Science.gov

Sample records for neutron reflectometry study

  1. Isotope-Identifying neutron reflectometry

    SciTech Connect

    Nikitenko, Yu. V. Petrenko, A. V.; Gundorin, N. A.; Gledenov, Yu. M.; Aksenov, V. L.

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  2. Temperature-controlled neutron reflectometry sample cell suitable for study of photoactive thin films

    SciTech Connect

    Yager, Kevin G.; Tanchak, Oleh M.; Barrett, Christopher J.; Watson, Mike J.; Fritzsche, Helmut

    2006-04-15

    We describe a novel cell design intended for the study of photoactive materials using neutron reflectometry. The cell can maintain sample temperature and control of ambient atmospheric environment. Critically, the cell is built with an optical port, enabling light irradiation or light probing of the sample, simultaneous with neutron reflectivity measurements. The ability to measure neutron reflectivity with simultaneous temperature ramping and/or light illumination presents unique opportunities for measuring photoactive materials. To validate the cell design, we present preliminary results measuring the photoexpansion of thin films of azobenzene polymer.

  3. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  4. Methanol Diffusion into Thin Ionomer Films: An in situ Study Using Neutron Reflectometry .

    NASA Astrophysics Data System (ADS)

    He, Lilin

    2008-03-01

    THUSITHA, N. ETAMPAWALA DVORA, PERAHIA ^ Department of Chemistry, Clemson University, Clemson, SC 29634 JAROSLAW MAJEWSKI, Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM 87545 CHRISTOPHER J. CORNELIUS^ Sandia National Laboratories, MS 0886, Albuquerque, New Mexico 87185-0886 The penetration of solvent into a polymer that consists of incompatable groups is determined by the specific interactions with the guest molecule, where interfacial structure and dynamics of the polymer affect the onset of the process. The current work presents a neutron reflectometry study of the penetration of methanol into sulfonated polyphenlylene thin films. The ionomer films were exposed to saturated deuterated methanol vapor and reflectometry patterns were recorded until equilibrium was reached. The process incorporates two stages where the vapors first wet the surface and then penetrate into the film. Significant swelling takes place as soon as the film is exposed to the vapors. Similar to previous studied in water, the onset diffusion is Fickian followed by an anomalous diffusion process. The entire process however is faster than that observed for water.

  5. Time-resolved neutron reflectometry and photovoltaic device studies on sequentially deposited PCDTBT-fullerene layers.

    PubMed

    Clulow, Andrew J; Tao, Chen; Lee, Kwan H; Velusamy, Marappan; McEwan, Jake A; Shaw, Paul E; Yamada, Norifumi L; James, Michael; Burn, Paul L; Gentle, Ian R; Meredith, Paul

    2014-09-30

    We have used steady-state and time-resolved neutron reflectometry to study the diffusion of fullerene derivatives into the narrow optical gap polymer poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) to explore the sequential processing of the donor and acceptor for the preparation of efficient organic solar cells. It was found that when [6,6]-phenyl-C61-butyric-acid-methyl-ester (60-PCBM) was deposited onto a thin film of PCDTBT from dichloromethane (DCM), a three-layer structure was formed that was stable below the glass-transition temperature of the polymer. When good solvents for the polymer were used in conjunction with DCM, both 60-PCBM and [6,6]-phenyl-C71-butyric-acid-methyl-ester (70-PCBM) were seen to form films that had a thick fullerene layer containing little polymer and a PCDTBT-rich layer near the interface with the substrate. Devices composed of films prepared by sequential deposition of the polymer and fullerene had efficiencies of up to 5.3%, with those based on 60-PCBM close to optimized bulk heterojunction (BHJ) cells processed in the conventional manner. Sequential deposition of pure components to form the active layer is attractive for large-area device fabrication, and the results demonstrate that this processing method can give efficient solar cells.

  6. Adsorption of cationic polyacrylamide at the cellulose-liquid interface: a neutron reflectometry study.

    PubMed

    Su, Jielong; Garvey, Christopher J; Holt, Stephen; Tabor, Rico F; Winther-Jensen, Bjorn; Batchelor, Warren; Garnier, Gil

    2015-06-15

    The layer thickness and density of high molecular weight cationic polyacrylamide (CPAM) adsorbed at the cellulose-water interface was quantified by neutron reflectometry. The thickness of a full monolayer of CPAM of constant molecular weight (13 MD) but different charge densities, adsorbed with or without NaCl (10(-3) M), was studied. Thin cellulose films (40±7 Å) of roughness <10 Å were produced by spin coating a cellulose acetate-acetone solution and regenerating by alkaline hydrolysis. Film smoothness was greatly improved by controlling the concentration of cellulose acetate (0.13 wt%) and the hydrolysis time in sodium methoxide. The adsorption thickness of CPAM (40% charge 13 MD) at the solid-D2O interface was 43±4 Å on cellulose and 13±2 Å on silicon, an order of magnitude smaller than the CPAM radius of gyration. At constant molecular weight, the thickness of the CPAM layer adsorbed on cellulose increases with polymer charge density (10±1 Å at 5%). Addition of 10(-3) M NaCl decreased the thickness of CPAM layer already adsorbed on cellulose. However, the adsorption layer on cellulose of a CPAM solution equilibrated in 10(-3) M NaCl is much thicker (89±11 Å for 40% CPAM). For high molecular weight CPAMs adsorbed from solution under constant conditions, the adsorption layer can be varied by 1 order of magnitude via control of the variables affecting electrostatic intra- and inter-polymer chain interactions.

  7. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry.

  8. Polarized neutron reflectometry of magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Toperverg, B. P.

    2015-12-01

    Among a number of methods employed to characterize various types of magnetic nano-structures Polarized Neutron Reflectometry (PNR) is shown to be a unique tool providing a scope of quantitative information on magnetization arrangement over relevant scales. Deeply penetrating into materials neutron spins are able to resolve vectorial profile of magnetic induction with accuracy of a fraction of Oersted over a fraction of nano-meters. This property is exploited in measurements of specular PNR which hence constitutes the method of depth resolved vector magnetometry widely used to examine magnetic states in exchange coupled magnetic superlattices, exchange bias systems, spin valves, exchange springs, superconducting/ferromagnetic heterostructure, etc. Off-specular polarized neutron scattering (OS-PNS) measures the in-plane magnetization distribution over scales from hundreds of nanoto hundreds of micrometers providing, in combination with specular PNR, access to lateral long range fluctuations of the magnetization vector and magnetic domains in these systems. OSPNS is especially useful in studies of co-operative magnetization reversal processes in various films and multilayers laterally patterned into periodic arrays of stripes, or islands of various dimentions, shapes, internal structures, etc., representing an interest for e.g. spintronics. Smaller sizes of 10?100 nm are accessed with the method of Polarized Neutrons Grazing Incidence Small Angle Scattering (PN-GISAS), which in a combination with specular PNR and OS-PNS is used to study self-assembling of magnetic nano-particles on flat surfaces, while Polarized Neutron Grazing Incidence Diffraction (PN-GID) complete the scope of magnetic information over wide range of scales in 3D space. The review of recent results obtained employing the methods listed above is preceded by the detailed theoretical consideration and exemplified by new developments addressing with PNR fast magnetic kinetics in nano-systems.

  9. Polarized neutron reflectometry in high magnetic fields

    SciTech Connect

    Fritzsche, H.

    2005-11-15

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe{sub 2}/DyFe{sub 2} multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada.

  10. Steric Effects in Ionic Pairing and Polyelectrolyte Interdiffusion within Multilayered Films: A Neutron Reflectometry Study

    SciTech Connect

    Xu, Li; Ankner, John Francis; Sukhishvili, Prof. Svetlana A.

    2011-01-01

    Using a series of polycations synthesized by atom transfer radical polymerization (ATRP), we investigate the effects of the polymer charge density and hydrophobicity on salt-induced interdiffusion of polymer layers within polyelectrolyte multilayer (PEM) films. Polycations with two distinct hydrophobicities and various quaternization degrees (QPDMA and QPDEA) were derived from parent polymers of matched molecular weights poly(2-(dimethylamino)ethyl methacrylate) (PDMA) and poly(2-(diethylamino)ethyl methacrylate) (PDEA) by quaternization with either methyl or ethyl sulfate. Multilayers of these polycations with polystyrene sulfonate (PSS) were assembled in low-salt conditions, and annealed in NaCl solutions to induce layer intermixing. As revealed by neutron reflectometry (NR), polycations with lower charge density resulted in a faster decay of film structure with distance from the substrate. Interestingly, when comparing polymer mobility in QPDEA/PSS and QPDMA/PSS films, layer intermixing was faster in the case of more hydrophobic QPDEA as compared to QPDMA, because of the weaker ionic pairing (due to the presence of a bulky ethyl spacer) between QPDEA and PSS.

  11. Neutron reflectometry of supported hybrid bilayers with inserted peptide

    PubMed Central

    Smith, Matthew B.; McGillivray, Duncan J.; Genzer, Jan; Lösche, Mathias; Kilpatrick, Peter K.

    2011-01-01

    The insertion of a synthetic amphiphilic, α-helical peptide into a supported hybrid bilayer membrane (HBM) was studied by neutron reflectometry to elucidate the resulting nanostructure. The HBM consisted of a self-assembled monolayer of perdeuterated octadecanethiol on gold and an overlying leaflet of acyl-deuterated phosphatidylcholine (d-DMPC). Using contrast variation, several reflectivity spectra were recorded for each step of film fabrication, and simultaneously modeled. This analysis indicated that peptide insertion into the DMPC lipid leaflet is the likeliest mode of incorporation. PMID:21274414

  12. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    SciTech Connect

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  13. The study of perpendicular magnetic anisotropy in the magnetic sensors with linear sensitivity using polarized neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Zhu, T.

    2016-04-01

    The CoFeB sandwiched by Ta and MgO layers enables a perpendicular magnetic anisotropy (PMA) and provides a pathway for such application. In this paper, we reported the origin of PMA in CoFeB using the anomalous Hall effect (AHE) and polarized neutron reflectometry (PNR). From PNR experiments, we obtained the details of the magnetic and structural depth profiles inside the film. It is found that the PMA properties of CoFeB layers deposited above and under MgO layer are different and PNR measurements confirmed that a large PMA in the CoFeB above MgO layer is related to its low magnetization. Based on this PMA mechanism, we obtain a high sensitivity of AHE in the perpendicular CoFeB, which opens a new avenue to detect ultralow magnetic field.

  14. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    PubMed Central

    JUNGHANS, ANN; WALTMAN, MARY JO; SMITH, HILLARY L.; POCIVAVSEK, LUKA; ZEBDA, NOUREDDINE; BIRUKOV, KONSTANTIN; VIAPIANO, MARIANO; MAJEWSKI, JAROSLAW

    2015-01-01

    Neutron reflectometry (NR) was used to examine various live cells adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell – surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies. PMID:25705067

  15. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Zebda, Noureddine; Birukov, Konstantin; Viapiano, Mariano; Majewski, Jaroslaw

    2014-12-01

    Neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutron reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.

  16. Neutron Reflectometry Studies of the Adsorbed Structure of the Amelogenin, LRAP

    SciTech Connect

    Tarasevich, Barbara J.; Perez-Salas, Ursula; Masica, David L.; Philo, John; Krueger, Susan; Majkrzak, Charles F.; Gray, Jeffrey J.; Shaw, Wendy J.

    2013-03-21

    Amelogenins make up over 90 percent of the protein present during enamel formation and have been demonstrated to be critical in proper enamel development, but the mechanism governing this control is not well understood. Leucine-rich amelogenin peptide (LRAP) is a 59-residue splice variant of amelogenin and contains the charged regions from the full protein thought to control crystal regulation. In this work, we utilized neutron reflectivity (NR) to investigate the structure and orientation of LRAP adsorbed from solutions onto molecularly smooth COOH-terminated self-assembled monolayers (SAMs) surfaces. Sedimentation velocity experiments revealed that LRAP is primarily a monomer in saturated calcium phosphate (SCP) solutions (0.15 M NaCl) at pH 7.4. LRAP adsorbed as ~33 Å thick layers at ~70% coverage as determined by NR. Rosetta simulations of the dimensions of LRAP in solution (37 Å diameter) indicate that the NR determined z dimension is consistent with an LRAP monomer. Sedimentation velocity experiments and Rosetta simulation show that the LRAP monomer has an extended, asymmetric shape in solution. The NR data suggests that the protein is not completely extended on the surface, having some degree of structure away from the surface. A protein orientation with the C-terminal and inner N-terminal region (~8-24)) located near the surface is consistent with the higher scattering length density (SLD) and higher protein hydration found near the surface by NR. This work presents new information on the tertiary and quaternary structure of LRAP in solution and adsorbed onto surfaces. It also presents further evidence that the monomeric species may be an important functional form of amelogenin proteins.

  17. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    SciTech Connect

    Halbert, Candice E; Ankner, John Francis; Kent, Michael S; Jaclyn, Murton K; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due

  18. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    DOE PAGES

    Junghans, Ann; Waltman, Mary Jo; Smith, Hillary L.; ...

    2014-12-10

    In this study, neutron reflectometry (NR) was used to examine various live cells' adhesion to quartz substrates under different environmental conditions, including flow stress. To the best of our knowledge, these measurements represent the first successful visualization and quantization of the interface between live cells and a substrate with sub-nanometer resolution. In our first experiments, we examined live mouse fibroblast cells as opposed to past experiments using supported lipids, proteins, or peptide layers with no associated cells. We continued the NR studies of cell adhesion by investigating endothelial monolayers and glioblastoma cells under dynamic flow conditions. We demonstrated that neutronmore » reflectometry is a powerful tool to study the strength of cellular layer adhesion in living tissues, which is a key factor in understanding the physiology of cell interactions and conditions leading to abnormal or disease circumstances. Continuative measurements, such as investigating changes in tumor cell — surface contact of various glioblastomas, could impact advancements in tumor treatments. In principle, this can help us to identify changes that correlate with tumor invasiveness. Pursuit of these studies can have significant medical impact on the understanding of complex biological problems and their effective treatment, e.g. for the development of targeted anti-invasive therapies.« less

  19. Characterisation of coated aerosols using optical tweezers and neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Jones, S. H.; Ward, A.; King, M. D.

    2013-12-01

    Thin organic films are believed to form naturally on the surface of aerosols [1,2] and influence aerosol properties. Cloud condensation nuclei formation and chemical reactions such as aerosol oxidation are effected by the presence of thin films [3]. There is a requirement to characterise the physical properties of both the core aerosol and its organic film in order to fully understand the contribution of coated aerosols to the indirect effect. Two complementary techniques have been used to study the oxidation of thin organic films on the surface of aerosols; laser optical tweezers and neutron reflectometry. Micron sized polystyrene beads coated in oleic acid have been trapped in air using two counter propagating laser beams. Polystyrene beads are used as a proxy for solid aerosol. The trapped aerosol is illuminated with a white LED over a broadband wavelength range and the scattered light collected to produce a Mie spectrum [4]. Analysis of the Mie spectrum results in determination of the core polystyrene bead radius, the oleic acid film thickness and refractive index dispersion of the core and shell [5]. A flow of ozone gas can then be introduced into the aerosol environment to oxidise the thin film of oleic acid and the reaction followed by monitoring the changes in the Mie spectrum. The results demonstrate complete removal of the oleic acid film. We conclude that the use of a counter propagating optical trap combined with white light Mie spectroscopy can be used to study a range of organic films on different types of aerosols and their oxidation reactions. Neutron reflectometry has been used as a complementary technique to study the oxidation of monolayer films at the air-water interface in order to gain information on reaction kinetics. The oxidation of an oleic acid film at the air-water interface by the common tropospheric oxidant ozone has been studied using a Langmuir trough. Results indicate complete removal of the oleic acid film with ozone in agreement

  20. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  1. Morphological origin for the stratification of P3HT:PCBM blend film studied by neutron reflectometry

    SciTech Connect

    Keum, Jong Kahk; Browning, James F.; Halbert, Candice E.; Xiao, Kai; Shao, Ming; Hong, Kunlun

    2013-11-25

    Understanding the origin for the film stratification of electron donor/acceptor blend is crucial for high efficiency organic photovoltaic cell. In this study, P3HT:PCBM blend is deposited onto hydrophilic and hydrophobic substrate to examine the film stratifications. The neutron reflectivity results show that, on the different surfaces, PCBM diffuses toward the two interfacial regions in an identical fashion during thermal annealing. This evidences that the film stratification is not affected by the substrates. Instead, since P3HT remains more amorphous in the interfacial regions and PCBM is miscible with amorphous P3HT, PCBM preferentially diffuses to the interfacial regions, resulting in the stratification.

  2. Morphological origin for the stratification of P3HT:PCBM blend film studied by neutron reflectometry

    SciTech Connect

    Keum, Jong Kahk; Browning, Jim; Xiao, Kai; Shao, Ming; Hong, Kunlun; Halbert, Candice E

    2013-01-01

    Understanding the origin for the film stratification of electron donor/acceptor blend is crucial for high efficiency organic photovoltaic cell. In this study, P3HT:PCBM blend is deposited onto hydrophilic and hydrophobic substrate to examine the film stratifications. The neutron reflectivity results show that, on the different surfaces, PCBM diffuses toward the two interfacial regions in an identical fashion during thermal annealing. This evidences that the film stratification is not affected by the substrates. Instead, since P3HT remains more amorphous in the interfacial regions and PCBM is miscible with amorphous P3HT, PCBM preferentially diffuses to the interfacial regions, resulting in the stratification.

  3. Neutron reflectometry on highly absorbing films and its application to 10B4C-based neutron detectors

    PubMed Central

    Piscitelli, F.; Khaplanov, A.; Devishvili, A.; Schmidt, S.; Höglund, C.; Birch, J.; Dennison, A. J. C.; Gutfreund, P.; Hall-Wilton, R.; Van Esch, P.

    2016-01-01

    Neutron reflectometry is a powerful tool used for studies of surfaces and interfaces. The absorption in the typical studied materials is neglected and this technique is limited only to the reflectivity measurement. For strongly absorbing nuclei, the absorption can be directly measured by using the neutron-induced fluorescence technique which exploits the prompt particle emission of absorbing isotopes. This technique is emerging from soft matter and biology where highly absorbing nuclei, in very small quantities, are used as a label for buried layers. Nowadays, the importance of absorbing layers is rapidly increasing, partially because of their application in neutron detection; a field that has become more active also due to the 3He-shortage. We extend the neutron-induced fluorescence technique to the study of layers of highly absorbing materials, in particular 10B4C. The theory of neutron reflectometry is a commonly studied topic; however, when a strong absorption is present the subtle relationship between the reflection and the absorption of neutrons is not widely known. The theory for a general stack of absorbing layers has been developed and compared to measurements. We also report on the requirements that a 10B4C layer must fulfil in order to be employed as a converter in neutron detection. PMID:26997902

  4. The study of perpendicular magnetic anisotropy in CoFeB sandwiched by MgO and tantalum layers using polarized neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Yang, Y.; Yu, R. C.; Ambaye, H.; Lauter, V.; Xiao, J. Q.

    2012-05-01

    The perpendicular magnetic anisotropy (PMA) in CoFeB sandwiched by MgO and tantalum layers was investigated using anomalous Hall effect and polarized neutron reflectometry. It was found that a large PMA in the CoFeB above MgO layer was related to its low magnetization compared to the case of CoFeB under MgO layer. Using the sensitivity of neutrons to the absorption cross-section of boron, we unambiguously determined the depth profile of the boron distribution and showed that after annealing, most of the boron diffused to form a 2-nm-thick interface layer between the CoFeB and tantalum layers.

  5. Quantification of magnetic domain disorder and correlations in antiferromagnetically coupled multilayers by neutron reflectometry

    PubMed

    Langridge; Schmalian; Marrows; Dekadjevi; Hickey

    2000-12-04

    The in-plane correlation lengths and angular dispersion of magnetic domains in a transition metal multilayer have been studied using off-specular neutron reflectometry techniques. A theoretical framework considering both structural and magnetic disorder has been developed, quantitatively connecting the observed scattering to the in-plane correlation length and the dispersion of the local magnetization vector about the mean macroscopic direction. The antiferromagnetic domain structure is highly vertically correlated throughout the multilayer. We are easily able to relate the neutron determined magnetic domain dispersion to magnetization and magnetoresistance experiments.

  6. One directional polarized neutron reflectometry with optimized reference layer method

    SciTech Connect

    Masoudi, S. Farhad; Jahromi, Saeed S.

    2012-09-01

    In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.

  7. Interaction of a cationic gemini surfactant with DNA and with sodium poly(styrene sulphonate) at the air/water interface: a neutron reflectometry study.

    PubMed

    Vongsetskul, T; Taylor, D J F; Zhang, J; Li, P X; Thomas, R K; Penfold, J

    2009-04-07

    The interactions between a dicationic gemini surfactant with a six-hydrocarbon spacer (1,2-bis(dodecyldimethyl-ammonio)hexane dibromide, C12C6C12Br2) and anionic polyelectrolyte DNA or sodium (polystyrene sulfonate) (NaPSS) at the air/solution interface have been studied and compared using neutron reflectometry together with surface tension. In the presence of the dichained cationic gemini surfactant, DNA and NaPSS display very different adsorption behaviors. The DNA/gemini mixtures show adsorption behavior very similar to that of DNA/C12TAB mixtures, with enhanced surfactant adsorption at low concentrations and thick structured layers at higher concentrations. However, for the NaPSS/gemini mixtures the amount of gemini at the surface is reduced relative to that in the absence of NaPSS at concentrations below the cmc. These differences in adsorption behavior are attributed to differences in the molecular structure and flexibility of the two polyanions. NaPSS is relatively hydrophobic and flexible enough to form bulk-phase polymer-micelle complexes with the gemini surfactant at low surfactant concentrations, whereas the adsorption of surface complexes is much less favorable because the dications on the gemini would require adjacent bulky pendant charges on the NaPSS to be oriented toward the surface. This would force the NaPSS to bend significantly whereas it is more favorable for the NaPSS to adopt an extended conformation at the surface. Thus, surfactant is actually removed from the surface to form bulk-phase complexes. In contrast with NaPSS, DNA has a far more rigid structure, and the charges on the backbone are at fixed intervals, factors that make the formation of surface DNA-monomer complexes much more favorable than bulk-phase DNA-micelle complexes. Finally, a short-chain sample of NaPSS consisting of only five to six segments adsorbs very strongly at the surface with the gemini to form more extensive layered structures than have previously been observed

  8. The study of perpendicular magnetic anisotropy and Boron diffusion in Ta--CoFeB--MgO--CoFeB--Ta magnetic tunnel junction using polarized neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Lauter, Valeria; Ambaye, H.; Zhu, T.; Yang, Y.; Yu, R. C.; Xiao, J. Q.

    2013-03-01

    The current-induced spin transfer torque (STT) plays an important role in spintronic devices. However, the level of current density needed to reorient the magnetization is presently too high for most commercial applications, and reducing the current density is the challenging basis for recent research in spintronics. The magnetic tunnel junction (MTJ) with a perpendicular magnetic anisotropy (PMA) enables a small critical current density for current-induced magnetization switching and provides a pathway for such STT devices. We investigated the origin of PMA in CoFeB sandwiched by MgO and Ti layers using the anomalous Hall effect (AHE) and polarized neutron reflectometry (PNR). It is found that the PMA properties of CoFeB layers deposited above and under MgO layer are different and PNR measurements confirmed that a large PMA in the CoFeB above MgO layer is related to its low magnetization. From PNR experiments, we obtained the details of the magnetic and structural depth profiles inside the film. Using the sensitivity of neutrons to the absorption cross-section of boron, we unambiguously determined the depth profile of the boron distribution and showed that after annealing, most of the boron diffused to form a 2-nm-thick interface layer between the CoFeB and tantalum layers. Research at ORNL SNS was sponsored by BES and DOE.

  9. The Multi-Blade Boron-10-based neutron detector for high intensity neutron reflectometry at ESS

    NASA Astrophysics Data System (ADS)

    Piscitelli, F.; Messi, F.; Anastasopoulos, M.; Bryś, T.; Chicken, F.; Dian, E.; Fuzi, J.; Höglund, C.; Kiss, G.; Orban, J.; Pazmandi, P.; Robinson, L.; Rosta, L.; Schmidt, S.; Varga, D.; Zsiros, T.; Hall-Wilton, R.

    2017-03-01

    The Multi-Blade is a Boron-10-based gaseous detector introduced to face the challenge arising in neutron reflectometry at pulsed neutron sources. Neutron reflectometers are the most challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed to cope with the requirements set for the reflectometers at the upcoming European Spallation Source (ESS) in Sweden. Based on previous results obtained at the Institut Laue-Langevin (ILL) in France, an improved demonstrator has been built at ESS and tested at the Budapest Neutron Centre (BNC) in Hungary and at the Source Testing Facility (STF) at the Lund University in Sweden. A detailed description of the detector and the results of the tests are discussed in this manuscript.

  10. Characterization of BPSG films using Neutron Depth Profiling and Neutron/X-ray Reflectometry

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, H. H.; Lamaze, G. P.; Satija, S. K.

    2001-01-01

    Borophosphosilicate glass (BPSG) films with a nominal thickness of 200 nm on Si wafers have been characterized using Neutron Depth Profiling (NDP) and neutron and x-ray reflectometry at the NIST Center for Neutron Research. NDP measures the total boron concentration and distribution. The x-ray reflectivity provides information on the thickness and density of the thin surface oxide layer and the density of the thick BPSG layer, whereas neutron reflectivity reveals the thickness of the BPSG layer. A more complete picture can be established to identify problems in semiconductor fabrication processes that cause undesirable dopant concentration and distribution, or density variations due to doping or implants. We report a first comparison of complementary information on the BPSG films obtained using the three techniques.

  11. An In Situ Electric Field Study of Magnetoelectric Coupling in PZT-LSMO Thin Film Heterostructures Using Polarized Neutron Reflectometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven; Sloppy, Jennifer; Huang, Esther; Vasudevan, Rama; Lofland, Samuel; Lauter, Valeria; Valanoor, Nagarajan; Taheri, Mitra

    2013-03-01

    The development of ``spintronics'' devices based on charge and spin transport has signaled a paradigm shift in the design of data storage and computing technologies. Magnetoelectric materials, which exhibit intrinsic coupling between electronic and magnetic order, are ideal for these applications. Unfortunately, single-phase magnetoelectrics are exceedingly rare in nature and attention has turned to composite heterostructures that display coupled functionalities at interfaces. A promising system in which to explore this coupling is a thin film oxide heterostructure of the piezoelectric Pb(Zr0.2Ti0.8)O3 (PZT) and the half-metal La0.7Sr0.3MnO3 (LSMO). We show that it is possible to construct a capacitor-type device structure from these materials that may form the basis for an electrically-switched magnetic memory. We conduct polarized neutron reflectometry (PNR) measurements and measure changes in the magnetization depth profile throughout the composite under the reversal of an in situ electric field. We then correlate these PNR results to local strain and chemistry using transmission electron microscopy (TEM). We find that a combination of charge doping and strain mechanisms governs coupling in this system.

  12. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    PubMed

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates.

  13. Using Neutron Reflectometry to Discern the Structure of Fibrinogen Adsorption at the Stainless Steel/Aqueous Interface.

    PubMed

    Wood, Mary H; Browning, Kathryn L; Barker, Robert D; Clarke, Stuart M

    2016-06-23

    Neutron reflectometry has been successfully used to study adsorption on a stainless steel surface by means of depositing a thin steel film on silicon. The film was characterized using XPS (X-ray photoelectron spectroscopy), TOF-SIMS (time-of-flight secondary ion mass spectrometry), and GIXRD (grazing incidence X-ray diffraction), demonstrating the retention both of the austenitic phase and of the required composition for 316L stainless steel. The adsorption of fibrinogen from a physiologically-relevant solution onto the steel surface was studied using neutron reflectometry and QCM (quartz crystal microbalance) and compared to that on a deposited chromium oxide surface. It was found that the protein forms an irreversibly bound layer at low concentrations, with maximum protein concentration a distance of around 20 Å from the surface. Evidence for a further diffuse reversibly-bound layer forming at higher concentrations was also observed. Both the structure of the layer revealed by the neutron reflectometry data and the high water retention predicted by the QCM data suggest that there is a significant extent of protein unfolding upon adsorption. A lower extent of adsorption was seen on the chromium surfaces, although the adsorbed layer structures were similar, suggesting comparable adsorption mechanisms.

  14. Comparative structure analysis of magnetic fluids at interface with silicon by neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Avdeev, M. V.; Petrenko, V. I.; Gapon, I. V.; Bulavin, L. A.; Vorobiev, A. A.; Soltwedel, O.; Balasoiu, M.; Vekas, L.; Zavisova, V.; Kopcansky, P.

    2015-10-01

    The adsorption of surfactant coated magnetic nanoparticles from highly stable magnetic fluids on crystalline functionalized silicon is studied by neutron reflectometry. Two types of magnetic fluids based on nanomagnetite dispersed and stabilized in non-polar organic solvent (deuterated benzene) and strongly polar solvent (heavy water) are considered. In both cases the interface shows the formation of just one well-defined adsorption layer of nanoparticles, which is insensitive to the effect of the external magnetic field. Still, the particle concentration in the benzene-based fluid is higher in the vicinity to the silicon surface as compared to the bulk distribution. Despite the presence of an aggregate fraction in the water-based system the width of the adsorption layer is consistent with the size of separated particles, thus showing the preferable adsorption of non-aggregated particles.

  15. Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces

    DOE PAGES

    Junghans, Ann; Watkins, Erik B.; Barker, Robert D.; ...

    2015-03-16

    Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)].more » Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. Highlighted In the current report are some of the authors' recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.« less

  16. Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces

    SciTech Connect

    Junghans, Ann; Watkins, Erik B.; Barker, Robert D.; Singh, Saurabh; Waltman, Mary Jo; Smith, Hillary L.; Pocivavsek, Luka; Majewski, Jaroslaw

    2015-03-16

    Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)]. Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. Highlighted In the current report are some of the authors' recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.

  17. Neutron Diffuse Reflectometry of Magnetic Thin Films with a 3He Analyzer

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; O'Donovan, Kevin; Borchers, Julie

    2005-03-01

    Polarized neutron reflectometry (PNR) is a powerful probe that characterizes the magnetization depth profile and magnetic domains in magnetic thin films. Although the conventionally used supermirrors are well-matched for specular PNR, they have limited angular acceptance and hence are impractical for complete characterization of the magnetic off-specular scattering where polarization analysis for diffusely reflected neutrons is required. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Here we report efficient polarization analysis of diffusely reflected neutrons in a reflectometry geometry using a polarized ^3He analyzer in conjunction with a position-sensitive detector (PSD). We obtained spin-resolved two-dimensional Qx-Qz reciprocal space maps for a patterned array of Co antidots in both the saturated and the demagnetized states. The preliminary results for a patterned amorphous bilayer, Gd40Fe60/ Tb55Fe45, measured with a ^3He analyzer and a PSD will also be discussed. Using the spin exchange optical pumping method we have achieved record high ^3He polarizations of 76% on the neutron beam line where we measured an initial analyzing efficiency of 0.97 and a neutron transmission for the desired spin state of 0.45.

  18. Nanoscale structural and mechanical effects of beta-amyloid (1-42) on polymer cushioned membranes: a combined study by neutron reflectometry and AFM Force Spectroscopy.

    PubMed

    Dante, Silvia; Hauss, Thomas; Steitz, Roland; Canale, Claudio; Dencher, Norbert A

    2011-11-01

    The interaction of beta-amyloid peptides with lipid membranes is widely studied as trigger agents in Alzheimer's disease. Their mechanism of action at the molecular level is unknown and their interaction with the neural membrane is crucial to elucidate the onset of the disease. In this study we have investigated the interaction of water soluble forms of beta-amyloid Aβ(1-42) with lipid bilayers supported by polymer cushion. A reproducible protocol for the preparation of a supported phospholipid membrane with composition mimicking the neural membrane and in physiological condition (PBS buffer, pH=7.4) was refined by neutron reflectivity. The change in structure and local mechanical properties of the membrane in the presence of Aβ(1-42) was investigated by neutron reflectivity and Atomic Force Microscopy (AFM) Force Spectroscopy. Neutron reflectivity evidenced that Aβ(1-42) interacts strongly with the supported membrane, causing a change in the scattering length density profile of the lipid bilayer, and penetrates into the membrane. Concomitantly, the local mechanical properties of the bilayer are deeply modified by the interaction with the peptide as seen by AFM Force Spectroscopy. These results may be of great importance for the onset of the Alzheimer's disease, since a simultaneous change in the structural and mechanical properties of the lipid matrix could influence all membrane based signal cascades.

  19. Probing the spiral magnetic phase in 6 nm textured erbium using polarised neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Satchell, N.; Witt, J. D. S.; Burnell, G.; Curran, P. J.; Kinane, C. J.; Charlton, T. R.; Langridge, S.; Cooper, J. F. K.

    2017-02-01

    We characterise the magnetic state of highly-textured, sputter deposited erbium for a film of thickness 6 nm. Using polarised neutron reflectometry it is found that the film has a high degree of magnetic disorder, and we present some evidence that the film’s local magnetic state is consistent with bulk-like spiral magnetism. This, combined with complementary characterisation techniques, show that thin film erbium is a strong candidate material for incorporation into device structures.

  20. Detection of helium bubble formation at fcc-bcc interfaces using neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Kashinath, A.; Wang, P.; Majewski, J.; Baldwin, J. K.; Wang, Y. Q.; Demkowicz, M. J.

    2013-07-01

    We use neutron reflectometry to find the critical helium (He) fluence required to form He bubbles at interfaces between fcc and bcc metals. Our findings are in agreement with previous experimental as well as modeling results and provide evidence for the presence of stable He platelets at fcc-bcc interfaces prior to bubble formation. The stable storage of He in interfacial platelets may provide the basis for the design of materials with increased resistance to He-induced degradation.

  1. Non-standard Fickian self-diffusion of isotopically pure boron observed by neutron reflectometry and depth profiling

    SciTech Connect

    Baker, S.M.; Wu, K.; Smith, G.S.; Hubbard, K.M.; Nastasi, M.; Downing, R.G.; Lamaze, G.P.

    1995-12-31

    Neutron reflectometry (NR) studies of thin films of amorphous {sup 11}B/{sup 10}B on silicon indicate that a non-standard form of Fickian diffusion occurs across the boron interface upon annealing. In order to verify this observation, the samples were examined by neutron depth profiling (NDP). Comparison of the results from models of a step function, standard Fickian diffusion and Fickian diffusion with a fixed composition at the interface were made and compared to the previous NR results. The diffusion constant resulting from the non-standard Fickian model for the NDP data differs slightly from that obtained from the commonly used Fickian diffusion model and is not inconsistent with the NR results. This finding suggests that more information regarding diffusion at interfaces can be gained from these higher resolution neutron scattering techniques.

  2. Water uptake and swelling hysteresis in a nafion thin film measured with neutron reflectometry.

    PubMed

    Kalisvaart, W Peter; Fritzsche, Helmut; Mérida, Walter

    2015-05-19

    Water uptake and swelling in a thin (∼15 nm) Nafion film on SiO2 native oxide on a Si wafer is studied as a function of relative humidity (8-97%) at room temperature and as a function of temperature (25-60 °C) at 97% relative humidity by neutron reflectometry. This is the first report on the behavior of thin Nafion films at elevated temperatures and high humidity. Large hysteresis is observed during the temperature cycle. The observed swelling strain in the film at 60 °C is 48% as compared to the as-deposited state, which is far above any previously observed trend at room temperature. A small decrease in the average SLD suggests that part of the additional swelling is due to thermal expansion, but the estimated D2O/SO3 ratio also increases by 70%. Half of the "excess" absorption and 73% of the additional swelling are retained during cooling back to room temperature. The results provide new insights into the dynamics of Nafion on nanometer scales under fuel cell operating conditions.

  3. Dynamics of silver photo-diffusion into Ge-chalcogenide films: time-resolved neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Y.; Asaoka, H.; Uozumi, Y.; Kawakita, Y.; Ito, T.; Kubota, M.; Yamazaki, D.; Soyama, K.; Ailavajhala, M.; Latif, M. R.; Wolf, K.; Mitkova, M.; Skoda, M. W. A.

    2015-06-01

    Silver diffuses into an amorphous (a-) chalcogenide layer while visible light illuminates Ag/a-chalcogenide films and neutron reflectometry is a suitable technique probing time evolution of the depth profiles without damaging the sample by the probe beam itself. In this paper, we report the results of time-resolved neutron reflectivity measurements of a-Ge40Se60/Ag/ Si films taken while the films are exposed to visible light. From the measurements, we found enormous changes in the neutron reflectivity profile, including a loss of total reflection region, with continuous illumination even after forming one homogeneous layer, which occurred about 50 min after starting illumination. At this stage, a clear off-specular scattering was observed by a linear detector and a surface roughness was observed with naked eyes.

  4. Application of polarized neutron reflectometry and x-ray resonant magnetic reflectometry for determining the inhomogeneous magnetic structure in Fe/Gd multilayers.

    SciTech Connect

    Kravtsov, E. A.; Haskel, D.; te Velthuis, S. G. E.; Jiang, J. S.; Kirby, B. J.

    2010-01-01

    The evolution of the magnetic structure of multilayer [Fe (35 {angstrom})/Gd (50 {angstrom}){sub 5}] with variation in temperature and an applied magnetic field was determined using a complementary approach combining polarized neutron and X-ray resonant magnetic reflectometry. Self-consistent simultaneous analysis of X-ray and neutron spectra allowed us to determine the elemental and depth profiles in the multilayer structure with unprecedented accuracy, including the identification of an inhomogeneous intralayer magnetic structure with near-atomic resolution.

  5. Focusing neutron reflectometry: Implementation and experience on the TOF-reflectometer Amor

    NASA Astrophysics Data System (ADS)

    Stahn, J.; Glavic, A.

    2016-06-01

    Neutron reflectometry is a powerful tool to investigate chemical and magnetic depth profiles near surfaces. The advantages of neutrons compared to x-rays are their sensitivity to isotopes, the high penetration capabilities and the high sensitivity to magnetic induction. The biggest disadvantage however is the low flux available, which leads to much longer counting times on much larger samples. In order to boost the performance of neutron reflectometers, a focusing guide system was developed and realised over recent years. Here we report on the application and performance of a down-scaled demonstrator of such a Selene guide, installed as an add-on on the time-of-flight (TOF) reflectometer Amor at the PSI. Due to the limited size of the guide, the flux is concentrated to a footprint of at most 2 mm width. It is thus possible to avoid illumination of contacts even on small samples. Despite the fact that typical samples measured on Amor with a size of 10 × 10mm2 are markedly under illuminated, the presented set-up leads to a reduction in counting time of 80%. The use of the demonstrator thus allows for in-situ or in-operando investigations with a time resolution of a few minutes for a qz range from 0.005Å-1 to 0.08Å-1. Besides a short recapitulation of the concept of focusing reflectometry, a detailed description of the data reduction and its quality is given, followed by an application example.

  6. Characterization of Chemical Speciation in Ultra Thin Uranium Oxide Films by Neutron Reflectometry

    SciTech Connect

    Wang, Peng

    2012-06-20

    Motivation for this project is due to more than 17 kg of HEU and 400 g of Pu have been interdicted through an international effort to control nuclear smuggling. Nuclear forensics - Detection and analysis of nuclear materials recovered from either the capture of unused materials or from the radioactive debris following a nuclear explosion or activities, which can contribute significantly for national security. Develop new nuclear forensic methods can be applied to: (a) Environmental swipes, (b) Small particulates, and (c) Thin films. Conclusions of the project are: (1) A unique approach: Neutron Reflectometry + Surface Enhanced Raman Spectroscopy; and (2) Detection of chemical speciation with {angstrom}-level resolution.

  7. Motofit - integrating neutron reflectometry acquisition, reduction and analysis into one, easy to use, package

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew

    2010-11-01

    The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive "push button" approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.

  8. Feasibility study of ultrafast reflectometry for plasma position control

    NASA Astrophysics Data System (ADS)

    de Masi, Gianluca; Cavazzana, Roberto; Finotti, Claudio; Martines, Emilio; Marchiori, Giuseppe; Moresco, Maurizio

    2015-11-01

    The traditional and widely used O-mode microwave reflectometry diagnostics will be crucial for real-time plasma position control purposes in the next generation of tokamaks like ITER or DEMO. Different studies and experimental tests, demonstrated the reliability of such a system to complement and replace the magnetic measurements in order to estimate the plasma-wall gap with good temporal and spatial resolution. In RFX-mod, an innovative multiband reflectometry scheme, the ultrafast reflectometry technique, has been developed and successfully tested. This simplified scheme is based on a bidirectional frequency modulation (sweep time <1 μs) for each band and proved itself to be able to recover the position of the different cut-off density layers directly from the group delay analysis. In this contribution, we study the possibility of using this scheme for real-time plasma position control: we discuss both the reliability of correctly identifying the separatrix position starting from a discrete density profile reconstruction and the robustness of the measurements against fast dynamic events. This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  9. Time-of-Flight Polarized Neutron Reflectometry on PLATYPUS: Status and Future Developments

    NASA Astrophysics Data System (ADS)

    Saerbeck, T.; Cortie, D. L.; Brück, S.; Bertinshaw, J.; Holt, S. A.; Nelson, A.; James, M.; Lee, W. T.; Klose, F.

    Time-of-flight (ToF) polarized neutron reflectometry enables the detailed investigation of depth-resolved magnetic structures in thin film and multilayer magnetic systems. The general advantage of the time-of-flight mode of operation over monochromatic instruments is a decoupling of spectral shape and polarization of the neutron beam with variable resolution. Thus, a wide Q-range can be investigated using a single angle of incidence, with resolution and flux well-adjusted to the experimental requirement. Our paper reviews the current status of the polarization equipment of the ToF reflectometer PLATYPUS and presents first results obtained on stratified Ni80Fe20/α-Fe2O3 films, revealing the distribution of magnetic moments in an exchange bias system. An outlook on the future development of the PLATYPUS polarization system towards the implementation of a polarized 3He cell is presented and discussed with respect to the efficiency and high Q-coverage up to 1 Å-1 and 0.15 Å-1 in the vertical and lateral momentum transfer, respectively.

  10. H-mode studies with microwave reflectometry on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Manso, M.; Serra, F.; Kurzan, B.; Nunes, I.; Santos, J.; Silva, A.; Suttrop, W.; Varela, P.; Vergamota, S.

    1998-05-01

    The microwave reflectometry system on ASDEX Upgrade measures density profiles (in broadband swept operation) and plasma fluctuations (fixed-frequency operation) both at the high-field side (HFS) and low-field side (LFS). Densities up to 0741-3335/40/5/036/img12 can be probed. We analyse the evolution of turbulence at the L-H transition and during the ELMy phase of H-mode discharges. The detailed density profile evolution during type I ELMs is resolved and profile oscillations associated with ELM precursors are studied.

  11. Percolating bulk-heterostructures from neutron reflectometry and small angle scattering data

    NASA Astrophysics Data System (ADS)

    Olds, Daniel; Duxbury, Phillip

    2013-03-01

    We present a novel algorithm for efficiently calculating the simulated small angle scattering data of any discretized morphological model of arbitrary scale and resolution, referred to as the distribution function method (DFM). Unlike standard SAS fitting methods, the DFM algorithm allows for the calculation of form factors and structure factors from complex nanoscale morphologies commonly encountered in many modern polymeric and nanoparticle based systems, which have no exact analytical corollary. The computational efficiency of the DFM algorithm suggests it's use in morphological model refinement. We will present a number of simple examples to demonstrate the accuracy and limits of the algorithm, followed by an example of incorporation of the DFM algorithm into reverse Monte Carlo structural refinement of bulk-heterojunction two-phase morphologies, such as those commonly found in organic photovoltaic devices. We will show that morphological features introduced via direct incorporation of experimental neutron reflectometry and SANS data to the models has a direct effect on the results of device simulations. The authors thank CORE-CM at Michigan State University for it's funding of this research.

  12. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers.

    PubMed

    Luchini, Alessandra; Gerelli, Yuri; Fragneto, Giovanna; Nylander, Tommy; Pálsson, Gunnar K; Appavou, Marie-Sousai; Paduano, Luigi

    2017-03-01

    The safe application of nanotechnology devices in biomedicine requires fundamental understanding on how they interact with and affect the different components of biological systems. In this respect, the cellular membrane, the cell envelope, certainly represents an important target or barrier for nanosystems. Here we report on the interaction between functionalized SuperParamagnetic Iron Oxide Nanoparticles (SPIONs), promising contrast agents for Magnetic Resonance Imaging (MRI), and lipid bilayers that mimic the plasma membrane. Neutron Reflectometry, supported by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) experiments, was used to characterize this interaction by varying both SPION coating and lipid bilayer composition. In particular, the interaction of two different SPIONs, functionalized with a cationic surfactant and a zwitterionic phospholipid, and lipid bilayers, containing different amount of cholesterol, were compared. The obtained results were further validated by Dynamic Light Scattering (DLS) measurements and Cryogenic Transmission Electron Microscopy (Cryo-TEM) images. None of the investigated functionalized SPIONs were found to disrupt the lipid membrane. However, in all case we observed the attachment of the functionalized SPIONs onto the surface of the bilayers, which was affected by the bilayer rigidity, i.e. the cholesterol concentration.

  13. Interactions of Endoglucanases with Amorphous Cellulose Films Resolved by Neutron Reflectometry and Quartz Crystal Microbalance with Dissipation Monitoring

    SciTech Connect

    Cheng, Gang; Liu, Zelin; Kent, Michael S; Majewski, Jaroslaw; Michael, Jablin; Jaclyn, Murton K; Halbert, Candice E; Datta, Supratim; Chao, Wang; Brown, Page

    2012-01-01

    A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.

  14. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    SciTech Connect

    Callori, S. J. Bertinshaw, J.; Cortie, D. L.; Cai, J. W. Zhu, T.; Le Brun, A. P.; Klose, F.

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At low magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.

  15. Operando Measurement of Solid Electrolyte Interphase Formation at Working Electrode of Li-Ion Battery by Time-Slicing Neutron Reflectometry.

    PubMed

    Kawaura, Hiroyuki; Harada, Masashi; Kondo, Yasuhito; Kondo, Hiroki; Suganuma, Yoshitake; Takahashi, Naoko; Sugiyama, Jun; Seno, Yoshiki; Yamada, Norifumi L

    2016-04-20

    We report the first operando measurement of solid electrolyte interphase (SEI) formation at an electrode using in situ neutron reflectometry. The results revealed the growth of the SEI and intercalation of ions during the charge reaction. Furthermore, we propose a way of evaluating the charge used for the SEI formation.

  16. Structural Features of Membrane-bound Glucocerebrosidase and α-Synuclein Probed by Neutron Reflectometry and Fluorescence Spectroscopy*

    PubMed Central

    Yap, Thai Leong; Jiang, Zhiping; Heinrich, Frank; Gruschus, James M.; Pfefferkorn, Candace M.; Barros, Marilia; Curtis, Joseph E.; Sidransky, Ellen; Lee, Jennifer C.

    2015-01-01

    Mutations in glucocerebrosidase (GCase), the enzyme deficient in Gaucher disease, are a common genetic risk factor for the development of Parkinson disease and related disorders, implicating the role of this lysosomal hydrolase in the disease etiology. A specific physical interaction exists between the Parkinson disease-related protein α-synuclein (α-syn) and GCase both in solution and on the lipid membrane, resulting in efficient enzyme inhibition. Here, neutron reflectometry was employed as a first direct structural characterization of GCase and α-syn·GCase complex on a sparsely-tethered lipid bilayer, revealing the orientation of the membrane-bound GCase. GCase binds to and partially inserts into the bilayer with its active site most likely lying just above the membrane-water interface. The interaction was further characterized by intrinsic Trp fluorescence, circular dichroism, and surface plasmon resonance spectroscopy. Both Trp fluorescence and neutron reflectometry results suggest a rearrangement of loops surrounding the catalytic site, where they extend into the hydrocarbon chain region of the outer leaflet. Taking advantage of contrasting neutron scattering length densities, the use of deuterated α-syn versus protiated GCase showed a large change in the membrane-bound structure of α-syn in the complex. We propose a model of α-syn·GCase on the membrane, providing structural insights into inhibition of GCase by α-syn. The interaction displaces GCase away from the membrane, possibly impeding substrate access and perturbing the active site. GCase greatly alters membrane-bound α-syn, moving helical residues away from the bilayer, which could impact the degradation of α-syn in the lysosome where these two proteins interact. PMID:25429104

  17. Lithium diffusion in congruent LiNbO3 single crystals at low temperatures probed by neutron reflectometry.

    PubMed

    Hüger, E; Rahn, J; Stahn, J; Geue, T; Heitjans, P; Schmidt, H

    2014-02-28

    The self-diffusion of lithium in congruent LiNbO3 single crystals was investigated at low temperatures between 379 and 523 K by neutron reflectometry. From measurements on (6)LiNbO3 (amorphous film)/(nat)LiNbO3 (single crystal) samples, Li self-diffusivities were determined in single crystals down to extremely low values of 1 × 10(-25) m(2) s(-1) on small length scales of 1-10 nm. The measured diffusivities are in excellent agreement with (extrapolated) literature data obtained by experiments based on Secondary Ion Mass Spectrometry and Impedance Spectroscopy. The tracer diffusivities can be described by a single Arrhenius line over ten orders of magnitude with an activation enthalpy of 1.33 eV, which corresponds to the migration energy of a single Li vacancy. A deviation from the Arrhenius behaviour at low temperatures, e.g., due to defect cluster formation is not observed.

  18. Correlating Interfacial Structure and Magnetism in Thin-Film Oxide Heterostructures Using Transmission Electron Microscopy and Polarized Neutron Reflectometry

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven Richard

    Oxide thin-films have attracted considerable attention for a new generation of spintronics devices, where both electron charge and spin are used to transport information. However, a poor understanding of the local features that mediate magnetization and coupling in these materials has greatly limited their deployment into new information and communication technologies. This thesis describes direct, local measurements of structure-property relationships in ferrous thin-films and La1--xSrxMnO3 (LSMO) / Pb(ZrxTi1--x)O3 (PZT) thin-film heterostructures using spatially-resolved characterization techniques. In the first part of this thesis we explore the properties of ferrous spintronic thin-films. These films serve as a model system to establish a suite of interfacial characterization techniques for subsequent studies. We then study the static behavior of LSMO / PZT devices with polarization set by the underlying substrate. Using transmission electron microscopy and geometric phase analysis we reveal the presence of significant local strain gradients in these films for the first time. Electron energy loss spectroscopy mapping of the LSMO / PZT interface reveals Mn valence changes induced by charge-transfer screening. Bulk magnetometry and polarized neutron reflectometry indicate that these chemical and strain changes are associated with a graded magnetization across the LSMO layer. Density functional theory calculations are presented, which show that strain and charge-transfer screening act locally to suppress magnetization in the LSMO by changing the Mn orbital polarization. In the second half of this thesis, we explore asymmetric screening effects on magnetization LSMO / PZT composites. We find that the local ferroelectric polarization can vary widely and that this may be responsible for reduced charge-transfer effects, as well as magnetic phase gradients at interfaces. From this information and electron energy loss spectroscopy, we construct a map of the magnetic

  19. Characterization of the Decaheme c-type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-ray Scattering and Neutron Reflectometry

    SciTech Connect

    Johs, Alexander; Shi, Liang; Droubay, Timothy; Ankner, John Francis; Liang, Liyuan

    2010-01-01

    The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate electron shuttling, generated by the bacteria s metabolism, to extracellular acceptors that include solid metal oxides such as hematite ( -Fe2O3). To investigate the mechanism by which OmcA interacts with hematite, we purified OmcA and characterized its solution structure by small angle X-ray scattering (SAXS) and its interaction with hematite by neutron reflectometry (NR). SAXS results showed that OmcA is a monomer that adopts a flat ellipsoidal shape with a dimension of 3.4 9.0 6.5 nm3. Changes in redox state affect OmcA conformation. In addition, OmcA interacts with small organic ligands known to act as electron shuttle molecules, such as flavin mononucleotide (FMN), resulting in the formation of high molecular weight assemblies. A model system, developed using NR to study the interaction of OmcA with hematite, shows that OmcA forms a well-defined monomolecular layer on hematite surfaces. This allows OmcA to preferentially interact with hematite in a conformation that maximizes its contact area with the mineral surface. Overall, these results provide experimental and quantitative evidence for OmcA reduction of solid metal oxides involving both direct and indirect mechanisms.

  20. Off-Specular X-ray and Neutron Reflectometry for the Structural Characterization of Buried Interfaces

    SciTech Connect

    Lavery, Kristopher A.; Prabhu, Vivek M.; Lin, Eric K.; Wu, Wen-li; Satija, Sushil; Wormington, Matthew

    2007-09-26

    Off-specular reflectivity or diffuse scattering is sensitive to lateral compositional variations at surfaces and interfaces. It is particularly well-suited as a means of measuring the form and amplitude of surface roughness, as well as separating contributions from physical roughness and gradients in material density. The roughness and lateral correlation lengths of model rough surfaces were cross-correlated using neutron and x-ray off-specular reflectivity (OSNR and OSXR, respectively), and using power spectral density (PSD) analysis of atomic force microscopy (AFM) data. These experiments highlight the advantages of the technique for the investigation of buried interfaces while illustrating how x-ray and neutron techniques work complementarily to measure interfacial roughness.

  1. Phase segregation of sulfonate groups in Nafion interface lamellae, quantified via neutron reflectometry fitting techniques for multi-layered structures.

    PubMed

    DeCaluwe, Steven C; Kienzle, Paul A; Bhargava, Pavan; Baker, Andrew M; Dura, Joseph A

    2014-08-21

    Neutron reflectometry analysis methods for under-determined, multi-layered structures are developed and used to determine the composition depth profile in cases where the structure is not known a priori. These methods, including statistical methods, sophisticated fitting routines, and coupling multiple data sets, are applied to hydrated and dehydrated Nafion nano-scaled films with thicknesses comparable to those found coating electrode particles in fuel cell catalyst layers. These results confirm the lamellar structure previously observed on hydrophilic substrates, and demonstrate that for hydrated films they can accurately be described as layers rich in both water and sulfonate groups alternating with water-poor layers containing an excess of fluorocarbon groups. The thickness of these layers increases slightly and the amplitude of the water volume fraction oscillation exponentially decreases away from the hydrophilic interface. For dehydrated films, the composition oscillations die out more rapidly. The Nafion-SiO2 substrate interface contains a partial monolayer of sulfonate groups bonded to the substrate and a large excess of water compared to that expected by the water-to-sulfonate ratio, λ, observed throughout the rest of the film. Films that were made thin enough to truncate this lamellar region showed a depth profile nearly identical to thicker films, indicating that there are no confinement or surface effects altering the structure. Comparing the SLD profile measured for films dried at 60 °C to modeled composition profiles derived by removing water from the hydrated lamellae suggests incomplete re-mixing of the polymer groups upon dehydration, indicated limited polymer mobility in these Nafion thin films.

  2. Physical properties of archaeal tetraether lipid membranes as revealed by differential scanning and pressure perturbation calorimetry, molecular acoustics, and neutron reflectometry: effects of pressure and cell growth temperature.

    PubMed

    Zhai, Yong; Chong, Parkson Lee-Gau; Taylor, Leeandrew Jacques-Asa; Erlkamp, Mirko; Grobelny, Sebastian; Czeslik, Claus; Watkins, Erik; Winter, Roland

    2012-03-20

    The polar lipid fraction E (PLFE) is a major tetraether lipid component in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Using differential scanning and pressure perturbation calorimetry as well as ultrasound velocity and density measurements, we have determined the compressibilities and volume fluctuations of PLFE liposomes derived from different cell growth temperatures (T(g) = 68, 76, and 81 °C). The compressibility and volume fluctuation values of PLFE liposomes, which are substantially less than those detected from diester lipid membranes (e.g., DPPC), exhibit small but significant differences with T(g). Among the three T(g)s employed, 76 °C leads to the least compressible and most tightly packed PLFE membranes. This temperature is within the range for optimal cell growth (75-80 °C). It is known that a decrease in T(g) decreases the number of cyclopentane rings in archael tetraether lipids. Thus, our data enable us to present the new view that membrane packing in PLFE liposomes varies with the number of cyclopentane rings in a nonlinear manner, reaching maximal tightness when the tetraether lipids are derived from cells grown at optimal T(g)s. In addition, we have studied the effects of pressure on total layer thickness, d, and neutron scattering length density, ρ(n), of a silicon-D(2)O interface that is covered with a PLFE membrane using neutron reflectometry (NR). At 55 °C, d and ρ(n) are found to be rather insensitive to pressure up to 1800 bar, suggesting minor changes of the thickness of the membrane's hydrophobic core and headgroup orientation upon compression only.

  3. BioRef II—Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB

    NASA Astrophysics Data System (ADS)

    Trapp, M.; Steitz, R.; Kreuzer, M.; Strobl, M.; Rose, M.; Dahint, R.

    2016-10-01

    We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å-1 to 0.2 Å-1 with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.

  4. BioRef II-Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB.

    PubMed

    Trapp, M; Steitz, R; Kreuzer, M; Strobl, M; Rose, M; Dahint, R

    2016-10-01

    We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å(-1) to 0.2 Å(-1) with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.

  5. Distinguishing between similar tubular objects using pulse reflectometry: a study of trumpet and cornet leadpipes

    NASA Astrophysics Data System (ADS)

    Buick, J. M.; Kemp, J.; Sharp, D. B.; van Walstijn, M.; Campbell, D. M.; Smith, R. A.

    2002-05-01

    This paper considers the measurement of the internal radius of a number of similar, short, tubular leadpipes using pulse reflectometry. Pulse reflectometry is an acoustical technique for measuring the internal bore of a tubular object by analysing the reflections which occur when an acoustical pulse is directed into the object. The leadpipes are designed to form the initial, or lead, part of a trumpet or cornet and their internal radii differ by less than 0.1 mm between similar pipes. The ability of the reflectometer to detect these small differences, which are considered by players to produce a noticeable difference in the sound of an instrument, are investigated. It is seen that the pulse reflectometer is able to distinguish between leadpipes with different nominal radii varying by as little as 0.03 mm, demonstrating its potential in the study of musical instruments and showing that it can be used as a diagnostic tool by the instrument manufacturer to detect defects which are significant enough to acoustically alter performance. The absolute accuracy of the radius measurements is also considered at the end of the leadpipe, where the uncertainty is ±0.05 mm.

  6. Characterization of the Decaheme c-Type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-Ray Scattering and Neutron Reflectometry

    SciTech Connect

    Johs, A.; Shi, L.; Droubay, T.; Ankner, J. F.; Liang, L.

    2010-06-15

    The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate shuttling of electrons to extracellular acceptors that include solid metal oxides such as hematite (α-Fe2O3). No information is yet available concerning OmcA structure in physiologically relevant conditions such as aqueous environments. We purified OmcA and characterized its solution structure by small angle x-ray scattering (SAXS), and its interaction at the hematite-water interface by neutron reflectometry. SAXS showed that OmcA is a monomer that adopts a flat ellipsoidal shape with an overall dimension of 34 × 90 × 65 Å3. To our knowledge, we obtained the first direct evidence that OmcA undergoes a redox state-dependent conformational change in solution whereby reduction decreases the overall length of OmcA by ~7 Å (the maximum dimension was 96 Å for oxidized OmcA, and 89 Å for NADH and dithionite-reduced OmcA). OmcA was also found to physically interact with electron shuttle molecules such as flavin mononucleotide, resulting in the formation of high-molecular-weight assemblies. Neutron reflectometry showed that OmcA forms a well-defined monomolecular layer on hematite surfaces, where it assumes an orientation that maximizes its contact area with the mineral surface. Finally, these novel insights into the molecular structure of OmcA in solution, and its interaction with insoluble hematite and small organic ligands, demonstrate the fundamental structural bases underlying OmcA's role in mediating redox processes.

  7. A Feasibility Study of RF Time-Domain Reflectometry as a Railgun Armature Tracking Technique

    DTIC Science & Technology

    2007-08-08

    SUBJECT TERMS armature, radio frequency (RF), time-domain reflectometry ( TDR ), HEMCL, electromagnetic noise (EMI) 15. NUMBER OF PAGES 14 16. PRICE CODE...are very sensitive to electromagnetic noise (EMI). A frequent cause of electromagnetic noise within the railgun is that caused by arcing at the...the moving armature), radio frequency (RF), time-domain reflectometry ( TDR ) may potentially be used to obtain the position history of armature

  8. Formation of solid thorium monoxide at near-ambient conditions as observed by neutron reflectometry and interpreted by screened hybrid functional calculations

    NASA Astrophysics Data System (ADS)

    He, Heming; Majewski, Jaroslaw; Allred, David D.; Wang, Peng; Wen, Xiaodong; Rector, Kirk D.

    2017-04-01

    Oxidation of a ∼1000 Å sputter-deposited thorium thin film at 150 °C in 100 ppm of flowing oxygen in argon produces the long-sought solid form of thorium monoxide. Changes in the scattering length density (SLD) distribution in the film over the 700-min experiment measured by in-situ, dynamic neutron reflectometry (NR) shows the densities, compositions and thickness of the various thorium oxides layers formed. Screened, hybrid density-functional theory calculations of potential thorium oxides aid interpretation, providing atomic-level picture and energetics for understanding oxygen migration. NR provided evidence of the formation of substoichiometric thorium oxide, ThOy (y < 1) at the interface between the unreacted thorium metal and its dioxide overcoat which grows inward, consuming the thorium at a rate of 2.1 Å/min while y increases until reaching 1:1 oxygen-to-thorium. Its presence indicates that kinetically-favored solid-phase ThO can be preferentially generated as a majority phase under the thermodynamically-favored ThO2 top layer at conditions close to ambient.

  9. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

    SciTech Connect

    Doucet, Mathieu; Browning, Jim; Baldwin, J. K.; Winiarz, Jeffrey; Kaiser, Helmut; Taub, H.; Veith, Gabriel M.

    2016-04-15

    This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M2) (1.87 x 10-2 mS/cm-1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while in situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.

  10. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

    DOE PAGES

    Doucet, Mathieu; Browning, Jim; Baldwin, J. K.; ...

    2016-04-15

    This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M2) (1.87 x 10-2 mS/cm-1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while in situ NR suggestsmore » the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less

  11. Polyelectrolyte adsorption on thin cellulose films studied with reflectometry and quartz crystal microgravimetry with dissipation.

    PubMed

    Enarsson, Lars-Erik; Wågberg, Lars

    2009-01-12

    Thin cellulose films were prepared by dissolving carboxymethylated cellulose fibers in N-methyl morpholine oxide and forming thin films on silicon wafers by spin-coating. The adsorption of cationic polyacrylamides and polydiallyldimethylammonium chloride onto these films was studied by stagnation point adsorption reflectometry (SPAR) and by quartz crystal microgravimetry with dissipation (QCM-D). The polyelectrolyte adsorption was studied by SPAR as a function of salt concentration, and it was found that the adsorption maximum was located at 1 mM NaCl for polyelectrolytes of low charge density and at 10 mM NaCl for polyelectrolytes of high charge density. Electrostatic screening led to complete elimination of the polyelectrolyte adsorption at salt concentrations of 300 mM NaCl. According to the QCM-D analysis, the cellulose films showed a pronounced swelling in water that took several hours to complete. Subsequent adsorption of polyelectrolytes onto the cellulose films led to a release of water from the cellulose, an effect that was substantial for polyelectrolytes of high charge density at low salt concentrations. The total mass change including water could therefore show either an increase or a decrease during adsorption onto the cellulose films, depending on the experimental conditions.

  12. Dielectric study of heat-denatured ovalbumin in aqueous solution by time domain reflectometry method.

    PubMed

    Sun, Yuanxia; Ishida, Tomoyuki; Hayakawa, Shigeru

    2004-04-21

    The dielectric behavior of native and heat-denatured ovalbumins (OVAs) from three avian species in aqueous solution was examined over a frequency range of 100 kHz to 20 GHz, using the time domain reflectometry (TDR) method. For the native OVA solutions, three kinds of relaxation processes were observed at around 10 MHz, 100 MHz, and 20 GHz, respectively; these could be assigned to the overall rotation of protein molecules, the reorientations of the bound water, and the free water molecules, respectively. For the heat-denatured samples, three relaxation processes were also observed. However, the relaxation process at approximately 100 MHz originated via a different mechanism other than the reorientation of bound water, namely, the micro-Brownian motion of peptide chains of heat-denatured protein. From the observed relaxation process at approximately 100 MHz, the relaxation strength of heat-denatured OVA solution for duck was higher than that of OVA solutions for hen and guinea fowl and showed the pH dependency from pH 7.0 to 8.0 for OVAs obtained from all three species. Furthermore, the results demonstrated that the relaxation strength was closely related to surface hydrophobicity of protein molecules and gel rheological properties. It was suggested that the difference in the surface hydrophobicity of protein influenced the dielectric behavior of water around denatured protein, whereas the dielectric behavior of denatured protein could be an indication of the gel rheological properties. Such studies can aid in the understanding of the different network structures of OVA gels from three avian species.

  13. Kinetics of Particle Adsorption in Stagnation Point Flow Studied by Optical Reflectometry

    PubMed

    Böhmer; van der Zeeuw EA; Koper

    1998-01-15

    The kinetics of adsorption of nano-sized silica particles on a polymer pretreated surface were followed in situ by using optical reflectometry in a stagnation point flow setup. Conversion of the reflectometric signal to the surface coverage could be performed using a homogeneous slab model which was verified by determining the particle density on SEM pictures taken in the stagnation point and by comparison with a model which includes the particulate nature of the layer explicitly. The effects of salt concentration on the plateau adsorbed amounts for all particle sizes can be described with an effective hard sphere concept. Although initial slopes and plateau values are in reasonable agreement with a random sequential adsorption model, this model does not accurately describe the evolution of the surface coverage as a function of time in a stagnation point flow system. Copyright 1998 Academic Press. Copyright 1998Academic Press

  14. Study on a focusing, low-background neutron delivery system

    NASA Astrophysics Data System (ADS)

    Stahn, J.; Panzner, T.; Filges, U.; Marcelot, C.; Böni, P.

    2011-04-01

    In various fields of neutron scattering there is a tendency to use smaller and smaller samples. There are various reasons for this, e.g. the limited size in high pressure cells, the restrictions given by growth methods of thin films, or the impossibility to grow larger single crystals. With conventional guides this leads to the situation that a white beam with some 50 cm2 cross-section and a broad divergence is to illuminate a sample of some mm2 area. Thus more than 99% of the neutrons leaving the guide are not needed and cause background and radiation problems.It is suggested to change the order of the optical elements and the design of the guide section to filter neutrons not intended to hit the sample as early as possible. As an example a set-up for specular reflectivity on small samples is presented. A double monochromator some meters behind the source cuts away all neutrons of the wrong wavelength even before they enter the guide. The guide itself is one branch of an ellipse. It maps the divergent beam from the monochromator to a convergent beam at the sample position. An entry aperture at the first focal point, a bit larger than the sample, guarantees that just enough neutrons enter the guide to bath the sample. There is no direct line of sight to the source and the guide ends far away from the sample position, so that there are only few spacial restrictions.Detailed McStas calculations and a design study for a down-scaled test device, both for reflectometry and diffraction, are presented.

  15. Study of the magnetic structure of multilayers and of an ultracold neutron storage anomaly

    NASA Astrophysics Data System (ADS)

    Sarkisov, Dmitry

    This thesis describes the results of polarized neutron reflectometry experiments with spin-valve samples performed at the National Institute of Standards and Technology (Gaithersburg, MD). The study was motivated by the strong technological interest in spin-valve structures exhibiting the effect of giant magnetoresistance. This phenomenon has been widely utilized in a new generation of magnetoresistive memory, reading heads for magnetic disk drives, and field sensors. The study showed that the interfacial roughness strongly depends on the conditions of sample preparation. We have also observed a non-collinear coupling of magnetization between the ferromagnetic layers of the spin-valve samples. The signs of the coupling constants were determined from the neutron reflectometry data using a minimum energy model for the relative orientations of magnetization. The results are consistent with the theoretical values obtained from the RKKY model of oscillatory exchange coupling. We also present the results of specific ultracold neutron (UCN) storage experiments performed at the Institut Laue-Langevin (Grenoble, France). We investigated certain anomalous features of UCN storage. The UCN were filled into a container whose walls were coated by a good neutron reflector (Fomblin grease). Then the neutrons were quickly removed by an absorber, until their residual density in the trap was measured to be negligible. Nevertheless, when the absorber was withdrawn, a measurable number of neutrons emerged from the trap. We have also found that application of a magnetic field gradient at the trap bottom as well as replacement of some Fomblin grease by liquid Fornblin oil gave rise to alterations of UCN count rate. These surprising phenomena are not well understood so far and require further experimental study.

  16. UA/ORNL Collaboration: Neutron Scattering Studies of Antiferromagnetic Films, Final Report

    SciTech Connect

    Mankey, Gary J.

    2006-07-26

    The work reported here was a collaborative project between the research groups of Dr. J.L. Robertson at Oak Ridge National Laboratory and Dr. G.J. Mankey at the University of Alabama. The main thrust is developing neutron optical devices and materials for the study of magnetic thin films and interfaces. The project is particularly timely, since facility upgrades are currently underway at the High Flux Isotope Reactor. A new neutron optical device, a multicrystal analyzer, was designed and built to take maximum advantage of the increased flux that the upgraded beamlines at HFIR will provide. This will make possible detailed studies of the magnetic structure of thin films, multilayers, and interfaces that are not feasible at present. We performed studies of the antiferromagnetic order in thin films and crystals using neutron scattering, determined magnetic structures at interfaces with neutron reflectometry and measured order in magnetic dispersions using small angle neutron scattering. The collaboration has proved fruitful: generating eleven publications, contributing to the training of a postdoc who is now on staff at the High Flux Isotope Reactor and providing the primary support for two recent Ph.D. recipients. The collaboration is still vibrant, with anticipated implementation of the multicrystal analyzer on one of the new cold source beamlines at the High Flux Isotope Reactor.

  17. Neutron scattering for analysis of processes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Balagurov, A. M.; Bobrikov, I. A.; Samoylova, N. Yu; Drozhzhin, O. A.; Antipov, E. V.

    2014-12-01

    The review is concerned with analysis and generalization of information on application of neutron scattering for elucidation of the structure of materials for rechargeable energy sources (mainly lithium-ion batteries) and on structural rearrangements in these materials occurring in the course of electrochemical processes. Applications of the main methods including neutron diffraction, small-angle neutron scattering, inelastic neutron scattering, neutron reflectometry and neutron introscopy are considered. Information on advanced neutron sources is presented and a number of typical experiments are outlined. The results of some studies of lithium-containing materials for lithium-ion batteries, carried out at IBR-2 pulsed reactor, are discussed. The bibliography includes 50 references.

  18. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  19. Advanced Neutron Source enrichment study

    SciTech Connect

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1994-12-31

    A study has been performed of the impact on performance of using low enriched uranium (20% {sup 235}U) or medium enriched uranium (35% {sup 235}U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% {sup 235}U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology.

  20. Scanning laser reflectometry of retinal and subretinal tissues

    NASA Astrophysics Data System (ADS)

    Elsner, Ann E.; Moraes, L.; Beausencourt, E.; Remky, Andreas; Weiter, J. J.; Walker, J. P.; Wing, G. L.; Burns, Stephen Allan; Raskauskas, P. A.; Kelley, L. M.

    2000-06-01

    Measurements of the human ocular fundus that make use of the light returning through the pupil are called reflectometry. Early reflectometry studies were limited by poor light return from the retina and strong reflections from the anterior surface of the eye. Artifacts produced misleading results in diseases like age-related macular degeneration. Novel laser sources, scanning, confocal optics, and digital imaging provide improved sampling of the signal from the tissues of interest: photoreceptors and retinal pigment epithelial cells. A wider range of wavelengths is now compared, including the near infrared. Reflectometry now provides functional mapping, even in severe pathology.

  1. Benchmark field study of deep neutron penetration

    SciTech Connect

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  2. Fast sweeping reflectometry upgrade on Tore Supra

    SciTech Connect

    Clairet, F.; Bottereau, C.; Molina, D.; Ducobu, L.; Leroux, F.; Barbuti, A.; Heuraux, S.

    2010-10-15

    In order to study the temporal dynamics of turbulence, the sweep time of our reflectometry has been shortened from 20 to 2 {mu}s with 1 {mu}s dead time. Detailed technical aspects of the upgrade are given, namely, about the stability of the ramp generation, the detection setup, and the fast acquisition module. A review of studies (velocity measurement of the turbulence, modifications of the wavenumber spectrum, radial mapping of correlation time, etc.) offered by such improvements is presented.

  3. Model approach to solving the inverse problem of X-ray reflectometry and its application to the study of the internal structure of hafnium oxide films

    SciTech Connect

    Volkov, Yu. O. Kozhevnikov, I. V.; Roshchin, B. S.; Filatova, E. O.; Asadchikov, V. E.

    2013-01-15

    The key features of the inverse problem of X-ray reflectometry (i.e., the reconstruction of the depth profile of the dielectric constant using an experimental angular dependence of reflectivity) are discussed and essential factors leading to the ambiguity of its solution are analyzed. A simple approach to studying the internal structure of HfO{sub 2} films, which is based on the application of a physically reasonable model, is considered. The principles for constructing a film model and the criteria for choosing a minimal number of fitting parameters are discussed. It is shown that the ambiguity of the solution to the inverse problem is retained even for the simplest single-film models. Approaches allowing one to pick out the most realistic solution from several variants are discussed.

  4. Microwave imaging reflectometry in LHD

    SciTech Connect

    Yamaguchi, S.; Nagayama, Y.; Pavlichenko, R.; Inagaki, S.; Kogi, Y.; Mase, A.

    2006-10-15

    A multichannel reflectometry with an imaging optical system is under development for the measurement of the electron density fluctuations in the Large Helical Device (LHD). The right-hand cutoff layer is utilized as a reflection surface. The angle of an ellipsoidal mirror installed inside the vacuum chamber is remotely adjustable with the ultrasonic motor in order to optimize the illumination angle for the wider range of the plasma parameters. An oscillation due to density fluctuation was observed using the microwave imaging reflectometry for the first time in LHD plasma experiment.

  5. Nuclear and neutron matter studies

    SciTech Connect

    Wiringa, R.B.; Akmal, A.; Pandharipande, V.R.

    1995-08-01

    We are studying nuclear and neutron matter with the new Argonne v{sub 18} NN and Urbana 3N potentials. We use variational wave functions and a diagrammatic cluster expansion with Fermi hypernetted and single-operator chain (FHNC/SOC) integral equations to evaluate the energy expectation value. Initial results show some interesting differences with our previous calculations with the older Argonne v{sub 14} potential. In particular, there are a number of diagrams involving L{center_dot}S and L{sup 2} terms which were small with the older model and were rather crudely estimated or even neglected. It appears that these terms are more important with the new potential and will have to be evaluated more accurately. Work on this subject is in progress. A simple line of attack is to just add additional diagrams at the three-body cluster level. A longer term approach may be to adapt some of the methods for evaluating nucleon clusters used in the few-body and closed shell nuclei described above.

  6. Optimizing Crystal Volume for Neutron Diffraction Studies

    NASA Technical Reports Server (NTRS)

    Snell, E. H.

    2003-01-01

    For structural studies with neutron diffraction more intense neutron sources, improved sensitivity detector and larger volume crystals are all means by which the science is being advanced to enable studies on a wider range of samples. We have chosen a simplistic approach using a well understood crystallization method, with minimal amounts of sample and using design of experiment techniques to maximize the crystal volume all for minimum effort. Examples of the application are given.

  7. Performance study of the neutron-TPC

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Li, Yulan; Niu, Libo; Deng, Zhi; Cheng, Xiaolei; He, Li; Zhang, Hongyan; Fu, Jianqiang; Yan, Yangyang; Cai, Yiming; Li, Yuanjing

    2017-02-01

    Fast neutron spectrometers will play an important role in the future of the nuclear industry and nuclear physics experiments, in tasks such as fast neutron reactor monitoring, thermo-nuclear fusion plasma diagnostics, nuclear reaction cross-section measurement, and special nuclear material detection. Recently, a new fast neutron spectrometer based on a GEM (Gas Electron Multiplier amplification)-TPC (Time Projection Chamber), named the neutron-TPC, has been under development at Tsinghua University. It is designed to have a high energy resolution, high detection efficiency, easy access to the medium material, an outstanding n/γ suppression ratio, and a wide range of applications. This paper presents the design, test, and experimental study of the neutron-TPC. Based on the experimental results, the energy resolution (FWHM) of the neutron-TPC can reach 15.7%, 10.3% and 7.0% with detection efficiency higher than 10‑5 for 1.2 MeV, 1.81 MeV and 2.5 MeV neutrons respectively. Supported by National Natural Science Foundation of China (11275109)

  8. Small-Angle Neutron Scattering Studies on the Multilamellae Formed by Mixing Lamella-Forming Cationic Diblock Copolymers with Lipids and Their Interaction with DNA.

    PubMed

    Yang, Po-Wei; Lin, Tsang-Lang; Liu, I-Ting; Hu, Yuan; Jeng, U-Ser; Gilbert, Elliot Paul

    2016-02-23

    We demonstrate that the lamella-forming polystyrene-block-poly(N-methyl-4-vinylpyridinium iodine) (PS-b-P4VPQ), with similar sizes of the PS and P4VPQ blocks, can be dispersed in the aqueous solutions by forming lipid/PS-b-P4VPQ multilamellae. Using small-angle neutron scattering (SANS) and 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (d62-DPPC) in D2O, a broad correlation peak is found in the scattering profile that signifies the formation of the loosely ordered d62-DPPC/PS-b-P4VPQ multilamellae. The thicknesses of the hydrophobic and hydrophilic layers of the d62-DPPC/PS-b-P4VPQ multilamellae are close to the PS layer and the condensed brush layer thicknesses as determined from previous neutron reflectometry studies on the PS-b-P4VPQ monolayer at the air-water interface. Such well-dispersed d62-DPPC/PS-b-P4VPQ multilamellae are capable of forming multilamellae with DNA in aqueous solution. It is found that the encapsulation of DNA in the hydrophilic layer of the d62-DPPC/PS-b-P4VPQ multilamellae slightly increases the thickness of the hydrophilic layer. Adding CaCl2 can enhance the DNA adsorption in the hydrophilic brush layer, and it is similar to that observed in the neutron reflectometry study of the DNA adsorption by the PS-b-P4VPQ monolayer.

  9. Neutron generator (HIRRAC) and dosimetry study.

    PubMed

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  10. Dynamic optical frequency domain reflectometry.

    PubMed

    Arbel, Dror; Eyal, Avishay

    2014-04-21

    We describe a dynamic Optical Frequency Domain Reflectometry (OFDR) system which enables real time, long range, acoustic sensing at high sampling rate. The system is based on a fast scanning laser and coherent detection scheme. Distributed sensing is obtained by probing the Rayleigh backscattered light. The system was tested by interrogation of a 10 km communication type single mode fiber and successfully detected localized impulse and sinusoidal excitations.

  11. Zooming in on disordered systems: Neutron reflection studies of proteins associated with fluid membranes

    PubMed Central

    Heinrich, Frank; Lösche, Mathias

    2014-01-01

    Neutron reflectometry (NR) is an emerging experimental technique for the structural characterization of proteins interacting with fluid bilayer membranes under conditions that mimic closely the cellular environment. Thus, cellular processes can be emulated in artificial systems and their molecular basis studied by adding cellular components one at a time in a well-controlled environment while the resulting structures, or structural changes in response to external cues, are monitored with neutron reflection. In recent years, sample environments, data collection strategies and data analysis were continuously refined. The combination of these improvements increases the information which can be obtained from NR to an extent that enables structural characterization of protein-membrane complexes at a length scale that exceeds the resolution of the measurement by far. Ultimately, the combination of NR with molecular dynamics (MD) simulations can be used to cross-validate the results of the two techniques and provide atomicscale structural models. This review discusses these developments in detail and demonstrates how they provide new windows into relevant biomedical problems. PMID:24674984

  12. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    SciTech Connect

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phase transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases

  13. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    PubMed

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  14. Nuclear-spectroscopy problems studied with neutrons

    SciTech Connect

    Raman, S.

    1982-01-01

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions have been obtained that are not ony interesting per se but are also grist for old and new theory mills. The above technical advances have opened up new opportunities for further discoveries.

  15. Nuclear-spectroscopy problems studied with neutrons

    NASA Astrophysics Data System (ADS)

    Raman, S.

    Nuclear spectroscopy with neutrons continues to have a major impact on the progress of nuclear science. Neutrons, being uncharged, are particularly useful for the study of low energy reactions. Recent advances in time-of-flight spectroscopy, as well as in the gamma ray spectroscopy following neutron capture, have permitted precision studies of unbound and bound nuclear levels and related phenomena. By going to new energy domains, by using polarized beams and targets, through the invention of new kinds of detectors, and through the general improvement in beam quantity and quality, new features of nuclear structure and reactions were obtained that are not only interesting per se but are also grist for old and new theory mills. The above technical advances have opened up opportunities for further discoveries.

  16. Theoretical Studies of Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    2003-01-01

    Among the newly discovered classes of X-ray sources which have attracted wide attention are close binary systems in which mass is transferred via Roche lobe overflow from a low mass donor star to its neutron star companion. Many of these sources exhibit intense bursts of X-ray radiation as well as periodic and quasi-periodic phenomena. Intensive analysis of these sources as a class has provided insight into the accretion process in binary star systems and into the magnetic field, rotational, and nuclear evolution of the underlying neutron star. In this proposal we have focused on theoretical studies of the hydrodynamical and nuclear processes that take place on the surface of accreting neutron stars in these systems. The investigation of these processes is critical for providing an understanding of a number of outstanding problems related to their transient behavior and evolution.

  17. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1996-12-19

    The goals of this three-year study were: (1) design a neutron focusing system for use with the Texas Cold Neutron Source (TCNS) to produce an intense beam of cold neutrons appropriate for prompt gamma activation analysis (PGAA); (2) orchestrate the construction of the focusing system, integrate it into the TCNS neutron guide complex, and measure its performance; and (3) design, setup, and test a cold-neutron PGAA system which utilizes the guided focused cold neutron beam. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, the authors obtained gains of 3 to 5 for 4 different converging guide geometries. During the second year of the DOE grant, the subject of this final report, Ovonic Synthetic Materials Company was contracted to build a converging neutron guide focusing system to the specifications. Considerable time and effort were spent working with Ovonics on selecting the materials for the converging neutron guide system. The major portion of the research on the design of a cold-neutron PGAA system was also completed during the second year. At the beginning of the third year of the grant, a converging neutron guide focusing system had been ordered, and a cold-neutron PGAA system had been designed. Since DOE did not fund the third year, there was no money to purchase the required equipment for the cold-neutron PGAA system and no money to perform tests of either the converging neutron guide or the cold-neutron PGAA system. The research already accomplished would have little value without testing the systems which had been designed. Thus the project was continued at a pace that could be sustained with internal funding.

  18. Advanced techniques for microwave reflectometry

    SciTech Connect

    Sanchez, J.; Branas, B.; Luna, E. de la; Estrada, T.; Zhuravlev, V. |; Hartfuss, H.J.; Hirsch, M.; Geist, T.; Segovia, J.; Oramas, J.L.

    1994-12-31

    Microwave reflectometry has been applied during the last years as a plasma diagnostic of increasing interest, mainly due to its simplicity, no need for large access ports and low radiation damage of exposed components. Those characteristics make reflectometry an attractive diagnostic for the next generation devices. Systems used either for density profile or density fluctuations have also shown great development, from the original single channel heterodyne to the multichannel homodyne receivers. In the present work we discuss three different advanced reflectometer systems developed by CIEMAT members in collaboration with different institutions. The first one is the broadband heterodyne reflectometer installed on W7AS for density fluctuations measurements. The decoupling of the phase and amplitude of the reflected beam allows for quantitative analysis of the fluctuations. Recent results showing the behavior of the density turbulence during the L-H transition on W7AS are shown. The second system shows how the effect of the turbulence can be used for density profile measurements by reflectometry in situations where the complicated geometry of the waveguides cannot avoid many parasitic reflections. Experiments from the TJ-I tokamak will be shown. Finally, a reflectometer system based on the Amplitude Modulation (AM) technique for density profile measurements is discussed and experimental results from the TJ-I tokamak are shown. The AM system offers the advantage of being almost insensitive to the effect of fluctuations. It is able to take a direct measurement of the time delay of the microwave pulse which propagates to the reflecting layer and is reflected back. In order to achieve fast reconstruction for real time monitoring of the density profile application of Neural Networks algorithms will be presented the method can reduce the computing times by about three orders of magnitude. 10 refs., 10 figs.

  19. A preliminary neutron crystallographic study of thaumatin

    SciTech Connect

    Teixeira, Susana C. M.; Blakeley, Matthew P.; Leal, Ricardo M. F.; Mitchell, Edward P.; Forsyth, V. Trevor

    2008-05-01

    Preliminary neutron crystallographic data from the sweet protein thaumatin have been recorded using the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results illustrate the feasibility of a full neutron structural analysis aimed at further understanding the molecular basis of the perception of sweet taste. Such an analysis will exploit the use of perdeuterated thaumatin. A preliminary neutron crystallographic study of the sweet protein thaumatin is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the gel-acupuncture method. Data were collected to a resolution of 2 Å on the LADI-III diffractometer at the Institut Laue Langevin (ILL). The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, the distribution of charge on the protein surface and localized water in the structure. This information will be of interest for understanding the specificity of thaumatin–receptor interactions and will contribute to further understanding of the molecular mechanisms underlying the perception of taste.

  20. Ames collaborative study of cosmic ray neutrons

    NASA Technical Reports Server (NTRS)

    Hewitt, J. E.; Hughes, L.; Mccaslin, J. B.; Stephens, L. D.; Rindi, A.; Smith, A. R.; Thomas, R. H.; Griffith, R. V.; Welles, C. G.; Baum, J. W.

    1976-01-01

    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude.

  1. Potential of space-borne GNSS reflectometry to constrain simulations of the ocean circulation. A case study for the South African current system

    NASA Astrophysics Data System (ADS)

    Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik

    2015-11-01

    The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations

  2. DNA hydration studied by neutron fiber diffraction

    SciTech Connect

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  3. Time domain reflectometry in time variant plasmas

    NASA Technical Reports Server (NTRS)

    Scherner, Michael J.

    1992-01-01

    The effects of time-dependent electron density fluctuations on a synthesized time domain reflectometry response of a one-dimensional cold plasma sheath are considered. Numerical solutions of the Helmholtz wave equation, which describes the electric field of a normally incident plane wave in a specified static electron density profile, are used. A study of the effects of Doppler shifts resulting from moving density fluctuations in the electron density profile of the sheath is included. Varying electron density levels corrupt time domain and distance measurements. Reducing or modulating the electron density levels of a given electron density profile affects the time domain response of a plasma and results in motion of the turning point, and the effective motion has a significant effect on measuring electron density locations.

  4. Neutron reflectivity studies of ionomer blends

    NASA Astrophysics Data System (ADS)

    Gabrys, B. J.; Bhutto, A. A.; Bucknall, D. G.; Braiewa, R.; Vesely, D.; Weiss, R. A.

    Preliminary results are presented of a neutron reflectivity study of the interfacial width between lithium- and zinc-sulphonated deuterated polystyrene with polycarbonate (PC). Both systems are partially miscible and exhibit an upper critical solution temperature behaviour. The interdiffusion in these systems was measured by annealing at a temperature above the glass-transition temperature of both polymers. The interfacial profiles obtained for these systems were described by symmetric Gaussian interfaces. No significant diffusion was observed.

  5. Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging

    SciTech Connect

    Meneghini, Orso; Choi, Myunghee; Volpe, Francesco

    2014-02-12

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and the edge current as a function of the minor radius in the pedestal region. The idea behind such diagnostic is to localize and characterize a direction of reduced reflectivity at the O-mode cutoff layer. We modeled the wave scattering and mode-conversion processes by means of the finite-element COMSOL Multiphysics code in two dimensions (2D). Sensitivity studies were performed for parameters mocking up DIII-D plasmas. Simulations confirmed the presence of a minimum in reflectivity of an externally injected O-mode beam, and confirmed that this minimum depends on the magnetic field at the cutoff, as expected from the OX mode conversion physics. This study gives confidence in the feasibility of the diagnostic.

  6. Exchange bias studied with polarized neutron reflectivity

    SciTech Connect

    te Velthuis, S. G. E.

    2000-01-05

    The role of Polarized Neutron Reflectivity (PNR) for studying natural and synthetic exchange biased systems is illustrated. For a partially oxidized thin film of Co, cycling of the magnetic field causes a considerable reduction of the bias, which the onset of diffuse neutron scattering shows to be due to the loosening of the ferromagnetic domains. On the other hand, PNR measurements of a model exchange bias junction consisting of an n-layered Fe/Cr antiferromagnetic (AF) superlattice coupled with an m-layered Fe/Cr ferromagnetic (F) superlattice confirm the predicted collinear magnetization in the two superlattices. The two magnetized states of the F (along or opposite to the bias field) differ only in the relative orientation of the F and adjacent AF layer. The possibility of reading clearly the magnetic state at the interface pinpoints the commanding role that PNR is having in solving this intriguing problem.

  7. Neutron scattering studies of premartensitic phenomena

    SciTech Connect

    Shapiro, S.M.

    1989-01-01

    Elastic neutron diffraction and inelastic neutron scattering are ideal techniques for studying premartensitic behavior in metallic alloys. By necessity, real, bulk samples are probed replete with their intrinsic defects. Also, because of the properties of the neutron it is straightforward to probe the behavior of the phonon modes away from the zone center which is probed in the normal ultrasonic techniques. A wide variety of alloys exhibiting martensitic transformations have been studied. It will be shown that most systems undergoing diffusionless transformations exhibit premartensitic behavior in that precursor effects are seen at temperatures well above the martensitic transformation temperature, T{sub M}. This behavior manifests itself in an anomalous temperature dependence of the energy of a particular phonon mode as the temperature approaches T{sub M}. The wavevector of this mode is frequently away from the zone center (i.e., q {ne} O). This softening is nearly always accompanied by elastic diffuse scattering at the same wavevector. Particular examples to be discussed are the alkali metals, {omega}-phase materials and Ni-based alloys. 34 refs., 9 figs.

  8. MAGNETIC NEUTRON SCATTERING

    SciTech Connect

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    , ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  9. Application of imaging spectroscopic reflectometry for characterization of gold reduction from organometallic compound by means of plasma jet technology

    NASA Astrophysics Data System (ADS)

    Vodák, Jiří; Nečas, David; Pavliňák, David; Macak, Jan M.; Řičica, Tomáš; Jambor, Roman; Ohlídal, Miloslav

    2017-02-01

    This work presents a new application of imaging spectroscopic reflectometry to determine a distribution of metallic gold in a layer of an organogold precursor which was treated by a plasma jet. Gold layers were prepared by spin coating from a solution of the precursor containing a small amount of polyvinylpyrrolidone on a microscopy glass, then they were vacuum dried. A difference between reflectivity of metallic gold and the precursor was utilized by imaging spectroscopic reflectometry to create a map of metallic gold distribution using a newly developed model of the studied sample. The basic principle of the imaging spectroscopic reflectometry is also shown together with the data acquisition principles. XPS measurements and microscopy observations were made to complete the imaging spectroscopic reflectometry results. It is proved that the imaging spectroscopic reflectometry represents a new method for quantitative evaluation of local reduction of metallic components from metaloorganic compounds.

  10. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vogel, S. C.; Mocko, M.; Bourke, M. A. M.; Yuan, V.; Nelson, R. O.; Brown, D. W.; Feller, W. B.

    2013-09-01

    Many isotopes in nuclear materials exhibit strong peaks in neutron absorption cross sections in the epithermal energy range (1-1000 eV). These peaks (often referred to as resonances) occur at energies specific to particular isotopes, providing a means of isotope identification and concentration measurements. The high penetration of epithermal neutrons through most materials is very useful for studies where samples consist of heavy-Z elements opaque to X-rays and sometimes to thermal neutrons as well. The characterization of nuclear fuel elements in their cladding can benefit from the development of high resolution neutron resonance absorption imaging (NRAI), enabled by recently developed spatially-resolved neutron time-of-flight detectors. In this technique the neutron transmission of the sample is measured as a function of spatial location and of neutron energy. In the region of the spectra that borders the resonance energy for a particular isotope, the reduction in transmission can be used to acquire an image revealing the 2-dimensional distribution of that isotope within the sample. Provided that the energy of each transmitted neutron is measured by the neutron detector used and the irradiated sample possesses neutron absorption resonances, then isotope-specific location maps can be acquired simultaneously for several isotopes. This can be done even in the case where samples are opaque or have very similar transmission for thermal neutrons and X-rays or where only low concentrations of particular isotopes are present (<0.1 atom% in some cases). Ultimately, such radiographs of isotope location can be utilized to measure isotope concentration, and can even be combined to produce three-dimensional distributions using tomographic methods. In this paper we present the proof-of-principle of NRAI and transmission Bragg edge imaging performed at Flight Path 5 (FP5) at the LANSCE pulsed, moderated neutron source of Los Alamos National Laboratory. A set of urania mockup

  11. Neutron scattering studies of amorphous Invar alloys

    SciTech Connect

    Fernandez-Baca, J.A.

    1989-01-01

    This paper reviews recent inelastic neutron scattering experiments performed to study the spin dynamics of two amorphous Invar systems: Fe/sub 100-x/B/sub x/ and Fe/sub 90-x/Ni/sub x/Zr/sub 10/. As in crystalline Invar Fe/sub 65/Ni/sub 35/ and Fe/sub 3/Pt, the excitation of conventional long-wavelength spin waves in these amorphous systems cannot account for the relatively rapid change of their magnetization with temperature. These results are discussed in terms of additional low-lying excitations which apparently have a density of states similar to the spin waves.

  12. Polarized neutron reflectivity study of perpendicular magnetic anisotropy in MgO/CoFeB/W thin films

    NASA Astrophysics Data System (ADS)

    Ambaye, Haile; Zhan, Xiao; Li, Shufa; Lauter, Valeria; Zhu, Tao

    In this work we study the origin of PMA in MgO/CoFeB/W trilayer systems using polarized neutron reflectivity. Recently, the spin Hall effect in the heavy metals, such as Pt and Ta, has been of significant interest for highly efficient magnetization switching of the ultrathin ferromagnets sandwiched by such a heavy metal and an oxide, which can be used for spintronic based memory and logic devices. Most work has focused on heavy-metal/ferromagnet/oxide trilayer (HM/FM/MO) structures with perpendicular magnetic anisotropy (PMA), where the oxide layer plays the role of breaking inversion symmetry .No PMA was found in W/CoFeB/MgO films. An insertion of Hf layer in between the W and CoFeB layers, however, has been found to create a strong PMA. Roughness and formation of interface alloys by interdiffusion influences the extent of PMA. We intend to identify these influences using the depth sensitive technique of PNR. In our previous study, we have successfully performed polarized neutron reflectometry (PNR) measurements on the Ta/CoFeB/MgO/CoFeB/Ta thin film with MgO thickness of 1 nm. The PNR measurements were carried out using the BL-4A Magnetic Reflectometer at SNS. This work has been supported by National Basic Research Program of China (2012CB933102). Research at SNS was supported by the Office of BES, DOE.

  13. A dosimetry study of deuterium-deuterium neutron generator-based in vivo neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Sowers, Daniel A.

    A neutron irradiation cavity for in vivo Neutron Activation Analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator which produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 x 108 +/-30% s-1. A moderator/reflector/shielding (5 cm high density polyethylene (HDPE), 5.3 cm graphite & 5.7 cm borated HDPE) assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeter (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and photon dose by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10 min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 +/- 0.8 mSv for neutron and 4.2 +/- 0.2 mSv for photon for 10 mins; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  14. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  15. Neutrons scattering studies in the actinide region

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1992-09-01

    During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from [sup 239]Pu; neutron scattering in [sup 181]Ta and [sup 197]Au; response of a [sup 235]U fission chamber near reaction thresholds; two-parameter data acquisition system; black'' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory.

  16. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1995-03-06

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ``Study of Neutron Focusing at the Texas Cold Neutron Source`` (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 {times} 1 cm.

  17. Use of ultracold neutrons for condensed-matter studies

    SciTech Connect

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  18. Neutron diffraction studies of thin film multilayer structures

    SciTech Connect

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs.

  19. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  20. Neutron Tube Design Study for Boron Neutron Capture TherapyApplication

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1998-01-04

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  1. Study of a Loop Heat Pipe Using Neutron Radiography

    SciTech Connect

    C. Thomas Conroy; A. A. El-Ganayni; David R. Riley; John M. Cimbala; Jack S. Brenizer, Jr.; Abel Po-Ya Chuang; Shane Hanna

    2001-08-01

    An explanation is given of what a loop heat pipe (LHP) is, and how it works. It is then shown that neutron imaging (both real time neutron radioscopy and single exposure neutron radiography) is an effective experimental tool for the study of LHPs. Specifically, neutron imaging has helped to identify and correct a cooling water distribution problem in the condenser, and has enabled visualization of two-phase flow (liquid and vapor) in various components of the LHP. In addition, partial wick dry-out, a phenomenon of great importance in the effective operation of LHPs, has been identified with neutron imaging. It is anticipated that neutron radioscopy and radiography will greatly contribute to our understanding of LHP operation, and will lead to improvement of LHP modeling and design.

  2. Study of a loop heat pipe using neutron radiography.

    PubMed

    Cimbala, John M; Brenizer, Jack S; Chuang, Abel Po-Ya; Hanna, Shane; Thomas Conroy, C; El-Ganayni, A A; Riley, David R

    2004-10-01

    An explanation is given of what a loop heat pipe (LHP) is, and how it works. It is then shown that neutron imaging (both real time neutron radioscopy and single exposure neutron radiography) is an effective experimental tool for the study of LHPs. Specifically, neutron imaging has helped to identify and correct a cooling water distribution problem in the condenser, and has enabled visualization of two-phase flow (liquid and vapor) in various components of the LHP. In addition, partial wick dry-out, a phenomenon of great importance in the effective operation of LHPs, is potentially identifiable with neutron imaging. It is anticipated that neutron radioscopy and radiography will greatly contribute to our understanding of LHP operation, and will lead to improvement of LHP modeling and design.

  3. Neutron shielding of the GDT (Novosibirsk) neutron generator project -- A feasibility study

    SciTech Connect

    Robouch, B.V.; Ingrosso, L.; Brzosko, J.S.

    1995-12-31

    The paper presents results of extensive neutronic studies of the neutron source test facility based on the Novosibirsk Gas Dynamic Trap (GDT). The facility is to provide 10{sup 18} SDT-neutrons/s (over a continuous 10-year period) for material-test studies. The paper examines the protective-shield capacity to ensure survival of GDT vital parts and suggests design modifications when survival is in jeopardy. The numerical studies used the 3D-AMC-VINIA Monte Carlo code with a precise computer representation of the sensitive parts of the facility. Intensity maps were plotted for neutron fluences, displacements, heat deposition, etc. Shielding feasibility has been ascertained, and the lifetime of consumable components ensured beyond the recommended values. A modification is suggested to extend the irradiation space at HARD neutron energy spectra to increase the volume to 1 m{sup 3} with damage gradients <5%/cm. The design achieves neutron fluences close to 10{sup 14} n/cm{sup 2}s (3.10{sup 22} n/cm{sup 2} end-of-life) in a >100 {ell} test space.

  4. Applying an analytical method to study neutron behavior for dosimetry

    NASA Astrophysics Data System (ADS)

    Shirazi, S. A. Mousavi

    2016-12-01

    In this investigation, a new dosimetry process is studied by applying an analytical method. This novel process is associated with a human liver tissue. The human liver tissue has compositions including water, glycogen and etc. In this study, organic compound materials of liver are decomposed into their constituent elements based upon mass percentage and density of every element. The absorbed doses are computed by analytical method in all constituent elements of liver tissue. This analytical method is introduced applying mathematical equations based on neutron behavior and neutron collision rules. The results show that the absorbed doses are converged for neutron energy below 15MeV. This method can be applied to study the interaction of neutrons in other tissues and estimating the absorbed dose for a wide range of neutron energy.

  5. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  6. Neutron beta decay studies with Nab

    NASA Astrophysics Data System (ADS)

    Baeßler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barrón-Palos, L.; Bowman, J. D.; Bychkov, M. A.; Byrne, J.; Calarco, J. R.; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlež, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-10-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  7. Neutron Activation Analysis, A Titanium Material Study

    NASA Astrophysics Data System (ADS)

    Dresser, Charles

    2011-04-01

    In order to obtain faster and more accurate measurements of radioactive contaminates within a sample of titanium we expose it to a neutron flux. This flux will activate the stable and quasi stable (those with extremely long half lives) isotopes into resultant daughter cells that are unstable which will result in shorter half lives on the order of minutes to days. We measured the resulting decays in the Germanium Crystal Detector and obtained a complex gamma spectrum. A mathematical model was used to recreate the production of the measured isotopes in the neutron flux and the resultant decays. Using this model we calculated the mass percent of the contaminate isotopes inside our titanium sample. Our mathematical model accounted for two types of neutron activation, fast or thermal activation, since this would determine which contaminate was the source of our signals. By looking at the percent abundances, neutron absorption cross-sections and the resulting mass percents of each contaminate we are able to determine the exact source of our measured signals. Additionally we implemented a unique ratio method to cross check the mathematical model. Our results have verified that for fast neutron activation and thermal neutron activation the method is accurate.

  8. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  9. Study of neutron focusing at the Texas Cold Neutron Source: Progress report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1993-01-28

    The purpose of this three year study is to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility will also be designed, setup, and tested under this DOE grant. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the existing curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, they obtained gains of 4 to 5 for the neutron flux averaged over an area of 1 x 1 cm. Two graduate students were supported by the first year of the DOE grant. Both have passed the Nuclear Engineering qualifying examination and have been admitted to candidacy for the doctoral degree at The University of Texas at Austin. Their programs of study and dissertation projects have been approved by the appropriate committees.

  10. Upgrades to the Polarized Neutron Reflectometer Asterix at LANSCE

    SciTech Connect

    Pynn, Roger

    2015-03-16

    We have upgraded the polarized neutron reflectometer, Asterix, at the Lujan Neutron Scattering Center at Los Alamos for the benefit of the research communities that study magnetic and complex-fluid films, both of which play important roles in support of the DOE’s energy mission. The upgrades to the instrument include: • A secondary spectrometer that was integrated with a Huber sample goniometer purchased with other funds just prior to the start of our project. The secondary spectrometer provides a flexible length for the scattered flight path, includes a mechanism to select among 3 alternative polarization analyzers as well as a support for new neutron detectors. Also included is an optic rail for reproducible positioning of components for Spin Echo Scattering Angle Measurement (SESAME). The entire secondary spectrometer is now non-magnetic, as required for neutron Larmor labeling. • A broad-band neutron polarizer for the incident neutron beam based on the V geometry. • A wide-angle neutron polarization analyzer • A 2d position-sensitive neutron detector • Electromagnetic coils (Wollaston prisms) for SESAME plus the associated power supplies, cooling, safety systems and integration into the data acquisition system. The upgrades allowed a nearly effortless transition between configurations required to serve the polarized neutron reflectometry community, users of the 11 T cryomagnet and users of SESAME.

  11. SEOP polarized 3He Neutron Spin Filters for the JCNS user program

    NASA Astrophysics Data System (ADS)

    Babcock, Earl; Salhi, Zahir; Theisselmann, Tobias; Starostin, Denis; Schmeissner, Johann; Feoktystov, Artem; Mattauch, Stefan; Pistel, Patrick; Radulescu, Aurel; Ioffe, Alexander

    2016-04-01

    Over the past several years the JCNS has been developing in-house applications for neutron polarization analysis (PA). These methods include PA for separation of incoherent from coherent scattering in soft matter studies (SANS), and online polarization for analysis for neutron reflectometry, SANS, GISANS and eventually spectroscopy. This paper will present an overview of the user activities at the JCNS at the MLZ and gives an overview of the polarization 3He methods and devices used. Additionally we will summarise current projects which will further support the user activities using polarised 3He spin filters.

  12. Slow Neutron Velocity Spectrometer Transmission Studies Of Pu

    DOE R&D Accomplishments Database

    Havens, W. W. Jr.; Melkonian, E.; Rainwater, L. J.; Levin, M.

    1951-05-28

    The slow neutron transmission of several samples of Pu has been investigated with the Columbia Neutron Velocity Spectrometer. Data are presented in two groups, those covering the energy region from 0 to 6 ev, and those covering the region above 6 ev. Below 6 ev the resolution was relatively good, and a detailed study of the cross section variation was made. Work above 6 ev consisted of merely locating levels and obtaining a rough idea of their strengths.

  13. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations.

  14. Study of the neutron beam line shield design for JSNS.

    PubMed

    Kawai, M; Saito, K; Sanami, T; Nakao, N; Maekawa, F

    2005-01-01

    The JSNS, a spallation neutron source of J-PARC (JAERI-KEK Joint Project of the High Intensity Proton Accelerator) has 23 neutron beam lines. In the present study, a database was formulated for an optimum shielding design using the MCNP-X code. The calculations involved two steps. In the first step, the neutron distributions were created in the typical neutron beam line with a model that included the spallation neutron source target. The neutron currents evaluated flowed from the duct into the duct wall which was the boundary source for the bulk shield surrounding the beam line. In the second step, bulk-shield calculations were performed for the various shielding materials (iron, concrete, heavy concrete and so on) used and their composites up to thicknesses of 3 m. The results were compared with each other. Composite material shields of iron and such hydrogeneous materials as polyethylene or concrete were more effective. A typical design was prepared for a beam line within 25 m distance from a moderator, as a sample.

  15. Critical dimension uniformity control with combined ellipsometry and reflectometry

    NASA Astrophysics Data System (ADS)

    Opsal, Jon; Leng, Jingmin; Cao, Xuelong

    2005-05-01

    In the 90nm node and beyond, Critical Dimension Uniformity (CDU) control is essential for today's high performance IC devices. The desired control of CDU is just under 2nm (3 sigma) across a 300mm wafer with 577 die. In this study we used an Opti-Probe 7341 RT/CD system that combines broadband (190-840 nm) spectroscopic ellipsometry (SE), spectroscopic reflectometry (BB), single wavelength (673 nm) beam profile reflectometry (BPR) and single wavelength (633nm) absolute ellipsometry (AE). All of the above technologies were used to characterize the optical dispersions of the individual films in the stack of interest, resist/barc/sion/poly/oxide/silicon. We then used these dispersion results and the SE and BB technologies to characterize the CDU of the patterned wafer. With the SE technology we measured CDU's in the range of 1.9-2.0 nm compared with BB measured CDU's in the range of 4-5 nm, both SE and BB wavelength were in the range of 240 nm-780 nm. However, if the wavelength range of SE and BB were extended to 190nm-840 nm, the CDU with SE stayed at the same level while that of BB reduced a factor of 2 to about 2.0-2.5 nm.

  16. Neutron generator at Hiroshima University for use in radiobiology study.

    PubMed

    Endo, S; Hoshi, M; Tauchi, H; Takeoka, S; Kitagawa, K; Suga, S; Maeda, N; Komatsu, K; Sawada, S; Iwamoto, E

    1995-06-01

    A neutron generator (HIRRAC) for use in radiobiology study has been constructed at the Research Institute for Radiation Biology and Medicine, Hiroshima University (RIRBM). Monoenergetic neutrons of which energy is less than 1.3 MeV are generated by the 7Li(p,n)7 Be reaction at proton energies up to 3 MeV. The protons are accelerated by a Schenkel-type-accelerator and are bombared onto the 7Li-target. An apparatus for the irradiation of biological material such as mice, cultured cells and so on, was designed and will be manufactured. Neutron and gamma-ray dose rates were measured by paired (TE-TE and C-CO2) ionization chambers. Contamination of the gamma ray was less than about 6% when using 10-microns-thick 7Li as a target. Maximum dose rates for the tissue equivalent materials was 40 cGy/min at a distance of 10 cm from the target. Energy distributions of the obtained neutrons have been measured by a 3He-gas proportional counter. The monoenergetic neutrons within an energy region from 0.1 to 1.3 MeV produced by thin 7Li or 7LiF targets had a small energy spread of about 50 keV (1 sigma width of gaussian). The energy spread of neutrons was about 10% or less at an incident proton energy of 2.3 MeV. We found that HIRRAC produces small energy spread neutrons and at sufficient dose rates for use in radiobiology studies.

  17. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  18. Differential reflectometry versus tactile sense detection of subgingival calculus in dentistry

    NASA Astrophysics Data System (ADS)

    Shakibaie, Fardad; Walsh, Laurence J.

    2012-10-01

    Detecting dental calculus is clinically challenging in dentistry. This study used typodonts with extracted premolar and molar teeth and simulated gingival tissue to compare the performance of differential reflectometry and periodontal probing. A total of 30 extracted teeth were set in an anatomical configuration in stone to create three typodonts. Clear polyvinyl siloxane impression material was placed to replicate the periodontal soft tissues. Pocket depths ranged from 10 to 15 mm. The three models were placed in a phantom head, and an experienced dentist assessed the presence of subgingival calculus first using the DetecTar (differential reflectometry) and then a periodontal probe. Scores from these two different methods were compared to the gold standard (direct examination of the root surface using 20× magnification) to determine the accuracy and reproducibility. Differential reflectometry was more accurate than tactile assessment (79% versus 60%), and its reproducibility was also higher (Cohen kappa 0.54 versus 0.39). Both methods performed better on single rooted premolar teeth than on multirooted teeth. These laboratory results indicate that differential reflectometry allows more accurate and reproducible detection of subgingival calculus than conventional probing, and supports its use for supplementing traditional periodontal examination methods in dental practice.

  19. Development of new methods for studying nanostructures using neutron scattering

    SciTech Connect

    Pynn, Roger

    2016-03-18

    The goal of this project was to develop improved instrumentation for studying the microscopic structures of materials using neutron scattering. Neutron scattering has a number of advantages for studying material structure but suffers from the well-known disadvantage that neutrons’ ability to resolve structural details is usually limited by the strength of available neutron sources. We aimed to overcome this disadvantage using a new experimental technique, called Spin Echo Scattering Angle Encoding (SESAME) that makes use of the neutron’s magnetism. Our goal was to show that this innovation will allow the country to make better use of the significant investment it has recently made in a new neutron source at Oak Ridge National Laboratory (ORNL) and will lead to increases in scientific knowledge that contribute to the Nation’s technological infrastructure and ability to develop advanced materials and technologies. We were successful in demonstrating the technical effectiveness of the new method and established a baseline of knowledge that has allowed ORNL to start a project to implement the method on one of its neutron beam lines.

  20. Neutron diffraction studies of natural glasses

    SciTech Connect

    Wright, A.C.; Erwin Desa, J.A.; Weeks, R.A.; Sinclair, R.N.; Bailey, D.K.

    1983-08-01

    A neutron diffraction investigation has been carried out of the structures of several naturally occurring glasses, viz. Libyan Desert glass, a Fulgurite, Wabar glass, Lechatelierite from Canon Diablo, a Tektite, Obsidian (3 samples), and Macusani glass. Libyan Desert sand has also been examined, together with crystalline ..cap alpha..-quartz and ..cap alpha..-cristobalite. A comparison of data for the natural glasses and synthetic vitreous silica (Spectrosil B) in both reciprocal and real space allows a categorisation into Silicas, which closely resemble synthetic vitreous silica, and Silicates, for which the resemblance to silica is consistently less striking. The data support the view that Libyan Desert glass and sand have a common origin, while the Tektite has a structure similar to that of volcanic glasses.

  1. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  2. Proton Transfer Reactions Studied Using the VANDLE Neutron Detector Array

    NASA Astrophysics Data System (ADS)

    Thornsberry, C. R.; Burcher, S.; Gryzwacz, R.; Jones, K. L.; Paulauskas, S. V.; Smith, K.; Vostinar, M.; Allen, J.; Bardayan, D. W.; Blankstein, D.; Deboer, J.; Hall, M.; O'Malley, P. D.; Reingold, C.; Tan, W.; Cizewski, J. A.; Lepailleur, A.; Walter, D.; Febbraro, M.; Pain, S. D.; Marley, S. T.

    2016-09-01

    Proton transfer reactions, such as (d,n), are powerful tools for the study of single particle proton states of exotic nuclei. Measuring the outgoing neutron allows for the extraction of spectroscopic information from the recoil nucleus. With the development of new radioactive ion beam facilities, such as FRIB in the U.S., comes the need for new tools for the study of reactions involving radioactive nuclei. Neutron detectors, such as VANDLE, are sensitive to gamma rays in addition to neutrons. This results in high background rates for measurements with high external trigger rates. The use of discriminating recoil particle detectors, such as phoswich detectors, allow for the selection of a clean recoil tag by separating the recoil nucleus of interest from unreacted RIB components. Developments of low energy proton transfer measurements in inverse kinematics and recent (d,n) results will be presented. This work supported in part by the U.S. Department of Energy and the National Science Foundation.

  3. Radiation Damage Study in Natural Zircon Using Neutrons Irradiation

    SciTech Connect

    Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu; Mohamed, Abdul Aziz; Karim, Julia Abdul

    2011-03-30

    Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emission of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.

  4. Dental optical coherence domain reflectometry explorer

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  5. Digital acquisition development for neutron induced fission studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Richman, Debra; O'Donnell, John; Couture, Aaron; Mosby, Shea; Wender, Steve

    2013-10-01

    The Los Alamos Neutron Science Center (LANSCE) is a neutron time of flight facility with a diverse group of experiments dedicated to the study of neutron induced reactions. A powerful proton LINAC is used to produce multiple pulsed neutron beams for which monitoring is required to track the neutron flux and energy distribution for each pulse. Digital DAQ techniques lend themselves well to beam monitoring and many of the experiments. Significant effort is being put into transitioning several traditional analog DAQ systems to state of the art digital systems. The Irradiation of Chips and Electronics (ICE House) and the Total Kinetic Energy of Fission (TKE) experiments are both transitioning to digital for the fall 2013 LANSCE run cycle. These new DAQ systems were built using the CAEN VME digitizer family, and both systems will benefit from reduced module count and zero deadtime. The TKE experiment utilizes FPGA firmware to streamline the acquisition system, as well as provide additional data for further analysis. Details of the implementation process along with preliminary data from both experiments will be presented.

  6. LANL sunnyside experiment: Study of neutron production in accelerator-driven targets

    NASA Astrophysics Data System (ADS)

    Morgan, G.; Butler, G.; Cappiello, M.; Carius, S.; Daemen, L.; DeVolder, B.; Frehaut, J.; Goulding, C.; Grace, R.; Green, R.; Lisowski, P.; Littleton, P.; King, J.; King, N.; Prael, R.; Stratton, T.; Turner, S.; Ullmann, J.; Venneri, F.; Yates, M.

    1995-09-01

    Measurements have been made of the neutron production in prototypic targets for accelerator driven systems. Studies were conducted on four target assemblies containing lead, lithium, tungsten, and a thorium-salt mixture. Integral data on total neutron production were obtained as well as more differential data on neutron leakage and neutron flux profiles in the blanket/moderator region. Data analysis on total neutron production is complete and shows excellent agreement with calculations using the LAHET/MCNP code system.

  7. Neutron irradiation study of silicon photomultipliers from different vendors

    NASA Astrophysics Data System (ADS)

    Kushpil, V.; Mikhaylov, V.; Kugler, A.; Kushpil, S.; Ladygin, V. P.; Reznikov, S. G.; Svoboda, O.; Tlustý, P.

    2017-02-01

    We present recent results on the investigation of the KETEK, ZECOTEK, HAMAMATSU and SENSL SiPM properties after irradiation by the 6-35 MeV neutrons. The typical neutron fluence was about 1012 n /cm2. The changing of the internal structure of the irradiated SiPMs was studied by the measuring of the C-V and C-f characteristics. We have observed the strong influence of the SiPM manufacturing technology on their radiation hardness. The application of the obtained results to the development of the readout electronics is discussed.

  8. GPS/GNSS reflectometry nanosatellite demonstration mission

    NASA Astrophysics Data System (ADS)

    Unwin, Martin J.; Liddle, J. Douglas; Jason, Susan J.

    2003-01-01

    Loss of life, injury and huge economic losses are incurred annually due to irregular and insufficient sea-state information. Figures indicate that, each year, the marine insurance industry pays out over $2 billion in claims for weather-related accidents, while bad weather causes one ship of over 500 t to sink somewhere on the globe every week. Accurate knowledge of local ocean conditions is therefore crucial in providing forecasts and early warnings of severe weather conditions. Space-borne systems, particularly satellites, provide the ideal platform for global monitoring of sea conditions via altimetric measurements. As an alternative to active altimetry, another concept is passively receiving reflected signals from the Global Positioning System (GPS) and other Global Navigation Satellite System (GNSS) satellites. This concept was first developed by Dr Manuel Martin-Neira at ESAESTEC. ESA's Passive Reflectometry and Interferometry System makes use of GPS/GNSS signals from satellites and their reflection off the ocean surface to derive oceanic properties such as surface height, significant wave height, wind speed and wind direction. Surrey Satellite Technology Ltd are proposing a nanosatellite demonstration mission to ascertain the feasibility of the GPS ocean reflectometry concept.

  9. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    NASA Astrophysics Data System (ADS)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  10. Electron paramagnetic resonance studies in neutron-irradiated silicon

    NASA Astrophysics Data System (ADS)

    Corbett, James W.; Kleinhenz, Richard L.; En, Wu; Zhi-pu, You

    1982-08-01

    Electron paramagnetic resonance studies of neutron-irradiated silicon are surveyed, both as being of interest per se and as related to transmutation doping. The emerging panorama progressing from vacancy- and interstitial-related point defects to agglomerates visible in the electron microscope is described. Intrinsic and impurity-driven partial dissociation of defect complexes is discussed.

  11. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  12. Study of Scattered Background Neutron in NIF and Time-of Flight (TOF) to Measure Neutron

    SciTech Connect

    Song, P; Moran, M; Phillips, T; Lerche, R; Koch, J; Eder, D

    2005-08-31

    Some of the planned core diagnostics for National Ignition Facility (NIF) will use neutron time-of-flight (TOF) spectroscopy techniques to gather information for primary neutron yield measurement or neutron imaging. This technique has been widely and routinely used at other laser facilities including Nova and Omega. TOF methods will also be used to observe target fuel areal density <{rho}R> (radial integral of density) via measuring the number of primary 14.1 MeV neutrons that are down-scattered to lower energies by nuclear collisions inside the compressed target core. The substantially larger target chamber size and higher neutron yield for NIF raises issues related to the large number of scattered neutrons produced by high yield deuterium-tritium (D-T) shots at NIF. The effect of primary neutrons scattered by the walls of the massive target chamber and structures both inside and outside the chamber will contribute a significant scattered background signal when trying to determine the number of neutrons down-scattered from the target core. The optimum detector locations outside the target chamber or target bay wall will be proposed. Appropriate collimators at the chamber port and the bay wall (between the neutron source at target chamber center (TCC) and detector) that maximize detection of signal neutrons while minimizing the background from scattered neutrons and neutron induced gamma rays will also be presented.

  13. Studies of Beta-Delayed Neutron Emission using Trapped Ions

    NASA Astrophysics Data System (ADS)

    Siegl, Kevin; Aprahamian, A.; Scielzo, N. D.; Savard, G.; Clark, J. A.; Levand, A. F.; Burkey, M.; Caldwell, S.; Czeszumska, A.; Hirsh, T. Y.; Kolos, K.; Marley, S. T.; Morgan, G. E.; Norman, E. B.; Nystrom, A.; Orford, R.; Padgett, S.; Pérez Galván, A.; Sh, K. S.; Strauss, S. Y.; Wang, B. S.

    2017-01-01

    Using a radio-frequency quadrupole ion trap to confine radioactive ions allows indirect measurements of beta-delayed neutron (BDN) emission. By determining the recoil energy of the beta-decay daughter ions it is possible to study BDN emission, as the neutron emission can impart a significantly larger nuclear recoil than from beta-decay alone. This method avoids most of the systematic uncertainties associated with direct neutron detection but introduces dependencies on the specifics of the decay and interactions of the ion with the RF fields. The decays of seven BDN precursors were studied using the Beta-decay Paul Trap (BPT) to confine fission fragments from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The analysis of these measurements and results for the branching ratios and neutron energy spectra will be presented. Supported by the NSF under grant PHY-1419765, and the U.S. DOE under the NEUP project 13-5485, contracts DE-AC02-06CH11357 (ANL) and DE-AC52-07NA27344 (LLNL), and award DE-NA0000979 (NNSA).

  14. GPS Diffractive Reflectometry and Further Developments in SNR- and Phase-based GPS Multipath Reflectometry

    NASA Astrophysics Data System (ADS)

    Geremia-Nievinski, F.; Ferreira e Silva, M.; Boniface, K.; Galera Monico, J. F.

    2015-12-01

    The validation of remote sensing environmental estimates requires knowledge of their spatial extent and resolution. Here we consider coherent radio reflections routinely observed in ground-based GPS reflectometry. Their footprint is often conceptualized in terms of the specular point (SP) and the first Fresnel zone (FFZ). Such infinitesimal point and finite zone can be generalized into a spatially continuous sensitivity kernel (SK). The SK represents a diffraction pattern, as the importance of each surface portion depends on its power and phase scattering. We measured the SK of a GPS radio reflection under bi-path reception conditions. The SK exhibited oscillations along the plane of incidence. The envelope of oscillations peaked near the SP and persisted in its decay well beyond the FFZ. Within the FFZ, sensitivity was skewed towards the antenna. This experiment suggests the feasibility of overcoming the diffraction limit and resolving features smaller than the FFZ via GPS diffractive reflectometry. We also report more recent developments in SNR- and carrier-phase-based GPS Multipath Reflectometry.

  15. Birefringence insensitive optical coherence domain reflectometry system

    DOEpatents

    Everett, Matthew J.; Davis, Joseph G.

    2002-01-01

    A birefringence insensitive fiber optic optical coherence domain reflectometry (OCDR) system is provided containing non-polarization maintaining (non-PM) fiber in the sample arm and the reference arm without suffering from signal degradation caused by birefringence. The use of non-PM fiber significantly reduces the cost of the OCDR system and provides a disposable or multiplexed section of the sample arm. The dispersion in the reference arm and sample arm of the OCDR system are matched to achieve high resolution imaging. This system is useful in medical applications or for non-medical in situ probes. The disposable section of non-PM fiber in the sample arm can be conveniently replaced when contaminated by a sample or a patient.

  16. Vascular interventions with optical coherence reflectometry

    NASA Astrophysics Data System (ADS)

    Neet, John M.

    2003-07-01

    There have been many innovations and technological advancements in balloon angioplasty since its introduction in the late 1970's, but percutaneous intervention on a totally occluded artery is still a challenge to the vascular interventionalist. Catheter-based intervention that avoids an invasive surgical procedure is a clear and desired advantage for the patient. A total occlusion challenges the interventionalist because the path of the artery can not be seen in the occluded vessel since the flow of the radiopaque contrast media is blocked. Optical coherence reflectometry techniques have been shown to be able to differentiate between artery wall and occlusive materials allowing the lumen of the blocked artery to be seen inside the occlusion. Light emitting diodes are a critical component of these systems making them technologically possible and economically feasible.

  17. Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter

    SciTech Connect

    Todd-Rutel, B.G.; Piekarewicz, J.

    2005-09-16

    An accurately calibrated relativistic parametrization is introduced to compute the ground state properties of finite nuclei, their linear response, and the structure of neutron stars. While similar in spirit to the successful NL3 parameter set, it produces an equation of state that is considerably softer--both for symmetric nuclear matter and for the symmetry energy. This softening appears to be required for an accurate description of several collective modes having different neutron-to-proton ratios. Among the predictions of this model are a symmetric nuclear-matter incompressibility of K=230 MeV and a neutron skin thickness in {sup 208}Pb of R{sub n}-R{sub p}=0.21 fm. The impact of such a softening on various neutron-star properties is also examined.

  18. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  19. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, Jr., Thomas Dean

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 108 n/cm2 • s. The fast neutron and gamma radiation KERMA factors are 10 x 10-11cGy•cm2/nepi and 20 x 10-11 cGy•cm2/nepi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  20. The neutron moderated detector and groundbased cosmic ray modulation studies

    NASA Technical Reports Server (NTRS)

    Stoker, P. H.; Raubenheimer, B. C.

    1985-01-01

    Reports appear on modulation studies with the neutron monitor without lead. Some of these studies cast doubt on the reliability of this detector. The stability of the neutron moderated detector (NMD) at Sanae, Antarctic is discussed. The barometric coeficient of the 4NMD for epoch 1976 appears not to differ statistically from the 0.73%/mb of the 3NM64. The monthly averaged hourly counting rate of our 4NMD and 3NM64 correlates very well (correlation coefficient: 98%) over the years from 1974-1984, with the 4NMD showing a 8% larger long term modulation effect than the 3NM64, indicating a difference in sensitivities of the two detectors. From this difference in sensitivities spectra of ground level solar proton events and modulation functions of Forbush decreases are deduced.

  1. Neutron scatter studies of chromatin structures related to function

    SciTech Connect

    Not Available

    1990-01-01

    In the Progress Report for last year (7-1-88 to 6-30-89) we proposed to complete the following experiments: (1) Structure of TFIIIA/DNA complex, (2) Effect of histone acetylation on nucleosome structure, and (3) Location of lysine rich histone H5 on the nucleosome. Our major source of neutrons is LANSCE, LANL. However, for the period of this report LANSCE has been down between cycles of operation. Continuing neutron scatter studies have been carried out at the Institute Laue Langevin, Grenoble, France, on the trimmed nucleosome core particles. X-ray scatter studies have been carried out at DESY, Hamburg on the histone octamer and trimmed octamer. X-ray scatter studies have been performed also at LANL on proposed objectives. We have continued with the following of our research program; (i) assembly of fully characterized nucleosomes; (ii) effect of histone acetylation on nucleosomes; (iii) effect of full acetylation of H3 and H4 on nucleosome DNA linking number; (iv) assembly and characterization of defined minichromosomes; (v) neutron and X-ray scatter of the histone octamer and trimmed octamer; (vi) structural studies of human sperm chromatin, histones and protamines. 5 refs.

  2. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    SciTech Connect

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.

    1990-11-01

    The irradiation behavior of high-density uranium silicides has been a matter of interest to the nuclear industry for use in high power or low enrichment applications. Transmission electron microscopy studies have found that heavy ion bombardment renders U{sub 3}Si and U{sub 3}Si{sub 2} amorphous at temperatures below about 250 C and that U{sub 3}Si becomes mechanically unstable suffering rapid growth by plastic flow. In this present work, crystallographic changes preceding amorphization by fission fragment damage have been studied by high-resolution neutron diffraction as a function of damage produced by uranium fission at room temperature. Initially, both silicides had tetragonal crystal structures. Crystallographic and amorphous phases were studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering analysis of the non-crystalline scattering component. 13 refs., 5 figs.

  3. Crystals for neutron scattering studies of quantum magnetism

    SciTech Connect

    Yankova, Tantiana; Hüvonen, Dan; Mühlbauer, Sebastian; Schmidiger, David; Wulf, Erik; Hong, Tao; Garlea, Vasile O; Custelcean, Radu; Ehlers, Georg

    2012-01-01

    We review a strategy for targeted synthesis of large single crystal samples of prototype quantum magnets for inelastic neutron scattering experiments. Four case studies of organic copper halogenide S = 1/2 systems are presented. They are meant to illustrate that exciting experimental results pertaining to the forefront of many-body quantum physics can be obtained on samples grown using very simple techniques, standard laboratory equipment, and almost no experience in advanced crystal growth techniques.

  4. The study of neutron burst shape of a neutron tube driven by dispenser cathode

    NASA Astrophysics Data System (ADS)

    Grishnyaev, Evgeny; Polosatkin, Sergey

    2016-08-01

    A slim-shaped portable DD-neutron generator is developed at Budker institute of Nuclear Physics. The generator is a combination of Cockcroft-Walton voltage multiplier and a sealed gas-filled neutron tube driven by dispenser cathode. Neutron burst shape in pulsed mode of neutron tube operation is measured with stroboscopic time spectrometry, implemented on scintillation detector, and modeled with Comsol Script 1.3 and Comsol Multiphysics 3.5. Modeling appears to be in good agreement with experimental results. Measured pulse rise and fall times are 110 ns and 100 ns respectively.

  5. Study of neutron irradiated structures of ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Deveikis, L.; Meskauskaite, D.; Miasojedovas, S.; Mickevicius, J.; Pavlov, J.; Pukas, K.; Vaitkus, J.; Velicka, M.; Zajac, M.; Kucharski, R.

    2017-04-01

    Study of the radiation damage in GaN-based materials becomes an important aspect for possible application of the GaN detectors in the harsh radiation environment at the Large Hadron Collider and at other particle acceleration facilities. Intentionally doped and semi-insulating bulk ammonothermal GaN materials were studied to reveal the dominant defects introduced by reactor neutron irradiations. These radiation defects have been identified by combining electron spin resonance and transmission spectroscopy techniques. Characteristics of carrier lifetime dependence on neutron irradiation fluence were examined. Variations of the response of the capacitor-type sensors with neutron irradiation fluence have been correlated with the carrier lifetime changes. The measurements of the photoconductivity and photoluminescence transients have been used to study the variation of the parameters of radiative and non-radiative recombination. The examined characteristics indicate that AT GaN as a particle sensing material is radiation hard up to high hadron fluences  ⩾1016 cm‑2.

  6. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  7. Neutron and Synchrotron X-Ray Scattering Studies of Superconductors

    SciTech Connect

    Tranquada,J.M.

    2008-09-01

    Superconductors hold the promise for a more stable and efficient electrical grid, but new isotropic, high-temperature superconductors are needed in order to reduce cable manufacturing costs. The effort to understand high-temperature superconductivity, especially in the layered cuprates, provides guidance to the search for new superconductors. Neutron scattering has long provided an important probe of the collective excitations that are involved in the pairing mechanism. For the cuprates, neutron and x-ray diffraction techniques also provide information on competing types of order, such as charge and spin stripes, that appear to be closely connected to the superconductivity. Recently, inelastic x-ray scattering has become competitive for studying phonons and may soon provide valuable information on electronic excitations. Examples of how these techniques contribute to our understanding of superconductivity are presented.

  8. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGES

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; ...

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  9. Study of spherical torus based volume neutron source

    SciTech Connect

    Cheng, E.T.; Peng, Yueng Kay Martin

    1998-01-01

    With the worldwide development of fusion power focusing on the design of the International Thermonuclear Experimental Reactor (ITER), developmental strategies for the demonstration fusion power plant (DEMO) are being discussed. A relatively prudent strategy is to construct and operate a small deuterium tritium fuelled volumetric neutron source (VNS) in parallel with ITER. The VNS is to provide, over a period less than 20 years, a relatively high fusion neutron fluence of 6 MW year m2 and wall loading of 1 MW m2 or more, over an accessible blanket test area of more than 10 m2. Such a VNS would complement ITER in testing, developing, and qualifying nuclear technology components, materials, and their combinations for DEMO and future commercial power plants. The effort of this study has established the potential of the spherical tokamak as a credible VNS concept that satisfies the above requirements.

  10. Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase)

    SciTech Connect

    Chen, Julian C.-H.; Mustyakimov, Marat; Schoenborn, Benno P.; Langan, Paul; Blum, Marc-Michael

    2010-11-01

    The structure and mechanism of diisopropyl fluorophosphatase (DFPase) have been studied using a variety of methods, including isotopic labelling, X-ray crystallography and neutron crystallography. The neutron structure of DFPase, mechanistic studies and subsequent rational design efforts are described. Diisopropyl fluorophosphatase (DFPase) is a calcium-dependent phosphotriesterase that acts on a variety of highly toxic organophosphorus compounds that act as inhibitors of acetylcholinesterase. The mechanism of DFPase has been probed using a variety of methods, including isotopic labelling, which demonstrated the presence of a phosphoenzyme intermediate in the reaction mechanism. In order to further elucidate the mechanism of DFPase and to ascertain the protonation states of the residues and solvent molecules in the active site, the neutron structure of DFPase was solved at 2.2 Å resolution. The proposed nucleophile Asp229 is deprotonated, while the active-site solvent molecule W33 was identified as water and not hydroxide. These data support a mechanism involving direct nucleophilic attack by Asp229 on the substrate and rule out a mechanism involving metal-assisted water activation. These data also allowed for the re-engineering of DFPase through rational design to bind and productively orient the more toxic S{sub P} stereoisomers of the nerve agents sarin and cyclosarin, creating a modified enzyme with enhanced overall activity and significantly increased detoxification properties.

  11. Feasibility of terahertz reflectometry for discrimination of human early gastric cancers

    PubMed Central

    Ji, Young Bin; Park, Chan Hyuk; Kim, Hyunki; Kim, Sang-Hoon; Lee, Gyu Min; Noh, Sam Kyu; Jeon, Tae-In; Son, Joo-Hiuk; Huh, Yong-Min; Haam, Seungjoo; Oh, Seung Jae; Lee, Sang Kil; Suh, Jin-Suck

    2015-01-01

    We have investigated the feasibility of THz time-domain reflectometry for the discrimination of human early gastric cancer (EGC) from the normal gastric region. Eight fresh EGC tissues, which were resected by endoscopic submucosal dissection, were studied. Of them, six lesions were well discriminated on THz images and the regions well correlated with tumor regions on pathologically mapped images. Four THz parameters could be suggested for quantitative discrimination of EGCs. PMID:25909023

  12. Neutron capture studies on /sup 189/Os

    SciTech Connect

    Bruce, A.M.; Colvin, G.G.; Gelletly, W.; Warner, D.D.

    1987-01-01

    An extensive study of the level structure of /sup 189/Os has been carried out using the (n,..gamma..) and (n,e-) reactions. The use of the Average Resonance Capture technique ensures that the complete set of 1/2-, 3/2- states has been established up to 1500 keV in excitation energy and secondary ..gamma..-rays have been measured in singles and coincidence to build up the detailed level scheme. 7 refs., 2 figs.

  13. Neutron scattering study of unconventional superconductors

    SciTech Connect

    Lee, Seunghun

    2014-06-30

    My group’s primary activity at the University of Virginia supported by DOE is to study novel electronic, magnetic, and structural phenomena that emerge out of strong interactions between electrons. Some of these phenomena are unconventional superconductivity, exotic states in frustrated magnets, quantum spin liquid states, and magneto-electricity. The outcome of our research funded by the grant advanced microscopic understanding of the emergence of the collective states in the systems.

  14. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    NASA Astrophysics Data System (ADS)

    Meneghini, Orso; Volpe, Francesco A.

    2016-11-01

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  15. Cosmic ray modulation studies with Lead-Free Gulmarg Neutron Monitor

    NASA Astrophysics Data System (ADS)

    Darzi, M. A.; Ishtiaq, P. M.; Mir, T. A.; Mufti, S.; Shah, G. N.

    2014-02-01

    A lead-free neutron monitor operating at High Altitude Research Laboratory (HARL), Gulmarg optimized for detecting 2.45 MeV neutron bursts produced during the atmospheric lightning discharges is also concurrently used for studying background neutron component present in the atmosphere. These background neutrons are produced due to the interaction of primary cosmic rays with the atmospheric constituents. In order to study and extract the information about the yield of the neutron production during transient atmospheric lightning discharges, the system is continuously operated to monitor and record the cosmic ray produced background secondary neutrons in the atmosphere. The data analysis of the background neutrons recorded by Lead-Free Gulmarg Neutron Monitor (LFGNM) has convincingly established that the modulation effects due to solar activity phenomena compare very well with those monitored by the worldwide IGY or NM64 type neutron monitors which have optimum energy response relatively towards the higher energy regime of the cosmic rays. The data has revealed various types of modulation phenomena like diurnal variation, Forbush decrease etc. during its entire operational period. However, a new kind of a periodic/seasonal variation pattern is also revealed in the data from September 2007 to September 2012, which is seen to be significantly consistent with the data recorded by Emilio Segre observatory, Israel (ESOI) Neutron Monitor. Interestingly, both these neutron monitors have comparable latitude and altitude. However, the same type of consistency is not observed in the data recorded by the other conventional neutron monitors operating across the globe.

  16. Density of states in solid deuterium: Inelastic neutron scattering study

    SciTech Connect

    Frei, A.; Gutsmiedl, E.; Morkel, C.; Mueller, A. R.; Paul, S.; Urban, M.; Schober, H.; Rols, S.; Unruh, T.; Hoelzel, M.

    2009-08-01

    The dynamics of solid deuterium (sD{sub 2}) is studied by means of inelastic scattering (coherent and incoherent) of thermal and cold neutrons at different temperatures and para-ortho ratios. In this paper, the results for the generalized density of states (GDOS) are presented and discussed. The measurements were performed at the thermal neutron time-of-flight (TOF) instrument IN4 at ILL Grenoble and at the cold neutron TOF instrument TOFTOF at FRM II Garching. The GDOS comprises besides the hcp phonon excitations of the sD{sub 2} the rotational transitions J=0{yields}1 and J=1{yields}2. The intensities of these rotational excitations depend strongly on the ortho-D{sub 2} molecule concentration c{sub o} in sD{sub 2}. Above E=10 meV there are still strong excitations, which very likely may originate from higher-energy damped optical phonons and multiphonon contributions. A method for separating the one-phonon and multiphonon contributions to the density of states will be presented and discussed.

  17. GNSS-Reflectometry based water level monitoring

    NASA Astrophysics Data System (ADS)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  18. Quasi-elastic neutron scattering studies of protein dynamics

    SciTech Connect

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  19. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Kelton, K. F.; Rustan, G. E.; Quirinale, D. G.; Goldman, A. I.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Egami, T.

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  20. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg).

  1. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGES

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; ...

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  2. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  3. Application of reflectometry power flow for magnetic field pitch angle measurements in tokamak plasmas (invited).

    PubMed

    Gourdain, P-A; Peebles, W A

    2008-10-01

    Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.

  4. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  5. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  6. A survey of reflectometry techniques with applications to TFTR

    SciTech Connect

    Collazo, I.; Stacey, W.M.; Wilgen, J.; Hanson, G.; Bigelow, T.; Thomas, C.E.; Bretz, N.

    1993-12-01

    This report presents a review of reflectometry with particular attention to eXtraordinary mode (X-mode) reflectometry using the novel technique of dual frequency differential phase. The advantage of using an X-mode wave is that it can probe the edge of the plasma with much higher resolution and using a much smaller frequency range than with the Ordinary mode (O-Mode). The general problem with previous full phase reflectometry techniques is that of keeping track of the phase (on the order of 1000 fringes) as the frequency is swept over the band. The dual frequency phase difference technique has the advantage that since it is keeping track of the phase difference of two frequencies with a constant frequency separation, the fringe counting is on the order of only 3 to 5 fringes. This fringe count, combined with the high resolution of the X-mode wave and the small plasma access requirements of reflectometry, make X-mode reflectometry a very attractive diagnostic for today`s experiments and future fusion devices.

  7. Neutron scatter studies of chromatin structure related to functions

    SciTech Connect

    Bradbury, E.M.

    1989-01-01

    Neutron scatter studies have been performed at LANSCE, LANL and at the Institute Laue Langevin, Grenoble, France. In the previous progress report (April 1, 1988--July 1, 1988) the following objectives were listed: shape of the histone octamer; location of the N-terminal domains of histone in the nucleosome core particle (specific aim 1 of original grant proposal); effect of acetylation on nucleosome structure (specific aim 2); location of the globular domain of histone H1 (specific aim 6); and complexes of the transcription factor 3A with its DNA binding site. Progress is briefly discussed.

  8. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  9. Neutronic design studies for an unattended, low power reactor

    SciTech Connect

    Palmer, R.G.; Durkee, J.W. Jr.

    1986-01-01

    The Los Alamos National Laboratory is involved in the design and demonstrations of a small, long-lived nuclear heat and electric power source for potential applications at remote sites where alternate fossil energy systems would not be cost effective. This paper describes the neutronic design analysis that was performed to arrive at two conceptual designs, one using thermoelectric conversion, the other using an organic Rankine cycle. To meet the design objectives and constraints a number of scoping and optimization studies were carried out. The results of calculations of control worths, temperature coefficients of reactivity and fuel depletion effects are reported.

  10. STUDY OF A 10-MW CONTINUOUS SPALLATION NEUTRON SOURCE.

    SciTech Connect

    RUGGIERO,A.G.LUDEWIG,H.SHAPIRO,S.

    2003-05-12

    This paper reports on the feasibility study of a proton Super-Conducting Linac as the driver for an Accelerator-based Continuous Neutron Source (ACNS) [1] to be located at Brookhaven National Laboratory (BNL). The Linac is to be operated in the Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is taken to be 1.25 GeV. The required average proton beam intensity in exit is then 8 mA.

  11. Neutron depth profiling study of lithium niobate optical waveguides

    NASA Astrophysics Data System (ADS)

    Kolářova, P.; Vacík, J.; Špirková-Hradilová, J.; Červená, J.

    1998-05-01

    The relation between optical properties and the structure of proton exchanged and annealed proton exchanged optical waveguides in lithium niobate was studied using the mode spectroscopy and neutron depth profiling methods. We have found a close correlation between the lithium depletion and the depth profile of the extraordinary refractive index. The form of the observed dependence between Li depletion and refractive index depends on the fabrication procedure by which the waveguide was prepared but it is highly reproducible for specimens prepared by the same procedure.

  12. Neutron Scattering Study of TbPtin Intermetallic Compound

    SciTech Connect

    Garlea, Vasile O; Morosan, E.; Bud'ko, S. L.; Zarestky, Jerel L; Canfield, P. C.; Stassis, C.

    2005-01-01

    Neutron diffraction techniques have been used to study the magnetic properties of a TbPtIn single-crystal as a function of temperature and magnetic field. In the absence of an externally applied magnetic field, the compound orders, below approximately 47 K, in an antiferromagnetic structure with propagation vector k=(1/2,0,1/2); the magnetic moments were found to be parallel to the [1 {ovr 2} 0] direction. Measurements at 4.2 K, with a magnetic field applied along the [1 {ovr 2} 0] direction, revealed metamagnetic transitions at approximately 20 kG and 40 kG.

  13. Functional renormalization group study of nuclear and neutron matter

    SciTech Connect

    Drews, Matthias; Weise, Wolfram

    2016-01-22

    A chiral model based on nucleons interacting via boson exchange is investigated. Fluctuation effects are included consistently beyond the mean-field approximation in the framework of the functional renormalization group. The liquid-gas phase transition of symmetric nuclear matter is studied in detail. No sign of a chiral restoration transition is found up to temperatures of about 100 MeV and densities of at least three times the density of normal nuclear matter. Moreover, the model is extended to asymmetric nuclear matter and the constraints from neutron star observations are discussed.

  14. Solid phases of spatially nanoconfined oxygen: A neutron scattering study

    SciTech Connect

    Kojda, Danny; Wallacher, Dirk; Hofmann, Tommy; Baudoin, Simon; Hansen, Thomas; Huber, Patrick

    2014-01-14

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic γ-, orthorhombic β- and monoclinic α-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic α-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

  15. Decay studies of the highly neutron-deficient indium isotopes

    SciTech Connect

    Wouters, J.M.

    1982-02-01

    An extension of the experimentally known nuclidic mass surface to nuclei far from the region of beta-stability is of fundamental interest in providing a better determination of the input parameters for the various nuclear mass formulae, allowing a more accurate prediction of the ultimate limits of nuclear stability. In addition, a study of the shape of the mass surface in the vicinity of the doubly-closed nuclide /sup 100/Sn provides initial information on the behavior of the shell closure to be expected when Z = N = 50. Experiments measuring the decay energies of /sup 103/ /sup 105/In by ..beta..-endpoint measurements are described with special attention focused on the development of a plastic scintillator ..beta..-telescope coupled to the on-line mass separator RAMA (Recoil Atom Mass Analyzer). An attempt to measure the ..beta..-endpoint energy of /sup 102/In is also briefly described. The experimentally determined decay energies and derived masses for /sup 103/ /sup 105/In are compared with the predictions of different mass models to identify which models are more successful in this region. Furthermore, the inclusion in these comparisons of the available data on the neutron-rich indium nuclei permits a systematic study of their ground state mass behavior as a function of the neutron number between the shell closures at N = 50 and N = 82. These analyses indicate that the binding energy of /sup 103/In is 1 MeV larger than predicted by the majority of the mass models. An examination of the Q/sub EC/ surface and the single- and two-neutron separation energies in the vicinity of /sup 103/ /sup 105/In is also performed to investigate further the deviation and other possible systematic variations in the mass surface in a model-independent way.

  16. Materials compatibility studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Pawel, S.J.; Manneschmidt, E.T.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R and D programs. In addition, corrosion studies also include evaluation of Inconel 718 because it has been successfully used in previous spallation neutron systems as a window material. Two types of compatibility issues relative to 316 SS/mercury and Inconel 718/mercury are being examined: (1) liquid metal embrittlement (LME) and (2) temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275 C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 C. Inconel 718 also showed no change in room temperature properties when tested in mercury or mercury-gallium. However, there was evidence that the fracture was less ductile. Preliminary evaluation of mass transfer of either type 316 SS or Inconel 718 in mercury or mercury-gallium at 350 C (maximum temperature) did not reveal significant effects. Two 5,000 h thermal convection loop tests of type 316 SS are in progress, with specimens in both hot and cold test regions, at 300 and 240 C, respectively.

  17. Neutron and X-Ray Diffraction Studies of Advanced Materials

    SciTech Connect

    Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong; Liaw, Peter K

    2010-01-01

    The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It

  18. (Neutron scatter studies of chromatin structure related to function)

    SciTech Connect

    Bradbury, E.M.

    1990-01-01

    This study is concerned with the application of neutron scatter techniques to the different structural states of nucleosomes and chromatin with the long term objective of understanding how the enormous lengths of DNA are folded into chromosomes. Micrococcal nuclease digestion kinetics have defined two subnucleosome particles; the chromatosome with 168 bp DNA, the histone octamer and one H1 and the nucleosome core particle with 146 bp DNA and the histone octamer. As will be discussed, the structure of the 146 bp DNA core particle is known in solution at low resolution from neutron scatter studies and in crystals. Based on this structure, the authors have a working model for the chromatosome and the mode of binding of H1. In order to define the structure of the nucleosome and also the different orders of chromatin structures they need to know the paths of DNA that link nucleosomes and the factors associated with chromosome functions that act on those DNA paths. The major region for this situation is the inherent variabilities in nucleosome DNA sequences, in the histone subtypes and their states of chemical modification and in the precise locations of nucleosomes. Such variabilities obscure the underlying principles that govern the packaging of DNA into the different structural states of nucleosomes and chromatin. The only way to elucidate these principles is to study the structures of nucleosomes and oligonucleosomes that are fully defined. They have largely achieved these objectives.

  19. Study of radioactive impurities in neutron transmutation doped germanium

    NASA Astrophysics Data System (ADS)

    Mathimalar, S.; Dokania, N.; Singh, V.; Nanal, V.; Pillay, R. G.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.

    2015-02-01

    A program to develop low temperature (mK) sensors with neutron transmutation doped Ge for rare event studies with a cryogenic bolometer has been initiated. For this purpose, semiconductor grade Ge wafers are irradiated with thermal neutron flux from Dhruva reactor at Bhabha Atomic Research Centre (BARC), Mumbai. Spectroscopic studies of irradiated samples have revealed that the environment of the capsule used for irradiating the sample leads to significant levels of 65Zn, 110mAg and 182Ta impurities, which can be reduced by chemical etching of approximately 50 μm thick surface layer. From measurements of the etched samples in the low background counting setup, activity due to trace impurities of 123Sb in bulk Ge is estimated to be 1 Bq / g after irradiation. These estimates indicate that in order to use the NTD Ge sensors for rare event studies, a cooldown period of 2 years would be necessary to reduce the radioactive background to ≤ 1 mBq / g.

  20. 5 MW pulsed spallation neutron source, Preconceptual design study

    SciTech Connect

    Not Available

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  1. Simulation study of a 'fission electron-collection' neutron detector

    SciTech Connect

    Wang Dong; Zhang Chuanfei

    2015-07-01

    In this work, a 'fission electron-collection' neutron detector was studied using the Monte Carlo method. The detector consists of two metal electrodes mounted in a vacuum, named coated and collection electrodes, respectively. The first electrode is coated with triuranium octoxide. The detector uses the 'fission electron-collection' technique, which does not need an intermediate material but directly collects electrons from the coating. Such a detector can realize a flat energy response and a fast time response, both of which are important in the fluence measurement of pulsed neutron sources. In this paper, the physical processes of detection are presented, as well as Monte Carlo simulation studies using the Geant4 toolkit. From the results, the sensitivity of the detector is approximately 1.5 x 10{sup -21} [C/(n/cm{sup 2})], and the FWHM of response function is 2.5 nanoseconds. Additionally, the characterization of escaping electrons is also presented, and the sensitivity of the detector is determined for various coating thicknesses. (authors)

  2. Study of SMM flares in gamma-rays and neutrons

    NASA Technical Reports Server (NTRS)

    Dunphy, Philip P.; Chupp, Edward L.

    1992-01-01

    This report summarizes the results of the research supported by NASA grant NAGW-2755 and lists the papers and publications produced through the grant. The objective of the work was to study solar flares that produced observable signals from high-energy (greater than 10 MeV) gamma-rays and neutrons in the Solar Maximum Mission (SMM) Gamma-Ray Spectrometer (GRS). In 3 of 4 flares that had been studied previously, most of the neutrons and neutral pions appear to have been produced after the 'main' impulsive phase as determined from hard x-rays and gamma-rays. We, therefore, proposed to analyze the timing of the high-energy radiation, and its implications for the acceleration, trapping, and transport of flare particles. It was equally important to characterize the spectral shapes of the interacting energetic electrons and protons - another key factor in constraining possible particle acceleration mechanisms. In section 2.0, we discuss the goals of the research. In section 3.0, we summarize the results of the research. In section 4.0, we list the papers and publications produced under the grant. Preprints or reprints of the publications are attached as appendices.

  3. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1991-01-01

    We have completed a study on the structure of trypsin trimmed histone octamers using small angle neutron and X-ray scattering studies and nuclear magnetic resonance. We have also completed studies on the structure of TFIIIA induced DNA bending by a circular permutation gel electrophoresis assay. Individual acetylated species of core histones from butyrate treated HeLa cells were isolated and reconstituted into nucleosomes using a 5S rDNA nucleosome positioning DNA sequence from sea urchin. These nucleosomes were characterized by sulfhydryl group probing, nucleoprotein particle gel electrophoresis and DNase I footprinting. Fully acetylated species of histones H3 and H4 were also reconstituted in closed circular minichromosomes and the effect of DNA topology changes caused by acetylation was studied. Finally, protamines isolated from human sperm were characterized and a full set of core histones were isolated and characterized. 7 refs.

  4. Neutron scattering studies of disordered carbon anode materials

    NASA Astrophysics Data System (ADS)

    Papanek, P.; Kamitakahara, W. A.; Zhou, P.; Fischer, J. E.

    2001-09-01

    Carbon-based anodes show many promising properties in lithium-ion rechargeable batteries. So-called `disordered carbons' are characterized by a substantial amount of residual hydrogen, and exhibit large Li uptake capacities. We have employed a variety of neutron scattering techniques, coupled with computer simulations, to study the composition, local atomic structure, and vibrational dynamics of such materials. Radial distribution function analysis of neutron diffraction data, and incoherent inelastic scattering show that the structural motif is a planar graphene fragment, with edge carbons terminated by single hydrogen atoms, and random stacking between fragments. The vibrational spectra of the hydrogen-rich carbons are remarkably similar to the spectra of the polycyclic aromatic hydrocarbon coronene in the medium-frequency region. At low frequencies, only a boson peak is observed, characteristic for glassy and disordered materials, and this feature shifts upon doping. The results are consistent with two proposed mechanisms for Li capacity, one analogous to conventional intercalation but with Li on both sides of graphene fragments, the other involving bonding of Li to H-terminated edge carbons.

  5. Time-resolved quasielastic neutron scattering studies of native photosystems.

    PubMed

    Pieper, Jörg

    2010-01-01

    The internal molecular dynamics of proteins plays an important role in a number of functional processes in native photosystems. Prominent examples include the photocycle of bacteriorhodopsin and electron transfer in the reaction center of plant photosystem II. In this regard, the recently developed technique of time-resolved quasielastic neutron scattering with laser excitation opens up new perspectives for the study of protein/membrane dynamics in specific functional states of even complex systems. The first direct observation of a functionally modulated protein dynamics has just recently been reported for the model system bacteriorhodopsin (Pieper et al., Phys. Rev. Lett. 100, 2008, 228103.), where a transient softening of the protein was observed on a timescale of approximately 1 ms along with the large-scale structural change in the M-intermediate of bacteriorhodopsin. In contrast, photosystem II membrane fragments with inhibited electron transfer show a suppression of protein dynamics approximately 160 mus after the actinic laser flash (Pieper and Renger, Biochemistry 48, 2009, 6111). This effect may reflect aggregation-like conformational changes capable of dissipation of excess excitation energy to prevent photodamage in the absence of Q(A)-->Q(B) electron transfer. These findings indicate that proteins exhibit a remarkable flexibility to accommodate different functional processes. This contribution will discuss methodical aspects, challenges, and recent applications of laser-excited, time-resolved quasielastic neutron scattering.

  6. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules.

    PubMed

    Oksanen, Esko; Chen, Julian C-H; Fisher, Suzanne Zoë

    2017-04-07

    Abstract: The hydrogen bond (H bond) is one of the most important interactions that form the foundation of secondary and tertiary protein structure. Beyond holding protein structures together, H bonds are also intimately involved in solvent coordination, ligand binding, and enzyme catalysis. The H bond by definition involves the light atom, H, and it is very difficult to study directly, especially with X-ray crystallographic techniques, due to the poor scattering power of H atoms. Neutron protein crystallography provides a powerful, complementary tool that can give unambiguous information to structural biologists on solvent organization and coordination, the electrostatics of ligand binding, the protonation states of amino acid side chains and catalytic water species. The method is complementary to X-ray crystallography and the dynamic data obtainable with NMR spectroscopy. Also, as it gives explicit H atom positions, it can be very valuable to computational chemistry where exact knowledge of protonation and solvent orientation can make a large difference in modeling. This article gives general information about neutron crystallography and shows specific examples of how the method has contributed to structural biology, structure-based drug design; and the understanding of fundamental questions of reaction mechanisms.

  7. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    SciTech Connect

    Fisher, S. Z. Kovalevsky, A. Y.; Domsic, J.; Mustyakimov, M.; Silverman, D. N.; McKenna, R.; Langan, P.

    2010-11-01

    The first neutron crystal structure of carbonic anhydrase is presented. The structure reveals interesting and unexpected features of the active site that affect catalysis. Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO{sub 2} to form HCO{sub 3}{sup −} and H{sup +} using a Zn–hydroxide mechanism. The first part of catalysis involves CO{sub 2} hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA.

  8. Time domain reflectometry as a rock mass monitoring technique

    SciTech Connect

    Francke, J.L.; Terrill, L.J.; Allen, W.W.

    1996-06-01

    This paper describes the practices and methods used in a study of Time Domain Reflectometry (TDR) as an inexpensive deformation monitoring tool in underground excavations at the Waste Isolation Pilot Plant (WIPP). The WIPP is being developed near Carlsbad, New Mexico, for the disposal of transuranic nuclear wastes in bedded salt 655 m (2150 ft) below the surface. Data collected from WIPP geomechanical monitoring are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the deep salt excavation. The geomechanical monitoring techniques ranging from inspection of observation boreholes to advanced radar surveys. In 1989 TDR was introduced as a monitoring tool with the installation of 12.7 mm (0.5 in) diameter TDR cables in the underground excavations. In 1993, a new TDR system was installed in a separate location. Based on experience with the previous installation, enhancements were implemented into the new TDR system that: (1) extended the period of performance by increasing cable diameter to 22. 2 mm (0.875 in), (2) increased accuracy in locating areas of deformation by aligning cables with nearby observation boreholes, and (3) improved data acquisition and analyses using a standard laptop computer, eliminating the chart recorder previously used. In summary, the results of a correlation between the TDR signatures to nearby observation boreholes and geomechanical instrumentation will be presented.

  9. Neutron scatter studies of chromatin structures related to functions

    SciTech Connect

    Bradbury, E.M.

    1992-01-01

    We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin.

  10. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  11. Recent neutronics developments for reactor safety studies with SIMMER code at KIT

    NASA Astrophysics Data System (ADS)

    Rineiski, A.; Marchetti, M.; Andriolo, L.; Gabrielli, F.

    2017-01-01

    The SIMMER family of codes is applied for safety studies of sodium fast reactors and reactors of other types. Both neutronics and fluid-dynamics parts of SIMMER are under development. In the paper new neutronics capabilities are presented. In particular developments for neutron transport solvers and a new technique for taking into account thermal expansion effects are described. These new capabilities facilitate 3D simulations and improve accuracy of modelling for the initiation transient phase during a hypothetical severe accident.

  12. Neutron scattering studies on chromatin higher-order structure

    SciTech Connect

    Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.

    1994-12-31

    We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.

  13. Design study of a medical proton linac for neutron therapy

    SciTech Connect

    Machida, S.; Raparia, D.

    1988-08-26

    This paper describes a design study which establishes the physical parameters of the low energy beam transport, radiofrequency quadrupole, and linac, using computer programs available at Fermilab. Beam dynamics studies verify that the desired beam parameters can be achieved. The machine described here meets the aforementioned requirements and can be built using existing technology. Also discussed are other technically feasible options which could be attractive to clinicians, though they would complicate the design of the machine and increase construction costs. One of these options would allow the machine to deliver 2.3 MeV protons to produce epithermal neutrons for treating brain tumors. A second option would provide 15 MeV protons for isotope production. 21 refs., 33 figs.

  14. Using Neutrons to Study Fluid-Rock Interactions in Shales

    NASA Astrophysics Data System (ADS)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  15. Final report on Seed Money Project 3210-0346: Feasibility study for californium cold neutron source

    SciTech Connect

    Alsmiller, R.G.; Henderson, D.L.; Montgomery, B.H.

    1988-10-01

    A study has been completed of the feasibility and cost of building a cold neutron source that is not dependent on a reactor or accelerator. The neutron source is provided by up to ten /sup 252/Cf capsules, each containing 50 mg of the isotope produced in the High-Flux Isotope Reactor. The neutrons are moderated by heavy water and liquid deuterium to attain, in practice, a peak cold neutron flux of 1.4 /times/ 10/sup 13/ neutrons/(m/sup 2//center dot/s). The new facility would be located in the TURF Californium Facility. The estimated cost of the Californium Cold Neutron Source Facility is $6.5 million. 6 figs., 1 tab.

  16. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  17. Materials Compatibility Studies for the Spallation Neutron Source

    SciTech Connect

    DiStefano, J.R.; Manneschmidt, E.T.; Pawel, S.J.

    1998-09-01

    The Spallation Neutron Source (SNS) is a high power facility for producing neutrons that utilizes flowing liquid mercury inside an austenitic stainless steel container as the target for a 1.0 GeV proton beam. The energy deposited in the target is transported by two separate mercury flow streams: one to transport heat in the interior target region and one to cool the stainless steel container. Three-dimensional computational fluid dynamics simulations have been performed to predict temperature, velocity, and pressure distributions in the target. Results have generally shown that the power deposited in the bulk mercury can be effectively transported with reasonable flow rates and the bulk mercury temperature should not exceed 160{deg}C. Assuming good thermal contact, the maximum stainless steel wall temperature should be 130 {deg}C. Type 316 SS has been selected as the container material for the mercury and consequences of exposure of 316 SS to radiation, thermal shock, thermal stress, cavitation and hot, flowing mercury are all being addressed by R&D programs. In addition, corrosion studies include evaluation of Inconel 718 because it has been successfully used in previous water cooled spallation neutron systems as a window material. With type 316 SS selected to contain the mercury target of the SNS, two types of compatibility issues have been examined: LME and temperature gradient mass transfer. Studies have shown that mercury does not easily wet type 316 SS below 275{deg}C. In the LME experiments, attempts were made to promote wetting of the steel by mercury either by adding gallium to the mercury or coating the specimen with a tin-silver solder that the mercury easily wets. The latter proved more reliable in establishing wetting, but there was no evidence of LME in any of the constant extension rate tensile tests either at 23 or 100 {deg}C. Inconel 718 also showed no change in room temperature properties when tested in mercwy or mercury-gallium. However, there

  18. Measurement of the neutron energy spectrum on the Godiva IV fast burst assembly for application to neutron dosimetry studies

    SciTech Connect

    Casson, W.H.; Hsu, H.H.; Paternoster, R.R.; Butterfield, K.B.

    1996-06-01

    In June, 1995, Los Alamos National Laboratory hosted the 23rd U.S. Department of Energy sponsored Nuclear Accident Dosimetry Study at the Los Alamos Critical Experiments Facility. The participants tested their facilities accident dosimeters under a variety of neutrons fields produced by the Solution High Energy Burst Assembly (SHEBA) and the Godiva IV fast burst assembly. To provide useful information for the evaluation of the results, the neutron energy Spectrum was determined and the delivered absorbed dose to tissue. The measurement of the neutron energy spectrum on Godiva provides a unique problem in that the burst, which is nearly Gaussian in time, has a full width at half maximum of around 50 microseconds. The neutron spectrum was first determined at low-power while running at delayed critical using a standard set of Bonner spheres. At the same time, the response of a set of TLD dosimeters were measured. After that, measurements were conducted during a burst with another set of TLDs and with sulfur pellets.

  19. Directly coupled vs conventional time domain reflectometry in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time domain reflectometry (TDR), a technique for estimation of soil water, measures the travel time of an electromagnetic pulse on electrodes embedded in the soil, but has limited application in commercial agriculture due to costs, labor, and sensing depth. Conventional TDR systems have employed ana...

  20. Spatially resolved in operando neutron scattering studies on Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Pirling, T.; Ehrenberg, H.

    2014-01-01

    Spatially-resolved neutron diffraction has been applied to probe the lithium distribution in radial direction of a commercial Li-ion cell of 18650-type. The spatial evolution of selected Bragg reflections for LiCoO2 (positive electrode, "cathode") and graphite and lithium intercalated graphite (negative electrode, "anode") was observed and evaluated by taking beam attenuation and cell geometry effects into account. No evidences for lithium inhomogeneities have been found for the investigated set of cells. Computed neutron tomography using a monochromatic neutron beam confirmed the homogeneous lithium distribution. The relevance of the monochromatic beam to neutron imaging studies of Li-ion cells is discussed.

  1. The study of the thermal neutron flux in the deep underground laboratory DULB-4900

    NASA Astrophysics Data System (ADS)

    Alekseenko, V. V.; Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Dzhappuev, D. D.; Kazalov, V. V.; Kudzhaev, A. U.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2017-01-01

    We report on the study of thermal neutron flux using monitors based on mixture of ZnS(Ag) and LiF enriched with a lithium-6 isotope at the deep underground laboratory DULB-4900 at the Baksan Neutrino Observatory. An annual modulation of thermal neutron flux in DULB-4900 is observed. Experimental evidences were obtained of correlation between the long-term thermal neutron flux variations and the absolute humidity of the air in laboratory. The amplitude of the modulation exceed 5% of total neutron flux.

  2. Diffusion of water in bentonite clay: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Prabhudesai, S. A.; Dessai, R. Raut; Erwin Desa, J. A.; Mitra, S.; Mukhopadhyay, R.

    2013-02-01

    Diffusion of water confined in natural bentonite clay is studied using the quasi-elastic neutron scattering (QENS) technique. X-ray diffraction shows a well-defined crystalline structure of the clay with an interlayer spacing of 13 Å. The QENS experiment has been carried out on hydrated as well as dehydrated clay at 300 K. Significant quasi-elastic broadening was observed in case of hydrated bentonite clay whereas dehydrated clay did not show any broadening over the instrument resolution. Analysis of QENS data reveals that diffusion of water occurs through jump diffusion characterized by random distribution of jump lengths. Diffusion of water in clay is found to be hindered vis a vis bulk water.

  3. A neutron diffraction study of ancient Greek ceramics

    NASA Astrophysics Data System (ADS)

    Siouris, I. M.; Walter, J.

    2006-11-01

    Non-destructive neutron diffraction studies were performed on three 2nd-century BC archaeological pottery fragments from the excavation site of Neos Scopos, Serres, in North Greece. In all the 273 K diagrams quartz and feldspars phase fractions are dominant. Diopside and iron oxide phases were also identifiable. The diopside content is found to decrease with increasing quartz-feldspar compositions. Iron oxides containing minerals were found to be present and the phase compositions reflect upon the coloring of the samples. However, the different content compositions of the phases may suggest different regions of the original clay materials as well as different preparation techniques. The firing temperatures were determined to be in the range of 900-1000 °C.

  4. Scissors mode of Gd nuclei studied from resonance neutron capture

    SciTech Connect

    Kroll, J.; Baramsai, B.; Becker, J. A.; and others

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.

  5. Quantum states of neutrons in the gravitational and centrifugal potentials in a new GRANIT spectrometer

    ScienceCinema

    None

    2016-07-12

    We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.

  6. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  7. DETECTORS AND EXPERIMENTAL METHODS: Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xin; Zhang, Yi; Wang, Ji-Jin; Hu, Bi-Tao

    2009-02-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial resolution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  8. Neutron-induced reactions in the hohlraum to study reaction in flight neutrons

    NASA Astrophysics Data System (ADS)

    Boswell, M. S.; Elliott, S. R.; Guiseppe, V.; Kidd, M.; Rundberg, B.; Tybo, J.

    2013-04-01

    We are currently developing the physics necessary to measure the Reaction In Flight (RIF) neutron flux from a NIF capsule. A measurement of the RIF neutron flux from a NIF capsule could be used to deduce the stopping power in the cold fuel of the NIF capsule. A foil irradiated at the Omega laser at LLE was counted at the LANL low-background counting facility at WIPP. The estimated production rate of 195Au was just below our experimental sensitivity. We have made several improvements to our counting facility in recent months. These improvements are designed to increase our sensitivity, and include installing two new low-background detectors, and taking steps to reduce noise in the signals.

  9. Studies of neutron cross-sections important for spallation experiments using the activation method

    NASA Astrophysics Data System (ADS)

    Vrzalová, J.; Chudoba, P.; Krása, A.; Majerle, M.; Suchopár, M.; Svoboda, O.; Wagner, V.

    2014-09-01

    A series of experiments devoted to studies of neutron cross-sections by activation method was carried out. The cross-sections of various threshold reactions were studied by means of different quasi-monoenergetic neutron sources with energies from 14 MeV up to 100 MeV. Threshold reactions in various materials are among other used to measure fast neutron fields produced during accelerator driven system studies. For this reason our measurements of neutron cross-sections are crucial. At present, neither experimental nor evaluated data above 30 MeV are available for neutron threshold reactions in Au, I and In published in this proceedings. We studied materials in the form of thin foils and compared our data with the calculations preformed using the deterministic code TALYS 1.4.

  10. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  11. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-12-31

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  12. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-01-01

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  13. Ames collaborative study of cosmic-ray neutrons. 2: Low- and mid-latitude flights

    NASA Technical Reports Server (NTRS)

    Stephens, L. D.; Mccaslin, J. B.; Smith, A. R.; Thomas, R. H.; Hewitt, J. E.; Hughes, L.

    1978-01-01

    Progress of the study of cosmic ray neutrons is described. Data obtained aboard flights from Hawaii at altitudes of 41,000 and 45,000 feet, and in the range of geomagnetic latitude 17 N less than or equal to lambda less than or equal to 21 N are reported. Preliminary estimates of neutron spectra are made.

  14. Using FLUKA to Study Concrete Square Shield Performance in Attenuation of Neutron Radiation Produced by APF Plasma Focus Neutron Source

    NASA Astrophysics Data System (ADS)

    Nemati, M. J.; Habibi, M.; Amrollahi, R.

    2013-04-01

    In 2010, representatives from the Nuclear Engineering and physics Department of Amirkabir University of Technology (AUT) requested development of a project with the objective of determining the performance of a concrete shield for their Plasma Focus as neutron source. The project team in Laboratory of Nuclear Engineering and physics department of Amirkabir University of Technology choose some shape of shield to study on their performance with Monte Carlo code. In the present work, the capability of Monte Carlo code FLUKA will be explored to model the APF Plasma Focus, and investigating the neutron fluence on the square concrete shield in each region of problem. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against future experimental data. As a result of this study suitable thickness of concrete for shielding APF will be considered.

  15. Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry.

    PubMed

    Nagel, Michael; Michalski, Alexander; Kurz, Heinrich

    2011-06-20

    We demonstrate in a first experimental study the application of novel micro-machined optoelectronic probes for a time-domain reflectometry-based localization of discontinuities and faults in electronic structures at unprecedented resolution and accuracy (± 0.55 µm). Thanks to the THz-range bandwidth of our optoelectronic system--including the active probes used for pulse injection and detection--the spatial resolution and precision of high-end all-electronic detection systems is surpassed by more than one order of magnitude. The new analytic technology holds great promise for rapid and precise fault detection and location in advanced (3D) integrated semiconductor chips and packages.

  16. Measurement of shear-wave velocity by ultrasound critical-angle reflectometry (UCR)

    NASA Technical Reports Server (NTRS)

    Mehta, S.; Antich, P.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    There exists a growing body of research that relates the measurement of pressure-wave velocity in bone to different physiological conditions and treatment modalities. The shear-wave velocity has been less studied, although it is necessary for a more complete understanding of the mechanical properties of bone. Ultrasound critical-angle reflectometry (UCR) is a noninvasive and nondestructive technique previously used to measure pressure-wave velocities both in vitro and in vivo. This note describes its application to the measurement of shear-wave velocity in bone, whether directly accessible or covered by soft tissue.

  17. Neutron activation studies and the effect of exercise on osteoporosis

    SciTech Connect

    Harrison, J.E.

    1984-01-01

    A technique is described to measure calcium content by in vivo neutron activation analysis of the trunk and upper thighs. In postmenopausal women, estrogen and calcium or fluoride reversed osteoporosis.

  18. Progress on the Europium Neutron-Capture Study using DANCE

    SciTech Connect

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O'Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  19. Use of complementary neutron techniques in studying the effect of a solid/liquid interface on bulk solution structures

    SciTech Connect

    Butler, P.D.; Hamilton, W.A.; Magid, L.J.

    1996-12-31

    By appropriate combination of neutron scattering techniques, it is possible to obtain structural information at various distances from a solid/liquid interface and thus probe in some detail how the surface structures evolve into bulk structures. We have used neutron reflectometry (NR) with a newly developed shear cell, near surface small angle neutron scattering (NSSANS) again in combination with the new shear cell, and regular small angle neutron scattering (SANS) with a standard Couette shear cell to probe the structures formed in our aqueous surfactant systems and how they react to a flow field, particularly in the near surface region of a solid/liquid interface. We present data for a 20mM aqueous solutions of 70% cetyltrimethylammonium 3,5-dichlorobenzoate (abbreviated CTA3,5ClBz) and 30% CTAB. This system forms a very viscoelastic solution containing long threadlike micelles. NR only probes to a depth of about 0.5 {mu}m from the surface in these systems and clearly indicates that adsorbed onto the surface is, surfactant layer which is insensitive to shear. The depth probed by the NSSANS is on the order of 20-30 {mu}m and is determined by the transmission of the sample, the angle of incidence, and the wavelength. In this region, the rods align under shear into a remarkably well ordered hexagonal crystal. The SANS from the Couette cell averages over the entire sample, so that the signal is dominated by scattering from the bulk. While the near surface hexagonal structure is clearly visible, these data are not consistent with the crystal structure persisting throughout the bulk, leading to the postulate that the bulk structure is a two dimensional (2D) liquid where the rods align with the flow, but do not order in the other two dimensions.

  20. Neutron scattering studies in the actinide region. Progress report, August 1, 1991--July 31, 1994

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1994-09-01

    During the period August 1, 1991 to July 31, 1994 the authors report progress on the following: (a) prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; (b) two-parameter measurement of nuclear lifetimes; (c) `black` neutron detector; (d) data reduction techniques for neutron scattering experiments; (e) elastic and inelastic neutron scattering studies in {sup 197}Au; (f) elastic and inelastic neutron scattering studies in {sup 239}Pu; (g) neutron induced defects in silicon dioxide MOS structures; (h) response of a {sup 235}U fission chamber near reaction thresholds; (i) efficiency calibration of a liquid scintillation detector using the WNR facility at LAMPF; (j) prompt fission neutron energy spectrum measurements below the incident neutron energy; (k) multi-parameter data acquisition system; (l) accelerator improvements; (m) non-DOE supported research. Eight Ph.D. dissertations and two M.S. theses were completed during the report period. Publications consisted of 6 journal articles, 10 conference proceedings, and 19 abstracts of presentations at scientific meetings. One invited talk was given.

  1. GNSS-Reflectometry aboard ISS with GEROS: Investigation of atmospheric propagation effects

    NASA Astrophysics Data System (ADS)

    Zus, F.; Heise, S.; Wickert, J.; Semmling, M.

    2015-12-01

    GEROS-ISS (GNSS rEflectometry Radio Occultation and Scatterometry) is an ESA mission aboard the International Space Station (ISS). The main mission goals are the determination of the sea surface height and surface winds. Secondary goals are monitoring of land surface parameters and atmosphere sounding using GNSS radio occultation measurements. The international scientific study GARCA (GNSS-Reflectometry Assessment of Requirements and Consolidation of Retrieval Algorithms), funded by ESA, is part of the preparations for GEROS-ISS. Major goals of GARCA are the development of an end2end Simulator for the GEROS-ISS measurements (GEROS-SIM) and the evaluation of the error budget of the GNSS reflectometry measurements. In this presentation we introduce some of the GARCA activities to quantify the influence of the ionized and neutral atmosphere on the altimetric measurements, which is a major error source for GEROS-ISS. At first, we analyse, to which extend the standard linear combination of interferometric paths at different carrier frequencies can be used to correct for the ionospheric propagation effects. Second, we make use of the tangent-linear version of our ray-trace algorithm to propagate the uncertainty of the underlying refractivity profile into the uncertainty of the interferometric path. For comparison the sensitivity of the interferometric path with respect to the sea surface height is computed. Though our calculations are based on a number of simplifying assumptions (the Earth is a sphere, the atmosphere is spherically layered and the ISS and GNSS satellite orbits are circular) some general conclusions can be drawn. In essence, for elevation angles above -5° at the ISS the higher-order ionospheric errors and the uncertaintiy of the inteferometric path due to the uncertainty of the underlying refractivity profile are small enough to distinguish a sea surface height of ± 0.5 m.

  2. Study of calculated and measured time dependent delayed neutron yields. [TX, for calculating delayed neutron yields; MATINV, for matrix inversion; in FORTRAN for LSI-II minicomputer

    SciTech Connect

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.

  3. Neutron, X-ray, and optical studies of multiferroic materials

    NASA Astrophysics Data System (ADS)

    Hearmon, Alexander J.

    Developing a greater understanding of multiferroic materials, particularly those in which a strong coupling is exhibited between magnetic and electrical orderings, is of great importance if potential applications are to be realised. This thesis reports new experimental findings on several multiferroics using the techniques of X-ray and neutron diffraction together with nonlinear optical experiments. Spherical neutron polarimetry measurements on RbFe(MoOstudy. In zero field the system is helimagnetic, and with small applied fields peaks corresponding to a new phase appear. Energy calculations are used to suggest a suitable magnetic structure for the new phase and to show how this relates to the known commensurate phases that are present in low fields. Finally, an experimental setup designed to measure second harmonic generation from non-centrosymmetric crystals is presented, along with static measurements on the multiferroic system MnWO4. An optical

  4. Study of muon-induced neutron production using accelerator muon beam at CERN

    SciTech Connect

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.; Draeger, E.; White, C. G.; Luk, K. B.; Steiner, H.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experiment for more comprehensive study of muon-induced neutron production.

  5. Focused neutron beam dose deposition profiles in tissue equivalent materials: a pilot study for BNCT

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon R.; Welsh, James; Chen-Mayer, Huaiyu H.

    1997-02-01

    Boron Neutron Capture Therapy (BNCT) has been limited by the inability to direct neutrons toward the therapeutic target and away from sensitive normal tissues. The recently developed Kumakhov lens has focused a broad incident low energy neutron beam in air to a sub-mm spot. This study examines the radiation does distribution of a converging beam passing through tissue equivalent materials. A neutron beam exiting a focusing lens is directed toward a stack of thin radiochromic media sandwiched between plastic sheets. The depth dose and beam profile within the tissue equivalent materials are determined by optical scanning and image processing of the individual radiochromic media sheets, a polymer based dosimetry medium which darkens upon exposure to ionizing radiation. The alpha particle emission from boron is examined by substituting a plastic sheet with a 6Li enriched lithium carbonate sheet positioned at the focal plane. The information will help determine the feasibility of applying the focused neutron beam to BNCT for therapy.

  6. Neutron detection in nuclear astrophysics experiments: study of organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Ciani, Giovanni Francesco

    2016-02-01

    In order to study the nuclear reaction 13 C(α,n)16 O, crucial for the nucleosynthesis of heavy nuclei (A>58), the LUNA collaboration at Laboratori Nazionali del Gran Sasso, is looking for the best neutron detector to use in the set up. One of the possibilities is to use detectors based on cell filled with Organic Liquid Scintillator BC501A. These detectors are sensible to fast neutron, but also to gamma rays. A Pulse Shape Discrimination process using the Zero Crossing method has been performed to select only signals from neutrons. Comparing the neutron spectra after the Pulse Shape Discrimination and the spectrum from a GEANT4 simulations, the efficiency of the BC501A, in function of the neutron energy and varying the light threshold, has been evaluated.

  7. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  8. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  9. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Chang, Shu-Jun; Chuang, Keh-Shih; Hsueh, Yen-Wan; Yeh, Kuan-Chuan; Wang, Jeng-Ning; Tsai, Wen-Pin

    2007-03-01

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li2CO3 was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  10. HERITAGE: the concept of a giant flux neutron reflectometer for the exploration of 3-d structure of free-liquid and solid interfaces in thin films

    NASA Astrophysics Data System (ADS)

    Mattauch, S.; Ioffe, A.; Lott, D.; Bottyán, L.; Daillant, J.; Markó, M.; Menelle, A.; Sajti, S.; Veres, T.

    2017-01-01

    The instrumental concept of HERITAGE - a reflectometer with a horizontal sample geometry - well fitted to the long pulse structure of a neutron source is presented. It is constitutes a new class of reflectometers achieving the unprecedentedly high flux for classical specular reflectometry combined with off-specular reflectometry and grazing incidence small-angle scattering (GISANS), thus resulting in a complete 3-d exploration of lateral and in depth structures in thin films. This is achieved by specially designed neutron guides. In the horizontal direction (perpendicular to the scattering plane) the guide's elliptic shape focusses the neutrons onto the sample. In the vertical direction a multichannel geometry provides a smooth divergence distribution at the sample position while accepting the entire beam from a compact high-brilliance flat moderator. The modular collimation setup of HERITAGE provides extremely high flexibility in respect to sample geometries and environments, including the possibility to study virtually all types of solid and liquid interfaces, statically or kinetically. The use of multiple beam illumination allows for reflectivity and GISANS measurements at liquid interfaces both from above and below without a need to move the sample. This concept assures the delivery of the maximum possible and usable flux to the sample in both reflectivity and GISANS measurement regimes. The presented design outperforms the flux of all present-day and already for the ESS planned reflectometers and GISANS setups in flux and in measuring time for standard samples.

  11. New signal processing technique for density profile reconstruction using reflectometry

    SciTech Connect

    Clairet, F.; Bottereau, C.; Ricaud, B.; Briolle, F.; Heuraux, S.

    2011-08-15

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10{sup 16} m{sup -1}. For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  12. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  13. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  14. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  15. Neutron diffraction studies for realtime leaching of catalytic Ni

    SciTech Connect

    Iles, Gail N. Reinhart, Guillaume; Devred, François; Henry, Paul F. Hansen, Thomas C.

    2014-07-21

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni{sub 2}Al{sub 3} and NiAl{sub 3} continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.

  16. Beta Decay Study of Neutron-rich Magnesium

    NASA Astrophysics Data System (ADS)

    Ash, John; Rajabali, Mustafa; Griffin Collaboration

    2015-10-01

    Within the ``island of inversion'' around the N = 20 shell gap, isotopes of magnesium, and aluminum deviate from the expected closed-shell structure. Particles promoted across the N = 20 shell gap result in a lower energy deformed ground state configuration rather than the expected spherical configuration. An experiment was conducted at TRIUMF laboratory in the summer of 2015 to study the decay of ``island of inversion'' isotopes 33 , 34 , 35Mg and the structure of the respective daughter nuclei. The isotopes of interest were produced by a proton beam from TRIUMF's 500 MeV cyclotron impacting on a UCx target. The magnesium decays populated states along the decay chain in Al, Si, P, and S isotopes. The new GRIFFIN spectrometer in the ISAC-I facility was used to detect the gamma rays. Two sets of scintillators, one for detecting the beta particles (SCEPTAR) and the other for detecting beta-delayed neutrons (DESCANT), were also used in conjunction with GRIFFIN. The GRIFFIN data were energy calibrated and partially analyzed for this project. New algorithms were developed for the analysis. Preliminary results for new transitions detected in 34Mg as well as the half lives obtained will be presented in their current form. This research was supported by the Tennessee Tech research office.

  17. Neutron diffraction study of metal-matrix composite with fullerite

    NASA Astrophysics Data System (ADS)

    Borisova, P. A.; Blanter, M. S.; Brazhkin, VV; Somenkov, VA; Filonenko, V. P.

    2016-09-01

    Interaction of amorphous fullerite C60 with austenitic Fe-33.2 wt. % Ni alloy at pressures 0-8 GPa and temperatures 600-1100 °C was studied by neutron diffraction. The amorphous fullerite was obtained by ball milling and mixed with the powder of the crystalline alloy. The interaction at sintering led to the dissolution of carbon in fcc Fe-Ni solid solution and the formation of carbide (Fe, Ni)3C, but the Fe-Ni-C alloy did not undergo phase transformations and preserved the original fcc structure. As a result, the alloy hardened, we could also witness a clear barometric effect: at the pressure of 2 GPa the amount of the dissolved carbon and the microhardness turned out to be significantly higher than those at 8 GPa. During sintering amorphous fullerite is undergoing phase transitions and its microhardness is higher than the microhardness of the metal component. At high temperatures of interaction graphite appears. The presence of Fe-Ni alloy in the composite reduces the temperature of graphite formation in comparison with transformations in the pure amorphous fullerene.

  18. Neutron-scattering studies of Yb-bearing silicate glasses

    SciTech Connect

    Ellison, A.J.G.; Loong, C.K.; Wagner, J.

    1993-09-01

    The static and dynamic magnetic response of the Yb{sup 3+} ions in 2Na{sub 2}O{center_dot}Yb{sub 2}O{sub 3}{center_dot}6SiO{sub 2} glass and the isochemical crystalline silicate Na{sub 3}YbSi{sub 3}O{sub 9} has been studied by neutron diffraction, inelastic magnetic-scattering, and magnetic susceptibility measurements. The rare earth sites in the glass have an average coordination number of 5.6 {plus_minus} 0.5 and give a mean rare earth-oxygen bond length of 2.23 {Angstrom}; average Si-O and O-O coordination numbers and bond distances are comparable to those in vitreous SiO{sub 2}. The magnetic excitation spectrum of the Na{sub 3}YbSi{sub 3}O{sub 9} material was analyzed by a crystal-field model using a method of descending symmetry. The magnetic susceptibility and the excitation spectrum of the Yb glasses can be described by a distribution of ligand-field effects on the Yb{sup 3+} ions that are similar to the nominal crystal field in crystalline Na{sub 3}YbSi{sub 3}O{sub 9}.

  19. Functional renormalization group studies of nuclear and neutron matter

    NASA Astrophysics Data System (ADS)

    Drews, Matthias; Weise, Wolfram

    2017-03-01

    Functional renormalization group (FRG) methods applied to calculations of isospin-symmetric and asymmetric nuclear matter as well as neutron matter are reviewed. The approach is based on a chiral Lagrangian expressed in terms of nucleon and meson degrees of freedom as appropriate for the hadronic phase of QCD with spontaneously broken chiral symmetry. Fluctuations beyond mean-field approximation are treated solving Wetterich's FRG flow equations. Nuclear thermodynamics and the nuclear liquid-gas phase transition are investigated in detail, both in symmetric matter and as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of symmetric nuclear matter and pure neutron matter are found to be in good agreement with advanced ab-initio many-body computations. Contacts with perturbative many-body approaches (in-medium chiral perturbation theory) are discussed. As an interesting test case, the density dependence of the pion mass in the medium is investigated. The question of chiral symmetry restoration in nuclear and neutron matter is addressed. A stabilization of the phase with spontaneously broken chiral symmetry is found to persist up to high baryon densities once fluctuations beyond mean-field are included. Neutron star matter including beta equilibrium is discussed under the aspect of the constraints imposed by the existence of two-solar-mass neutron stars.

  20. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  1. Time Domain Reflectometry for Damage Detection of Laminated CFRP plate

    DTIC Science & Technology

    2011-08-18

    Final Report PROJECT ID: AOARD-10-4112 Title: Time Domain Reflectometry for damage detection of laminated CFRP plate Researcher: Professor Akira...From July/2010 To July/2011 Abstract Recently, high toughness Carbon Fiber Reinforced Polymer ( CFRP ) laminates are used to primary structures. The...tough CFRP yields small fiber breakages when delamination crack is made in many cases. This requires a detection system of fiber breakages at low cost for

  2. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    PubMed

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  3. Material flow in metal foams studied by neutron radioscopy

    NASA Astrophysics Data System (ADS)

    Stanzick, H.; Klenke, J.; Danilkin, S.; Banhart, J.

    Two kinds of experiments are presented in this paper: In the first lead alloy foams were generated in a furnace by expanding a foamable precursor material containing metal and a blowing agent. Vertical columns of liquid metal foam were scanned with a beam of neutrons while recording the time-dependent local neutron transmission. The resulting transmission profiles reflect the kinetics of material redistribution in liquid metallic foams under the influence of gravity (drainage). In the second experiment pre-fabricated solid lead foams were re-melted in a furnace. Neutron transmission profiles were also obtained in these experiments. Results of each type of experiment are presented and compared with theoretical predictions for the density profile of aqueous foams.

  4. Scoping studies - photon and low energy neutron interrogation

    SciTech Connect

    Becker, G.; Harker, Y.; Jones, J.; Harmon, F.

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  5. A Study of Neutron Leakage in Finite Objects

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code capable of simulating High charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for simple shielded objects. Monte Carlo (MC) benchmarks were used to verify the 3DHZETRN methodology in slab and spherical geometry, and it was shown that 3DHZETRN agrees with MC codes to the degree that various MC codes agree among themselves. One limitation in the verification process is that all of the codes (3DHZETRN and three MC codes) utilize different nuclear models/databases. In the present report, the new algorithm, with well-defined convergence criteria, is used to quantify the neutron leakage from simple geometries to provide means of verifying 3D effects and to provide guidance for further code development.

  6. Interfacial assembly of proteins and peptides: recent examples studied by neutron reflection

    PubMed Central

    Zhao, XiuBo; Pan, Fang; Lu, Jian R.

    2009-01-01

    Through reviewing a number of recent neutron reflection studies of interfacial adsorption of peptides and proteins, this paper aims to demonstrate the significance of this technique in studying interfacial biomolecular processes by illustrating the typical structural details that can be derived. The review will start with the introduction of relevant theoretical background, followed by an outline of representative biomolecular systems that have recently been studied to indicate the technical strengths of neutron reflection. PMID:19656822

  7. Review of Livermore-Led Neutron Capture Studies Using DANCE

    SciTech Connect

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O'Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.

  8. Sustaining knowledge in the neutron generator community and benchmarking study.

    SciTech Connect

    Barrentine, Tameka C.; Kennedy, Bryan C.; Saba, Anthony W.; Turgeon, Jennifer L.; Schneider, Julia Teresa; Stubblefield, William Anthony; Baldonado, Esther

    2008-03-01

    In 2004, the Responsive Neutron Generator Product Deployment department embarked upon a partnership with the Systems Engineering and Analysis knowledge management (KM) team to develop knowledge management systems for the neutron generator (NG) community. This partnership continues today. The most recent challenge was to improve the current KM system (KMS) development approach by identifying a process that will allow staff members to capture knowledge as they learn it. This 'as-you-go' approach will lead to a sustainable KM process for the NG community. This paper presents a historical overview of NG KMSs, as well as research conducted to move toward sustainable KM.

  9. A study on optical aberrations in parabolic neutron guides

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wang, Hongli; Liu, Yuntao; Zu, Yong; He, Linfeng; Wei, Guohai; Sun, Kai; Han, Songbai; Chen, Dongfeng

    2015-06-01

    It is widely believed that a neutron beam can be focused to a small spot using a parabolic guide, which will significantly improve the flux. However, researchers have also noted challenges for the neutron inhomogeneous phase space distribution in parabolic focusing guide systems. In this paper, the sources of most prominent optical aberrations, such as an inhomogeneous phase space distribution and irregular divergence distribution, are discussed, and an optimization solution is also proposed. We indicate that optimizing the parabolic guide geometrical configuration removes almost all of the aberrations and yields a considerable intensity gain factor.

  10. Low-level gamma and neutron monitoring based on use of proportional counter filled with 3He in polythene moderator: study of the responses to gamma and neutrons.

    PubMed

    Pszona, S; Bantsar, A; Tulik, P; Wincel, K; Zaręba, B

    2014-10-01

    It has been shown that a proportional counter filled with (3)He placed centrally inside a polythene sphere opens a new possibility for measuring gamma photons and neutrons in the separate pulse-height windows. The responses to gamma and neutrons (in terms of ambient dose equivalent) of the detector assembly consisting of 203-mm polythene sphere with centrally positioned 40-mm diameter (3)He proportional counter have been studied. The response to secondary gammas from capture process in hydrogen has also been studied. The rather preliminary studies indicate that the proposed measuring system has very promising features as an ambient dose equivalent device for mixed gamma-neutron fields.

  11. Enhanced Doppler reflectometry power response: physical optics and 2D full wave modelling

    NASA Astrophysics Data System (ADS)

    Pinzón, J. R.; Happel, T.; Blanco, E.; Conway, G. D.; Estrada, T.; Stroth, U.

    2017-03-01

    The power response of a Doppler reflectometer is investigated by means of the physical optics model; a simple model which considers basic scattering processes at the reflection layer. Apart from linear and saturated scattering regimes, non-linear regimes with an enhanced backscattered power are found. The different regimes are characterized and understood based on analytical calculations. The power response is also studied with two-dimensional full wave simulations, where the enhanced backscattered power regimes are also found in qualitative agreement with the physical optics results. The ordinary and extraordinary modes are compared for the same angle of incidence, with the conclusion that the ordinary mode is better suited for Doppler reflectometry turbulence level measurements due to the linearity of its response. The scattering efficiency is studied and a first approximation to describe it is proposed. At the end, the application of the physical optics results to experimental data analysis is discussed. In particular, a formula to assess the linearity of Doppler reflectometry measurements is provided.

  12. Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry

    NASA Astrophysics Data System (ADS)

    Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano

    2012-10-01

    This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.

  13. Neutron scattering and diffraction instrument for structural study on biology in Japan

    SciTech Connect

    Niimura, Nobuo

    1994-12-31

    Neutron scattering and diffraction instruments in Japan which can be used for structural studies in biology are briefly introduced. Main specifications and general layouts of the instruments are shown.

  14. Cross-section studies of important neutron and relativistic deuteron reactions

    NASA Astrophysics Data System (ADS)

    Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Herman, T.; Svoboda, O.; Geier, B.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunikov, S.; Zavorka, L.; Vladimirova, N.; Bielewicz, M.; Kilim, S.; Szuta, M.; Strugalska-Gola, E.

    2014-09-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied by the means of activation method. The deuteron beams produced by JINR Nuclotron (Russia) with energies from 1 GeV up to 8 GeV were used. Lack of such cross-sections prevents the usage of copper foils for beam integral monitoring. The copper monitors will help us to improve the beam integral determination during ADS studies. The yttrium samples are very suitable activation detectors for monitoring of neutron fields not only in the ADS studies. But experimental cross-section data for higher energy threshold neutron reactions are still missing. This situation is the reason why we have started to study neutron reactions on yttrium by the means of quasi mono-energetic neutron source based on NPI Řež cyclotron (Czech Republic).

  15. Experimental study of neutron induced background noise on gated x-ray framing cameras

    SciTech Connect

    Izumi, N.; Hagmann, C.; Stone, G.; Hey, D.; Glenn, S.; Conder, A.; Teruya, A.; Sorce, C.; Tommasini, R.; Stoeffl, W.; Springer, P.; Landen, O. L.; Eckart, M.; Mackinnon, A. J.; Koch, J. A.; Bradley, D. K.; Bell, P.; Herrmann, H. W.; Kyrala, G. A.; Bahukutumbi, R.; and others

    2010-10-15

    A temporally gated x-ray framing camera based on a proximity focus microchannel plate is one of the most important diagnostic tools of inertial confinement fusion experiments. However, fusion neutrons produced in imploded capsules interact with structures surrounding the camera and produce background to x-ray signals. To understand the mechanisms of this neutron induced background, we tested several gated x-ray cameras in the presence of 14 MeV neutrons produced at the Omega laser facility. Differences between background levels observed with photographic film readout and charge-coupled-device readout have been studied.

  16. Optical absorption and luminescence studies of fast neutron-irradiated complex oxides for jewellery applications

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Skvortsova, V.; Popov, A. I.

    2016-07-01

    We studied the optical absorption and luminescence of agate (SiO2), topaz (Al2[SiO4](F,OH)2), beryl (Be3Al2Si6O18), and prehnite (Ca2Al(AlSi3O10)(OH)2) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.

  17. Structure of Sn107 studied through single-neutron knockout reactions

    DOE PAGES

    Cerizza, G.; Ayres, A.; Jones, K. L.; ...

    2016-02-04

    The neutron-deficient nucleus Sn-107 has been studied by using the one-neutron knockout reaction. By measuring the decay gamma rays and momentum distributions of reaction residues, the spins of the ground, 5/2+, and first-excited, 7/2+, states of Sn-107 have been assigned by comparisons to eikonal-model reaction calculations. We also observed limits on the inclusive and exclusive cross sections and transitions due to neutron removals from below the N = 50 closed shell have been observed. New excited states up to 5.5 MeV in Sn-107 have been identified.

  18. An accelerator-based neutron microbeam system for studies of radiation effects.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Bigelow, Alan W; Akselrod, Mark S; Sykora, Jeff G; Brenner, David J

    2011-06-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the ⁷Li(p,n)⁷Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min⁻¹. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy.

  19. An accelerator-based neutron microbeam system for studies of radiation effects

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2011-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min−1. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy. PMID:21131327

  20. High energy neutron treatment for pelvic cancers: study stopped because of increased mortality.

    PubMed Central

    Errington, R D; Ashby, D; Gore, S M; Abrams, K R; Myint, S; Bonnett, D E; Blake, S W; Saxton, T E

    1991-01-01

    OBJECTIVE--To compare high energy fast neutron treatment with conventional megavoltage x ray treatment in the management of locally advanced pelvic carcinomas (of the cervix, bladder, prostate, and rectum). DESIGN--Randomised study from February 1986; randomisation to neutron treatment or photon treatment was unstratified and in the ratio of 3 to 1 until January 1988, when randomisation was in the ratio 1 to 1 and stratified by site of tumour. SETTING--Mersey regional radiotherapy centre at Clatterbridge Hospital, Wirral. PATIENTS--151 patients with locally advanced, non-metastatic pelvic cancer (27 cervical, 69 of the bladder, seven prostatic, and 48 of the rectum). INTERVENTION--Randomisation to neutron treatment was stopped in February 1990. MAIN OUTCOME MEASURES--Patient survival and causes of death in relation to the development of metastatic disease and treatment related morbidity. RESULTS--In the first phase of the trial 42 patients were randomised to neutron treatment and 14 to photon treatment, and in the second phase 48 to neutron treatment and 47 to photon treatment. The relative risk of mortality for photons compared with neutrons was 0.66 (95% confidence interval 0.40 to 1.10) after adjustment for site of tumour and other important prognostic factors. Short term and long term complications were similar in both groups. CONCLUSIONS--The trial was stopped because of the increased mortality in patients with cancer of the cervix, bladder, or rectum treated with neutrons. PMID:1903663

  1. Improved time-frequency analysis of ASDEX Upgrade reflectometry data using the reassigned spectrogram technique

    SciTech Connect

    Varela, P.; Silva, A.; Silva, F. da; Graca, S. da; Manso, M. E. [Associacao EURATOM Conway, G. D. [MPI fuer Plasmaphysik, EURATOM Collaboration: ASDEX Upgrade Team

    2010-10-15

    The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.

  2. Interfacial Adsorption of Antifreeze Proteins: A Neutron Reflection Study

    PubMed Central

    Xu, Hai; Perumal, Shiamalee; Zhao, Xiubo; Du, Ning; Liu, Xiang-Yang; Jia, Zongchao; Lu, Jian R.

    2008-01-01

    Interfacial adsorption from two antifreeze proteins (AFP) from ocean pout (Macrozoarces americanus, type III AFP, AFP III, or maAFP) and spruce budworm (Choristoneura fumiferana, isoform 501, or cfAFP) were studied by neutron reflection. Hydrophilic silicon oxide was used as model substrate to facilitate the solid/liquid interfacial measurement so that the structural features from AFP adsorption can be examined. All adsorbed layers from AFP III could be modeled into uniform layer distribution assuming that the protein molecules were adsorbed with their ice-binding surface in direct contact with the SiO2 substrate. The layer thickness of 32 Å was consistent with the height of the molecule in its crystalline form. With the concentration decreasing from 2 mg/ml to 0.01 mg/ml, the volume fraction of the protein packed in the monolayer decreased steadily from 0.4 to 0.1, consistent with the concentration-dependent inhibition of ice growth observed over the range. In comparison, insect cfAFP showed stronger adsorption over the same concentration range. Below 0.1 mg/ml, uniform layers were formed. But above 1 mg/ml, the adsorbed layers were characterized by a dense middle layer and two outer diffuse layers, with a total thickness around 100 Å. The structural transition indicated the responsive changes of conformational orientation to increasing surface packing density. As the higher interfacial adsorption of cfAFP was strongly correlated with the greater thermal hysteresis of spruce budworm, our results indicated the important relation between protein adsorption and antifreeze activity. PMID:18234809

  3. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    SciTech Connect

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  4. SU-E-T-21: A D-D Based Neutron Generator System for Boron Neutron Capture Therapy: A Feasibility Study

    SciTech Connect

    Hsieh, M; Liu, Y; Nie, L

    2015-06-15

    Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30 ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.

  5. From asymmetric nuclear matter to neutron stars: A functional renormalization group study

    NASA Astrophysics Data System (ADS)

    Drews, Matthias; Weise, Wolfram

    2015-03-01

    A previous study of nuclear matter in a chiral nucleon-meson model is extended to isospin-asymmetric matter. Fluctuations beyond mean-field approximation are treated in the framework of the functional renormalization group. The nuclear liquid-gas phase transition is investigated in detail as a function of the proton fraction in asymmetric matter. The equations of state at zero temperature of both symmetric nuclear matter and pure neutron matter are found to be in good agreement with realistic many-body computations. We also study the density dependence of the pion mass in the medium. The question of chiral symmetry restoration in neutron matter is addressed; we find a stabilization of the phase with spontaneously broken chiral symmetry once fluctuations are included. Finally, neutron-star matter including β equilibrium is discussed. The model satisfies the constraints imposed by the existence of two-solar mass neutron stars.

  6. A New Neutron Time-of-Flight Array for β-Decay Studies

    NASA Astrophysics Data System (ADS)

    Sénoville, M.; Delaunay, F.; Achouri, N. L.; Pârlog, M.; Orr, N. A.; Cano-Ott, D.; Carniol, B.; Étasse, D.; Fontbonne, C.; Fontbonne, J. M.; Gibelin, J.; Hommet, J.; Laurent, B.; Ledoux, X.; Marqués, F. M.; Martínez, T.; De Séréville, N.

    A new time-of-flight array for β-delayed neutron spectroscopy (En < 5 MeV) is being developed with the aim of improved performance compared to existing arrays. We report on the status of this development, in particular the study of the n-γ discrimination quality with digital electronics, a comparison of several organic scintillators, including new discriminating plastics, as well as the characterisation of detectors with monoenergetic neutrons to measure intrinsic efficiencies and cross-talk probabilities.

  7. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    SciTech Connect

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  8. The GNSS Reflectometry Response to the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi

    2016-04-01

    Global Navigation Satellite System - Reflectometry (GNSS-R) exploits signals of opportunity from the Global Navigation Satellite System (GNSS). GNSS transmitters continuously transmit navigation signals at L-band toward the earth's surface. The scattered power reflected off the earth's surface can be sensed by specially designed GNSS-R receivers. The reflected signal can then be used to glean information about the surface of the earth, such as ocean surface roughness, snow depth, sea ice extent, and soil moisture. The use of GNSS-R for ocean wind retrievals was first demonstrated from aircraft. On July 8 2014, the TechDemoSat-1 satellite (TDS-1) was launched by Surrey Satellite Technology, Ltd as a technology risk reduction mission into sun-synchronous orbit. This paper investigates the GNSS-R measurements collected by the Space GNSS Receiver-Remote Sensing Instrument (SGR-ReSI) on board the TDS-1 satellite. The sensitivity of the SGR-ReSI measurements to the ocean surface winds and waves are characterized. The effects of sea surface temperature, wind direction, and rain are also investigated. The SGR-ReSI measurements exhibited sensitivity through the entire range of wind speeds sampled in this dataset, up to 35 m/s. A significant dependence on the larger waves was observed for winds < 6 m/s. Additionally, an interesting dependence on SST was observed where the slope of the SGR-ReSI measurements is positive for winds < 5 m/s and reverses for winds > 5 m/s. There appeared to be very little wind direction signal, and investigation of the rain impacts found no apparent sensitivity in the data. These results are shown through the analysis of global statistics and examination of a few case studies. This released SGR-ReSI dataset provided the first opportunity to comprehensively investigate the sensitivity of satellite-based GNSS-R measurements to various ocean surface parameters. The upcoming NASA's Cyclone Global Navigation Satellite System (CYGNSS) satellite

  9. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin

    SciTech Connect

    Budayova-Spano, Monika; Bonneté, Françoise; Ferté, Natalie; El Hajji, Mohamed; Meilleur, Flora; Blakeley, Matthew Paul; Castro, Bertrand

    2006-03-01

    Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grown in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.

  10. Passive neutron design study for 200-L waste drums

    SciTech Connect

    Menlove, H.O.; Beddingfield, D.B.; Pickrell, M.M.

    1997-09-01

    We have developed a passive neutron counter for the measurement of plutonium in 200-L drums of scrap and waste. The counter incorporates high efficiency for the multiplicity counting in addition to the traditional coincidence counting. The {sup 252}Cf add-a-source feature is used to provide an accurate assay over a wide range of waste matrix materials. The room background neutron rate is reduced by using 30 cm of external polyethylene shielding and the cosmic-ray background is reduced by statistical filtering techniques. Monte Carlo Code calculations were used to determine the optimum detector design, including the gas pressure, size, number, and placement of the {sup 3}He tubes in the moderator. Various moderators, including polyethylene, plastics, teflon, and graphite, were evaluated to obtain the maximum efficiency and minimum detectable mass of plutonium.

  11. Neutron radiation damage and recovery studies of SiPMs

    NASA Astrophysics Data System (ADS)

    Tsang, T.; Rao, T.; Stoll, S.; Woody, C.

    2016-12-01

    We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 1012 neutron/cm2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespread implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.

  12. Neutron radiation damage and recovery studies of SiPMs

    SciTech Connect

    Tsang, T.; Rao, T.; Stoll, S.; Woody, C.

    2016-12-01

    We characterized the performance of Silicon Photomultipliers (SiPMs) before and after exposure of up to 1012 neutron/cm2 dosage. We show that the typical orders of magnitude increase of dark current upon neutron irradiation can be suppressed by operating it at a lower temperature and single-photoelectron detection capability can be restored. The required operating temperature depends on the dosage received. Furthermore, after high temperature thermal annealing, there is compelling evidence that the extrinsic dark current is lowered by orders of magnitude and single-photon detection performance are to some extent recovered at room temperature. Our experimental findings might have widespread implications for extending the functionality and the useful lifetime of current and future large scale SiPM detectors deployed in ionization radiation environment.

  13. Neutron Scattering Studies of Vapor Deposited Amorphous Ice

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. I.; Li, J.-C.; Dong, S.; Bailey, I. F.; Eccleston, R. S.; Hahn, W.; Parker, S. F.

    1997-09-01

    Inelastic neutron scattering spectra were measured for amorphous ice H2O and D2O produced by low-temperature and low-rate vapor deposition. The data show that the deposition produced the low-density amorphous form of ice, i.e., the high-density amorphous ice observed by x-ray [A. H. Narten, C. G. Venkatesh, and S. A. Rice, J. Chem. Phys. 64, 1106 (1976)] and electron diffraction [P. Jenniskens and D. F. Blake, Science 265, 753 (1994)] under similar conditions was not detected. This result was confirmed by separate neutron diffraction experiments. Vibrational spectra of the deposited amorphous ice were dissimilar to that of ice Ih/Ic, as was believed previously.

  14. Preliminary study of nuclear fuel element testing based on coded source neutron imaging

    SciTech Connect

    Sheng Wang; Hang Li; Chao Cao; Yang Wu; Heyong Huo; Bin Tang

    2015-07-01

    Neutron radiography (NR) is one of the most important nondestructive testing methods, which is sensitive to low density materials. Especially, Neutron transfer imaging method could be used to test radioactivity materials refraining from γ effect, but it is difficult to realize tomography. Coded source neutron imaging (CSNI) is a newly NR method developed fast in the last several years. The distance between object and detector is much longer than traditional NR, which could be used to test radioactivity materials. With pre-reconstruction process from fold-cover projections, CSNI could easily realize tomography. This thesis carries out preliminary study on the nuclear fuel element testing by coded source neutron imaging. We calculate different enrichment, flaws and activity in nuclear fuel elements tested by CSNI with Monte-Carlo simulation. The results show that CSNI could be a useful testing method for nuclear fuel element testing. (authors)

  15. Quasielastic neutron scattering study of POSS ligand dynamics

    SciTech Connect

    Jalarvo, Niina H; Tyagi, Madhusudan; Crawford, Michael

    2015-01-01

    Polyoligosilsesquioxanes are molecules having cage-like structures composed of silicon and oxygen. These molecules can have a wide variety of functional ligands attached to them. Depending on the nature of the ligand, interesting properties and applications are found. In this work we present results from quasielastic neutron scattering measurements of four different POSS molecules that illustrate the presence of strong coupling between the ligand dynamics and the POSS crystal structures.

  16. Neutron diffraction study of α-iron titanium cerium hydride

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Niu, Shiwen; Gou, Cheng; Jin, Longhuan; Tao, Fang; Bao, Deyou; Su, Lanying

    1987-03-01

    The results of the neutron scattering method shows that the crystal structure of Fe0.94TiCe0.06H0.03 is the same as that of the FeTiH0.02. However, its diffraction peak intensities drop by 47-58%, the background increased markedly about 2 times and the lattice constant increase by 5%.

  17. Beta-delayed neutron emission studies with a C7LYC array at CARIBU

    NASA Astrophysics Data System (ADS)

    Wilson, Gemma; Chowdhury, Partha; Lister, Christopher; Brown, Tristan; Carpenter, Michael; Chillery, Thomas; Copp, Patrick; Doucet, Emery; Mitchell, Alan; Savard, Guy; Zhu, Shaofei

    2016-09-01

    This work is a study of β-delayed neutron and γ emission from 94Rb at CARIBU. Beta-delayed neutron emission studies are important in the astrophysical r-process, nuclear structure and for nuclear reactor safety and design. Approximately 150 γ rays are known in the daughter 94Sr, many of which are unplaced. An estimated 26% of γ rays are thought to be missing. The probability of β-delayed neutron emission in 94Sr is 10.2(2)%. Recently, substantial γ-decay from above the neutron separation energy in 94Rb has been reported. This research is aimed at understanding this high-lying γ-strength. The experiment employed the X-Array (a high efficiency HPGe clover array), SCANS (Small CLYC Array for Neutron Scattering) and the SATURN decay station (Scintillator And Tape Using Radioactive Nuclei) for γ, fast neutron and β-particle detection, respectively. Data were collected in a triggerless digital data acquisition system, with detected β , n , and γ events correlated offline. Techniques, analysis and first results will be discussed. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008, and by US DoE, Office of Nuclear Physics, under DE-FG02-94ER40848.

  18. Neutron personnel dosimetry intercomparison studies at the Oak Ridge National Laboratory: a summary (1981-1986).

    PubMed

    Swaja, R E; Sims, C S

    1988-09-01

    To provide an opportunity for dosimetrists to test and calibrate their neutron personnel monitoring systems, the staff of the Dosimetry Applications Research (DOSAR) Facility at the Oak Ridge National Laboratory (ORNL) has conducted personnel dosimetry intercomparison studies (PDIS) periodically since 1974. During these studies, personnel dosimeters are mailed to ORNL, exposed to low-level (less than 15 mSv) neutron dose equivalents in a variety of mixed-radiation fields, and then returned to the participants for evaluation. These intercomparisons have provided more data on neutron dosimeter performance than any other periodic test program conducted to date. This report presents a summary and analysis of about 3450 neutron dose equivalent measurements reported for PDIS 7 through 12 (1981-1986) with emphasis on low dose equivalent sensitivity, accuracy and precision, and performance relative to accreditation standards for the basic types of personnel dosimetry systems. Relationships of the PDIS results to occupational neutron monitoring, accreditation testing, and methods to improve personnel neutron dosimetry performance are also discussed.

  19. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  20. Neutron removal cross section as a measure of neutron skin

    SciTech Connect

    Fang, D. Q.; Ma, Y. G.; Cai, X. Z.; Tian, W. D.; Wang, H. W.

    2010-04-15

    We study the relation between neutron removal cross section (sigma{sub -N}) and neutron skin thickness for finite neutron-rich nuclei using the statistical abrasion ablation model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between sigma{sub -N} and the neutron skin thickness for neutron-rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for neutron skin thickness in neutron-rich nuclei.

  1. SU-E-T-304: Study of Secondary Neutrons From Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Zheng, Y; Benton, E

    2014-06-01

    Purpose: Secondary neutrons are unwanted byproducts from proton therapy and exposure from secondary radiation during treatment could increase risk of developing a secondary cancer later in a patient's lifetime. The purpose of this study is to investigate secondary neutrons from uniform scanning proton beams under various beam conditions using both measurements and Monte Carlo simulations. Methods: CR-39 Plastic Track Nuclear Detectors (PNTD) were used for the measurement. CR-39 PNTD has tissue like sensitivity to the secondary neutrons but insensitive to the therapeutic protons. In this study, we devised two experimental conditions: a) hollow-phantom; phantom is bored with a hollow cylinder along the direction of the beam so that the primary proton passes through the phantom without interacting with the phantom material, b) cylindrical-phantom; a solid cylinder of diameter close to the beam diameter is placed along the beam path. CR-39 PNTDs were placed laterally inside a 60X20X35 cm3 phantom (hollow-phantom) and in air (cylindrical-phantom) at various angles with respect to the primary beam axis. We studied for three different proton energies (78 MeV, 162 MeV and 226 MeV), using a 4 cm modulation width and 5cm diameter brass aperture for the entire experiment and simulation. A comparison of the experiment was performed using the Monte Carlo code FLUKA. Results: The measured secondary neutron dose equivalent per therapeutic primary proton dose (H/D) ranges from 2.1 ± 0.2 to 25.42 ± 2.3 mSv/Gy for the hollow phantom study, and 2.7 ± 0.3 to 46.4 ± 3.4 mSv/Gy for the cylindrical phantom study. Monte Carlo simulations predicated neutron dose equivalent from measurements within a factor of 5. Conclusion: The study suggests that the production of external neutrons is significantly higher than the production of internal neutrons.

  2. Acoustic reflectometry esophageal profiles minimally affected by massive gas ventilation.

    PubMed

    Raphael, David T; Crookes, Peter; Arnaudov, Dimiter; Benbassat, Maxim

    2005-10-01

    Acoustic reflectometry can be used to distinguish between breathing tube placement in an esophagus vs the trachea via characteristic area-distance profiles for both cavities. In the cardiopulmonary resuscitation setting, capnography may be useless because the patient has little or no pulmonary circulation. With the breathing tube in the esophagus, can massive ventilation with a manual resuscitation bag, as might occur in the cardiopulmonary resuscitation setting, markedly alter the form of the obtained esophageal reflectometry profile? Nine hounds were induced, endotracheally intubated, mechanically ventilated, and anesthetized. Area-distance profiles were obtained with a 2-microphone acoustic reflectometer customized to measure areas up to 50 cm. Acoustic reflectometer profiles were obtained in intubated esophagi as follows: (1) baseline nonventilated state, (2) after aggressive 2-handed manual ventilation with high inspiratory pressures, rapid respiratory rates, and large tidal volumes for periods of 0.5, 1, and 1.5 minutes, upon detachment of the resuscitation bag, and (3) after esophagogastric decompression. We hypothesized that massive gas ventilation has no effect on the esophageal peak areas (null hypothesis), and used a paired t test for statistical significance (P < .05). For times of 0.5, 1.0, and 1.5 minutes, the ventilation volumes (mean +/- SD) were 25 +/- 7, 49 +/- 8, and 70 +/- 18 L. Massive gas ventilation caused minimal broadening and slight distal spread of the basal "hump". The mean peak area change was 0.18 +/- 0.35 cm2. For a paired t test (n = 9, df = 8), the corresponding t value was 1.54, with a P value of .16, which was incompatible with the null hypothesis. The experimental observations indicate a minimal effect of massive gas ventilation on the acoustic reflectometry esophageal profile. Hence, operator recognition of the altered canine acoustic reflectometer profile as that of an esophageal cavity is maintained, indicating that acoustic

  3. Small-angle neutron scattering study of radiation-induced defects in synthetic quartz

    SciTech Connect

    Lebedev, V. M. Lebedev, V. T.; Orlov, S. P.; Pevzner, B. Z.; Tolstikhin, I. N.

    2006-12-15

    The supraatomic structure of single crystals of synthetic quartz was studied by thermal neutron small-angle scattering in the initial state (dislocation densities 54 and 570 cm{sup -2}) and after irradiation in the WWR-M reactor (Petersburg Nuclear Physics Institute) by fast neutrons with energies E{sub n} > 0.1 MeV at fluences F{sub n} = 0.2 x 10{sup 17} -5 x 10{sup 18} neutrons/cm{sup 2}. It is established that fast neutrons form point, linear, and volume defects in the lattice throughout the entire volume of a sample. Large-volume structures-amorphous-phase nuclei-reach sizes of {approx}100 nm in quartz, while occupying a small total volume of {approx}0.3% even at the maximum fluence 5 x 10{sup 18} neutrons/cm{sup 2}. The main fraction of the damaged volume (up to 5%) corresponds to point (with a radius of gyration of 1-2 nm) and linear defects, giving a comparable contribution ({approx}1-4%). The extended linear structures with a radius of 2 nm, even at a moderate fluence of 7.7 x 10{sup 17} neutrons/cm{sup 2}, have a significant total length per volume unit ({approx}10{sup 11} cm/cm{sup 3}) and can form a connected network with a cell {approx}30 nm in size in the sample. Foreign atoms and molecules can migrate through channels of this network.

  4. Study of the response of PICASSO bubble detectors to neutron irradiation

    NASA Astrophysics Data System (ADS)

    Marlisov, Daniiar

    The objective of this work was to simulate the PICASSO experiment and to study the detector response to neutron irradiation. The results of the simulation show the rock neutron rate to be 1-2 neutrons/day for the setup used until 2009 and less than 0.1 neutrons/day for the setup used after 2010. The shielding efficiency was calculated to be 98% and 99.6% for the two setups respectively. The detector response to an AmBe source was simulated. Neutron rates differ for two AmBe source spectra from the literature. The observed data rate is in agreement with the rate from the simulation. The detector stability was examined and found to be stable. The source position and orientation affect the detector efficiency creating a systematic uncertainity on the order of 10-35%. This uncertainity was eliminated with a source holder. The localisation of recorded events inside the detector and the simulated neutron distribution agree.

  5. Event-by-Event Study of Prompt Neutrons from 239Pu

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-01-15

    Employing a recently developed Monte Carlo model, we study the fission of {sup 240}Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1 MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.

  6. Event-by-event study of prompt neutrons from 239Pu(n,f)

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2009-07-23

    Employing a recently developed Monte-Carlo model, we study the fission of {sup 240}Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte-Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.

  7. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  8. HEIMDAL: A thermal neutron powder diffractometer with high and flexible resolution combined with SANS and neutron imaging - Designed for materials science studies at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens

    2016-08-01

    HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.

  9. ^3He neutron spin filters for polarized neutron scattering.

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; Borchers, Julie; Chen, Ying; O'Donovan, Kevin; Erwin, Ross; Lynn, Jeffrey; Majkrzak, Charles; McKenney, Sarah; Gentile, Thomas

    2006-03-01

    Polarized neutron scattering (PNS) is a powerful tool that probes the magnetic structures in a wide variety of magnetic materials. Polarized ^3He gas, produced by optical pumping, can be used to polarize or analyze neutron beams because of the strong spin dependence of the neutron absorption cross section for ^3He. Polarized ^3He neutron spin filters (NSF) have been of great interest in PNS community due to recent significant improvement of their performance. Here I will discuss successful applications using ^3He NSFs in polarized neutron reflectometry (PNR) and triple-axis spectrometry (TAS). In PNR, a ^3He NSF in conjunction with a position-sensitive detector allows for efficient polarization analysis of off-specular scattering over a broad range of reciprocal space. In TAS, a ^3He NSF in combination with a double focusing pyrolytic graphite monochromator provides greater versatility and higher intensity compared to a Heusler polarizer. Finally I will present the results from patterned magnetically-coupled thin films in PNR and our first ``proof-of-principle'' experiment in TAS, both of which were performed using ^3He NSF(s) at the NIST Center for Neutron Research.

  10. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy

    NASA Astrophysics Data System (ADS)

    Mares, Vladimir; Romero-Expósito, Maite; Farah, Jad; Trinkl, Sebastian; Domingo, Carles; Dommert, Martin; Stolarczyk, Liliana; Van Ryckeghem, Laurent; Wielunski, Marek; Olko, Pawel; Harrison, Roger M.

    2016-06-01

    The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H *(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H *(10) value of 2.7 μSv Gy-1 was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E  ⩾  20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H *(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 μSv Gy-1 at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal

  11. Cable Damage Detection System and Algorithms Using Time Domain Reflectometry

    SciTech Connect

    Clark, G A; Robbins, C L; Wade, K A; Souza, P R

    2009-03-24

    This report describes the hardware system and the set of algorithms we have developed for detecting damage in cables for the Advanced Development and Process Technologies (ADAPT) Program. This program is part of the W80 Life Extension Program (LEP). The system could be generalized for application to other systems in the future. Critical cables can undergo various types of damage (e.g. short circuits, open circuits, punctures, compression) that manifest as changes in the dielectric/impedance properties of the cables. For our specific problem, only one end of the cable is accessible, and no exemplars of actual damage are available. This work addresses the detection of dielectric/impedance anomalies in transient time domain reflectometry (TDR) measurements on the cables. The approach is to interrogate the cable using time domain reflectometry (TDR) techniques, in which a known pulse is inserted into the cable, and reflections from the cable are measured. The key operating principle is that any important cable damage will manifest itself as an electrical impedance discontinuity that can be measured in the TDR response signal. Machine learning classification algorithms are effectively eliminated from consideration, because only a small number of cables is available for testing; so a sufficient sample size is not attainable. Nonetheless, a key requirement is to achieve very high probability of detection and very low probability of false alarm. The approach is to compare TDR signals from possibly damaged cables to signals or an empirical model derived from reference cables that are known to be undamaged. This requires that the TDR signals are reasonably repeatable from test to test on the same cable, and from cable to cable. Empirical studies show that the repeatability issue is the 'long pole in the tent' for damage detection, because it is has been difficult to achieve reasonable repeatability. This one factor dominated the project. The two-step model-based approach is

  12. Sensitivity study of neutron transport through standard and rebar concrete

    SciTech Connect

    Bhuiyan, S.I.; Roussin, R.W.; Lucius, J.L.

    1982-01-01

    An investigation is under way at ORNL to (1) develop a data base pertinent to the transport of neutrons through thick concrete shields, (2) use the data base in an energy group boundary selection and collapsing scheme, and (3) develop a simple methodology to access the data base to provide rapid solutions to practical shielding problems. This paper describes work carried out to fulfill objective (1), the work consisting of calculations of the transport of fission neutrons through 1- and 2-m-thick slabs of standard concrete and rebar (steel-reinforced) concrete, together with calculations of the sensitivities of the results to total, absorption, and elastic cross sections. The transport calculations were performed with the one-dimensional discrete ordinates code ANISN in both forward and adjoint modes. The DLC-41C/VITAMIN-C cross-section library (171 neutron, 36 gamma groups) was employed, with a P/sub 3/ cross-section expansion and an S/sub 16/ angular quadrature. In all cases the fission source was assumed to be distributed within the first 1-cm thickness of the slab and the detector was assumed to occupy the last 1-cm thickness of the slab. For the rebar concrete the slab constituents were homogenized, with the horizontal and vertical No. 11 reinforcing steel rods comprising 7.6 vol. % of the slab. The quantity calculated was the absorbed dose rate, and care was taken in the mesh interval selection and source description to ensure agreement between the forward and adjoint results to within 0.02%.

  13. Crystal structure of human tooth enamel studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre

    2015-02-01

    Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.

  14. Focused Study of Thermonuclear Bursts on Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chenevez, Jérôme

    2009-05-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.

  15. Neutron diffraction studies of welds of aerospace aluminum alloys

    SciTech Connect

    Martukanitz, R.P.; Howell, P.R.; Payzant, E.A.; Spooner, S.; Hubbard, C.R.

    1996-10-01

    Neutron diffraction and electron microscopy were done on residual stress in various regions comprising variable polarity plasma arc welds of alloys 2219 (Al-6.3Cu) and 2195 (Al-4.0Cu-1.0Li-0.5Mg-0.5Ag). Results indicate that lattice parameter changes in the various weld regions may be attributed to residual stresses generated during welding, as well as local changes in microstructure. Distribution of longitudinal and transverse stress of welded panels shows peaks of tension and compression, respectively, within the HAZ and corroborate earlier theoretical results. Position of these peaks are related to position of minimum strength within the HAZ, and the magnitude of these peaks are a fraction of the local yield strength in this region. Weldments of alloy 2195-T8 exhibited higher peak residual stress than alloy 2219-T87. Comparison of neutron diffraction and microstructural analysis indicate decreased lattice parameters associated with the solid solution of the near HAZ; this results in decreased apparent tensile residual stress within this region and may significantly alter interpretation of residual stress measurements of these alloys. Considerable relaxation of residual stress occurs during removal of specimens from welded panels and was used to aid in differentiating changes in lattice parameters attributed to residual stress from welding and modifications in microstructure.

  16. Cosmic ray heliospheric transport study with neutron monitor data

    NASA Astrophysics Data System (ADS)

    Ahluwalia, H. S.; Ygbuhay, R. C.; Modzelewska, R.; Dorman, L. I.; Alania, M. V.

    2015-10-01

    Determining transport coefficients for galactic cosmic ray (GCR) propagation in the turbulent interplanetary magnetic field (IMF) poses a fundamental challenge in modeling cosmic ray modulation processes. GCR scattering in the solar wind involves wave-particle interaction, the waves being Alfven waves which propagate along the ambient field (B). Empirical values at 1 AU are determined for the components of the diffusion tensor for GCR propagation in the heliosphere using neutron monitor (NM) data. At high rigidities, particle density gradients and mean free paths at 1 AU in B can only be computed from the solar diurnal anisotropy (SDA) represented by a vector A (components Ar, Aϕ, and Aθ) in a heliospherical polar coordinate system. Long-term changes in SDA components of NMs (with long track record and the median rigidity of response Rm ~ 20 GV) are used to compute yearly values of the transport coefficients for 1963-2013. We confirm the previously reported result that the product of the parallel (to B) mean free path (λ||) and radial density gradient (Gr) computed from NM data exhibits a weak Schwabe cycle (11y) but strong Hale magnetic cycle (22y) dependence. Its value is most depressed in solar activity minima for positive (p) polarity intervals (solar magnetic field in the Northern Hemisphere points outward from the Sun) when GCRs drift from the polar regions toward the helioequatorial plane and out along the heliospheric current sheet (HCS), setting up a symmetric gradient Gθs pointing away from HCS. Gr drives all SDA components and λ|| Gr contributes to the diffusive component (Ad) of the ecliptic plane anisotropy (A). GCR transport is commonly discussed in terms of an isotropic hard sphere scattering (also known as billiard-ball scattering) in the solar wind plasma. We use it with a flat HCS model and the Ahluwalia-Dorman master equations to compute the coefficients α (=λ⊥/λ∥) and ωτ (a measure of turbulence in the solar wind) and transport

  17. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-15

    An X-mode polarized V band (50 GHz–75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz–19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from −1 km/s to −3 km/s.

  18. Radial and poloidal correlation reflectometry on Experimental Advanced Superconducting Tokamak.

    PubMed

    Qu, Hao; Zhang, Tao; Han, Xiang; Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yumin; Gao, Yu; Huang, Canbin; Cai, Jianqing; Gao, Xiang

    2015-08-01

    An X-mode polarized V band (50 GHz-75 GHz) radial and poloidal correlation reflectometry is designed and installed on Experimental Advanced Superconducting Tokamak (EAST). Two frequency synthesizers (12 GHz-19 GHz) are used as sources. Signals from the sources are up-converted to V band using active quadruplers and then coupled together for launching through one single pyramidal antenna. Two poloidally separated antennae are installed to receive the reflected waves from plasma. This reflectometry system can be used for radial and poloidal correlation measurement of the electron density fluctuation. In ohmically heated plasma, the radial correlation length is about 1.5 cm measured by the system. The poloidal correlation analysis provides a means to estimate the fluctuation velocity perpendicular to the main magnetic field. In the present paper, the distance between two poloidal probing points is calculated with ray-tracing code and the propagation time is deduced from cross-phase spectrum. Fluctuation velocity perpendicular to the main magnetic field in the core of ohmically heated plasma is about from -1 km/s to -3 km/s.

  19. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    SciTech Connect

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  20. Real-time locating and speed measurement of fibre fuse using optical frequency-domain reflectometry

    PubMed Central

    Jiang, Shoulin; Ma, Lin; Fan, Xinyu; Wang, Bin; He, Zuyuan

    2016-01-01

    We propose and experimentally demonstrate real-time locating and speed measurement of fibre fuse by analysing the Doppler shift of reflected light using optical frequency-domain reflectometry (OFDR). Our method can detect the start of a fibre fuse within 200 ms which is equivalent to a propagation distance of about 10 cm in standard single-mode fibre. We successfully measured instantaneous speed of propagating fibre fuses and observed their subtle fluctuation owing to the laser power instability. The resolution achieved for speed measurement in our demonstration is 1 × 10−3 m/s. We studied the fibre fuse propagation speed dependence on the launched power in different fibres. Our method is promising for both real time fibre fuse monitoring and future studies on its propagation and termination. PMID:27146550

  1. Doppler shift estimation for GNSS reflectometry using a land topography adapted reflection model

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Peraza, Luis; Falck, Carsten; Gerland, Sebastian; Wickert, Jens

    2016-04-01

    A GNSS setup with a receiver capable for reflectometry is operated by GFZ at Kongsfjorden (Spitsbergen), 78°54'14''N, 11°52'37''E, 512 m above ellipsoid (WGS-84). This permanent station at the Zeppelin mountain outpost, operated by the Norwegian Polar Institute (NPI), accumulates data since Summer 2013 observing reflections over the fjord and the adjacent land surface. Especially the presence of sea ice over the fjord and snow cover over land are of interest for reflectometry to investigate altimetry and remote sensing applications. The setup contains a GORS (GNSS Occultation Reflectometry Scatterometry) two-frontend receiver, which is based on commercial JAVAD hardware. The receiver is connected to one up-looking and one horizon-looking patch antenna with right-handed and left-handed circular polarization, respectively. Both antennas are installed on the same mount approximately 475 m above the fjord mean sea level. Reflections are observed at low transmitter elevation angles (between 10 and 2°). For these geometries the relative Doppler shift (sea surface reflected relative to direct signal) is almost constant 0.5 to 0.6 Hz and can be calculated with an established reflection model. Rather easily, sea surface reflections are identified in the data and the corresponding reflection points are located. About 55 daily recurring reflection events over the fjord are observed. They form a fan-shaped swath with 3 to 13 km distance around the receiver, corresponding to elevations of 10° to 2°. Also signatures of potential land reflections are found in the data. About 13 daily recurring events extend mainly over land. The potential land signatures have a rather variable Doppler shift between 0.2 to 1Hz. The significant topography of the mountainous surrounding, which varies between sea level and 900 m altitude, prevents the use of established reflection models. A topography adapted reflection model, which considers sloped surface facets, is developed. It incorporates

  2. Studies of neutron-rich nuclei far from stability at TRISTAN

    SciTech Connect

    Gill, R.L.

    1984-01-01

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  3. A Multi-layered target for the Study of Neutron-Unbound Nuclei

    NASA Astrophysics Data System (ADS)

    Gueye, Paul; Frank, Nathan; Thoennessen, Michael

    2013-04-01

    The MoNA/LISA setup at the National Superconducting Cyclotron Laboratory at Michigan State University has provided an avenue to study the nuclear structure of unbound states/nuclei at and beyond the neutron drip line for the past decade using secondary beams from the Coupled Cyclotron Facility. A new multi-layered Si/Be active target is planned to be built to specifically study neutron unbound nuclei. In these experiments the decay energy is reconstructed from fragment-neutron coincidence measurements which are typically low in count rate. The multi-layered target will allow the use of thicker targets to increase the reaction rates, thus enabling to study currently out of reach nuclei such as 21C, 23C, and 24N. A description of the new setup and physics impact will be discussed.

  4. Study of a Li doped CsI scintillator crystal as a neutron detector

    NASA Astrophysics Data System (ADS)

    Madi Filho, T.; Pereira, M. C. C.; Berretta, J. R.; Cárdenas, J. P. N.

    2015-07-01

    The radiation monitoring system is an important requirement in the premises of a nuclear reactor. A variety of types of radiation (neutrons. gamma. beta and fission products) exist in a reactor. associated to the broad energy spectrum of these radiations. implying the need of detectors to be used in the reactor system and security. as well as radiation monitoring. As the neutron sources are associated to gamma radiation. it is necessary that the neutron detecting system may be capable to discriminate the gamma interference. In our work environment. there are two Nuclear Research Reactors and a neutron irradiator with two AmBe sources (592GBq of Am. each). These conditions warrant the development of new types of detectors. Due to the absence of charge in the neutron. it is necessary to use a converter material that generates radiations capable to produce signals in the detector. Materials with high cross section. like Li or B. are used for this purpose. The CsIcrystal doped with 6Li has been studied. The concentration of the lithium doping element (Li) studied was 10-3M. The detector test was done using an AmBe source (37GBq) and gamma sources. The crystal was coupled to a photomultiplier.

  5. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.; Gogotsi, Y.; Wesolowski, D. J.

    2011-07-26

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, ‹τ›, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, ‹τ› follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 Å ordered mesoporous carbon (CMK) and 16 Å double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  6. Quasielastic neutron scattering study of water confined in carbon nanopores

    SciTech Connect

    Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I; Gogotsi, Yury G.; Wesolowski, David J

    2011-01-01

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom} double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.

  7. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    SciTech Connect

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.; Saxena, A.M.

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  8. Small-angle neutron scattering study of polymeric micellar structures

    SciTech Connect

    Wu, G.; Chu, B. ); Schneider, D.K. )

    1994-11-17

    Polymeric micellar structures formed by a PEO-PPO-PEO copolymer in o-xylene in the presence of water were investigated by small-angle neutron scattering. In order to reveal the detailed micellar structure, different contrasts among the micellar core, the micellar shell, and the dispersing medium (background) were constructed by selectively changing the protonated/deuterated combination of water and xylene. The micellar structure could be well described by a core-shell structure with the scattering behavior of the micellar shell being very similar to that of a star polymer. The solubilized water existed not only in the micellar core but also in the micellar shell. The volume fraction of a copolymer segments in the micellar shell was rather low, being of the order of 0.2. There seemed to be no sharp interface between the micellar core and the micellar shell. 25 refs., 11 figs., 4 tabs.

  9. Powder neutron diffraction studies of a carbonate fluorapatite

    SciTech Connect

    Leventouri, Th.; Chakoumakos, B. C.; Moghaddam, H. Y.; Perdikatsis, V.

    2000-02-01

    Atomic positional disorder of a single-phase natural carbonate fluorapatite (francolite) is revealed from analysis of the atomic displacement parameters (ADPs) refined from neutron powder diffraction data as a function of temperature and carbonate content. The ADPs of the francolite show a strong disturbance at the P, O3, and F sites. When it is heat treated to partially or completely remove the carbonate, the ADPs as well as the other structural parameters resemble those of a fluorapatite (Harding pegmatite) that was measured under the same conditions. The various structural changes are consistent with a substitution mechanism whereby the planar carbonate group replaces a phosphate group and lies on the mirror plane of the apatite structure. (c) 2000 Materials Research Society.

  10. Error-disturbance uncertainty relations studied in neutron optics

    NASA Astrophysics Data System (ADS)

    Sponar, Stephan; Sulyok, Georg; Demirel, Bulent; Hasegawa, Yuji

    2016-09-01

    Heisenberg's uncertainty principle is probably the most famous statement of quantum physics and its essential aspects are well described by a formulations in terms of standard deviations. However, a naive Heisenberg-type error-disturbance relation is not valid. An alternative universally valid relation was derived by Ozawa in 2003. Though universally valid Ozawa's relation is not optimal. Recently, Branciard has derived a tight error-disturbance uncertainty relation (EDUR), describing the optimal trade-off between error and disturbance. Here, we report a neutron-optical experiment that records the error of a spin-component measurement, as well as the disturbance caused on another spin-component to test EDURs. We demonstrate that Heisenberg's original EDUR is violated, and the Ozawa's and Branciard's EDURs are valid in a wide range of experimental parameters, applying a new measurement procedure referred to as two-state method.

  11. Radiation damage study using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Rétfalvi, E.; Török, Gy; Rosta, L.

    2000-03-01

    Nuclear radiation provides important changes in the microstructure of metallic components of nuclear power plant and research reactors, influencing their mechanical properties. The investigation of this problem has primary interest for the safety and life-time of such nuclear installations. For the characterization of this kind of nanostructures small angle neutron scattering technique is a very useful tool. We have carried out experiments on samples of irradiated reactor vessel material and welded components of VVER-440-type reactors on the SANS instrument at the Budapest Research Reactor. In our measurements irradiated as well as non-irradiated samples were compared and magnetic field was applied for viewing the magnetic structure effects of the materials. A clear modification of the structure due to irradiation was obtained. Our data were analyzed by the ITP92 code, the inverse Fourier transform program of O. Glatter [1].

  12. Small angle neutron scattering studies of vesicle stability

    SciTech Connect

    Mang, J.T.; Hjelm, R.P.

    1997-10-01

    Small angle neutron scattering (SANS) was used to investigate the structure of mixed colloids of egg yolk phosphatidylcholine (EYPC) with the bile salt, cholylglycine (CG), in D{sub 2}O as a function of pressure (P) and temperature (T). At atmospheric pressure, the system forms an isotropic phase of mixed, single bilayer vesicles (SLV`s). Increasing the external hydrostatic pressure brought about significant changes in particle morphology. At T = 25 C, application of a pressure of 3.5 MPa resulted in the collapse of the SLV`s. Further increase of P, up to 51.8 MPa, resulted in a transition from a phase of ordered (stacked), collapsed vesicles to one of stacked, ribbon-like particles. A similar collapse of the vesicles was observed at higher temperature (T = 37 C) with increasing P, but at this temperature, no ribbon phase was found at the highest pressure explored.

  13. Polarized neutrons for Australian scientific research

    NASA Astrophysics Data System (ADS)

    Kennedy, Shane J.

    2005-02-01

    Polarized neutron scattering has been a feature at ANSTO's HIFAR research reactor since the first polarization analysis (PA) spectrometer Longpol began operation over 30 years ago. Since that time, we have improved performance of Longpol and added new capabilities in several reincarnations of the instrument. Most of the polarized neutron experiments have been in the fields of magnetism and superconductivity, and most of that research has involved PA. Now as we plan our next generation neutron beam facility, at the Replacement Research Reactor (RRR), we intend to continue the tradition of PA but with a far broader scope in mind. Our new capabilities will combine PA and energy analysis with both cold and thermal neutron source spectra. We will also provide capabilities for research with polarized neutrons in small-angle neutron scattering and in neutron reflectometry. The discussion includes a brief historical account of the technical developments with a summary of past and present applications of polarized neutrons at HIFAR, and an outline of the polarized neutron capabilities that will be included in the first suite of instruments, which will begin operation at the new reactor in 2006.

  14. Detection of diesel fuel leakage from underground storage tank using time domain reflectometry

    NASA Astrophysics Data System (ADS)

    Barnett, Daniel A.

    The Environmental Protection Agency (EPA) has established regulations concerning the construction and maintenance of an underground storage tank (UST) system. These regulations also define the means and methods required to detect potential leaks. Leak detection methods defined as "other methods" can be used if specific requirements are achieved. We find in our study time domain reflectometry (TDR) can be used to detect leaks from an UST. The magnitudes of reflections measured by the TDR technique are used to calculate electrical properties of the soil. We find the introduction of diesel fuel, a light non-aqueous phase liquid (LNAPL), into the soil alters the physical and chemical properties of the soil and subsequently the electrical properties. We demonstrate the measured variance of electrical properties can be correlated to the changes of diesel fuel concentration. We find diesel fuel can be detected and changes of concentration can be measured using TDR.

  15. Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards

    SciTech Connect

    Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.; Sheen, David M.; Conrad, Ryan C.

    2014-12-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.

  16. A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).

    SciTech Connect

    Hanan, N. A.

    1998-01-14

    A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

  17. Studies of Neutron and Proton Nuclear Activation in Low-Earth Orbit 2

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1983-01-01

    The study of neutron and proton nuclear activation in low-Earth orbit reported in NASA CR-162051 has been continued with increasing emphasis given to primary and secondary neutron activation. The previously reported activation due to protons has been modified to include: (1) flux attenuation caused by all inelastic reactions; (2) the modification of the proton flux distribution caused by sample covering material; and (3) the activation of the sample as a function of the distance into the sample from the surface of incidence. A method has been developed for including the effects on the activation of the finite width and length of the samples. The reactant product spectra produced by proton-induced reactions has been studied. Cross sections needed for neutron induced reactions leading to long-lived (half-life 1 day) radioisotopes have been identified and, in some cases, compiled.

  18. Design studies related to an in vivo neutron activation analysis facility for measuring total body nitrogen.

    PubMed

    Stamatelatos, I E; Chettle, D R; Green, S; Scott, M C

    1992-08-01

    Design studies relating to an in vivo prompt capture neutron activation analysis facility measuring total body nitrogen are presented. The basis of the design is a beryllium-graphite neutron collimator and reflector configuration for (alpha, n) type radionuclide neutron sources (238PuBe or 241AmBe), so as to reflect leaking, or out-scattered, neutrons towards the subject. This improves the ratio of thermal neutron flux to dose and the spatial distribution of thermal flux achieved with these sources, whilst retaining their advantage of long half-lives as compared to 252Cf based systems. The common problem of high count-rate at the detector, and therefore high nitrogen region of interest background due to pile-up, is decreased by using a set of smaller (5.1 cm diameter x 10.2 cm long) NaI(Tl) detectors instead of large ones. The facility described presents a relative error of nitrogen measurement of 3.6% and a nitrogen to background ratio of 2.3 for 0.45 mSv skin dose (assuming ten 5.1 cm x 10.2 cm NaI(Tl) detectors).

  19. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  20. A study on artificial rare earth (RE2O3) based neutron absorber.

    PubMed

    Kim, Kyung-O; Kim, Jong Kyung

    2015-11-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space.

  1. Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces

    SciTech Connect

    Johs, Alexander; Liang, Liyuan; Gu, Baohua; Ankner, John Francis; Wang, Wei

    2009-01-01

    Structures and functions of cell membranes are of central importance in understanding processes such as cell signaling, chemotaxis, redox transformation, biofilm formation, and mineralization occurring at interfaces. This chapter provides an overview of the application of neutron reflectivity (NR) as a unique tool for probing biomolecular structures and mechanisms as a first step toward understanding protein protein, protein lipid, and protein mineral interactions at the membrane substrate interfaces. Emphasis is given to the review of existing literature on the assembly of biomimetic membrane systems, such as supported membranes for NR studies, and demonstration of model calculations showing the potential of NR to elucidate molecular fundamentals of microbial cell mineral interactions and structure functional relationships of electron transport pathways. The increased neutron flux afforded by current and upcoming neutron sources holds promise for elucidating detailed processes such as phase separation, formation of microdomains, and membrane interactions with proteins and peptides in biological systems.

  2. X-ray studies of neutron stars and their magnetic fields

    PubMed Central

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  3. Neutron reflectivity studies on the DNA adsorption on lipid monolayers at the air liquid interface

    NASA Astrophysics Data System (ADS)

    Wu, Jui-Ching; Lin, Tsang-Lang; Jeng, U.-Ser; Torikai, Naoya

    2006-11-01

    In situ neutron reflectivity was used to study the DC-Chol and TC-Chol monolayers at the air-liquid interface in the presence and absence of DNA in the subphase. It was found that the DC-Chol is more effective in adsorbing the DNA than the TC-Chol. It was also found that a compact DNA layer formed beneath the DC-Chol monolayer with a DNA gap spacing around 20 Å and a less compact DNA layer adsorbed to the TC-Chol monolayer with a DNA spacing around 60 Å, as estimated from the determined neutron scattering length density. From the determined neutron scattering length density profiles, the adsorbed DNA somewhat penetrates into the head group region of the charged lipids.

  4. Mössbauer studies of hemoglobin in erythrocytes exposed to neutron radiation

    NASA Astrophysics Data System (ADS)

    Niemiec, Katarzyna; Kaczmarska, Magdalena; Buczkowski, Mateusz; Fornal, Maria; Pohorecki, Władysław; Matlak, Krzysztof; Korecki, Józef; Grodzicki, Tomasz; Burda, Kvetoslava

    2012-03-01

    We studied radiation effects on the stability of various states of hemoglobin (Hb) in red blood cells (RBC) irradiated with a very low dose of neutron rays, 50 μGy. We investigated RBCs isolated from blood of healthy donors. Mössbauer spectroscopy was applied to monitor different forms of Hb. Our results show, for the first time, that oxyhemoglobin (OxyHb) and deoxyhemoglobin (DeoxyHb) are two Hb forms sensitive to such a low neutron radiation. Both Hbs change into a new Hb form (Hbirr). Additionally, OxyHb transfers into HbOH/H2O, which under our experimental conditions is resistant to the action of neutron rays.

  5. X-ray studies of neutron stars and their magnetic fields

    NASA Astrophysics Data System (ADS)

    Makishima, K.

    2016-05-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1?7) × 10^8 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states.

  6. Large sample neutron activation analysis: a challenge in cultural heritage studies.

    PubMed

    Stamatelatos, Ion E; Tzika, Faidra

    2007-07-01

    Large sample neutron activation analysis compliments and significantly extends the analytical tools available for cultural heritage and authentication studies providing unique applications of non-destructive, multi-element analysis of materials that are too precious to damage for sampling purposes, representative sampling of heterogeneous materials or even analysis of whole objects. In this work, correction factors for neutron self-shielding, gamma-ray attenuation and volume distribution of the activity in large volume samples composed of iron and ceramic material were derived. Moreover, the effect of inhomogeneity on the accuracy of the technique was examined.

  7. Correlated atomic motions in liquid deuterium fluoride studied by coherent quasielastic neutron scattering.

    PubMed

    Fernandez-Alonso, F; McLain, S E; Taylor, J W; Bermejo, F J; Bustinduy, I; Ruiz-Martín, M D; Turner, J F C

    2007-06-21

    The collective dynamics of liquid deuterium fluoride are studied by means of high-resolution quasielastic and inelastic neutron scattering over a range of four decades in energy transfer. The spectra show a low-energy coherent quasielastic component which arises from correlated stochastic motions as well as a broad inelastic feature originating from overdamped density oscillations. While these results are at variance with previous works which report on the presence of propagating collective modes, they are fully consistent with neutron diffraction, nuclear magnetic resonance, and infrared/Raman experiments on this prototypical hydrogen-bonded fluid.

  8. Neutron scattering studies of industry-relevant materials : connecting microscopic behavior to applied properties.

    SciTech Connect

    Loong, C.-K.

    1999-01-04

    Certain systems of oxides, nitrides and carbides have been recognized as the basic components of advanced materials for applications as engineering and electronic ceramics, catalysts, sensors, etc. under extreme environments. An understanding of the basic atomic and electronic properties of these systems will benefit enormously the industrial development, of new materials featuring tailored properties. We present an overview of neutron-scattering studies of the crystal phases, microstructure, phonon and magnetic excitations of key materials including rare-earth phosphates, phosphate glasses, nanostructured metal oxides, as well as silicon nitride and silicon carbide ceramics. A close collaboration among neutron-scattering experimentation, molecular-dynamics simulation and material synthesis is emphasized.

  9. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  10. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers.

    SciTech Connect

    Parrot, I. M.; Urban, Volker S; Gardner, K. H.; Forsyth, V. T.

    2005-04-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar{reg_sign} or Twaron{reg_sign}.

  11. Density functional and neutron diffraction studies of lithium polymer electrolytes.

    SciTech Connect

    Baboul, A. G.

    1998-06-26

    The structure of PEO doped with lithium perchlorate has been determined using neutron diffraction on protonated and deuterated samples. The experiments were done in the liquid state. Preliminary analysis indicates the Li-O distance is about 2.0 {angstrom}. The geometries of a series of gas phase lithium salts [LiCF{sub 3}SO{sub 3}, Li(CF{sub 3}SO{sub 2}){sub 2}N, Li(CF{sub 3}SO{sub 2}){sub 2}CH, LiClO{sub 4}, LiPF{sub 6}, LiAsF{sub 6}] used in polymer electrolytes have been optimized at B3LYP/6-31G(d) density functional level of theory. All local minima have been identified. For the triflate, imide, methanide, and perchlorate anions, the lithium cation is coordinated to two oxygens and have binding energies of ca 141 kcal/mol at the B3LYP/6-311+G(3df,2p)/B3LYP/6-31G* level of theory. For the hexafluoroarsenate and hexafluorophosphate the lithium cation is coordinated to three oxygens and have binding energies of ca. 136 kcal/mol.

  12. Neutron Studies of Tb2Mo2O7

    SciTech Connect

    Gardner, Jason; Ehlers, Georg; Diallo, Souleymane Omar

    2012-01-01

    We have used the new high energy resolution spectrometer (BaSiS), at the Spallation Neutron Source in Oak Ridge, to conclusively prove the existence of a low energy mode at 0.34(1) meV in the spin glass Tb{sub 2}Mo{sub 2}O{sub 7}. This mode is reminiscent of the excitation observed in the ordered phases of both Tb{sub 2}Ti{sub 2}O{sub 7} and Tb{sub 2}Sn{sub 2}O{sub 7}. The dynamical nature of the transition seen in the magnetization at {approx} 25 K suggests that this frustrated magnet shows a dynamic crossover between a high-temperature phase of poorly correlated, quickly relaxing spins to a low-temperature regime with much slower, short ranged spin correlations extending no further than to the next nearest neighbor. Existing theories explain the spin glass transition in terms of a phase transition and order parameters, and assume the existence of a distinct spin glass phase. There is no evidence for such a phase in Tb{sub 2}Mo{sub 2}O{sub 7}.

  13. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  14. Broadband ultrasonic sensor array via optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Steinberg, Idan; Eyal, Avishay

    2015-03-01

    We introduce a new approach for multiplexing fiber-based ultrasound sensors using Optical Frequency Domain Reflectometry (OFDR). In the present demonstration of the method, each sensor was a short section of Polyimide-coated single-mode fiber. One end of the sensing fiber was pigtailed to a mirror and the other end was connected, via a fiber optic delay line, to a 1X4 fiber coupler. The multiplexing was enabled by using a different delay to each sensor. Ultrasonic excitation was performed by a 1MHz transducer which transmitted 4μs tone-bursts above the sensor array. The ultrasound waves generated optical phase variations in the fibers which were detected using the OFDR method. The ultrasound field at the sensors was successfully reconstructed without any noticeable cross-talk.

  15. Neural network evaluation of reflectometry density profiles for control purposes

    NASA Astrophysics Data System (ADS)

    Santos, J.; Nunes, F.; Manso, M.; Nunes, I.

    1999-01-01

    Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.

  16. Terahertz reflectometry imaging for low and high grade gliomas

    NASA Astrophysics Data System (ADS)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-10-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.

  17. Multiplex detection of disease marker proteins with arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Yadav, Amrita; Sriram, Rashmi; Miller, Benjamin L.

    2010-02-01

    Arrayed Imaging Reflectometry, or "AIR", is a new label-free optical technique for detecting proteins. AIR relies on binding-induced changes in the response of an antireflective coating on the surface of a silicon chip. Thus far, we have demonstrated the use of AIR for the detection of pathogenic E. coli, and for multiplex detection of a broad range of proteins in human serum. Creation of the near-perfect antireflective coating on the surface of silicon requires careful control over preparation of the chip surface prior to probe molecule immobilization. We present methods for highly reproducible, solution-phase silanization and glutaraldehyde functionalization of silicon chips carrying a layer of thermal oxide. Following functionalization with antibodies and passivation of remaining reactive groups, these surfaces provide exceptional performance in the AIR assay.

  18. Terahertz reflectometry imaging for low and high grade gliomas

    PubMed Central

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-01-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes. PMID:27782153

  19. Terahertz reflectometry of burn wounds in a rat model

    PubMed Central

    Arbab, M. Hassan; Dickey, Trevor C.; Winebrenner, Dale P.; Chen, Antao; Klein, Mathew B.; Mourad, Pierre D.

    2011-01-01

    We present sub-millimeter wave reflectometry of an experimental rat skin burn model obtained by the Terahertz Time-Domain Spectroscopy (THz-TDS) technique. Full thickness burns, as confirmed by histology, were created on rats (n = 4) euthanized immediately prior to the experiments. Statistical analysis shows that the burned tissue exhibits higher reflectivity compared to normal skin over a frequency range between 0.5 and 0.7 THz (p < 0.05), likely due to post-burn formation of interstitial edema. Furthermore, we demonstrate that a double Debye dielectric relaxation model can be used to explain the terahertz response of both normal and less severely burned rat skin. Finally, our data suggest that the degree of conformation between the experimental burn measurements and the model for normal skin can potentially be used to infer the extent of burn severity. PMID:21833370

  20. Adaptive array technique for differential-phase reflectometry in QUEST

    SciTech Connect

    Idei, H. Hanada, K.; Zushi, H.; Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R.; Yamamoto, M. K.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

  1. Towards High Accuracy Reflectometry for Extreme-Ultraviolet Lithography.

    PubMed

    Tarrio, Charles; Grantham, Steven; Squires, Matthew B; Vest, Robert E; Lucatorto, Thomas B

    2003-01-01

    Currently the most demanding application of extreme ultraviolet optics is connected with the development of extreme ultraviolet lithography. Not only does each of the Mo/Si multilayer extreme-ultraviolet stepper mirrors require the highest attainable reflectivity at 13 nm (nearly 70 %), but the central wavelength of the reflectivity of these mirrors must be measured with a wavelength repeatability of 0.001 nm and the peak reflectivity of the reflective masks with a repeatability of 0.12 %. We report on two upgrades of our NIST/DARPA Reflectometry Facility that have given us the ability to achieve 0.1 % repeatability and 0.3 % absolute uncertainty in our reflectivity measurements. A third upgrade, a monochromator with thermal and mechanical stability for improved wavelength repeatability, is currently in the design phase.

  2. Synthetic Spectrum Approach for Brillouin Optical Time-Domain Reflectometry

    PubMed Central

    Nishiguchi, Ken'ichi; Li, Che-Hsien; Guzik, Artur; Kishida, Kinzo

    2014-01-01

    We propose a novel method to improve the spatial resolution of Brillouin optical time-domain reflectometry (BOTDR), referred to as synthetic BOTDR (S-BOTDR), and experimentally verify the resolution improvements. Due to the uncertainty relation between position and frequency, the spatial resolution of a conventional BOTDR system has been limited to about one meter. In S-BOTDR, a synthetic spectrum is obtained by combining four Brillouin spectrums measured with different composite pump lights and different composite low-pass filters. We mathematically show that the resolution limit, in principle, for conventional BOTDR can be surpassed by S-BOTDR and experimentally prove that S-BOTDR attained a 10-cm spatial resolution. To the best of our knowledge, this has never been achieved or reported. PMID:24608011

  3. Computational studies of radiation characteristics for U-238 gamma and neutron protection

    SciTech Connect

    Babicheva, T.S.; Vatulin, V.V.; Zhitnik, A.K.

    1993-12-31

    This paper is devoted to predicting the radiation security and nuclear safety of the ZhT-80 container design used to transport 18 WWER-1000 fuel assemblies and is promising in terms of increasing specific loading based on U-238 and hard neutron protection consisting of boron filled organic materials. Studies were carried out using the Monte Carlo Method.

  4. Evidence for Gamow-Teller Decay of ^{78}Ni Core from Beta-Delayed Neutron Emission Studies.

    PubMed

    Madurga, M; Paulauskas, S V; Grzywacz, R; Miller, D; Bardayan, D W; Batchelder, J C; Brewer, N T; Cizewski, J A; Fijałkowska, A; Gross, C J; Howard, M E; Ilyushkin, S V; Manning, B; Matoš, M; Mendez, A J; Miernik, K; Padgett, S W; Peters, W A; Rasco, B C; Ratkiewicz, A; Rykaczewski, K P; Stracener, D W; Wang, E H; Wolińska-Cichocka, M; Zganjar, E F

    2016-08-26

    The β-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured β-decay lifetimes. We conclude that enhanced, concentrated β-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.

  5. Evidence for Gamow-Teller Decay of 78Ni Core from Beta-Delayed Neutron Emission Studies

    NASA Astrophysics Data System (ADS)

    Madurga, M.; Paulauskas, S. V.; Grzywacz, R.; Miller, D.; Bardayan, D. W.; Batchelder, J. C.; Brewer, N. T.; Cizewski, J. A.; Fijałkowska, A.; Gross, C. J.; Howard, M. E.; Ilyushkin, S. V.; Manning, B.; Matoš, M.; Mendez, A. J.; Miernik, K.; Padgett, S. W.; Peters, W. A.; Rasco, B. C.; Ratkiewicz, A.; Rykaczewski, K. P.; Stracener, D. W.; Wang, E. H.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2016-08-01

    The β -delayed neutron emission of Ga,8483 isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to 78Ni core-excited states in Ge,8483 favored by shell effects. We developed shell model calculations in the proton f p g9 /2 and neutron extended f p g9 /2+d5 /2 valence space using realistic interactions that were used to understand measured β -decay lifetimes. We conclude that enhanced, concentrated β -decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β -delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.

  6. Event-by-event study of neutron observables in spontaneous and thermal fission

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-14

    The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view towards possible applications for SNM detection. We have shown that event-by-event models of fission, such as FREYA, provide a powerful tool for studying fission neutron correlations. Our results demonstrate that these correlations are significant and exhibit a dependence on the fissioning nucleus. Since our method is phenomenological in nature, good input data are especially important. Some of the measurements employed in FREYA are rather old and statistics limited. It would be useful to repeat some of these studies with modern detector techniques. In addition, most experiments made to date have not made simultaneous measurements of the fission products and the prompt observables, such as neutron and photons. Such data, while obviously more challenging to obtain, would be valuable for achieving a more complete understanding of the fission process.

  7. A trapped-ion technique for beta-delayed neutron studies

    NASA Astrophysics Data System (ADS)

    Caldwell, Shane

    The properties of beta-delayed neutron emission (betan) are important in basic and applied nuclear physics. The neutron spectra and branching ratios of betan emitters reflect the evolution of nuclear structure in neutron-rich nuclei. Branching ratios affect the heavy-element abundances resulting from the astrophysical r process. Energy spectra and branching ratios are also important to nuclear stockpile stewardship and the safe design of nuclear reactors. Recently we demonstrated a novel technique for betan spectroscopy using I137+ ions confined to a ˜1 mm 3 volume within a linear RFQ ion trap [61, 77]. By measuring the time-of-flight spectrum of ions recoiling from both beta and betan decays, the betan branching ratio and spectrum can be determined. This recoil-ion technique has several advantages over techniques that rely on neutron detection: the recoil-ions are easily detectable; complications due to scattered neutrons and gamma-rays are avoided; and the betan branching ratio can be extracted in several ways. In this thesis we present new measurements of the delayed-neutron energy spectra and branching ratios of 137I, 135Sb, and 136Sb, which include the first observation of the 136Sb spectrum. These measurements were motivated by the impact that the branching ratios of 135Sb and136Sb can have on the r-process abundances and by the use of 137 I, a well-studied case, as a benchmark for the new technique. Our current understanding of the r process is severely limited by the lack of an exhaustive body of data on neutron-rich nuclei. Relative to the previous demonstration on 137I, the present iteration of the experiment incorporates a 10x improvement in both the detection efficiencies and the beam intensity, as well as a position-sensitive design for the recoil-ion detectors that enables an improvement in energy resolution. An important analytical tool is introduced, which models the evolution of each ion population in the trap and is used to provide a needed

  8. Dynamics of water in prussian blue analogues: Neutron scattering study

    SciTech Connect

    Sharma, V. K.; Mitra, S.; Thakur, N.; Yusuf, S. M.; Mukhopadhyay, R.; Juranyi, Fanni

    2014-07-21

    Dynamics of crystal water in Prussian blue (PB), Fe(III){sub 4}[Fe(II)(CN){sub 6}]{sub 3}.14H{sub 2}O and its analogue Prussian green (PG), ferriferricynaide, Fe(III){sub 4}[Fe(III)(CN){sub 6}]{sub 4}.16H{sub 2}O have been investigated using Quasielastic Neutron Scattering (QENS) technique. PB and its analogue compounds are important materials for their various interesting multifunctional properties. It is known that crystal water plays a crucial role towards the multifunctional properties of Prussian blue analogue compounds. Three structurally distinguishable water molecules: (i) coordinated water molecules at empty nitrogen sites, (ii) non-coordinated water molecules in the spherical cavities, and (iii) at interstitial sites exist in PB. Here spherical cavities are created due to the vacant sites of Fe(CN){sub 6} units. However, PG does not have any such vacant N or Fe(CN){sub 6} units, and only one kind of water molecules, exists only at interstitial sites. QENS experiments have been carried out on both the compounds in the temperature range of 260–360 K to elucidate the dynamical behavior of different kinds of water molecules. Dynamics is found to be much more pronounced in case of PB, compared to PG. A detailed data analysis showed that localized translational diffusion model could describe the observed data for both PB and PG systems. The average diffusion coefficient is found to be much larger in the PB than PG. The obtained domain of dynamics is found to be consistent with the geometry of the structure of the two systems. Combining the data of the two systems, a quantitative estimate of the dynamics, corresponding to the water molecules at different locations is made.

  9. Off-axis neutron study from a uniform scanning proton beam using Monte Carlo code FLUKA

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Rafiqul

    The production of secondary neutrons is an undesirable byproduct of proton therapy. It is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons using the Monte Carlo radiation transport code FLUKA. The study is done using a simplified version of the beam delivery system used at ProCure Proton Therapy Center, Oklahoma City, OK. In this study, a particular set of treatment parameters were set to study the dose equivalent outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with maximum energies of 78 MeV, 162 MeV and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the study. The FLUKA calculated secondary neutron dose equivalent to absorbed proton dose, Hn/Dp, decreased with distance from beam isocenter. The Hn/Dp ranged from 0.11 +/- 0.01 mSv/Gy for a 78 MeV proton beam to 111.01 +/- 1.99 mSv/Gy for a 226 MeV proton beam. Overall, Hn/D p was observed to be higher in air than in the phantom, indicating the predominance of external neutrons produced in the nozzle rather than inside the body.

  10. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    SciTech Connect

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; Furmann, Agnieszka; Clarkson, Chris R.

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.

  11. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    DOE PAGES

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; ...

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated using themore » chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.« less

  12. Sustaining knowledge in the neutron generator community and benchmarking study. Phase II.

    SciTech Connect

    Huff, Tameka B.; Stubblefield, William Anthony; Cole, Benjamin Holland, II; Baldonado, Esther

    2010-08-01

    This report documents the second phase of work under the Sustainable Knowledge Management (SKM) project for the Neutron Generator organization at Sandia National Laboratories. Previous work under this project is documented in SAND2008-1777, Sustaining Knowledge in the Neutron Generator Community and Benchmarking Study. Knowledge management (KM) systems are necessary to preserve critical knowledge within organizations. A successful KM program should focus on people and the process for sharing, capturing, and applying knowledge. The Neutron Generator organization is developing KM systems to ensure knowledge is not lost. A benchmarking study involving site visits to outside industry plus additional resource research was conducted during this phase of the SKM project. The findings presented in this report are recommendations for making an SKM program successful. The recommendations are activities that promote sharing, capturing, and applying knowledge. The benchmarking effort, including the site visits to Toyota and Halliburton, provided valuable information on how the SEA KM team could incorporate a KM solution for not just the neutron generators (NG) community but the entire laboratory. The laboratory needs a KM program that allows members of the workforce to access, share, analyze, manage, and apply knowledge. KM activities, such as communities of practice (COP) and sharing best practices, provide a solution towards creating an enabling environment for KM. As more and more people leave organizations through retirement and job transfer, the need to preserve knowledge is essential. Creating an environment for the effective use of knowledge is vital to achieving the laboratory's mission.

  13. Preliminary time-of-flight neutron diffraction study on diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris

    SciTech Connect

    Blum, Marc-Michael; Koglin, Alexander; Rüterjans, Heinz; Schoenborn, Benno; Langan, Paul; Chen, Julian C.-H.

    2007-01-01

    Diisopropyl fluorophosphatase (DFPase) effectively hydrolyzes a number of organophosphorus nerve agents, including sarin, cyclohexylsarin, soman and tabun. Neutron diffraction data have been collected from DFPase crystals to 2.2 Å resolution in an effort to gain further insight into the mechanism of this enzyme. The enzyme diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is capable of decontaminating a wide variety of toxic organophosphorus nerve agents. DFPase is structurally related to a number of enzymes, such as the medically important paraoxonase (PON). In order to investigate the reaction mechanism of this phosphotriesterase and to elucidate the protonation state of the active-site residues, large-sized crystals of DFPase have been prepared for neutron diffraction studies. Available H atoms have been exchanged through vapour diffusion against D{sub 2}O-containing mother liquor in the capillary. A neutron data set has been collected to 2.2 Å resolution on a relatively small (0.43 mm{sup 3}) crystal at the spallation source in Los Alamos. The sample size and asymmetric unit requirements for the feasibility of neutron diffraction studies are summarized.

  14. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A.; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    High-resolution crystallographic studies of the hydration of the coenzyme cob(II)alamin have provided hydrogen-bond parameters of unprecedented accuracy for a biomacromolecule. The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue–Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  15. Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-07-01

    Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.

  16. The NIST NBSR and Cold Neutron Research Facility

    SciTech Connect

    Rush, J.J.

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  17. High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin.

    PubMed

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul

    2011-06-01

    The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue-Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  18. Neutron reflectivity studies of single lipid bilayers supported on planar substrates

    SciTech Connect

    Krueger, S.; Orts, W.J.; Berk, N.F.; Majkrzak, C.F.; Koenig, B.W.

    1994-12-31

    Neutron reflectivity was used to probe the structure of single phosphatidylcholine (PC) lipid bilayers adsorbed onto a planar silicon surface in an aqueous environment. Fluctuations in the neutron scattering length density profiles perpendicular to the silicon/water interface were determined for different lipids as a function of the hydrocarbon chain length. The lipids were studied in both the gel and liquid crystalline phases by monitoring changes in the specularly-reflected neutron intensity as a function of temperature. Contrast variation of the neutron scattering length density was applied to both the lipid and the solvent. Scattering length density profiles were determined using both model-independent and model-dependent fitting methods. During the reflectivity measurements, a novel experimental set-up was implemented to decrease the incoherent background scattering due to the solvent. Thus, the reflectivity was measured to Q {approx} 0.3{Angstrom}{sup -1}, covering up to seven orders of magnitude in reflected intensity, for PC bilayers in D{sub 2}O and silicon-matched (38% D{sub 2}O/62% H{sub 2}O) water. The kinetics of lipid adsorption at the silicon/water interface were also explored by observing changes in the reflectivity at low Q values under silicon-matched water conditions.

  19. Inverse kinematics (p, n) reactions studies using the WINDS slow neutron detector and the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Yasuda, J.; Sasano, M.; Zegers, R. G. T.; Baba, H.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; Jhang, G.; Kameda, D.; Kubo, T.; Kurata-Nishimura, M.; Milman, E.; Motobayashi, T.; Otsu, H.; Panin, V.; Powell, W.; Sakai, H.; Sako, M.; Sato, H.; Shimizu, Y.; Stuhl, L.; Suzuki, H.; Tangwancharoen, S.; Takeda, H.; Uesaka, T.; Yoneda, K.; Zenihiro, J.; Kobayashi, T.; Sumikama, T.; Tako, T.; Nakamura, T.; Kondo, Y.; Togano, Y.; Shikata, M.; Tsubota, J.; Yako, K.; Shimoura, S.; Ota, S.; Kawase, S.; Kubota, Y.; Takaki, M.; Michimasa, S.; Kisamori, K.; Lee, C. S.; Tokieda, H.; Kobayashi, M.; Koyama, S.; Kobayashi, N.; Wakasa, T.; Sakaguchi, S.; Krasznahorkay, A.; Murakami, T.; Nakatsuka, N.; Kaneko, M.; Matsuda, Y.; Mucher, D.; Reichert, S.; Bazin, D.; Lee, J. W.

    2016-06-01

    We have combined the low-energy neutron detector WINDS (Wide-angle Inverse-kinematics Neutron Detectors for SHARAQ) and the SAMURAI spectrometer at RIKEN Nishina Center RI Beam Factory (RIBF) in order to perform (p, n) reactions in inverse kinematics for unstable nuclei in the mass region around A ∼ 100 . In this setup, WINDS is used for detecting recoil neutrons and the SAMURAI spectrometer is used for tagging decay channel of heavy residue. The first experiment by using the setup was performed to study Gamow-Teller transitions from 132Sn in April 2014. The atomic number Z and mass-to-charge ratio A / Q of the beam residues were determined from the measurements of time of flight, magnetic rigidity and energy loss. The obtained A / Q and Z resolutions were σA/Q = 0.14 % and σZ = 0.22 , respectively. Furthermore, owing to the large momentum acceptance (50 %) of SAMURAI, the beam residues associated with the γ , 1n and 2n decay channel were measured in the same magnetic field setting. The kinematic loci of the measured recoil neutron energy and laboratory angle are clearly seen. It shows that the excitation energy up to about 20 MeV can be reconstructed.

  20. High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin

    SciTech Connect

    Jogl, Gerwald; Wang, Xiaoping; Mason, Sax; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zoe; Hoffmann, Christina; Kratky, Christoph; Langan, Paul

    2011-01-01

    The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.

  1. Study on the impact of pair production interaction on D-T controllable neutron density logging.

    PubMed

    Yu, Huawei; Zhang, Li; Hou, Boran

    2016-05-01

    This paper considers the effect of pair production on the precision of D-T controllable neutron source density logging. Firstly, the principle of the traditional density logging and pulsed neutron density logging are analyzed and then gamma ray cross sections as a function of energy for various minerals are compared. In addition, the advantageous areas of Compton scattering and pair production interactions on high-energy gamma ray pulse height spectrum and the errors of a controllable source density measurement are studied using a Monte Carlo simulation method. The results indicate that density logging mainly utilizes the Compton scattering of gamma rays, while the attenuation of neutron induced gamma rays and the precision of neutron gamma density measurements are affected by pair production interactions, particularly in the gamma rays with energy higher than 2MeV. By selecting 0.2-2MeV energy range and performing proper lithology correction, the effect of pair production can be eliminated effectively and the density measurement error can be rendered close to the precision of chemical source density logging.

  2. A system of materials composition and geometry arrangement for fast neutron beam thermalization: An MCNP study

    NASA Astrophysics Data System (ADS)

    Uhlář, Radim; Alexa, Petr; Pištora, Jaromír

    2013-03-01

    Compact deuterium-tritium neutron generators emit fast neutrons (14.2 MeV) that have to be thermalized for neutron activation analysis experiments. To maximize thermal neutron flux and minimize epithermal and fast neutron fluxes across the output surface of the neutron generator facility, Monte Carlo calculations (MCNP5; Los Alamos National Laboratory) for different moderator types and widths and collimator and reflector designs have been performed. A thin lead layer close to the neutron generator as neutron multiplier followed by polyethylene moderator and surrounded by a massive lead and nickel collimator and reflector was obtained as the optimum setup.

  3. X-ray and neutron scattering studies of complex confined fluids.

    SciTech Connect

    Sinha, S. K.

    1999-08-04

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems.

  4. Studies on depth-dose-distribution controls by deuteration and void formation in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori

    2004-08-07

    Physical studies on (i) replacement of heavy water for body water (deuteration), and (ii) formation of a void in human body (void formation) were performed as control techniques for dose distribution in a human head under neutron capture therapy. Simulation calculations were performed for a human-head-size cylindrical phantom using a two-dimensional transport calculation code for mono-energetic incidences of higher-energy epi-thermal neutrons (1.2-10 keV), lower-energy epi-thermal neutrons (3.1-23 eV) and thermal neutrons (1 meV to 0.5 eV). The deuteration was confirmed to be effective both in thermal neutron incidence and in epi-thermal neutron incidence from the viewpoints of improvement of the thermal neutron flux distribution and elimination of the secondary gamma rays. For the void formation, a void was assumed to be 4 cm in diameter and 3 cm in depth at the surface part in this study. It was confirmed that the treatable depth was improved almost 2 cm for any incident neutron energy in the case of the 10 cm irradiation field diameter. It was made clear that the improvement effect was larger in isotropic incidence than in parallel incidence, in the case that an irradiation field size was delimited fitting into a void diameter.

  5. Fast neutrons compared with megavoltage x-rays in the treatment of patients with supratentorial glioblastoma: a controlled pilot study

    SciTech Connect

    Catterall, M.; Bloom, H.J.G.; Ash, D.V.; Walsh, L.; Richardson, A.; Uttley, D.; Gowing, N.F.C.; Lewis, P.; Chaucer, B.

    1980-03-01

    The radioresistance of glioblastoma presumably results from the presence of hypoxic cells. In an attempt to overcome this problem, fast neutrons were compared in a controlled pilot study with conventional megavoltage x-rays (photons). 63 patients entered the study between January, 1973 and July, 1976, 30 patients received neutron and 33 received x-ray therapy. The overall mean survival was 11.4 months for those who received photon and 10 months for those who received neutron therapy. Survival rates at 6 and 12 months were 72 and 36% respectively for photon treated patients, and 77 and 30% for those treated with neutrons. Although neutron therapy did not improve overall survival, examination of the histological material indicated a considerably greater antitumor effect after neutron therapy than after treatment with photons. In the neutron treated group, at post-mortem examination no tumor or only minimal tumor was found in 10 of 12 patients and in one of 4 patients where tissue was obtained from a second craniotomy. In some cases, there was evidence of diffuse damage to normal brain which was in keeping with a clinical syndrome of progressive dementia without localizing signs. Dose, time, and volume factors for neutron therapy to the brain and possible ways of improving results are discussed.

  6. Subaru/HDS study of CH stars: elemental abundances for stellar neutron-capture process studies

    NASA Astrophysics Data System (ADS)

    Goswami, Aruna; Aoki, Wako; Karinkuzhi, Drisya

    2016-01-01

    A comprehensive abundance analysis providing rare insight into the chemical history of lead stars is still lacking. We present results from high-resolution (R ˜ 50 000) spectral analyses of three CH stars, HD 26, HD 198269 and HD 224959, and, a carbon star with a dusty envelope, HD 100764. Previous studies on these objects are limited by both resolution and wavelength regions and the results differ significantly from each other. We have undertaken to reanalyse the chemical composition of these objects based on high-resolution Subaru spectra covering the wavelength regions 4020-6775 Å. Considering local thermodynamic equilibrium and using model atmospheres, we have derived the stellar parameters, the effective temperatures Teff, surface gravities log g, and metallicities [Fe/H] for these objects. The derived parameters for HD 26, HD 100764, HD 198269 and HD 224959 are (5000, 1.6, -1.13), (4750, 2.0 -0.86), (4500, 1.5, -2.06) and (5050, 2.1, -2.44), respectively. The stars are found to exhibit large enhancements of heavy elements relative to iron in conformity to previous studies. Large enhancement of Pb with respect to iron is also confirmed. Updates on the elemental abundances for several s-process elements (Y, Zr, La, Ce, Nd, Sm and Pb) along with the first-time estimates of abundances for a number of other heavy elements (Sr, Ba, Pr, Eu, Er and W) are reported. Our analysis suggests that neutron-capture elements in HD 26 primarily originate in the s-process while the major contributions to the abundances of neutron-capture elements in the more metal-poor objects HD 224959 and HD 198269 are from the r-process, possibly from materials that are pre-enriched with products of the r-process.

  7. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    SciTech Connect

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; Sheikh, J. A.; Shi, Yue

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-rich even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h11/2)2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.

  8. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h11/2)2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  9. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    SciTech Connect

    Mitra,S.

    2008-11-17

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

  10. Neutron-emission measurements at a white neutron source

    SciTech Connect

    Haight, Robert C

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  11. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  12. Studies of neutron and proton nuclear activation in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Laird, C. E.

    1982-01-01

    The expected induced radioactivity of experimental material in low Earth orbit was studied for characteristics of activating particles such as cosmic rays, high energy Earth albedo neutrons, trapped protons, and secondary protons and neutrons. The activation cross sections for the production of long lived radioisotopes and other existing nuclear data appropriate to the study of these reactions were compiled. Computer codes which are required to calculate the expected activation of orbited materials were developed. The decreased computer code used to predict the activation of trapped protons of materials placed in the expected orbits of LDEF and Spacelab II. Techniques for unfolding the fluxes of activating particles from the measured activation of orbited materials are examined.

  13. A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Tenailleau, Christophe; Nogthai, Yung; Studer, Andrew; Brugger, Joël; Pring, Allan

    2006-11-01

    A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 °C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni) 9S 8 to violarite (Fe,Ni) 3S 4 under mild conditions (pH∼4) at 120 °C and 3 bar using in situ neutron diffraction measurements are presented.

  14. Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bellissent-Funel, Marie-Claire-; Appavou, Marie-Sousai; Gibrat, Gabriel

    Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.

  15. Neutron Scattering Study of Low Energy Magnetic Excitation in FeTeSe System

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Wen, Jinsheng; Schneeloch, John; Matsuda, Masaaki; Christianson, A. D.; Gu, Genda; Zaliznyak, I. A.; Xu, Guangyong; Tranquada, J. M.; Birgeneau, R. J.

    2014-03-01

    We have performed neutron scattering and magnetization/transport measurements on a series of FeTe1-xSex system single crystals to study the interplay between magnetism and superconductivity. Comparing to pure FeTe1-xSex compounds, extra Fe and Ni/Cu doping on Fe-site can change physics properties of these samples, including resistivity, magnetization and superconducting properties. Our neutron scattering studies also show the Fe-site doping change low energy magnetic spectrum, including the magnetic excitations intensity, position and magnetic correlation length in these samples. On the other hand, the temperature dependence of the low energy magnetic fluctuations are also found to be different depending on the composition. This work is supported by the Office of Basic Energy Sciences, DOE.

  16. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam.

    PubMed

    Endo, Satoru; Tanaka, Kenichi; Takada, Masashi; Onizuka, Yoshihiko; Miyahara, Nobuyuki; Sato, Tatsuhiko; Ishikawa, Masayori; Maeda, Naoko; Hayabuchi, Naofumi; Shizuma, Kiyoshi; Hoshi, Masaharu

    2007-09-01

    Absorbed doses from main charged-particle beams and charged-particle fragments have been measured with high accuracy for particle therapy, but there are few reports for doses from neutron components produced as fragments. This study describes the measurements on neutron doses produced by carbon beams; microdosimetric distributions of secondary neutrons produced by 290 MeV/nucleon carbon beams have been measured by using a tissue equivalent proportional counter at the Heavy Ion Medical Accelerator in Chiba, Japan at the National Institute of Radiological Sciences. The microdosimetric distributions of the secondary neutron were measured on the distal and lateral faces of a body-simulated acrylic phantom (300 mm height x 300 mm width x 253 mm thickness). To confirm the dose measurements, the neutron energy spectra produced by incident carbon beams in the acrylic phantom were simulated by the particle and heavy ion transport code system. The absorbed doses obtained by multiplying the simulated neutron energy spectra with the kerma factor calculated by MCNPX agree with the corresponding experimental data fairly well. Downstream of the Bragg peak, the ratio of the neutron dose to the carbon dose at the Bragg peak was found to be a maximum of 1.4 x 10(-4) and the ratio of neutron dose was a maximum of 3.0 x 10(-7) at a lateral face of the acrylic phantom. The ratios of neutrons to charged particle fragments were 11% to 89% in the absorbed doses at the lateral and the distal faces of the acrylic phantom. We can conclude that the treatment dose will not induce serious secondary neutron effects at distances greater than 90 mm from the Bragg peak in carbon particle therapy.

  17. Studies on osteoporosis. V. Comparison of methods of evaluation of osteoporosis and study of chromosome changes induced by neutron activation

    SciTech Connect

    Robin, J.C.; Sirianni, S.R.; Pragay, D.A.; Ambrus, J.L.

    1981-01-01

    In vivo activation analysis was compared with ashing and atomic absorption spectrophotometry for the determination of total skeletal calcium content in mice. The results were close to identical. The possible mutagenic-carcinogenic effect of repeated exposure to whole body neutron irradiation was studied by chromosome analysis. Under the conditions of these experiments, no significant chromosome changes were seen.

  18. Modeling and Simulation Optimization and Feasibility Studies for the Neutron Detection without Helium-3 Project

    SciTech Connect

    Ely, James H.; Siciliano, Edward R.; Swinhoe, Martyn T.; Lintereur, Azaree T.

    2013-01-01

    This report details the results of the modeling and simulation work accomplished for the ‘Neutron Detection without Helium-3’ project during the 2011 and 2012 fiscal years. The primary focus of the project is to investigate commercially available technologies that might be used in safeguards applications in the relatively near term. Other technologies that are being developed may be more applicable in the future, but are outside the scope of this study.

  19. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  20. A comparative neutron activation analysis study of common generic manipulated and reference medicines commercialized in Brazil.

    PubMed

    Leal, A S; Menezes, M A B C; Rodrigues, R R; Andonie, O; Vermaercke, P; Sneyers, L

    2008-10-01

    In this work, a comparative study of neutron activation analysis (NAA) was performed by the nuclear institutes: CDTN/CNEN-Brazil, CCHEN-Chile and the SCK.CEN-Belgium aiming to investigate some generic, manipulated and reference medicines largely commercialized in Brazil. Some impurities such as: As, Ba, Br, Ce, Co, Cr, Eu, Fe, Hf, Sb, Sc, Sm, Ti and Zn were found, and the heterogeneity of the samples pointed out the lack of an efficient public system of quality control.

  1. Structure of Light Neutron-rich Nuclei Studied with Transfer Reactions

    SciTech Connect

    Wuosmaa, A. H.

    2015-01-01

    Transfer reactions have been used for many years to understand the shell structure of nuclei. Recent studies with rare-isotope beams extend this work and make it possible to probe the evolution of shell structure far beyond the valley of stability, requiring measurements in inverse kinematics. We present a novel technical approach to measurements in inverse kinematics, and apply this method to different transfer reactions, each of which probes different properties of light, neutron-rich nuclei.

  2. Conformational changes of Gag HIV-1 on a lipid bilayer measured by neutron reflectivity provides insights into viral particle assembly

    NASA Astrophysics Data System (ADS)

    Nanda, H.; Datta, S. A. K.; Heinrich, F.; Loesche, M.; Rein, A.; Krueger, S.

    2009-03-01

    Formation of the HIV-1 is mediated by the Gag polyprotein at the cytoplasmic membrane surface of the infected host cell. Studies suggest large conformational changes in the Gag protein may occur during self-assembly on the membrane [Current Biology, 1997 (7) p.729, J. Mol. Biol. 2007 (365) p. 812]. The one-dimensional profile of Gag bound to a lipid bilayer interface was determined at angstrom resolution by neutron reflectometry. This was done using a novel method for modeling reflectivity data by a Monte Carlo simulation technique. The results show conditions under which the Gag protein can be made to extend or stay compact on the membrane surface. Further atomic detail was obtained using atomistic models to fit the one-dimensional Gag structural data. This involved combining X-ray resolution structures of the ordered protein domains with conformational sampling of the flexible linker region.

  3. Wetland monitoring with Global Navigation Satellite System reflectometry.

    PubMed

    Nghiem, Son V; Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T; Mannucci, Anthony J; Cardellach, Estel; Brakenridge, G Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS-R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS-R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales.

  4. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  5. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  6. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  7. A study on fast digital discrimination of neutron and gamma-ray for improvement neutron emission profile measurement

    SciTech Connect

    Uchida, Y. Takada, E.; Fujisaki, A.; Isobe, M.; Ogawa, K.; Shinohara, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2014-11-15

    Neutron and γ-ray (n-γ) discrimination with a digital signal processing system has been used to measure the neutron emission profile in magnetic confinement fusion devices. However, a sampling rate must be set low to extend the measurement time because the memory storage is limited. Time jitter decreases a discrimination quality due to a low sampling rate. As described in this paper, a new charge comparison method was developed. Furthermore, automatic n-γ discrimination method was examined using a probabilistic approach. Analysis results were investigated using the figure of merit. Results show that the discrimination quality was improved. Automatic discrimination was applied using the EM algorithm and k-means algorithm.

  8. A study on fast digital discrimination of neutron and gamma-ray for improvement neutron emission profile measurementa)

    NASA Astrophysics Data System (ADS)

    Uchida, Y.; Takada, E.; Fujisaki, A.; Isobe, M.; Ogawa, K.; Shinohara, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2014-11-01

    Neutron and γ-ray (n-γ) discrimination with a digital signal processing system has been used to measure the neutron emission profile in magnetic confinement fusion devices. However, a sampling rate must be set low to extend the measurement time because the memory storage is limited. Time jitter decreases a discrimination quality due to a low sampling rate. As described in this paper, a new charge comparison method was developed. Furthermore, automatic n-γ discrimination method was examined using a probabilistic approach. Analysis results were investigated using the figure of merit. Results show that the discrimination quality was improved. Automatic discrimination was applied using the EM algorithm and k-means algorithm.

  9. A study on fast digital discrimination of neutron and gamma-ray for improvement neutron emission profile measurementa)

    PubMed Central

    Uchida, Y.; Takada, E.; Fujisaki, A.; Isobe, M.; Shinohara, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2014-01-01

    Neutron and γ-ray (n-γ) discrimination with a digital signal processing system has been used to measure the neutron emission profile in magnetic confinement fusion devices. However, a sampling rate must be set low to extend the measurement time because the memory storage is limited. Time jitter decreases a discrimination quality due to a low sampling rate. As described in this paper, a new charge comparison method was developed. Furthermore, automatic n-γ discrimination method was examined using a probabilistic approach. Analysis results were investigated using the figure of merit. Results show that the discrimination quality was improved. Automatic discrimination was applied using the EM algorithm and k-means algorithm. PMID:25430297

  10. Antibody adsorption on the surface of water studied by neutron reflection.

    PubMed

    Smith, Charles; Li, Zongyi; Holman, Robert; Pan, Fang; Campbell, Richard A; Campana, Mario; Li, Peixun; Webster, John R P; Bishop, Steven; Narwal, Rojaramani; Uddin, Shahid; van der Walle, Christopher F; Lu, Jian R

    2017-04-01

    Surface and interfacial adsorption of antibody molecules could cause structural unfolding and desorbed molecules could trigger solution aggregation, resulting in the compromise of physical stability. Although antibody adsorption is important and its relevance to many mechanistic processes has been proposed, few techniques can offer direct structural information about antibody adsorption under different conditions. The main aim of this study was to demonstrate the power of neutron reflection to unravel the amount and structural conformation of the adsorbed antibody layers at the air/water interface with and without surfactant, using a monoclonal antibody 'COE-3' as the model. By selecting isotopic contrasts from different ratios of H2O and D2O, the adsorbed amount, thickness and extent of the immersion of the antibody layer could be determined unambiguously. Upon mixing with the commonly-used non-ionic surfactant Polysorbate 80 (Tween 80), the surfactant in the mixed layer could be distinguished from antibody by using both hydrogenated and deuterated surfactants. Neutron reflection measurements from the co-adsorbed layers in null reflecting water revealed that, although the surfactant started to remove antibody from the surface at 1/100 critical micelle concentration (CMC) of the surfactant, complete removal was not achieved until above 1/10 CMC. The neutron study also revealed that antibody molecules retained their globular structure when either adsorbed by themselves or co-adsorbed with the surfactant under the conditions studied.

  11. Study of resistive micromegas detectors in a mixed neutron and photon radiation environment

    NASA Astrophysics Data System (ADS)

    Alexopoulos, T.; Iakovidis, G.; Tsipolitis, G.

    2012-05-01

    The Muon ATLAS Micromegas Activity (MAMMA) focuses on the development and testing of large-area muon detectors based on the bulk-Micromegas technology. These detectors are candidates for the upgrade of the ATLAS Muon System in view of the luminosity upgrade of Large Hadron Collider at CERN (sLHC). They will combine trigger and precision measurement capability in a single device. A novel protection scheme using resistive strips above the readout electrode has been developed. The response and sparking properties of resistive Micromegas detectors were successfully tested in a mixed (neutron and gamma) high radiation environment supplied by the Tandem accelerator at the N.C.S.R. Demokritos in Athens. Monte-Carlo studies have been employed to study the effect of 5.5 MeV neutrons impinging on Micromegas detectors. The response of the Micromegas detectors on the photons originating from the inevitable neutron inelastic scattering on the surrounding materials of the experimental facility was also studied.

  12. Study and presentation of a fast neutron and photon dosemeter for area and criticality monitoring using radiophotoluminescent glass.

    PubMed

    Girod, M; Bourgois, L; Cornillaux, G; Andre, S; Postaük, J

    2004-01-01

    This paper describes the results of a study performed on a mixed field neutron/gamma (n/gamma) area dosemeter incorporating radiophotoluminescent (RPL) glass detectors. RPL glass is known to be virtually insensitive to neutrons. The aim of the study was therefore to determine the neutron response of a dosemeter designed to combine n/gamma conversion with RPL detection capability. Monte Carlo calculations as well as measurements using monoenergetic beams and isotopic neutron sources showed this response to be constant, to within 30% in terms of H*(10), and independent of neutron energy from 250 keV to 10 MeV. For area monitoring, tests carried out in nuclear facilities (around PuO2 glove box and shipping casks containing PWR, MOX spent fuels or vitrified fission product) demonstrated that dosemeter response was accurate to within 15%, where the gamma component of the mixed n,gamma field remained below 1 MeV. When exposed in the Silene reactor simulating a criticality accident (10(17) fissions-liquid 235U--e.g. 1 Gy neutron and 1 Gy photon), the dosemeter exhibited good correlation with reference values and other measurement technologies (again to within 30%), for both neutron and gamma absorbed dose.

  13. Pipe corrosion and deposit study using neutron- and gamma- radiation sources

    NASA Astrophysics Data System (ADS)

    Balaskó, Márton; Sváb, Erzsébet; Kuba, Attila; Kiss, Zoltán; Rodek, Lajos; Nagy, Antal

    2005-04-01

    The problems of corrosion and deposit are crucial issues in the pipelines of the chemical, nuclear and petrochemical industries. Radiography (neutron, gamma, X-ray) has long been used as a technique for pipe inspection and corrosion monitoring. The 10 MW Budapest research reactor site is a source of various energy neutron (thermal and epithermal) and gamma radiation. The detector system was a Peltier-cooled LLL CCD camera controlled by a PC with Image ProLite software and imaging plate equipment with a BAS 2500 scanner that used AIDA software. The objects inspected were corroded tubes and various kinds of test specimens with a large wall thickness (25 mm) inside and outside steps. In the evaluation part we used tomographic algorithms. A software simulation study was made as well. Fan-beam projections were computed of the given software phantoms and a new discrete tomography method was used to reconstruct the unknown objects from these projections.

  14. The Minor Actinide Transmutation-Incineration Potential Studies in High Intensity Neutron Fluxes

    SciTech Connect

    Letourneau, A.; Chabod, S.; Foucher, Y.; Marie, F.; Ridikas, D.; Veyssiere, Ch.; Blandin, Ch.

    2005-05-24

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at CEA/DSM with objectives to determine optimal conditions for transmutation and incineration of Minor Actinides (MA) in high intensity neutron fluxes. Our experimental tools based on alpha- and gamma-spectroscopy of irradiated samples and the development of fission micro-chambers could gather both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. Cross sections of selected actinides (241Am, 242Am, 242Pu, 237Np, 238Np) have already been measured at ILL, showing some discrepancies when compared to evaluated data libraries but in overall good agreement with recent experimental data.

  15. In-Situ Studies of Intercritically Austempered Ductile Iron Using Neutron Diffraction

    SciTech Connect

    Druschitz, Alan; Aristizabal, Ricardo; Druschitz, Edward; Hubbard, Camden R; Watkins, Thomas R; Walker, Larry R; Ostrander, M

    2012-01-01

    Intercritically austempered ductile irons hold promise for applications requiring fatigue durability, excellent castability, low production energy requirements, reduced greenhouse gas emissions and excellent machinability. In the present study, four different ductile iron alloys, containing manganese and nickel as the primary austenite-stabilizing elements, were heat treated to obtain different quantities of austenite in the final microstructure. This paper reports the microstructures and phases present in these alloys. Further, lattice strains and diffraction elastic constants in various crystallographic directions and the transformation characteristics of the austenite as a function of applied stress were determined using in-situ loading with neutron diffraction at the second generation Neutron Residual Stress Facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL).

  16. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    SciTech Connect

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.

  17. A study of oil lubrication in a rotating engine using stroboscopic neutron imaging

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Brunner, Johannes; Calzada, Elbio

    2006-11-01

    Even at modern high-flux neutron sources, the required exposure time for one neutron radiography image with high counting statistics is in the order of 1 s. Continuous time-resolved imaging of objects in motion is thus very limited in time resolution and signal dynamics. However, repetitive motions can be recorded with a stroboscopic technique: A triggerable accumulating detector is triggered for many identical time windows of the cyclic motion until sufficient fluence is accumulated for one image. The image is read out, the delay for the time window is shifted and the recording repeated until a complete movie of the cyclic motion can be put together. We report about a study of oil flux in a running, electrically driven BMW engine out of current production.

  18. Neutron diffraction studies of magnetic-shape memory Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Heczko, Oleg; Prokes, Karel; Hannula, Simo-Pekka

    2007-09-01

    Neutron diffraction of single crystal of the typical example of magnetic-shape memory (MSM) alloy Ni 49.7Mn 29.3Ga 21 was carried out with a 2D position sensitive detector. The quality and inhomogeneity of the single crystal and martensite variant distribution was studied using ω-scan of selected nuclear Bragg reflections. The neutron diffraction reveals split of the (2 0 0) reflection of major martensite variant and large structural inhomogeneities in martensite phase. Using measurement in reciprocal space, we recorded a set of reflections that appear due to structural modulation (5 M) of the martensite, however, the set seems to be incomplete with missing or very weak reflections of second order compared with X-ray diffraction. The line of the magnetic reflection arising from the supposed antiferromagnetic ordering of the excess Mn atoms was very weak and it is difficult to discern from the background.

  19. Neutron background studies and results from the Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Hennings-Yeomans, Raul

    2006-04-01

    Non-baryonic dark matter makes one quarter of the energy density of the Universe. The Weakly Interacting Massive Particle (WIMP) is a dark matter candidate with a scattering cross section with an atomic nucleus of the order of the weak interaction and a mass comparable to that of an atomic nucleus. Results of the two tower run from the Cryogenic Dark Matter Search (CDMS II), consisting of a total exposure of 34 kg-d for germanium and 12 kg-d for silicon, at the Soudan Underground Laboratory are presented. Also we present studies of the neutron background relevant for our upcoming 10-fold more sensitive 5-tower run, as well as for other experiments in search of dark matter. During the two-tower run, no nuclear-recoil events exceeding expected background were observed for a WIMP mass of 60 GeV/c^2. The limit from Ge (Si) is a factor of 2.5 (10) lower than previous results, allowing to set further constraints on the predictions of supersymetric models. Our further studies of the muon-induced neutron background based on Monte Carlo simulations show that by replacing part of the outer polyethylene of the CDMS II shield by a neutron multiplicity meter, for example by Gd-loaded liquid scintillator (0.5% gadolinium content) with a PMT read out would allow us to better predict the absolute number of unvetoed nuclear recoils compared with present methods which rely on multiple nuclear recoil events.

  20. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    DOE PAGES

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less

  1. Advances in Neutron Spectroscopy and High Magnetic Field Instrumentation for studies of Correlated Electron Systems

    SciTech Connect

    Granroth, Garrett E

    2011-01-01

    Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes of $Q$ and $\\omega$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$_4$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.

  2. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    SciTech Connect

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; Payzant, E. A.; Salvador, J. R.; Thompson, A. J.; Sharp, J.; Brown, D.; Miller, D.

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubic symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.

  3. Polarized Neutron Studies on Antiferromagnetic Single Crystals: Technical Report No. 4

    DOE R&D Accomplishments Database

    Nathans, R.; Riste, T.; Shirane, G.; Shull, C.G.

    1958-11-26

    The theory of neutron scattering by magnetic crystals as given by Halpern and Johnson predicts changes in the polarization state of the neutron beam upon scattering which depend upon the relative orientation of the neutron polarization vector and the crystal magnetic axis. This was investigated experimentally with a polarized beam spectrometer using single crystals of Cr{sub 2}O{sub 3} and alpha - Fe{sub 2}O{sub 3} in which reside unique antiferromagnetic axes. Studies were made on several different reflections in both crystals for a number of different temperatures both below and above the Neel point. Results support the theoretical predictions and indicate directions for the moments in these crystals consistent with previous work. A more detailed study of the polarization changes in the (111) reflection in alpha - Fe{sub 2}O{sub 3} at room temperature on application of a magnetic field was carried out, The results indicate that the principal source of the parasitic ferromagnetism in hematite is essentially independent of the orientation of the antiferromagnetic domains within the crystal.

  4. Boron neutron capture therapy for glioblastoma multiforme: clinical studies in Sweden.

    PubMed

    Capala, Jacek; Stenstam, Britta H; Sköld, Kurt; Munck af Rosenschöld, Per; Giusti, Valerio; Persson, Charlotta; Wallin, Eva; Brun, Arne; Franzen, Lars; Carlsson, Jörgen; Salford, Leif; Ceberg, Crister; Persson, Bertil; Pellettieri, Luigi; Henriksson, Roger

    2003-01-01

    A boron neutron capture therapy (BNCT) facility has been constructed at Studsvik, Sweden. It includes two filter/moderator configurations. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range. The other beam has been designed to produce a large uniform field of thermal neutrons for radiobiological research. Scientific operations of the Studsvik BNCT project are overseen by the Scientific Advisory Board comprised of representatives of major universities in Sweden. Furthermore, special task groups for clinical and preclinical studies have been formed to facilitate collaboration with academia. The clinical Phase II trials for glioblastoma are sponsored by the Swedish National Neuro-Oncology Group and, presently, involve a protocol for BNCT treatment of glioblastoma patients who have not received any therapy other than surgery. In this protocol, p-boronophenylalanine (BPA), administered as a 6-h intravenous infusion, is used as the boron delivery agent. As of January 2002, 17 patients were treated. The 6-h infusion of 900 mg BPA/kg body weight was shown to be safe and resulted in the average blood-boron concentration of 24 microg/g (range: 15-32 microg/g) at the time of irradiation (approximately 2-3 h post-infusion). Peak and average weighted radiation doses to the brain were in the ranges of 8.0-15.5 Gy(W) and 3.3-6.1 Gy(W), respectively. So far, no severe BNCT-related acute toxicities have been observed. Due to the short follow-up time, it is too early to evaluate the efficacy of these studies.

  5. Fuel density, uranium enrichment, and performance studies for the Advanced Neutron Source reactor

    SciTech Connect

    Alston, E.E.; Gehin, J.C.; West, C.D.

    1994-06-01

    Consistent with the words of the budget request for the Advanced Neutron Source (ANS), DOE commissioned a study of the impact on performance of using medium- or low-enriched uranium (MEU or LEU) in the fuel of the reactor that generates the neutrons. In the course of the study, performance calculations for 19 different combinations of reactor core volume, fuel density and enrichment, power level, and other relevant parameters were carried out. Since then, another 14 cases have been analyzed at Oak Ridge to explore some of the more interesting and important configurations and to gain further insights into the tradeoffs between performance and enrichment. Furthermore, with the aid of the data from these additional cases, we have been able to correlate the most important performance parameters (peak thermal neutron flux in the reflector and core life) with reactor power, fuel density, and fuel enrichment. This enables us to investigate intermediate cases, or alternative cases that might be proposed by people within or outside the project, without the time and expense of doing completely new neutronics calculations for each new example. The main drivers of construction and operating costs are the reactor power level and the number of fuel plates to be fabricated each year; these quantities can be calculated from the correlations. The results show that the baseline two-element core design cannot be adapted to any practical fuel of greatly reduced enrichment without great performance penalties, but that a modification of the design, in which one additional fuel element is incorporated to provide extra volume for lower enrichment fuels, has the capability of using existing, or more advanced, fuel types to lower the uranium enrichment.

  6. Neutron field for boron neutron capture therapy

    SciTech Connect

    Kanda, K.; Kobayashi, T.

    1986-01-01

    Recently, the development of an epithermal neutron source has been required by medical doctors for deeper neutron penetrations, which is to be used for deep tumor treatment and diagnosis of metastasis. Several attempts have already been made to realize an epithermal neutron field, such as the undermoderated neutron beam, the filtered neutron beam, and the use of a fission plate. At present, these facilities can not be used for actual therapy. For the treatment of deep tumor, another method has been also proposed in normal water in the body is replaced by heavy water to attain a deeper neutron penetration. At Kyoto University's Research Reactor Institute, almost all physics problems have been settled relative to thermal neutron capture therapy that has been used for treating brain tumors and for biological experiments on malignant melanoma. Very recently feasibility studies to use heavy water have been started both theoretically and experimentally. The calculation shows the deeper penetration of neutrons as expected. Two kinds of experiments were done by using the KUR guide tube: 1. Thermal neutron penetration measurement. 2. Heavy water uptake in vitro sample. In addition to the above experiment using heavy water, the development of a new epithermal neutron source using a large fission plate is in progress, which is part of a mockup experiment of an atomic bomb field newly estimated.

  7. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    NASA Astrophysics Data System (ADS)

    Nemtsev, G.; Amosov, V.; Meshchaninov, S.; Popovichev, S.; Rodionov, R.

    2016-11-01

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  8. Stress-induced martensite variant reorientation in magnetic shape memory Ni Mn Ga single crystal studied by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Molnar, P.; Sittner, P.; Lukas, P.; Hannula, S.-P.; Heczko, O.

    2008-06-01

    Stress-induced martensite variant reorientation in magnetic shape memory Ni-Mn-Ga single crystal was studied in situ by the neutron diffraction technique. Principles of determination of individual tetragonal martensitic variants in shape memory alloys are explained. Using neutron diffraction we show that the macroscopic strain originates solely from the martensite structure reorientation or variant redistribution. Neutron diffraction also reveals that the reorientation of martensite is not fully completed even at a stress value of 25 MPa, which is about 20 times larger than the mean stress needed for reorientation. Only one twinning system is active during the reorientation process.

  9. Soil water content determination with cosmic-ray neutron sensor: Correcting aboveground hydrogen effects with thermal/fast neutron ratio

    NASA Astrophysics Data System (ADS)

    Tian, Zhengchao; Li, Zizhong; Liu, Gang; Li, Baoguo; Ren, Tusheng

    2016-09-01

    The cosmic-ray neutron sensor (CRNS), which estimates field scale soil water content, bridges the gap between point measurement and remote sensing. The accuracy of CRNS measurements, however, is affected by additional hydrogen pools (e.g., vegetation, snow, and rainfall interception). The objectives of this study are to: (i) evaluate the accuracy of CRNS estimates in a farmland system using depth and horizontal weighted point measurements, (ii) introduce a novel method for estimating the amounts of hydrogen from biomass and snow cover in CRNS data, and (iii) propose a simple approach for correcting the influences of aboveground hydrogen pool (expressed as aboveground water equivalent, AWE) on CRNS measurements. A field experiment was conducted in northeast China to compare soil water content results from CRNS to in-situ data with time domain reflectometry (TDR) and neutron probe (NP) in the 0-40 cm soil layers. The biomass water equivalent (BWE) and snow water equivalent (SWE) were observed to have separate linear relationships with the thermal/fast neutron ratio, and the dynamics of BWE and SWE were estimated correctly in the crop seasons and snow-covered seasons, respectively. A simple approach, which considered the AWE, AWE at calibration, and the effective measurement depth of CRNS, was introduced to correct the errors caused by BWE and SWE. After correction, the correlation coefficients between soil water contents determined by CRNS and TDR were 0.79 and 0.77 during the 2014 and 2015 crop seasons, respectively, and CRNS measurements had RMSEs of 0.028, 0.030, and 0.039 m3 m-3 in the 2014 and 2015 crop seasons and the snow-covered seasons, respectively. The experimental results also indicated that the accuracies of CRNS estimated BWE and SWE were affected by the distributions of aboveground hydrogen pools, which were related to the height of the CRNS device above ground surface.

  10. Dynamics of biopolymers on nanomaterials studied by quasielastic neutron scattering and MD simulations

    NASA Astrophysics Data System (ADS)

    Dhindsa, Gurpreet K.

    Neutron scattering has been proved to be a powerful tool to study the dynamics of biological systems under various conditions. This thesis intends to utilize neutron scattering techniques, combining with MD simulations, to develop fundamental understanding of several biologically interesting systems. Our systems include a drug delivery system containing Nanodiamonds with nucleic acid (RNA), and two specific model proteins, beta-Casein and Inorganic Pyrophosphatase (IPPase). RNA and nanodiamond (ND) both are suitable for drug-delivery applications in nano-biotechnology. The architecturally flexible RNA with catalytic functionality forms nanocomposites that can treat life-threatening diseases. The non-toxic ND has excellent mechanical and optical properties and functionalizable high surface area, and thus actively considered for biomedical applications. In this thesis, we utilized two tools, quasielastic neutron scattering (QENS) and Molecular Dynamics Simulations to probe the effect of ND on RNA dynamics. Our work provides fundamental understanding of how hydrated RNA motions are affected in the RNA-ND nanocomposites. From the experimental and Molecular Dynamics Simulation (MD), we found that hydrated RNA motion is faster on ND surface than a freestanding one. MD Simulation results showed that the failure of Stokes Einstein relation results the presence of dynamic heterogeneities in the biomacromolecules. Radial pair distribution function from MD Simulation confirmed that the hydrophilic nature of ND attracts more water than RNA results the de-confinement of RNA on ND. Therefore, RNA exhibits faster motion in the presence of ND than freestanding RNA. In the second project, we studied the dynamics of a natively disordered protein beta-Casein which lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of beta-Casein are explored by Quasielastic Neutron Scattering (QENS). We investigated the mean square displacement (MSD) of

  11. Spin, orbital ordering, and magnetic dynamics of LaVO{sub 3}: Magnetization, heat capacity, and neutron scattering studies

    SciTech Connect

    Tung, L. D.; Ivanov, A.; Schefer, J.; Lees, M. R.; Balakrishnan, G.; Paul, D. McK.

    2008-08-01

    We report the results of magnetization, heat capacity, and neutron scattering studies of LaVO{sub 3} single crystals. From the neutron-diffraction studies, it was found that the compound is magnetically ordered with a C-type antiferromagnetic spin structure at about 136 K. In the vicinity of the ordering temperature, we also observed hysteresis in the neutron-diffraction data measured on cooling and heating which indicates the first-order nature of the phase transition. In the antiferromagnetically ordered phase, the inelastic neutron scattering studies reveal the presence of a temperature independent c-axis spin-wave gap of about 6 meV which is similar to that previously reported for the sister compound YVO{sub 3}.

  12. Neutron Scattering Studies of Nanomagnetism and Artificially Structured Materials

    SciTech Connect

    Fitzsimmons, M.R.; Bader, S.D.; Borchers, J.A.; Felcher, G.P.; Furdyna, J.K.; Hoffmann, A.; Kortright, J.B.; Schuller, Ivan K.; Schulthess, T.C.; Sinha, S.K.; Toney, M.F.; Weller, D.; Wolf, S.

    2003-02-01

    Nanostructured magnetic materials are intensively studied due to their unusual properties and promise for possible applications. The key issues in these materials relate to the connection between their physical properties (transport, magnetism, mechanical, etc.) and their chemical-physical structure. In principle, a detailed knowledge of the chemical and physical structure allows calculation of their physical properties. Theoretical and computational methods are rapidly evolving so that magnetic properties of nanostructured materials might soon be predicted. Success in this endeavor requires detailed quantitative understanding of the magnetic structure and properties.

  13. Trapping of Implanted He at Cu/Nb Interfaces Measured by Neutron Reflectometry

    SciTech Connect

    Wang, Peng; Zhernenkov, Mikhail; Kashinath, Abishek; Demkowicz, Michael; Baldwin, Jon K.; Majewski, Jaroslaw

    2012-06-20

    In single crystalline metals, He is insoluble and precipitates into bubbles. In contrast, Cu-Nb multilayers show no evidence of bubble formation below a critical concentration. The conclusions of this paper are: (1) He is trapped at Cu/Nb , Cu/Mo interfaces; (2) He is trapped interstitially; (3) The interface swells {approx} 10 times; and (4) The layered structure retains despite the swell of interfaces.

  14. Manufacturing techniques studies of ceramics by neutron and γ-ray radiography

    NASA Astrophysics Data System (ADS)

    Latini, R. M.; Souza, M. I. S.; Almeida, G. L.; Bellido, A. V. B.

    2014-11-01

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 105n.cm-2.s-1 for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using γ-rays from 165Dy (95 keV) and 198Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy γ-rays from 165Dy rather than neutrongraphy or γ-rays from 198Au . Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  15. Study of sonic, neutron, and density logging of low-permeability gas sands. Final report

    SciTech Connect

    Osoba, J.S.

    1982-05-01

    Gas accumulations in Lower Tertiary and Upper Cretaceous formations are the object of widespread exploration in the Tight Western Gas Sands. The complex lithology of these formations has hindered the usefulness of the sonic, density, and neutron logs. Current log evaluation practices assume a matrix density of 2.68 gm/cc and a matrix travel-time of 52.6 microseconds/ft. The neutron log is calibrated for a sandstone matrix. Conventional analysis yields inconsistent and often contradictory results. Core and petrographic studies have been made on samples from Lower Tertiary and Upper Cretaceous formations in the Uinta Basin. Results indicated that a carbonate cement has filled much of the original porosity and altered the matrix density. Lower porosity samples tend to be heavily cemented and have matrix densities that approach, and even exceed, 2.68 gm/cc. Higher porosity samples tend to be lightly cemented and have matrix densities that approach 2.65 gm/cc. Log analyses in the Uinta Basin, supplemented by core data, reveal that the higher porosity samples have matrix travel-times that approach 55.6 microseconds/ft. The presence of the carbonate cement does not decrease the matrix travel-times as expected. Laboratory measured matrix travel-times substantiate these conclusions. Log analyses also indicate the neutron log, when calibrated for a sandstone matrix, will not accurately evaluate the higher porosity, non-shaly sandstones. Core and log analyses have been made on samples from the Upper Cretaceous Mesaverde formation in the Greater Green River Basin. The resulting pressure and temperature difference caused the physical properties of the Mesaverde to vary widely within the Greater Green River Basin. Matrix density and matrix travel-time for the Mesaverde are very different for the two wells. Neutron log response also varies considerably.

  16. Manufacturing techniques studies of ceramics by neutron and γ-ray radiography

    SciTech Connect

    Latini, R. M.; Bellido, A. V. B.; Souza, M. I. S.; Almeida, G. L.

    2014-11-11

    In this study, the aim was to evaluate capabilities and constraints of radiographic imagery using thermal neutrons and gamma-rays as tools to identify the type of technique employed in ceramics manufacturing especially that used in prehistoric Brazilian pottery from Acre state. For this purpose, radiographic images of test objects made with clay of this region using both techniques - palette and rollers - have been acquired with a system comprised of a source of gamma-rays or thermal neutrons and a corresponding X-ray or neutron-sensitive Imaging Plate as detector. For the neutrongraphy samples were exposed to a thermal neutron flux of order of 10{sup 5}n.cm{sup −2}.s{sup −1} for 3 minutes at main port of Argonauta research reactor of the Instituto de Engenharia Nuclear - IEN/CNEN. The radiographic images using γ-rays from {sup 165}Dy (95 keV) and {sup 198}Au (412 keV) both produced at this reactor, have been acquired under an exposure time of a couple of hours. After acquisition, images have undergone a treatment to improve their quality through enhancement of their contrast, a procedure involving corrections of the beam divergence, sample shape and averaging of the attenuation map profile. Preliminary results show that difference between manufacturing techniques is better identified by radiography using low energy γ-rays from {sup 165}Dy rather than neutrongraphy or γ-rays from {sup 198}Au. Nevertheless, disregarding the kind of employed radiation, it should be stressed that feasibility to apply the technique is tightly tied to homogeneity of the clay itself and tempers due to their different attenuation.

  17. Laterally patterned spin-valve superlattice: Magnetometry and polarized neutron scattering study

    SciTech Connect

    Brüssing, F.; Devishvili, A.; Zabel, H.; Toperverg, B. P.; Badini Confalonieri, G. A.; Theis-Bröhl, K.

    2015-04-07

    The magnetization reversal of magnetic multilayers with spin-valve like characteristics, patterned into an array of parallel stripes, was structurally and magnetically analyzed, in detail, via x-ray scattering, magnetometry, and polarized neutron reflectivity. Each stripe contains a multiple repetition of the layer sequence [Fe/Cr/Co/Cr]. X-ray and neutron scattering maps of the patterned multilayer show rich details resulting from the superposition of Bragg peaks representing the lateral in-plane periodicity and the out-of-plane multilayer period. Detailed analysis of specular and off-specular polarized neutron intensity was used to ascertain the antiparallel alignment of the Co and Fe magnetization within the kink region of their combined hysteresis loop between the coercive fields of Fe and Co layers. This includes also an examination of domain formation and inter- as well as intra-stripe correlation effects upon magnetization reversal. Our combined study shows that the shape induced anisotropy via patterning is capable of overriding the four-fold crystal anisotropy but is unable to eliminate the ripple domain state of the Co layers, already present in the continuous multilayer.

  18. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy.

    PubMed

    Sillrén, P; Matic, A; Karlsson, M; Koza, M; Maccarini, M; Fouquet, P; Götz, M; Bauer, Th; Gulich, R; Lunkenheimer, P; Loidl, A; Mattsson, J; Gainaru, C; Vynokur, E; Schildmann, S; Bauer, S; Böhmer, R

    2014-03-28

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  19. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    NASA Astrophysics Data System (ADS)

    Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.

    2015-09-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  20. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy

    SciTech Connect

    Sillrén, P.; Matic, A.; Karlsson, M.; Koza, M.; Maccarini, M.; Fouquet, P.; Götz, M.; Bauer, Th.; Gulich, R.; Lunkenheimer, P.; Loidl, A.; Mattsson, J.; Gainaru, C.; Vynokur, E.; Schildmann, S.; Bauer, S.; Böhmer, R.

    2014-03-28

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  1. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sillrén, P.; Matic, A.; Karlsson, M.; Koza, M.; Maccarini, M.; Fouquet, P.; Götz, M.; Bauer, Th.; Gulich, R.; Lunkenheimer, P.; Loidl, A.; Mattsson, J.; Gainaru, C.; Vynokur, E.; Schildmann, S.; Bauer, S.; Böhmer, R.

    2014-03-01

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  2. Decay studies of neutron deficient rare earth isotopes with OASIS

    SciTech Connect

    Gilat, J.; Nitschke, J.M.; Wilmarth, P.A.; Vierinen, K.; Firestone, R.B.

    1987-09-01

    We report results on the decay of /sup 124/Pr, /sup 124,125/Ce, /sup 124,125/La, /sup 134-136/Eu, /sup 134-136/Sm, /sup 134-136/Pm, /sup 144/Ho, /sup 141,142,144/Dy, /sup 140,141,142,144/Tb, /sup 140-142/Gd, and /sup 140-142/Eu, produced by /sup 92/Mo(H.I.,xpyn) reactions at the Berkeley SuperHILAC, and studied with the OASIS on-line mass separator facility. Half-lives, delayed proton branching ratios, ..gamma..-ray energies and intensities, partial decay schemes and several J/sup ..pi../ assignments are presented. Level systematics of the even mass Nd and Sm isotopes and of the nu h/sub 11/2/ - nu s/sub 1/2/ isomers for N = 77 are discussed.

  3. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2016-06-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  4. Estimation of dry-cured ham composition using dielectric time domain reflectometry.

    PubMed

    Fulladosa, E; Duran-Montgé, P; Serra, X; Picouet, P; Schimmer, O; Gou, P

    2013-04-01

    Development of real-time, non-destructive methods to characterize dry-cured ham is of interest to the food industry. Since dielectric properties change depending on the composition of the food product studied, time domain reflectometry (TDR) could be a useful method to characterize dry-cured ham. In this study, samples with different compositions were measured with a TDR device equipped with an open-ended coaxial line sensor. Partial least square regression (PLSR) analysis was used to develop predictive models to determine salt, water and fat contents and a(w) in dry-cured ham. Results show that salt content (RMSEV=0.22%), water content (RMSEV=1.67%) and a(w) (RMSEV=0.0087) can be accurately determined, though fat content is determined with less precision (RMSEV=2.81%). Saltiness, dryness and fatness of the samples, in the studied range, did not affect the accuracy of the predictions. Developed predictive models were accurate enough to consider the TDR device as a useful tool for characterizing and classifying dry-cured ham in industry.

  5. Small angle neutron scattering (SANS) study of gastric mucin solutions

    NASA Astrophysics Data System (ADS)

    Hong, Z.; Bansil, R.; Waigh, T.; Turner, B.; Bhaskar, K. R.; Afdhal, N.; Lal, J.

    2002-03-01

    We report the first results from a SANS study of purified porcine gastric mucin solutions in D2O. The ability of this glycoprotein to protect the stomach epithelium from acid damage, may be due to a pH dependent conformational transition which leads to gelation at low pH Cao et. al. (Biophysical. J. 76, 1250, 1999). SANS measurements were made over the concentration range of 1 -15 mg/ml at pH 7, 4 and 2. The data indicate that at pH 7 the excluded volume exponent is 1.7, characteristic of swollen chains whereas at pH 2 this exponent increases to 2, indicating theta or poor solvent conditions, consistent with the hydrophobic interactions increasing at lower pH. From a Guinier analysis of the 1mg/ml data at low q's (0.003- 0.007 Å-1) we estimate the cross section radius of the effective cylinder to be 23nm and its length as 96nm in an unbuffered sample, i.e. close to pH 7. In the intermediate q-range (0.01 -0.1Å-1) at pH 7 a fit to the Debye chain gives radius of gyration Rg of 16nm. Mucin is best modelled as an elongated micelle with a cylindrical or worm-like chain to represent the protein core and the sugar chains forming the corona. Results of such calculations will be presented.

  6. Feasibility study of prompt gamma neutron activation analysis (PGNAA) of explosives simulants and bulk material using DD/DT neutron generator

    NASA Astrophysics Data System (ADS)

    Bishnoi, S.; Sarkar, P. S.; Patel, T.; Adhikari, P. S.; Sinha, Amar

    2013-04-01

    Elemental characterization of low Z elements (C,H,Cl,Fe) inside bulk materials were performed using PGNAA technique. Samples having elemental composition similar to explosives were used for such experimentations using moderated DD neutrons as well as DT(14MeV) neutrons. We could observe characteristic prompt capture gamma rays of hydrogen (2.224MeV), nitrogen (10.83 MeV), chlorine (6.11 MeV) and Fe (6.02MeV and 7.63MeV) also (n,n'γ) prompt gamma signal (4.43MeV) of carbon. BGO detector has been used for gamma spectrum acquisition. These experimentations has been carried out for initial feasibility studies of detecting prompt gamma lines as a part of PGNAA technique based explosive detection system development. A detail description of experimental set up and procedure has been discussed in paper.

  7. Time-frequency analysis for microwave reflectometry data processing in the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, W. L.; Shi, Z. B.; Zou, X. L.; Ding, X. T.; Huang, X. L.; Dong, Y. B.; Liu, Z. T.; Xiao, W. W.; Ji, X. Q.; Cui, Z. Y.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.

    2011-10-01

    The Choi-Williams distribution (CWD) technique is introduced as a time-frequency tool for processing data measured from the new developed homodyne and the fixed frequency reflectometry in the HL-2A tokamak. The comparison between spectrogram and CWD for the simulated signal is presented. It indicates that the CWD can greatly improve the representation of the time-frequency content of the multi-components signal. Its effectiveness is demonstrated through two applications in HL-2A, which are the extraction of beat frequencies from the frequency modulated-continuous wave reflectometry (FM-CW) and the characterizing of the fluctuations. The density profile inversed from the group delay of the FM-CW and the density fluctuations deduced from the fixed-frequency reflectometry would be more reliable and accurate by using the CWD technique.

  8. Thin-film metrology by rapid x-ray reflectometry

    SciTech Connect

    Koppel, L. N.; Parobek, L.

    1998-11-24

    Grazing-incidence X-ray Reflectometry (XRR) is emerging as a powerful thin-film and substrate metrology technique for the semiconductor industry. XRR measurements allow the thickness, density, and surface and interface microroughness of thin-film structures to be characterized non-destructively and without reference to standards. The density and microroughness of smooth substrates can also be accurately measured. We will report on the performance and range of application of a new type of reflectometer which uses a proprietary x-ray optical system to focus a converging fan of x rays onto a sample, and an x-ray sensitive electro-optic sensor to detect the reflected x-ray pattern all at once. This configuration allows very rapid analysis that supports multi-point mapping of thin-film and substrate properties. Percent-scale thickness measurement accuracy has been confirmed using titanium, titanium nitride, TiN-on-Ti, and tantalum pentoxide thin-film samples and correlated XRF and RBS data. The ability of the XRR technique to 'optically' measure the density of as-built films has been confirmed using silica aerogel-on-silicon samples and RBS correlation. Silicon wafer frontside/backside measurements, correlated to AFM data, have confirmed the technique's ability to characterize angstrom-scale microroughness. Due to the penetrability and short wavelength of x rays, we believe that Rapid XRR Metrology will be particularly important for the monitoring and control of opaque metal barrier and adhesion films and low-k dielectric films used in advanced ULSI interconnect structures.

  9. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  10. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    SciTech Connect

    Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.; Sheen, David M.; Conrad, Ryan C.; Gavric, Gordan

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.

  11. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  12. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    PubMed

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0), high-frequency limiting static permittivity (ε ∞), average relaxation time (τ 0), and thermodynamic parameters such as free energy (∆F τ), enthalpy (∆H τ), and entropy of activation (∆S τ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  13. Limitations of x-ray reflectometry in the presence of surface contamination

    NASA Astrophysics Data System (ADS)

    Gil, D. L.; Windover, D.

    2012-06-01

    Intentionally deposited thin films exposed to atmosphere often develop unintentionally deposited few-monolayer films of surface contamination. This contamination arises from the diverse population of volatile organics and inorganics in the atmosphere. Such surface contamination can affect the uncertainties in determination of thickness, roughness and density of thin-film structures by x-ray reflectometry (XRR). Here we study the effect of a 0.5 nm carbon surface contamination layer on thickness determination for a 20 nm titanium nitride thin film on silicon. Uncertainties calculated using Markov-chain Monte Carlo Bayesian statistical methods from simulated data of clean and contaminated TiN thin films are compared at varying degrees of data quality to study (1) whether synchrotron sources cope better with contamination than laboratory sources and (2) whether cleaning off the surface of thin films prior to XRR measurement is necessary. We show that, surprisingly, contributions to uncertainty from surface contamination can dominate uncertainty estimates, leading to minimal advantages in using synchrotron-over laboratory-intensity data. Further, even prior knowledge of the exact nature of the surface contamination does not significantly reduce the contamination's contribution to the uncertainty in the TiN layer thickness. We conclude, then, that effective and standardized cleaning protocols are necessary to achieve high levels of accuracy in XRR measurement.

  14. Mare and Highlands Studies of Correlated Observations of the Moon's Diurnally Modulating Epithermal Neutron Flux using LRO's LEND, Diviner and LOLA instruments.

    NASA Astrophysics Data System (ADS)

    McClanahan, T. P.

    2015-12-01

    Several independent observational studies have identified a modulating diurnal signal in the Moon's neutron leakage flux. Those studies show that the diurnally varying neutron flux signal is of global extent, that the phase of the flux modulations are similar, that the flux minima occur at dawn and that the maxima occur at dusk. Two plausible hypotheses suggest differing explanations for the flux modulation. 1) Diurnally variant surface hydration or 2) Regolith temperature variation, which may modulate the neutron leakage flux with temperature. Studies of the high-latitudes found that for the north and south polar regions >75°, the amplitude of the neutron flux modulation was significantly greater for poleward-facing slopes (PFS) as compared to equator-facing slopes (EFS). If regolith temperature alone is driving the neutron flux modulation, then EFS should exhibit the greater diurnal amplitude, opposite the observation. More recently, studies of the neutron leakage flux in the mid-latitudes indicated that the greater amplitude of the neutron flux modulation on EFS was greater than PFS and is consistent with an interpretation that regolith temperature is modulating the neutron flux towards the northern Mare. However, between +/-(65° to 72°) latitude the ratio of the EFS to PFS neutron flux amplitudes inverts, with the PFS maintaining the greater amplitude as compared to the EFS. In this study the lunar mid to upper latitudes +/-(45° to 90°) will be studied in an effort to discriminate the source of the neutron flux modluation. Neutron, temperature and topography observations by the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND), Diviner Radiometer, and Lunar Orbiter Laser Altimiter (LOLA) will be used to investigate the properties of the neutron leakage flux. Correlated studies of these three datasets in Mare and highlands regions will be used to determine the neutron flux characteristics of their respective EFS and PFS.

  15. Possibility of a giant scattering enhancement due to wave trapping in a reflectometry experiment

    NASA Astrophysics Data System (ADS)

    Gusakov, E.; Heuraux, S.; Irzak, M.; Popov, A.

    2011-10-01

    A new scheme of reflectometry diagnostic based on the enhanced scattering effect invented by the late Professor A D Piliya is proposed and analyzed in this paper. It is shown that due to wave trapping, a strong coherent density perturbation in a reflectometry experiment can cause a giant cross-section enhancement for scattering occurring between it and cut-off. The theoretical approach is based on the method developed by Piliya for the treatment of a three-wave interaction in inhomogeneous media. Similar values of the scattering enhancement factor are obtained both numerically and analytically.

  16. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  17. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    SciTech Connect

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-03-15

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the {sup 125,127,129,131,133}Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J{sup (2)}, kinetic moment of inertia J{sup (1)}, the crossing of rotational bands, and backbending effects.

  18. Neutron diffraction study of multiferroic Mo-doped CoFe2O4

    NASA Astrophysics Data System (ADS)

    Das, A.; Dwivedi, G. D.; Kumari, Poonam; Shahi, P.; Yang, H. D.; Ghosh, A. K.; Chatterjee, Sandip

    2015-04-01

    Neutron diffraction measurements have been carried out to study the coexistence of magnetic ordering and ferroelectricity at room temperature in CoFe1.8Mo0.2O4. It is observed from this study that the Mo6+ preferentially occupies the octahedral site and it converts some of the Fe3+ ions into Fe2+ ions in the tetrahedral site. The conversion of Fe3+ ions into Fe2+ ions modulate the Fe-Fe distances which in effect induce the ferroelectricity in magnetically ordered CoFe1.8Mo0.2O4.

  19. Performance study of polycrystalline CVD diamond detectors for fast neutron monitoring

    SciTech Connect

    Singh, Arvind Kumar, Amit Topkar, Anita

    2014-04-24

    Diamond detectors using polycrystalline CVD diamond substrates of thickness 300μm and 100μm were fabricated for fast neutron monitoring application.. The characterization of detectors was carried out using various tests such as leakage current, capacitance and alpha particle response. The performance of detectors was evaluated for fast neutrons at different neutron yields. The results presented in this work demonstrate that the diamond detectors will be suitable for monitoring fast neutrons.

  20. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    NASA Astrophysics Data System (ADS)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  1. Skin Cancer Detection by Spectroscopic Oblique-Incidence Reflectometry: Classification and Physiological Origins

    NASA Astrophysics Data System (ADS)

    Garcia-Uribe, Alejandro; Kehtarnavaz, Nasser; Marquez, Guillermo; Prieto, Victor; Duvic, Madeleine; Wang, Lihong V.

    2004-05-01

    Data obtained from 102 skin lesions in vivo by spectroscopic oblique-incidence reflectometry were analyzed. The participating physicians initially divided the skin lesions into two visually distinguishable groups based on the lesions' melanocytic conditions. Group 1 consisted of the following two cancerous and benign subgroups: (1) basal cell carcinomas and squamous cell carcinomas and (2) benign actinic keratoses, seborrheic keratoses, and warts. Group 2 consisted of (1) dysplastic nevi and (2) benign common nevi. For each group, a bootstrap-based Bayes classifier was designed to separate the benign from the dysplastic or cancerous tissues. A genetic algorithm was then used to obtain the most effective combination of spatiospectral features for each classifier. The classifiers, tested with prospective blind studies, reached statistical accuracies of 100% and 95% for groups 1 and 2, respectively. Properties that related to cell-nuclear size, to the concentration of oxyhemoglobin, and to the concentration of deoxyhemoglobin as well as the derived concentration of total hemoglobin and oxygen saturation were defined to explain the origins of the classification outcomes.

  2. Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Kallioras, A.; Khan, A.; Piepenbrink, M.; Pfletschinger, H.; Koniger, F.; Dietrich, P.; Schuth, C.

    2016-08-01

    Precise measurements of the downward movement of precipitation through the unsaturated zone, as well as return flow of moisture to the atmosphere via evaporation, have always been challenging in regard to in-situ monitoring techniques. This study investigates the profile of volumetric water-content fluctuations within the unsaturated zone through a combination of field techniques, including in-situ measurements of the volumetric porewater content at different depths using specially designed time-domain reflectometry (TDR) probes. The probes are installed through direct-push vibro-coring methods, at significant depths within the unsaturated zone, providing continuous readings of the soil-moisture content throughout the unsaturated column. The measured waveform is analyzed by using the inverse modeling approach resulting in an apparent relative dielectric permittivity profile of the surrounding medium along the TDR probe length. The approach sufficiently analyzes the mechanisms of water fluxes through significant depths within the unsaturated zone, which in turn can be used to quantify groundwater recharge at areas where the unsaturated zone hydrology plays a key role in the recharge of the underlying aquifers (such as arid and hydrologically sensitive areas). The approach was applied at an experimental field site in the Upper Rhine Valley, Germany.

  3. Transient absorption spectroscopy on spiropyran monolayers using nanosecond pump-probe Brewster angle reflectometry.

    PubMed

    Siebenhofer, Bernhard; Gorelik, Sergey; Lear, Martin J; Song, Hong Yan; Nowak, Christoph; Hobley, Jonathan

    2013-05-01

    Self-assembled monolayers of 11-(3',3'-dimethyl-6,8-dinitrospiro[chromene-2,2'-indoline]-1'-yl) undecanoic acid (amphiphilic spiropyran) at the air-water interface are studied using Brewster angle reflectometry. Transient kinetics of the spiropyran to merocyanine conversion are recorded in a UV-pump, VIS-probe configuration. By varying the probe wavelength using an optical parametric oscillator, we are able to reconstruct absorption spectra of intermediate states with a time-resolution of 10 nanoseconds, limited by the temporal convolution of the two laser pulses. After UV irradiation, spiropyran converts to merocyanine in two stages. The first occurs within a timescale of several tens of nanoseconds and is heavily convoluted with the system response time, whereas the second stage occurs over a few hundred nanoseconds. During the rise time there is a small red shift in the transient absorption spectrum of ~20 nm. We assign the red shift and the slower kinetics to the isomerization of a merocyanine isomer cis about the central methine bond to those that are trans about the same bond.

  4. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  5. Fundamental neutron physics at LANSCE

    SciTech Connect

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  6. Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Suhara, T.; Kanada-En'yo, Y.

    2016-12-01

    We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this "molecular-orbit picture" reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3 α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering.

  7. APSTNG: Associated particle sealed-tube neutron generator studies for arms control. Final report on NN-20 Project ST220

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; Brunner, T.; Hess, A.; Tylinski, S.

    1994-12-01

    Argonne National Laboratory has performed research and development on the use of Associated Particle Sealed-Tube Neutron Generator (APSTNG) technology for treaty verification and non-proliferation applications, under funding from the DOE Office of Nonproliferation and National Security. Results indicate that this technology has significant potential for nondestructively detecting elemental compositions inside inspected objects or volumes. The final phase of this project was placement of an order for commercial procurement of an advanced sealed tube, with its high-voltage supply and control systems. Procurement specifications reflected lessons learned during the study. The APSTNG interrogates a volume with a continuous 14-MeV neutron flux. Each neutron is emitted coincident with an {open_quotes}associated{close_quotes} alpha-particle emitted in the opposite direction. Thus detection of an alpha-particle marks the emission of a neutron in a cone opposite to that defined by the alpha detector. Detection of a gamma ray coincident with the alpha indicates that the gamma was emitted from a neutron-induced reaction inside the neutron cone: the gamma spectra can be used to identify fissionable materials and many isotopes having an atomic number larger than that of boron. The differences in gamma-ray and alpha-particle detection times yield a coarse measurement of the distance along the cone axis from the APSTNG emitter to each region containing the identified nuclide. A position-sensitive alpha detector would permit construction of coarse three-dimensional images. The source and emission-detection systems can be located on the same side of the interrogated volume. The neutrons and gamma rays are highly penetrating. A relatively high signal-to-background ratio allows the use of a relatively small neutron source and conventional electronics.

  8. A Systematic Study of β- Decay of Neutron-Rich Rh and Ag Isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Y.-B.; Dendooven, P.; Huikari, J.; Jokinen, A.; Kolhinen, V. S.; Lhersonneau, G.; Nieminen, A.; Nummela, S.; Penttilä, H.; Peräjärvi, K.; Rinta-Antila, S.; Szerypo, J.; Wang, J. C.; ńystö, J.

    2006-11-01

    Beta decay of neutron-rich even-mass 114-118Rh and 116-120Ag isotopes has been studied using on-line mass-separated sources that were produced by applying 25 MeV proton induced symmetric fission of natural uranium at the IGISOL facility. The β-γ and γ-γ coincidence spectroscopy is employed in all cases that enables for the construction of the decay scheme and for the deduction of the decay properties. Systematics for two-quasineutron states in 114,116,118Pd and for three-phonon multiplet in 114,116,118Cd are presented and discussed.

  9. Neutron Scattering Studies of Structural and Magnetic Excitations in Lamellar Copper Oxides — a Review

    NASA Astrophysics Data System (ADS)

    Birgeneau, Robert J.; Shirane, Gen

    The following sections are included: * INTRODUCTION * La2-xSrxCuO4 STRUCTURE AND LATTICE DYNAMICS * MAGNETIC ORDERING IN La2CuO4 * Stoichiometric Material * Lightly Doped La2CuO4 * 2D STATIC AND DYNAMIC SPIN CORRELATIONS IN La2CuO4 * SPIN CORRELATIONS IN INSULATING, METALLIC AND SUPERCONDUCTING La2-xSrxCuO4 * NEUTRON SCATTERING STUDIES OF La2NiO4 and La2CoO4 * ANTIFERROMAGNETISM IN YBa2Cu3O6+x * CONCLUSIONS * ACKNOWLEDGEMENTS * References

  10. Inelastic neutron scattering study of light-induced dynamics of a photosynthetic membrane system

    SciTech Connect

    Furrer, A.; Stoeckli, A.

    2010-01-15

    Inelastic neutron scattering was employed to study photoeffects on the molecular dynamics of membranes of the photosynthetic bacterium Rhodopseudomonas viridis. The main photoactive parts of this biomolecular system are the chlorophyll molecules whose dynamics were found to be affected under illumination by visible light in a twofold manner. First, vibrational modes are excited at energies of 12(2) and 88(21) cm{sup -1}. Second, a partial 'freezing' of rotational modes is observed at energies of 1.2(3) and 2.9(5) cm{sup -1}. These results are attributed to a possible coupling between molecular motions and particular mechanisms in the photosynthetic process.

  11. The role of CP violating scatterings in baryogenesis—case study of the neutron portal

    SciTech Connect

    Baldes, Iason; Bell, Nicole F.; Millar, Alexander; Volkas, Raymond R.; Petraki, Kalliopi E-mail: n.bell@unimelb.edu.au E-mail: kpetraki@nikhef.nl

    2014-11-01

    Many baryogenesis scenarios invoke the charge parity (CP) violating out-of-equilibrium decay of a heavy particle in order to explain the baryon asymmetry. Such scenarios will in general also allow CP violating scatterings. We study the effect of these CP violating scatterings on the final asymmetry in a neutron portal scenario. We solve the Boltzmann equations governing the evolution of the baryon number numerically and show that the CP violating scatterings play a dominant role in a significant portion of the parameter space.

  12. A small angle neutron scattering study of mica based glass-ceramics with applications in dentistry

    NASA Astrophysics Data System (ADS)

    Kilcoyne, S. H.; Bentley, P. M.; Al-Jawad, M.; Bubb, N. L.; Al-Shammary, H. A. O.; Wood, D. J.

    2004-07-01

    We are currently developing machinable and load-bearing mica-based glass-ceramics for use in restorative dental surgery. In this paper we present the results of an ambient temperature small angle neutron scattering (SANS) study of several such ceramics with chemical compositions chosen to optimise machinability and strength. The SANS spectra are all dominated by scattering from the crystalline-amorphous phase interface and exhibit Q-4 dependence (Porod scattering) indicating that, on a 100Å scale, the surface of the crystals is smooth.

  13. Study of structural irregularities of smectite clay systems by small-angle neutron scattering and adsorption

    NASA Astrophysics Data System (ADS)

    De Stefanis, A.; Tomlinson, A. A. G.; Steriotis, Th. A.; Charalambopoulou, G. Ch.; Keiderling, U.

    2007-04-01

    Small angle neutron scattering (SANS) and its contrast-matching variant are employed in order to determine structural properties (inter-pillar distances and mass/surface fractal dimensions of the clay layers and pillars) of a series of smectite natural clays (montmorillonite, beidellite, and bentonite) and their pillared and pillared/ion-exchanged analogues. Moreover, a comparative analysis with the adsorption data is carried out on the basis of a systematic study of the structural changes induced by a particular treatment or modification (e.g. pillaring) of the clay systems.

  14. Diffusion of water in nano-porous polyamide membranes: Quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Mitra, S.; Singh, P.; Jurányi, F.; Mukhopadhyay, R.

    2010-10-01

    Dynamics of water sorbed in a reverse osmosis polyamide membrane (ROPM) as studied by quasielastic neutron scattering (QENS) is reported here. The trimesoylchloride-m-phenylene diamine based ROPM is synthesized by interfacial polymerization technique. QENS data indicates that translational motion of water confined in ROPM gets modified compared to bulk water whereas rotational motion remains unaltered. Translational motion of water in ROPM is found to follow random jump diffusion with lower diffusivity compared to bulk water. Translational diffusivity does not show the Arrhenius behaviour.

  15. Mössbauer spectroscopy and neutron diffraction studies of neptunium antimonide NpSb

    NASA Astrophysics Data System (ADS)

    Sanchez, J. P.; Burlet, P.; Quézel, S.; Bonnisseau, D.; Rossat-Mignod, J.; Spirlet, J. C.; Rebizant, J.; Vogt, O.

    1988-09-01

    NpSb has been studied by Mössbauer spectroscopy ( 237Np and 121Sb resonances) and by neutron diffraction using single crystals. Np 3+ magnetic moments order antiferromagnetically below TN = 200 K in a triple- k type I structure. A strong mixing of 5 f electrons with anion p states can be deduced from results of 121Sb resonance. This mixing is certainty at the origin of the interaction mechanism responsible of the coupling between the Fourier components leading to the triple- k multiaxial magnetic structure.

  16. Emittance studies of the Spallation Neutron Source external-antenna H- ion source.

    PubMed

    Han, B X; Stockli, M P; Welton, R F; Pennisi, T R; Murray, S N; Santana, M; Long, C D

    2010-02-01

    A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at Spallation Neutron Source. In this work, the emittance characteristics of the H(-) beam produced with the external-antenna rf-driven ion source and transported through the two-lens electrostatic low energy beam transport are studied. The beam emittance dependence on beam intensity, extraction parameters, and the evolution of the emittance and twiss parameters over beam pulse duration are presented.

  17. Neutron tomography experiments for the study of trapped flux distributions in high- T c superconducting ceramics

    NASA Astrophysics Data System (ADS)

    Lebedev, V. T.; Gordeev, G. P.; Toperverg, B. P.; Rekveldt, T.; Roest, W.; Cser, L.; Rosta, L.; Torok, Gy.

    1995-02-01

    We describe a new version of Neutron Spin Echo, for the study of magnetic flux in high- Tc superconductors, which is based on the evolution of the echo group in the specimen which is installed in the third precession region. The polarization of the transmitted beam reflects the spin rotation in the internal field which can be found by Fourier transforming the data. It is required for example, in research on the flux self-organization in the critical state. Experiments on Y sbnd Ba sbnd Cu sbnd O ceramics are discussed.

  18. Innovative Remote Sensing: Flood Monitoring using GNSS Reflectometry

    NASA Astrophysics Data System (ADS)

    Beckheinrich, Jamila; Hirrle, Angelika; Schön, Steffen; Beyerle, Georg; Semmling, Maximillian; Apel, Heiko; Wickert, Jens

    2014-05-01

    An increase of the intensity and frequency of extreme precipitation events are observed in the last decade due to climate changing conditions. Resulting floods pose significant socio-economic problems in areas like on the banks of the Mekong Delta with dense population. To quantify and predict the impact of these flooding events to the local population it is important to measure and understand the related hydrological processes. Satellite based altimetry offers water level measurements with high accuracy for oceans and very large rivers but typically with insufficient spatio-temporal resolution. The accuracy decreases in coastal areas. Water level gauging instruments offer a high accuracy and temporal resolution but for a single location only. However, the number of water level gauging stations worldwide is decreasing. GNSS-Reflectometry (GNSS-R) can fill the gap between these two measurement methods. Earth reflected L-band signals from the Global Navigation Satellite Systems (GNSS) show a high reflectivity on water surfaces. This property is used to derive water level height changes. In principle two different GNSS-R altimetry methods exist: based on code or carrier phase observations. Our research activities focus on the phase-based altimetric application of GNSS-R. In March 2012, a two-week measurement campaign was conducted in Can Tho City, Vietnam within the WISDOM (Water related Information System for the sustainable Development Of the Mekong Delta) research project. Several reflection traces on the 150 m wide Can Tho River section are recorded with a dedicated GNSS-R receiver developed in cooperation between GFZ and JAVAD. To track the direct and the reflected signal separately, two antennas are used. The analysis of the recorded signals shows a superposition of the signal reflected by the water surface with other multipath signals. These occur due to the surrounding of the antennas (vegetation, buildings). To separate these different multipath signals and

  19. Performance Study of an aSi Flat Panel Detector for Fast Neutron Imaging of Nuclear Waste

    SciTech Connect

    Schumann, M.; Mauerhofer, E.; Engels, R.; Kemmerling, G.; Frank, M.; Havenith, A.; Kettler, J.; Klapdor-Kleingrothaus, T.; Schitthelm, O.

    2015-07-01

    Radioactive waste must be characterized to check its conformance for intermediate storage and final disposal according to national regulations. For the determination of radio-toxic and chemo-toxic contents of radioactive waste packages non-destructive analytical techniques are preferentially used. Fast neutron imaging is a promising technique to assay large and dense items providing, in complementarity to photon imaging, additional information on the presence of structures in radioactive waste packages. Therefore the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA) using 14 MeV neutrons is studied in a cooperation framework of Forschungszentrum Juelich GmbH, RWTH Aachen University and Siemens AG. However due to the low neutron emission of neutron generators in comparison to research reactors the challenging task resides in the development of an imaging detector with a high efficiency, a low sensitivity to gamma radiation and a resolution sufficient for the purpose. The setup is composed of a commercial D-T neutron generator (Genie16GT, Sodern) with a surrounding shielding made of polyethylene, which acts as a collimator and an amorphous silicon flat panel detector (aSi, 40 x 40 cm{sup 2}, XRD-1642, Perkin Elmer). Neutron detection is achieved using a general propose plastic scintillator (EJ-260, Eljen Technology) linked to the detector. The thermal noise of the photodiodes is reduced by employing an entrance window made of aluminium. Optimal gain and integration time for data acquisition are set by measuring the response of the detector to the radiation of a 500 MBq {sup 241}Am-source. Detector performance was studied by recording neutron radiography images of materials with various, but well known, chemical compositions, densities and dimensions (Al, C, Fe, Pb, W, concrete, polyethylene, 5 x 8 x 10 cm{sup 3}). To simulate gamma-ray emitting waste radiographs in presence of a gamma-ray sources ({sup 60}Co, {sup 137}Cs, {sup 241

  20. The chemical reactivity and structure of collagen studied by neutron diffraction

    SciTech Connect

    Wess, T.J.; Wess, L.; Miller, A.

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  1. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  2. Neutron diffraction study of water freezing on aircraft engine combustor soot.

    PubMed

    Tishkova, V; Demirdjian, B; Ferry, D; Johnson, M

    2011-12-14

    The study of the formation of condensation trails and cirrus clouds on aircraft emitted soot particles is important because of its possible effects on climate. In the present work we studied the freezing of water on aircraft engine combustor (AEC) soot particles under conditions of pressure and temperature similar to the upper troposphere. The microstructure of the AEC soot was found to be heterogeneous containing both primary particles of soot and metallic impurities (Fe, Cu, and Al). We also observed various surface functional groups such as oxygen-containing groups, including sulfate ions, that can act as active sites for water adsorption. Here we studied the formation of ice on the AEC soot particles by using neutron diffraction. We found that for low amount of adsorbed water, cooling even up to 215 K did not lead to the formation of hexagonal ice. Whereas, larger amount of adsorbed water led to the coexistence of liquid water (or amorphous ice) and hexagonal ice (I(h)); 60% of the adsorbed water was in the form of ice I(h) at 255 K. Annealing of the system led to the improvement of the crystal quality of hexagonal ice crystals as demonstrated from neutron diffraction.

  3. Neutron diffraction as a tool in the study of reinforced concrete. Compilation of some cases

    NASA Astrophysics Data System (ADS)

    Castellote, M.

    2014-11-01

    Cementitious materials are much more complex than it seems at a first sight. On one hand, due to the excess of water needed to make the mix workable, a network of pores is generated, that puts in contact the material with the environment and allows their attack by aggressive agents that can be physical of chemical agents, producing the deterioration of the concrete itself and corrosion of the rebars. Then, it is necessary to study the transport properties and the chemical and physical interaction of aggressive agents with the solid and liquid phases of the cement paste the corrosion of the rebars, and the reparation processes. This is an approach concerning the service life of structures, however, we cannot forget an important chapter which is gaining much relevance in the last time: that of the special uses of concrete, for which, tailored concretes have to be designed. In order to undertake these problems, we need new analysis tools, different that the traditionally ones applied to study concrete, that allows the understanding of the mechanisms regulating the processes. One of these analysis tools is neutron diffraction that gives us the possibility of study the bulk of materials using a quite big specimen. In this work, 4 different problems undertaken with the help of neutrons in experiments carried out by the group of the author at the ILL, at the D1B and D20 instruments are presented.

  4. Study on recriticality of fuel debris during hypothetical severe accidents in the Advanced Neutron Source reactor

    SciTech Connect

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.; Shin, S.T.

    1995-09-01

    A study has been performed to measure the potential of recriticality during hypothetical severe accident in Advanced Neutron Source (ANS). For the lumped debris configuration in the Reactor Coolant System (RCS), as found in the previous study, recriticality potential may be very low. However, if fuel debris is dispersed and mixed with heavy water in RCS, recriticality potential has been predicted to be substantial depending on thermal-hydraulic conditions surrounding fuel debris mixture. The recriticality potential in RCS is substantially reduced for the three element core design with 50% enrichment. Also, as observed in the previous study, strong dependencies of k{sub eff} on key thermal hydraulic parameters are shown. Light water contamination is shown to provide a positive reactivity, and void formation due to boiling of mixed water provides enough negative reactivity and to bring the system down to subcritical. For criticality potential in the subpile room, the lumped debris configuration does not pose a concern. Dispersed configuration in light water pool of the subpile room is also unlikely to result in criticality. However, if the debris is dispersed in the pool that is mixed with heavy water, the results indicate that a substantial potential exists for the debris to reach the criticality. However, if prompt recriticality disperses the debris completely in the subpile room pool, subsequent recriticality may be prevented since neutron leakage effects become large enough.

  5. Studies in Moessbauer spectroscopy, neutron activation analysis, x-ray fluorescence

    SciTech Connect

    Nomai, M.

    1985-01-01

    The Moessbauer Effects was employed to study cyclopentadienyliron arene compounds. The isomer shift, delta, in these compounds ranges from 0.206 to 0.257 mm/s relative to /sup 5//sub 7/Co/Cu source and ..delta..E/sub Q/ values are from 1.632 to 1.918 mm/s at liquid nitrogen temperature. Room temperature spectra showed low absorption due to small recoil-free fractions the deltas and ..delta..E/sub Q/s can be correlated with the electron withdrawing effects of the alkyl groups bonded to benzene. In polynuclear aromatic system extending over two benzene rings, electron charge density is difficult to explain. Isomer shifts of PF/sub 6//sup -/ and Fe(NCS)/sub 6//sup 3 -/ are more or less independent of the counteranion, while ..delta..E/sub Q/ is slightly influenced by it. (Fe(arene)Cp)/sub 3//sup +/FE(NCS)/sub 6//sup 3 -/ compounds show only two peaks, with parameters almost identical to the PF/sub 6//sup -/ compounds. An isomer shift peak due to Fe(NCS)/sub 6//sup 3 -/, Fe d/sup 5/ state, is not observed and it is believed to coincide with the second right hand peak of the cation. Experimental procedures and results of hydrogen determination in samples of coal and other comparative samples, e.g., NA/sub 2/EDTA.2H/sub 2/O, in a paraffin moderated thermal neutron flux from 1 ..mu..Ci of /sup 252/Cf source are described. Simple instrumentation is used. Accuracy of about 10% or better is possible with stronger neutron source. Other moderators that were tried, but were unsuccessful, were water and graphite. Factors that can affect the neutron flux and prompt ..gamma..-ray distribution in the samples are H, O, and C concentrations. Results of the determination of uranium and other elements in sandstone uranium samples from Zambia are presented.

  6. Time domain reflectometry waveform analysis with second order bounded mean oscillation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...

  7. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    SciTech Connect

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  8. Non-invasive, MRI-compatible fibreoptic device for functional near-IR reflectometry of human brain

    SciTech Connect

    Sorvoja, H.S.S.; Myllylae, T S; Myllylae, Risto A; Kirillin, M Yu; Sergeeva, Ekaterina A; Elseoud, A A; Nikkinen, J; Tervonen, O; Kiviniemi, V

    2011-01-24

    A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source - detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable. (application of lasers and laser-optical methods in life sciences)

  9. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    PubMed Central

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; Katsaras, John

    2015-01-01

    We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.). PMID:26402708

  10. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE PAGES

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  11. Study on Determination of Antimony in Environmental Samples by Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Martins, Tassiane Cristina Gomes; Saiki, Mitiko; Zahn, Guilherme Soares

    2011-08-01

    There is an increasing interest in the determination of antimony in environmental samples since this element is cumulative and potentially toxic at very low concentrations. Moreover, the quantification of antimony presents difficulties due to its low concentrations in the samples and to the interference problem in the analyses. In this study, neutron activation analysis procedure was established in order to obtain reliable results for Sb determination in environmental samples. For this study ten reference materials were analyzed. Aliquots of these materials and synthetic standard of Sb were irradiated at the IEA- R1 nuclear reactor under a thermal neutron flux of about 5×1012 n cm-2 s-1 for 8 or 16 hours. The induced gamma activities of 122Sb and 124Sb were measured using a hyperpure Ge detector. Antimony concentrations were calculated by comparative method and the uncertainties of the results were estimated using statistical counting errors of the sample and standard. Relative errors calculated demonstrated that the accuracy of the results depends on the Sb radioisotope measured and the decay time for counting.

  12. Possible Itinerant Moment Contributions to the Magnetic Excitations in Gd, Studied by Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Granroth, G. E.; Aczel, A. A.; Fernandez-Baca, J. A.; Nagler, S. E.

    2013-03-01

    Many experimental features in magnetic superconductors are also present when these complex materials are in the normal state. Therefore studies of simpler itinerant magnets may help provide understanding of these phenomena. We chose to study Gd as it is has an ~ 0 . 6μB itinerant moment in addition to a ~ 7 . 0μB localized moment. The SEQUOIA spectrometer, at the Spallation Neutron Source at Oak Ridge National Laboratory, was used in fine resolution mode with Ei=50 meV neutrons, to measure the magnetic excitations in a 12 gm 160Gd single crystal. The crystal was mounted with the h 0 l plane horizontal and rotated around the vertical axis to map out the excitations. The measured magnetic structure factor for the acoustic modes in the hh 0 direction has an intensity step at h ~ 0 . 3 . Electronic band structure calculations (W. M. Temmerman and P. A. Sterne, J. Phys: Condes. Matter,2, 5529 (1990)) show this Q position to be near several band crossings of the Fermi surface. A detailed analysis, including instrumental resolution, is presented to clarify any relationship between the magnetic structure factor and the electronic band structure. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  13. Study of 11Be on 9Be one neutron transfer reactions at TRIUMF ISAC-II

    NASA Astrophysics Data System (ADS)

    Braid, Ryan; (Pcb)2 Collaboration; Tigress Collaboration

    2016-09-01

    The structure of neutron-rich Beryllium isotopes displays interesting properties arising from the interplay of alpha clustering and valence neutrons, leading in some cases to halo nuclei. In this presentation, preliminary results of the 11Be on 9Be reaction at 55 MeV and 30.14 MeV leading to two interesting exit channels will be shown, the first one enabling the study of 12Be and the second the study of 10Be. This reaction has advantages over the traditional (d,p) or (d,t) methods, since the reactants are equal in mass they both scatter in a detectable angular range. Additionally, TIGRESS allows precise γ-tagging for the excited states. Some challenges in analysis include the 10Be degeneracy, a large n breakup signature, and multiple particle excitation. The data and ongoing analysis will be presented. This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03- 93ER40789 (Colorado School of Mines).

  14. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  15. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    SciTech Connect

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; Katsaras, John

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).

  16. Neutron radiography for the study of water uptake in painting canvases and preparation layers

    NASA Astrophysics Data System (ADS)

    Boon, J. J.; Hendrickx, R.; Eijkel, G.; Cerjak, I.; Kaestner, A.; Ferreira, E. S. B.

    2015-11-01

    Easel paintings on canvas are subjected to alteration mechanisms triggered or accelerated by moisture. For the study of the spatial distribution and kinetics of such interactions, a moisture exposure chamber was designed and built to perform neutron radiography experiments. Multilayered sized and primed canvas samples were prepared for time-resolved experiments in the ICON cold neutron beamline. The first results show that the set-up gives a good contrast and sufficient resolution to visualise the water uptake in the layers of canvas, size and priming. The results allow, for the first time, real-time visualisation of the interaction of water vapour with such layered systems. This offers important new opportunities for relevant, spatially and time-resolved material behaviour studies and opens the way towards numerical modelling of the process. These first results show that cellulose fibres and glue sizing have a much stronger water uptake than the chalk-glue ground. Additionally, it shows that the uptake rate is not uniform throughout the thickness of the sized canvas. With prolonged moisture exposure, a higher amount of water is accumulating at the lower edge of the canvas weave suggesting a decrease in permeability in the sized canvas with increased water content.

  17. Advanced Neutron Source enrichment study -- Volume 1: Main report. Final report, Revision 12/94

    SciTech Connect

    Bari, R.A.; Ludewig, H.; Weeks, J.

    1994-12-31

    A study has been performed of the impact on performance of using low enriched uranium (20% {sup 235}U) or medium enriched uranium (35% {sup 235}U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% {sup 235}U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations.

  18. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    DOE PAGES

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; ...

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach producesmore » robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).« less

  19. Magnetic Structure of Goethite α-FeOOH: A Neutron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Zepeda-Alarcon, E.; Nakotte, H.; Vogel, S. C.; Wenk, H.

    2013-12-01

    Goethite (α-FeOOH) is found in diverse natural ecosystems, it is by far the most common oxyhydroxide in terrestrial soils, sediments and clays and an important mineral in the biogeochemical cycle of iron at the Earth's surface. Neutron diffraction studies have found that the iron magnetic moments are collinear in a two sublattice antiferromagnetic structure, aligned parallel to the c axis in space group Pbnm (Forsyth et. al. 1968). However, goethite shows superparamagnetic behavior and also a weak ferromagnetic component that has been attributed to the presence of lattice distortions. It is thought that these changes in magnetic ordering could be due to a 13° canting of the magnetic moment with respect to the c-axis, which enables the flipping of the spins due to small perturbations in the lattice (Coey et. al. 1995). In this study we used neutron diffraction at HIPPO and NPDF beamlines at LANSCE of Los Alamos National Laboratory on a powder of natural goethite provided by A. Gualtieri. The nuclear and magnetic structures were determined by means of a Rietveld refinement with GSAS and it was found that the spins of the iron atoms are aligned parallel to the c-axis, with no evidence of spin canting. The net magnetic moment is lower than what has previously been found. These results provide further insight into the magnetic ordering of this mineral and can be important in understanding the physical processes responsible for goethite's intriguing magnetic behavior.

  20. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    SciTech Connect

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; Godfrey, Andrew T.; Gehin, Jess C.; Powers, Jeffrey J.

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resulting operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.