient's age, gender and treatment volumes based on 3, 6, 9 cm field diameters in the head and neck and spine region. The out-of-field photon doses to organs near the field edge were found to be in the range of 2, 5 and 10 mSv Gy-1 for 3 cm, 6 cm and 9 cm diameter IMRT fields, respectively, within 5 cm of the field edge. Statistical uncertainties calculated in organ doses vary from 0.2% to 40% depending on the organ location and the organ volume. Next, a comparison was made with previously calculated neutron equivalent doses from proton therapy using identical field arrangements. For example, out-of-field doses for IMRT to lung and uterus (organs close to the 3 cm diameter spinal field) were computed to be 0.63 and 0.62 mSv Gy-1, respectively. These numbers are found to be a factor of 2 smaller than the corresponding out-of-field doses for proton therapy, which were estimated to be 1.6 and 1.7 mSv Gy-1 (RBE), respectively. However, as the distance to the field edge increases beyond approximately 25 cm the neutron equivalent dose from proton therapy was found to be a factor of 2-3 smaller than the out-of-field photon dose from IMRT. We have also analyzed the neutron equivalent doses from an ideal scanned proton therapy (assuming not significant amount of absorbers in the treatment head). Out-of-field doses were found to be an order of magnitude smaller compared to out-of-field doses in IMRT or passive scattered proton therapy. In conclusion, there seem to be three geometrical areas when comparing the out-of-target dose from IMRT and (passive scattered) proton treatments. Close to the target (in-field, not analyzed here) protons offer a distinct advantage due to the lower

  7. Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients

    PubMed Central

    Athar, Basit S; Bednarz, Bryan; Seco, Joao; Hancox, Cindy; Paganetti, Harald

    2012-01-01

    The purpose of this study was to assess lateral out-of-field doses in 6 MV IMRT (intensity modulated radiation therapy) and compare them with secondary neutron equivalent dose contributions in proton therapy. We simulated outof-field photon doses to various organs as a function of distance, patient's age, gender and treatment volumes based on 3, 6, 9 cm field diameters in the head and neck and spine region. The out-of-field photon doses to organs near the field edge were found to be in the range of 2, 5 and 10 mSv Gy−1 for 3 cm, 6 cm and 9 cm diameter IMRT fields, respectively, within 5 cm of the field edge. Statistical uncertainties calculated in organ doses vary from 0.2% to 40% depending on the organ location and the organ volume. Next, a comparison was made with previously calculated neutron equivalent doses from proton therapy using identical field arrangements. For example, out-of-field doses for IMRT to lung and uterus (organs close to the 3 cm diameter spinal field) were computed to be 0.63 and 0.62 mSv Gy−1, respectively. These numbers are found to be a factor of 2 smaller than the corresponding out-of-field doses for proton therapy, which were estimated to be 1.6 and 1.7 mSv Gy−1 (RBE), respectively. However, as the distance to the field edge increases beyond approximately 25 cm the neutron equivalent dose from proton therapy was found to be a factor of 2–3 smaller than the out-of-field photon dose from IMRT. We have also analyzed the neutron equivalent doses from an ideal scanned proton therapy (assuming not significant amount of absorbers in the treatment head). Outof-field doses were found to be an order of magnitude smaller compared to out-of-field doses in IMRT or passive scattered proton therapy. In conclusion, there seem to be three geometrical areas when comparing the out-of-target dose from IMRT and (passive scattered) proton treatments. Close to the target (in-field, not analyzed here) protons offer a distinct advantage due to the lower

  8. Crystal field excitations in CeCu2Ge2: Revisited employing a single crystal and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2012-04-01

    The intermetallic compound, CeCu2Ge2, is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN = 4.1K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/ molK2. Earlier inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet excited state at 16.5 meV, although a splitting of the 4f1 (J = 5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce3+ ions. We performed detailed inelastic neutron scattering experiments on a single crystal at the thermal triple-axis spectrometer PUMA at FRM II for different crystallographic directions. From our results we infer that the quasi-quartet, in fact, consists of two doublets at 17.0 and 18.3 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally, we will present a new set of crystal field parameters.

  9. Neutron spectroscopic study of Crystal-field excitation in Yb2 (Ti2 - x Ybx) O7 -x/2

    NASA Astrophysics Data System (ADS)

    Gaudet, Jonathan; Maharaj, Dalini; Kermarrec, Edwin; Granroth, Garrett; Ross, Kate; Dabowska, Hanna; Gaulin, Bruce

    2015-03-01

    Among the rare-earth titanate pyrochlores, Yb2 Ti2O7 has attracted much attention as a potential realization of a quantum spin ice. While strong quantum effects are absent in classical spin ice compounds, they are thought to be significant in Yb2 Ti2O7 because of its effective spin S=1/2 and its XY spin anisotropy, quantities both determined by the Crystal-Electric Field (CEF) levels. However, a thorough neutron spectroscopy study of the CEF levels is still lacking. Here, we report time-of-flight inelastic neutron scattering measurements on Yb2 Ti2O7 . Our results lead to the unambiguous determination of the CEF levels, the ground-state wavefunction and therefore the nature of the spin anisotropy of the J=7/2 Yb3+ . A significant sample dependence in the low temperature heat capacity has been reported and attributed to an excess of Yb3+ (''stuffing'') in the structure. Our measurements, carried out on two well-characterized samples with different levels of stuffing, allow us to discuss the impact of such disorder on the CEF levels.

  10. Magnetic-field Exposures in the Workplace: Reference Distribution and Exposures in Occupational Groups.

    PubMed

    Floderus; Persson; Stenlund

    1996-07-01

    Exposures to extremely-low-frequency magnetic fields were assessed by taking personal measurements with a dosimeter calibrated at 50 Hz with a bandwidth of 40-400 Hz. The study group was a population-based random sample of 1,098 Swedish men. Exposures were determined as workday mean, median, maximum, and standard deviation, and the time fraction of the day when exposures exceeded 0.20 µT. For workday means, the 50th percentile was 0.17 µT, and the 75th percentile was 0.27 µT. For median values, the 50th percentile was 0.11 µT and the 75th percentile was 0.16 µT. The strongest correlation (Spearman rank correlation = r&infs;) found was between the workday mean and the fraction of time above 0.20 µT (r&infs; = 0.89). The authors used the same data to estimate exposures for the 100 most common occupations according to the 1990 Swedish census. A minimum of four independent measurements for each occupation was required. Among occupations with low workday mean values were earth-moving machine operator, health care worker, and concrete worker. Among occupations with high workday mean exposures were welder and electrical or electronics engineer or technician. High exposure levels were also found in occupations outside the study base, such as train engine driver and glass, ceramic, or brick worker. Exposures to magnetic fields vary widely, since levels of exposure are strongly affected by factors such as duration of exposure and distance from the source. Large variations often found between individuals within occupations could reflect variations in tasks across different workdays for the particular occupations and/or local conditions such as tools and installations, and/or how the work is organized and performed.

  11. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    PubMed

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  12. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz.

    PubMed

    Schmitz, Tobias; Blaickner, Matthias; Schütz, Christian; Wiehl, Norbert; Kratz, Jens V; Bassler, Niels; Holzscheiter, Michael H; Palmans, Hugo; Sharpe, Peter; Otto, Gerd; Hampel, Gabriele

    2010-10-01

    To establish Boron Neutron Capture Therapy (BNCT) for non-resectable liver metastases and for in vitro experiments at the TRIGA Mark II reactor at the University of Mainz, Germany, it is necessary to have a reliable dose monitoring system. The in vitro experiments are used to determine the relative biological effectiveness (RBE) of liver and cancer cells in our mixed neutron and gamma field. We work with alanine detectors in combination with Monte Carlo simulations, where we can measure and characterize the dose. To verify our calculations we perform neutron flux measurements using gold foil activation and pin-diodes. Material and methods. When L-α-alanine is irradiated with ionizing radiation, it forms a stable radical which can be detected by electron spin resonance (ESR) spectroscopy. The value of the ESR signal correlates to the amount of absorbed dose. The dose for each pellet is calculated using FLUKA, a multipurpose Monte Carlo transport code. The pin-diode is augmented by a lithium fluoride foil. This foil converts the neutrons into alpha and tritium particles which are products of the (7)Li(n,α)(3)H-reaction. These particles are detected by the diode and their amount correlates to the neutron fluence directly. Results and discussion. Gold foil activation and the pin-diode are reliable fluence measurement systems for the TRIGA reactor, Mainz. Alanine dosimetry of the photon field and charged particle field from secondary reactions can in principle be carried out in combination with MC-calculations for mixed radiation fields and the Hansen & Olsen alanine detector response model. With the acquired data about the background dose and charged particle spectrum, and with the acquired information of the neutron flux, we are capable of calculating the dose to the tissue. Conclusion. Monte Carlo simulation of the mixed neutron and gamma field of the TRIGA Mainz is possible in order to characterize the neutron behavior in the thermal column. Currently we also

  13. Isotope-Identifying neutron reflectometry

    SciTech Connect

    Nikitenko, Yu. V. Petrenko, A. V.; Gundorin, N. A.; Gledenov, Yu. M.; Aksenov, V. L.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  14. [A social-health care coordination reference in the fields of mental health and child abuse].

    PubMed

    García-Panal, Leticia; García-Panal, Javier; Delgado-Mata, Eulalia

    2016-01-01

    The intervention in families with children at risk of abuse stays as a clear example of the need for intersectional coordination mechanisms within the socio-health care framework. Different health services (such as primary care, paediatrics, mental health, community and social services, family support teams and schools) create a network in order to link their main goals in the interest of ensuring children's welfare and improving familieś situation. This essay aims at describing a performance based on the mentioned guidelines, even though there is no accepted and widespread protocol in this regard. We start our research with a one parent family with two children. The mother suffers from a mental health disorder and she fails to adhere to treatment. Both the father of the two children and his family took advantage of this situation to discredit the mother's capability of taking care of her children. This perception had a great impact in her self-esteem and therefore in her willingness and strength to recover. Meetings were held to share relevant information about both the family's general situation, the children's quality of life and the mother's health. Based on this information, the main goals were set in each professional field in order to develop the intervention project. This example of intersectional coordination shows the importance of its standardization for the sake of ensuring a comprehensive attention towards situations that involve initially individuals but that ends up affecting the whole family.

  15. [A social-health care coordination reference in the fields of mental health and child abuse].

    PubMed

    García-Panal, Leticia; García-Panal, Javier; Delgado-Mata, Eulalia

    2016-01-01

    The intervention in families with children at risk of abuse stays as a clear example of the need for intersectional coordination mechanisms within the socio-health care framework. Different health services (such as primary care, paediatrics, mental health, community and social services, family support teams and schools) create a network in order to link their main goals in the interest of ensuring children's welfare and improving familieś situation. This essay aims at describing a performance based on the mentioned guidelines, even though there is no accepted and widespread protocol in this regard. We start our research with a one parent family with two children. The mother suffers from a mental health disorder and she fails to adhere to treatment. Both the father of the two children and his family took advantage of this situation to discredit the mother's capability of taking care of her children. This perception had a great impact in her self-esteem and therefore in her willingness and strength to recover. Meetings were held to share relevant information about both the family's general situation, the children's quality of life and the mother's health. Based on this information, the main goals were set in each professional field in order to develop the intervention project. This example of intersectional coordination shows the importance of its standardization for the sake of ensuring a comprehensive attention towards situations that involve initially individuals but that ends up affecting the whole family. PMID:26549871

  16. A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method

    NASA Astrophysics Data System (ADS)

    Schimeczek, C.; Engel, D.; Wunner, G.

    2012-07-01

    account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code, and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78 (2008) 032515]. New version program summaryProgram title: HFFER II Catalogue identifier: AECC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: v 55 130 No. of bytes in distributed program, including test data, etc.: 293 700 Distribution format: tar.gz Programming language: Fortran 95 Computer: Cluster of 1-13 HP Compaq dc5750 Operating system: Linux Has the code been vectorized or parallelized?: Yes, parallelized using MPI directives. RAM: 1 GByte per node Classification: 2.1 External routines: MPI/GFortran, LAPACK, BLAS, FMlib (included in the package) Catalogue identifier of previous version: AECC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 302 Does the new version supersede the previous version?: Yes Nature of problem: Quantitative modellings of features observed in the X-ray spectra of isolated magnetic neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product, iron, at strong magnetic field strengths. Our code is intended to provide a powerful tool for calculating energies and oscillator strengths of medium-Z atoms and ions at neutron star magnetic field strengths with sufficient accuracy in a routine way to create such databases. Solution method: The

  17. Neutron scattering study of the incommensurate magnetic order of UNi 2Al 3 in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lussier, J. G.; Schröder, A.; Garrett, J. D.; Gaulin, B. D.; Buyers, W. J. L.

    1997-02-01

    Elastic neutron scattering studies from a single crystal sample of the heavy fermion superconductor, UNi 2Al 3, have revealed the onset of long range magnetic order below TN = 4.6 K. This order is characterized by an incommensurate (IC) ordering wavevector given by ( {1}/{2} ± τ, 0, {1}/{2}) with τ = 0.110 ± 0.003. Measurements performed in the presence of a magnetic field (up to 8 T) perpendicular to the ( H, 0, L) plane show no variation in TN but have an effect on the intensity as well as on the IC wavevector component of the ordering wavevector. Our results are discussed in terms of the possible basal-plane orientations for the magnetic moment in this compound.

  18. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase

    NASA Astrophysics Data System (ADS)

    Bakker, J. F.; Paulides, M. M.; Neufeld, E.; Christ, A.; Kuster, N.; van Rhoon, G. C.

    2011-08-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SARwb) are provided to keep the whole-body temperature increase (Tbody, incr) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR10g) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (Tincr, max) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate Tincr, max in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used Tincr, max as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on Tincr, max for specified durations of exposure.

  19. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase.

    PubMed

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C

    2011-08-01

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.

  20. A wide-range direction neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Luszik-Bhadra, M.; d'Errico, F.; Hecker, O.; Matzke, M.

    2002-01-01

    A new device is presented which has been developed for measuring the energy and direction of distribution of neutron fluence in fields of broad energy spectra (thermal to 100 MeV) and with a high background of photon, electron and muon radiation. The device was tested in reference fields with different energy and direction distributions of neutron fluence. The direction-integrated fluence spectra agree fairly well with reference spectra. In all cases, the ambient and personal dose equivalent values calculated from measured direction-differential spectra are within 35% of the reference values. Independent measurements of the directional dose equivalent were performed with a directional dose equivalent monitor based on superheated drop detectors.

  1. Neutron spectroscopic study of crystalline electric field excitations in stoichiometric and lightly stuffed Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Gaudet, J.; Maharaj, D. D.; Sala, G.; Kermarrec, E.; Ross, K. A.; Dabkowska, H. A.; Kolesnikov, A. I.; Granroth, G. E.; Gaulin, B. D.

    2015-10-01

    Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field (CEF) Hamiltonian, eigenvalues and eigenvectors appropriate to the J =7 /2 Yb3 + ion in the candidate quantum spin ice pyrochlore magnet Yb2Ti2O7 . The precise ground state (GS) of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak "stuffing," wherein a small proportion, ≈2 % , of the nonmagnetic Ti4 + sites are occupied by excess Yb3 +. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Yb2Ti2O7 , as well as a crushed single crystal with weak stuffing and an approximate composition of Yb2 +xTi2 -xO7 +y with x =0.046 . All samples display three CEF transitions out of the GS, and the GS doublet itself is identified as primarily composed of mJ=±1 /2 , as expected. However, stuffing at low temperatures in Yb2 +xTi2 -xO7 +y induces a similar finite CEF lifetime as is induced in stoichiometric Yb2Ti2O7 by elevated temperature. We conclude that an extended strain field exists about each local "stuffed" site, which produces a distribution of random CEF environments in the lightly stuffed Yb2 +xTi2 -xO7 +y , in addition to producing a small fraction of Yb ions in defective environments with grossly different CEF eigenvalues and eigenvectors.

  2. Direct Measurement of Neutron-Neutron Scattering

    SciTech Connect

    Sharapov, E.I.; Furman, W.I.; Lychagin, W.I.; Muzichka, G.V.; Nekhaev, G.V.; Safronov, Yu.V.; Shvetsov, V.N.; Strelkov, A.V.; Bowman, C.D.; Crawford, B.E.; Stephenson, S.L.; Howell, C.R.; Tornow, W.; Levakov, B.G.; Litvin, V.I.; Lyzhin, A.E.; Magda, E.P.; Mitchell, G.E.

    2003-08-26

    In order to resolve long-standing discrepancies in indirect measurements of the neutron-neutron scattering length ann and contribute to solving the problem of the charge symmetry of the nuclear force, the collaboration DIANNA (Direct Investigation of ann Association) plans to measure the neutron-neutron scattering cross section {sigma}nn. The key issue of our approach is the use of the through-channel in the Russia reactor YAGUAR with a peak neutron flux of 10{sup 18} /cm2/s. The proposed experimental setup is described. Results of calculations are presented to connect {sigma}nn with the nn-collision detector count rate and the neutron flux density in the reactor channel. Measurements of the thermal neutron fields inside polyethylene converters show excellent prospects for the realization of the direct nn-experiment.

  3. A review on the relativistic effective field theory with parameterized couplings for nuclear matter and neutron stars

    SciTech Connect

    Vasconcellos, C. A. Zen

    2015-12-17

    Nuclear science has developed many excellent theoretical models for many-body systems in the domain of the baryon-meson strong interaction for the nucleus and nuclear matter at low, medium and high densities. However, a full microscopic understanding of nuclear systems in the extreme density domain of compact stars is still lacking. The aim of this contribution is to shed some light on open questions facing the nuclear many-body problem at the very high density domain. Here we focus our attention on the conceptual issue of naturalness and its role in shaping the baryon-meson phase space dynamics in the description of the equation of state (EoS) of nuclear matter and neutrons stars. In particular, in order to stimulate possible new directions of research, we discuss relevant aspects of a recently developed relativistic effective theory for nuclear matter within Quantum Hadrodynamics (QHD) with genuine many-body forces and derivative natural parametric couplings. Among other topics we discuss in this work the connection of this theory with other known effective QHD models of the literature and its potentiality in describing a new physics for dense matter. The model with parameterized couplings exhausts the whole fundamental baryon octet (n, p, Σ{sup −}, Σ{sup 0}, Σ{sup +}, Λ, Ξ{sup −}, Ξ{sup 0}) and simulates n-order corrections to the minimal Yukawa baryon couplings by considering nonlinear self-couplings of meson fields and meson-meson interaction terms coupled to the baryon fields involving scalar-isoscalar (σ, σ∗), vector-isoscalar (ω, Φ), vector-isovector (ϱ) and scalar-isovector (δ) virtual sectors. Following recent experimental results, we consider in our calculations the extreme case where the Σ{sup −} experiences such a strong repulsion that its influence in the nuclear structure of a neutron star is excluded at all. A few examples of calculations of properties of neutron stars are shown and prospects for the future are discussed.

  4. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    NASA Astrophysics Data System (ADS)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order

  5. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.

    PubMed

    Tessa, C La; Berger, T; Kaderka, R; Schardt, D; Burmeister, S; Labrenz, J; Reitz, G; Durante, M

    2014-04-21

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient's body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm³ cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence ⁶LiF:Mg, Ti (TLD-600) and ⁷LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ≤ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 < E < 10 MeV during the treatment with scanned carbon ions. The highest yield of thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same

  6. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab Initio Studies of Zero-Field Splittings.

    PubMed

    Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling

    2015-10-19

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the

  7. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE PAGES

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X =more » F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend

  8. Solar Fe abundance and magnetic fields. Towards a consistent reference metallicity

    NASA Astrophysics Data System (ADS)

    Fabbian, D.; Moreno-Insertis, F.; Khomenko, E.; Nordlund, Å.

    2012-12-01

    Aims: We investigate the impact on Fe abundance determination of including magnetic flux in series of 3D radiation-magnetohydrodynamics (MHD) simulations of solar convection, which we used to synthesize spectral intensity profiles corresponding to disc centre. Methods: A differential approach is used to quantify the changes in theoretical equivalent width of a set of 28 iron spectral lines spanning a wide range in wavelength, excitation potential, oscillator strength, Landé factor, and formation height. The lines were computed in local thermodynamic equilibrium (LTE) using the spectral synthesis code LILIA. We used input magnetoconvection snapshots covering 50 min of solar evolution and belonging to series having an average vertical magnetic flux density of ⟨ Bvert ⟩ = 0,50,100, and 200 G. For the relevant calculations we used the Copenhagen Stagger code. Results: The presence of magnetic fields causes both a direct (Zeeman-broadening) effect on spectral lines with non-zero Landé factor and an indirect effect on temperature-sensitive lines via a change in the photospheric T - τ stratification. The corresponding correction in the estimated atomic abundance ranges from a few hundredths of a dex up to |Δlog ɛ(Fe)⊙| ~ 0.15 dex, depending on the spectral line and on the amount of average magnetic flux within the range of values we considered. The Zeeman-broadening effect gains relatively more importance in the IR. The largest modification to previous solar abundance determinations based on visible spectral lines is instead due to the indirect effect, i.e., the line-weakening caused by a warmer stratification as seen on an optical depth scale. Our results indicate that the average solar iron abundance obtained when using magnetoconvection models can be ~ 0.03-0.11 dex higher than when using the simpler hydrodynamics (HD) convection approach. Conclusions: We demonstrate that accounting for magnetic flux is important in state-of-the-art solar photospheric

  9. The ICESat Arctic-Ocean Mean Sea Surface: Reference Field for Future Satellite and Airborne Altimetry over Sea Ice

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.; McAdoo, D. C.; Zwally, H. J.; Yi, D.

    2010-12-01

    The era of ICESat operations, between 2003 and 2009, encompassed a period of significant change in the sea ice cover of the Arctic Ocean. Geoscience Laser Altimeter System (GLAS) data gathered during this period has been crucial for monitoring a decline in Arctic sea ice freeboard and thickness, particularly over perennial sea ice. An over-all loss of ice pack volume was recorded, including an observed 42 % loss of ice volume during the ICESat Fall (October/November) campaigns. Critical to the derivation of sea ice freeboard, and ice thickness, is precise mapping of the local reference sea level, the sea surface height (SSH). ICESat profiles over sea ice must be carefully assessed to discriminate leads from sea ice floes, so as to generate SSH profiles. Here we discuss methods for combining these local sea level measurements from the entire ICESat mission (using data from 16 ICESat campaigns) while maintaining the high along-track resolution of the GLAS footprints. We construct a high-resolution mean sea surface (MSS) model, which will be useful in itself as a reference field for retrieving sea ice freeboard from measurements gathered by CryoSat-2 and the Operation IceBridge aircraft campaigns. This Arctic MSS topography has additional oceanographic and geodetic applications. The MSS conforms closely to the marine geoid such that differences between these surfaces may be attributed to mean dynamic topography (MDT), from which mean ocean circulation may be derived. However, remaining errors in both the MSS field (e.g. unmodeled tidal effects) and the state-of-the-art geoids (particularly at short wavelengths), restrict the resolution at which MDT may be resolved. By combining this new ICESat MSS with geoids derived from satellite-only gravity data, such as data from the Gravity Recovery And Climate Experiment (GRACE) and the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites, we show an improved capability for observing Arctic Ocean dynamic

  10. Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements.

    PubMed

    Liebi, Marianne; van Rhee, Peter G; Christianen, Peter C M; Kohlbrecher, Joachim; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-03-12

    Birefringence measurements at high magnetic field strength of up to 33 T were used to detect magnetically induced alignment of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), cholesterol, and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate (DMPE-DTPA) with complexed lanthanide ions. These birefringence measurements together with a small-angle neutron scattering (SANS) analysis in a magnetic field showed parallel alignment of the bicelles if the lanthanide was thulium (Tm(3+)), and perpendicular alignment with dysprosium (Dy(3+)). With the birefringence measurements, the order parameter S can be determined as a function of the magnetic field strength, if the magnetic alignment reaches saturation. Additional structural information can be obtained if the maximum induced birefringence is considered. The degree of alignment of the studied bicelles increased with decreasing temperature from 40 to 5 °C and showed a new bicellar structure comprising a transient hole formation at intermediate temperatures (20 °C) during heating from 5 to 40 °C.

  11. Magnetic field distribution of injection chicane dipoles in Spallation Neutron Source accumulator ring

    SciTech Connect

    Wang, Jian-Guang

    2006-01-01

    We have performed 3D computing simulations to study the magnetic field distribution of the injection chicane dipoles in the SNS accumulator ring. The simulations yield the performance characteristics of the magnets and generate the magnetic field data in three dimensional grids for further beam tracking study. Based on the simulation data, a 3D multipole expansion of the chicane dipole field, consisting of the generalized gradients and their derivatives, has been made. The harmonic and pseudo-harmonic components in the expansion give much insight into the magnet physics and can fit directly into theoretical frame work of beam optics. The expansion is quasi-analytical by fitting numeric data into interpolation functions. A 5th-order representation of the magnetic field is generated, and the effects of even higher order terms on the field representation are discussed.

  12. Magnetic field distribution of injection chicane dipoles in Spallation Neutron Source accumulator ring

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    2006-01-01

    We have performed 3D computing simulations to study the magnetic field distribution of the injection chicane dipoles in the SNS accumulator ring. The simulations yield the performance characteristics of the magnets and generate the magnetic field data in three dimensional grids for further beam tracking study. Based on the simulation data, a 3D multipole expansion of the chicane dipole field, consisting of the generalized gradients and their derivatives, has been made. The harmonic and pseudoharmonic components in the expansion give much insight into the magnet physics and can fit directly into theoretical frame work of beam optics. The expansion is quasianalytical by fitting numeric data into interpolation functions. A 5th-order representation of the magnetic field is generated, and the effects of even higher-order terms on the field representation are discussed.

  13. Instantaneous and daily values of the surface energy balance over agricultural fields using remote sensing and a reference field in an arid environment

    USGS Publications Warehouse

    Kustas, W.P.; Moran, M.S.; Jackson, R. D.; Gay, L.W.; Duell, L.F.W.; Kunkel, K.E.; Matthias, A.D.

    1990-01-01

    Remotely sensed surface temperature and reflectance in the visible and near infrared wavebands along with ancilliary meteorological data provide the capability of computing three of the four surface energy balance components (i.e., net radiation, soil heat flux, and sensible heat flux) at different spatial and temporal scales. As a result, under nonadvective conditions, this enables the estimation of the remaining term (i.e., the latent heat flux). One of the practical applications with this approach is to produce evapotranspiration (ET) maps for agricultural regions which consist of an array of fields containing different crops at varying stages of growth and soil moisture conditions. Such a situation exists in the semiarid southwest at the University of Arizona Maricopa Agricultural Center, south of Phoenix. For one day (14 June 1987), surface temperature and reflectance measurements from an aircraft 150 m above ground level (agl) were acquired over fields from zero to nearly full cover at four times between 1000 MST and 1130 MST. The diurnal pattern of the surface energy balance was measured over four fields, which included alfalfa at 60% cover, furrowed cotton at 20% and 30% cover, and partially plowed what stubble. Instantaneous and daily values of ET were estimated for a representative area around each flux site with an energy balance model that relies on a reference ET. This reference value was determined with remotely sensed data and several meteorological inputs. The reference ET was adjusted to account for the different surface conditions in the other fields using only remotely sensed variables. A comparison with the flux measurements suggests the model has difficulties with partial canopy conditions, especially related to the estimation of the sensible heat flux. The resulting errors for instantaneous ET were on the order of 100 W m-2 and for daily values of order 2 mm day-1. These findings suggest future research should involve development of methods to

  14. Spin-orbit and orbit-orbit strengths for the radioactive neutron-rich doubly magic nucleus {sup 132}Sn in relativistic mean-field theory

    SciTech Connect

    Liang Haozhao; Zhao Pengwei; Li Lulu; Meng Jie

    2011-01-15

    Relativistic mean-field (RMF) theory is applied to investigate the properties of the radioactive neutron-rich doubly magic nucleus {sup 132}Sn and the corresponding isotopes and isotones. The two-neutron and two-proton separation energies are well reproduced by the RMF theory. In particular, the RMF results agree with the experimental single-particle spectrum in {sup 132}Sn as well as the Nilsson spin-orbit parameter C and orbit-orbit parameter D thus extracted, but remarkably differ from the traditional Nilsson parameters. Furthermore, the present results provide a guideline for the isospin dependence of the Nilsson parameters.

  15. Search for a reliable nucleic acid force field using neutron inelastic scattering and quantum mechanical calculations: Bases, nucleosides and nucleotides

    SciTech Connect

    Leulliot, Nicolas; Ghomi, Mahmoud; Jobic, Herve

    1999-06-15

    Neutron inelastic scattering (NIS), IR and Raman spectra of the RNA constituents: bases, nucleosides and nucleotides have been analyzed. The complementary aspects of these different experimental techniques makes them especially powerful for assigning the vibrational modes of the molecules of interest. Geometry optimization and harmonic force field calculations of these molecules have been undertaken by quantum mechanical calculations at several theoretical levels: Hartree-Fock (HF), Moller-plesset second-order perturbation (MP2) and Density Functional Theory (DFT). In all cases, it has been shown that HF calculations lead to insufficient results for assigning accurately the intramolecular vibrational modes. In the case of the nucleic bases, these discrepancies could be satisfactorily removed by introducing the correlation effects at MP2 level. However, the application of the MP2 procedure to the large size molecules such as nucleosides and nucleotides is absolutely impossible, taking into account the prohibitive computational time needed. On the basis of our results, the calculations at DFT levels using B3LYP exchange and correlation functional appear to be a cost-effective alternative in obtaining a reliable force field for the whole set of nucleic acid constituents.

  16. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Lopes, I.

    2016-07-01

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  17. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    PubMed Central

    Gouré, Julien; Findlay, Wendy A; Deslandes, Vincent; Bouevitch, Anne; Foote, Simon J; MacInnes, Janet I; Coulton, James W; Nash, John HE; Jacques, Mario

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology. PMID:19239696

  18. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment.

    PubMed

    Hajek, M; Berger, T; Schöner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. 6Lil(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal.

  19. Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data.

    PubMed

    Sekimoto, Shun; Ebihara, Mitsuru

    2013-07-01

    Trace amounts of three halogens (chlorine, bromine, and iodine) were determined using radiochemical neutron activation analysis (RNAA) for nine sedimentary rocks and three rhyolite samples. To obtain high-quality analytical data, the radiochemical procedure of RNAA was improved by lowering the background in gamma-ray spectrometry and completing the chemical procedure more rapidly than in conventional procedures. A comparison of the RNAA data of Br and I with corresponding inductively coupled plasma mass spectrometry (ICPMS) literature data revealed that the values obtained by ICPMS coupled with pyrohydrolysis preconcentration were systematically lower than the RNAA data for some reference samples, suggesting that the quantitative collection of Br and I cannot always be achieved by the pyrohydrolysis for some solid samples. The RNAA data of three halogens can classify sedimentary rock reference samples into two groups (the samples from inland water and those from seawater), implying the geochemical significance of halogen data.

  20. Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data.

    PubMed

    Sekimoto, Shun; Ebihara, Mitsuru

    2013-07-01

    Trace amounts of three halogens (chlorine, bromine, and iodine) were determined using radiochemical neutron activation analysis (RNAA) for nine sedimentary rocks and three rhyolite samples. To obtain high-quality analytical data, the radiochemical procedure of RNAA was improved by lowering the background in gamma-ray spectrometry and completing the chemical procedure more rapidly than in conventional procedures. A comparison of the RNAA data of Br and I with corresponding inductively coupled plasma mass spectrometry (ICPMS) literature data revealed that the values obtained by ICPMS coupled with pyrohydrolysis preconcentration were systematically lower than the RNAA data for some reference samples, suggesting that the quantitative collection of Br and I cannot always be achieved by the pyrohydrolysis for some solid samples. The RNAA data of three halogens can classify sedimentary rock reference samples into two groups (the samples from inland water and those from seawater), implying the geochemical significance of halogen data. PMID:23710630

  1. Deconfinement to quark matter in neutron stars - The influence of strong magnetic fields

    SciTech Connect

    Dexheimer, V.; Negreiros, R.; Schramm, S.; Hempel, M.

    2013-03-25

    We use an extended version of the hadronic SU(3) non-linear realization of the sigma model that also includes quarks to study hybrid stars. Within this approach, the degrees of freedom change naturally as the temperature/density increases. Different prescriptions of charge neutrality, local and global, are tested and the influence of strong magnetic fields and the anomalous magnetic moment on the particle population is discussed.

  2. Evaluation of local electric fields generated by transcranial direct current stimulation with an extracephalic reference electrode based on realistic 3D body modeling

    NASA Astrophysics Data System (ADS)

    Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee

    2012-04-01

    In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.

  3. Impact of switching to the ICRP-74 neutron flux-to-dose equivalent rate conversion factors at the Sandia National Laboratory Building 818 Neutron Source Range.

    SciTech Connect

    Ward, Dann C.

    2009-03-01

    Sandia National Laboratories (SNL) maintains a neutron calibration facility which supports the calibration, maintenance, and repair of Radiation Protection Instruments. The SNL neutron reference fields are calibrated using the following methodology: Fluence rate is initially established by calculation using the NIST traceable source emission rate (decay corrected). Correction factors for the effects of room return or scatter, and source anisotropy are then developed by using a suitable radiation transport code to model the geometry of the facility. The conventionally true neutron dose rates are then determined using the appropriate fluence-todose equivalent conversion coefficients at several reference positions. This report describes the impact on calculated neutron dose rates of switching from NCRP-38 to CRP-74 neutron flux-todose equivalent rate conversion factors. This switch is driven by recent changes to dosimetry requirements addressed in 10 CFR 835 (Occupational Radiation Protection).

  4. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    SciTech Connect

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this

  5. Effect of head phantom size on 10B and 1H[n,gamma]2H dose distributions for a broad field accelerator epithermal neutron source for BNCT.

    PubMed

    Gupta, N; Niemkiewicz, J; Blue, T E; Gahbauer, R; Qu, T X

    1993-01-01

    The effect of head phantom size on the 10B and 1H[n,gamma]2H dose distributions for a broad epithermal neutron radiation field generated by an accelerator-based epithermal neutron source for boron neutron capture therapy (BNCT) have been studied. Also two techniques for calculating the absorbed gamma dose from a measured gamma-ray source distribution are compared: a Monte Carlo technique, which is well accepted in the BNCT community, and a Point Kernel technique. The count-rate distribution in the central plane of three rectangular parallelopiped head water phantoms irradiated with an epithermal neutron field was measured with a boron trifluoride (BF3) detector. This epithermal neutron field was produced at the Ohio State University Van de Graaff Accelerator Facility. The 10B absorbed dose and the gamma-ray source have the same distribution in the head phantom as the BF3 count-rate distribution. The absorbed gamma dose from the measured source distribution was calculated using MCNP, a Monte Carlo code, and QAD-CGGP, a Point Kernel code. The most pronounced effect of phantom size on 10B absorbed dose was on the dose rate at the depth of maximum dose, dmax. An increase in dose rate at dmax was observed with a decrease in phantom size, the dose rate in the smallest phantom being larger by a factor of 1.4 than the dose rate in the largest phantom. Also, dmax for the phantoms shifted deeper with a decrease in phantom dimensions. The shift between the largest and the smallest phantoms was 6 mm. Finally, the smaller phantoms had lower entrance 10B dose as a percent of the dose at dmax, or better skin sparing. Our calculations for the gamma dose show that a Point Kernel technique can be used to calculate the dose distribution as accurately as a Monte Carlo technique, in much shorter computation times.

  6. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    SciTech Connect

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  7. New developments in APSTNG neutron probe diagnostics

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.

    1995-12-31

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. The gamma-ray dector and neutron generator can be located on the same side of the interrogated object, so spaces behind walls and other confirmed areas can be inspected. No collimators or radiation shielding are needed, the neutron generator is relatively simple and small, and commercial-grade electronics are employed. A complete system could be transported in an automotive van. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Inspection applications have been investigated for presence of cocaine in propane tanks, uranium and plutonium smuggling, and radioactive and toxic waste characterization. An advanced APSTNG tube is being designed and constructed that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  8. A SEARCH FOR NEUTRON STAR PRECESSION AND INTERSTELLAR MAGNETIC FIELD VARIATIONS VIA MULTIEPOCH PULSAR POLARIMETRY

    SciTech Connect

    Weisberg, J. M.; Everett, J. E.; Morgan, J. J.; Brisbin, D. G.; Cordes, J. M.

    2010-10-01

    In order to study precession and interstellar magnetic field variations, we measured the polarized position angle of 81 pulsars at several-month intervals for four years. We show that the uncertainties in a single-epoch measurement of position angle are usually dominated by random pulse-to-pulse jitter of the polarized subpulses. Even with these uncertainties, we find that the position angle variations in 19 pulsars are significantly better fitted (at the 3{sigma} level) by a sinusoid than by a constant. Such variations could be caused by precession, which would then indicate periods of {approx}(200-1300) days and amplitudes of {approx}(1-12) degrees. We narrow this collection to four pulsars that show the most convincing evidence of sinusoidal variation in position angle. Also, in a handful of pulsars, single discrepant position angle measurements are observed which may result from the line of sight passing across a discrete ionized, magnetized structure. We calculate the standard deviation of position angle measurements from the mean for each pulsar and relate these to limits on precession and interstellar magnetic field variations.

  9. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  10. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    NASA Astrophysics Data System (ADS)

    Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  11. Snow water equivalent measured with cosmic-ray neutrons: reviving a little known but highly successful field method

    NASA Astrophysics Data System (ADS)

    Desilets, D.

    2012-12-01

    Secondary cosmic-ray neutrons are attenuated strongly by water in either solid or liquid form, suggesting a method for measuring snow water equivalent that has several advantages over alternative technologies. The cosmic-ray attenuation method is passive, portable, highly adaptable, and operates over an exceptionally large range of snow pack thicknesses. But despite promising initial observations made in the 1970s, the technique today remains practically unknown to snow hydrologists. Side-by-side measurements performed over the past several years with a snow pillow and a submerged cosmic-ray probe demonstrate that the cosmic-ray attenuation method merits consideration for a wide range of applications—especially those where alternative methods are made problematic by dense vegetation, rough terrain, deep snowpack or a lack of vehicular access. During the snow-free season, the instrumentation can be used to monitor soil moisture, thus providing another widely sought field measurement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, C.A., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

  12. Analysis of geomagnetic secular variation during 1980-1985 and 1985- 1990, and geomagnetic models proposed for the 1991 revision of the International Geomagnetic Reference Field

    USGS Publications Warehouse

    Peddie, N.W.

    1992-01-01

    The secular variation of the main geomagnetic field during the periods 1980-1985 and 1985-1990 was analyzed in terms of spherical harmonics up to the eighth degree and order. Data from worldwide magnetic observatories and the Navy's Project MAGNET aerial surveys were used. The resulting pair of secular-variation models was used to update the Definitive Geomagnetic Reference Field (DGRF) model for 1980, resulting in new mainfield models for 1985.0 and 1990.0. These, along with the secular-variation model for 1985-1990, were proposed for the 1991 revision of the International Geomagnetic Reference Field (IGRF). -Author

  13. Neutron diffraction study of magnetic field induced behavior in the heavy Fermion Ce3Co4Sn13

    SciTech Connect

    Christianson, Andrew D; Goremychkin, E. A.; Gardner, J. S.; Kang, H. J.; Chung, J.-H.; Manuel, P.; Thompson, J. D.; Sarrao, J. L.; Lawrence, J. M.

    2008-01-01

    The specific heat of Ce3Co4Sn13 exhibits a crossover from heavy Fermion behavior with antiferromagnetic correlations at low field to single impurity Kondo behavior above 2 T. We have performed neutron diffraction measurements in magnetic fields up to 6 Tesla on single crystal samples. The (001) position shows a dramatic increase in intensity in field which appears to arise from static polarization of the 4f level and which at 0.14 K also exhibits an anomaly near 2T reflecting the crossover to single impurity behavior.

  14. Poroelastic references

    SciTech Connect

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  15. Centres of Expertise and European Reference Networks: key issues in the field of rare diseases. The EUCERD Recommendations

    PubMed Central

    Taruscio, Domenica; Gentile, Amalia E.; Evangelista, Teresinha; Frazzica, Rosa G.; Bushby, Kate; Montserrat, Antoni Moliner

    2014-01-01

    Background Rare diseases, because of their intrinsic characteristics - large number of disorders and syndromes, low individual prevalence, severity, often limited information, lack of therapies - can benefit from collaboration and sharing of expertise while maximising the limited resources available for these conditions. Therefore, the development of Centres of Expertise (CEs) and European Reference Networks (ERNs) in this field is crucial. The European Union Committee of Experts on Rare Diseases (EUCERD) has been charged to assist the European Commission with the preparation and implementation of activities in the field of rare diseases in Europe. In particular, EUCERD has assisted the EC in drawing up the recommendations issued in the Commission Communication and in the Council Recommendation. In this paper the authors focus on the EUCERD Recommendations on CEs and one on ERNs. Materials and Methods Recommendations on CEs and ERNs are the result of two different processes, developed through iterative reviews and discussions at workshops and EUCERD meetings, and according to the European Union documents. Results EUCERD has issued two complementary Recommendations, one on CEs (2011) and a second on ERNs (2013). Both address multiple targets (from Member States to Centres, and patient organisations), with the objective of helping them define and organise CEs and ERNs. Conclusions The establishment, designation, financial support, and evaluation of CEs throughout Europe allow RD patients and local health care providers to identify high-quality specialised services that can simplify disease management and improve patients’ care. The EUCERD Recommendations are useful instruments to help and guide stakeholders in the development of CEs and ERNs and thus ensure equity of access to services and care for rare diseases patients across Europe. PMID:24922304

  16. A 2015 International Geomagnetic Reference Field (IGRF) candidate model based on Swarm's experimental absolute magnetometer vector mode data

    NASA Astrophysics Data System (ADS)

    Vigneron, Pierre; Hulot, Gauthier; Olsen, Nils; Léger, Jean-Michel; Jager, Thomas; Brocco, Laura; Sirol, Olivier; Coïsson, Pierdavide; Lalanne, Xavier; Chulliat, Arnaud; Bertrand, François; Boness, Axel; Fratter, Isabelle

    2015-06-01

    Each of the three satellites of the European Space Agency Swarm mission carries an absolute scalar magnetometer (ASM) that provides the nominal 1-Hz scalar data of the mission for both science and calibration purposes. These ASM instruments, however, also deliver autonomous 1-Hz experimental vector data. Here, we report on how ASM-only scalar and vector data from the Alpha and Bravo satellites between November 29, 2013 (a week after launch) and September 25, 2014 (for on-time delivery of the model on October 1, 2014) could be used to build a very valuable candidate model for the 2015.0 International Geomagnetic Reference Field (IGRF). A parent model was first computed, describing the geomagnetic field of internal origin up to degree and order 40 in a spherical harmonic representation and including a constant secular variation up to degree and order 8. This model was next simply forwarded to epoch 2015.0 and truncated at degree and order 13. The resulting ASM-only 2015.0 IGRF candidate model is compared to analogous models derived from the mission's nominal data and to the now-published final 2015.0 IGRF model. Differences among models mainly highlight uncertainties enhanced by the limited geographical distribution of the selected data set (essentially due to a lack of availability of data at high northern latitude satisfying nighttime conditions at the end of the time period considered). These appear to be comparable to differences classically observed among IGRF candidate models. These positive results led the ASM-only 2015.0 IGRF candidate model to contribute to the construction of the final 2015.0 IGRF model.

  17. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    SciTech Connect

    Hanna, Chad; Mandel, Ilya; Vousden, Will E-mail: imandel@star.sr.bham.ac.uk

    2014-03-20

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ∼10-100 deg{sup 2}; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging is important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ∼1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ∼10% to ∼300% relative to follow-up strategies that

  18. Therapy of infections in mice irradiated in mixed neutron/photon fields and inflicted with wound trauma: A review of current work. (Reannouncement with new availability information)

    SciTech Connect

    Ledney, G.D.; Madonna, G.S.; Elliott, T.B.; Moore, M.M.; Jackson, W.E.

    1991-12-31

    When host antimicrobial defenses are severely compromised by radiation or trauma in conjunction with radiation, death from sepsis results. To evaluate therapies for sepsis in radiation casualties, the authors developed models of acquired and induced bacterial infections in irradiated and irradiated-wounded mice. Animals were exposed to either a mixed radiation field of equal proportions of neutrons and gamma rays (n/gamma = 1) from a TRIGA reactor or pure gamma rays from 60 (Co sources). Skin wounds (15% of total body surface area) were inflicted under methoxyflurane anesthesia 1 h after irradiation. In all mice, wounding after irradiation decreased resistance to infection. Treatments with the immunomodulator synthetic trehalose dicorynomycolate (S-TDCM) before or after mixed neutron-gamma irradiation or gamma irradiation increased survival. Therapy with S-TDCM for mice irradiated with either a mixed field or gamma rays increased resistance to Klebsiella pneumoniae-induced infections.

  19. Evaluation of a personal and environmental dosemeter based on CR-39 track detectors in quasi-monoenergetic neutron fields.

    PubMed

    Caresana, M; Ferrarini, M; Parravicini, A; Sashala Naik, A

    2014-10-01

    In this paper, the evaluation of the dosimetric capability of a detector based on a CR-39 solid-state nuclear track detector coupled to a 1 cm thickness of PMMA radiator was made with the aim of understanding the applicability of this technique to personal and environmental neutron dosimetry. The dosemeter has been exposed to monoenergetic and quasi-monoenergetic neutron beams at PTB in Braunschweig, Germany and at Ithemba Laboratories, in Faure, South Africa, with peak energies ranging from 0.565 to 100 MeV. The results showed a response that is almost independent of the neutron energy in the whole energy range.

  20. Evaluation of a personal and environmental dosemeter based on CR-39 track detectors in quasi-monoenergetic neutron fields.

    PubMed

    Caresana, M; Ferrarini, M; Parravicini, A; Sashala Naik, A

    2014-10-01

    In this paper, the evaluation of the dosimetric capability of a detector based on a CR-39 solid-state nuclear track detector coupled to a 1 cm thickness of PMMA radiator was made with the aim of understanding the applicability of this technique to personal and environmental neutron dosimetry. The dosemeter has been exposed to monoenergetic and quasi-monoenergetic neutron beams at PTB in Braunschweig, Germany and at Ithemba Laboratories, in Faure, South Africa, with peak energies ranging from 0.565 to 100 MeV. The results showed a response that is almost independent of the neutron energy in the whole energy range. PMID:24324248

  1. Measurement of the neutron fields produced by a 62 MeV proton beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Bedogni, R.; Domingo, C.; Esposito, A.; Gentile, A.; Carinci, G.; Russo, S.

    2011-10-01

    The experimental characterization of the neutron fields produced as parasitic effect in medical accelerators is assuming an increased importance for either the patient protection or the facility design aspects. Medical accelerators are diverse in terms of particle type (electrons or hadrons) and energy, but the radiation fields around them have in common (provided that a given threshold energy is reached) the presence of neutrons with energy span over several orders of magnitude. Due to the large variability of neutron energy, field or dosimetry measurements in these workplaces are very complex, and in general, cannot be performed with ready-to-use commercial instruments. In spite of its poor energy resolution, the Bonner Sphere Spectrometer (BSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. The energy range of this instrument is limited to E<20 MeV if only polyethylene spheres are used, but can be extended to hundreds of MeV by including metal-loaded spheres (extended range BSS, indicated with ERBSS). With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, an ERBSS experiment was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN—LNS (Laboratori Nazionali del Sud), where a proton beam routinely used for ophthalmic cancer treatments is available. The 62 MeV beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. Here the ERBSS of UAB (Universidad Autónoma de Barcelona— Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati) were exposed to characterize the "forward" and "sideward" proton-induced neutron fields. The use of two ERBSS characterized by different set of spheres, central detectors, and independently established and

  2. Criteria for personal dosimetry in mixed radiation fields in space. [analyzing trapped protons, tissue disintegration stars, and neutrons

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1974-01-01

    The complexity of direct reading and passive dosimeters for monitoring radiation is studied to strike the right balance of compromise to simplify the monitoring procedure. Trapped protons, tissue disintegration stars, and neutrons are analyzed.

  3. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry

    PubMed Central

    Paul, Rick L.; Davis, W. Clay; Yu, Lee; Murphy, Karen E.; Guthrie, William F.; Leber, Dennis D.; Bryan, Colleen E.; Vetter, Thomas W.; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J.; Jarrett, Jeffery M.; Caldwell, Kathleen L.; Jones, Robert L.; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C. D.; Verostek, M.F.; Geraghty, C. M.; Steuerwald, Amy J.; Parsons, Patrick J.

    2015-01-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm−2s−1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma – mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) μg/kg and (213.1 ± 0.73) μg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) μg/kg, (52.7 ± 1.1) μg/kg, and (78.8 ± 4.9) μg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 μg/kg was assigned for this material. PMID:26300575

  4. TESTING MODELS OF MAGNETIC FIELD EVOLUTION OF NEUTRON STARS WITH THE STATISTICAL PROPERTIES OF THEIR SPIN EVOLUTIONS

    SciTech Connect

    Zhang Shuangnan; Xie Yi

    2012-10-01

    We test models for the evolution of neutron star (NS) magnetic fields (B). Our model for the evolution of the NS spin is taken from an analysis of pulsar timing noise presented by Hobbs et al.. We first test the standard model of a pulsar's magnetosphere in which B does not change with time and magnetic dipole radiation is assumed to dominate the pulsar's spin-down. We find that this model fails to predict both the magnitudes and signs of the second derivatives of the spin frequencies ({nu}-double dot). We then construct a phenomenological model of the evolution of B, which contains a long-term decay (LTD) modulated by short-term oscillations; a pulsar's spin is thus modified by its B-evolution. We find that an exponential LTD is not favored by the observed statistical properties of {nu}-double dot for young pulsars and fails to explain the fact that {nu}-double dot is negative for roughly half of the old pulsars. A simple power-law LTD can explain all the observed statistical properties of {nu}-double dot. Finally, we discuss some physical implications of our results to models of the B-decay of NSs and suggest reliable determination of the true ages of many young NSs is needed, in order to constrain further the physical mechanisms of their B-decay. Our model can be further tested with the measured evolutions of {nu}-dot and {nu}-double dot for an individual pulsar; the decay index, oscillation amplitude, and period can also be determined this way for the pulsar.

  5. Spectroscopy with cold and ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  6. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    PubMed

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-01

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results. PMID:17302489

  7. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  8. Binary neutron star mergers and short gamma-ray bursts: Effects of magnetic field orientation, equation of state, and mass ratio

    NASA Astrophysics Data System (ADS)

    Kawamura, Takumu; Giacomazzo, Bruno; Kastaun, Wolfgang; Ciolfi, Riccardo; Endrizzi, Andrea; Baiotti, Luca; Perna, Rosalba

    2016-09-01

    We present fully general-relativistic magnetohydrodynamic simulations of the merger of binary neutron star (BNS) systems. We consider BNSs producing a hypermassive neutron star (HMNS) that collapses to a spinning black hole (BH) surrounded by a magnetized accretion disk in a few tens of ms. We investigate whether such systems may launch relativistic jets and hence power short gamma-ray bursts. We study the effects of different equations of state (EOSs), different mass ratios, and different magnetic field orientations. For all cases, we present a detailed investigation of the matter dynamics and of the magnetic field evolution, with particular attention to its global structure and possible emission of relativistic jets. The main result of this work is that we observe the formation of an organized magnetic field structure. This happens independently of EOS, mass ratio, and initial magnetic field orientation. We also show that those models that produce a longer-lived HMNS lead to a stronger magnetic field before collapse to a BH. Such larger fields make it possible, for at least one of our models, to resolve the magnetorotational instability and hence further amplify the magnetic field in the disk. However, by the end of our simulations, we do not (yet) observe a magnetically dominated funnel nor a relativistic outflow. With respect to the recent simulations of Ruiz et al. [Astrophys. J. 824, L6 (2016)], we evolve models with lower and more plausible initial magnetic field strengths and (for computational reasons) we do not evolve the accretion disk for the long time scales that seem to be required in order to see a relativistic outflow. Since all our models produce a similar ordered magnetic field structure aligned with the BH spin axis, we expect that the results found by Ruiz et al. (who only considered an equal-mass system with an ideal fluid EOS) should be general and—at least from a qualitative point of view—independent of the mass ratio, magnetic field

  9. Set-up of a passive Bonner sphere system for neutron spectrometry at mixed fields with predominant photon component based on activation detector.

    PubMed

    Amgarou, K; Lacoste, V; Muller, H; Fernández, F

    2007-01-01

    A passive Bonner sphere system (BSS), based on thermal neutron activation detectors, was developed to perform neutron spectrometry in pulsed and very intense (n-gamma) fields with predominant photon component, as those produced by high energy (>10 MV) medical linear electron accelerators. In this paper, a description of the new system is presented together with an experimental characterisation of a portable Sodium Iodide (NaI) detector and a fixed high-purity Germanium one, both used to measure the induced gamma-activity of the activated materials, respectively, in situ and in the laboratory. The choice of the activated materials is justified according to pre-established practical considerations and physical criteria. The response functions of the entire passive BSS were calculated using the MCNPX code. A preliminary experimental validation with a bare (252)Cf source is given as well.

  10. The null magnetic field as reference for the study of geomagnetic directional effects in animals and man.

    NASA Technical Reports Server (NTRS)

    Beischer, D. E.

    1971-01-01

    Techniques for producing very low and zero magnetic fields are considered, giving attention to the compensation of the geomagnetic field by a Helmholtz coil system, approaches utilizing the shielding power of highly permeable alloys, and the complete exclusion of the geomagnetic field with the aid of a superconductive shield. Animal experiments in low magnetic fields are discussed, together with the exposure of man to 'null' magnetic fields and the Josephson junction as a possible biosensor of magnetic fields. It is found that neither the functions nor the behavior of man changes significantly during a two-week exposure to magnetic fields below 50 gammas.

  11. Hard-tail emission in the soft state of low-mass X-ray binaries and their relation to the neutron star magnetic field

    NASA Astrophysics Data System (ADS)

    Asai, Kazumi; Mihara, Tatehiro; Mastuoka, Masaru; Sugizaki, Mutsumi

    2016-08-01

    Average hard-tail X-ray emission in the soft state of nine bright Atoll low-mass X-ray binaries containing a neutron star (NS-LMXBs) are investigated by using the light curves of MAXI/GSC (Gas Slit Camera) and Swift/BAT (Burst Alert Telescope). Two sources (4U 1820-30 and 4U 1735-44) exhibit a large hardness ratio (15-50 keV/2-10 keV: HR >0.1), while the other sources distribute at HR ≲ 0.1. In either case, HR does not depend on the 2-10 keV luminosity. Therefore the difference of HR is due to the 15-50 keV luminosity, which is Comptonized emission. The Compton cloud is assumed to be around the neutron star. The size of the Compton cloud would affect the value of HR. Although the magnetic field of an NS-LMXB is weak, we could expect a larger Alfvén radius than the innermost stable circular orbit or the neutron star radius in some sources. In such cases, the accretion inflow is stopped at the Alfvén radius and would create a relatively large Compton cloud. This would result in the observed larger Comptonized emission. By attributing the difference of the size of Compton cloud to the Alfvén radius, we can estimate the magnetic fields of neutron stars. The obtained lower/upper limits are consistent with the previous results.

  12. Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field

    SciTech Connect

    D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

    2011-10-01

    Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

  13. Quantum transport equation for systems with rough surfaces and its application to ultracold neutrons in a quantizing gravity field

    SciTech Connect

    Escobar, M.; Meyerovich, A. E.

    2014-12-15

    We discuss transport of particles along random rough surfaces in quantum size effect conditions. As an intriguing application, we analyze gravitationally quantized ultracold neutrons in rough waveguides in conjunction with GRANIT experiments (ILL, Grenoble). We present a theoretical description of these experiments in the biased diffusion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. All system parameters collapse into a single constant which determines the depletion times for the gravitational quantum states and the exit neutron count. This constant is determined by a complicated integral of the correlation function (CF) of surface roughness. The reliable identification of this CF is always hindered by the presence of long fluctuation-driven correlation tails in finite-size samples. We report numerical experiments relevant for the identification of roughness of a new GRANIT waveguide and make predictions for ongoing experiments. We also propose a radically new design for the rough waveguide.

  14. Neutron spin-reorientation experiments

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    Neutron spin-reorientation experiments which give fundamental physics information are described. The magnetic moment of the neutron has been measured to be 1.91304275(45) nuclear magnetons by separated oscillatory fields resonant reorientation's of the spins of neutrons in a beam passing through a magnetic field. In similar resonance experiments with ultracold neutrons trapped in a bottle, the neutron electric dipole moment has been shown to be less than 9 × 10 -26e cm. Neutrons “dressed” with many radio frequency quanta have been studied. The Berry phases of neutrons that have passed through a helical magnetic field or an oscillatory magnetic field have been observed. In neutron interactions experiments with condensed matter, small changes in neutron velocities have been measured by changes in the neutron precessions in magnetic fields before and after the interaction. Parity non-conserving spin rotations of neutrons passing through various materials have been observed and measured and new experiments with H 2 and He are in progress.

  15. A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Yonai, Shunsuke; Baba, Mamoru; Hoshi, Masaharu

    2014-06-01

    The characteristics of moderator assembly dimension was investigated for the usage of (7)Li(p,n) neutrons by 2.3-2.8MeV protons and W(p,n) neutrons by 50MeV protons. The indexes were the treatable protocol depth (TPD) and advantage depth (AD). Consequently, a configuration for W target with the Fe filter, Fluental moderator, Pb reflector showed the TPD of 5.8cm and AD of 9.3cm. Comparable indexes were found for the Li target in a geometry with the MgF2 moderator and Teflon reflector.

  16. Supersoft sources in XMM-Newton Small Magellanic Cloud fields. A symbiotic and a close binary or cooling neutron star

    NASA Astrophysics Data System (ADS)

    Kahabka, P.; Haberl, F.

    2006-06-01

    We report the detection and study of two faint ROSAT supersoft X-ray sources in the SMC field with XMM-Newton, RX J0059.1-7505 and RX J0059.4-7118. Due to the larger effective area of XMM-Newton we can constrain the X-ray spectra of both sources. RX J0059.1-7505 is optically identified with the symbiotic LIN 358 in the SMC. A 20 eV blackbody component dominates the observed spectrum. The soft blackbody component is consistent with steady nuclear burning in a shell although the spectrum is more complex than a simple blackbody continuum. RX J0059.4-7118 is not optically identified and we derive with the Optical Monitor (OM) a V magnitude ⪆19.3 assuming an M0 spectral type. The X-ray spectrum is fitted with a blackbody component with a temperature of 90 eV and an additional spectrally hard component which can be reproduced with a powerlaw. The luminosity of RX J0059.4-7118 would be 4 × 1034 erg s-1 at the distance of the SMC. This is too large for a Cataclysmic Variable (CV). The spectral appearance is not in agreement with a supersoft source in the SMC. Thus we suggest that RX J0059.4-7118 is a Galactic source. As the optical magnitude derived from the OM data may be too faint for a normal Galactic CV we examined the possibility that RX J0059.4-7118 is a polar CV in the Galaxy, an isolated cooling neutron star (INS) at distance (1{-}2) kpc, a pulsar with a brown dwarf companion, or a Galactic quiescent low-mass X-ray binary (qLMXB). We favor the hypothesis of a Galactic CV because of variability in the EPIC-pn data with a timescale of 1 h. A third supersoft ROSAT source, RX J0050.5-7455, is not detected with XMM-Newton.

  17. TU-F-BRE-09: Towards the Establishment of Dosimetric References in Small Fields Using the New Concept of Dose-Area Product

    SciTech Connect

    Dufreneix, S; Bordy, J; Delaunay, F; Delaunay, F; Daures, J; Gouriou, J; Le Roy, M; Ostrowsky, A; Rapp, B; Sommier, L

    2014-06-15

    Purpose: To establish dosimetric references of absorbed dose in water in radiation fields smaller than 2 cm used in radiotherapy thanks to a new methodology based on the use of dosimeters larger than the field size. Methods: A new graphite calorimeter was constructed with a large sensitive volume (diameter of the core: 30 mm). This primary dosimeter was fully characterized and compared to previous LNE-LNHB graphite calorimeters in a 60Co large field. A specially designed graphite parallel-plate ionization chamber with a 30 mm collecting electrode was also assembled and tested. Measurements were then conducted in two 6 MV small circular fields of 2 cm and 1 cm diameter respectively, using the new concept of dose-area product instead of punctual dose commonly used in radiotherapy. Results: The dose rate established in a large 60Co field with the new calorimeter is in agreement within 0.4% with previous calorimeters. The ionization chamber shows good characteristics except for a 0.06% drift per hour in water. The ratio of calorimetric against ionometric measurements in the 2 cm diameter field is 1.1% higher than the one in the 1 cm diameter field (with respectively 0.30% and 1.03% type A uncertainty for each field). Conclusion: Results presented here highlight the possibility of measuring dose-area products in small fields with a graphite calorimeter and a parallel-plate ionization chamber. Measurements in a 0.75 cm diameter field are already underway to confirm the trend observed in the 2 cm and 1 cm diameter fields. The last step to establish precise dosimetric references in small fields is to calculate correction factors thanks to Monte Carlo simulations.

  18. Non-Invasive Detection of Soil Water Content at Intermediate Field Scale Using Cosmic-Ray Neutrons

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2010-12-01

    The amount of water in the subsurface is a key factor influencing a range of hydrological and other processes. New measurement methods are investigated to obtain more information on this key issue. One of them is the so called cosmic ray method, recently introduced for soil moisture measurements by Zreda and co-workers. Secondary neutron fluxes, product of the interaction of primary cosmic-rays at the land surface, are strongly moderated by the presence of water in or above soil (soil moisture, snow and biomass water). Neutron counts at the ground/air interface represent a valuable observation at intermediate spatial scale which can be used to quantify stored water while distinguishing different water holding compartments at the land surface. Classical monitoring networks (e.g. MR2 Theta probes, 1-m PR2/6 Profile probes) of soil moisture, other geophysical methods and soil sampling were used to calibrate and to validate the cosmic-ray method. Experimental sites in Germany with different vegetation were selected for testing the cosmic ray method and to obtain time series of water mass integrated over a land surface area of several thousand square meters. Different sets of proportional counters were installed for detection of secondary neutron fluxes and local meteorological data was used to set atmospheric correction factors. Also, vegetation cover and precipitation were determined during the measurement period. Areal mean values of soil moisture based on cosmic-ray neutrons and its observed temporal variability could be compared quantitatively with classical measurement techniques. First observations under different geographical conditions than reported so far are an initial step for further applications using cosmic-ray neutrons in these regions. Other activities such as monitoring of tree water content in forest, real-time soil moisture cross-sections in long distance and snow water equivalent height will have to be investigated to further improve the conversion

  19. Electric-field influence on the neutron diffuse scattering near the ferroelectric transition of Sr0.61Ba0.39Nb2O6

    NASA Astrophysics Data System (ADS)

    Ondrejkovic, Petr; Kempa, Martin; Savinov, Maxim; Bednyakov, Petr; Kulda, Jiri; Bourges, Philippe; Dec, Jan; Hlinka, Jirka

    2016-08-01

    Uniaxial relaxor ferroelectric Sr0.61Ba0.39Nb2O6 single crystal has been investigated in the vicinity of its phase transition using neutron scattering and dielectric spectroscopy. A global-type thermal hysteresis is evidenced by both techniques in the ferroelectric phase and up to about 15 K above Tc. In addition, a part of the transverse neutron diffuse scattering in the 001 Brillouin zone, presumably related to static nanodomain structure, can be suppressed by prior poling the crystal in electric field of 3 kV/cm. The remaining part of the transverse neutron diffuse scattering and the real part of permittivity show a similar temperature dependence. The temperature position of the maximal scattering intensity Tmax depends significantly on the scattering wave vector. Tmax shifts monotonically to higher temperature with the increasing wave vector in all investigated cooling and heating regimes. It is concluded that the critical fluctuations have space correlations which depend on frequency and wave vector.

  20. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  1. Neutron diagnostics for mirror hybrids

    SciTech Connect

    Kaellne, Jan; Noack, Klaus; Agren, Olov; Gorini, Giuseppe; Tardocchi, Marco; Grosso, Giovanni

    2012-06-19

    Fusion-fission (FuFi) hybrids will need instrumentation to diagnose the deuteriumtritium plasma, whose 14-MeV neutron emission is the driver of the sub-critical fission core. While the fission neutron yield rate (Y{sub fi} and hence power P{sub fi}) can be monitored with standard instrumentation, fusion plasmas in hybrids require special diagnostics where the determination of Y{sub th} ({proportional_to}P{sub fu}) is a challenge. Information on Y{sub fu} is essential for assessing the fusion plasma performance which together with Y{sub fi} allows for the validation of the neutron multiplication factor (k) of the subcritical fission core. Diagnostics for hybrid plasmas are heuristically discussed with special reference to straight field line mirror (SFLM). Relevant DT plasma experience from JET and plans for ITER in the main line of fusion research were used as input. It is shown that essential SFLM plasma information can potentially be obtained with proposed instrumentation, but the state of the hybrid plasma must be predictably robust as derived from fully diagnosed dedicated experiments without interface restrictions of the hybrid application.

  2. Looking East: Shanghai, PISA 2009 and the Reconstitution of Reference Societies in the Global Education Policy Field

    ERIC Educational Resources Information Center

    Sellar, Sam; Lingard, Bob

    2013-01-01

    This paper examines the outstanding performance of Shanghai, China on PISA 2009 and its effects on other national systems and within the global education policy field. The OECD's PISA is helping to create this field by constituting the globe as a commensurate space of school system performance. The effects of Shanghai's success are…

  3. Investigating temporal field sampling strategies for site-specific calibration of three soil moisture - neutron flux interaction models

    NASA Astrophysics Data System (ADS)

    Iwema, Joost; Rosolem, Rafael; Baatz, Roland; Wagener, Thorsten; Bogena, Heye

    2015-04-01

    Soil moisture is an important state variable in land-atmosphere interaction and hydrological processes. The novel Cosmic-Ray Neutron Sensor (CRNS) can be used to determine soil moisture at the sub-kilometre scale, which is relevant to these processes. The CRNS is usually calibrated with soil moisture samples taken on a single day. We investigated whether using data from only one day can be sufficient and, if not, how many days would be needed to obtain a reliable calibration. Therefore temporal sampling strategies for calibration of three widely used soil moisture - cosmic-ray neutron interaction models were investigated for three distinct sites: an arid site in Arizona (USA), a temperate humid grassland and a temperate humid spruce forest, both located in Germany. First, the effects of the number of sampling days on the calibration results were analysed and the effects of different soil wetness conditions of the sampling days on the quality of the calibration results were then investigated. Independent point-scale (TDT) soil moisture measurements from a sensor network were used as input to all three models. Simulated neutron intensity was then compared against measurements from cosmic-ray sensors at all sites. It was found that, if wetness conditions were not taken into account, collecting soil moisture samples on more than one day is needed to obtain a reliable calibration result, regardless of which model is used. We typically find that two to four days are normally sufficient. Sampling on days or combinations of days with appropriate wetness conditions for specific sites can reduce the needed number of sampling days. What appropriate wetness conditions are, differs between sites and different soil moisture - cosmic-ray neutron interaction models.

  4. Measurements of neutron radiation in aircraft.

    PubMed

    Vuković, B; Poje, M; Varga, M; Radolić, V; Miklavcić, I; Faj, D; Stanić, D; Planinić, J

    2010-12-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21° to 58°; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was Ḣ(n)=5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of Ḣ(f)=1.4 μSv/h.

  5. New PTB thermal neutron calibration facility: first results.

    PubMed

    Luszik-Bhadra, M; Reginatto, M; Wershofen, H; Wiegel, B; Zimbal, A

    2014-10-01

    A new thermal neutron calibration facility based on a moderator assembly has been set up at PTB. It consists of 16 (241)Am-Be radionuclide sources mounted in a graphite block, 1.5 m wide, 1.5 m high and 1.8 m deep. The sources are distributed to eight different positions, at a mean distance of ∼1.25 m from the front face of the moderator. The neutron field at the reference position, 30 cm in front of the moderator device and 75 cm above the floor, has been characterised using calculations, Bonner sphere measurements and gold foil activation. First results are shown. The field is highly thermalised: 99 % in terms of fluence. It is quite homogenous within a 20 cm×20 cm area, but the absolute value of the thermal neutron fluence rate is small and yields an ambient dose equivalent rate of 3 µSv h(-1).

  6. Free- and reference-layer magnetization modes versus in-plane magnetic field in a magnetic tunnel junction with perpendicular magnetic easy axis

    NASA Astrophysics Data System (ADS)

    Mazraati, Hamid; Le, Tuan Q.; Awad, Ahmad A.; Chung, Sunjae; Hirayama, Eriko; Ikeda, Shoji; Matsukura, Fumihiro; Ohno, Hideo; Åkerman, Johan

    2016-09-01

    We study the magnetodynamic modes of a magnetic tunnel junction with perpendicular magnetic easy axis (p-MTJ) in in-plane magnetic fields using device-level ferromagnetic resonance spectroscopy. We compare our experimental results to those of micromagnetic simulations of the entire p-MTJ. Using an iterative approach to determine the material parameters that best fit our experiment, we find excellent agreement between experiments and simulations in both the static magnetoresistance and magnetodynamics in the free and reference layers. From the micromagnetic simulations, we determine the spatial mode profiles, the localization of the modes and, as a consequence, their distribution in the frequency domain due to the inhomogeneous internal field distribution inside the p-MTJ under different applied field regimes. We also conclude that the excitation mechanism is a combination of the microwave voltage modulated perpendicular magnetic anisotropy, the microwave Oersted field, and the spin-transfer torque generated by the microwave current.

  7. Towards a reference ultrasonic cavitation vessel. Part 1: preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell.

    PubMed

    Hodnett, Mark; Choi, Min Joo; Zeqiri, Bajram

    2007-01-01

    The acoustic field produced by a 25 kHz, 25 l cylindrical sonochemical processing cell has been characterised systematically using a sonar hydrophone, with the aim of establishing it as a reference test bed on which future investigations into acoustic cavitation activity may be based. Data acquired at sonication levels up to 500 W have shown that though significant cavitation activity is generated throughout the vessel, the acoustic field generated is reproducible, typically to +/- 12%. The increases in acoustic pressure are shown to be nonlinear with applied power, suggesting an intermediate optimum level for future study.

  8. Contributions of the electronic spin and orbital current to the CoCl{sub 4}{sup 2-} magnetic field probed in polarised neutron diffraction experiments

    SciTech Connect

    Cassam-Chenaie, Patrick; Jayatilaka, Dylan

    2012-08-14

    Polarised neutron diffraction experiments conducted at 4.2 K on Cs{sub 3}CoCl{sub 5} crystals have been analysed by using a four-dimensional model Hilbert space made of ab initio n-electron wave functions of the CoCl{sub 4}{sup 2-} molecular ion. Two spin-orbit mixing coefficients and several configuration interaction coefficients have been optimized by fitting calculated magnetic structure factors to experimental ones, to obtain the best ensemble density operator that is representable in the model space. A goodness of fit, {chi}{sup 2}, less then 1 has been obtained for the first time for the two experimental data sets available. In the present article, the optimized density operators are used to calculate the magnetic field densities that are the genuine observables probed in neutron diffraction experiments. Density maps of such observables are presented for the first time and numerical details are provided. The respective contributions of spin density and orbital current to the magnetic field density are analyzed.

  9. Neutron measurements in Spanish nuclear power plants with a Bonner sphere spectrometer system.

    PubMed

    Fernández, F; Domingo, C; Amgarou, K; Bouassoule, T; García, M J

    2007-01-01

    Neutron spectrometric measurements with an active Bonner Sphere System (BSS) allowed us to determine the reference dosimeter values in Ascó I and II and Cofrentes (PWR, BWR) Spanish nuclear power plants. Under a request from the Spanish National Nuclear Safety Council, the UAB group was in charge of characterising the neutron fields at several measurement points (a total of 10) inside the containment building of these nuclear installations using an active BSS and a home-made MITOM unfolding code. The measurement results in the three installations confirm the presence of low-energy neutron components in almost all selected points. This developed BSS can be considered as a reference system in neutron radiation protection when defining the corresponding protocols for a correct personal dosimetry in nuclear power plant installations.

  10. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-02-01

    A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)

  11. Californium-252: A New Isotopic Source for Neutron Radiography

    SciTech Connect

    Reinig, W.C.

    2001-08-29

    This report discusses a new isotopic source for neutron radiography, Californium-252. Nuclear reactors are the usual source of neutrons for radiography, primarily because of their intense neutron beams. If neutron radiography is to have widespread use, intense transportable neutron sources are required that can be used in plants, in laboratories and in the field.

  12. Fruits of neutron research

    SciTech Connect

    Krause, C.

    1994-12-31

    Car windshields that don`t break during accidents and jets that fly longer without making a refueling stop. Compact discs, credit cards, and pocket calculators. Refrigerator magnets and automatic car window openers. Beach shoes, food packaging, and bulletproof vests made of tough plastics. The quality and range of consumer products have improved steadily since the 1970s. One of the reasons: neutron research. Industries, employing neutron scattering techniques, to study materials properties, to act as diagnostics in tracing system performance, or as sources for radioactive isotopes used in medical fields for diagnostics or treatment, have all benefited from the fruits of advanced work with neutron sources.

  13. Investigating temporal field sampling strategies for site-specific calibration of three soil moisture-neutron intensity parameterisation methods

    NASA Astrophysics Data System (ADS)

    Iwema, J.; Rosolem, R.; Baatz, R.; Wagener, T.; Bogena, H. R.

    2015-07-01

    The Cosmic-Ray Neutron Sensor (CRNS) can provide soil moisture information at scales relevant to hydrometeorological modelling applications. Site-specific calibration is needed to translate CRNS neutron intensities into sensor footprint average soil moisture contents. We investigated temporal sampling strategies for calibration of three CRNS parameterisations (modified N0, HMF, and COSMIC) by assessing the effects of the number of sampling days and soil wetness conditions on the performance of the calibration results while investigating actual neutron intensity measurements, for three sites with distinct climate and land use: a semi-arid site, a temperate grassland, and a temperate forest. When calibrated with 1 year of data, both COSMIC and the modified N0 method performed better than HMF. The performance of COSMIC was remarkably good at the semi-arid site in the USA, while the N0mod performed best at the two temperate sites in Germany. The successful performance of COSMIC at all three sites can be attributed to the benefits of explicitly resolving individual soil layers (which is not accounted for in the other two parameterisations). To better calibrate these parameterisations, we recommend in situ soil sampled to be collected on more than a single day. However, little improvement is observed for sampling on more than 6 days. At the semi-arid site, the N0mod method was calibrated better under site-specific average wetness conditions, whereas HMF and COSMIC were calibrated better under drier conditions. Average soil wetness condition gave better calibration results at the two humid sites. The calibration results for the HMF method were better when calibrated with combinations of days with similar soil wetness conditions, opposed to N0mod and COSMIC, which profited from using days with distinct wetness conditions. Errors in actual neutron intensities were translated to average errors specifically to each site. At the semi-arid site, these errors were below the

  14. SU-E-T-242: Monte Carlo Simulations Used to Test the Perturbation of a Reference Ion Chamber Prototype Used for Small Fields

    SciTech Connect

    Vazquez Quino, L; Calvo, O; Huerta, C; DeWeese, M

    2014-06-01

    Purpose: To study the perturbation due to the use of a novel Reference Ion Chamber designed to measure small field dosimetry (KermaX Plus C by IBA). Methods: Using the Phase-space files for TrueBeam photon beams available by Varian in IAEA-compliant format for 6 and 15 MV. Monte Carlo simulations were performed using BEAMnrc and DOSXYZnrc to investigate the perturbation introduced by a reference chamber into the PDDs and profiles measured in water tank. Field sizes ranging from 1×1, 2×2,3×3, 5×5 cm2 were simulated for both energies with and without a 0.5 mm foil of Aluminum which is equivalent to the attenuation equivalent of the reference chamber specifications in a water phantom of 30×30×30 cm3 and a pixel resolution of 2 mm. The PDDs, profiles, and gamma analysis of the simulations were performed as well as a energy spectrum analysis of the phase-space files generated during the simulation. Results: Examination of the energy spectrum analysis performed shown a very small increment of the energy spectrum at the build-up region but no difference is appreciated after dmax. The PDD, profiles and gamma analysis had shown a very good agreement among the simulations with and without the Al foil, with a gamma analysis with a criterion of 2% and 2mm resulting in 99.9% of the points passing this criterion. Conclusion: This work indicates the potential benefits of using the KermaX Plus C as reference chamber in the measurement of PDD and Profiles for small fields since the perturbation due to in the presence of the chamber the perturbation is minimal and the chamber can be considered transparent to the photon beam.

  15. Barrier Island Ecology: A Professional Development Activity for Faculty and Staff of Calhoun Community College. Field Trip Reference Booklet.

    ERIC Educational Resources Information Center

    Collier, Don; And Others

    As part of the Professional Development Workshop at Calhoun Community College, the Department of Natural Sciences conducted the third annual Spring Wilderness Pilgrimage in March 1989, a week-long environmental awareness field trip for faculty and staff. Designed as a study of the plants and animals on a barrier island off the coast of Florida,…

  16. Testing and linearity calibration of films of phenol compounds exposed to thermal neutron field for EPR dosimetry.

    PubMed

    Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M

    2015-12-01

    This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. PMID:26242561

  17. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  18. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles.

    PubMed

    Zgarbová, Marie; Otyepka, Michal; Sponer, Jiří; Mládek, Arnošt; Banáš, Pavel; Cheatham, Thomas E; Jurečka, Petr

    2011-09-13

    We report a reparameterization of the glycosidic torsion χ of the Cornell et al. AMBER force field for RNA, χ(OL). The parameters remove destabilization of the anti region found in the ff99 force field and thus prevent formation of spurious ladder-like structural distortions in RNA simulations. They also improve the description of the syn region and the syn-anti balance as well as enhance MD simulations of various RNA structures. Although χ(OL) can be combined with both ff99 and ff99bsc0, we recommend the latter. We do not recommend using χ(OL) for B-DNA because it does not improve upon ff99bsc0 for canonical structures. However, it might be useful in simulations of DNA molecules containing syn nucleotides. Our parametrization is based on high-level QM calculations and differs from conventional parametrization approaches in that it incorporates some previously neglected solvation-related effects (which appear to be essential for obtaining correct anti/high-anti balance). Our χ(OL) force field is compared with several previous glycosidic torsion parametrizations.

  19. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  20. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  1. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  2. Neutron scattering and absorption properties

    SciTech Connect

    Holden, N.E.

    1993-12-01

    The Table in this report presents an evaluated set of values for the experimental quantities, which characterize the properties for scattering and absorption of neutrons. The neutron cross section is given for room temperature neutrons, 20.43{degree}C, corresponds to a thermal neutron energy of 0.0253 electron volts (eV) or a neutron velocity of 2200 meters/second. The neutron resonance integral is defined over the energy range from 0.5 eV to 0.1 {times} 10{sup 6} eV, or 0.1 MeV. A list of the major references used is given below. The literature cutoff data is October 1993. Uncertainties are given in parentheses. Parentheses with two or more numbers indicate values to the excited states(s) and to the ground state of the product nucleus.

  3. Personal neutron dosimetry in the space station MIR and the Space Shuttle.

    PubMed

    Luszik-Bhadra, M; Matzke, M; Otto, T; Reitz, G; Schuhmacher, H

    1999-06-01

    A passive neutron dosemeter based on nuclear track detectors and TLD's was used in 1995 and 1997 on the MIR station and in Space Shuttle flights to MIR. As it is equipped with neutron converters and shieldings of different types the track detector system allows the neutron dose equivalent to be determined in rough energy intervals. The results of the measurements on the MIR station and in the Space Shuttle flights are presented and the influence of charged particles in the complex mixed radiation field in space is discussed. Improvements are possible by means of a new active neutron dosemeter which is under development at the PTB. First measurements with a prototype in the high-energy reference fields at CERN are presented and discussed.

  4. [Limitations of occupational exposure to electromagnetic fields adopted by Polish law from the perspectives of international documents with particular reference to fields of low and medium frequencies].

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof

    2003-01-01

    Following the provisions of the decree on maximum admissible strength (MAS) values, issued by the Minister of Labour and Social Policy, comprehensive and homogeneous principles of workers' protection against excessive exposure to 0-300 GHz electromagnetic fields have been in force since 2001. Different mechanisms responsible for interactions between electromagnetic field and human body, as well as the need to limit their harmful effects were taken into account while setting permissible exposure conditions. Owing to the fact that both the strength of electric and magnetic fields and exposure duration have been considered, Polish regulations facilitate a parallel harmonisation of the prohibited exposure levels with so-called "basic restriction" values adopted as a minimum protection level in many international guidelines and to implement a significantly higher level of workers' protection in case of long-duration per shift exposure (equivalent of "precautionary principle" applied in the evaluation of general public exposure). The approaches adopted in Polish regulations coincide in many points with a drafted EU directive. Amendments being introduced into Polish legal regulations on the environmental protection should maintain cohesion principle with legal regulations on occupational exposure to electromagnetic fields, and should take into account additional restrictions concerning the protection of residential areas, as practiced in many European countries.

  5. 1983 ORNL intercomparison of personnel neutron and gamma dosemeters

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Greene, R.T.

    1985-01-01

    The Ninth Personnel Dosimetry Intercomparison Study was conducted during April 19-21, 1983, at the Oak Ridge National Laboratory. Dosemeters from 33 participating agencies were mounted on water-filled polyethylene elliptical phantoms and exposed to a range of low-level dose equivalents (0.02-0.45 mSv gamma and 0.49-11.14 mSv neutron) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the radiation source for six separate exposures which used four different shield conditions: unshielded and shielded with steel, steel/concrete, and concrete. Results of the neutron measurements indicate that it is not unusual for dose equivalent estimates made under the same conditions by different agencies to differ by more than a factor of 2. Albedo systems, which were the most popular neutron monitors in this study, provided the most accurate results with CR-39 recoil track being least accurate. Track and film neutron systems exhibited problems providing measurable indication of neutron exposure at dose equivalents of about 0.50 mSv. Gamma measurements showed that TLD and film systems generally overestimated dose equivalents in the mixed radiation fields with film exhibiting significant problems providing measurable indication of gamma exposure at dose equivalents lower than about 0.15 mSv. Under the conditions of this study in which exposures were carefully controlled and participants had information concerning exposure conditions and incident spectra prior to dosemeter analysis, only slightly more than half of all neutron and gamma dose equivalent estimates met regulatory accuracy standards relative to reference values. These results indicate that continued improvement of mixed-field personnel dosimetry is required by many participating organizations. 15 references, 30 tables.

  6. Generic constraints on the relativistic mean-field and Skyrme-Hartree-Fock models from the pure neutron matter equation of state

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Newton, W. G.; Xu, Jun; Li, Bao-An

    2012-08-01

    We study the nuclear symmetry energy S(ρ) and related quantities of nuclear physics and nuclear astrophysics predicted generically by relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models. We establish a simple prescription for preparing equivalent RMF and SHF parametrizations starting from a minimal set of empirical constraints on symmetric nuclear matter, nuclear binding energy, and charge radii, enforcing equivalence of their Lorenz effective masses, and then using the pure neutron matter (PNM) equation of state obtained from ab initio calculations to optimize the pure isovector parameters in the RMF and SHF models. We find that the resulting RMF and SHF parametrizations give broadly consistent predictions of the symmetry energy J and its slope parameter L at saturation density within a tight range of ≲2 and ≲6 MeV, respectively, but that clear model dependence shows up in the predictions of higher-order symmetry energy parameters, leading to important differences in (a) the slope of the correlation between J and L from the confidence ellipse, (b) the isospin-dependent part of the incompressibility of nuclear matter Kτ, (c) the symmetry energy at suprasaturation densities, and (d) the predicted neutron star radii. The model dependence can lead to about 1-2 km difference in predictions of the neutron star radius given identical predicted values of J and L and symmetric nuclear matter (SNM) saturation properties. Allowing the full freedom in the effective masses in both models leads to constraints of 30≲J≲31.5 MeV, 35≲L≲60 MeV, and -330≲Kτ≲-216 MeV for the RMF model as a whole and 30≲J≲33 MeV, 28≲L≲65 MeV, and -420≲Kτ≲-325 MeV for the SHF model as a whole. Notably, given PNM constraints, these results place RMF and SHF models as a whole at odds with some constraints on Kτ inferred from giant monopole resonance and neutron skin experimental results.

  7. (Depth-dose curves of the beta reference fields (147)Pm, (85)Kr and (90)Sr/(90)Y produced by the beta secondary standard BSS2.

    PubMed

    Brunzendorf, Jens

    2012-08-01

    The most common reference fields in beta dosimetry are the ISO 6980 series 1 radiation fields produced by the beta secondary standard BSS2 and its predecessor BSS. These reference fields require sealed beta radiation sources ((147)Pm, (85)Kr or (90)Sr/(90)Y) in combination with a source-specific beam-flattening filter, and are defined only at a given distance from the source. Every radiation sources shipped with the BSS2 is sold with a calibration certificate of the Physikalisch-Technische Bundesanstalt. The calibration workflow also comprises regular depth-dose measurements. This work publishes complete depth-dose curves of the series 1 sources (147)Pm, (85)Kr and (90)Sr/(90)Y in ICRU tissue up to a depth of 11 mm,when all electrons are stopped. For this purpose, the individual depth-dose curves of all BSS2 sources calibrated so far have been determined, i.e. the complete datasets of all BSS2 beta sources have been re-evaluated. It includes 191 depth-dose curves of 116 different sources comprising more than 2200 data points in total. Appropriate analytical representations of the nuclide-specific depth-dose curves are provided for the first time.

  8. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect

    ,

    2012-06-24

    This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains μeV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

  9. A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method

    NASA Astrophysics Data System (ADS)

    Schimeczek, C.; Engel, D.; Wunner, G.

    2014-05-01

    Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comp. Phys. Comm. 180, 3-2-311 (2009)] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error) and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into

  10. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila

    2002-01-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.

  11. In-field Calibration of a Fast Neutron Collar for the Measurement of Fresh PWR Fuel Assemblies

    SciTech Connect

    Swinhoe, Martyn Thomas; De Baere, Paul

    2015-04-17

    A new neutron collar has been designed for the measurement of fresh LEU fuel assemblies. This collar uses “fast mode” measurement to reduce the effect of burnable poison rods on the assay and thus reduce the dependence on the operator’s declaration. The new collar design reduces effect of poison rods considerably. Instead of 12 pins of 5.2% Gd causing a 20.4% effect, as in the standard thermal mode collar, they only cause a 3.2% effect in the new collar. However it has higher efficiency so that reasonably precise measurements can be made in 25 minutes, rather than the 1 hour of previous collars. The new collar is fully compatible with the use of the standard data collection and analysis code INCC. This report describes the calibration that was made with a mock-up assembly at Los Alamos National Laboratory and with actual assemblies at the AREVA Fuel fabrication Plant in Lingen, Germany.

  12. Comparison of graphite, aluminum, and TransHab shielding material characteristics in a high-energy neutron field.

    PubMed

    Badhwar, G D; Huff, H; Wilkins, R; Thibeault, Sheila

    2002-12-01

    Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study.

  13. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    NASA Astrophysics Data System (ADS)

    Aragón-Martínez, Nestor; Gómez-Muñoz, Arnulfo; Massillon-JL, Guerda

    2014-11-01

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism1. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  14. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    SciTech Connect

    Aragón-Martínez, Nestor Massillon-JL, Guerda; Gómez-Muñoz, Arnulfo

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  15. Analysis and design of three dimensional supersonic nozzles. Volume 1: Nozzle-exhaust flow field analysis by a reference plane characteristics technique

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    A second order numerical method employing reference plane characteristics has been developed for the calculation of geometrically complex three dimensional nozzle-exhaust flow fields, heretofore uncalculable by existing methods. The nozzles may have irregular cross sections with swept throats and may be stacked in modules using the vehicle undersurface for additional expansion. The nozzles may have highly nonuniform entrance conditions, the medium considered being an equilibrium hydrogen-air mixture. The program calculates and carries along the underexpansion shock and contact as discrete discontinuity surfaces, for a nonuniform vehicle external flow.

  16. NIST Calibration of a Neutron Spectrometer ROSPEC.

    PubMed

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  17. NIST Calibration of a Neutron Spectrometer ROSPEC

    PubMed Central

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated 252Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements. PMID:27274944

  18. Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references

    SciTech Connect

    Grotke, G.E.

    1980-04-01

    Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

  19. Extension of the LOPLS-AA Force Field for Alcohols, Esters, and Monoolein Bilayers and its Validation by Neutron Scattering Experiments.

    PubMed

    Pluhackova, Kristyna; Morhenn, Humphrey; Lautner, Lisa; Lohstroh, Wiebke; Nemkovski, Kirill S; Unruh, Tobias; Böckmann, Rainer A

    2015-12-10

    The recently presented LOPLS-AA all-atom force field for long hydrocarbon chains, based on the OPLS-AA force field, was extended to alcohols, esters, and glyceryl monooleate (GMO) lipids as a model lipid. Dihedral angles were fitted against high level ab initio calculations, and ester charges were increased to improve their hydration properties. Additionally, the ester Lennard-Jones parameters were readjusted to reproduce experimental liquid bulk properties, densities, and heats of vaporization. This extension enabled the setup of LOPLS-AA parameters for GMO molecules. The properties of the lipid force field were tested for the liquid-crystalline phase of a GMO bilayer. The obtained area per lipid for GMO is in good agreement with experiment. Additionally, the lipid dynamics on the subpicosecond to the nanosecond time scale is in excellent agreement with results from time-of-flight (TOF) quasielastic neutron scattering (QENS) experiments on a multilamellar monoolein system, enabling here for the first time the critical evaluation of the short-time dynamics obtained from a molecular dynamics simulation of a membrane system. PMID:26537654

  20. Extension of the LOPLS-AA Force Field for Alcohols, Esters, and Monoolein Bilayers and its Validation by Neutron Scattering Experiments.

    PubMed

    Pluhackova, Kristyna; Morhenn, Humphrey; Lautner, Lisa; Lohstroh, Wiebke; Nemkovski, Kirill S; Unruh, Tobias; Böckmann, Rainer A

    2015-12-10

    The recently presented LOPLS-AA all-atom force field for long hydrocarbon chains, based on the OPLS-AA force field, was extended to alcohols, esters, and glyceryl monooleate (GMO) lipids as a model lipid. Dihedral angles were fitted against high level ab initio calculations, and ester charges were increased to improve their hydration properties. Additionally, the ester Lennard-Jones parameters were readjusted to reproduce experimental liquid bulk properties, densities, and heats of vaporization. This extension enabled the setup of LOPLS-AA parameters for GMO molecules. The properties of the lipid force field were tested for the liquid-crystalline phase of a GMO bilayer. The obtained area per lipid for GMO is in good agreement with experiment. Additionally, the lipid dynamics on the subpicosecond to the nanosecond time scale is in excellent agreement with results from time-of-flight (TOF) quasielastic neutron scattering (QENS) experiments on a multilamellar monoolein system, enabling here for the first time the critical evaluation of the short-time dynamics obtained from a molecular dynamics simulation of a membrane system.

  1. Magnetization Response of the Bulk and Supplementary Magnetic Domain Structure in High-Permeability Steel Laminations Visualized In Situ by Neutron Dark-Field Imaging

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Harti, R. P.; Schäfer, R.; Irastorza-Landa, A.; Van Swygenhoven, H.; Kaestner, A.; Hovind, J.; Pomjakushina, E.; Lehmann, E.; Grünzweig, C.

    2016-08-01

    Industrial transformer cores are composed of stacked high-permeability steel laminations (HPSLs). The performance and degree of efficiency of transformers are directly determined by the magnetic properties of each HPSL. In this article, we show how the neutron dark-field image (DFI) allows for the in situ visualization of the locally resolved response of the bulk and supplementary magnetic domain structures in HPSLs under the influence of externally applied magnetic fields. In particular, we investigate the domain formation and growth along the initial magnetization curve up to the saturated state. For decreasing field, we visualize the recurrence of the hysteretic domain structure down to the remanent state. Additionally, the DFI allows us to derive a correlation between the grain orientation and the corresponding volume and supplementary domain structure. Furthermore, we visualize the influence of the insulation coating, introducing desired tensile stresses on the domain structures. To compare our DFI findings to traditional methods, we perform complementary surface-sensitive magneto-optical Kerr-microscopy investigations.

  2. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  3. The effects of minimal length and maximal momentum on the transition rate of ultra cold neutrons in gravitational field

    NASA Astrophysics Data System (ADS)

    Pedram, Pouria; Nozari, Kourosh; Taheri, S. H.

    2011-03-01

    The existence of a minimum observable length and/or a maximum observable momentum is in agreement with various candidates of quantum gravity such as string theory, loop quantum gravity, doubly special relativity and black hole physics. In this scenario, the Heisenberg uncertainty principle is changed to the so-called Generalized (Gravitational) Uncertainty Principle (GUP) which results in modification of all Hamiltonians in quantum mechanics. In this paper, following a recently proposed GUP which is consistent with quantum gravity theories, we study the quantum mechanical systems in the presence of both a minimum length and a maximum momentum. The generalized Hamiltonian contains two additional terms which are proportional to αp 3 and α 2 p 4 where α ˜ 1 /M Pl c is the GUP parameter. For the case of a quantum bouncer, we solve the generalized Schrödinger equation in the momentum space and find the modified energy eigenvalues and eigenfunctions up to the second-order in GUP parameter. The effects of the GUP on the transition rate of ultra cold neutrons in gravitational spectrometers are discussed finally.

  4. Steady induction effects in geomagnetism. Part 1C: Geomagnetic estimation of steady surficial core motions: Application to the definitive geomagnetic reference field models

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    In the source-free mantle/frozen-flux core magnetic earth model, the non-linear inverse steady motional induction problem was solved using the method presented in Part 1B. How that method was applied to estimate steady, broad-scale fluid velocity fields near the top of Earth's core that induce the secular change indicated by the Definitive Geomagnetic Reference Field (DGRF) models from 1945 to 1980 are described. Special attention is given to the derivation of weight matrices for the DGRF models because the weights determine the apparent significance of the residual secular change. The derived weight matrices also enable estimation of the secular change signal-to-noise ratio characterizing the DGRF models. Two types of weights were derived in 1987-88: radial field weights for fitting the evolution of the broad-scale portion of the radial geomagnetic field component at Earth's surface implied by the DGRF's, and general weights for fitting the evolution of the broad-scale portion of the scalar potential specified by these models. The difference is non-trivial because not all the geomagnetic data represented by the DGRF's constrain the radial field component. For radial field weights (or general weights), a quantitatively acceptable explication of broad-scale secular change relative to the 1980 Magsat epoch must account for 99.94271 percent (or 99.98784 percent) of the total weighted variance accumulated therein. Tolerable normalized root-mean-square weighted residuals of 2.394 percent (or 1.103 percent) are less than the 7 percent errors expected in the source-free mantle/frozen-flux core approximation.

  5. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  6. Neutron detector

    SciTech Connect

    Stephan, Andrew C; Jardret, Vincent D

    2009-04-07

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  7. Magnetic field dependent neutron powder diffraction studies of Ru{sub 0.9}Sr{sub 2}YCu{sub 2.1}O{sub 7.9}

    SciTech Connect

    Nigam, R.; Pan, A. V.; Dou, S. X.; Kennedy, S. J.; Studer, A. J.; Stuesser, N.

    2010-05-15

    Temperature and magnetic field dependent neutron diffraction has been used to study the magnetic order in Ru{sub 0.9}Sr{sub 2}YCu{sub 2.1}O{sub 7.9}. The appearance of (1/2, 1/2, 1/2), (1/2, 1/2, 3/2), and (1/2, 1/2, 5/2) peaks below T{sub M}=140 K manifests the antiferromagnetic order. Neutron diffraction patterns measured in applied magnetic fields from 0 to 6 T show the destruction of the antiferromagnetic order with increasing field. There is no evidence of spontaneous or field-induced long range ferromagnetic order. This latter result contradicts the vast majority of other experimental observations for this system.

  8. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Moon, S.; White, R. S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron detector and additional analysis corrections lead to slightly changed neutron fluxes. The theoretical angular distributions of Merker (1975) are in general agreement with the reported experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current is in agreement with the experimental values from 10 to 100 MeV. The experimental fluxes obtained agree with those of Kanbach et al. (1974) in the overlap region from 70 to 100 MeV.

  9. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  10. Probing Shell Structure and Shape Changes in Neutron-Rich Sulfur Isotopes through Transient-Field g-Factor Measurements on Fast Radioactive Beams of {sup 38}S and {sup 40}S

    SciTech Connect

    Davies, A.D.; Becerril, A.; Brown, B.A.; Campbell, C.M.; Cook, J.M.; Dinca, D.C.; Terry, J.R.; Zwahlen, H.; Stuchbery, A.E.; Davidson, P.M.; Mantica, P.F.; Liddick, S.N.; Tomlin, B.E.; Wilson, A.N.; Gade, A.; Mertzimekis, T.J.; Mueller, W.F.; Yoneda, K.

    2006-03-24

    The shell structure underlying shape changes in neutron-rich nuclei near N=28 has been investigated by a novel application of the transient-field technique to measure the first-excited-state g factors in {sup 38}S and {sup 40}S produced as fast radioactive beams. There is a fine balance between proton and neutron contributions to the magnetic moments in both nuclei. The g factor of deformed {sup 40}S does not resemble that of a conventional collective nucleus because spin contributions are more important than usual.

  11. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  12. Neutron detector characterization for SCINTIA array

    SciTech Connect

    Matei, C.; Hambsch, F. J.; Oberstedt, S.

    2011-07-01

    SCINTIA is a new detector array of organic scintillators under development at the Inst. for Reference Materials and Measurements (IRMM). The present design of SCINTIA includes NE213, p-terphenyl and Li glass neutron detectors positioned in a spherical configuration around the target. The properties of a novel p-terphenyl neutron detector to be used with SCINTIA have been investigated using photon sources and neutrons from a time tagged {sup 252}Cf(sf) source. The results show that the p-terphenyl crystal has better energy resolution, increased proton light output and neutron efficiency when compared to a similar size NE213 equivalent neutron detector. (authors)

  13. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used

  14. Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector

    NASA Astrophysics Data System (ADS)

    Sánchez-Doblado, F.; Domingo, C.; Gómez, F.; Sánchez-Nieto, B.; Muñiz, J. L.; García-Fusté, M. J.; Expósito, M. R.; Barquero, R.; Hartmann, G.; Terrón, J. A.; Pena, J.; Méndez, R.; Gutiérrez, F.; Guerre, F. X.; Roselló, J.; Núñez, L.; Brualla-González, L.; Manchado, F.; Lorente, A.; Gallego, E.; Capote, R.; Planes, D.; Lagares, J. I.; González-Soto, X.; Sansaloni, F.; Colmenares, R.; Amgarou, K.; Morales, E.; Bedogni, R.; Cano, J. P.; Fernández, F.

    2012-10-01

    Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.

  15. Improvement of the cold neutron beam line (CN-3) in KUR for neutron optical device development

    NASA Astrophysics Data System (ADS)

    Kawabata, Yuji; Hino, Masahiro; Tasaki, Seiji; Ebisawa, Toru; Maruyama, Ryuji; Horie, Takashi

    2002-01-01

    The cold neutron beam line CN-3 in Kyoto University Reactor (KUR) is being renewed for dedicating to the development of neutron optical devices. CN-3 has a supermirror guide tube with the cross-section of 20 mm (width)× 90 mm (height), and the wide-band neutron spectrum is available. New beam lines are prepared for both time-of-flight (TOF) and monochromatic experiments including a neutron reflectivity measurement. It has a polarized neutron option with a very low magnetic field to cope with polarized neutron devices. In particular, the TOF mode will be used for developing devices, which are suitable for pulsed neutron sources. Cold neutron radiography is also available within a space of 1 m×0.8 m. A neutron imaging plate system is prepared as the neutron imaging detection.

  16. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  17. MAGNETIC NEUTRON SCATTERING

    SciTech Connect

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  18. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  19. Field Dependence of the Magnetic Propagation Vector of the Heavy Fermion Compound CeCu2Ge2 Studied by Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, M.; Geselbracht, P.; Faulhaber, E.; Rotter, M.; Doerr, M.; Schmalzl, K.; Schneidewind, A.

    CeCu2Ge2, the counterpart of the heavy-fermion superconductor CeCu2Si2, exhibits an in-commensurate antiferromagnetically long-range ordered ground state with τ = (0.28 0.28 0.54) below TN = 4.15K. The magnetism is strongly affected by a Kondo screening of the Ce 4f-moments by conduction electrons. The similar energy scale of both, Kondo and exchange interactions, results in a complex magnetic phase diagram and gives rise to potential quantum critical phenomena at very low temperatures. We present elastic neutron diffraction data obtained on a CeCu2Ge2 single crystal employing the cold triple axis spectrometer PANDA at MLZ and the diffractometer D23 at ILL. The field dependence of the magnetic propagation vector was measured at T ≤ 400 mK in the [110]/[001] plane with vertical magnetic fields applied along [1¯10]. We observe a low-field incommensurate magnetic phase AF1, a first order phase transition around 7.8 T with the coexistence of two phases AF1 and AF2 with slightly different propagation vectors, the disappearance of AF1 at 8 T and the existence of AF2 up to 12 T with a possible modification at 10 T. At 12.6 T, yet still well below the value of 26 T of the saturation for magnetic fields in [110] direction, the AF2-type magnetic order is lost and magnetic intensities are not to be found at incommensurate positions in the [110]/[001] plane any more. These new results contradict a previously suggested scenario with a QCP located at 8 T and contribute new information to the B - T phase diagram of CeCu2Ge2 in [110] direction.

  20. Radii of neutron drops probed via the neutron skin thickness of nuclei

    NASA Astrophysics Data System (ADS)

    Zhao, P. W.; Gandolfi, S.

    2016-10-01

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. We demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208Pb and 48Ca, i.e., the difference between the neutron and proton rms radii of a nucleus. Due to its high quality, this correlation can be used to deduce the radii of neutron drops from the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces. We also present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208Pb and 48Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.