Science.gov

Sample records for neutron resonance absorption

  1. Neutron scattering and absorption properties

    SciTech Connect

    Holden, N.E.

    1993-12-01

    The Table in this report presents an evaluated set of values for the experimental quantities, which characterize the properties for scattering and absorption of neutrons. The neutron cross section is given for room temperature neutrons, 20.43{degree}C, corresponds to a thermal neutron energy of 0.0253 electron volts (eV) or a neutron velocity of 2200 meters/second. The neutron resonance integral is defined over the energy range from 0.5 eV to 0.1 {times} 10{sup 6} eV, or 0.1 MeV. A list of the major references used is given below. The literature cutoff data is October 1993. Uncertainties are given in parentheses. Parentheses with two or more numbers indicate values to the excited states(s) and to the ground state of the product nucleus.

  2. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  3. NEUTRON ABSORPTION AND SHIELDING DEVICE

    DOEpatents

    Axelrad, I.R.

    1960-06-21

    A neutron absorption and shielding device is described which is adapted for mounting in a radiation shielding wall surrounding a radioactive area through which instrumentation leads and the like may safely pass without permitting gamma or neutron radiation to pass to the exterior. The shielding device comprises a container having at least one nonrectilinear tube or passageway means extending therethrough, which is adapted to contain instrumentation leads or the like, a layer of a substance capable of absorbing gamma rays, and a solid resinous composition adapted to attenuate fast-moving neutrons and capture slow- moving or thermal neutrons.

  4. Resonant Absorption of Bessel Beams

    NASA Astrophysics Data System (ADS)

    Fan, J.; Parra, E.; Milchberg, H. M.

    1999-11-01

    We report the first observation of enhanced laser-plasma optical absorption in a subcritical density plasma resulting from spatial resonances, here in the laser breakdown of a gas with a Bessel beam. The enhancement in absorption is directly correlated to enhancements both in confinement of laser radiation to the plasma and in its heating. Under certain conditions, azimuthal asymmetry in the laser beam is essential for efficient gas breakdown. Simulations of this absorption consistently explain the experimental observations. This work is supported by the National Science Foundation (PHY-9515509) and the US Department of Energy (DEF G0297 ER 41039).

  5. Russian roulette efficiency in Monte Carlo resonant absorption calculations

    PubMed

    Ghassoun; Jehouani

    2000-10-01

    The resonant absorption calculation in media containing heavy resonant nuclei is one of the most difficult problems treated in reactor physics. Deterministic techniques need many approximations to solve this kind of problem. On the other hand, the Monte Carlo method is a reliable mathematical tool for evaluating the neutron resonance escape probability. But it suffers from large statistical deviations of results and long computation times. In order to overcome this problem, we have used the Splitting and Russian Roulette technique coupled separately to the survival biasing and to the importance sampling for the energy parameter. These techniques have been used to calculate the neutron resonance absorption in infinite homogenous media containing hydrogen and uranium characterized by the dilution (ratio of the concentrations of hydrogen to uranium). The punctual neutron source energy is taken at Es = 2 MeV and Es = 676.45 eV, whereas the energy cut-off is fixed at Ec = 2.768 eV. The results show a large reduction of computation time and statistical deviation, without altering the mean resonance escape probability compared to the usual analog simulation. The Splitting and Russian Roulette coupled to the survival biasing method is found to be the best methods for studying the neutron resonant absorption, particularly for high energies. A comparison is done between the Monte Carlo and deterministic methods based on the numerical solution of the neutron slowing down equations by the iterative method results for several dilutions.

  6. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments Database

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  7. Pygmy resonances and neutron skins

    SciTech Connect

    Piekarewicz, J.

    2011-03-15

    In a study motivated by a recent experiment, the distribution of electric dipole strength in the neutron-rich {sup 68}Ni isotope was computed using a relativistic random-phase approximation with a set of effective interactions that - although well calibrated - predict significantly different values for the neutron-skin thickness in {sup 208}Pb. The emergence of low-energy 'pygmy' strength that exhausts about 5%-8% of the energy-weighted sum rule (EWSR) is clearly identified. In addition to the EWSR, special emphasis is placed on the dipole polarizability. In particular, our results suggest a strong correlation between the dipole polarizability of {sup 68}Ni and the neutron-skin thickness of {sup 208}Pb. Yet we find a correlation just as strong, and an even larger sensitivity, between the neutron-skin thickness of {sup 208}Pb and the fraction of the dipole polarizability exhausted by the pygmy resonance. These findings suggest that dipole polarizability may be used as a proxy for the neutron skin.

  8. Super-Resonant Intracavity Coherent Absorption.

    PubMed

    Malara, P; Campanella, C E; Giorgini, A; Avino, S; De Natale, P; Gagliardi, G

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator's quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  9. Super-Resonant Intracavity Coherent Absorption

    PubMed Central

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; De Natale, P.; Gagliardi, G.

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  10. Super-Resonant Intracavity Coherent Absorption

    NASA Astrophysics Data System (ADS)

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.

    2016-07-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

  11. Neutron Resonance Parameters for Ra-226 (Radium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Volume 24 `Neutron Resonance Parameters' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides the neutron resonance parameters for the isotope Ra-226 (Radium).

  12. Shock temperature measurement using neutron resonance spectroscopy.

    PubMed

    Yuan, V W; Bowman, J David; Funk, D J; Morgan, G L; Rabie, R L; Ragan, C E; Quintana, J P; Stacy, H L

    2005-04-01

    We report a direct measurement of temperature in a shocked metal using Doppler broadening of neutron resonances. The 21.1-eV resonance in 182W was used to measure the temperature in molybdenum shocked to approximately 63 GPa. An explosively launched aluminum flyer produced a planar shock in a molybdenum target that contained a 1-mm thick layer doped with 1.7 at. %(182)W. A single neutron pulse, containing resonant neutrons of less than 1 mus duration, probed the shocked material. Fits to the neutron time-of-flight data were used to determine the temperature of the shocked molybdenum.

  13. Subwavelength total acoustic absorption with degenerate resonators

    NASA Astrophysics Data System (ADS)

    Yang, Min; Meng, Chong; Fu, Caixing; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-09-01

    We report the experimental realization of perfect sound absorption by sub-wavelength monopole and dipole resonators that exhibit degenerate resonant frequencies. This is achieved through the destructive interference of two resonators' transmission responses, while the matching of their averaged impedances to that of air implies no backscattering, thereby leading to total absorption. Two examples, both using decorated membrane resonators (DMRs) as the basic units, are presented. The first is a flat panel comprising a DMR and a pair of coupled DMRs, while the second one is a ventilated short tube containing a DMR in conjunction with a sidewall DMR backed by a cavity. In both examples, near perfect absorption, up to 99.7%, has been observed with the airborne wavelength up to 1.2 m, which is at least an order of magnitude larger than the composite absorber. Excellent agreement between theory and experiment is obtained.

  14. Neutron-capture resonances for 82Se

    NASA Astrophysics Data System (ADS)

    Browne, J. C.; Berman, B. L.

    1982-09-01

    Strong neturon-capture resonances for 82Se have been found at 3.63, 7.1, and 9.51 keV and weaker ones have been found at 0.58, 1.15, and possibly 13.54 and 16.5 keV. None was found at lower neutron energies; this absence of strong epithermal capture resonances invalidates the hypothesis that the depth dependence of the abundance ratio of 78Kr to 83Kr found in meteoritic studies owes its origin to anomalous 83Kr production by neutron capture on 82Se. Precise energies have been assigned to neutron-capture resonances up to 40 keV for all the other selenium isotopes as well. NUCLEAR REACTIONS 82Se, natSe(n, γ) neutron time of flight; resonance energies; abundance ratio of 78Kr to 83Kr.

  15. Neutron-Resonance Capture Analysis of Materials

    SciTech Connect

    Postma, H.; Bode, P.; Blaauw, M.; Corvi, F.

    1999-11-14

    Epithermal neutron activation analysis is a well-established approach to improve the sensitivity for certain elements by suppressing the activation of interfering elements. If epithermal neutrons of a given energy could be selected, the signal-to-noise ratio might be further improved by taking advantage of resonance capture. This reaction occurs mainly by intermediate and heavy nuclei. Moreover, most of these reactions take place with epithermal or fast neutrons. Intense epithermal neutrons are available as ''white'' beams at accelerator-driven neutron sources. Neutron resonance capture offers interesting analytical opportunities. Low-Z elements have little capture of epithermal neutrons and are thus virtually absent in the time-of-flight spectrum. Relatively large objects can be placed in the neutron beam and analyzed nondestructively. The induced radioactivity is relatively low. If an element has several stable isotopes, each of these isotopes can be recognized by its specific resonances. This would allow for multitracer studies with several isotopically labeled compounds. Different from mass spectrometry, the sample remains intact and can be used for further studies after analysis. Applications may be in the field of archaeology, metallurgy, and certification of reference materials.

  16. Resonance absorption of microwaves in He II: Evidence for roton emission

    SciTech Connect

    Rybalko, A.; Rubets, S.; Rudavskii, E.; Tikhiy, V.; Tarapov, S.; Golovashchenko, R.; Derkach, V.

    2007-10-01

    Microwave (MW) absorption in liquid {sup 4}He is investigated in the frequency range of 40-200 GHz at T=1.4-2.5 K. A 'whispering gallery' of waves was generated by a dielectric disk resonator immersed into the liquid. Resonance absorption of MWs was detected at the frequency, which corresponds to the roton minimum of the liquid helium excitation spectrum. The creation of a single roton is possible because of the presence of the resonator wall which absorbs an extra momentum. The resonance frequency is shown to decrease with temperature in an excellent agreement with the temperature dependence of the roton gap obtained previously in the neutron scattering experiment.

  17. NBS work on neutron resonance radiography

    SciTech Connect

    Schrack, R.A.

    1987-01-01

    NBS has been engaged in a wide-ranging program in Neutron Resonance Radiography utilizing both one- and two-dimensional position-sensitive neutron detectors. The ability to perform a position-sensitive assay of up to 16 isotopes in a complex matrix has been demonstrated for a wide variety of sample types, including those with high gamma activity. A major part of the program has been the development and application of the microchannel-plate-based position-sensitive neutron detector. This detector system has high resolution and sensitivity, together with adequate speed of response to be used with neutron time-of-flight techniques. This system has demonstrated the ability to simultaneously image three isotopes in a sample with no interference.

  18. Neutron elastic backscattering with resonance enhancement

    SciTech Connect

    Gomberg, H.J.; McEllistrem, M.T.

    1993-12-31

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon, Oxygen, and Nitrogen which provide specific elemental ratios and chemical signatures. Neutron-induced reaction methods are rapid and non-invasive means of probing container interiors for special element-ratio signatures which signal the presence of significant amounts of contraband. Among these reactions the highest probabilities occur for neutron from different light elements, allowing determination of relative abundance of these elements. The authors have already demonstrated signature for simulated explosives and simulated narcotics in experimental tests at 1-4 MeV at the University of Kentucky accelerator labs. Intensities of neutron scatter at angles near 150{degrees} from three different elements, C, N, and O, were determined. Fast neutron time-of-flight detection methods enabled measurement of neutron energies, and thus separation of scattering from the different elements. Making measurements on and off strong resonances for specific elements, increases PFD and reduces PFA. Measurements illustrating this resonance enhancement technique will be presented.

  19. Resonant enhancement of absorption in the superlens

    NASA Astrophysics Data System (ADS)

    Alekseyev, Leonid; Jacob, Zubin; Narimanov, Evgenii

    2007-03-01

    The Veselago lens (also known as the super lens) [1], which is a slab made of left handed material with ɛ=-1 and μ=-1 has interesting properties like perfect lensing [2] and cloaking [3]. When a source is placed in front of it there are regions of high field intensity in such a lens , known as anomalously localized resonant regions [3]. For practical applications of the superlens taking advantage of these properties, the effect of finite loss on the device performance is critical [4] . We calculate the absorption loss of dipole radiation by an ɛ<0 and μ<0 slab and find resonant enhancement of absorption in the superlensing regime. [1] V. G. Veselago, ``The electrodynamics of substances with simultaneously negative values of permittivity and permeability,'' Sov. Phys. Usp. 10, 509 (1968). [2] J. B. Pendry, ``Negative refraction makes a perfect lens,'' Phys. Rev. Lett. 85, 3966-3969 (2000). [3] Graeme W. Milton and Nicolae-Alexandry P. Nicorovici ``On the cloaking effects associated with anomalous localized resonance,'' Proc. R. Soc. A (2006) 462, 3027-3059. [4] V. A. Podolskiy and E. E. Narimanov, ``Near-sighted superlens,'' Opt. Lett. 30, 75-77 (2005)

  20. Electron heating due to resonant absorption

    SciTech Connect

    Mizuno, K.; Spielman, R.B.; DeGroot, J.S.; Bollen, W.M.

    1980-01-01

    Intense, p-polarized microwaves (v/sub os//v/sub eo-/<1) are incident on an imhomogeneous plasma (10/sup 2/resonant absorption near the critical surface (where the plasma frequency equals microwave frequency). Suprathermal electrons are heated by resonantly driven electrostatic field to produce a hot Maxwellian distribution. Most of the heated electrons flow towards the overdense region and are absorbed by the anode at the far end of the overdense region. At high power (v/sub os//v/sub eo-/>0.2), strong heating of thermal electrons, large amplitude ion acoustic turbulence, and a self-consistent dc electric field are observed near the critical surface. This dc electric field is enhanced by applying a weak magnetic field (..omega../sub ce//..omega../sub o/ approx. = 10/sup -2/).

  1. Laser engines operating by resonance absorption.

    PubMed

    Garbuny, M; Pechersky, M J

    1976-05-01

    The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom. PMID:20165143

  2. Laser engines operating by resonance absorption.

    PubMed

    Garbuny, M; Pechersky, M J

    1976-05-01

    The coherence properties and power levels of lasers available at present lend themselves to the remote operation of mechanical engines by resonance absorption in a working gas. Laser radiation is capable of producing extremely high temperatures in a gas. Limits to the achievable temperatures in the working gas of an engine are imposed by the solid walls and by loss of resonance absorption due to thermal saturation, bleaching, and dissociation. However, it is shown that by proper control of the laser beam in space, time, and frequency, as well as by choice of the absorbing gas, these limits are to a great extent removed so that very high temperatures are indeed attainable. The working gas is largely monatomic, preferably helium with the addition of a few volume percent of an absorber. Such a gas mixture, internally heated, permits an optimization of the expansion ratio, with resulting thermal efficiencies and work ratios, not achievable in conventional engines. A relationship between thermal efficiency and work ratio is derived that is quite general for the optimization condition. The performance of laser piston engines, turbines, and the Stirling cycle based on these principles is discussed and compared with conventional engine operation. Finally, a brief discussion is devoted to the possibility and concepts for the direct conversion of selective vibrational or electronic excitation into mechanical work, bypassing the translational degrees of freedom.

  3. Gamma resonance absorption. New approach in human body composition studies.

    PubMed

    Wielopolski, L; Vartsky, D; Pierson, R; Goldberg, M; Heymsfield, S; Yasumura, S; Melnychuk, S T; Sredniawski, J

    2000-05-01

    The main stream of body elemental analysis is based on the delayed, prompt, and inelastic neutron interactions with the main elements found in the human body, and subsequent analysis of the measured delayed or prompt gamma ray spectra. This methodology traditionally was, and still is, applied for whole body analysis and requires relatively high radiation doses. A new method, based on gamma nuclear resonance absorption (GNRA), is being established at Brookhaven National Laboratory as part of its body composition program. The method is element specific with a high tomographic spatial-resolution capability, at a small fraction of the radiation dose used in the current system. The new system, with its components and capabilities, is described below. PMID:10865747

  4. Dawn Grand Map Vesta Neutron Absorption V1.0

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.

    2014-06-01

    A global map of a unitless compositional parameter, delta-C_perpendicular (DCP), and propagated 1-sigma uncertainties is provided. DCP varies linearly with the macroscopic thermal neutron absorption cross section of Vesta's regolith. An equation for converting tabulated DCP values to absorption units is provided in this document. DCP was determined from thermal and epithermal neutron counting rates measured by the NASA Dawn mission's Gamma Ray and Neutron Detector (GRaND) while in low altitude mapping orbit, about 210 km from Vesta's surface. The measurements are representative of Vesta's bulk regolith composition to depths of a few decimeters with a spatial resolution of about 300-km full-width-at-half-maximum of arc length on the surface. The methods used to determine neutron absorption are described by PRETTYMANETAL2013.

  5. Neutron absorption constraints on the composition of 4 Vesta

    USGS Publications Warehouse

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Paplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Le Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-01-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  6. A cavity type absorption cell for double resonance microwave spectroscopy.

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; White, W. F.

    1972-01-01

    Description of an experimental dual resonant cavity absorption cell for observing microwave spectroscopic double-resonance effects. The device is composed of two Fabry-Perot interferometers excited by independent microwave sources and mounted at right angles in a suitable vacuum enclosure. The pumping transition is modulated by one source and the modulation induced on the rf absorption in the orthogonal cavity is detected.

  7. Resonance analysis and evaluation of the sup 235 U neutron induced cross sections

    SciTech Connect

    Leal, L.C.

    1990-06-01

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the {sup 235}U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The {Delta}{sub 3}-statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the {sup 235}U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the {sub 235}U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs.

  8. Electromagnetically induced absorption in a three-resonator metasurface system

    PubMed Central

    Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S.; Zhang, Weili

    2015-01-01

    Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored. Here we present the observation of the EIA analog due to constructive interference in a vertically coupled three-resonator metamaterial system that consists of two bright and one dark resonator. The absorption resonance is one of the collective modes of the tripartite unit cell. Theoretical analysis shows that the absorption arises from a magnetic resonance induced by the near-field coupling of the three resonators within the unit cell. A classical analog of EIA opens up opportunities for designing novel photonic devices for narrow-band filtering, absorptive switching, optical modulation, and absorber applications. PMID:26023061

  9. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  10. Spin measurement and neutron resonance spectroscopy for ^155Gd

    NASA Astrophysics Data System (ADS)

    Baramsai, Bayarbadrakh; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Wouters, J. M.; Ullmann, J. L.; Viera, D. J.; Agvaanluvsan, U.; Becvar, F.; Krticka, M.

    2009-05-01

    The ^155Gd(n,γ) reaction has been measured with the DANCE calorimeter at Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture γ - rays. With this information the spins of the neutron capture resonances have been determined. The improved sensitivity of this method allowed the determination of the spins of even weak and unresolved resonances. With these new spin assignments as well as previously determined resonance parameters, level spacings and neutron strength functions are determined separately for s-wave resonances with J = 1 and 2.

  11. Characterization of nuclear material by Neutron Resonance Transmission Analysis

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Alaerts, G.; Becker, B.; Heyse, J.; Kopecky, S.; Moens, A.; Mondelaers, W.; Schillebeeckx, P.; Wynants, R.; Harada, H.; Kitatani, F.; Koizumi, M.; Tsuchiya, H.

    2016-11-01

    The use of Neutron Resonance Transmission Analysis for the characterization of nuclear materials is discussed. The method, which relies on resonance structures in neutron-induced reaction cross sections, can be applied as a non-destructive method to characterise complex nuclear materials such as melted fuel resulting from a severe nuclear accident. Results of a demonstration experiment at the GELINA facility reveal that accurate data can be obtained at a compact facility even in the case of strong overlapping resonances.

  12. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    SciTech Connect

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.; Dashdorj, D.; Walker, C.; Agvaanluvsan, U.; Becvar, F.; Krticka, M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{sup {pi}} = 1{sup -} and 2{sup -}.

  13. Remark on: the neutron spherical optical-model absorption.

    SciTech Connect

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  14. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    NASA Astrophysics Data System (ADS)

    Xu, Shuwu; Huang, Yunxia; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong

    2015-07-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye.

  15. Prompt Fission Neutron Emission in Resonance Fission of 239Pu

    SciTech Connect

    Hambsch, Franz-Josef; Oberstedt, Stephan; Varapai, Natallia; Serot, Olivier

    2005-05-24

    The prompt neutron emission probability from neutron-induced fission in the resonance region is being investigated at the time-of-flight facility GELINA of the IRMM. A double Frisch-gridded ionization chamber is used as a fission-fragment detector. For the data acquisition of both the fission-fragment signals as well as the neutron detector signals the fast digitization technique has been applied. For the neutron detection, large-volume liquid scintillation detectors from the DEMON collaboration are used. A specialized data analysis program taking advantage of the digital filtering technique has been developed to treat the acquired data.Neutron multiplicity investigations for actinides, especially in resonance neutron-induced fission, are rather scarce. They are, however, important for reactor control and safety issues as well as for understanding the basic physics of the fission process. Fission yield measurements on both 235U and 239Pu without prompt neutron emission coincidence have shown that fluctuation of the fission-fragment mass distribution exists from resonance to resonance, larger in the case of 235U. To possibly explain these observations, the question now is whether the prompt neutron multiplicity shows similar fluctuations with resonance energy.

  16. Resonant absorption of p-modes by sunspots

    NASA Technical Reports Server (NTRS)

    Chitre, S. M.; Davila, Joseph M.

    1990-01-01

    Explanations for the observed p-mode absorption in sunspots are examined. It is demonstrated that any dissipative process like radiative, viscous, or resistive dissipation leads to the resonant absorption of acoustic waves incident on the sunspot tube, and that the resultant heating rate can be shown to be consistent with the observed absorption of the p-mode power impinging on an isolated inhomogeneously structured sunspot.

  17. Broadband absorption through extended resonance modes in random metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, J.; Niemiec, R.; Burgnies, L.; Lheurette, É.; Lippens, D.

    2016-05-01

    The properties of disordered metamaterial absorbers are analyzed on the basis of numerical simulations and experimental characterizations. A broadening of the absorption spectrum is clearly evidenced. This effect is the consequence of both the coupling between nearby resonators leading to the occurrence of extended magnetic resonance modes and the interconnection of elementary particles yielding the definition of resonating clusters. The angular robustness of the absorbing structure under oblique incidence is also demonstrated for a wide domain of angles.

  18. Neutron Resonance Spectroscopy for the Analysis of Materials and Objects

    SciTech Connect

    Borella, A.; Lampoudis, C.; Schillebeeckx, P.; Kopecky, S.; Postma, H.; Moxon, M.

    2009-12-02

    The presence of resonances in neutron induced reaction cross sections is the basis of the Neutron Resonance Capture (NRCA) and Transmission (NRTA) Analysis techniques. Since resonances can be observed at neutron energies which are specific for each nuclide, they can be used as fingerprints to identify and quantify elements in materials and objects. Both NRCA and NRTA are fully non-destructive methods which determine the bulk elemental composition, do not require any sample preparation and result in a negligible residual activation. In this text we review the technique and present an analysis procedures including one based on a more methodological approach which relies on a full Resonance Shape Analysis (RSA) and accounts directly for the neutron self-shielding, multiple scattering, Doppler broadening and instrumental resolution.

  19. Christiansen effect in disperse systems with resonant absorption

    SciTech Connect

    Zimnyakov, D A; Isaeva, Elmira A; Isaeva, A A

    2012-01-31

    We discuss the results of experimental studies of competition of absorption and scattering of laser radiation propagating in dispersive media with resonant absorption. As media under study, use is made of a suspension of polystyrene particles in solutions of rhodamine 6G in ethylene glycol probed by laser light with a wavelength of 532 nm. It is found that an increase in the dye concentration leads to an increase in optical transmittance of suspensions and an increase in speckle modulation of the forward-scattered radiation. We interpret these features as a manifestation of Christiansen effect in disperse systems with resonance absorption.

  20. Resonant X-Ray Scattering and Absorption

    NASA Astrophysics Data System (ADS)

    Collins, S. P.; Bombardi, A.

    This chapter outlines some of the basic ideas behind nonresonant and resonant X-ray scattering, using classical or semiclassical pictures wherever possible; specifically, we highlight symmetry arguments governing the observation of X-ray optical effects, such as X-ray magnetic circular dichroism and resonant "forbidden" diffraction. Without dwelling on the microscopic physics that underlies resonant scattering, we outline some key steps required for calculating its rotation and polarization dependence, based on Cartesian and spherical tensor frameworks. Several examples of resonant scattering, involving electronic anisotropy and magnetism, are given as illustrations. Our goal is not to develop or defend theoretical concepts in X-ray scattering, but to bring together existing ideas in a pragmatic and utilitarian manner.

  1. Resonance enhanced neutron standing waves in thin films

    SciTech Connect

    Satija, S.K.; Gallagher, P.D.; Lindstrom, R.M.; Paul, R.L.; Zhang, H. |; Russell, T.P.; Lambooy, P.; Kramer, E.J.

    1995-12-31

    Simultaneous measurements of neutron reflectivity and prompt gamma ray emission, from samples with buried Gd layers, are shown to be of significant aid in determining the depth profile of the entire sample. Because of resonant enhancement of the neutron standing waves in the sample, the gamma ray signals are considerably enhanced making these experiments possible. A possible application of this technique to study grazing angle neutron diffraction is also mentioned.

  2. Resonant shattering of neutron star crusts.

    PubMed

    Tsang, David; Read, Jocelyn S; Hinderer, Tanja; Piro, Anthony L; Bondarescu, Ruxandra

    2012-01-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (SGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ∼10{46}-10{47}  erg of energy seconds before the merger of a NS-NS or NS-black-hole binary. Such properties are consistent with Swift/BAT detections of SGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. PMID:22304251

  3. Resonant Shattering of Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Tsang, David; Read, Jocelyn; Piro, Anthony; Hinderer, Tanja

    2014-08-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (sGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ~10^46-10^47 erg of energy secondsbefore the merger of a NS-NS or NS-black hole binary. Such properties are consistent with Swift/BAT detections of sGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. I will also discuss shattering flares as electromagnetic counterparts to gravitational wave bursts during parabolic and elliptic encounters in dense star clusters.

  4. Resonant Shattering of Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Tsang, David; Read, J.; Hinderer, T.; Piro, A.

    2013-01-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (sGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ~10^46-10^47 erg of energy seconds before the merger of a NS-NS or NS-black hole binary. Such properties are consistent with Swift/BAT detections of sGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. We also discuss the application of such shattering flares as electromagnetic counterparts to gravitational wave bursts from elliptic and parabolic encounters in dense star clusters.

  5. Plasmonic Resonant Absorption in Mid-Infrared in Graphene Nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Esfahani, Nima N.; Walker, Dennis E., Jr.; Hendrickson, Joshua R.; Cleary, Justin; Mou, Shin; Air Force Research Laboratory, Materials; Manufacturing Directorate, Wright-Patterson AFB, OH, USA Team; Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH, USA Team

    2014-03-01

    We experimentally demonstrated polarization-sensitive, tunable plasmonic resonant absorption in the mid-infrared range of 5-14 um by utilizing an array of graphene nanoribbon resonators. By tuning resonator width and charge density, we probed graphene plasmons with λp <= λ /100 and plasmon resonance energy as high as 0.26 meV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra enabled us to map the wavevector-frequency dispersion for graphene plasmons at mid-IR energies and revealed a modified plasmon dispersion as well as plasmon damping due to intrinsic optical phonons of graphene and graphene plasmon interaction with the surface polar phonons in SiO2 substrates. Additionally, we studied spectra further by introducing intrinsic defect phonons and doping by direct electron beam irradiation of graphene nanoresonators

  6. Parity violation in neutron resonances of antimony and iodine

    SciTech Connect

    Matsuda, Y.; Bowman, J. D.; Crawford, B. E.; Delheij, P. P. J.; Haseyama, T.; Knudsen, J. N.; Lowie, L. Y.; Masaike, A.; Masuda, Y.; Mitchell, G. E.

    2001-07-01

    Parity violation in p-wave neutron resonances of {sup 121}Sb, {sup 123}Sb, and {sup 127}I has been measured by transmission of a longitudinally polarized neutron beam through natural antimony and iodine targets. The measurements were performed at the pulsed spallation neutron source of the Los Alamos Neutron Science Center. Five statistically significant parity violation effects were observed in {sup 121}Sb, one effect in {sup 123}Sb, and seven effects in {sup 127}I. The weak interaction rms matrix elements and the corresponding spreading widths were determined.

  7. Enhancement of resonant absorption through excitation of SPR

    NASA Astrophysics Data System (ADS)

    Giulietti, Danilo; Calcagno, L.; Curcio, Alessandro; Cutroneo, M.; Galletti, Mario; Skala, J.; Torrisi, L.; Zimbone, M.

    2016-09-01

    In this experiment the absorption of the laser radiation impinging on polymeric films with Au nanoparticles implanted in surface was studied. By varying the polarization and the incidence angle of the laser radiation on target, the role in the laser absorption of both excitation of surface plasmons and excitation of electronic plasma waves at critical density through resonant absorption was highlighted. In conditions of p-polarized laser irradiations at 1015 W /cm2 intensity, resonant absorption can be induced in films enhancing proton and ion acceleration. Plasma on-line diagnostics is based on SiC detectors. Measurements of kinetic energy of accelerated ions indicate a significant increment using p-polarized laser light with respect to no-polarized light irradiation.

  8. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  9. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  10. Ultracold neutrons: Quantum bouncing ball resonates

    NASA Astrophysics Data System (ADS)

    Greene, Geoffrey L.

    2011-06-01

    Spectroscopic techniques typically probe the interaction between matter and electromagnetic fields. An experiment now demonstrates that transitions between quantum states of neutrons can be brought about by mechanically vibrating a mirror, an approach that may lead to sensitive tests of gravity laws.

  11. Ultracold Neutrons - Quantum Bouncing Ball Resonates

    SciTech Connect

    Greene, G. L.

    2011-01-01

    Spectroscopic techniques typically probe the interaction between matter and electromagnetic fields. An experiment now demonstrates that transitions between quantum states of neutrons can be brought about by mechanically vibrating a mirror, an approach that may lead to sensitive tests of gravity laws.

  12. Neutron Resonance Radiography for Explosives Detection: Technical Challenges

    SciTech Connect

    Raas, W L; Blackburn, B; Boyd, E; Hall, J M; Kohse, G; Lanza, R; Rusnak, B; Watterson, J W

    2005-11-09

    Fast Neutron Resonance Radiography (NRR) has recently become a focus of investigation as a supplement to conventional x-ray systems as a non-invasive, non-destructive means of detecting explosive material concealed in checked luggage or cargo containers at airports. Using fast (1-6 MeV) neutrons produced by the D(d,n){sup 3}He reaction, NRR provides both an imaging capability and the ability to determine the chemical composition of materials in baggage or cargo. Elemental discrimination is achieved by exploiting the resonance features of the neutron cross-section for oxygen, nitrogen, carbon, and hydrogen. Simulations have shown the effectiveness of multiple-element NRR through Monte Carlo transport methods; this work is focused on the development of a prototype system that will incorporate an accelerator-based neutron source and a neutron detection and imaging system to demonstrate the realistic capabilities of NRR in distinguishing the elemental components of concealed objects. Preliminary experiments have exposed significant technical difficulties unapparent in simulations, including the presence of image contamination from gamma ray production, the detection of low-fluence fast neutrons in a gamma field, and the mechanical difficulties inherent in the use of thin foil windows for gas cell confinement. To mitigate these concerns, a new gas target has been developed to simultaneously reduce gamma ray production and increase structural integrity in high flux gas targets. Development of a neutron imaging system and neutron counting based on characteristic neutron pulse shapes have been investigated as a means of improving signal to noise ratios, reducing irradiation times, and increasing the accuracy of elemental determination.

  13. A sound absorptive element comprising an acoustic resonance nanofibrous membrane.

    PubMed

    Kalinova, Klara

    2015-01-01

    As absorption of sound of lower frequencies is quite problematic with fibrous material made up of coarser fibers, development of highly efficient sound absorption material is called for. This is why this work deals with the development of new high sound absorption material. To absorb the low frequencies, especially the structures based on resonance principle of nanofibrous layers are used, when through resonance of some elements the acoustic energy is transferred into thermal energy. The goal of the invention is achieved by a sound absorbing means which contains resonance membrane formed by a layer of polymeric nanofibers, which is attached to a frame. For production of nanofibrous membranes, the cord electrospinning was used. The resonance membrane was then, upon impact of sound waves of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane was converted into thermal energy by friction of individual nanofibers, by the friction of the membrane with ambient air and possibly with other layers of material arranged in its proximity, and some of the energy was also transmitted to the frame, through which the vibrations of the resonance membrane were damped. The density and shape of the mesh of frame formations determine the resonance frequency of the acoustic means. The goal of the invention is therefore to eliminate or at least reduce the disadvantages of the present state of the art and to propose sound absorbing means that would be capable of absorbing, with good results sounds in as broadest frequency range as possible. Here, we also discussed some patents relevant to the topic. PMID:25986230

  14. A sound absorptive element comprising an acoustic resonance nanofibrous membrane.

    PubMed

    Kalinova, Klara

    2015-01-01

    As absorption of sound of lower frequencies is quite problematic with fibrous material made up of coarser fibers, development of highly efficient sound absorption material is called for. This is why this work deals with the development of new high sound absorption material. To absorb the low frequencies, especially the structures based on resonance principle of nanofibrous layers are used, when through resonance of some elements the acoustic energy is transferred into thermal energy. The goal of the invention is achieved by a sound absorbing means which contains resonance membrane formed by a layer of polymeric nanofibers, which is attached to a frame. For production of nanofibrous membranes, the cord electrospinning was used. The resonance membrane was then, upon impact of sound waves of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane was converted into thermal energy by friction of individual nanofibers, by the friction of the membrane with ambient air and possibly with other layers of material arranged in its proximity, and some of the energy was also transmitted to the frame, through which the vibrations of the resonance membrane were damped. The density and shape of the mesh of frame formations determine the resonance frequency of the acoustic means. The goal of the invention is therefore to eliminate or at least reduce the disadvantages of the present state of the art and to propose sound absorbing means that would be capable of absorbing, with good results sounds in as broadest frequency range as possible. Here, we also discussed some patents relevant to the topic.

  15. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin N.

    2016-10-01

    We study the resonant tidal excitation of g-modes in coalescing superfluid neutron star binaries and investigate how such tidal driving impacts the gravitational-wave signal of the inspiral. Previous studies of this type treated the neutron star core as a normal fluid and thus did not account for its expected superfluidity. The source of buoyancy that supports the g-modes is fundamentally different in the two cases: in a normal fluid core the buoyancy is due to gradients in the proton-to-neutron fraction whereas in a superfluid core it is due to gradients in the muon-to-electron fraction. The latter yields a stronger stratification and a superfluid neutron star therefore has a denser spectrum of g-modes with frequencies above 10Hz. As a result, many more g-modes undergo resonant tidal excitation as the binary sweeps through the bandwidth of gravitational-wave detectors such as LIGO. We find that ≃ 10 times more orbital energy is transferred into g-mode oscillations if the neutron star has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and normal fluid neutron star (˜10-3 - 10-2radians). A phase error of this magnitude is too small to be measured from a single event with the current generation of gravitational wave detectors.

  16. Thin resonant structures for angle and polarization independent microwave absorption

    NASA Astrophysics Data System (ADS)

    Lockyear, Matthew J.; Hibbins, Alastair P.; Sambles, J. Roy; Hobson, Peter A.; Lawrence, Christopher R.

    2009-01-01

    We present a microwave absorbing structure comprised of an array of subwavelength radius copper disks, closely spaced from a ground plane by a low loss dielectric. Experiments and accompanying modeling demonstrate that this structure supports electromagnetic standing wave resonances associated with a cylindrical cavity formed by the volume immediately beneath each metal disk. Microwave absorption on resonance of these modes, at wavelengths much greater than the thickness of the structure, is dictated almost entirely by the radius of the disk and permittivity of the dielectric, being largely independent of the incident angle and polarization.

  17. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite

    NASA Astrophysics Data System (ADS)

    Reddy, S. Lakshmi; Fayazuddin, Md.; Frost, Ray L.; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals.

  18. Electron paramagnetic resonance and optical absorption spectral studies on chalcocite.

    PubMed

    Reddy, S Lakshmi; Fayazuddin, Md; Frost, Ray L; Endo, Tamio

    2007-11-01

    A chalcocite mineral sample of Shaha, Congo is used in the present study. An electron paramagnetic resonance (EPR) study on powdered sample confirms the presence of Mn(II), Fe(III) and Cu(II). Optical absorption spectrum indicates that Fe(III) impurity is present in octahedral structure whereas Cu(II) is present in rhombically distorted octahedral environment. Mid-infrared results are due to water and sulphate fundamentals. PMID:17324611

  19. Influence of thermal and resonance neutron on fast neutron flux measurement by 239Pu fission chamber

    NASA Astrophysics Data System (ADS)

    Zeng, Li-Na; Wang, Qiang; Song, Ling-Li; Zheng, Chun

    2015-01-01

    The 239Pu fission chambers are widely used to measure fission spectrum neutron flux due to a flat response to fast neutrons. However, in the meantime the resonance and thermal neutrons can cause a significant influence on the measurement if they are moderated, which could be eliminated by using 10B and Cd covers. At a column enriched uranium fast neutron critical assembly, the fission reaction rates of 239Pu are measured as 1.791×10-16, 2.350×10-16 and 1.385×10-15 per second for 15 mm thick 10B cover, 0.5 mm thick Cd cover, and no cover respectively, while the fission reaction rate of 239Pu is rapidly increased to 2.569×10-14 for a 20 mm thick polythene covering fission chamber. The average 239Pu fission cross-section of thermal and resonance neutrons is calculated to be 500 b and 24.95 b with the assumption of 1/v and 1/E spectra respectively, then thermal, resonance and fast neutron flux are achieved to be 2.30×106, 2.24×106 and 1.04×108 cm-2·s-1.

  20. Cyclotron resonant scattering and absorption. [in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Daugherty, Joseph K.

    1991-01-01

    The relativistic cross-sections for first-order absorption and second-order scattering are compared to determine the conditions under which the absorption cross-section is a good approximation to the much more complex scattering cross-section for purposes of modeling cyclotron lines in gamma-ray bursts. Differences in both the cross-sections and the line profiles are presented for a range of field strengths, angles, and electron temperatures. The relative difference of the cross-sections at one line width from resonance was found to increase with field strength and harmonic number. The difference is also strongly dependent on the photon angle to the magnetic field. For the field strength, 1.7 x 10 to the 12th G, and the angle inferred from the Ginga burst features, absorption is an excellent approximation for the profiles at the first and second harmonics.

  1. Hafnium Resonance Parameter Analysis using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, Michael J.; Barry, Devin P.; Burke, John A.; Drindak, Noel J.; Leinweber, Greg; Ballad, Robert V.; Slovacek, Rudy E.; Danon, Yaron; Block, Robert C.

    2005-05-24

    The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions.Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen-section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically enriched liquid samples. The liquid samples were designed to provide information on the 176Hf and 178Hf contributions to the 8-eV doublet without saturation.Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little.

  2. Time Delay in Neutron-Alpha Resonant Scattering

    SciTech Connect

    Hoop, Bernard; Hale, Gerald M.

    2011-10-24

    Time delay analysis of neutron-alpha resonant scattering cross sections supports characterization of the lowest 3/2{sup +} level in {sup 5}He as fundamentally an n-{alpha} resonance on the second Riemann energy sheet of both n-{alpha} and deuteron-{sup 3}H channels, with an associated shadow pole on a different unphysical sheet that, through its associated zero on the physical sheet, contributes to the large {sup 4}He(n,d){sup 3}H cross section.

  3. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    DOE PAGES

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; et al

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less

  4. Scissors Mode of 162Dy Studied from Resonance Neutron Capture

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-01

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ') reactions.

  5. The pygmy dipole resonance in neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Quang Hung, Nguyen; Kiet, Hoang Anh Tuan; Duc, Huynh Ngoc; Thi Chuong, Nguyen

    2016-06-01

    The pygmy dipole resonance (PDR), which has been observed via the enhancement of the electric dipole strength E1 of atomic nuclei, is studied within a microscopic collective model. The latter employs the Hartree-Fock (HF) method with effective nucleon-nucleon interactions of the Skyrme types plus the random-phase approximation (RPA). The results of the calculations obtained for various even-even nuclei such as 16-28O, 40-58Ca, 100-120Sn, and 182-218Pb show that the PDR is significantly enhanced when the number of neutrons outside the stable core of the nucleus is increased, that is, in the neutron-rich nuclei. As the result, the relative ratio between the energy weighted sum of the strength of the PDR and that of the GDR (giant dipole resonance) does not exceed 4%. The collectivity of the PDR and GDR states will be also discussed.

  6. Resonance absorption of propagating fast waves in a cold plasma

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Absorption of propagating waves impinging on a surface in which the plasma and magnetic field may change is investigated by examining in depth the problem of a combination of cold plasma, uniform magnetic field and a surface density which varies linearly from zero at the left end to some finite value at the right end, beyond which the density is constant. Two cases are considered: one in which the plasma is a vacuum everywhere to the left of the surface (which may correspond to coronal conditions) and one in which the plasma density jumps to a very large value to the left of the surface (which may mimic the magnetosphere with the dense region at the left corresponding to the plasmasphere). A complete discussion of the resonance absorption of propagating fast waves for the case considered by Kiveloson and Southwood (1986) is presented, emphasizing approximate analytical results whenever possible; these results are then compared with exact numerical solutions.

  7. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    PubMed

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source. PMID:26724013

  8. Towards higher stability of resonant absorption measurements in pulsed plasmas

    SciTech Connect

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  9. Towards higher stability of resonant absorption measurements in pulsed plasmas

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  10. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, Robert P.; Olbright, Gregory R.; Brennan, Thomas M.; Tsao, Jeffrey Y.

    1995-02-14

    A photodetector that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer.

  11. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, R.P.; Olbright, G.R.; Brennan, T.M.; Tsao, J.Y.

    1995-02-14

    A photodetector is disclosed that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer. 11 figs.

  12. Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    SciTech Connect

    Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C; Lubert, M; Burke, J A; Drindak, N J; Lienweber, G; Ballad, R

    2007-02-06

    The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental

  13. High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials

    NASA Astrophysics Data System (ADS)

    Cnudde, Veerle; Dierick, Manuel; Vlassenbroeck, Jelle; Masschaele, Bert; Lehmann, Eberhard; Jacobs, Patric; Van Hoorebeke, Luc

    2008-01-01

    Fluid flow through porous natural building stones is of great importance when studying their weathering processes. Many traditional experiments based on mass changes are available for studying liquid transport in porous stones, such as the determination of the water absorption coefficient by capillarity. Because thermal neutrons experience a strong attenuation by hydrogen, neutron radiography is a suitable technique for the study of water absorption by capillarity in porous stones. However, image contrast can be impaired because hydrogen mainly scatters neutrons rather than absorbing them, resulting in a blurred image. Capillarity results obtained by neutron radiography and by the European Standard 1925 for the determination of the water absorption coefficient by capillarity for natural building stones with a variable porosity were compared. It is illustrated that high-speed neutron radiography can be a useful research tool for the visualization of internal fluid flow inside inorganic building materials such as limestones and sandstones.

  14. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching.

    PubMed

    Sivarajah, I; Goodman, D S; Wells, J E; Narducci, F A; Smith, W W

    2013-11-01

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trap and with the amplitude of the off-resonance external ac field. PMID:24289382

  15. Preliminary study of neutron absorption by concrete with boron carbide addition

    NASA Astrophysics Data System (ADS)

    Abdullah, Yusof; Ariffin, Fatin Nabilah Tajul; Hamid, Roszilah; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal; Ahmad, Sahrim; Mohamed, Abdul Aziz

    2014-02-01

    Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

  16. Preliminary study of neutron absorption by concrete with boron carbide addition

    SciTech Connect

    Abdullah, Yusof Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal; Ariffin, Fatin Nabilah Tajul; Ahmad, Sahrim; Hamid, Roszilah; Mohamed, Abdul Aziz

    2014-02-12

    Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.

  17. Optical absorption and luminescence in neutron-irradiated, silica-based fibers

    SciTech Connect

    Cooke, D.W.; Farnum, E.H.; Clinard, F.W.

    1995-04-01

    The objectives of this work are to assess the effects of thermal annealing and photobleaching on the optical absorption of neutron-irradiated, silica fibers of the type proposed for use in ITER diagnostics, and to measure x-ray induced luminescence of unirradiated (virgin) and neutron-irradiated fibers.

  18. Enabling Explosives and Contraband Detection with Neutron Resonant Attenuation. Year 1 of 3 Summary

    SciTech Connect

    Sweany, Melinda

    2015-10-01

    Material Identification by Resonant Attenuation is a technique that measures the energy-dependent attenuation of 1-10 MeV neutrons as they pass through a sample. Elemental information is determined from the neutron absorption resonances unique to each element. With sufficient energy resolution, these resonances can be used to categorize a wide range of materials, serving as a powerful discrimination technique between explosives, contraband, and other materials. Our proposed system is unique in that it simultaneously down-scatters and time tags neutrons in scintillator detectors oriented between a d-T generator and sample. This allows not only for energy measurements without pulsed neutron beams, but for sample interrogation over a large range of relevant energies, vastly improving scan times. Our system’s core advantage is a potential breakthrough ability to provide detection discrimination of threat materials by their elemental composition (e.g. water vs. hydrogen peroxide) without opening the container. However, several technical and computational challenges associated with this technique have yet to be addressed. There are several open questions: what is the sensitivity to different materials, what scan times are necessary, what are the sources of background, how do each of these scale as the detector system is made larger, and how can the system be integrated into existing scanning technology to close current detection gaps? In order to prove the applicability of this technology, we will develop a validated model to optimize the design and characterize the uncertainties in the measurement, and then test the system in a real-world scenario. This project seeks to perform R&D and laboratory tests that demonstrate proof of concept (TRL 3) to establishing an integrated system and evaluating its performance (TRL 4) through both laboratory tests and a validated detector model. The validated model will allow us to explore our technology’s benefits to explosive

  19. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    NASA Astrophysics Data System (ADS)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  20. Resonant Absorption of Axisymmetric Modes in Twisted Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Giagkiozis, I.; Goossens, M.; Verth, G.; Fedun, V.; Van Doorsselaere, T.

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.

  1. Optical absorption and luminescence studies of fast neutron-irradiated complex oxides for jewellery applications

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Skvortsova, V.; Popov, A. I.

    2016-07-01

    We studied the optical absorption and luminescence of agate (SiO2), topaz (Al2[SiO4](F,OH)2), beryl (Be3Al2Si6O18), and prehnite (Ca2Al(AlSi3O10)(OH)2) doped with different concentrations of transition metal ions and exposed to fast neutron irradiation. The exchange interaction between the impurity ions and the defects arising under neutron irradiation causes additional absorption as well as bands' broadening in the crystals. These experimental results allow us to suggest the method for obtaining new radiation-defect induced jewellery colors of minerals due to neutron irradiation.

  2. Mie Resonant Absorption and Infrared Emission in InN Related to Metallic Indium Clusters

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Ivanov, S. V.; Jmerik, V. N.; Solnyshkov, D. D.; Kop'ev, P. S.; Vasson, A.; Leymarie, J.; Kavokin, A.; Amano, H.; Kamiyama, S.; Iwaya, M.; Akasaki, I.; Lu, H.; Schaff, W. J.; Kasic, A.; Monemar, B.

    2005-06-01

    We demonstrate that resonant optical losses related to metallic In clusters can significantly modify absorption spectra of InN with any optical gap. Thermally detected absorption spectra with a pronounced Mie resonance are successfully simulated using a dielectric function of InN corresponding to the 1.2-1.4 eV optical gap. The resonance is observed in spectra of conventional absorption at low temperatures being smoothed out at room temperature.

  3. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  4. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  5. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials.

    PubMed

    Wen, Jihong; Zhao, Honggang; Lv, Linmei; Yuan, Bo; Wang, Gang; Wen, Xisen

    2011-09-01

    Recently, by introducing locally resonant scatterers with spherical shape proposed in phononic crystals into design of underwater sound absorption materials, the low-frequency underwater sound absorption phenomenon induced by the localized resonances is observed. To reveal this absorption mechanism, the effect of the locally resonant mode on underwater sound absorption should be studied. In this paper, the finite element method, which is testified efficiently by comparing the calculation results with those of the layer multiple scattering method, is introduced to investigate the dynamic modes and the corresponding sound absorption of localized resonance. The relationship between the resonance modes described with the displacement contours of one unit cell and the corresponding absorption spectra is discussed in detail, which shows that the localized resonance leads to the absorption peak, and the mode conversion from longitudinal to transverse waves at the second absorption peak is more efficient than that at the first one. Finally, to show the modeling capability of FEM and investigate shape effects of locally resonant scatterers on underwater sound absorption, the absorption properties of viscoelastic materials containing locally resonant scatterers with ellipsoidal shape are discussed.

  6. Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

    NASA Astrophysics Data System (ADS)

    Flanagan, K. T.; Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Cocolios, T. E.; de Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2013-11-01

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes Fr202-205 were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for Fr202. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to Fr205, with a departure observed in Fr203 (N=116).

  7. Collinear resonance ionization spectroscopy of neutron-deficient francium isotopes.

    PubMed

    Flanagan, K T; Lynch, K M; Billowes, J; Bissell, M L; Budinčević, I; Cocolios, T E; de Groote, R P; De Schepper, S; Fedosseev, V N; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Marsh, B A; Neyens, G; Procter, T J; Rossel, R E; Rothe, S; Strashnov, I; Stroke, H H; Wendt, K D A

    2013-11-22

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes (202-205)Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for (202)Fr. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to (205)Fr, with a departure observed in (203)Fr (N=116). PMID:24313482

  8. Extracting Neutron Structure Functions in the Resonance Region

    SciTech Connect

    Yonatan Kahn

    2009-07-01

    A new iterative method is presented for extracting neutron structure functions from inclusive structure functions of nuclei, focusing specifically on the resonance region. Unlike earlier approaches, this method is applicable to both spin-averaged and spin-dependent structure functions. We show that in numerical tests, this method is able to reproduce known input functions of nearly arbitrary shape after only 5–10 iterations. We illustrate the method on extractions of F2n and g1,2n from data, and discuss the treatment of systematic errors from this extraction procedure.

  9. Scissors mode of Gd nuclei studied from resonance neutron capture

    NASA Astrophysics Data System (ADS)

    Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvár, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Heil, M.; Jandel, M.; Käppeler, F.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2012-10-01

    Spectra of γ rays following the neutron capture at isolated resonances of stable Gd nuclei weremeasured. The objectives were to get new information on photon strength of 153,155-159Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength ΣB(M1)↑, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum ΣB(M1)↑ increases with A and for 157,159Gd it is significantly higher compared to 156,158Gd.

  10. Scissors mode of Gd nuclei studied from resonance neutron capture

    SciTech Connect

    Kroll, J.; Baramsai, B.; Becker, J. A.; and others

    2012-10-20

    Spectra of {gamma} rays following the neutron capture at isolated resonances of stable Gd nuclei were measured. The objectives were to get new information on photon strength of {sup 153,155-159}Gd with emphasis on the role of the M1 scissors-mode vibration. An analysis of the data obtained clearly indicates that the scissors mode is coupled not only to the ground state, but also to all excited levels of the nuclei studied. The specificity of our approach ensures unbiasedness in estimating the sumed scissors-mode strength {Sigma}B(M1){up_arrow}, even for odd product nuclei, for which conventional nuclear resonance fluorescence measurements yield only limited information. Our analysis indicates that for these nuclei the sum {Sigma}B(M1){up_arrow} increases with A and for {sup 157,159}Gd it is significantly higher compared to {sup 156,158}Gd.

  11. Magnetic resonance microwave absorption imaging: Feasibility of signal detection

    PubMed Central

    Xie, Bin; Weaver, John B.; Meaney, Paul M.; Paulsen, Keith D.

    2009-01-01

    Purpose: Magnetic resonance (MR) technique was used to detect small displacements induced by localized absorption of pulsed 434 MHz microwave power as a potential method for tumor detection. Methods: Phase contrast subtraction was used to separate the phase change due to motion from thermoelastic expansion from other contributions to phase variation such as the bulk temperature rise of the medium and phase offsets from the MR scanner itself. A simple set of experiments was performed where the motion was constrained to be one dimensional which provided controls on the data acquisition and motion extraction procedures. Specifically, the MR-detected motion signal was isolated by altering the direction of the microwave-induced motion and sampling the response with motion encoding gradients in all three directions when the microwave power was turned on and turned off. Results: Successful signal detection, as evidenced by the recording of a systematic alternating (zigzag) phase pattern, occurred only when the motion encoding was in parallel with either the vertical or horizontal direction of the microwave-induced motion on both 10 and 4 mm spatial scales. Conclusions: These results demonstrate, for the first time, that motion associated with thermoelastic expansion from the absorption of pulsed microwave power can be detected with MR. PMID:19994529

  12. Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres

    NASA Astrophysics Data System (ADS)

    Wallén, Henrik; Kettunen, Henrik; Sihvola, Ari

    2015-01-01

    This article analyzes the response of a sphere with radially anisotropic permittivity dyadic (RA sphere), in both the electrostatic and full electrodynamic settings. Depending on the values and signs of the permittivity components, the quasistatic polarizability of the RA sphere exhibits several very different interesting properties, including invisibility, field concentration, resonant singularities, and emergent losses. Special attention is given to the anomalous losses that appear in the case of certain hyperbolic anisotropy values. We show that their validity can be justified in a limiting sense by puncturing the sphere at the origin and adding a small imaginary part into the permittivity components. A hyperbolic RA sphere with very small intrinsic losses can thus have significant effective losses making it an effective absorber. With different choices of permittivities, the RA sphere could also perform as a cloak or a sensor. The Mie scattering results by an RA sphere are used to justify the quasistatic calculations. It is shown that in the small parameter limit the absorption efficiency of an RA sphere is nonzero for certain lossless hyperbolic anisotropies. The absorption and scattering efficiencies agree with the quasistatic calculations fairly well for spheres with size parameters up to 1/3.

  13. Monte Carlo Code System for Calculation of Multiple Scattering of Neutrons in the Resonance Region.

    1983-01-25

    Version 00 MCRTOF systematically calculates capture and scattering probabilities for neutrons incident on a material disk, with neutron cross sections calculated from the resonance parameters. Capture, front and rear face scattering, transmission, etc., probabilities are obtained from the average destinations of the incident neutrons.

  14. Parametric resonance enhancement in neutron interferometry and application for the search for non-Newtonian gravity

    SciTech Connect

    Gudkov, Vladimir; Shimizu, Hirohiko M.; Greene, Geoffrey L.

    2011-02-15

    The parametric resonance enhancement of the phase of neutrons due to non-Newtonian anomalous gravitation is considered. The existence of such resonances is confirmed by numerical calculations. A possible experimental scheme for observing this effect is discussed based on an existing neutron interferometer design.

  15. Parametric resonance enhancement in neutron interferometry and application for the search for non-Newtonian gravity

    SciTech Connect

    Greene, Geoffrey L; Gudkov, Vladimir; Shimizu, Hirohiko M.

    2011-01-01

    The parametric resonance enhancement of the phase of neutrons due to non-Newtonian anomalous gravitation is considered. The existence of such resonances is confirmed by numerical calculations. A possible experimental scheme for observing this effect is discussed based on an existing neutron interferometer design.

  16. Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    NASA Astrophysics Data System (ADS)

    Vudyasetu, Praveen K.; Camacho, Ryan M.; Howell, John C.

    2010-11-01

    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates.

  17. Neutron absorption of Al-Si-Mg-B4C composite

    NASA Astrophysics Data System (ADS)

    Abdullah, Yusof; Ibrahim, Anis Syukriah; Daud, Abdul Razak; Yusof, Mohd Reusmaazran

    2016-01-01

    Al-Si-Mg-B4C composites containing 2-8 wt% of B4C were prepared by stir casting technique. Homogenization treatment was carried out at temperatures of 540°C for 4 houra and followed by ageing at 180°C for 2 houra. Microstructure and phase identification were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Neutron absorption study was investigated using neutron source Am/Be241. The result indicated that higher B4C content improved the neutron absorption property. Meanwhile homogeneity of the composite was increased by ageing processes. This composite is potential to be used as neutron shielding material especially for nuclear reactor application.

  18. Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector.

    PubMed

    Li, Yu; Poon, Andrew W

    2015-01-12

    We propose and demonstrate active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption (DSA)-based photodetector (PD) for optical interconnects. We integrate an electro-optic (EO) tuner and a thermo-optic (TO) tuner on the microring, which are both feedback-controlled following a photocurrent threshold-detection method. Our BF(2)-ion-implanted DSA-based PIN PD exhibits a cavity-enhanced sub-bandgap responsivity at 1550 nm of 3.3 mA/W upon -2 V, which is 550-fold higher than that exhibited by an unimplanted PIN diode integrated on the same microring. Our experiment reveals active stabilization of the resonance wavelength within a tolerance of 0.07 nm upon a step increment of the stage temperature by 7 °C. Upon temperature modulations between 23 °C and 32 °C and between 18 °C and 23 °C, the actively stabilized resonance exhibits a transmission power fluctuation within 2 dB. We observe open eye diagrams at a data transmission rate of up to 30 Gb/s under the temperature modulations. PMID:25835682

  19. Optical absorption of neutron-irradiated silica fibers

    SciTech Connect

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L.

    1996-10-01

    Induced-loss spectra of silica-based optical fibers exposed to high (10{sup 23} n-m{sup {minus}2}) and low (10{sup 21} n-m{sup {minus}2}) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped ({approximately}4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide{trademark} and superguide{trademark} fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval {approximately}800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval {approximately}800 to 2000 nm, and the high-OH content fibers are the choice for the interval {approximately}400 to 800 nm.

  20. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  1. Broadening of absorption band by coupled gap plasmon resonances in a near-infrared metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Cong, Jiawei; Yao, Hongbing; Gong, Daolei; Chen, Mingyang; Tong, Yanqun; Fu, Yonghong; Ren, Naifei

    2016-07-01

    We propose a strategy to broaden the absorption band of the conventional metamaterial absorber by incorporating alternating metal/dielectric films. Up to 7-fold increase in bandwidth and ∼95% average absorption are achieved arising from the coupling of induced multiple gap plasmon resonances. The resonance coupling is analytically demonstrated using the coupled oscillator model, which reveals that both the optimal coupling strength and the resonance wavelength matching are required for the enhancement of absorption bandwidth. The presented multilayer design is easily fabricated and readily implanted to other absorber configurations, offering a practical avenue for applications in photovoltaic cells and thermal emitters.

  2. SUGGEL: A Program Suggesting the Orbital Angular Momentum of a Neutron Resonance from the Magnitude of its Neutron Width

    SciTech Connect

    Oh, S.Y.

    2001-02-02

    The SUGGEL computer code has been developed to suggest a value for the orbital angular momentum of a neutron resonance that is consistent with the magnitude of its neutron width. The suggestion is based on the probability that a resonance having a certain value of g{Gamma}{sub n} is an l-wave resonance. The probability is calculated by using Bayes' theorem on the conditional probability. The probability density functions (pdf's) of g{Gamma}{sub n} for up to d-wave (l=2) have been derived from the {chi}{sup 2} distribution of Porter and Thomas. The pdf's take two possible channel spins into account. This code is a tool which evaluators will use to construct resonance parameters and help to assign resonance spin. The use of this tool is expected to reduce time and effort in the evaluation procedure, since the number of repeated runs of the fitting code (e.g., SAMMY) may be reduced.

  3. A multiple-resonator approach for broadband light absorption in a single layer of nanostructured graphene.

    PubMed

    Yi, Soongyu; Zhou, Ming; Shi, Xi; Gan, Qiaoqiang; Zi, Jian; Yu, Zongfu

    2015-04-20

    The interaction between two-dimensional (2D) materials and light is rather weak due to their ultrathin thickness. In order for these emerging 2D materials to achieve performances that are comparable to those of conventional optoelectronic devices, the light-material interaction must be significantly enhanced. An effective way to enhance the interaction is to use optical resonances. Efficient light absorption has been demonstrated in a single layer of graphene based on a variety of resonators. However, the bandwidth of the absorption enhancement is always narrow, which limits its application for optoelectronic devices. In order to broaden the enhancement of light-material interaction, here we propose a multiple-resonator approach based on nanostructured graphene. These nanostructures having different geometry support resonances at different frequencies. Owing to their deep subwavelength sizes, graphene resonators can be closely packed in space, resulting in a high optical density of states, which enables the broadband light absorption.

  4. Observation of neutron-unbound resonant states in 23O and 28Ne

    NASA Astrophysics Data System (ADS)

    Novak, John; Quinn, Steve; Strongman, Michael; Mosby, Shea; Spyrou, Artemis; Baumann, Thomas; Thoennessen, Michael

    2009-10-01

    The decay energy spectra of neutron-rich 23O and 28Ne were measured. The isotopes were produced in stripping reactions from a 85MeV/u 29Na beam on a beryllium target. Neutrons were measured in coincidence with light neutron-rich fragments produced in stripping reactions from an 85MeV/u 29Na beam on a beryllium target. The neutrons were detected with the Modular Neutron Array (MoNA) and the fragments were analyzed with the MSU/FSU Sweeper magnet system. Low-energy resonances close to the neutron-separation energies were observed in both system. The results for 23O agrees with a previous measurementfootnotetextA. Schiller et al., Phys. Rev. Lett. 99 (2007) 112501 and the resonance in 28Ne was observed for the first time.

  5. A neutron resonance capture analysis experimental station at the ISIS spallation source.

    PubMed

    Pietropaolo, Antonino; Gorini, Giuseppe; Festa, Giulia; Reali, Enzo; Grazzi, Francesco; Schooneveld, Erik M

    2010-09-01

    Neutron resonance capture analysis (NRCA) is a nuclear technique that is used to determine the elemental composition of materials and artifacts (e.g., bronze objects) of archaeological interest. NRCA experiments are mostly performed at the GELINA facility in Belgium, a pulsed neutron source operating with an electron linear accelerator. Very intense fluxes of epithermal neutrons are also provided by spallation neutron sources, such as the ISIS spallation neutron source in the United Kingdom. In the present study, the suitability of the Italian Neutron Experimental Station (INES) beam line for NRCA measurements is assessed using a compact (n, γ) resonance detector made of a Yttrium-Aluminum-Perovskite (YAP) scintillation crystal coupled with a silicon photomultiplier (SiPM) readout. The measurements provided a qualitative recognition of the composition of the standard sample, a lower limit for the sensitivity for NRCA for almost-in-traces elements, and an estimation of the relative isotopic concentration in the sample.

  6. Observation of a two-neutron cascade from a resonance in O24

    NASA Astrophysics Data System (ADS)

    Hoffman, C. R.; Baumann, T.; Brown, J.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Hinnefeld, J. D.; Mosby, S.; Peters, W. A.; Rogers, W. F.; Schiller, A.; Snyder, J.; Spyrou, A.; Tabor, S. L.; Thoennessen, M.

    2011-03-01

    A new resonance having a relative decay energy of ~0.6 MeV has been observed above the two-neutron separation energy in O24 at an excitation energy of ~7.5 MeV. The new level was found to directly feed the first excited state in O23, an E=0.045(2)-MeV resonance, through the measurement of neutron-neutron correlations. Energy level comparisons with O23 suggest that this new level in O24 is dominated by an unpaired neutron in the ν0d3/2 single-particle orbital coupled to a single hole in the ν0d5/2 single-particle orbital. Establishment of this two-neutron discrimination technique provides a means for investigating high-lying excited states in neutron-rich nuclei.

  7. Using the {delta}{sub 3} statistic to test for missed levels in neutron resonance data

    SciTech Connect

    Mulhall, Declan

    2009-03-31

    The {delta}{sub 3}(L) statistic is studied as a possible tool to detect missing levels in the neutron resonance data of odd-A nuclei. A {delta}{sub 3}(L) analysis of neutron resonance data is compared with the results of a maximum likelihood method applied to the level spacing distribution. The {delta}{sub 3}(L) statistic compares favorably with the level spacing distribution as a tool to gauge the completeness of the data.

  8. Thermal neutron cross sections and resonance integrals for the 1994 handbook of chemistry and physics

    SciTech Connect

    Holden, N.E.

    1994-12-31

    A re-evaluation of all thermal neutron cross sections and neutron resonance integrals has been performed, utilizing the previous database of the ``Barn Book`` and all of the more recently published experiments. Only significant changes or previously undetermined values are recorded in this report. The source for each value is also recorded in the accompanying table.

  9. Absorption and photoluminescence study of Al 2O 3 single crystal irradiated with fast neutrons

    NASA Astrophysics Data System (ADS)

    Izerrouken, M.; Benyahia, T.

    2010-10-01

    Colour centers formation in Al 2O 3 by reactor neutrons were investigated by optical measurements (absorption and photoluminescence). The irradiation's were performed at 40 °C, up to fast neutron ( E n > 1.2 MeV) fluence of 1.4 × 10 18 n cm -2. After irradiation the coloration of the sample increases with the neutron fluence and absorption band at about 203, 255, 300, 357 and 450 nm appear in the UV-visible spectrum. The evolution of each absorption bands as a function of fluence and annealing temperature is presented and discussed. The results indicate that at higher fluence and above 350 °C the F + center starts to aggregate to F center clusters (F 2, F 2+ and F22+). These aggregates disappear completely above 650 °C whereas the F and F + centers persist even after annealing at 900 °C. It is clear also from the results that the absorption band at 300 nm is due to the contribution of both F 2 center and interstitial Ali+ ions.

  10. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  11. The pygmy quadrupole resonance and neutron-skin modes in 124Sn

    NASA Astrophysics Data System (ADS)

    Spieker, M.; Tsoneva, N.; Derya, V.; Endres, J.; Savran, D.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Lagoyannis, A.; Lenske, H.; Pietralla, N.; Popescu, L.; Scheck, M.; Schlüter, F.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.

    2016-01-01

    We present an extensive experimental study of the recently predicted pygmy quadrupole resonance (PQR) in Sn isotopes, where complementary probes were used. In this study, (α ,α‧ γ) and (γ ,γ‧) experiments were performed on 124Sn. In both reactions, Jπ =2+ states below an excitation energy of 5 MeV were populated. The E2 strength integrated over the full transition densities could be extracted from the (γ ,γ‧) experiment, while the (α ,α‧ γ) experiment at the chosen kinematics strongly favors the excitation of surface modes because of the strong α-particle absorption in the nuclear interior. The excitation of such modes is in accordance with the quadrupole-type oscillation of the neutron skin predicted by a microscopic approach based on self-consistent density functional theory and the quasiparticle-phonon model (QPM). The newly determined γ-decay branching ratios hint at a non-statistical character of the E2 strength, as it has also been recently pointed out for the case of the pygmy dipole resonance (PDR). This allows us to distinguish between PQR-type and multiphonon excitations and, consequently, supports the recent first experimental indications of a PQR in 124Sn.

  12. Three-photon-absorption resonance for all-optical atomic clocks

    SciTech Connect

    Zibrov, Sergei; Novikova, Irina; Phillips, David F.; Taichenachev, Aleksei V.; Yudin, Valeriy I.; Walsworth, Ronald L.; Zibrov, Alexander S.

    2005-07-15

    We report an experimental study of an all-optical three-photon-absorption resonance (known as an 'N resonance') and discuss its potential application as an alternative to atomic clocks based on coherent population trapping. We present measurements of the N-resonance contrast, width and light shift for the D{sub 1} line of {sup 87}Rb with varying buffer gases, and find good agreement with an analytical model of this resonance. The results suggest that N resonances are promising for atomic clock applications.

  13. Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G

    2016-07-01

    In this work, coherent perfect absorption of sound waves induced by the nonlinear response of a Helmholtz Resonator side loaded to a waveguide, is reported. It is shown that this two-port system can perfectly absorb two high amplitude symmetric incident waves under a certain condition. For the one-sided incidence configuration, this condition leads to an absorption equal to 0.5. Experiments verify these results and are in agreement with an analytical nonlinear impedance model for the resonator. The nonlinear control of perfect absorption opens new possibilities in the design of high amplitude sound attenuators for aero-engine applications. PMID:27475220

  14. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    PubMed Central

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  15. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.

    PubMed

    Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction. PMID:26781863

  16. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators

    NASA Astrophysics Data System (ADS)

    Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V.

    2016-01-01

    Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.

  17. Total absorption {gamma}-ray spectroscopy of beta delayed neutron emitters

    SciTech Connect

    Valencia, E.; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, M. D.; Molina, F.; Estevez, E.; Rubio, B.; Perez, A.; Rice, S.; Bowry, M.; Gelletly, W.; Podolyak, Zs.; Regan, P. H.; Farrelly, G. F.; Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Bui, V. M.; and others

    2013-06-10

    Preliminary results of the data analysis of the beta decay of {sup 94}Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.

  18. Total absorption γ-ray spectroscopy of beta delayed neutron emitters

    NASA Astrophysics Data System (ADS)

    Valencia, E.; Algora, A.; Tain, J. L.; Rice, S.; Agramunt, J.; Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Jordan, M. D.; Molina, F.; Estevez, E.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Eronen, T.; Garcia, A.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Kondev, F. G.; Martinez, T.; Moore, I.; Rissanen, J.; Ńystö, J.; Penttilä, H.; Kankainen, A.; Rubio, B.; Gelletly, W.; Perez, A.; Podolyak, Zs.; Regan, P. H.; Farrelly, G. F.; Weber, C.; Mendoza, E.; Igisol People

    2013-06-01

    Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.

  19. Control of acoustic absorption in one-dimensional scattering by resonant scatterers

    NASA Astrophysics Data System (ADS)

    Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.

    2015-12-01

    We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.

  20. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  1. Development of neutron resonance spin flipper for high resolution NRSE spectrometer

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Masaaki; Hino, Masahiro; Kawabata, Yuji; Hayashida, Hirotoshi; Tasaki, Seiji; Maruyama, Ryuji; Yamazaki, Dai; Ebisawa, Toru; Torikai, Naoya

    2006-11-01

    Neutron spin echo (NSE) is one of the techniques with the highest energy resolution for measurement of quasi-elastic scattering. In neutron resonance spin echo (NRSE), two separated neutron resonance spin flippers (RSFs) replace a homogeneous static magnetic field for spin precession in a conventional NSE. We have made a new type of RSF with pure aluminum wires in order to reduce the scattering from the surface. Test experiments have been performed at cold neutron beam line MINE1 at JRR-3M reactor in JAERI and the beam line CN3 at KUR The spin-flip probability was higher than 0.95 at a neutron wavelength of 0.81 nm and a RSF frequency of 100 kHz.

  2. Formalism for neutron cross section covariances in the resonance region using kernel approximation

    SciTech Connect

    Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.

    2010-04-09

    We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).

  3. Relativistic effective interaction for nuclei, giant resonances, and neutron stars

    SciTech Connect

    Fattoyev, F. J.; Piekarewicz, J.; Horowitz, C. J.; Shen, G.

    2010-11-15

    Nuclear effective interactions are useful tools in astrophysical applications especially if one can guide the extrapolations to the extremes regions of isospin and density that are required to simulate dense, neutron-rich systems. Isospin extrapolations may be constrained in the laboratory by measuring the neutron skin thickness of a heavy nucleus, such as {sup 208}Pb. Similarly, future observations of massive neutron stars will constrain the extrapolations to the high-density domain. In this contribution we introduce a new relativistic effective interaction that is simultaneously constrained by the properties of finite nuclei, their collective excitations, and neutron-star properties. By adjusting two of the empirical parameters of the theory, one can efficiently tune the neutron skin thickness of {sup 208}Pb and the maximum neutron-star mass. We illustrate this procedure in response to the recent interpretation of x-ray observations by Steiner, Lattimer, and Brown that suggests that the FSUGold effective interaction predicts neutron-star radii that are too large and a maximum stellar mass that is too small. The new effective interaction is fitted to a neutron skin thickness in {sup 208}Pb of only R{sub n}-R{sub p}=0.16 fm and yields a moderately large maximum neutron-star mass of 1.94 M{sub {center_dot}}.

  4. Spin and parity assignments for Mo94,95 neutron resonances

    NASA Astrophysics Data System (ADS)

    Sheets, S. A.; Agvaanluvsan, U.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Krtička, M.; Jandel, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W. E.; Reifarth, R.; Rundberg, R. S.; Sharapov, E. I.; Tomandl, I.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.

    2007-12-01

    The γ rays following the Mo94,95(n,γ) reactions were measured as a function of incident neutron energy by the time-of-flight method with the DANCE (Detector for Advanced Neutron Capture Experiments) array of 160 BaF2 scintillation detectors at the Los Alamos Neutron Science Center. The targets were enriched samples: 91.59% Mo94 and 96.47% Mo95. The γ-ray multiplicities and energy spectra for different multiplicities were measured in s- and p-wave resonances up to En=10 keV for Mo94 and up to En=2 keV for Mo95. Definite spins and parities were assigned in Mo96 for about 60% of the resonances, and tentative spins and parities were assigned for the remaining resonances. In Mo95 the parities were determined for the observed resonances, confirming previously known assignments.

  5. Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies

    SciTech Connect

    D. L. Chichester; J. W. Sterbentz

    2012-07-01

    Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary

  6. A Study on the Excitation and Resonant Absorption of Coronal Loop Kink Oscillations

    NASA Astrophysics Data System (ADS)

    Yu, Dae Jung; Van Doorsselaere, Tom

    2016-11-01

    We study theoretically the issue of externally driven excitations of standing kink waves and their resonant absorption into torsionally polarized m = 1 waves in the coronal loops in pressureless plasmas. We use the ideal MHD equations, for which we develop an invariant imbedding method available in cylindrical geometry. We assume a sinusoidal density profile at the loop boundary where the density inside the loop is lower than the outside and vice versa. We present field distributions for these two cases and find that they have similar behaviors. We compare the results for the overdense loops, which describe the usual coronal loops, with the analytical solutions of Soler et al. obtained using the Frobenius method. Our results show some similarity for thin nonuniform layers but deviate a lot for thick nonuniform layers. For the first case, which describes the wave train propagation in funnels, we find that resonant absorption depends crucially on the thickness of the nonuniform boundary, loop length, and density contrast. The resonant absorption of the kink mode is dominant when the loop length is sufficiently larger compared with its radius (thin loop). The behavior of the far-field pattern of the scattered wave by the coronal loop is closely related to that of the resonant absorption. For the mode conversion phenomena in inhomogeneous plasmas, a certain universal behavior of the resonant absorption is found for the first time. We expect that the main feature may also apply to the overdense loops and discuss its relation to the damping rate.

  7. Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires.

    PubMed

    Massiot, Inès; Colin, Clément; Sauvan, Christophe; Lalanne, Philippe; Cabarrocas, Pere Roca I; Pelouard, Jean-Luc; Collin, Stéphane

    2013-05-01

    We propose a design to confine light absorption in flat and ultra-thin amorphous silicon solar cells with a one-dimensional silver grating embedded in the front window of the cell. We show numerically that multi-resonant light trapping is achieved in both TE and TM polarizations. Each resonance is analyzed in detail and modeled by Fabry-Perot resonances or guided modes via grating coupling. This approach is generalized to a complete amorphous silicon solar cell, with the additional degrees of freedom provided by the buffer layers. These results could guide the design of resonant structures for optimized ultra-thin solar cells. PMID:24104424

  8. Impact of MIE-Resonances on the Atmospheric Absorption of Water Clouds

    NASA Technical Reports Server (NTRS)

    Wiscombe, W.; Kinne, S.; Nussenzveig, H.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Clouds strongly modulate radiative transfer processes in the Earth's atmosphere. Studies, which simulate bulk properties of clouds, such as absorption, require methods that accurately account for multiple scattering among individual cloud particles. Multiple scattering processes are well described by MIE-theory, if interacting particles have a spherical shape. This is a good assumption for water droplets. Thus, simulations for water clouds (especially for interactions with solar radiation) usually apply readily available MIE-codes. The presence of different drop-sizes, however, necessitates repetitive calculations for many sizes. The usual representation by a few sizes is likely to miss contributions from densely distributed, sharp resonances. Despite their usually narrow width, integrated over the entire size-spectrum of a cloud droplet distribution, the impact of missed resonances could add up. The consideration of these resonances tends to increase cloud extinction and cloud absorption. This mechanism for a larger (than by MIE-methods predicted) solar absorption has the potential to explain observational evidence of larger than predicted cloud absorption at solar wavelengths. The presentation will address the absorption impact of added resonances for typical properties of water clouds (e.g. drop size distributions, drop concentrations and cloud geometry). Special attention will be given to scenarios with observational evidence of law than simulated solar absorption; particularly if simultaneous measurements of cloud micro- and macrophysical properties are available.

  9. Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star.

    PubMed

    Cottam, J; Paerels, F; Mendez, M

    2002-11-01

    The fundamental properties of neutron stars provide a direct test of the equation of state of cold nuclear matter, a relationship between pressure and density that is determined by the physics of the strong interactions between the particles that constitute the star. The most straightforward method of determining these properties is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere. The equation of state implies a mass-radius relation, while a measurement of the gravitational redshift at the surface of a neutron star provides a direct constraint on the mass-to-radius ratio. Here we report the discovery of significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO0748-676. We identify the most significant features with the Fe XXVI and XXV n = 2-3 and O VIII n = 1-2 transitions, all with a redshift of z = 0.35, identical within small uncertainties for the respective transitions. For an astrophysically plausible range of masses (M approximately 1.3-2.0 solar masses; refs 2-5), this value is completely consistent with models of neutron stars composed of normal nuclear matter, while it excludes some models in which the neutron stars are made of more exotic matter. PMID:12422210

  10. Neutron induced damage in reactor pressure vessel steel: An X-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Cammelli, S.; Degueldre, C.; Bertsch, J.; Gavillet, D.

    2009-03-01

    The radiation damage produced in reactor pressure vessel (RPV) steels during neutron irradiation is a long-standing problem of considerable practical interest. In this study, an extended X-ray absorption fine structure (EXAFS) spectroscopy has been applied at Cu, Ni and Mn K-edges to systematically investigate neutron induced radiation damage to the metal-site bcc structure of RPV steels, irradiated with neutrons in the fluence range from 0.85 to 5.0 × 1019 cm-2. An overall similarity of Cu, Ni and Mn atomic environment in the iron matrix is observed. The radial distribution functions (RDFs), derived from EXAFS data have been found to evolve continuously as a function of neutron fluence describing the atomic-scale structural modifications in RPVs by neutron irradiations. From the pristine data, long range order beyond the first- and second-shell is apparent in the RDF spectra. In the irradiated specimens, all near-neighbour peaks are greatly reduced in magnitude, typical of damaged material. Prolonged annealing leads annihilation of point defects to give rise to an increase in the coordination numbers of near-neighbour atomic shells approaching values close to that of non-irradiated material, but does not suppress the formation of nano-sized Cu and/or Ni-rich-precipitates. Total amount of radiation damage under a given irradiation condition has been determined. The average structural parameters estimated from the EXAFS data are presented and discussed.

  11. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  12. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  13. Decoupling and tuning the light absorption and scattering resonances in metallic composite nanostructures.

    PubMed

    Danan, Yossef; Ramon, Yehonatan; Azougi, Jonathan; Douplik, Alexandre; Zalevsky, Zeev

    2015-11-01

    Utilizing the localized surface plasmon resonance (LSPR) effect of metallic nanoparticles enables their usage as contrast agents in a variety of applications for medical diagnostics and treatment. Those applications can use both the very strong absorption and scattering properties of the metallic nanoparticle due to their LSPR effects. There are certain applications where domination of the scattering over absorption or vice versa would be an advantage. However, the scattering and absorption resonance peaks have practically the same spectral location for solid noble metal nanoparticles at a certain domination of one over the other. In this paper we present gold nanoparticles coated with silicon that switches the order between the scattering and the absorption magnitude at the resonance peak by up to 34% in scattering-absorption ratio and tune the plasmon resonance over the spectrum by up to 56nm. This is obtained by modifying the refractive index of the silicon coating of the nanoparticle by illuminating it with a pumping light due to the plasma dispersion effect in silicon.

  14. Neutron unbound resonances cataloged by isotope and invariant mass measurements for nuclei Z = 1-12

    NASA Astrophysics Data System (ADS)

    Havens, Elizabeth; Finck, Joseph; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2015-10-01

    Prior to 2014, no comprehensive study had been undertaken to compile experimental results from neutron unbound spectroscopy using invariant mass measurements, gamma resolutions and half-lives. Through the collaborative efforts of Central Michigan University, Hampton University and the NSCL, a project was initiated to catalog all unbound resonances in light nuclei (Z = 1-12). Unbound resonances were characterized by having a confirmed neutron decay branch and/or an energy level greater than the neutron binding energy listed for that isotope, according to either the NNDC's ENSDF or XUNDL and the referred journals therein. This was initially compiled in July 2014 and presented in October of that year. Recent discoveries and updates to NNDC have added ten isotopes and their resonances. Additionally, various corrections to previously compiled resonances have been made and equivalent evaluated and unevaluated invariant mass measurements have been consolidated into single entries. The neutron separation energy is noted for each isotope. The isotopes in which unbound resonances occur have been identified and, if known, each unbound resonance's gamma resolution, half-life, method of production and journal reference were also determined.

  15. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces

    NASA Astrophysics Data System (ADS)

    Pala, Ragip A.; Butun, Serkan; Aydin, Koray; Atwater, Harry A.

    2016-09-01

    Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelengthscale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays of silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm2 is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. It is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers.

  16. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.

    PubMed

    Pala, Ragip A; Butun, Serkan; Aydin, Koray; Atwater, Harry A

    2016-01-01

    Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelengthscale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays of silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm(2) is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. It is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers. PMID:27641965

  17. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.

    PubMed

    Pala, Ragip A; Butun, Serkan; Aydin, Koray; Atwater, Harry A

    2016-09-19

    Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelengthscale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays of silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm(2) is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. It is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers.

  18. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces

    PubMed Central

    Pala, Ragip A.; Butun, Serkan; Aydin, Koray; Atwater, Harry A.

    2016-01-01

    Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelengthscale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays of silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm2 is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. It is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers. PMID:27641965

  19. A Drabkin-type spin resonator as tunable neutron beam monochromator

    NASA Astrophysics Data System (ADS)

    Piegsa, F. M.; Ries, D.; Filges, U.; Hautle, P.

    2015-09-01

    A Drabkin-type spin resonator was designed and successfully implemented at the multi-purpose beam line BOA at the spallation neutron source SINQ at the Paul Scherrer Institute. The device selectively acts on the magnetic moment of neutrons within an adjustable velocity band and hence can be utilized as a tunable neutron beam monochromator. Several neutron time-of-flight (TOF) spectra have been recorded employing various settings in order to characterize its performance. In a first test application the velocity dependent transmission of a beryllium filter was determined. In addition, we demonstrate that using an exponential current distribution in the spin resonator coil the side-maxima in the TOF spectra usually associated with a Drabkin setup can be strongly suppressed.

  20. Neutron resonance spin flippers: Static coils manufactured by electrical discharge machining

    SciTech Connect

    Martin, N.; Kredler, L.; Häußler, W.; Wagner, J. N.; Dogu, M.; Fuchs, C.; Böni, P.

    2014-07-15

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  1. Neutron resonance spin flippers: static coils manufactured by electrical discharge machining.

    PubMed

    Martin, N; Wagner, J N; Dogu, M; Fuchs, C; Kredler, L; Böni, P; Häußler, W

    2014-07-01

    Radiofrequency spin flippers (RFSF) are key elements of Neutron Resonance Spin Echo (NRSE) spectrometers, which allow performing controlled manipulations of the beam polarization. We report on the design and test of a new type of RFSF which originality lies in the new manufacturing technique for the static coil. The largely automated procedure ensures reproducible construction as well as an excellent homogeneity of the neutron magnetic resonance condition over the coil volume. Two salient features of this concept are the large neutron window and the closure of the coil by a μ-metal yoke which prevents field leakage outside of the coil volume. These properties are essential for working with large beams and enable new applications with coils tilted with respect to the beam axis such as neutron Larmor diffraction or the study of dispersive excitations by inelastic NRSE.

  2. Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam

    SciTech Connect

    Anupriya, J.; Ram, Nibedita; Pattabiraman, M.

    2010-04-15

    We describe a computational and experimental study on Hanle electromagnetically induced transparency and absorption resonance line shapes with a Laguerre Gaussian (LG) beam. It is seen that the LG beam profile brings about a significant narrowing in the line shape of the Hanle resonance and ground-state Zeeman coherence in comparison to a Gaussian beam. This narrowing is attributed to the azimuthal mode index of the LG field.

  3. Optimized {gamma}-Multiplicity Based Spin Assignments of s-Wave Neutron Resonances

    SciTech Connect

    Becvar, F.; Koehler, Paul Edward; Krticka, Milan; Mitchell, G. E.; Ullmann, J. L.

    2011-01-01

    The multiplicity of -ray emission following neutron capture at isolated resonances carries valuable information on the resonance spin. Several methods utilizing this information have been developed. The latest method was recently introduced for analyzing the data from time-of-flight measurements with 4 -calorimetric detection systems. The present paper describes a generalization of this method. The goal is the separation of the -emission yields belonging to the two neutron capturing state spins of isolated (or even unresolved) s-wave neutron resonances on targets with non-zero spin. The formalism for performing this separation is described and then tested on artificially generated data. This new method was applied to the -multiplicity data obtained for the 147Sm(n, )148Sm reaction using the DANCE detector system at the LANSCE facility at Los Alamos National Laboratory. The analyzing power of the upgraded method is supported by combined dicebox and geant4 simulations of the fluctuation properties of the multiplicity distributions.

  4. The perturbation of backscattered fast neutrons spectrum caused by the resonances of C, N and O for possible use in pyromaterial detection

    NASA Astrophysics Data System (ADS)

    Abedin, Ahmad Firdaus Zainal; Ibrahim, Noorddin; Zabidi, Noriza Ahmad; Abdullah, Abqari Luthfi Albert

    2015-04-01

    Neutron radiation is able to determine the signature of land mine detection based on backscattering energy spectrum of landmine. In this study, the Monte Carlo simulation of backscattered fast neutrons was performed on four basic elements of land mine; hydrogen, nitrogen, oxygen and carbon. The moderation of fast neutrons to thermal neutrons and their resonances cross-section between 0.01 eV until 14 MeV were analysed. The neutrons energies were divided into 29 groups and ten million neutrons particles histories were used. The geometries consist of four main components: neutrons source, detectors, landmine and soil. The neutrons source was placed at the origin coordinate and shielded with carbon and polyethylene. Americium/Beryllium neutron source was placed inside lead casing of 1 cm thick and 2.5 cm height. Polyethylene was used to absorb and disperse radiation and was placed outside the lead shield of width 10 cm and height 7 cm. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of Helium-3 was used for neutron detection as it has high absorption cross section for thermal neutrons. For the anomaly, the physical is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. The results show that the energy spectrum for the four basic elements of landmine with specific pattern which can be used as indication for the presence of landmines.

  5. The perturbation of backscattered fast neutrons spectrum caused by the resonances of C, N and O for possible use in pyromaterial detection

    SciTech Connect

    Abedin, Ahmad Firdaus Zainal Ibrahim, Noorddin; Zabidi, Noriza Ahmad; Abdullah, Abqari Luthfi Albert

    2015-04-29

    Neutron radiation is able to determine the signature of land mine detection based on backscattering energy spectrum of landmine. In this study, the Monte Carlo simulation of backscattered fast neutrons was performed on four basic elements of land mine; hydrogen, nitrogen, oxygen and carbon. The moderation of fast neutrons to thermal neutrons and their resonances cross-section between 0.01 eV until 14 MeV were analysed. The neutrons energies were divided into 29 groups and ten million neutrons particles histories were used. The geometries consist of four main components: neutrons source, detectors, landmine and soil. The neutrons source was placed at the origin coordinate and shielded with carbon and polyethylene. Americium/Beryllium neutron source was placed inside lead casing of 1 cm thick and 2.5 cm height. Polyethylene was used to absorb and disperse radiation and was placed outside the lead shield of width 10 cm and height 7 cm. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of Helium-3 was used for neutron detection as it has high absorption cross section for thermal neutrons. For the anomaly, the physical is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. The results show that the energy spectrum for the four basic elements of landmine with specific pattern which can be used as indication for the presence of landmines.

  6. Atmospheric absorption versus deep ultraviolet (pre-)resonance in Raman lidar measurements

    NASA Astrophysics Data System (ADS)

    Hallen, Hans D.; Willitsford, Adam H.; Neely, Ryan R.; Chadwick, C. Todd; Philbrick, C. Russell

    2016-05-01

    The Raman scattering of several liquids and solid materials has been investigated near the deep ultraviolet absorption features corresponding to the electron energy states of the chemical species present. It is found to provide significant enhancement, but is always accompanied by absorption due to that or other species along the path. We investigate this trade-off for water vapor, although the results for liquid water and ice will be quantitatively very similar. An optical parametric oscillator (OPO) was pumped by the third harmonic of a Nd:YAG laser, and the output frequency doubled to generate a tunable excitation beam in the 215-600 nm range. We use the tunable laser excitation beam to investigate pre-resonance and resonance Raman spectroscopy near an absorption band of ice. A significant enhancement in the Raman signal was observed. The A-term of the Raman scattering tensor, which describes the pre-resonant enhancement of the spectra, is also used to find the primary observed intensities as a function of incident beam energy, although a wide resonance structure near the final-state-effect related absorption in ice is also found. The results suggest that use of pre-resonant or resonant Raman LIDAR could increase the sensitivity to improve spatial and temporal resolution of atmospheric water vapor measurements. However, these shorter wavelengths also exhibit higher ozone absorption. These opposing effects are modeled using MODTRAN for several configurations relevant for studies of boundary layer water and in the vicinity of clouds. Such data could be used in studies of the measurement of energy flow at the water-air and cloud-air interface, and may help with understanding some of the major uncertainties in current global climate models.

  7. Coal thickness gauge using RRAS techniques, part 1. [radiofrequency resonance absorption

    NASA Technical Reports Server (NTRS)

    Rollwitz, W. L.; King, J. D.

    1978-01-01

    A noncontacting sensor having a measurement range of 0 to 6 in or more, and with an accuracy of 0.5 in or better is needed to control the machinery used in modern coal mining so that the thickness of the coal layer remaining over the rock is maintained within selected bounds. The feasibility of using the radiofrequency resonance absorption (RRAS) techniques of electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) as the basis of a coal thickness gauge is discussed. The EMR technique was found, by analysis and experiments, to be well suited for this application.

  8. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect

    Häussler, Wolfgang; Kredler, Lukas

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  9. Pygmy dipole resonances as a manifestation of the structure of the neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Tsoneva, N.; Lenske, H.; Stoyanov, Ch.

    2004-02-01

    Dipole excitations in neutron-rich nuclei below the neutron threshold are investigated. The method is based on Hartree-Fock-Bogoliubov (HFB) and Quasiparticle-Phonon Model (QPM) theory. Of our special interest are the properties of the low-lying 1 -Pygmy Resonance and the two-phonon quadrupole-octupole 1 - states in Sn-isotopes including exploratory investigations for the experimentally unknown mass regions. In particular we investigate the evolution of the dipole strength function with the neutron excess. The use of HFB mean-field potentials and s.p. energies is found to provide a reliable extrapolation into the region off stability.

  10. NEUTRON STARS WITH SMALL RADII-THE ROLE OF {Delta} RESONANCES

    SciTech Connect

    Schuerhoff, Torsten; Schramm, Stefan; Dexheimer, Veronica

    2010-11-20

    Recent neutron star observations suggest that the masses and radii of neutron stars may be smaller than previously considered, which would disfavor a purely nucleonic equation of state (EoS). In our model, we use a flavor SU(3) sigma model that includes {Delta} resonances and hyperons in the EoS. We find that if the coupling of the {Delta} resonances to the vector mesons is slightly smaller than that of the nucleons, we can reproduce both the measured mass-radius relationship and the extrapolated EoS.

  11. The measurements of parity violation in resonant neutron-capture reactions

    SciTech Connect

    Sharapov, E.I.; Popov, Y.P. ); Wender, S.A.; Seestrom, S.J.; Bowman, C.D. ); Postma, H. ); Gould, C.R. ); Wasson, A. )

    1990-01-01

    The study of parity violation in total (n,{gamma}) cross sections on {sup 139}La and {sup 117}Sn targets was performed at the LANSCE pulsed neutron source using longitudinally polarized neutrons and a BaF{sub 2} detector. The effect of parity nonconservation in the {sup 139}La(n,{gamma}) reaction for the resonance at E{sub n}=0.73 eV was confirmed. New results for p-wave resonances in the {sup 117}Sn(n, {gamma}) reaction were obtained. A comparison between the capture and transmission techniques is presented. 12 refs., 5 figs., 1 tab.

  12. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    SciTech Connect

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  13. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.; Cappiello, C.C.; Gardner, S.D.; Hollas, C.L.; Ussery, L.E.; White, J.M.; Zahrt, J.D.; Krauss, R.A.

    1993-12-01

    A-prototype explosives detection system that was developed for experimental evaluation of a nuclear resonance absorption techniques is described. The major subsystems are a proton accelerator and beam transport, high-temperature proton target, an airline-luggage tomographic inspection station, and an image-processing/detection- alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  14. Prototype explosives-detection system based on nuclear-resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.; Cappiello, C.C.; Gardner, S.D.; Hollas, C.L.; Ussery, L.E.; White, J.M.; Zahrt, J.D.; Krauss, R.A.

    1994-06-01

    A prototype explosives-detection system (EDS) that was developed for experimental evaluation of a nuclear-resonance absorption technique is described. The major subsystems are a proton accelerator and beam transport, high-temperature proton target, an airline-luggage tomographic inspection station, and an image-processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  15. Development of self-interrogation neutron resonance densitometry (SINRD) to measure U-235 and Pu-239 content in a PWR spent fuel assembly

    SciTech Connect

    Lafleur, Adrienne M; Charlton, William S; Menlove, Howard O; Swinhoe, Martyn T

    2009-01-01

    The use of Self-Interrogation Neutron Resonance Densitometry (SINRD) to measure the {sup 235}U and {sup 239}Pu content in a PWR spent fuel assembly was investigated via Monte Carlo N-Particle eXtended transport code (MCNPX) simulations. The sensitivity of SINRD is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n, f) reaction peaks in fission chamber. These simulations utilize the {sup 244}Cm spontaneous fission neutrons to self-interrogate the fuel pins. The amount of resonance absorption of these neutrons in the fuel can be measured using {sup 235}U and {sup 239}Pu fission chambers placed adjacent to the assembly. We used ratios of different fission chambers to reduce the sensitivity of the measurements to extraneous material present in fuel. The development of SINRD to measure the fissile content in spent fuel is of great importance to the improvement of nuclear safeguards and material accountability. Future work includes the use of this technique to measure the fissile content in FBR spent fuel and heavy metal product from reprocessing methods.

  16. Neutron resonance parameters in 155Gd measured with the DANCE γ-ray calorimeter array

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Mitchell, G. E.; Agvaanluvsan, U.; Bečvář, F.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Keksis, A. L.; Krtička, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Walker, C. L.

    2012-02-01

    The 155Gd(n,γ) reaction was measured with the DANCE γ-ray calorimeter at the Los Alamos Neutron Science Center. Spins were determined for the s-wave resonances by analysis of the γ-ray multiplicity distributions. The analysis was performed with a pattern recognition method. The resulting level densities for the J=1 and 2 resonances are in qualitative agreement with the expected 2J + 1 dependence. The average s-wave resonance spacing was determined to be D0=1.62 ± 0.15 eV. Analysis of the neutron resonances with the code sammy yielded the s-wave strength function S0=1.99±0.28×10-4 and the average total radiative width Γγ = 120 ± 3 meV.

  17. Neutron Absorption Measurements Constrain Eucrite-Diogenite Mixing in Vesta's Regolith

    NASA Technical Reports Server (NTRS)

    Prettyman, T. H.; Mittlefehldt, D. W.; Feldman, W. C.; Hendricks, J. S.; Lawrence, D. J.; Peplowski, P. N.; Toplis, M. J.; Yamashita, N.; Beck, A.; LeCorre, L.; McCoy, T. J.; McSween, H. Y.; Reedy, R. C.; Titus, T. N.; Mizzon, H.; Reddy, V.; Joy, S. P.; Raymond, C. A.; Russell, C. T.

    2013-01-01

    The NASA Dawn Mission s Gamma Ray and Neutron Detector (GRaND) [1] acquired mapping data during 5 months in a polar, low altitude mapping orbit (LAMO) with approx.460-km mean radius around main-belt asteroid Vesta (264-km mean radius) [2]. Neutrons and gamma rays are produced by galactic cosmic ray interactions and by the decay of natural radioelements (K, Th, U), providing information about the elemental composition of Vesta s regolith to depths of a few decimeters beneath the surface. From the data acquired in LAMO, maps of vestan neutron and gamma ray signatures were determined with a spatial resolution of approx.300 km full-width-at-half-maximum (FWHM), comparable in scale to the Rheasilvia impact basin (approx.500 km diameter). The data from Vesta encounter are available from the NASA Planetary Data System. Based on an analysis of gamma-ray spectra, Vesta s global-average regolith composition was found to be consistent with the Howardite, Eucrite, and Diogenite (HED) meteorites, reinforcing the HED-Vesta connection [2-7]. Further, an analysis of epithermal neutrons revealed variations in the abundance of hydrogen on Vesta s surface, reaching values up to 400 micro-g/g [2]. The association of high concentrations of hydrogen with equatorial, low-albedo surface regions indicated exogenic delivery of hydrogen by the infall of carbonaceous chondrite (CC) materials. This finding was buttressed by the presence of minimally-altered CC clasts in howardites, with inferred bulk hydrogen abundances similar to that found by GRaND, and by studies using data from Dawn s Framing Camera (FC) and VIR instruments [8-10]. In addition, from an analysis of neutron absorption, spatial-variations in the abundance of elements other than hydrogen were detected [2].

  18. Magnetic-dipolar-mode Fano resonances for microwave spectroscopy of high absorption matter

    NASA Astrophysics Data System (ADS)

    Vaisman, G.; Kamenetskii, E. O.; Shavit, R.

    2015-03-01

    The interaction between high absorption matter and microwave radiated energy is a subject of great importance. In particular, this concerns the microwave spectroscopic characterization of biological liquids. The use of effective testing methods to obtain information about physical properties of different liquids on the molecular level is one of the most important problems in biophysics. However, the standard methods based on microwave resonant techniques are not sufficiently suitable for biological liquids because the resonance peak in a resonator with high-loss liquids is so broad that the material parameters cannot be measured correctly. Although molecular vibrations of biomolecules may have microwave frequencies, it is not thought that such resonant coupling is significant due to their low energy compared with thermal energy and the strongly dampening aqueous environment. This paper presents an innovative microwave sensing technique for different types of lossy materials, including biological liquids. The technique is based on the combination of the microwave perturbation method and the Fano resonance effects observed recently in microwave structures with embedded magnetic-dipolar quantum dots. When the frequency of the magnetic dipolar mode (MDM) resonance is not equal to the cavity resonance frequency, one gets Fano transmission intensity. When the MDM resonance frequency is tuned to the cavity resonance frequency, by a bias magnetic field, one observes a Lorentzian line shape. Use of an extremely narrow Lorentzian peak allows exact probing of the resonant frequency of a cavity loaded by a highly lossy material sample. For different kinds of samples, one has different frequencies of Lorentzian peaks. This presents a picture of precise spectroscopic characterization of high absorption matter in microwaves.

  19. Temporal buildup of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    NASA Astrophysics Data System (ADS)

    Valente, P.; Failache, H.; Lezama, A.

    2003-01-01

    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expressions for the transient absorption spectra are given for simple model systems and a model for the calculation of the time-dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time-dependent line shape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb D2 line in an atomic beam experiment.

  20. Separation of scattering and absorption contributions in UV/visible spectra of resonant systems.

    PubMed

    Micali, N; Mallamace, F; Castriciano, M; Romeo, A; Scolaro, L M

    2001-10-15

    Resonance light scattering (RLS) is a phenomenon due to an enhancement of the scattered light in close proximity to an absorption band. The effect is easily detectable in the case of strongly absorbing chromophores, which are able to interact, thus leading to large aggregates (Pasternack, R. F.; Collings, P. J. Science 1995, 269, 935). The measurement of absorption spectra from solutions containing such resonant systems can lead to misleading results. In this paper, a simple method is described to obtain absorption spectra of aggregated species with a fairly good correction of the scattering component. The RLS spectrum, obtained using a common spectrofluorimeter, is correlated to the extinction spectrum of the same sample, allowing for an estimation of the scattering contribution to the total extinction spectrum. The method has been successfully applied both on real samples containing aggregated chromophores, such as porphyrins, chlorophyll a and gold colloids, and by simulating extinction spectra.

  1. In situ Neutron Reflectometry Measurements of Hydrogen Absorption in Thin Metal Films

    NASA Astrophysics Data System (ADS)

    Munter, A. E.; Heuser, B. J.; Guillermo, N. R.

    1996-03-01

    The absorption of hydrogen and deuterium from the gas phase in thin films of Pd has been measured with neutron reflectometry. 500ÅPd films were magnetron sputtered on polished silicon substrates. At room temperature, H and D were observed to absorb into the Pd film at gas pressures of 60 torr and 1 atm respectively. Genetic algorithm fits to the data indicate an expansion of the metal lattice in the direction normal to the surface plane upon uptake. This may be the result of the hydride phase transformation, but the results are inconclusive. Both H and D appear to be preferentially excluded from the film-substrate interface, with a peak in the concentration profile occuring between the air/film interface and the midpoint of the film. Peak concentrations of 0.6 H/Pd and 0.8 D/Pd were determined from the fits. The effect of H absorption appears to be at least partially reversible upon annealing. The discussion will include expansion of the thin films after absorption, depth profiles of the H and D concentrations, and reversibility. Results for H and D absorption in Nb will be presented as well.

  2. Plasmonic resonance absorption spectra in mid-infrared in an array of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Nader Esfahani, Nima; Hendrickson, Joshua R.; Cleary, Justin W.; Walker, Dennis E.; Chen, Kuei-Hsien; Chen, Li-Chyong; Mou, Shin

    2013-12-01

    We experimentally demonstrated graphene plasmon resonant absorption in mid-IR by utilizing an array of graphene nanoribbon resonators on SiO2 substrate. By tuning resonator width we probed the graphene plasmons with λp <= λ0/100 and plasmon resonances as high as 0.240 eV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra revealed plasmon dispersion as well as plasmon damping due to the interaction of graphene plasmons with the surface polar phonons in SiO2 substrate and intrinsic graphene optical phonons. Graphene nanoribbons with varying widths enabled us to identify the damping mechanisms of graphene plasmons and much reduced damping was observed when the plasmon resonance frequencies were close to the substrate polar phonon frequencies. Then, by direct ebeam exposure of graphene nanoresonators, we effectively changed the carrier density and caused red-shift of the plasmon spectra. This work will provide insight into light-sensitive, frequency-tunable photodetectors based on graphene's plasmonic excitations.

  3. Distribution of total radiation widths for neutron resonances of Pt isotopes

    NASA Astrophysics Data System (ADS)

    Koehler, P. E.; Bečvář, F.; Krtička, M.

    2015-05-01

    High quality neutron capture and transmission data were measured on isotopically enriched 192,194,195,196Pt and natural Pt samples at ORELA. R-matrix analysis of this data revealed resonance parameters for 159, 413, 423, 258, and 11 neutron resonances for neutron energies below 5.0, 16.0, 7.5, 16.0, and 5.0 keV for 192,194,195,196,198Pt+n, respectively. Earlier analysis of data on reduced neutron widths, Γ0n, showed that the distributions of Γ0n for 192,194Pt deviate significantly from the Porter-Thomas distribution (PTD) predicted by random matrix theory. In this contribution we report on preliminary results of the analysis of distribution of total radiation widths, Γγ, in 192,194,195,196Pt+n reactions. Comparison of experimental data with predictions made within the nuclear statistical model indicates that standard models of Photon Strength Functions (PSFs) and Nuclear Level Density predict Γγ distributions which are too narrow. We found that satisfactory agreement between experimental and simulated distributions can be obtained only by a strong suppression of the PSFs at low γ-ray energies and/or by violation of the usual assumption that primary transitions from neutron resonances follow the PTD. The shape of PSFs needed for reproduction of our Γγ data also nicely reproduces spectra from several (n,γ) experiments on the neighbor nuclide 198Au.

  4. Thermal neutron absorption cross sections for igneous rocks: Newberry Caldera, Oregon

    SciTech Connect

    Lysne, P.

    1990-01-01

    The thermal neutron absorption cross sections of geologic materials are of first-order importance to the interpretation of pulsed neutron porosity logs and of second-order importance to the interpretation of steady-state porosity logs using dual detectors. Even in the latter case, uncertainties in log response can be excessive whenever formations are encountered that possess absorption properties appreciably greater than the limestones used in most tool calibrations. These effects are of importance to logging operations directed at geothermal applications where formation vary from igneous to sedimentary and which may contain solution-deposited minerals with very large cross-section values. Most measurements of cross-section values for geologic materials have been made for hydrocarbon production applications. Hence, the specimen materials are sedimentary and clean in the sense that they are not altered by geothermal fluids. This investigation was undertaken to measure cross-section values from a sequence of igneous materials obtained from a single hole drilled in an active hydrothermal system. 3 refs., 1 fig.

  5. Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX

    SciTech Connect

    Groitl, F. Quintero-Castro, D. L.; Habicht, K.; Keller, T.

    2015-02-15

    We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due to the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.

  6. Cyclotron resonant scattering in gamma-ray bursts - Line strengths and signature of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Wang, J. C. L.; Wasserman, I.

    1992-01-01

    We explain the relative line strengths in gamma-ray bursts in terms of cyclotron resonant scattering. We describe the line signature of neutron star rotation and discuss the possibility that variations seen in the strengths and widths of the lines in GB780325 and GB870303 are due to rotation.

  7. Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.; Zalewski, Bart F.; Rosenthal, Bruce N.

    2014-01-01

    The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others.

  8. Neutron Resonance Parameters and Covariance Matrix of 239Pu

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Larson, Nancy M

    2008-08-01

    In order to obtain the resonance parameters in a single energy range and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the code SAMMY. The most recent experimental data were analyzed or reanalyzed in the energy range thermal to 2.5 keV. The normalization of the fission cross section data was reconsidered by taking into account the most recent measurements of Weston et al. and Wagemans et al. A full resonance parameter covariance matrix was generated. The method used to obtain realistic uncertainties on the average cross section calculated by SAMMY or other processing codes was examined.

  9. Neutron intensity modulation and time-focusing with integrated Larmor and resonant frequency techniques

    SciTech Connect

    Zhao, Jinkui Hamilton, William A.; Robertson, J. L.; Crow, Lowell; Lee, Sung-Woo; Kang, Yoon W.

    2015-09-14

    The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.

  10. Neutron intensity modulation and time-focusing with integrated Larmor and resonant frequency techniques

    NASA Astrophysics Data System (ADS)

    Zhao, Jinkui; Hamilton, William A.; Lee, Sung-Woo; Robertson, J. L.; Crow, Lowell; Kang, Yoon W.

    2015-09-01

    The analysis of neutron diffraction experiments often assumes that neutrons are elastically scattered from the sample. However, there is growing evidence that a significant fraction of the detected neutrons is in fact inelastically scattered, especially from soft materials and aqueous samples. Ignoring these inelastic contributions gives rise to inaccurate experimental results. To date, there has been no simple method with broad applicability for inelastic signal separation in neutron diffraction experiments. Here, we present a simple and robust method that we believe could be suited for this purpose. We use two radio frequency resonant spin flippers integrated with a Larmor precession field to modulate the neutron intensity and to encode the inelastic scattering information into the neutron data. All three components contribute to the spin encoding. The Larmor field serves several additional purposes. Its usage facilitates neutron time-focusing, eliminates the need for stringent magnetic shielding, and allows for compact setups. The scheme is robust, simple, and flexible. We believe that, with further improvements, it has the potential of adding inelastic signal discrimination capabilities to many existing diffraction instruments in the future.

  11. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  12. Electron paramagnetic resonance and low-field microwave absorption in the manganese-gallium oxide

    NASA Astrophysics Data System (ADS)

    Montiel, H.; Alvarez, G.; Conde-Gallardo, A.; Zamorano, R.

    2015-07-01

    Microwave absorption measurements in MnGa2O4 powders are carried out at X-band (8.8-9.8 GHz) in 92-296 K temperature range. For all temperatures, the electron paramagnetic resonance (EPR) spectra show a single broad line due to Mn2+ ions. Temperature dependence of the EPR parameters: the peak-to-peak linewidth (ΔHpp), the integrated intensity (IEPR) and the g-factor, suggests the presence of magnetic fluctuations that precede to antiferromagnetic ordering at low temperature. Additionally, the low-field microwave absorption (LFMA) is used to give further information on this material, giving also evidence of these magnetic fluctuations.

  13. Absorption cross sections of some atmospheric molecules for resonantly scattered O I 1304-A radiation

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1976-01-01

    Absorption cross sections for O2, N2, CO2, CH4, N2O, and CO have been measured at each of the lines of the atomic oxygen triplet at 1302, 1305, and 1306 A. Radiation resonantly scattered from oxygen atoms at a temperature of about 300 K was used for the line source. Absorber temperatures were also near 300 K. Direct application of the Lambert-Beer absorption equation yielded pressure-dependent cross sections for carbon monoxide at each line of the O I triplet. Reasons for this apparent dependence are presented and discussed.

  14. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing

    NASA Astrophysics Data System (ADS)

    Abánades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C. A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Cerro, E.; Del Moral, R.; Díez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernández, R.; Gálvez, J.; García, J.; Gelès, C.; Giorni, A.; González, E.; González, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; López, C.; Loiseaux, J. M.; Martínez-Val, J. M.; Méplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Pérez-Enciso, E.; Pérez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Sakelliou, L.; Saldaña, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J. B.; Vieira, S.; Vlachoudis, V.; Zioutas, K.

    2002-02-01

    We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy ( E n⩾1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/ c protons) slowing down in a 3.3 m×3.3 m×3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of 99Tc or 129I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.

  15. Search for light neutron-rich isotopes in stopped pion absorption

    NASA Astrophysics Data System (ADS)

    Gurov, Yu. B.; Korotkova, L. Yu.; Lapushkin, S. V.; Pritula, R. V.; Sandukovsky, V. G.; Tel'kushev, M. V.; Chernyshev, B. A.; Schurenkova, T. D.

    2016-07-01

    The results based on the spectroscopy of superheavy hydrogen isotopes (4-7H), heavy helium isotopes (6,7He), and heavy lithium isotopes (7-12Li) produced in stopped pion absorption by light nuclei were analyzed. Search for nuclear states was performed in inclusive and correlation measurements of missing mass spectra. A broad range of excitation energies studied in correlation measurements provided the possibility of search for isobaric analog states and cluster resonances. A comparison with experimental and theoretical results of other authors was conducted.

  16. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.J.; Cappiello, C.C.

    1996-05-01

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  17. Resonance lamp absorption measurement of OH number density and temperature in expansion tube scramjet engine tests

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.; Trucco, Richard E.; Bittner, Robert D.

    1992-01-01

    In this paper, we report results of hydroxyl radical and static temperature measurements performed in the General Applied Science Laboratories-NASA HYPULSE expansion tube facility using the microwave resonance lamp absorption technique. Data were obtained as part of a series of hydrogen/air and hydrogen/oxygen combustion tests at stagnation enthalpies corresponding to Mach 17 flight speeds. Data from a representative injector configuration is compared to a full Navier-Stokes CFD solution.

  18. Effects of dispersion and absorption in resonant Bragg diffraction of x-rays.

    PubMed

    Lovesey, S W; Scagnoli, V; Dobrynin, A N; Joly, Y; Collins, S P

    2014-03-26

    Resonant diffraction of x-rays by crystals with anisotropic optical properties is investigated theoretically, to assess how the intensity of a Bragg spot is influenced by effects related to dispersion (birefringence) and absorption (dichroism). Starting from an exact but opaque expression, simple analytic results are found to expose how intensity depends on dispersion and absorption in the primary and secondary beams and, also, the azimuthal angle (rotation of the crystal about the Bragg wavevector). If not the full story for a given application, our results are more than adequate to explore consequences of dispersion and absorption in the intensity of a Bragg spot. Results are evaluated for antiferromagnetic copper oxide, and low quartz. For CuO, one of our results reproduces all salient features of a previously published simulation of the azimuthal-angle dependence of a magnetic Bragg peak. It is transparent in our analytic result that dispersion and absorption effects alone cannot reproduce published experimental data. Available data for the azimuthal-angle dependence of space-group forbidden reflections (0,0, l), with l ≠ 3n, of low quartz depart from symmetry imposed by the triad axis of rotation symmetry. The observed asymmetry can be induced by dispersion and absorption even though absorption coefficients are constant, independent of the azimuthal angle, in this class of reflections.

  19. Effects of dispersion and absorption in resonant Bragg diffraction of x-rays.

    PubMed

    Lovesey, S W; Scagnoli, V; Dobrynin, A N; Joly, Y; Collins, S P

    2014-03-26

    Resonant diffraction of x-rays by crystals with anisotropic optical properties is investigated theoretically, to assess how the intensity of a Bragg spot is influenced by effects related to dispersion (birefringence) and absorption (dichroism). Starting from an exact but opaque expression, simple analytic results are found to expose how intensity depends on dispersion and absorption in the primary and secondary beams and, also, the azimuthal angle (rotation of the crystal about the Bragg wavevector). If not the full story for a given application, our results are more than adequate to explore consequences of dispersion and absorption in the intensity of a Bragg spot. Results are evaluated for antiferromagnetic copper oxide, and low quartz. For CuO, one of our results reproduces all salient features of a previously published simulation of the azimuthal-angle dependence of a magnetic Bragg peak. It is transparent in our analytic result that dispersion and absorption effects alone cannot reproduce published experimental data. Available data for the azimuthal-angle dependence of space-group forbidden reflections (0,0, l), with l ≠ 3n, of low quartz depart from symmetry imposed by the triad axis of rotation symmetry. The observed asymmetry can be induced by dispersion and absorption even though absorption coefficients are constant, independent of the azimuthal angle, in this class of reflections. PMID:24599265

  20. Microplasmas as vacuum ultraviolet source for Cl-atom density measurements by resonance absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Virginie; Bauville, Gérard; Sadeghi, Nader; Puech, Vincent

    2011-11-01

    A micro-hollow cathode discharge was used to generate radiation on the chlorine atom resonance lines. Such radiation could be used to measure, by resonance absorption spectroscopy, the density of chlorine atoms in either ground state (3p5 2P3/2) or in the fine structure metastable state (3p5 2P1/2), which is located at 882.35 cm-1. Among the nine analysed lines in the 132-142 nm spectral region, only those at 137.953 and 139.653 nm, which are strong enough and are not affected by the self-absorption, can be used for the resonance absorption diagnostic of the ground state and the metastable state, respectively. The best operating conditions of the lamp source are 0.5% of Cl2 in argon at 150 mbar and 4 mA discharge current. The measured 800 ± 30 K gas temperature of the microplasma, indicates that under these specific conditions, these two lines are dominantly Doppler broadened. So their profile is Gaussian shaped with full widths at half maximum of (4.7 ± 0.1) × 10-4 nm.

  1. Evaluation of Silicon Neutron Resonance Parameters in the Energy Range Thermal to 1800 keV

    SciTech Connect

    Derrien, H.

    2002-09-30

    The evaluation of the neutron cross sections of the three stable isotopes of silicon in the energy range thermal to 20 MeV was performed by Hetrick et al. for ENDF/B-VI (Evaluated Nuclear Data File). Resonance parameters were obtained in the energy range thermal to 1500 keV from a SAMMY analysis of the Oak Ridge National Laboratory experimental neutron transmission data. A new measurement of the capture cross section of natural silicon in the energy range 1 to 700 keV has recently been performed at the Oak Ridge Electron Linear Accelerator. Results of this measurement were used in a SAMMY reevaluation of the resonance parameters, allowing determination of the capture width of a large number of resonances. The experimental data base is described; properties of the resonance parameters are given. For the first time the direct neutron capture component has been taken into account from the calculation by Rauscher et al. in the energy range from thermal to 1 MeV. Results of benchmark calculations are also given. The new evaluation is available in the ENDF/B-VI format.

  2. Spin and parity assignments for {sup 94,95}Mo neutron resonances

    SciTech Connect

    Sheets, S. A.; Agvaanluvsan, U.; Becker, J. A.; Parker, W. E.; Wu, C. Y.; Becvar, F.; Krticka, M.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Mitchell, G. E.; Sharapov, E. I.; Tomandl, I.

    2007-12-15

    The {gamma} rays following the {sup 94,95}Mo(n,{gamma}) reactions were measured as a function of incident neutron energy by the time-of-flight method with the DANCE (Detector for Advanced Neutron Capture Experiments) array of 160 BaF{sub 2} scintillation detectors at the Los Alamos Neutron Science Center. The targets were enriched samples: 91.59% {sup 94}Mo and 96.47% {sup 95}Mo. The {gamma}-ray multiplicities and energy spectra for different multiplicities were measured in s- and p-wave resonances up to E{sub n}=10 keV for {sup 94}Mo and up to E{sub n}=2 keV for {sup 95}Mo. Definite spins and parities were assigned in {sup 96}Mo for about 60% of the resonances, and tentative spins and parities were assigned for the remaining resonances. In {sup 95}Mo the parities were determined for the observed resonances, confirming previously known assignments.

  3. Theoretical studies on absorption, emission, and resonance Raman spectra of Coumarin 343 isomers.

    PubMed

    Wu, Wenpeng; Cao, Zexing; Zhao, Yi

    2012-03-21

    The vibrationally resolved spectral method and quantum chemical calculations are employed to reveal the structural and spectral properties of Coumarin 343 (C343), an ideal candidate for organic dye photosensitizers, in vacuum and solution. The results manifest that the ground-state energies are dominantly determined by different placements of hydrogen atom in carboxylic group of C343 conformations. Compared to those in vacuum, the electronic absorption spectra in methanol solvent show a hyperchromic property together with the redshift and blueshift for the neutral C343 isomers and their deprotonated anions, respectively. From the absorption, emission, and resonance Raman spectra, it is found that the maximal absorption and emission come from low-frequency modes whereas the high-frequency modes have high Raman activities. The detailed spectra are further analyzed for the identification of the conformers and understanding the potential charge transfer mechanism in their photovoltaic applications.

  4. Enhanced Absorption in 2D Materials Via Fano- Resonant Photonic Crystals

    DOE PAGES

    Wang, Wenyi; Klotz, Andrey; Yang, Yuanmu; Li, Wei; Kravchenko, Ivan I.; Briggs, Dayrl P.; Bolotin, Kirill; Valentine, Jason

    2015-05-01

    The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. For instance, graphenebased devices have been employed for applications such as ultrafast and broadband photodetectors and modulators while transition metal dichalcogenide (TMDC) based photodetectors can be used for ultrasensitive photodetection. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and NIR regimes monolayer MoS2 and graphene absorb only ~10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonicmore » crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ~0.2 μm adjacent to the graphene/electrode interface.« less

  5. Ultraviolet resonance Raman and absorption difference spectroscopy of myoglobins: titration behavior of individual tyrosine residues.

    PubMed

    Asher, S A; Larkin, P J; Teraoka, J

    1991-06-18

    The UV resonance Raman spectra of horse and sperm whale myoglobin excited at 240 nm show bands between 600 and 1700 cm-1 which derive from tyrosyl and tryptophyl residues. No significant contribution from phenylalanine and peptide backbone vibrations occurs at this excitation wavelength. We examine the pH dependence of the UV resonance Raman and UV absorption difference spectra of these myoglobins to correlate the local protein environment of the tyrosyl residues as given by the protein crystal structure to their pKa values, molar absorptivities, and Raman cross sections. Some of our pKa values for the tyrosinate residues of horse Mb differ from those of previous studies. We show that the lambda max values, the molar absorptivities, and the Raman cross sections are sensitive to the local environment of the tyrosinate residues in the protein. We relate differences in the tyrosyl absorption spectra to differences in Raman cross sections. In addition, we discuss the importance to the Raman cross sections of the local electromagnetic field enhancement due to the dielectric environment of the tyrosinate residues in the protein. This local field should scale the Raman cross sections in a way useful as a probe of the average aromatic amino acid residue environment.

  6. Theory of Half-Space Light Absorption Enhancement for Leaky Mode Resonant Nanowires.

    PubMed

    Jia, Yiming; Qiu, Min; Wu, Hui; Cui, Yi; Fan, Shanhui; Ruan, Zhichao

    2015-08-12

    Semiconductor nanowires supporting leaky mode resonances have been used to increase light absorption in optoelectronic applications from solar cell to photodetector and sensor. The light conventionally illuminates these devices with a wide range of different incident angles from half space. Currently, most of the investigated nanowires have centrosymmetric geometry cross section, such as circle, hexagon, and rectangle. Here we show that the absorption capability of these symmetrical nanowires has an upper limit under the half-space illumination. Based on the temporal coupled-mode equation, we develop a reciprocity theory for leaky mode resonances in order to connect the angle-dependent absorption cross section and the radiation pattern. We show that in order to exceed such a half-space limit the radiation pattern should be noncentrosymmetric and dominate in the direction reciprocal to the illumination. As an example, we design a metal trough structure to achieve the desired radiation pattern for an embedded nanowire. In comparison to a single nanowire case the trough structure indeed overcomes the half-space limit and leads to 39% and 64% absorption enhancement in TM and TE polarizations, respectively. Also the trough structure enables the enhancement over a broad wavelength range.

  7. Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Wenyi; Klots, Andrey; Yang, Yuanmu; Li, Wei; Kravchenko, Ivan I.; Briggs, Dayrl P.; Bolotin, Kirill I.; Valentine, Jason

    2015-05-01

    The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS2 and graphene absorb only ˜10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ˜0.2 μm adjacent to the graphene/electrode interface.

  8. Enhanced Absorption in 2D Materials Via Fano- Resonant Photonic Crystals

    SciTech Connect

    Wang, Wenyi; Klotz, Andrey; Yang, Yuanmu; Li, Wei; Kravchenko, Ivan I.; Briggs, Dayrl P.; Bolotin, Kirill; Valentine, Jason

    2015-05-01

    The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. For instance, graphenebased devices have been employed for applications such as ultrafast and broadband photodetectors and modulators while transition metal dichalcogenide (TMDC) based photodetectors can be used for ultrasensitive photodetection. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and NIR regimes monolayer MoS2 and graphene absorb only ~10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ~0.2 μm adjacent to the graphene/electrode interface.

  9. Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals

    SciTech Connect

    Wang, Wenyi; Klots, Andrey; Bolotin, Kirill I.; Yang, Yuanmu; Li, Wei; Valentine, Jason; Kravchenko, Ivan I.; Briggs, Dayrl P.

    2015-05-04

    The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS{sub 2} and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.

  10. Spin pumping from a ferromagnet into a hopping insulator: Role of resonant absorption of magnons

    NASA Astrophysics Data System (ADS)

    Raikh, Mikhail; Zhang, Yue; Pesin, Dmytro

    Motivated by recent experiments on spin pumping from a ferromagnet into organic materials in which the charge transport is due to hopping, we study theoretically the generation and propagation of spin current in a hopping insulator. Unlike metals, the spin polarization at the boundary with ferromagnet is created as a result of magnon absorption within pairs of localized states and it spreads following the current-currying resistor network (although the charge current is absent). We consider a classic resonant mechanism of the ac absorption in insulators and adapt it to the absorption of magnons. A strong enhancement of pumping efficiency is predicted when the Zeeman splitting of the localized states in external magnetic field is equal to the frequency of ferromagnetic resonance. Under this condition the absorption of a magnon takes place within individual sites. This work was supported by the NSF MRSEC program at the University of Utah under Grant No. DMR 1121252 (Z.Y. and M.E.R.) and by the NSF Grant No. DMR 1409089 (D.A.P).

  11. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    DOE PAGES

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less

  12. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    SciTech Connect

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.

  13. Enhancing ferromagnetic resonance absorption for very thin insulating magnetic films with spin plasmonics

    NASA Astrophysics Data System (ADS)

    Chui, S. T.

    2015-05-01

    We consider enhancing the ferromagnetic resonance (FMR) absorption of very thin insulating magnetic films by placing it on top of a dielectric. We find that the signal is enhanced by at least an order of magnitude due to a new nonreciprocal interface resonance that is a mixture of the magnetic surface plasmon mode and a wave guide mode. This resonance occurs over a wide range of thicknesses of the dielectric that is still much less than the wavelength and is made possible by the negative magnetic susceptibility of the magnetic layer. The line width of absorption is reduced by an order of magnitude less than the Gilbert damping parameter. At some frequency, the group velocity of this resonance is negative. Experimentally, very thin yttrium iron garnet (YIG) films are grown on a Gadolinium Gallium Garnet (GGG) substrate which can be considered the dielectric. Our model applies to experiments performed in the YIG/GGG system. Indeed, our picture resolves the disagreement on the magnitude of the spin diffusion lengths obtained with the FMR and the Brillouin scattering techniques. It also provides for a way to make new adaptive thin film miniaturized photonic nonreciprocal devices with low loss.

  14. Enhancing ferromagnetic resonance absorption for very thin insulating magnetic films with spin plasmonics

    SciTech Connect

    Chui, S. T.

    2015-05-14

    We consider enhancing the ferromagnetic resonance (FMR) absorption of very thin insulating magnetic films by placing it on top of a dielectric. We find that the signal is enhanced by at least an order of magnitude due to a new nonreciprocal interface resonance that is a mixture of the magnetic surface plasmon mode and a wave guide mode. This resonance occurs over a wide range of thicknesses of the dielectric that is still much less than the wavelength and is made possible by the negative magnetic susceptibility of the magnetic layer. The line width of absorption is reduced by an order of magnitude less than the Gilbert damping parameter. At some frequency, the group velocity of this resonance is negative. Experimentally, very thin yttrium iron garnet (YIG) films are grown on a Gadolinium Gallium Garnet (GGG) substrate which can be considered the dielectric. Our model applies to experiments performed in the YIG/GGG system. Indeed, our picture resolves the disagreement on the magnitude of the spin diffusion lengths obtained with the FMR and the Brillouin scattering techniques. It also provides for a way to make new adaptive thin film miniaturized photonic nonreciprocal devices with low loss.

  15. Thermal-neutron cross sections and resonance integrals of 138Ba and 141Pr using Am-Be neutron source

    NASA Astrophysics Data System (ADS)

    Panikkath, Priyada; Mohanakrishnan, P.

    2016-09-01

    The thermal-neutron capture cross sections and resonance integrals of 138Ba(n, γ)139Ba and 141Pr(n, γ)142Pr were measured by activation method using an isotopic Am-Be neutron source. The estimations were with respect to that of 55Mn(n, γ)56Mn and 197Au(n, γ)198Au reference monitors. The measured thermal-capture cross section of 138 Ba with respect to 55 Mn is 0.410±0.023 b and with respect to 197 Au is 0.386±0.019 b. The measured thermal-capture cross section of 141 Pr with respect to 55 Mn is 11.36±1.29 b and with respect to 197 Au is 10.43±1.14 b. The resonance integrals for 138 Ba are 0.380±0.033 b (55 Mn) and 0.364±0.027 b (197 Au) and for 141 Pr are 21.05±2.88 b (55 Mn) and 15.27±1.87 b (197 Au). The comparison between the present measurements and various reported values are discussed. The cross sections corresponding to the selected isotopes are measured using an Am-Be source facility for the first time.

  16. Evaluation of Tungsten Neutron Cross Sections in the Resolved Resonance Regions

    SciTech Connect

    Pigni, Marco T; Leal, Luiz C; Dunn, Michael E; Guber, Klaus H; Emiliani, F.; Kopecky, S.; Lampoudis, C.; Schillebeeckx, P.; Siegler, P.

    2014-01-01

    We generated a preliminary set of resonance parameters for 182-184,186W in the neutron energy range of thermal up to several keV. The evaluation methodology uses the Reich-Moore approximation to t, with the R-matrix code SAMMY, the high-resolution measurements performed in 2010 and 2012 at the GEel LINear Accelerator (GELINA) facility. Particularly for 183W, the transmission data and the capture cross sections calculated with the set of resonance parameters are compared with the experimental values, and some of the average properties of the resonance parameters are discussed. In the analyzed energy range, this work almost doubles the existing resolved resonance evaluations in the ENDF/B-VII.1 library. The analysis of the performance of the calculated cross sections based on criticality benchmarks is still in progress and it is only briefly discussed.

  17. Evaluation of Tungsten Neutron Cross Sections in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Pigni, M. T.; Leal, L. C.; Dunn, M. E.; Guber, K. H.; Trkov, A.; Žerovnik, G.; Emiliani, F.; Kopecky, S.; Lampoudis, C.; Schillebeeckx, P.; Siegler, P.

    2014-04-01

    We generated a preliminary set of resonance parameters for 182,183,184,186W in the neutron energy range of thermal up to several keV. The evaluation methodology uses the Reich-Moore approximation to fit with the R-matrix code SAMMY, the high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility. For 183W, the transmission data and capture cross sections calculated with the set of resonance parameters are compared with the experimental values, and some of the average properties of the resonance parameters are discussed. In the analyzed energy range, this work almost doubles the existing resolved resonance evaluations in the ENDF/B-VII.1 library. A preliminary analysis of the performance of the calculated cross sections based on Lead slowing-down benchmarks is presented and briefly discussed.

  18. Neutron capture cross section measurements for 238U in the resonance region at GELINA

    NASA Astrophysics Data System (ADS)

    Kim, H. I.; Paradela, C.; Sirakov, I.; Becker, B.; Capote, R.; Gunsing, F.; Kim, G. N.; Kopecky, S.; Lampoudis, C.; Lee, Y.-O.; Massarczyk, R.; Moens, A.; Moxon, M.; Pronyaev, V. G.; Schillebeeckx, P.; Wynants, R.

    2016-06-01

    Measurements were performed at the time-of-flight facility GELINA to determine the 238U(n, γ) cross section in the resonance region. Experiments were carried out at a 12.5 and 60m measurement station. The total energy detection principle in combination with the pulse height weighting technique was applied using C6D6 liquid scintillators as prompt γ-ray detectors. The energy dependence of the neutron flux was measured with ionisation chambers based on the 10B(n, α) reaction. The data were normalised to the isolated and saturated 238U resonance at 6.67 eV. Special procedures were applied to reduce bias effects due to the weighting function, normalization, dead time and background corrections, and corrections related to the sample properties. The total uncertainty due to the weighting function, normalization, neutron flux and sample characteristics is about 1.5%. Resonance parameters were derived from a simultaneous resonance shape analysis of the GELINA capture data and transmission data obtained previously at a 42m and 150m station of ORELA. The parameters of resonances below 500 eV are in good agreement with those resulting from an evaluation that was adopted in the main data libraries. Between 500 eV and 1200 eV a systematic difference in the neutron width is observed. Average capture cross section data were derived from the experimental capture yield in the energy region between 3.5 keV and 90 keV. The results are in good agreement with an evaluated cross section resulting from a least squares fit to experimental data available in the literature prior to this work. The average cross section data derived in this work were parameterised in terms of average resonance parameters and included in a least squares analysis together with other experimental data reported in the literature.

  19. Neutron Stars with Delta-Resonances in the Walecka and Zimanyi-Moszkowski Models

    SciTech Connect

    Fong, C. T.; Oliveira, J. C. T.; Duarte, S. B.

    2010-11-12

    In the present work we have obtained the equation of state of the highly asymmetric dense stellar matter focusing on the delta resonance formation. We extended the nonlinear Walecka (NLW) and Zimanyi-Moszkowski (ZM) models to accommodate in the context of the relativistic mean field approximation the Rarita-Schwinger field for the spin 3/2 resonances. With the constructed stellar matter equations of state we solve numerically the TOV equation (Tolman-Oppenheimer-Volkoff) in order to determine the internal structure of neutron stars, and discuss the obtained masses versus radii diagram.

  20. Evidence for a narrow N{sup *}(1685) resonance in quasifree Compton scattering on the neutron

    SciTech Connect

    Kuznetsov, V.; Polyakov, M. V.; Bellini, V.; Giusa, A.; Mammoliti, F.; Randieri, C.; Russo, G.; Sperduto, M. L.; Boiko, T.; Chebotaryov, S.; Dho, H.-S.; Kim, W.; Milman, E.; Ni, A.; Gervino, G.; Ghio, F.; Kim, A.; Perevalova, I. A.; Vall, A. N.; Sutera, C. M.

    2011-02-15

    The study of quasifree Compton scattering on the neutron in the energy range of E{sub {gamma}}=0.75-1.5 GeV is presented. The data reveal a narrow peak at W{approx}1.685 GeV. This result, being considered in conjunction with the recent evidence for a narrow structure at W{approx}1.68 GeV in {eta} photoproduction on the neutron, suggests the existence of a nucleon resonance with unusual properties: a mass M{approx}1.685 GeV, a narrow width {Gamma}{<=}30 MeV, and the much stronger photoexcitation on the neutron than on the proton.

  1. Electron paramagnetic resonance spectroscopy of fast neutron-generated defects in GaAs

    NASA Astrophysics Data System (ADS)

    Goltzene, A.; Meyer, B.; Schwab, C.; Greenbaum, S. G.; Wagner, R. J.; Kennedy, T. A.

    1984-12-01

    A series of fast neutron-irradiated GaAs samples (neutron fluence range of 2×1015-2.5×1017 cm-2) has been investigated by electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra at 9 GHz exhibit a broad (˜1 kG) Lorentzian singlet at g≊2.09 superimposed on the AsGa quadruplet. The singlet intensity scales linearly with neutron fluence as does that of the quadruplet. The presence of this new defect has not been reported in as-grown GaAs known to have large concentrations of AsGa defects. EPR measurements at 35, 159, and 337 GHz indicate that the singlet linewidth increases with the microwave frequency.

  2. Introduction to the theory and analysis of resolved (and unresolved) neutron resonances via SAMMY

    SciTech Connect

    Larson, N.M.

    1998-02-01

    Neutron cross-section data are important for two distinct purposes: First, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher energy regions.

  3. Introduction to the Theory and Analysis of Resolved (and Unresolved) Neutron Resonances via SAMMY

    SciTech Connect

    Larson, N.

    2000-03-13

    Neutron cross-section data are important for two purposes: First, they provide insight into the nature of matter, increasing our understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, or for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this report, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.

  4. Introduction to theory and analysis of resolved (and unresolved) neutron resonances via SAMMY

    SciTech Connect

    Larson, N.M.

    1998-07-01

    Neutron cross-section data are important for two distinct purposes: first, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics; second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular technique used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.

  5. Scissors Mode of 162 Dy Studied from Resonance Neutron Capture

    SciTech Connect

    Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Haight, R. C.; Jandel, M.; Kroll, J.; Krtička, M.; Mitchell, G. E.; O’Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-05-28

    Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions, (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.

  6. Ergodicity of the {delta}{sub 3} statistic and purity of neutron resonance data

    SciTech Connect

    Mulhall, Declan; Huard, Zachary; Zelevinsky, Vladimir

    2007-12-15

    The {delta}{sub 3}(L) statistic characterizes the fluctuations of the number of levels as a function of the length of the spectral interval. It is studied as a possible tool to indicate the regular or chaotic nature of the underlying dynamics and to detect missing levels and the mixing of sequences of levels of different symmetry, particularly in neutron resonance data. The relation between the ensemble average and the average over different fragments of a given realization of spectra is considered. A useful expression for the variance of {delta}{sub 3}(L) that accounts for finite sample size is discussed. An analysis of neutron resonance data presents the results consistent with a maximum likelihood method applied to the level spacing distribution.

  7. Gamma-ray cascade transitions from resonant neutron capture in Cd-111 and Cd-113

    SciTech Connect

    Rusev, Gencho Y.

    2012-08-27

    A neutron-capture experiment on {sup nat}Cd has been carried out at DANCE. Multiple-fold coincidence {gamma}-ray spectra have been collected from J=0, 1 resonances in {sup 111}Cd and {sup 113}Cd. The cascades ending at the ground state can be described by the SLO model while the cascades ending at the 2+ states are better reproduced by the mixed SLO+KMF model.

  8. Optimized γ-multiplicity-based spin assignments of s-wave neutron resonances

    NASA Astrophysics Data System (ADS)

    Bečvář, F.; Koehler, P. E.; Krtička, M.; Mitchell, G. E.; Ullmann, J. L.

    2011-08-01

    The multiplicity of γ-ray emission following neutron capture at isolated resonances carries valuable information on the resonance spin. Several methods utilizing this information have been developed. The latest method was recently introduced for analyzing the data from time-of-flight measurements with 4πγ-calorimetric detection systems. The present paper describes a generalization of this method. The goal is the separation of the γ-emission yields belonging to the two neutron capturing state spins of isolated (or even unresolved) s-wave neutron resonances on targets with non-zero spin. The formalism for performing this separation is described and then tested on artificially generated data. This new method was applied to the γ-multiplicity data obtained for the Sm147(n,γ)Sm148 reaction using the DANCE detector system at the LANSCE facility at Los Alamos National Laboratory. The analyzing power of the upgraded method is supported by combined DICEBOX and GEANT4 simulations of the fluctuation properties of the γ-multiplicity distributions.

  9. A simple method for the analysis of neutron resonance capture spectra

    SciTech Connect

    Clarijs, Martijn C.; Bom, Victor R.; Eijk, Carel W. E. van

    2009-03-15

    Neutron resonance capture analysis (NRCA) is a method used to determine the bulk composition of various kinds of objects and materials. It is based on analyzing direct capture resonance peaks. However, the analysis is complicated by scattering followed by capture effects in the object itself. These effects depend on the object's shape and size. In this paper the new Delft elemental analysis program (DEAP) is presented which can automatically and quickly analyze multiple NRCA spectra in a practical and simple way, yielding the elemental bulk composition of an object, largely independent of its shape and size. The DEAP method is demonstrated with data obtained with a Roman bronze water tap excavated in Nijmegen (The Netherlands). DEAP will also be used in the framework of the Ancient Charm project as data analysis program for neutron resonance capture imaging (NRCI) experiments. NRCI provides three-dimensional visualization and quantification of the internal structure of archaeological objects by performing scanning measurements with narrowly collimated neutron beams on archaeological objects in computed tomography based experimental setups. The large amounts (hundreds to thousands) of spectra produced during a NRCI experiment can automatically and quickly be analyzed by DEAP.

  10. Plasma dispersion effect assisted nanoscopy based on tuning of absorption and scattering resonances of nanoparticles

    NASA Astrophysics Data System (ADS)

    Danan, Yossef; Ilovitsh, Tali; Liu, Danping; Pinhas, Hadar; Sinvani, Moshe; Ramon, Yehonatan; Azougi, Jonathan; Douplik, Alexandre; Zalevsky, Zeev

    2016-03-01

    In this paper we present gold nanoparticles coated with silicon that switch the order between the scattering and the absorption magnitude at the resonance peak and tune the plasmon resonance over the spectrum. This is obtained by modifying the refractive index of the silicon coating of the nanoparticle by illuminating it with a pumping light due to the plasma dispersion effect in silicon. We also report how changing the diffraction limited point spread function through the utilization of plasma dispersion effect of the above mentioned silicon coated nanoparticles allows doing imaging with sub wavelength resolution. The plasma dispersion effect can increase the absorption coefficient of the silicon, when illuminated with a focused laser beam and as explained above it can also tune the absorption versus scattering properties of the nanoparticle. Due to the Gaussian nature of the laser illumination which has higher intensity at its peak, the plasma dispersion effect is more significant at the center of the illumination. As a consequence, the reflected light from probe beam at the near infra-red region has a sub wavelength dip that overlaps with the location of the pump illumination peak. This dip has a higher spatial frequency than an ordinary Gaussian, which enables to achieve super resolution.

  11. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry.

    PubMed

    Jiang, Naibo; Halls, Benjamin R; Stauffer, Hans U; Danehy, Paul M; Gord, James R; Roy, Sukesh

    2016-05-15

    Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET), a nonseeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and nonreactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25 nm 100 fs light. STARFLEET greatly reduces the per-pulse energy required (30 μJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and nonreactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities, and further demonstrate the significantly less intrusive nature of STARFLEET. PMID:27176968

  12. Splitting of the isovector giant dipole resonance in neutron-rich spherical nuclei

    SciTech Connect

    Kolomietz, V.M.; Magner, A.G.; Shlomo, S.

    2006-02-15

    The well-known splitting of the isovector giant dipole resonance is traditionally explained as a phenomenon of the nuclear isospin asymmetry (isospin splitting model) or the nuclear deformation. We suggest a new mechanism of the splitting of the giant multipole resonances in spherical neutron-rich nuclei resulting from the interplay of the isovector and isoscalar sounds with different velocities. Our approach is based on the collisional Landau kinetic theory and can be used for description of the splitting phenomena for both the isoscalar and the isovector modes in a wide region of nuclear masses A{approx}40-240. For the isovector dipole modes, the evaluated values of the splitting energy, the relative strength of the main and satellite resonance peaks, and the contribution to the energy-weighted sum rule are in agreement with experimental data.

  13. Effects of hydration levels on the bandwidth of microwave resonant absorption induced by confined acoustic vibrations

    NASA Astrophysics Data System (ADS)

    Liu, Tzu-Ming; Chen, Hung-Pin; Yeh, Shih-Chia; Wu, Chih-Yu; Wang, Chung-Hsiung; Luo, Tang-Nian; Chen, Yi-Jan; Liu, Shen-Iuan; Sun, Chi-Kuang

    2009-10-01

    We found the hydration levels on the capsid surface of viruses can affect the bandwidth of microwave resonant absorption (MRA) induced by the confined acoustic vibrations (CAV). By decreasing the pH value of solution down to 5.2 or inactivating the capsid proteins, we enhanced the surface hydrophilicity and increased the magnitude of surface potentials. Both of these surface manipulations raised the surface affinity to water molecules and narrowed the bandwidths of CAV-induced MRA. Our results validate the viscoelastic transition of hydration shells.

  14. Evidence for pyrroloquinolinequinone as the carbonyl cofactor in lysyl oxidase by absorption and resonance Raman spectroscopy.

    PubMed

    Williamson, P R; Moog, R S; Dooley, D M; Kagan, H M

    1986-12-15

    The present study investigated the possibility that pyrroloquinolinequinone (PQQ), an aromatic carbonyl recently indicated to be the carbonyl cofactor in bovine plasma amine oxidase, may also be present at the active site of lysyl oxidase. The absorption and resonance Raman spectra of the phenylhydrazones of bovine plasma amine oxidase, of peptides derived from the active site of bovine aorta lysyl oxidase, and of PQQ were very similar, indicating that the carbonyl cofactor of lysyl oxidase is PQQ or a compound which closely resembles PQQ.

  15. The effect of implanting boron on the optical absorption and electron paramagnetic resonance spectra of silica

    NASA Astrophysics Data System (ADS)

    Magruder, R. H.; Stesmans, A.; Weeks, R. A.; Weller, R. A.

    2008-09-01

    Silica samples (type III, Corning 7940) were implanted with B using multiple energies to produce a layer ˜600 nm thick in which the concentration of B ranged from 0.034 to 2.04 at. %. Optical absorption spectra were measured from 1.8 to 6.5 eV. Electron paramagnetic resonance (EPR) measurements were generally made at ˜20.3 and 33 GHz for sample temperatures ranging from 77 to 100 K. Based on the EPR spectra three types of defects, namely, Eγ', the E'-type 73 G split doublet (E73'), and the peroxyradical (POR) were identified. No oxygen-associated hole centers (OHCs) nor specific B-associated paramagnetic defects were detected, not even at the largest B concentration of 2.04 at. %. Unlike previous assignments, there was no correlation between the 4.83 eV optical absorption band and the observed PORs. From these results, we infer that in addition to POR, there is at least one additional Si-related state absorbing in the 4.8-4.9 eV range that is likely diamagnetic. The 5.85 eV optical absorption band is found to be due to the Eγ' and E73' centers, with, in average, quite similar oscillator strengths inferred as before. Both the optical absorption and the electron spin resonance data can be satisfactorily explained without the need for specific B-associated defect site (s). As no OHCs are detected by ESR, these do not seem to make a detectable contribution to the optical spectra.

  16. Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel

    NASA Astrophysics Data System (ADS)

    Zhong, Jie; Wen, Ji-Hong; Zhao, Hong-Gang; Yin, Jian-Fei; Yang, Hai-Bin

    2015-08-01

    Locally resonant sonic materials, due to their ability to control the propagation of low-frequency elastic waves, have become a promising option for underwater sound absorption materials. In this paper, the finite element method is used to investigate the absorption characteristics of a viscoelastic panel periodically embedded with a type of infinite-long non-coaxially cylindrical locally resonant scatterers (LRSs). The effect of the core position in the coating layer of the LRS on the low-frequency (500 Hz-3000 Hz) sound absorption property is investigated. With increasing the longitudinal core eccentricity e, there occur few changes in the absorptance at the frequencies below 1500 Hz, however, the absorptance above 1500 Hz becomes gradually better and the valid absorption (with absorptance above 0.8) frequency band (VAFB) of the viscoelastic panel becomes accordingly broader. The absorption mechanism is revealed by using the displacement field maps of the viscoelastic panel and the steel slab. The results show two typical resonance modes. One is the overall resonance mode (ORM) caused by steel backing, and the other is the core resonance mode (CRM) caused by LRS. The absorptance of the viscoelastic panel by ORM is induced mainly by the vibration of the steel slab and affected little by core position. On the contrary, with increasing the core eccentricity, the CRM shifts toward high frequency band and decouples with the ORM, leading to two separate absorption peaks and the broadened VAFB of the panel. Project supported by the National Natural Science Foundation of China (Grant No. 51275519).

  17. RESONANT ABSORPTION OF TRANSVERSE OSCILLATIONS AND ASSOCIATED HEATING IN A SOLAR PROMINENCE. II. NUMERICAL ASPECTS

    SciTech Connect

    Antolin, P.; Okamoto, T. J.; Doorsselaere, T. Van; Yokoyama, T.

    2015-08-10

    Transverse magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere and may be responsible for generating the Sun’s million-degree outer atmosphere. However, direct evidence of the dissipation process and heating from these waves remains elusive. Through advanced numerical simulations combined with appropriate forward modeling of a prominence flux tube, we provide the observational signatures of transverse MHD waves in prominence plasmas. We show that these signatures are characterized by a thread-like substructure, strong transverse dynamical coherence, an out-of-phase difference between plane-of-the-sky motions and line-of-sight velocities, and enhanced line broadening and heating around most of the flux tube. A complex combination between resonant absorption and Kelvin–Helmholtz instabilities (KHIs) takes place in which the KHI extracts the energy from the resonant layer and dissipates it through vortices and current sheets, which rapidly degenerate into turbulence. An inward enlargement of the boundary is produced in which the turbulent flows conserve the characteristic dynamics from the resonance, therefore guaranteeing detectability of the resonance imprints. We show that the features described in the accompanying paper through coordinated Hinode and Interface Region Imaging Spectrograph observations match the numerical results well.

  18. Electromagnetically-induced-absorption resonance with high contrast and narrow width in the Hanle configuration

    NASA Astrophysics Data System (ADS)

    Brazhnikov, D. V.; Taichenachev, A. V.; Tumaikin, A. M.; Yudin, V. I.

    2014-12-01

    The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counter-propagating pump and probe light waves is proposed. Here, as an example, we study a ‘dark’ type of atomic dipole transition {{F}\\text{g}}={1}\\to {{F}\\text{e}}={1} in D1 line of 87Rb, where usually the electromagnetically induced transparency can be observed. To obtain the EIA signal one should properly choose the polarizations of light waves and intensities. In contrast to regular schemes for observing EIA signals (under a single traveling light wave in the Hanle configuration or under a bichromatic light field consisting of two traveling waves), the proposed scheme allows one to use buffer gas for significantly improving the properties of the resonance. Also the dramatic influence of atomic transition openness on the contrast of the resonance is revealed, which is advantageous in comparison with cyclic atomic transitions. The nonlinear resonances in a probe-wave transmitted signal with contrast close to 100% and sub-kHz widths can be obtained. The results are interesting in high-resolution spectroscopy, nonlinear and magneto-optics.

  19. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  20. Assignment of bacteriochlorophyll a ligation state from absorption and resonance raman spectra

    SciTech Connect

    Callahan, P.M.; Cotton, T.M.

    1987-11-11

    Absorption and Soret excitation resonance Raman (RR) spectra have been obtained for a series of coordination forms on monomeric bacteriochlorophyll a (BChl a). Strong and moderate intensity bands are observed in the RR spectrum at 1609 and 1530 cm/sup -1/ for five-coordinate species, which shift to 1595 and 1512 cm/sup -1/, respectively, in the six-coordinate form. These coordination-sensitive vibrations are independent of the nature of the axial ligand and are suggested to have significant C/sub a/ C/sub m/ character, while several other less intense coordination-sensitive bands at 1463, 1444, and 1375 cm/sup -1/ are considered to arise from C/sub b/C/sub b/ and C/sub a/N stretching vibrations. These coordination-sensitive RR bands were used to determine BChl a ligation state in the solvents used, and structure correlations based on absorption maxima have been developed. The Q/sub x/ absorption band position is sensitive not only to BChl a Mg/sup 2 +/ coordination number but also to the nature of the axial ligand, i.e., oxygen, sulfur, or nitrogen. Q/sub x/ maxima are observed at 570, 575-580, and 582 nm for five-coordinate oxygen, sulfur, and nitrogen ligands, respectively, and at 590-595 and 605-612 nm, for six-coordinate oxygen and nitrogen species, respectively. The Q/sub y/ absorption maximum is insensitive to coordination number changes but is dependent on the nature of the axial ligand: 770 nm for oxygen ligand(s) and 775 nm for nitrogen ligand(s). A similar series of absorption and Soret excitation RR spectra were obtained for the demetalated form of BChl a, BPheo a.

  1. Structure-induced resonant tail-state regime absorption in polymer: fullerene bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Pfadler, Thomas; Kiel, Thomas; Stärk, Martin; Werra, Julia F. M.; Matyssek, Christian; Sommer, Daniel; Boneberg, Johannes; Busch, Kurt; Weickert, Jonas; Schmidt-Mende, Lukas

    2016-05-01

    In this work, we present resonant tail-state regime absorption enhanced organic photovoltaics. We combine periodically structured TiO2 bottom electrodes with P3HT-PCBM bulk-heterojunction solar cells in an inverted device configuration. The wavelength-scale patterns are transferred to the electron-selective bottom electrodes via direct laser interference patterning, a fast method compatible with roll-to-roll processing. Spectroscopic and optoelectronic device measurements suggest polarization-dependent absorption enhancement along with photocurrent generation unambiguously originating from the population of tail states. We discuss the effects underlying these absorption patterns with the help of electromagnetic simulations using the discontinuous Galerkin time domain method. For this, we focus on the total absorption spectra along with spatially resolved power loss densities. Our simulations stress the tunability of the absorption resonances towards arbitrary wavelength regions.

  2. Sound Absorption of a 2DOF Resonant Liner with Negative Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Cataldi, P.; Gaeta, R. J., Jr.

    2000-01-01

    This report describes an experimental study conducted to determine the effect of negative bias flow on the sound absorption of a two degree-of-freedom liner. The backwall for the liner was designed to act as a double-Helmholtz resonator so as to act as a hard wall at all frequencies except at its resonant frequencies. The effect of bias flow is investigated for a buried septum porosity of 2% and 19.5% for bias flow orifice Mach numbers up to 0.311. The bias flow appears to modify the resistance and reactance of the backwall alone at lower frequencies up to about 2 kHz, with marginal effects at higher frequencies. Absorption coefficients close to unity are achieved for a frequency range of 500 - 4000 Hz for the overall liner for a septum porosity of 2% and orifice Mach number of 0.128. Insertion loss tests performed in a flow duct facility for grazing flow Mach numbers up to 0.2 and septum Mach numbers up to 0.15 showed that negative bias flow can increase insertion loss by as much as 10 dB at frequencies in the range of 500 D 1400 Hz compared to no grazing flow. The effectiveness of the negative bias flow is diminished as the grazing flow velocity is increased.

  3. RESONANT ABSORPTION OF TRANSVERSE OSCILLATIONS AND ASSOCIATED HEATING IN A SOLAR PROMINENCE. I. OBSERVATIONAL ASPECTS

    SciTech Connect

    Okamoto, Takenori J.; Pontieu, Bart De; Doorsselaere, Tom Van; Yokoyama, Takaaki

    2015-08-10

    Transverse magnetohydrodynamic waves have been shown to be ubiquitous in the solar atmosphere and can, in principle, carry sufficient energy to generate and maintain the Sun’s million-degree outer atmosphere or corona. However, direct evidence of the dissipation process of these waves and subsequent heating has not yet been directly observed. Here we report on high spatial, temporal, and spectral resolution observations of a solar prominence that show a compelling signature of so-called resonant absorption, a long hypothesized mechanism to efficiently convert and dissipate transverse wave energy into heat. Aside from coherence in the transverse direction, our observations show telltale phase differences around 180° between transverse motions in the plane-of-sky and line-of-sight velocities of the oscillating fine structures or threads, and also suggest significant heating from chromospheric to higher temperatures. Comparison with advanced numerical simulations support a scenario in which transverse oscillations trigger a Kelvin–Helmholtz instability (KHI) at the boundaries of oscillating threads via resonant absorption. This instability leads to numerous thin current sheets in which wave energy is dissipated and plasma is heated. Our results provide direct evidence for wave-related heating in action, one of the candidate coronal heating mechanisms.

  4. Resonant absorption of kink magnetohydrodynamic waves by a magnetic twist in coronal loops

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Zanyar; Karami, Kayoomars

    2016-10-01

    There is ample evidence of twisted magnetic structures in the solar corona. This motivates us to consider the magnetic twist as the cause of Alfvén frequency continuum in coronal loops, which can support the resonant absorption as a rapid damping mechanism for the observed coronal kink magnetohydrodynamic (MHD) oscillations. We model a coronal loop with a straight cylindrical magnetic flux tube, which has constant but different densities in the interior and exterior regions. The magnetic field is assumed to be constant and aligned with the cylinder axis everywhere except for a thin layer near the boundary of the flux tube, which has an additional small magnetic field twist. Then, we investigate a number of possible instabilities that may arise in our model. In the thin tube thin boundary approximation, we derive the dispersion relation and solve it analytically to obtain the frequencies and damping rates of the fundamental (l = 1) and first/second overtone (l = 2, 3) kink (m = 1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can cause deviations from P1/P2 = 2 and P1/P3 = 3, which are comparable with the observations.

  5. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy

    NASA Astrophysics Data System (ADS)

    Baldassarre, L.; Giliberti, V.; Rosa, A.; Ortolani, M.; Bonamore, A.; Baiocco, P.; Kjoller, K.; Calvani, P.; Nucara, A.

    2016-02-01

    Infrared (IR) nanospectroscopy performed in conjunction with atomic force microscopy (AFM) is a novel, label-free spectroscopic technique that meets the increasing request for nano-imaging tools with chemical specificity in the field of life sciences. In the novel resonant version of AFM-IR, a mid-IR wavelength-tunable quantum cascade laser illuminates the sample below an AFM tip working in contact mode, and the repetition rate of the mid-IR pulses matches the cantilever mechanical resonance frequency. The AFM-IR signal is the amplitude of the cantilever oscillations driven by the thermal expansion of the sample after absorption of mid-IR radiation. Using purposely nanofabricated polymer samples, here we demonstrate that the AFM-IR signal increases linearly with the sample thickness t for t \\gt 50 nm, as expected from the thermal expansion model of the sample volume below the AFM tip. We then show the capability of the apparatus to derive information on the protein distribution in single cells through mapping of the AFM-IR signal related to the amide-I mid-IR absorption band at 1660 cm-1. In Escherichia Coli bacteria we see how the topography changes, observed when the cell hosts a protein over-expression plasmid, are correlated with the amide I signal intensity. In human HeLa cells we obtain evidence that the protein distribution in the cytoplasm and in the nucleus is uneven, with a lateral resolution better than 100 nm.

  6. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy.

    PubMed

    Baldassarre, L; Giliberti, V; Rosa, A; Ortolani, M; Bonamore, A; Baiocco, P; Kjoller, K; Calvani, P; Nucara, A

    2016-02-19

    Infrared (IR) nanospectroscopy performed in conjunction with atomic force microscopy (AFM) is a novel, label-free spectroscopic technique that meets the increasing request for nano-imaging tools with chemical specificity in the field of life sciences. In the novel resonant version of AFM-IR, a mid-IR wavelength-tunable quantum cascade laser illuminates the sample below an AFM tip working in contact mode, and the repetition rate of the mid-IR pulses matches the cantilever mechanical resonance frequency. The AFM-IR signal is the amplitude of the cantilever oscillations driven by the thermal expansion of the sample after absorption of mid-IR radiation. Using purposely nanofabricated polymer samples, here we demonstrate that the AFM-IR signal increases linearly with the sample thickness t for t > 50 nm, as expected from the thermal expansion model of the sample volume below the AFM tip. We then show the capability of the apparatus to derive information on the protein distribution in single cells through mapping of the AFM-IR signal related to the amide-I mid-IR absorption band at 1660 cm(-1). In Escherichia Coli bacteria we see how the topography changes, observed when the cell hosts a protein over-expression plasmid, are correlated with the amide I signal intensity. In human HeLa cells we obtain evidence that the protein distribution in the cytoplasm and in the nucleus is uneven, with a lateral resolution better than 100 nm.

  7. R-MATRIX RESONANCE ANALYSIS AND STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS OF 233U IN THE NEUTRON ENERGY RANGE FROM THERMAL TO 600 eV

    SciTech Connect

    Leal, L.C.

    2001-02-27

    The R-matrix resonance analysis of experimental neutron transmission and cross sections of {sup 233}U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k{sub eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.

  8. Spin and Parity Assignment of Neutron Resonances using Gamma-ray Multiplicity

    SciTech Connect

    Agvaanluvsan, U.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Dashdorj, D.; Becker, J. A.; Parker, W. E.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krticka, M.; Becvar, F.

    2009-03-31

    Decay gamma rays following neutron capture on various isotopes are collected by the Detector for Advanced Neutron Capture Experiments (DANCE) array, which is located at flight path 14 at the Lujan Neutron Scattering Center at Los Alamos National Laboratory. The high segmentation (160 detectors) and close packing of the detector array enable gamma-ray multiplicity measurements. The calorimetric properties of the DANCE array coupled with the neutron time-of-flight technique enables one to gate on a specific resonance of a given isotope in the time-of-flight spectrum and obtain the summed energy spectrum for that isotope. The singles gamma-ray spectrum for each multiplicity can be separated by their DANCE cluster multiplicity. The multiplicity distribution contains the signatures of spin and parity of the capture state. Under suitable circumstances where the difference between spins of the initial (capture) and final (ground) state is large enough, the signatures in the multiplicity distribution can be used in improving the spin assignment of the initial state. The spin assignment is applied with varying degree of success to difference isotopes and description of this application for {sup 95}Mo, {sup 151,153}Eu, and {sup 155,157}Gd is reviewed briefly.

  9. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciTech Connect

    Hendrickson, Joshua R. Leedy, Kevin; Cleary, Justin W.; Vangala, Shivashankar; Nader, Nima; Guo, Junpeng

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  10. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    NASA Astrophysics Data System (ADS)

    Hendrickson, Joshua R.; Vangala, Shivashankar; Nader, Nima; Leedy, Kevin; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  11. Microwave absorption of a TiO2@PPy hybrid and its nonlinear dielectric resonant attenuation mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Wanchun; Wang, Yu; Xie, Aming; Wu, Fan

    2016-09-01

    We report on a high-performance electromagnetic absorption material (TiO2@PPy) developed via a facile in situ polymerization process, where lower than  -60 dB maximum absorption and 6.56 dB effective absorption bandwidth (lower than  -10 dB) can be obtained under low thickness. The excellent electromagnetic wave absorption ability is attributed to the synthetic effect of improved impedance matching and the dual loss mechanism, which originates from the polarization relaxations of dipoles induced by vacancy defects and a conductive network constructed by aerogels. An equivalent circuit model is established to explicate the nonlinear dielectric resonant attenuation mechanism.

  12. Time-resolved postdischarge absolute silicon monoxide density measurement by resonant absorption spectroscopy in a nonthermal atmospheric plasma

    SciTech Connect

    Motret, Olivier; Coursimault, Fabien; Pouvesle, Jean-Michel

    2006-11-01

    In this study we present the technique of resonant absorption spectroscopy diagnostic developed to estimate the density of silicon monoxide (SiO) molecules during the postdischarge of an atmospheric dielectric barrier discharge plasma. The ultraviolet (0,0) rovibrational band of the SiO(A {sup 1}{pi}-X {sup 1}{sigma}{sup +}) electronic transition was investigated. Effective values of absorption coefficient and absorption cross section for the rotational transitions under consideration were calculated. The SiO concentration was estimated by comparison between experimental and computed spectra. The self-absorption in the probe reactor was taken into account in the computed spectra.

  13. A Search for Nonstandard Neutron Spin Interactions using Dual Species Xenon Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Larsen, Michael; Mirijanian, James; Fu, Changbo; Yan, Haiyang; Smith, Erick; Snow, Mike; Walker, Thad

    2012-06-01

    NMR measurements using polarized noble gases can constrain possible exotic spin-dependent interactions involving nucleons. A differential measurement insensitive to magnetic field fluctuations can be performed using a mixture of two polarized species with different ratios of nucleon spin to magnetic moment. We used the NMR cell test station at Northrop Grumman Corporation (NGC) (developed to evaluate dual species xenon vapor cells for the Nuclear Magnetic Resonance Gyroscope) to search for NMR frequency shifts of xenon-129 and xenon-131 when a non-magnetic zirconia rod is modulated near the NMR cell. We simultaneously excited both Xe isotopes and detected free-induction-decay transients. In combination with theoretical calculations of the neutron spin contribution to the nuclear angular momentum, the measurements put a new upper bound on possible monopole-dipole interactions of the neutron for ranges around 1mm. This work is supported by the NGC Internal Research and Development (IRAD) funding, the Department of Energy, and the NSF.

  14. {sup 10}Li low-lying resonances populated by one-neutron transfer

    SciTech Connect

    Cavallaro, M. Agodi, C.; Carbone, D.; Cunsolo, A.; De Napoli, M.; Cappuzzello, F.; Bondì, M.; Davids, B.; Galinski, N.; Ruiz, C.; Davinson, T.; Sanetullaev, A.; Foti, A.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.

    2015-10-15

    The {sup 9}Li + {sup 2}H → {sup 10}Li + {sup 1}H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a {sup 9}Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing {sup 9}Li produced by the {sup 10}Li breakup at forward angles and the recoil protons emitted at backward angles. The {sup 10}Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

  15. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  16. Change of electrical conductivity of Ar welding arc under resonant absorption of laser radiation

    NASA Astrophysics Data System (ADS)

    Kozakov, R.; Emde, B.; Pipa, A. V.; Huse, M.; Uhrlandt, D.; Hermsdorf, J.; Wesling, V.

    2015-03-01

    Experimental investigations of the impact of resonant laser absorption by a tungsten inert gas welding arc in argon are presented. The intensity increase of the arc’s radiation between the laser entrance height and the anode are observed, as well as the variation of arc voltage due to the presence of the laser beam. High-speed camera recordings from different directions combined with absolutely calibrated spectroscopic measurements allow the reconstruction of the three-dimensional emission coefficient profiles without the assumption of axial symmetry. The obtained data are evaluated within the framework of local thermodynamic equilibrium. The local increase in the temperature and conductivity due to the influence of the laser is determined. Changes in the electrical conductivity obtained from the optical measurements coincide well with the measured voltage drop, and show significant redistribution of the current density profile near the anode in particular.

  17. Damping of magnetohydrodynamic waves by resonant absorption in the solar atmosphere.

    PubMed

    Goossens, M; Andries, J; Arregui, I

    2006-02-15

    In the last decade we have been overwhelmed by an avalanche of discoveries of magnetohydrodynamic (MHD) waves by the Solar and Heliospheric Observatory and Transition Region and Coronal Explorer observatories. Both standing and propagating versions of fast magnetoacoustic and slow magnetoacoustic MHD waves have been detected. Information on the damping times and damping distances of these waves is less detailed and less accurate than that on periods and amplitudes. Nevertheless, observations show the damping times and damping lengths are often short. Also, different types of MHD waves in different types of magnetic structures likely require different damping mechanisms. The phenomenon of fast damping is well documented for the standing fast magnetosonic kink waves in coronal loops. This paper concentrates on standing fast magnetosonic waves. It reports on results on periods and damping times due to resonant absorption in one-dimensional and two-dimensional models of coronal loops. Special attention is given to multiple modes. PMID:16414889

  18. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.

    PubMed

    Mahpeykar, Seyed Milad; Xiong, Qiuyang; Wang, Xihua

    2014-10-20

    The application of nanostructured indium-doped tin oxide (ITO) electrodes as diffraction gratings for light absorption enhancement in colloidal quantum dot solar cells is numerically investigated using finite-difference time-domain (FDTD) simulation. Resonant coupling of the incident diffracted light with supported waveguide modes in light absorbing layer at particular wavelengths predicted by grating far-field projection analysis is shown to provide superior near-infrared light trapping for nanostructured devices as compared to the planar structure. Among various technologically feasible nanostructures, the two-dimensional nano-branch array is demonstrated as the most promising polarization-independent structure and proved to be able to maintain its performance despite structural imperfections common in fabrication. PMID:25607315

  19. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.

    PubMed

    Mahpeykar, Seyed Milad; Xiong, Qiuyang; Wang, Xihua

    2014-10-20

    The application of nanostructured indium-doped tin oxide (ITO) electrodes as diffraction gratings for light absorption enhancement in colloidal quantum dot solar cells is numerically investigated using finite-difference time-domain (FDTD) simulation. Resonant coupling of the incident diffracted light with supported waveguide modes in light absorbing layer at particular wavelengths predicted by grating far-field projection analysis is shown to provide superior near-infrared light trapping for nanostructured devices as compared to the planar structure. Among various technologically feasible nanostructures, the two-dimensional nano-branch array is demonstrated as the most promising polarization-independent structure and proved to be able to maintain its performance despite structural imperfections common in fabrication.

  20. Observing random walks of atoms in buffer gas through resonant light absorption

    NASA Astrophysics Data System (ADS)

    Aoki, Kenichiro; Mitsui, Takahisa

    2016-07-01

    Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.

  1. Experimental verification of neutron phenomenology in lead and transmutation by adiabatic resonance crossing in accelerator driven systems

    NASA Astrophysics Data System (ADS)

    Arnould, H.; Bompas, C. A.; del Moral, R.; Lacoste, V.; Vlachoudis, V.; Aleixandre, J.; Bueno, J.; Cerro, E.; González, O.; Tamarit, J.; Andriamonje, S.; Brozzi, D.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Dumps, L.; Gelès, C.; Goulas, I.; Fernández, R.; Kadi, Y.; Klapisch, R.; Oropesa, J.; Placci, A.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Saldaa, F.; Embid, M.; Gálvez, J.; López, C.; Pérez-Enciso, E.; Poza, M.; Sirvent, C.; Vieira, S.; Abánades, A.; Garcia, J.; Martinez-Val, J. M.; Perlado, M.; González, E.; Hussonnois, M.; Le Naour, C.; Trubert, D.; Belle, E.; Giorni, A.; Heuer, D.; Loiseaux, J. M.; Méplan, O.; Nifenecker, H.; Schussler, F.; Viano, J. B.; Angelopoulos, A.; Apostolakis, A.; Karaiskos, P.; Sakelliou, L.; Kokkas, P.; Pavlopoulos, P.; Eleftheriadis, C.; Kitis, G.; Papadopoulos, I.; Savvidis, E.; Tzima, A.; Zioutas, K.; Diez, S.; Pérez-Navarro, A.

    1999-07-01

    Energy and space distributions of spallation neutrons (from 2.5 and 3.57 GeV/c CERN proton beams) slowing down in a 3.3 x 3.3 x 3 m3 lead volume and neutron capture rates on long-lived fission fragments 99Tc and 129I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.

  2. Critical density and impact of Δ (1232 ) resonance formation in neutron stars

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Fattoyev, Farrukh J.; Li, Bao-An; Newton, William G.

    2015-07-01

    The critical densities and impact of forming Δ (1232 ) resonances in neutron stars are investigated within an extended nonlinear relativistic mean-field (RMF) model. The critical densities for the formation of four different charge states of Δ (1232 ) are found to depend differently on the separate kinetic and potential parts of nuclear symmetry energy, the first example of a microphysical property of neutron stars to do so. Moreover, they are sensitive to the in-medium Δ mass mΔ and the completely unknown Δ -ρ coupling strength gρ Δ. In the universal baryon-meson coupling scheme where the respective Δ -meson and nucleon-meson coupling constants are assumed to be the same, the critical density for the first Δ-(1232 ) to appear is found to be ρΔcrit=(2.08 ±0.02 ) ρ0 using RMF model parameters consistent with current constraints on all seven macroscopic parameters usually used to characterize the equation of state of isospin-asymmetric nuclear matter at saturation density ρ0. Moreover, the composition and the mass-radius relation of neutron stars are found to depend significantly on the values of the gρ Δ and mΔ.

  3. Photon strength functions in Gd isotopes studied from radiative capture of resonance neutrons

    NASA Astrophysics Data System (ADS)

    Kroll, J.; Baramsai, B.; Mitchell, G. E.; Agvaanluvsan, U.; Bečvář, F.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Keksis, A. L.; Krtička, M.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Vieira, D. J.; Walker, C.; Wu, C. Y.

    2014-04-01

    The experimental spectra of γ rays following radiative neutron capture on isolated resonances of stable 152,154-158Gd targets were measured by the DANCE calorimeter installed at the Los Alamos Neutron Scattering Center in New Mexico, USA. These spectra were analyzed within the extreme statistical model to get new information on the photon strength functions. Special emphasis was put on study of the scissors vibrational mode present in these isotopes. Our data show that the scissors-mode resonances are built not only on the ground states but also on the excited levels of all studied Gd isotopes. The scissors mode strength observed in 157,159Gd products is significantly higher than in neighboring even-even nuclei 156,158Gd. Such a difference indicates the existence of an odd-even effect in the scissors mode strength. Moreover, there exists no universal parameter-free model of the electric dipole photon strength function describing the experimental data in all of the Gd isotopes studied. The results for the scissors mode are compared with the (γ, γ') data for the ground-state transitions and with the results from 3He-induced reactions.

  4. Complementarity with neutron two-path interferences and separated-oscillatory-field resonances

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    1993-07-01

    The implications of complementarity on two-path neutron interferences and on separated-oscillatory-field resonances are discussed. The studies are extensions of those by Furry and Ramsey [Phys. Rev. 118, 623 (1960)] on two-path electron interferences which showed that an apparatus used to determine the electron path introduces uncertainties in the scalar and vector potentials which in turn disturb the phase of the electron wave function so much through the Aharonov-Bohm effects [Phys. Rev. 115, 485 (1959)] that the interference fringes disappear. A similar result is derived here for the neutron, but with the phase uncertainties coming from the magnetic moment's motion through an electric field as discussed by Anandan [Phys. Rev. Lett. 48, 1660 (1982)], and Aharonov and Casher [Phys. Rev. Lett. 53, 319 (1984)]. A corresponding result is also obtained for separated-oscillatory-fields resonances, which can be interpreted as an interference between two different paths in spin space. An interesting difference between the separated-path and separated-oscillatory-field experiments is that the latter may be interpreted classically.

  5. Sound Absorption of a 2DOF Resonant Liner with Negative Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Cataldi, P.; Gaeta, R. J., Jr.; Jones, Mike (Technical Monitor)

    2000-01-01

    This report describes an experimental study conducted to determine the effect of negative bias flow on the sound absorption of a two degree-of-freedom liner. The backwall for the liner was designed to act as a double-Helmholtz resonator so as to act as a hard wall at all frequencies except at its resonant frequencies. All normal incident impedance data presented herein was acquired in an impedance tube. The effect of bias flow is investigated for a buried septum porosity of 2% and 19.5% for bias flow orifice mach numbers up to 03 11. As a porous backwall is needed for the flow to pass through, the effect of bias flow on this backwall all had to be evaluated first. The bias flow appears to modify the resistance and reactance of the backwall alone at lower frequencies up to about 2 kHz, with marginal effects at higher frequencies. Absorption coefficients close to unity are achieved for a frequency range of 500-4000 Hz for the overall liner for a septum porosity of 2% and orifice mach number of 0.128. Insertion loss tests performed in a flow duct facility for grazing flow Mach numbers up to 0.2 and septum mach numbers up to 0.15 showed that negative bias flow can increase insertion loss by as much as 10 dB at frequencies in the range of 500 - 1400 Hz compared to no grazing flow. The effectiveness of the negative bias flow is diminished as the grazing flow velocity is increased.

  6. Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles.

    PubMed

    Wen, S L; Liu, Y; Zhao, X C; Cheng, J W; Li, H

    2014-09-14

    In this paper, we report the synthesis of three kinds of novel nanosheet hierarchical cobalt particles by adjusting the [C4H4O6](2-)/Co(2+) ratio through a liquid reduction method. We investigated the electromagnetic properties of the cobalt particles in detail over the microwave frequency range of 1-18 GHz. The results show that the real part of the permittivity decreases and the imaginary part of the permeability increases with an increase in the [C4H4O6](2-)/Co(2+) ratio. The permeability displays two resonance peaks over the frequency range. The cobalt particles with [C4H4O6](2-)/Co(2+) = 6 have a maximum reflection loss of -48.03 dB at 13.61 GHz, and the effective absorption bandwidth (RL ≤ -10 dB) is 6.76 GHz corresponding to a thickness of 1.7 mm. Considering the impedance matching and attenuation based on the electromagnetic parameters, we designed a way to obtain cobalt particles with excellent microwave absorption properties by decreasing the real part of permittivity and increasing the imaginary part of permeability.

  7. Thermoluminescence, electron paramagnetic resonance and optical absorption in natural and synthetic rhodonite crystals

    NASA Astrophysics Data System (ADS)

    Paião, J. R. B.; Watanabe, S.

    2008-10-01

    Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340°C TL peaks are observed; the difference occurs in their relative intensities, but only 340°C peak grows strongly for high doses. Al2O3 and Al2O3 + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4°C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn3+ in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe2+. It decays under heating up to 900°C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600°C.

  8. Temperature measurement of cold atoms using transient absorption of a resonant probe through an optical nanofibre

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Gokhroo, Vandna; Bhushan Tiwari, Vibhuti; Chormaic, Síle Nic

    2016-11-01

    Optical nanofibres are ultrathin optical fibres with a waist diameter typically less than the wavelength of light being guided through them. Cold atoms can couple to the evanescent field of the nanofibre-guided modes and such systems are emerging as promising technologies for the development of atom-photon hybrid quantum devices. Atoms within the evanescent field region of an optical nanofibre can be probed by sending near or on-resonant light through the fibre; however, the probe light can detrimentally affect the properties of the atoms. In this paper, we report on the modification of the local temperature of laser-cooled 87Rb atoms in a magneto-optical trap centred around an optical nanofibre when near-resonant probe light propagates through it. A transient absorption technique has been used to measure the temperature of the affected atoms and temperature variations from 160 μk to 850 μk, for a probe power ranging from 0 to 50 nW, have been observed. This effect could have implications in relation to using optical nanofibres for probing and manipulating cold or ultracold atoms.

  9. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-01

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy. PMID:26458177

  10. Spatial Damping of Propagating Kink Waves Due to Resonant Absorption: Effect of Background Flow

    NASA Astrophysics Data System (ADS)

    Soler, R.; Terradas, J.; Goossens, M.

    2011-06-01

    Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the direction perpendicular to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and are damped on length scales that are inversely proportional to the frequency as in the static case. However, the factor of proportionality depends on the characteristics of the flow, so that the damping length differs from its static analog. For slow, sub-Alfvénic flows the backward propagating wave gets damped on a shorter length scale than in the absence of flow, while for the forward propagating wave the damping length is longer. The different properties of the waves depending on their direction of propagation with respect to the background flow may be detected by the observations and may be relevant for seismological applications.

  11. Heating of the solar corona by the resonant absorption of Alfven waves

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    1987-01-01

    An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. To accomplish this, the wave equation for a dissipative, compressible plasma is derived from the linearized magnetohydrodynamic equations for a plasma with transverse Alfven speed gradients. For parameters representative of the solar corona, it is found that a two-scale description of the wave motion is appropriate. The large-scale motion, which can be approximated as nearly ideal, has a scale which is on the order of the width of the loop. The small-scale wave, however, has a transverse scale much smaller than the width of the loop, with a width of about 0.3-250 km, and is highly dissipative. These two wave motions are coupled in a narrow resonance region in the loop where the global wave frequency equals the local Alfven wave frequency. Formally, this coupling comes about from using the method of matched asymptotic expansions to match the inner and outer (small and large scale) solutions. The resultant heating rate can be calculated from either of these solutions. A formula derived using the outer (ideal) solution is presented, and shown to be consistent with observations of heating and line broadening in the solar corona.

  12. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    PubMed

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-01

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  13. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGES

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  14. Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Racine, Étienne

    2007-02-01

    In coalescing neutron star binaries, r-modes in one of the stars can be resonantly excited by the gravitomagnetic tidal field of its companion. This post-Newtonian gravitomagnetic driving of these modes dominates over the Newtonian tidal driving previously computed by Ho and Lai. To leading order in the tidal expansion parameter R/r (where R is the radius of the neutron star and r is the orbital separation), only the l=2, |m|=1, and |m|=2 r-modes are excited. The tidal work done on the star through this driving has an effect on the evolution of the inspiral and on the phasing of the emitted gravitational wave signal. For a neutron star of mass M, radius R, spin frequency fspin, modeled as a Γ=2 polytrope, with a companion also of mass M, the gravitational wave phase shift for the m=2 mode is ˜0.1radians(R/10km)4(M/1.4M⊙)-10/3(fspin/100Hz)2/3 for optimal spin orientation. For canonical neutron star parameters this phase shift will likely not be detectable by gravitational wave detectors such as LIGO, but if the neutron star radius is larger it may be detectable if the signal-to-noise ratio is moderately large. The energy transfer is large enough to drive the mode into the nonlinear regime if fspin≳100Hz. For neutron star—black hole binaries, the effect is smaller; the phase shift scales as companion mass to the -4/3 power for large companion masses. The net energy transfer from the orbit into the star is negative corresponding to a slowing down of the inspiral. This occurs because the interaction reduces the spin of the star, and occurs only for modes which satisfy the Chandrasekhar-Friedman-Schutz instability criterion. A large portion of the paper is devoted to developing a general formalism to treat mode driving in rotating stars to post-Newtonian order, which may be useful for other applications. We also correct some conceptual errors in the literature on the use of energy conservation to deduce the effect of the mode driving on the gravitational wave

  15. Neutron Cross Section Processing Methods for Improved Integral Benchmarking of Unresolved Resonance Region Evaluations

    NASA Astrophysics Data System (ADS)

    Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; Brown, Forrest B.

    2016-03-01

    In this work we describe the development and application of computational methods for processing neutron cross section data in the unresolved resonance region (URR). These methods are integrated with a continuous-energy Monte Carlo neutron transport code, thereby enabling their use in high-fidelity analyses. Enhanced understanding of the effects of URR evaluation representations on calculated results is then obtained through utilization of the methods in Monte Carlo integral benchmark simulations of fast spectrum critical assemblies. First, we present a so-called on-the-fly (OTF) method for calculating and Doppler broadening URR cross sections. This method proceeds directly from ENDF-6 average unresolved resonance parameters and, thus, eliminates any need for a probability table generation pre-processing step in which tables are constructed at several energies for all desired temperatures. Significant memory reduction may be realized with the OTF method relative to a probability table treatment if many temperatures are needed. Next, we examine the effects of using a multi-level resonance formalism for resonance reconstruction in the URR. A comparison of results obtained by using the same stochastically-generated realization of resonance parameters in both the single-level Breit-Wigner (SLBW) and multi-level Breit-Wigner (MLBW) formalisms allows for the quantification of level-level interference effects on integrated tallies such as keff and energy group reaction rates. Though, as is well-known, cross section values at any given incident energy may differ significantly between single-level and multi-level formulations, the observed effects on integral results are minimal in this investigation. Finally, we demonstrate the calculation of true expected values, and the statistical spread of those values, through independent Monte Carlo simulations, each using an independent realization of URR cross section structure throughout. It is observed that both probability table

  16. Neutron Spin Structure in the Resonance Region and Quark-Hadron Duality

    SciTech Connect

    Patricia Solvignon

    2005-06-02

    Quark-Hadron duality has been experimentally demonstrated for the spin independent structure function F{sub 2}. Duality is observed when, at the same value of scaling variable x{sub bj}, the smooth scaling curve at high momentum transfer becomes an average over the resonances at lower momentum transfer. Jefferson Lab experiment 01-012 used the polarized {sup 3}He target in Hall A for an extraction of the neutron spin structure function g{sub 1}{sup n} and the virtual photon asymmetry A{sub 1}{sup n} in the resonance region over a Q{sup 2} range from 1.0 to 4.0 (GeV/c){sup 2}. Data from E01-012 combined with Deep Inelastic Scattering data will provide a test of quark-hadron duality predictions for g{sub 1}{sup n} and A{sub 1}{sup n}. This will be one of the first tests of the spin and flavor dependence of quark-hadron duality. The demonstration of duality for spin structure functions will enable us to use the resonance data to study the nucleon spin structure in the large x{sub bj} region.

  17. Effect of collisions on dc magnetic-field generation in a plasma by resonance absorption of light

    SciTech Connect

    Adam, J.C.; Gourdin-Serveniere, A.; Mora, P.; Pellat, R.

    1982-05-01

    The importance of collisional ponderomotive effects on dc magnetic field generation is stressed. Computer simulations show that a weak rate of collision is sufficient to completely modify dc magnetic field generation in the resonant absorption of light, as compared with previous collisionless simulations. The agreement with theoretical predictions is shown.

  18. Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes

    SciTech Connect

    Fountaine, Katherine T.; Whitney, William S.; Atwater, Harry A.

    2014-10-21

    We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.

  19. Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators.

    PubMed

    Li, Yu; Feng, Shaoqi; Zhang, Yu; Poon, Andrew W

    2013-12-01

    We report a sub-bandgap linear-absorption-based photodetector in avalanche mode at 1550 nm in a PN-diode-integrated silicon microring resonator. The photocurrent is primarily generated by the defect-state absorption introduced by the boron and phosphorous ion implantation during the PN diode formation. The responsivity is enhanced by both the cavity effect and the avalanche multiplication. We measure a responsivity of ~72.8 mA/W upon 8 V at cavity resonances in avalanche mode, corresponding to a gain of ~72 relative to the responsivity of ~1.0 mA/W upon 3 V at cavity resonances in normal mode. Our device exhibits a 3 dB bandwidth of ~7 GHz and an open eye diagram at 15 Gbit/s upon 8 V.

  20. Photon strength functions of 156Gd from radiative capture of resonance neutrons

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Kroll, J.; Mitchell, G. E.; Agvaanluvsan, U.; Bečvář, F.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Keksis, A. L.; Krtička, M.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Walker, C. L.

    2013-04-01

    The 155Gd(n,γ) reaction was measured with the DANCE γ-ray calorimeter (consisting of 160 BaF2 scintillation detectors) at the Los Alamos Neutron Science Center. The γ-ray energy spectra for different multiplicities were obtained for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the dicebox statistical model code. Simulations showed that the photon strength functions (PSFs) successfully describing the decay of 156Gd are very similar to the PSFs describing the decay of previously published 158Gd results. It was demonstrated that the scissors mode is required not only for the ground-state transitions, but also for transitions between excited states.

  1. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    SciTech Connect

    Krasznahorkay, A.; Stuhl, L.; Csatlos, M.; Algora, A.; and others

    2012-10-20

    The {gamma}-decay of the anti-analog of the giant dipole resonance (AGDR) to the isobaric analog state has been measured following the p({sup 124}Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent relativistic random-phase approximation (RPA) and turned out to be very sensitive to the neutronskin thickness ({Delta}R{sub pn}). By comparing the theoretical results with the measured one, the {Delta}R{sub pn} value for {sup 124}Sn was deduced to be 0.21 {+-} 0.07 fm, which agrees well with the previous results. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.

  2. Measurement of the thermal neutron capture cross section and the resonance integral of radioactive Hf182

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Bichler, M.; Wallner, A.; Kutschera, W.; Dillmann, I.; Käppeler, F.

    2008-04-01

    The neutron capture cross sections of the radioactive isotope Hf182 (t1/2=8.9×106 yr) in the thermal and epithermal energy regions have been measured by activation at the TRIGA Mark-II reactor of the Atomic Institute of the Austrian Universities in Vienna, Austria, and subsequent γ-ray spectroscopy of Hf183. High values for the thermal (kT=25 meV) cross section σ0=133±10 b and for the resonance integral I0=5850±660 b were found. Additionally, the absolute intensities of the main γ-ray transitions in the decay of Hf182 have been considerably improved.

  3. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    PubMed

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits. PMID:27369508

  4. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    PubMed

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits.

  5. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  6. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  7. Isotopic molybdenum total neutron cross section in the unresolved resonance region

    NASA Astrophysics Data System (ADS)

    Bahran, R.; Barry, D.; Block, R.; Leinweber, G.; Rapp, M.; Daskalakis, A.; Blain, E.; Williams, D.; McDermott, B.; Leal, L.; Danon, Y.

    2015-08-01

    Accurate isotopic molybdenum nuclear data are important because molybdenum can exist in nuclear reactor components including fuel, cladding, or as a high yield fission product. High-resolution time-of-flight neutron transmission measurements on highly enriched isotopic metallic samples of 95Mo , 96Mo , 98Mo , and 100Mo were performed in the resonance energy range from 1 to 620 keV . The measurements were taken with the newly developed modular 6Li -glass transmission detector positioned at the 100-m experimental flight station. In the unresolved energy region (URR), new comprehensive methods of analysis were developed and validated in order to obtain accurate neutron total cross-section data from the measurement by correcting for background and transmission enhancement effects. Average parameters and fits to the total cross section for 95Mo were obtained using the Hauser-Feshbach statistical model code fitacs, which is currently incorporated into the sammy code. The fits to the experimental data deviate from the current evaluated nuclear data file/B-VII.1 isotopic Mo evaluations by several percent in the URR.

  8. Neutron diffraction and ferromagnetic resonance studies on plasma-sprayed MnZn ferrite films

    SciTech Connect

    Yan, Q.Y.; Gambino, R.J.; Sampath, S.; Huang, Q.

    2005-02-01

    The magnetic properties of MnZn ferrites are affected by the plasma spray process. It is found that improvements can be made by annealing the ferrite films at 500 deg. C - 800 deg. C. The annealing induced magnetic property changes are studied by neutron diffraction and ferromagnetic resonance techniques. The increase of the saturation magnetization is attributed to the cation ordering within the spinel lattice, which increases the magnetic moment per ferrite formula. The refinements on the neutron diffraction data suggest that the redistribution of the cation during annealing neither starts from a fully disordered state nor ends to a fully ordered state. The decrease of the coercivity is analyzed with the domain wall pinning model. The measurements on the magnetostriction and residual stress indicate that coercive mechanisms arising from the magnetoelastic energy term are not dominant in these ferrite films. The decrease of the coercivity for annealed ferrite films is mainly attributed to the decrease of the effective anisotropic field, which may result from the homogenization of the film composition and the reduction of the microstructural discontinuity (e.g., cracks, voids, and splat boundaries)

  9. Microwave absorption of a TiO2@PPy hybrid and its nonlinear dielectric resonant attenuation mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Wanchun; Wang, Yu; Xie, Aming; Wu, Fan

    2016-09-01

    We report on a high-performance electromagnetic absorption material (TiO2@PPy) developed via a facile in situ polymerization process, where lower than  ‑60 dB maximum absorption and 6.56 dB effective absorption bandwidth (lower than  ‑10 dB) can be obtained under low thickness. The excellent electromagnetic wave absorption ability is attributed to the synthetic effect of improved impedance matching and the dual loss mechanism, which originates from the polarization relaxations of dipoles induced by vacancy defects and a conductive network constructed by aerogels. An equivalent circuit model is established to explicate the nonlinear dielectric resonant attenuation mechanism.

  10. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection.

    PubMed

    Maier, Irene; Morgan, Michael R A; Lindner, Wolfgang; Pittner, Fritz

    2008-04-15

    An optical immunochip biosensor has been developed as a rapid method for allergen detection in complex food matrixes, and its application evaluated for the detection of the egg white allergens, ovalbumin and ovomucoid. The optical near-field phenomenon underlying the basic principle of the sensor design is called resonance-enhanced absorption (REA), which utilizes gold nanoparticles (Au NPs) as signal transducers in a highly sensitive interferometric setup. Using this approach, a novel, simple, and rapid colorimetric solid-phase immunoassay on a planar chip substrate was realized in direct and sandwich assay formats, with a detection system that does not require any instrumentation for readout. Semiquantitative immunochemical responses are directly visible to the naked eye of the analyst. The biosensor shows concentration-dependent color development by capturing antibody-functionalized Au NPs on allergen-coated chips and has a detection limit of 1 ng/mL. To establish a rapid method, we took advantage of the physicochemical microenvironment of the Au NP-antibody bioconjugate to be bound directly over an interacting poly(styrene-methyl methacrylate) interlayer by an immobilized antigen. In the direct assay format, a coating time with allergen of only 5 min under "soft" nondenaturing conditions was sufficient for accurate reproducibility and sensitivity. In conclusion, the REA-based immunochip sensor is easy to fabricate, is reproducible and selective in its performance, has minimal technical requirements, and will enable high-throughput screening of affinity binding interactions in technological and medical applications. PMID:18358010

  11. Resonant states of the neutron-rich Λ hypernucleus He7Λ

    NASA Astrophysics Data System (ADS)

    Hiyama, E.; Isaka, M.; Kamimura, M.; Myo, T.; Motoba, T.

    2015-05-01

    The structure of the neutron-rich Λ hypernucleus, He7Λ is studied within the framework of an α +Λ +n +n four-body cluster model. We predict second 3 /2+ and 5 /2+ states, corresponding to a 0 s Λ coupled to the second 2+ state of 6He, as narrow resonant states with widths of Γ ˜1 MeV to be at 0.03 and 0.07 MeV with respect to the α +Λ +n +n threshold. From a separate estimate of the differential cross section for the 7Li (γ ,K+) He7Λ reaction, we suggest a possibility to observe these states at the Thomas Jefferson National Accelerator Facility (JLab) in the future. We also calculate the second 2+ state of 6He as a resonant state within the framework of an α +n +n three-body cluster model. Our result is 2.81 MeV with Γ =4.63 MeV with respect to the α +n +n threshold. This energy position is ˜1 MeV higher, and with a much broader decay width, than the recent SPIRAL data. We suggest that an experiment at JLab to search for the second 3 /2+ and 5 /2+ states of He7Λ would provide an opportunity to confirm the second 2+ state of the core nucleus 6He.

  12. Solid-state effects on thermal-neutron cross sections and on low-energy resonances

    SciTech Connect

    Harvey, J.A.; Mook, H.A.; Hill, N.W.; Shahal, O.

    1982-01-01

    The neutron total cross sections of several single crystals (Si, Cu, sapphire), several polycrystalline samples (Cu, Fe, Be, C, Bi, Ta), and a fine-powder copper sample have been measured from 0.002 to 5 eV. The Cu powder and polycrystalline Fe, Be and C data exhibit the expected abrupt changes in cross section. The cross section of the single crystal of Si is smooth with only small broad fluctuations. The data on two single Cu crystals, the sapphire crystal, cast Bi, and rolled samples of Ta and Cu have many narrow peaks approx. 10/sup -3/ eV wide. High resolution (0.3%) transmission measurements were made on the 1.057-eV resonance in /sup 240/Pu and the 0.433-eV resonance in /sup 180/Ta, both at room and low temperatures to study the effects of crystal binding. Although the changes in Doppler broadening with temperature were apparent, no asymmetries due to a recoilless contribution were observed.

  13. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  14. Performance assessment of self-interrogation neutron resonance densitometry for spent nuclear fuel assay

    NASA Astrophysics Data System (ADS)

    Hu, Jianwei; Tobin, Stephen J.; LaFleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T.

    2013-11-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is one of several nondestructive assay (NDA) techniques being integrated into systems to measure spent fuel as part of the Next Generation Safeguards Initiative (NGSI) Spent Fuel Project. The NGSI Spent Fuel Project is sponsored by the US Department of Energy's National Nuclear Security Administration to measure plutonium in, and detect diversion of fuel pins from, spent nuclear fuel assemblies. SINRD shows promising capability in determining the 239Pu and 235U content in spent fuel. SINRD is a relatively low-cost and lightweight instrument, and it is easy to implement in the field. The technique makes use of the passive neutron source existing in a spent fuel assembly, and it uses ratios between the count rates collected in fission chambers that are covered with different absorbing materials. These ratios are correlated to key attributes of the spent fuel assembly, such as the total mass of 239Pu and 235U. Using count rate ratios instead of absolute count rates makes SINRD less vulnerable to systematic uncertainties. Building upon the previous research, this work focuses on the underlying physics of the SINRD technique: quantifying the individual impacts on the count rate ratios of a few important nuclides using the perturbation method; examining new correlations between count rate ratio and mass quantities based on the results of the perturbation study; quantifying the impacts on the energy windows of the filtering materials that cover the fission chambers by tallying the neutron spectra before and after the neutrons go through the filters; and identifying the most important nuclides that cause cooling-time variations in the count rate ratios. The results of these studies show that 235U content has a major impact on the SINRD signal in addition to the 239Pu content. Plutonium-241 and 241Am are the two main nuclides responsible for the variation in the count rate ratio with cooling time. In short, this work

  15. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    SciTech Connect

    Reass, W. A.; Apgar, S. E.; Baca, D. M.; Doss, James D.; Gonzales, J.; Gribble, R. F.; Hardek, T. W.; Lynch, M. T.; Rees, D. E.; Tallerico, P. J.; Trujillo, P. B.; Anderson, D. E.; Heidenreich, D. A.; Hicks, J. D.; Leontiev, V. N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  16. Resonant excited state absorption and relaxation mechanisms in Tb3+-doped calcium aluminosilicate glasses: an investigation by thermal mirror spectroscopy.

    PubMed

    Bianchi, G S; Zanuto, V S; Astrath, F B G; Malacarne, L C; Terra, I A A; Catunda, T; Nunes, L A O; Jacinto, C; Andrade, L H C; Lima, S M; Baesso, M L; Astrath, N G C

    2013-11-15

    Resonant excited state absorption (ESA) and relaxation processes in Tb(3+)-doped aluminosilicate glasses are quantitatively evaluated. A model describing the excitation steps and upconversion emission is developed and applied to interpret the results from laser-induced surface deformation using thermal mirror spectroscopy. The fluorescence quantum efficiency of level (5)D(4) was found to be close to unity and concentration independent while, for the level (5)D(3), it decreases with Tb(3+) concentration. Emission spectroscopy measurements supported these results. ESA cross sections are found to be more than three orders of magnitude higher than the ground state absorption cross section. PMID:24322101

  17. Using the {delta}{sub 3} statistic to test for missed levels in mixed sequence neutron resonance data

    SciTech Connect

    Mulhall, Declan

    2009-09-15

    The {delta}{sub 3}(L) statistic is studied as a tool to detect missing levels in the neutron resonance data where two sequences are present. These systems are problematic because there is no level repulsion, and the resonances can be too close to resolve. {delta}{sub 3}(L) is a measure of the fluctuations in the number of levels in an interval of length L on the energy axis. The method used is tested on ensembles of mixed Gaussian orthogonal ensemble spectra, with a known fraction of levels (x%) randomly depleted, and can accurately return x. The accuracy of the method as a function of spectrum size is established. The method is used on neutron resonance data for 11 isotopes with either s-wave neutrons on odd-A isotopes, or p-wave neutrons on even-A isotopes. The method compares favorably with a maximum likelihood method applied to the level spacing distribution. Nuclear data ensembles were made from 20 isotopes in total, and their {delta}{sub 3}(L) statistics are discussed in the context of random matrix theory.

  18. A Monte Carlo simulation to study a design of a gamma-ray detector for neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.; Harada, H.; Koizumi, M.; Kitatani, F.; Takamine, J.; Kureta, M.; Iimura, H.

    2013-11-01

    Neutron resonance densitometry (NRD) has been proposed to quantify nuclear materials in melted fuel (MF) that will be removed from the Fukushima Daiichi nuclear power plant. The problem is complex due to the expected presence of strong neutron absorbing impurities such as 10B and high radiation field that is mainly caused by 137Cs. To identify the impurities under the high radiation field, NRD is based on a combination of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). We investigated with Geant4 the performance of a gamma-ray detector for NRCA in NRD. The gamma-ray detector has a well shape, consisting of cylindrical and tube type LaBr3 scintillators. We show how it measures 478 keV gamma rays derived from 10B(n, αγ) reaction in MF under a high 137Cs-radiation environment. It was found that the gamma-ray detector was able to well suppress the Compton edge of 662-keV gamma rays of 137Cs and had a high peak-to-Compton continuum ratio, by using the tube type scintillator as a back-catcher detector. Then, we demonstrate that with this ability, detection of 478-keV gamma rays from 10B is accomplished in realistic measuring time.

  19. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    SciTech Connect

    Graybill, R.; Morgado, R.E.; Cappiello, C.C.

    1994-05-01

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported.

  20. Exploring the neutron dripline two neutrons at a time: The first observations of the 26O and 16Be ground state resonances

    NASA Astrophysics Data System (ADS)

    Kohley, Z.; Spyrou, A.; Lunderberg, E.; DeYoung, P. A.; Attanayake, H.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Divaratne, D.; Grimes, S. M.; Haagsma, A.; Finck, J. E.; Frank, N.; Luther, B.; Mosby, S.; Nagi, T.; Peaslee, G. F.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2013-03-01

    The two-neutron unbound ground state resonances of 26O and 16Be were populated using one-proton knockout reactions from 27F and 17B beams. A coincidence measurement of 3-body system (fragment + n + n) allowed for the decay energy of the unbound nuclei to be reconstructed. A low energy resonance, < 200 keV, was observed for the first time in the 240 + n + n system and assigned to the ground state of 26O. The 16Be ground state resonance was observed at 1.35 MeV. The 3-body correlations of the 14Be + n + n system were compared to simulations of a phase-space, sequential, and dineutron decay. The strong correlations in the n-n system from the experimental data could only be reproduced by the dineutron decay simulation providing the first evidence for a dineutron-like decay.

  1. A theoretical analysis of the X-ray cyclotron absorption lines of the isolated neutron star 1E1207.4-5209

    NASA Astrophysics Data System (ADS)

    Yuan, Ai-fang; Liu, Dang-bo; Chen, Lei; Ding, Li; You, Jun-hang

    2006-07-01

    As revealed by recent observations, in the X-ray continuum of the radio quiet isolated neutron star 1E1207.4-5209 there exist several equidistant absorption lines, and their energies are, respectively, 0.7, 1.4 and 2.1 keV. According to the theory of quantum cyclotron radiation under the quadrupolar approximation developed in recent years, we have clarified some existing doubts and affirmed that these lines are electron cyclotron absorption lines instead of proton cyclotron lines. Besides, the spatial orientation of the spin axis of this neutron star has been theoretically determined.

  2. Gamma Emission Spectra from Neutron Resonances in 234,236,238U Measured Using the Dance Detector at Lansce

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2013-03-01

    An accurate knowledge of the radiative strength function and level density is needed to calculate of neutron-capture cross sections. An additional constraint on these quantities is provided by measurements of γ-ray emission spectra following capture. We present γ-emission spectra from several neutron resonances in 234,236,238U, measured using the DANCE detector at LANSCE. The measurements are compared to preliminary calculations of the cascade. It is observed that the generalized Lorentzian form of the E1 strength function cannot reproduce the shape of the emission spectra, but a better description is made by adding low-lying M1 Lorentzian strength.

  3. Effect of resonance structure on 14-MeV Monte Carlo neutron transport in nitrogen and air

    SciTech Connect

    Plechaty, E.F.

    1982-10-20

    The results of Monte Carlo calculations can be sensitive to methods used to treat cross sections. This sensitivity can be emphasized by studying one isotope of an element or material that has a resonance region. Very few naturally occurring materials exist in a mono-isotopic form, but when such a material is an important part of a problem, care should be exercised in the selection of a code to be used for the calculations. It is recommended that the ALICE code, that uses a multiband treatment for cross sections, be used at LLNL for neutronic and neutron-induced photonic problems.

  4. Gravitationally Redshifted Absorption Lines in the Burst Spectra of the Neutron Star in the X-Ray Binary EXO 0748-676

    NASA Technical Reports Server (NTRS)

    Cottoam, J.; Paerels, F.; Mendez, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The most straightforward manner of determining masses and radii of neutron stars is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere; such a measurement would provide direct constraints on the mass-to-radius ratio of the neutron star, and therefore on the equation of state for neutron star matter. Using data taken with the Reflection Grating Spectrometer on board the XMM-Newton observatory we identify, for the first time, significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO 0748-676. The most significant features are consistent with the Fe XXVI and XXV n=2-3 and O VIII n=1-2 transitions, with a redshift of z=0.35, identical within small uncertainties for the different transitions. This constitutes the first direct and unambiguous measurement of the gravitational redshift in a neutron star.

  5. On resonant ICRF absorption in three-ion component plasmas: a new promising tool for fast ion generation

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.

    2015-03-01

    We report on a very efficient ion-cyclotron-resonance-frequency (ICRF) absorption scheme (Z)-Y-X, which hinges on the presence of three ion species residing in the plasma. A mode conversion (cutoff-resonance) layer is well known to appear in two-ion species plasmas. If the location of the L-cutoff in Y-X plasmas, which can be controlled by varying the Y : X density ratio, almost coincides with the fundamental cyclotron resonance of the third ion species Z (resonant absorber), the latter—albeit present only in trace quantities—is shown to absorb almost all the incoming RF power. A quantitative criterion for the resonant Y : X plasma composition is derived and a few numerical examples are given. Since the absorbed power per resonant particle is much larger than for any other ICRF scheme, the here discussed scenarios are particularly promising for fast particle generation. Their possible application as a source of high-energy ions for the stellarator W7-X and to mimic alpha particles during the non-activated phase of ITER tokamak is briefly discussed.

  6. Mathematical Investigation of Gamma Ray and Neutron Absorption Grid Patterns for Homeland Defense Related Fourier Imaging Systems

    NASA Technical Reports Server (NTRS)

    Boccio, Dona

    2003-01-01

    Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.

  7. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: I. Electron-positron pair production

    SciTech Connect

    Istomin, Ya. N. Sob'yanin, D. N.

    2011-10-15

    The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.

  8. SYNTHESIS AND FABRICATION OF MO-W COMPONENTS FOR NEUTRON RESONANCE SPECTROSCOPY TEMPERATURE MEASUREMENT

    SciTech Connect

    S. BINGERT; P. DESCH; E. TRUJILLO

    1999-09-01

    A Molybdenum--{sup 182}Tungsten (Mo-{sup 182}W) alloy was specified for an application that would ultimately result in the measurement of temperature and particle velocity during the steady state time following the shock loading of various materials. The {sup 182}W isotope provides a tag for the analysis of neutron resonance line shape from which the temperature may be calculated. The material was specified to have 1.8 atom percent W, with W-rich regions no larger than 1 {micro}m in size. Both the composition and W distribution were critical to the experiment. Another challenge to the processing was the very small quantity of {sup 182}W material available for the synthesis of the alloy. Therefore, limited fabrication routes were available for evaluation. Several synthesis and processing routes were explored to fabricate the required alloy components. First, precipitation of W onto Mo powder using ammonium metatungstate was investigated for powder synthesis followed by uniaxial hot pressing. Second, mechanical alloying (MA) followed by hot isostatic pressing (HIP) and warm forging was attempted. Finally, arc-melting techniques followed by either hot rolling or crushing the alloyed button into powder and consolidation were pursued. The results of the processing routes and characterization of the materials produced will be discussed.

  9. On the Anomalous Microwave Power Dependency of both Non-Resonant and Cu2+ Resonant Microwave Absorption in a YBa2Cu3O7-δ Type Superconductor

    NASA Astrophysics Data System (ADS)

    Velter-Stefanescu, M.; Duliu, O. G.

    2007-04-01

    A ceramic high temperature superconductor [HTS] of Y-Ba-Cu-O type has been investigated at 77 K by using a standard X-band Electron Paramagnetic Resonance (EPR) configuration. At very low microwave power (< 1 mW) the non-resonant or zero field signal (ZFS) was in phase with DPPH signal, pleading for an unambiguous absorption process, but it commutes to a typical superconductor signal (i.e. opposite to DPPH signal phase) with increasing the microwave power. At the same time, Cu2+ signal appreciably changes its shape with increasing microwave power. These anomalous behaviors could be in part explained by a conventional SQUID response at microwave frequency by taking into account that the sample itself could be described by a collection of both Josephson and proximity junctions.

  10. Experimental observation of microwave absorption and electron heating due to the two plasmon decay instability and resonance absorption

    SciTech Connect

    Rasmussen, D.A.

    1981-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in two experimental devices. In the first device an investigation was made of microwave absorption and electron heating due to the parametric decay of microwaves into electron plasma waves (Two Plasmon Decay instability, TPDI), modeling a process which can occur near the quarter critical surface in laser driven pellets. P-polarized microwave (f = 1.2 GHz, P/sub 0/ less than or equal to 12 kW) are applied to an essentially collisionless, inhomogeneous plasma, in an oversized waveguide, in the U.C. Davis Prometheus III device. The initial density scale length near the quarter critical surface is quite long (L/lambda/sub De/ approx. = 3000 or k/sub 0/L approx. = 15). The observed threshold power for the TPDI is quite low (P/sub T/approx. = 0.1 kW or v/sub os//v/sub e/ approx. = 0.1). Near the threshold the decay waves only occur near the quarter critical surface. As the incident power is increased above threshold, the decay waves spread to lower densities, and for P/sub 0/ greater than or equal to lkW, (v/sub os//v/sub e/ greater than or equal to 0.3) suprathermal electron heating is strong for high powers (T/sub H/ less than or equal to 12 T/sub e/ for P/sub 0/ less than or equal to 8 kW or v/sub os//v/sub e/ less than or equal to 0.9).

  11. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  12. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin

    SciTech Connect

    Pollard, W.T.; Peteanu, L.A.; Mathies, R.A.

    1992-07-23

    A time-dependent theory for femtosecond dynamic absorption spectroscopy is used to describe the creation and observation of molecular ground-state vibrational coherence through the resonance impulsive stimulated Raman mechanism. Model calculations show that the oscillatory absorption signal that arises from this ground-state coherence is maximized for a limited range of pulse lengths and that there is a complex relationship between the probe wavelength and the strength of the spectral oscillations. The generalized time-dependent linear susceptibility of the nonstationary system created by the impulsive pump pulse is defined and used to discuss the strong dependence of the measured signals on the properties of the probe pulse. Finally, calculations are presented to analyze the high-frequency oscillations ({approximately}20-fs period) recently observed in the transient absorption spectra of light-adapted bacteriorhodopsin (BR{sub 568}) following excitation with a 12-fs optical pulse. At the probe wavelengths used in this experiment, the contribution of stimulated emission is negligible at long times because of the extremely rapid excited-state isomerization; as a result, the spectral oscillations observed after this time are due to the impulsive excitation of coherent vibrations in the ground state. The transient response observed for BR{sub 568} is calculated using a 29-mode harmonic potential surface derived from a prior resonance Raman intensity analysis. Both the oscillatory signals and their dependence on the probe wavelength are satisfactorily reproduced. 68 refs., 11 figs.

  13. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  14. Concepts and Engineering Aspects of a Neutron Resonance Spin-Echo Spectrometer for the National Institute of Standards and Technology Center for Neutron Research

    PubMed Central

    Cook, Jeremy C.

    2014-01-01

    Following a brief introduction, the Neutron Resonance Spin-Echo (NRSE) principle is discussed classically in Sec. 2. In Sec. 3, two idealized 4-coil NRSE spectrometers are discussed (one using single π-flipper coil units and one using paired “bootstrap” coils); some idealized (exact π-flip) expressions are given for the spin-echo signal and some theoretical limitations are discussed. A more quantum mechanical discussion of NRSE is presented in Sec. 4 and additional theory related to the spin-echo signal, including wavelength-dependence, is given is Sec. 5. Factors affecting the instrumental resolution are discussed in Sec. 6. In Sec. 7, a variety of engineering issues are assessed in the context of challenging performance goals for a NIST Center for Neutron Research (NCNR) NRSE spectrometer. In Sec. 8, some Monte Carlo simulations are presented that examine the combined influences of spectrometer imperfections on the NRSE signal. These are compared with analytical predictions developed in previous sections. In Sec. 9, possible alternatives for a NCNR NRSE spectrometer configuration are discussed together with a preliminary assessment of the spectrometer neutron guide requirements. A summary of some of the useful formulas is given in Appendix A. PMID:26601027

  15. Electron doping evolution of the neutron spin resonance in NaFe1-xCoxAs

    DOE PAGES

    Zhang, Chenglin; Song, Yu; Carr, Scott Victor; Chi, Songxue; Christianson, Andrew D.; Matsuda, Masaaki; Fernandez-Baca, Jaime A.; Dai, Pengcheng; Lv, Weicheng; Tan, Guotai; et al

    2016-05-31

    Neutron spin resonance, a collective magnetic excitation coupled to superconductivity, is one of the most prominent features shared by a broad family of unconventional superconductors including copper oxides, iron pnictides, and heavy fermions. In this paper, we study the doping evolution of the resonances in NaFe1–xCoxAs covering the entire superconducting dome. For the underdoped compositions, two resonance modes coexist. As doping increases, the low-energy resonance gradually loses its spectral weight to the high-energy one but remains at the same energy. By contrast, in the overdoped regime we only find one single resonance, which acquires a broader width in both energymore » and momentum but retains approximately the same peak position even when Tc drops by nearly a half compared to optimal doping. Furthermore, these results suggest that the energy of the resonance in electron overdoped NaFe1–xCoxAs is neither simply proportional to Tc nor the superconducting gap but is controlled by the multiorbital character of the system and doped impurity scattering effect.« less

  16. Electron doping evolution of the neutron spin resonance in NaFe1 -xCoxAs

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglin; Lv, Weicheng; Tan, Guotai; Song, Yu; Carr, Scott V.; Chi, Songxue; Matsuda, M.; Christianson, A. D.; Fernandez-Baca, J. A.; Harriger, L. W.; Dai, Pengcheng

    2016-05-01

    Neutron spin resonance, a collective magnetic excitation coupled to superconductivity, is one of the most prominent features shared by a broad family of unconventional superconductors including copper oxides, iron pnictides, and heavy fermions. In this paper, we study the doping evolution of the resonances in NaFe1 -xCoxAs covering the entire superconducting dome. For the underdoped compositions, two resonance modes coexist. As doping increases, the low-energy resonance gradually loses its spectral weight to the high-energy one but remains at the same energy. By contrast, in the overdoped regime we only find one single resonance, which acquires a broader width in both energy and momentum but retains approximately the same peak position even when Tc drops by nearly a half compared to optimal doping. These results suggest that the energy of the resonance in electron overdoped NaFe1 -xCoxAs is neither simply proportional to Tc nor the superconducting gap but is controlled by the multiorbital character of the system and doped impurity scattering effect.

  17. Non-resonant below-bandgap two-photon absorption in quantum dot solar cells

    SciTech Connect

    Li, Tian; Dagenais, Mario

    2015-04-27

    We study the optically nonlinear sub-bandgap photocurrent generation facilitated by an extended tailing distribution of states in an InAs/GaAs quantum dots (QDs) solar cell. The tailing states function as both the energy states for low energy photon absorption and the photocarriers extraction pathway. One of the biggest advantages of our method is that it can clearly differentiate the photocurrent due to one-photon absorption (1PA) process and two-photon absorption (2PA) process. Both 1PA and 2PA photocurrent generation efficiency in an InAs/GaAs QD device operated at 1550 nm have been quantitatively evaluated. A two-photon absorption coefficient β = 5.7 cm/GW is extracted.

  18. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  19. Anisotropic neutron spin resonance in superconducting BaFe{sub 1.9}Ni{sub 0.1}As{sub 2}.

    SciTech Connect

    Lipscombe, O. J.; Harriger, L. W.; Freeman, P. G.; Enderle, M.; Zhang, C.; Wang, M.; Egami, T.; Hu, J.; Xiang, T.; Norman, M. R.; Dai, P.; Materials Science Division; Univ. of Tennessee at Knoxville; Inst. Laue-Langevin; ORNL; Purdue Univ.; Chinese Academy of Sciences

    2010-01-01

    We use polarized inelastic neutron scattering to show that the neutron spin resonance below T{sub c} in superconducting BaFe{sub 1.9}Ni{sub 0.1}As{sub 2} (T{sub c} = 20 K) is purely magnetic in origin. Our analysis further reveals that the resonance peak near 7 meV only occurs for the planar response. This challenges the common perception that the spin resonance in the pnictides is an isotropic triplet excited state of the singlet Cooper pairs, as our results imply that only the S{sub 001} = {+-} 1 components of the triplet are involved.

  20. Accumulation of GdCl3 in the feed of a reverse osmosis system during desalination as determined by neutron absorption

    NASA Astrophysics Data System (ADS)

    Schwahn, D.; Pipich, V.; Kasher, R.; Oren, Y.

    2016-09-01

    This article deals with the application of in-situ small-angle neutron scattering to investigate wastewater desalination by reverse osmosis. In a first series of experiments we take advantage of the strong neutron absorption of gadolinium (Gd) and use 0.50 g/L GdCl3 in the feed as an indicator for concentration polarization and scaling at the membrane surface. The continuous decline of scattering during the process of desalination indicates an increase of GdCl3 salt concentration which after 15 hours has achieved nearly 100% enhancement with respect to its initial concentration.

  1. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  2. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  3. Anomalous fluctuations of s-wave reduced neutron widths of 192,194Pt resonances

    SciTech Connect

    Koehler, Paul Edward; Becvar, F.; Krticka, Milan; Harvey, John A; Guber, Klaus H

    2010-01-01

    We obtained an unprecedentedly large number of s-wave neutron widths through R-matrix analysis of neutron cross-section measurements on enriched Pt samples. Careful analysis of these data rejects the validity of the Porter-Thomas distribution with a statistical significance of at least 99.997%.

  4. Oscillator strength of the peptide bond {pi}* resonances at all relevant x-ray absorption edges

    SciTech Connect

    Kummer, K.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Nekipelov, S. V.; Maslyuk, V. V.; Mertig, I.; Blueher, A.; Mertig, M.; Bredow, T.

    2009-10-15

    Absolute x-ray absorption cross sections of a regular bacterial surface-layer protein deposited on a naturally oxidized silicon substrate were determined experimentally. Upon separation of the partial cross sections of the three relevant 1s absorption edges, the oscillator strengths of the 1s{yields}{pi}* excitations within the peptide-backbone unit were extracted. Comparison with results of first-principles calculations revealed their close correlation to the topology of {pi}{sub peptide}* orbitals of the peptide backbone.

  5. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  6. In-Situ Measurements of Atomic Oxygen in the MALT Region: The ATOX Resonance Fluorescence/Absorption sensor

    NASA Astrophysics Data System (ADS)

    Patterson, P.; Swenson, C. M.

    2005-12-01

    The Utah State University Atomic Oxygen (ATOX) sensor was launched aboard the Coupling of Dynamics and Aurora (CODA) payloads on January 22, 1999 from Poker Flat, Alaska and again on February 21, 2001, both into diffuse auroras. Atomic oxygen profiles were measured in-situ by a combination of resonance and florescence techniques. While the resonant fluorescence technique appears well suited for the measurement of O in the MALT, the dynamics of the sounding rockets which carry the sensor system create challenges that the system and data analysts must overcome. Primary challenges include density flow field disturbances, Doppler shift of the source lamp emission, and contamination. It has been well documented that these challenges, especially the flow field disturbances, make it difficult to accurately measure O concentration profiles. Our research has quantified the effect of the three major disturbances, seen as errors, and attempts to correct for each. Computations show that the largest errors are introduced by flow field disturbances. With a strong dependence upon measurement attitude and mission geometry, errors in the ram direction are often in excess of 300%. Errors as large as 100% are introduced by Doppler shift of the lamp output, and errors upwards of 40% are introduced into the absorption measurements due to contamination. An approach will be discussed that can potentially reduce errors in both the fluorescence and absorption measurements to within 15 - 20% of undisturbed values. Furthermore, since the corrections are applied across the entire measurement region, direct comparison of upleg and downleg measurements is now possible.

  7. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    PubMed

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of 'lightnings'

    SciTech Connect

    Istomin, Ya. N. Sob'yanin, D. N.

    2011-10-15

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning-a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 10{sup 28}. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).

  9. Compartmentalization of trace elements in guinea pig tissues by INAA (instrumental neutron activation analysis) and AAS (atomic absorption spectroscopy)

    SciTech Connect

    Chatt, A.; Holzbecher, J.; Katz, S.A.

    1988-01-01

    Human scalp hair analysis has received considerable attention from a variety of disciplines over the last 20 yr or so. Trace element levels of hair have been used in environmental, epidemiological, forensic, nutritional, predictive, and preventive medicine studies. There still exist confusion, skepticism, and controversy, however, among the experts as well as lay persons in the interpretation of hair trace element data. Much of the criticism stems from the lack of quantitative and reliable data on the ability of hair to accurately reflect dose-response relationships. To better define the significance or hair trace element levels (under the auspices of the International Atomic Energy Agency), the authors have undertaken a controlled set of animal experiments in which trace element levels in hair and other tissues have been measured after a mild state of systemic intoxication by chronic, low-does exposure to cadmium and selenium. Instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) methods have been developed for the determination of several elements with a high degree of precision and accuracy.

  10. In-situ neutron investigation of hydrogen absorption kinetics in La(FexSi1-x)13 magnetocaloric alloys for room-temperature refrigeration application

    NASA Astrophysics Data System (ADS)

    Hai, Xueying; Mayer, Charlotte; Colin, Claire V.; Miraglia, Salvatore

    2016-02-01

    Promising magnetocaloric material La(Fe,Si)13 with a first-order magnetic transition has been widely investigated. The observed instability of hydrogen in the material is detrimental for its industrial upscale and a better control of the hydrogen absorption/desorption is necessary to optimize its application potential. In this article, the hydrogen absorption kinetics is studied through an in-situ neutron diffraction experiment. The results allow us to have an inside look at the structure "breathing" to accommodate the interstitial atoms and compare the effect of hydrides with carbohydrides.

  11. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  12. Three-photon absorption process in organic dyes enhanced by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Cohanoschi, Ion

    2006-07-01

    Multi-photon absorption processes have received significant attention from the scientific community during the last decade, mainly because of their potential applications in optical limiting, data storage and biomedical fields. Perhaps, one of the most investigated processes studied so far has been two-photon absorption (2PA). These investigations have resulted in successful applications in all the fields mentioned above. However, 2PA present some limitations in the biomedical field when pumping at typical 2PA wavelengths. In order to overcome these limitations, three-photon absorption (3PA) process has been proposed. However, 3PA in organic molecules has a disadvantage, typical values of sigma3' are small (10-81 cm6s 2/photon2), therefore, 3PA excitation requires high irradiances to induce the promotion of electrons from the ground state to the final excited state. To overcome this obstacle, specific molecules that exhibit large 3PA cross-section must be designed. Thus far, there is a lack of systematic studies that correlate 3PA processes with the molecular structure of organic compounds. In order to fill the existent gap in 3PA molecular engineering, in this dissertation we have investigated the structure/property relationship for a new family of fluorene derivatives with very high three-photon absorption cross-sections. We demonstrated that the symmetric intramolecular charge transfer as well as the pi-electron conjugation length enhances the 3PA cross-section of fluorene derivatives. In addition, we showed that the withdrawing electron character of the attractor groups in a pull-pull geometry proved greater 3PA cross-section. After looking for alternative ways to enhance the effective sigma 3' of organic molecules, we investigated the enhancement of two- and three-photon absorption processes by means of Surface Plasmon. We demonstrated an enhancement of the effective two- and three-photon absorption cross-section of an organic compound of 480 and 30 folds

  13. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    SciTech Connect

    Ulrich, Timothy J. II; Lafleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T.; Tobin, Stephen J.; Seya, Michio; Bolind, Alan M.

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  14. Resonances in the photodissociation of OH by absorption into coupled 2Π states: Adiabatic and diabatic formulations

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine F.; van Hemert, Marc C.; Allison, A. C.; Dalgarno, A.

    1984-12-01

    The bound 3 2Π and repulsive 2 2Π states of OH are strongly coupled by the action of the nuclear kinetic energy operator. The process of photodissociation by absorption into the coupled 2Π states is studied theoretically. The adiabatic electronic eigenfunctions and potential energy curves of the 2 2Π and 3 2Π states are calculated using large configuration-interaction (CI) representations and the nuclear radial coupling matrix elements are obtained by numerical differentiation. The coupled equations for the nuclear wave functions of the two states are set up in an adiabatic and in a diabatic formulation and are solved by numerical integration. The electric dipole transition moments connecting the ground X 2Π state to the 2 2Π and 3 2Π states are computed from the CI wave functions and the resulting photodissociation cross sections of OH arising from absorption into the coupled 2 2Π and 3 2Π states are obtained. Two alternative sets of potential curves, coupling matrix elements, and transition moments are employed to provide an assessment of the accuracy of the results. The photodissociation cross section shows a series of resonances superimposed on a broad continuous background. The resonances are located near to the vibrational levels of the uncoupled bound diabatic potential curve. They have asymmetric Beutler-Fano profiles and vary in width from 50 cm-1 for the lowest levels to 2 cm-1 for the higher levels. The accuracy of adiabatic and diabatic approximations, carried to first order in the coupling, is explored and it is demonstrated that the diabatic approximation provides a more satisfactory representation of the photodissociation process. The discrete-continuum configuration interaction theory of Fano is applied in the diabatic formulation and the resonance structures are calculated. The discrete-continuum interaction theory yields profile parameters and level shifts which agree well with the accurate values obtained by solving the coupled

  15. Fundamentals of a modified model of the distribution of neutron-resonance widths and results of its application in the mass-number range of 35 {<=} A {<=} 249

    SciTech Connect

    Sukhovoj, A. M. Khitrov, V. A.

    2013-01-15

    A modified model is developed for describing the distribution of random resonance width for any nuclei. The model assumes the coexistence in a nucleus of one or several partial radiative and neutron amplitudes for respective resonance widths, these amplitudes differing in their parameters. Also, it is assumed that amplitude can be described by a Gaussian curve characterized by a nonzero mean value and a variance not equal to unity and that their most probable values can be obtained with the highest reliability from approximations of cumulative sums of respective widths. An analysis of data for 157 sets of neutron widths for 0 {<=} l {<=} 3 and for 56 sets of total radiative widths has been performed to date. The basic result of this analysis is the following: both for neutron and for total radiative widths, the experimental set of resonance width can be represented with a rather high probability in the form of a superposition of k {<=} 4 types differing in mean amplitude parameters.

  16. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    PubMed

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  17. Zeaxanthin ([3R,3'R]-beta, beta-carotene-3-3'diol) as a resonance Raman and visible absorption probe of membrane structure.

    PubMed Central

    Mendelsohn, R; Van Holten, R W

    1979-01-01

    When zeaxanthin ([3R,3R']-beta, beta-carotene-3,3'diol) is inserted into phospholipid dispersions and the latter heated through their gel-liquid crystal phase transitions, large changes are noted in the resonance Raman and absorption spectra of the carotenoid molecule. By analogy with the data of Carey and co-workers (J. Raman Spectrosc. 6:282) who studied the aggregation of zeaxanthin in acetone-water solutions, it is suggested that the carotenoid aggregates in the phospholipid gel state while forming a monomer in liquid crystal phases. The alterations in both the visible absorption and resonance Raman data have been used to monitor phospholipid phase behavior in dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine, (DSPC) one-component systems and binary mixtures. The phase diagram obtained for the binary system, as constructed from visible absorption and resonance Raman data, is compared with that of Shimshick and McConnell (Biochemistry. 12:2351) obtained from electron spin resonance (ESR) studies. Although the agreement between absorption and ESR data is generally satisfactory, onset temperatures for phase separation at low DSPC mole fractions deduced from resonance Raman measurements are several degrees lower than those from the other methods. Nevertheless, the use of zeaxanthin as a resonance Raman and visible absorption probe behavior will be useful in some situations where ordinary Raman spectroscopic data cannot be obtained easily. The advantage of the resonance Raman approach is illustrated in a study of the phase behavior of a phospholipid extract of a cel- mutant of Neurospora crassa. A phase separation region is observed with onset and completion temperatures of -19 and -6 degrees C, respectively. PMID:162448

  18. Influence of Welding Current and Focal Position on the Resonant Absorption of Laser Radiation in a TIG Welding Arc

    NASA Astrophysics Data System (ADS)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.

    The work presents the influence of welding current and focal position on the resonant absorption of diode laser radiation in a TIG welding arc. The laser beam is guided perpendicular to the electrical arc to avoid an interaction with the electrodes. Laser power measurements have shown a reduction of the measured laser power up to 18% after passing the electrical arc. This reduction results from the interaction of argon shielding gas atoms and laser radiation at 810.4 nm and 811.5 nm. The interaction is strongly affected by the adjusted welding current and the adjustment of the laser beam and the electrical arc. Lowering the welding current or shifting the laser beam out of the centerline of the electrical arc reduces the ionization probability. An increased ionization is necessary to decrease the resistance of the electrical arc.

  19. Resonant absorption effects induced by polarized laser light irradiating thin foils in the TNSA regime of ion acceleration

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Badziak, J.; Rosinski, M.; Zaras-Szydlowska, A.; Pfeifer, M.; Torrisi, A.

    2016-04-01

    Thin foils were irradiated by short pulsed lasers at intensities of 1016-19W/cm2 in order to produce non-equilibrium plasmas and ion acceleration from the target-normal-sheath-acceleration (TNSA) regime. Ion acceleration in forward direction was measured by SiC detectors and ion collectors used in the time-of-flight configuration. Laser irradiations were employed using p-polarized light at different incidence angles with respect to the target surface and at different focal distances from the target surface. Measurements demonstrate that resonant absorption effects, due to the plasma wave excitations, enhance the plasma temperature and the ion acceleration with respect to those performed without to use of p-polarized light. Dependences of the ion flux characteristics on the laser energy, wavelength, focal distance and incidence angle will be reported and discussed.

  20. Resonant vortex-core reversal in magnetic nano-spheres as robust mechanism of efficient energy absorption and emission

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Jae-Hyeok; Kim, Min-Kwan

    2016-08-01

    We report on novel vortex-core reversal dynamics in nano-spheres of single-vortex spin configuration as revealed by micromagnetic simulations combined with analytical derivations. When the frequency of an AC magnetic field is tuned to the frequency of the vortex-core precession around the direction of a given static field, oscillatory vortex-core reversals occur, and additionally, the frequency is found to change with both the strength of the applied AC field and the particle size. Such resonant vortex-core reversals in nano-spheres may provide a new and efficient means of energy absorption by, and emission from, magnetic nanoparticles, which system can be effectively implemented in bio-applications such as magnetic hyperthermia.

  1. Resonant vortex-core reversal in magnetic nano-spheres as robust mechanism of efficient energy absorption and emission

    PubMed Central

    Kim, Sang-Koog; Yoo, Myoung-Woo; Lee, Jehyun; Lee, Jae-Hyeok; Kim, Min-Kwan

    2016-01-01

    We report on novel vortex-core reversal dynamics in nano-spheres of single-vortex spin configuration as revealed by micromagnetic simulations combined with analytical derivations. When the frequency of an AC magnetic field is tuned to the frequency of the vortex-core precession around the direction of a given static field, oscillatory vortex-core reversals occur, and additionally, the frequency is found to change with both the strength of the applied AC field and the particle size. Such resonant vortex-core reversals in nano-spheres may provide a new and efficient means of energy absorption by, and emission from, magnetic nanoparticles, which system can be effectively implemented in bio-applications such as magnetic hyperthermia. PMID:27531408

  2. Experimental verification of neutron phenomenology in lead and of transmutation by adiabatic resonance crossing in accelerator driven systems. A summary of the TARC Project at CERN

    NASA Astrophysics Data System (ADS)

    Abánades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C. A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J. I.; Cerro, E.; Del Moral, R.; Díez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernández, R.; Gálvez, J.; García, J.; Gelès, C.; Giorni, A.; González, E.; González, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Le Naour, C.; López, C.; Loiseaux, J. M.; Martínez-Val, J. M.; Méplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Pérez-Enciso, E.; Pérez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P.; Rubbia, C.; Rubio, J. A.; Sakelliou, L.; Saldaña, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J. B.; Vieira, S.; Vlachoudis, V.; Zioutas, K.

    2001-05-01

    The Transmutation by Adiabatic Resonance Crossing (TARC) experiment was carried out as PS211 at the CERN PS from 1996 to 1999. Energy and space distributions of spallation neutrons (produced by 2.5 and 3.57 GeV/ c CERN proton beams) slowing down in a 3.3×3.3×3 m 3 lead volume and neutron capture rates on long-lived fission fragments 99Tc and 129I demonstrate that Adiabatic Resonance Crossing (ARC) can be used to eliminate efficiently such nuclear waste and validate innovative simulation.

  3. Bolometric detection of magnetoplasma resonances in microwave absorption by two-dimensional electron systems based on doping layer conductivity measurements in GaAs/AlGaAs heterostructures

    SciTech Connect

    Dorozhkin, S. I. Sychev, D. V.; Kapustin, A. A.

    2014-11-28

    We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.

  4. Coronal heating by the resonant absorption of Alfven waves: Wavenumber scaling laws.

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Davila, J. M.; Steinolfson, R. S.

    1995-01-01

    The importance of global modes in coronal loop heating is well established. In the present work the scaling of the global-mode resonant heating rate with the perturbation wavenumbers is studied with the numerical solution of the linearized time-dependent MHD equations for a full compressible, low-beta, resistive plasma using an implicit integration scheme. The numerical simulations demonstrate that the dissipation on inhomogeneties in the background Alfven speed occurs in narrow resonant layer with the highest heating rate at the global-mode frequency. The global-mode heating rate H (sub r) was found to scale as H (Sub r) approximately k (sub y) (exp 1.03) when k (sub z) = 0.1, and as H (sub r) approximately k (sub y) (exp -1.93) when k (sub z) = 0.75, where k (sub y) and k (sub z) are the wavenumbers in the perpendicular and parallel to the magnetic field directions, respectively, while the dependence of H (sub r) on k (sub z) is more complex. The quality factor Q of the MHD resonance cavity scales as Q approximately k (sub y) (exp -1.8) for k (sub z) = 0.75 and as Q approximately k (sub y) (exp -1.46) for k (sub z) = 0.1. The numerically determined heating rate scaling, the global-mode fequency, and the quality factor are in good agreement with the analytical linear theory. The magnitude of the perturbed velocities was found to decrease with k (sub y). Assuming typical coronal loop parameters (B (sub 0) = 100-200 G, upsilon (sub A) = 2000-4000 km/s), the Alfven waves can supply the required heating to a low-Q loops.

  5. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  6. Nuclear Magnetic Resonance and X-Ray Absorption Spectroscopic Studies of Lithium Insertion in Silver Vanadium Oxide Cathodes

    SciTech Connect

    Leifer,N.; Colon, A.; Martocci, k.; Greenbaum, S.; Alamgir, F.; Reddy, T.; Gleason, N.; Leising, R.; Takeuchi, E.

    2007-01-01

    Structural studies have been carried out on Ag{sub 2}V{sub 4}O{sub 11} (silver vanadium oxide, SVO) and Li{sub x}Ag{sub 2}V{sub 4}O{sub 11}, lithiated SVO with x=0.72, 2.13, and 5.59 using nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy (XAS). Lithium-7 NMR indicates the formation of a solid electrolyte interphase layer on the x=0.72 sample and lithium intercalation into both octahedral and tetrahedral sites in the SVO lattice, and that most but not all of the Ag (I) is reduced prior to initiation of V(V) reduction. Vanadium-51 NMR studies of SVO and lithiated SVO show decreased crystallinity with increased lithiation, as previously reported. Silver XAS studies indicate the formation of metallic silver crystallites in all the lithiated samples. A comparison of X-ray absorption near edge spectroscopy spectra for vanadium in these samples with those of reference compounds shows that some reduction of vanadium (V) occurs in the lithiated SVO with x=0.72 and increases with further lithiation leading to the formation of V(IV) and V(III) species. The results of this study indicate that vanadium(V) reduction occurs in parallel with silver (I) reduction during the initial stages of SVO lithiation, leading ultimately to the formation of vanadium (IV) and (III) species with further lithiation.

  7. How tilting and cavity-mode-resonant absorption contribute to light harvesting in 3D radial junction solar cells.

    PubMed

    Lu, Jiawen; Qian, Shengyi; Yu, Zhongwei; Misra, Soumyadeep; Yu, Linwei; Xu, Jun; Shi, Yi; Roca i Cabarrocas, Pere; Chen, Kunji

    2015-09-21

    Radial junction (RJ) architecture has proven beneficial in boosting light harvesting and fast carrier separation in thin film solar cells. While a comprehensive understanding of the detailed absorption distribution and light incoupling mechanism within such a 3D RJ configuration remains largely unexplored. Taking hydrogenated amorphous Si (a-Si:H) RJ solar cells as an example, we here address in both experimental and theoretical manners the impacts of tilting and spacing configuration on the light absorption and external quantum efficiency (EQE) responses. A nice agreement between the calculated and experimental EQE responses indicates that the light harvesting realized within RJ thin film solar cells is quite robust against geometric variations and shadowing effects. Following the concepts of optical fiber injection, we have been able to single out the contribution arising solely from a resonant-mode-incoupling into the RJ cavities against a sidewall scattering incidence scenario. These results provide insightful viewpoints as well as practical guides in developing a new generation of high performance RJ thin film solar cells.

  8. Gaseous Absorption and Dispersion of Sound in a Resonant Cylindrical Cavity: AN Acoustic and Photoacoustic Study

    NASA Astrophysics Data System (ADS)

    Beckwith, Clyfe Gordon

    This research investigated the feasibility of accurately measuring Virial coefficients in an acoustically resonant cylindrical cavity. Gases studied were: Argon, Helium, Nitrogen, Carbon Dioxide, and Methane. Parameters considered were: resonant frequencies (f_ {rm r}- also a measure of speed of sound), quality factors (Q), and signal amplitudes. We studied the longitudinal modes smaller than 2000 Hz, at room temperature and at pressures of 200, 500, and 800 mm of Hg. The choice of the longitudinal modes was predetermined by our wish to compare acoustic and photoacoustic resonance techniques of the same mode. The acoustic excitation is limited to the longitudinal modes and is achieved by placing a loudspeaker close to one end of the cavity. Photoacoustically we excite a small concentration of molecular Iodine, mixed in with the buffer gases, by a periodically interrupted Xenon light beam. By increasing the length of the cavity we could decrease the space between the modes of frequency. Our observations focused on the behaviors that (a) f_{rm r} shifted with pressure, (b) the f_{rm r} deviated from the simple laws of harmonics, and (c) the amplitudes for the two techniques varied differently with frequency. Effect (a) is due to the fact that the gases are not "ideal", and due to the presence of boundary layers caused by thermal conduction and viscosity gradients. Effect (b) arises because of the f_{rm r}'s mode dependence, caused by the wave scattering due to imperfect geometrical symmetries. Effect (c) is governed by the coupling factors. All measurements could theoretically be justified to within instrumental error, the only noted discrepancy is the lack of a theoretical mode dependence. We conclude that it is feasible to study the accuracy of Virial coefficients of simple gases provided that the boundary layer loss effects and the mode dependent wave scattering can be quantified; in regions of high pressures and high frequencies the Virial effects dominate the

  9. Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media.

    PubMed

    Kim, Seulong; Kim, Kihong

    2016-01-25

    It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization. PMID:26832557

  10. Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media.

    PubMed

    Kim, Seulong; Kim, Kihong

    2016-01-25

    It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization.

  11. Study on erythrosine-phen-Cd(II) systems by resonance Rayleigh scattering, absorption spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Zhang, Qiqi; Liu, Shaopu; Yang, Jidong; Teng, Ping; Zhu, Jinghui; Qiao, Man; Shi, Ying; Duan, Ruilin; Hu, Xiaoli

    2015-04-01

    In pH 7.0-8.0 KH2PO4-Na2HPO4 buffer solution, Cd(II) reacted with 1,10-phenanthroline to form chelate cation [Cd(phen)3]2+, which further reacted with anion of erythrosine to form ternary ion-association complex through electrostatic attraction and hydrophobic effect. This process could result in remarkable absorption spectra change and produce obvious fading reaction at 528 nm. Absorbance change (ΔA) of system was directly proportional to the concentration of Cd(II). Hereby, a highly sensitive spectrophotometric method for the determination of Cd(II) was established. The molar absorption coefficient was 2.29 × 105 L mol-1 cm-1 and the detection limit of Cd(II) was 26.5 ng mL-1. Furthermore, the resonance Rayleigh scattering (RRS) of this system with two peaks located at 371 and 590 nm enhanced significantly, and second-order scattering (SOS) and frequence doubling scattering (FDS) of this system changed notably at 640 and 350 nm, respectively. Under the optimum conditions, the scattering intensities (ΔIRRS, ΔIDWO-RRS, ΔISOS and ΔIFDS) had good linear relationship with the concentration of Cd(II) in certain ranges. The detection limits of Cd(II) were 1.27 ng mL-1, 1.39 ng mL-1, 4.03 ng mL-1, 5.92 ng mL-1 and 14.7 ng mL-1 for dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS), RRS (371 nm), RRS (590 nm), SOS and FDS, respectively. In addition, the suitable reaction conditions and effects of coexisting substances were investigated. The methods had been successfully applied to the determination of Cd(II) in environmental water samples. The recovery range was between 93.0% and 103.0% and the relative standard deviation (RSD) was between 2.5% and 4.3%. The results were in agreement with those obtained from atomic absorption spectroscopy.

  12. Gamma-ray nuclear resonance absorption (γ-NRA) for explosives detection in air cargo

    NASA Astrophysics Data System (ADS)

    Vartsky, D.; Goldberg, M. B.; Engler, G.; Goldschmidt, A.; Feldman, G.; Bar, D.; Sayag, E.; Katz, D.; Krauss, R. A.

    1999-06-01

    The γ-NRA method has been utilized to detect explosives concealed in aviation containers loaded with a variety of cargo. In γ-NRA, gamma-rays at an energy of 9.17 MeV undergo a resonant nuclear attenuation component proportional to the integrated density of 14N nuclei along the line of sight from source to detector. When inspecting objects in transmission mode, projected images of nitrogen density of their contents can be generated. In an experiment performed earlier this year at the Dynamitron accelerator lab. of Birmingham Univ., U.K., diverse items such as passenger bags, electronic equipment, paper goods and mixed cargo were scanned along with explosives simulants. The results from this run will be presented and anticipated performance ratings of an operational explosives detection system (EDS) discussed.

  13. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  14. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  15. Evaluated 182,183,184,186W Neutron Cross Sections and Covariances in the Resolved Resonance Region

    SciTech Connect

    Pigni, Marco T; Leal, Luiz C

    2015-01-01

    Oak Ridge National Laboratory (ORNL) has recently completed the resonance parameter evaluation of four tungsten isotopes, i.e., 182,183,184,186W, in the neutron energy range of thermal up to several keV. This nuclear data work was performed with support from the US Nuclear Criticality Safety Program (NCSP) in an effort to provide improved tungsten cross section and covariance data for criticality safety analyses. The evaluation methodology uses the Reich-Moore approximation of the R-matrix formalism of the code SAMMY to fit high-resolution measurements performed in 2010 and 2012 at the Geel linear accelerator facility (GELINA), as well as other experimental data sets on natural tungsten available in the EXFOR library. In the analyzed energy range, this work nearly doubles the resolved resonance region (RRR) present in the latest US nuclear data library ENDF/B-VII.1. In view of the interest in tungsten for distinct types of nuclear applications and the relatively homogeneous distribution of the isotopic tungsten—namely, 182W(26.5%), 183W(14.31%), 184W(30.64%), and 186W(28.43%) - the completion of these four evaluations represents a significant contribution to the improvement of the ENDF library. This paper presents an overview of the evaluated resonance parameters and related covariances for total and capture cross sections on the four tungsten isotopes.

  16. Parity violation in {sup 232}Th neutron resonances above 250 eV

    SciTech Connect

    Sharapov, E. I.; Bowman, J. D.; Crawford, B. E.; Delheij, P. P. J.; Frankle, C. M.; Iinuma, M.; Knudson, J. N.; Lowie, L. Y.; Lynch, J. E.; Masaike, A.

    2000-02-01

    The analysis of parity nonconservation (PNC) measurements performed on {sup 232}Th by the TRIPLE Collaboration has been extended to include the neutron energy range of 250 to 1900 eV. Below 250 eV all ten statistically significant parity violations have the same sign. However, at higher energies PNC effects of both signs were observed in the transmission of longitudinally polarized neutrons through a thick thorium target. Although the limited experimental energy resolution precluded analysis in terms of the longitudinal asymmetry, parity violations were observed and the cross section differences for positive and negative neutron helicities were obtained. For comparison, a similar analysis was performed on the data below 250 eV, for which longitudinal asymmetries were obtained previously. For energies below 250 eV, the p-wave neutron strength functions for the J=1/2 and J=3/2 states were extracted: S{sub 1/2}{sup 1}=(1.68{+-}0.61)x10{sup -4} and S{sub 3/2}{sup 1}=(0.75{+-}0.18)x10{sup -4}. The data provide constraints on the properties of local doorway states proposed to explain the PNC sign effect in thorium. (c) 2000 The American Physical Society.

  17. Neutron Resonance Parameters of 238U and the Calculated Cross Sections from the Reich-Moore Analysis of Experimental Data in the Neutron Energy Range from 0 keV to 20 keV

    SciTech Connect

    Derrien, H

    2005-12-05

    The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.

  18. Interference of fission amplitudes of neutron resonances and T-odd asymmetry for various prescission third particles in the ternary fission of nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Kadmensky, S. S.

    2011-12-15

    Differential cross sections for reactions of the true ternary fission of nuclei that was induced by cold polarized neutrons were constructed with allowance of the effect that Coriolis interaction and the interference between fission amplitudes of neutron resonances excited in fissile nuclei upon incidentneutron capture by target nuclei exerted on angular distributions of prescission third particles (alpha particles, neutrons, or photons). It is shown that T -odd TRI- and ROT-type asymmetries for prescission alpha particles are associated with, respectively, the odd and even components of the Coriolis interaction-perturbed amplitude of angular distributions of particles belonging to the types indicated above. These asymmetries have angular distributions differing from each other and stemming from a nontrivial dependence of these components on the neutron-resonance spins J{sub s} and their projections K{sub s} onto the symmetry axis of the nucleus involved. It is shown that angular distributions of prescission photons and neutrons from reactions of the ternary fission of nuclei that is induced by cold polarized neutrons are determined by the effect of Coriolis forces exclusively. Therefore, the emerging T-odd asymmetries have a character of a ROT-type asymmetry and are universal for all target nuclei.

  19. Capture of a neutron to excited states of a {sup 9}Be nucleus taking into account resonance at 622 keV

    SciTech Connect

    Dubovichenko, S. B.

    2013-10-15

    Radiative capture of a neutron to the ground and excited states of the 9Be nucleus is considered using the potential cluster model with forbidden states and with classification of cluster states by the Young schemes taking into account resonance at 622 keV for thermal and astrophysical energies.

  20. Thermal and resonance neutrons generated by various electron and X-ray therapeutic beams from medical linacs installed in polish oncological centers

    PubMed Central

    Konefał, Adam; Orlef, Andrzej; Łaciak, Marcin; Ciba, Aleksander; Szewczuk, Marek

    2012-01-01

    Background High-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear. Aim The aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers. Materials and methods The measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy. Results The fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ∼106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator. Conclusion The thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from

  1. Electric dipole response of nuclei studied by proton inelastic scattering: neutron thickness, symmetry energy, and pygmy dipole resonance

    NASA Astrophysics Data System (ADS)

    Tamii, Atsushi; RCNP E282/E316/E326/E350/E376/E377 Collaboration

    2014-09-01

    Electric dipole (E1) responses of heavy nuclei have been studied by high-resolution measurement of proton inelastic scattering at forward angles including zero degrees. Here the proton scattering at 300 MeV is used as an electromagnetic probe to extract precisely the distribution of E1 reduced transition probability B(E1). The measurement has been done on various stable nuclei such as 208Pb, 120Sn, 90Zr, 154Sm, and 96Mo. The dipole polarizability and pygmy dipole resonance (PDR) strength has been extracted. Those quantities are considered to have strong correlations to the neutron skin thickness and the first order density dependence of the symmetry energy of the nuclear equation of state. We will present the experimental methods and highlights of the results as well as the preliminary ones of recent analyses. Electric dipole (E1) responses of heavy nuclei have been studied by high-resolution measurement of proton inelastic scattering at forward angles including zero degrees. Here the proton scattering at 300 MeV is used as an electromagnetic probe to extract precisely the distribution of E1 reduced transition probability B(E1). The measurement has been done on various stable nuclei such as 208Pb, 120Sn, 90Zr, 154Sm, and 96Mo. The dipole polarizability and pygmy dipole resonance (PDR) strength has been extracted. Those quantities are considered to have strong correlations to the neutron skin thickness and the first order density dependence of the symmetry energy of the nuclear equation of state. We will present the experimental methods and highlights of the results as well as the preliminary ones of recent analyses. JSPS No. 25105509.

  2. Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data

    SciTech Connect

    Schillebeeckx, P.; Becker, B.; Danon, Y.; Guber, K.; Harada, H.; Heyse, J.; Junghans, A.R.; Kopecky, S.; Massimi, C.; Moxon, M.C.; Otuka, N.; Sirakov, I.; Volev, K.

    2012-12-15

    Cross section data in the resolved and unresolved resonance region are represented by nuclear reaction formalisms using parameters which are determined by fitting them to experimental data. Therefore, the quality of evaluated cross sections in the resonance region strongly depends on the experimental data used in the adjustment process and an assessment of the experimental covariance data is of primary importance in determining the accuracy of evaluated cross section data. In this contribution, uncertainty components of experimental observables resulting from total and reaction cross section experiments are quantified by identifying the metrological parameters involved in the measurement, data reduction and analysis process. In addition, different methods that can be applied to propagate the covariance of the experimental observables (i.e. transmission and reaction yields) to the covariance of the resonance parameters are discussed and compared. The methods being discussed are: conventional uncertainty propagation, Monte Carlo sampling and marginalization. It is demonstrated that the final covariance matrix of the resonance parameters not only strongly depends on the type of experimental observables used in the adjustment process, the experimental conditions and the characteristics of the resonance structure, but also on the method that is used to propagate the covariances. Finally, a special data reduction concept and format is presented, which offers the possibility to store the full covariance information of experimental data in the EXFOR library and provides the information required to perform a full covariance evaluation.

  3. Water vapor absorption in porous media polluted by calcium nitrate studied by time domain nuclear magnetic resonance.

    PubMed

    Gombia, Mirko; Bortolotti, Villiam; Brown, Robert J S; Camaiti, Mara; Cavallero, Luisa; Fantazzini, Paola

    2009-08-01

    Nuclear magnetic resonance relaxation analysis of liquid water (1)H nuclei in real porous media, selected for their similar composition (carbonate rocks) and different pore space architecture, polluted with calcium nitrate, is presented to study the kinetics of water condensation and salt deliquescence inside the pore space. These phenomena are responsible for deterioration of porous materials when exposed to environmental injury by pollution in a humid atmosphere. The theory is well described for simple pore geometries, but it is not yet well understood in real porous media with wide distributions of pore sizes and connections. The experiment is performed by following in time the formation of liquid water inside the pore space by T(1) and T(2) relaxation time distributions. The distributions allow one to see the effects of both the salt concentration and the pore space structure on the amount of water vapor condensed and its kinetics. It is shown that, for a given lithotype, even with different amounts of pollutant, the rate-average relaxation time T(1ra) tends to increase monotonically with NMR signal, proportional to the amount of liquid water. T(1ra) is often inversely associated with surface-to-volume ratio. This suggests a trend toward the filling of larger pores as amounts of liquid water increase, but it does not indicate a strict sequential filling of pores in order of size and starting with the smallest; in fact, relaxation time distributions show clearly that this is not the case. Increased amounts of salt lead to both markedly increased rates and markedly increased amounts of water absorption. NMR measurements of amounts of water, together with relaxation time distributions, give the possibility of information on the effect of pollution in porous materials exposed to humid atmospheres but sheltered from liquid water, even before the absorption of large amounts of moisture and subsequent damage. These phenomena are of importance also in other fields

  4. Water vapor absorption in porous media polluted by calcium nitrate studied by time domain nuclear magnetic resonance.

    PubMed

    Gombia, Mirko; Bortolotti, Villiam; Brown, Robert J S; Camaiti, Mara; Cavallero, Luisa; Fantazzini, Paola

    2009-08-01

    Nuclear magnetic resonance relaxation analysis of liquid water (1)H nuclei in real porous media, selected for their similar composition (carbonate rocks) and different pore space architecture, polluted with calcium nitrate, is presented to study the kinetics of water condensation and salt deliquescence inside the pore space. These phenomena are responsible for deterioration of porous materials when exposed to environmental injury by pollution in a humid atmosphere. The theory is well described for simple pore geometries, but it is not yet well understood in real porous media with wide distributions of pore sizes and connections. The experiment is performed by following in time the formation of liquid water inside the pore space by T(1) and T(2) relaxation time distributions. The distributions allow one to see the effects of both the salt concentration and the pore space structure on the amount of water vapor condensed and its kinetics. It is shown that, for a given lithotype, even with different amounts of pollutant, the rate-average relaxation time T(1ra) tends to increase monotonically with NMR signal, proportional to the amount of liquid water. T(1ra) is often inversely associated with surface-to-volume ratio. This suggests a trend toward the filling of larger pores as amounts of liquid water increase, but it does not indicate a strict sequential filling of pores in order of size and starting with the smallest; in fact, relaxation time distributions show clearly that this is not the case. Increased amounts of salt lead to both markedly increased rates and markedly increased amounts of water absorption. NMR measurements of amounts of water, together with relaxation time distributions, give the possibility of information on the effect of pollution in porous materials exposed to humid atmospheres but sheltered from liquid water, even before the absorption of large amounts of moisture and subsequent damage. These phenomena are of importance also in other fields

  5. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron

    PubMed Central

    Casey, Jennifer R.; Larsen, Ross E.; Schwartz, Benjamin J.

    2013-01-01

    Most of what is known about the structure of the hydrated electron comes from mixed quantum/classical simulations, which depend on the pseudopotential that couples the quantum electron to the classical water molecules. These potentials usually are highly repulsive, producing cavity-bound hydrated electrons that break the local water H-bonding structure. However, we recently developed a more attractive potential, which produces a hydrated electron that encompasses a region of enhanced water density. Both our noncavity and the various cavity models predict similar experimental observables. In this paper, we work to distinguish between these models by studying both the temperature dependence of the optical absorption spectrum, which provides insight into the balance of the attractive and repulsive terms in the potential, and the resonance Raman spectrum, which provides a direct measure of the local H-bonding environment near the electron. We find that only our noncavity model can capture the experimental red shift of the hydrated electron’s absorption spectrum with increasing temperature at constant density. Cavity models of the hydrated electron predict a solvation structure similar to that of the larger aqueous halides, leading to a Raman O–H stretching band that is blue-shifted and narrower than that of bulk water. In contrast, experiments show the hydrated electron has a broader and red-shifted O–H stretching band compared with bulk water, a feature recovered by our noncavity model. We conclude that although our noncavity model does not provide perfect quantitative agreement with experiment, the hydrated electron must have a significant degree of noncavity character. PMID:23382233

  6. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter

    2005-09-01

    Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.

  7. Calculating broad neutron resonances in a cut-off Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Baran, Á.; Noszály, Cs.; Salamon, P.; Vertse, T.

    2015-07-01

    In a cut-off Woods-Saxon (CWS) potential with realistic depth S -matrix poles being far from the imaginary wave number axis form a sequence where the distances of the consecutive resonances are inversely proportional with the cut-off radius value, which is an unphysical parameter. Other poles lying closer to the imaginary wave number axis might have trajectories with irregular shapes as the depth of the potential increases. Poles being close repel each other, and their repulsion is responsible for the changes of the directions of the corresponding trajectories. The repulsion might cause that certain resonances become antibound and later resonances again when they collide on the imaginary axis. The interaction is extremely sensitive to the cut-off radius value, which is an apparent handicap of the CWS potential.

  8. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  9. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging.

    PubMed

    Thorat, Nanasaheb D; Bohara, Raghvendra A; Malgras, Victor; Tofail, Syed A M; Ahamad, Tansir; Alshehri, Saad M; Wu, Kevin C-W; Yamauchi, Yusuke

    2016-06-15

    Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs. PMID:27197993

  10. Observation of ultrahigh-energy electrons by resonance absorption of high-power microwaves in a pulsed plasma.

    PubMed

    Rajyaguru, C; Fuji, T; Ito, H; Yugami, N; Nishida, Y

    2001-07-01

    The interaction of high power microwave with collisionless unmagnetized plasma is studied. Investigation on the generation of superthermal electrons near the critical layer, by the resonance absorption phenomenon, is extended to very high microwave power levels (eta=E(2)(0)/4 pi n(e)kT(e) approximately 0.3). Here E0, n(e), and T(e) are the vacuum electric field, electron density, and electron temperature, respectively. Successive generation of electron bunches having maximum energy of about 2 keV, due to nonlinear wave breaking, is observed. The electron energy epsilon scales as a function of the incident microwave power P, according to epsilon proportional to P0.5 up to 250 kW. The two-dimensional spatial distribution of high energy electrons reveals that they are generated near the critical layer. However, the lower energy component is again produced in the subcritical density region indicating the possibility of other electron heating mechanisms. PMID:11461406

  11. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging.

    PubMed

    Thorat, Nanasaheb D; Bohara, Raghvendra A; Malgras, Victor; Tofail, Syed A M; Ahamad, Tansir; Alshehri, Saad M; Wu, Kevin C-W; Yamauchi, Yusuke

    2016-06-15

    Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs.

  12. Combined optical emission and resonant absorption diagnostics of an Ar-O2-Ce-reactive magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    El Mel, A. A.; Ershov, S.; Britun, N.; Ricard, A.; Konstantinidis, S.; Snyders, R.

    2015-01-01

    We report the results on combined optical characterization of Ar-O2-Ce magnetron sputtering discharges by optical emission and resonant absorption spectroscopy. In this study, a DC magnetron sputtering system equipped with a movable planar magnetron source with a Ce target is used. The intensities of Ar, O, and Ce emission lines, as well as the absolute densities of Ar metastable and Ce ground state atoms are analyzed as a function of the distance from the magnetron target, applied DC power, O2 content, etc. The absolute number density of the Arm is found to decrease exponentially as a function of the target-to-substrate distance. The rate of this decrease is dependent on the sputtering regime, which should be due to the different collisional quenching rates of Arm by O2 molecules at different oxygen contents. Quantitatively, the absolute number density of Arm is found to be equal to ≈ 3 × 108 cm- 3 in the metallic, and ≈ 5 × 107 cm- 3 in the oxidized regime of sputtering, whereas Ce ground state densities at the similar conditions are found to be few times lower. The absolute densities of species are consistent with the corresponding deposition rates, which decrease sharply during the transition from metallic to poisoned sputtering regime.

  13. Time-resolved absorption and resonance Raman investigations of short-lived intermediates in solution or occluded in zeolites

    NASA Astrophysics Data System (ADS)

    Brémard, C.; Buntinx, G.; De Waele, V.; Didierjean, C.; Gener, I.; Poizat, O.

    1999-05-01

    Two examples of structural investigation of photogenerated short-lived transient species of aromatic compounds, by using time-resolved electronic absorption and resonance Raman spectroscopy are provided. The picosecond Raman spectra of the lowest excited singlet state (S 1) of 4,4'-bipyridine and 2,2'-bipyridine in solution are discussed first. The results provide strong evidence for a surprising asymmetric S 1 structure in which the electronic excitation and the consequent structural distortion are localized in one of the pyridyl rings, the other ring being almost unaffected. The laser photolysis of biphenyl occluded in the pores and cavities of ZSM-5 and faujasitic zeolites have been investigated in the nanosecond time-scale as functions of aluminium content, the extraframework cations, sample loading and intensity of photolysis. At low pump power and low aluminium content the triplet state of biphenyl is observed. At higher pump power and in aluminated zeolites, biphotonic ionization was observed to generate the cation radical. As the loading increased, the anion radical yield increased. This is characteristic of faujasitic zeolites in which scavenger molecules with restricted diffusional motions are confined in the vicinity of photoionized molecules. The lifetimes of cation radical were particularly long in aluminated ZSM-5 zeolites with efficient trapping sites of the photoejected electron.

  14. Optical absorption and electron paramagnetic resonance of the E{sub {alpha}}{sup '} center in amorphous silicon dioxide

    SciTech Connect

    Buscarino, G.; Boscaino, R.; Agnello, S.; Gelardi, F. M.

    2008-04-15

    We report a combined study by optical absorption (OA) and electron paramagnetic resonance (EPR) spectroscopy on the E{sub {alpha}}{sup '} point defect in amorphous silicon dioxide (a-SiO{sub 2}). This defect has been studied in {beta}-ray irradiated and thermally treated oxygen-deficient a-SiO{sub 2} materials. Our results have pointed out that the E{sub {alpha}}{sup '} center is responsible for an OA Gaussian band peaked at {approx}5.8 eV and having a full width at half maximum of {approx}0.6 eV. The estimated oscillator strength of the related electronic transition is {approx}0.14. Furthermore, we have found that this OA band is quite similar to that of the E{sub {gamma}}{sup '} center induced in the same materials, indicating that the related electronic transitions involve states highly localized on a structure common to both defects: the O{identical_to}Si{sup {center_dot}} moiety.

  15. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  16. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  17. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources. PMID:27502571

  18. Photoproduction of π0 mesons off neutrons in the nucleon resonance region.

    PubMed

    Dieterle, M; Keshelashvili, I; Ahrens, J; Annand, J R M; Arends, H J; Bantawa, K; Bartolome, P A; Beck, R; Bekrenev, V; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Demissie, B; Downie, E J; Drexler, P; Fil'kov, L V; Fix, A; Glazier, D I; Hamilton, D; Heid, E; Hornidge, D; Howdle, D; Huber, G M; Jaegle, I; Jahn, O; Jude, T C; Käser, A; Kashevarov, V L; Kondratiev, R; Korolija, M; Kruglov, S P; Krusche, B; Kulbardis, A; Lisin, V; Livingston, K; MacGregor, I J D; Maghrbi, Y; Mancell, J; Manley, D M; Marinides, Z; Martinez, M; McGeorge, J C; McNicoll, E; Mekterovic, D; Metag, V; Micanovic, S; Middleton, D G; Mushkarenkov, A; Nefkens, B M K; Nikolaev, A; Novotny, R; Oberle, M; Ostrick, M; Oussena, B; Pedroni, P; Pheron, F; Polonski, A; Prakhov, S N; Robinson, J; Rosner, G; Rostomyan, T; Schumann, S; Sikora, M H; Sober, D; Starostin, A; Supek, I; Thiel, M; Thomas, A; Unverzagt, M; Watts, D P; Werthmüller, D; Witthauer, L

    2014-04-11

    Precise angular distributions have been measured for the first time for the photoproduction of π0 mesons off neutrons bound in the deuteron. The effects from nuclear Fermi motion have been eliminated by a complete kinematic reconstruction of the final state. The influence of final-state-interaction effects has been estimated by a comparison of the reaction cross section for quasifree protons bound in the deuteron to the results for free protons and then applied as a correction to the quasifree neutron data. The experiment was performed at the tagged photon facility of the Mainz Microtron MAMI with the Crystal Ball and TAPS detector setup for incident photon energies between 0.45 and 1.4 GeV. The results are compared to the predictions from reaction models and partial-wave analyses based on data from other isospin channels. The model predictions show large discrepancies among each other and the present data will provide much tighter constraints. This is demonstrated by the results of a new analysis in the framework of the Bonn-Gatchina coupled-channel analysis which included the present data.

  19. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  20. Application of polarized neutron reflectometry and x-ray resonant magnetic reflectometry for determining the inhomogeneous magnetic structure in Fe/Gd multilayers.

    SciTech Connect

    Kravtsov, E. A.; Haskel, D.; te Velthuis, S. G. E.; Jiang, J. S.; Kirby, B. J.

    2010-01-01

    The evolution of the magnetic structure of multilayer [Fe (35 {angstrom})/Gd (50 {angstrom}){sub 5}] with variation in temperature and an applied magnetic field was determined using a complementary approach combining polarized neutron and X-ray resonant magnetic reflectometry. Self-consistent simultaneous analysis of X-ray and neutron spectra allowed us to determine the elemental and depth profiles in the multilayer structure with unprecedented accuracy, including the identification of an inhomogeneous intralayer magnetic structure with near-atomic resolution.

  1. Density-functional theory for resonantly interacting fermions with effective range and neutron matter

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis

    2016-10-01

    A density-functional theory is proposed for strongly interacting fermions with arbitrary large negative scattering length. The functional has only two parameters that are directly fixed to reproduce the universal properties of unitary gas: the so-called Bertsch parameter ξ0 and a parameter ηe related to the possible influence of the effective range re at infinite scattering length a . Using most recent quantum Monte Carlo (QMC) estimates of these two parameters, it is shown that the functional properly reproduces the experimental measurements of interacting Fermi systems not only at unitarity but also away from this limit over a wide range of (akF) -1 values. The functional is applied to obtain an expression of Tan's contact parameter including the effect of re. Application is finally made to neutron matter. It is shown that most recent QMC results are well reproduced.

  2. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    SciTech Connect

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; Schlage, Kai; Wetterskog, Erik; Bergstrom, Lennart; Hermann, Raphael P.

    2016-01-01

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.

  3. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    DOE PAGES

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; Schlage, Kai; Wetterskog, Erik; Bergstrom, Lennart; Hermann, Raphael P.

    2016-01-01

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization tomore » 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.« less

  4. X-ray absorption and resonance raman spectroscopy of human myeloperoxidase at neutral and acid pH.

    PubMed

    Yue, K T; Taylor, K L; Kinkade, J M; Sinclair, R B; Powers, L S

    1997-04-01

    Myeloperoxidase (MPO), an important enzyme in the oxygen-dependent host defense system of human polymorphonuclear leukocytes, utilizes hydrogen peroxide to catalyze the production of hypochlorous acid, an oxidizing bactericidal agent. While MPO shows significant sequence homology with other peroxidases and this homology is particularly striking among the active-site residues, MPO exhibits unusual spectral features and the unique ability to catalyze the oxidation of chloride ions. We have investigated the MPO active-site with X-ray absorption (XAS) and resonance Raman (RRS) spectroscopies at neutral pH and also at the physiological acidic pH (pH approximately 3) and have compared these results with those of horseradish peroxidase (HRP). At pH 7.5, XAS results show that the iron heme active site is 6-coordinate where the distal ligand is likely nitrogen or oxygen, but not sulfur. The heme is distorted compared to HRP, other peroxidases, and heme compounds, but at pH approximately 3, the distal ligand is lost and the heme is less distorted. RRS results under identical pH conditions show that the skeletal core-size sensitive modes and v3 are shifted to higher frequency at pH approximately 3 indicating a 6- to 5-coordination change of high spin ferric heme. In addition, a new band at 270 cm(-1) is observed at pH approximately 3 which is consistent with the loss of the sixth ligand. The higher symmetry of the heme at pH approximately 3 is reflected by a single v4 mode in the (RRS) spectrum. HRP also loses its loosely associated distal water at this pH, but little change in heme distortion is observed. This change suggests that loss of the distal ligand in MPO releases stress on the heme which may facilitate binding of chloride ion.

  5. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  6. Avoided resonance crossing and non-reciprocal nearly perfect absorption in plasmonic nanodisks with near-field and far-field couplings.

    PubMed

    Chang, Shih-Hui Gilbert; Sun, Chia-Yi

    2016-07-25

    Avoided resonance crossings (ARC) in plasmonic nanodisk structures due to near field or far field couplings were numerically demonstrated. Near field coupling in disk dimmer with both vertical or side-by-side arrangement leads to both energy and linewidth anti-crossing by varying one disk size across the other. Far field coupling in double layered disk arrays of extremely small gap size or gap size with Fabry Perot resonant condition close to the frequency selective surface (FSS) stopband center leads to non-reciprocal absorption spectrum as one disk size varying across the other. We observe linewidth anti-crossing but energy crossing of the absorption peak from different side illumination by varying either the size of one disk array or the gap in hetero disk arrays. The disappearing of Fabry-Perot resonant mode from one side illumination and the appearing of nonreciprocal nearly perfect absorption from the other side illumination are well explained by a FSS-Fabry-Perot model.

  7. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  8. Spin-Sensitive and Angular Dependent Detection of Resonant Excitations at the K Absorption Pre-Edge of {alpha}-Fe2O3

    SciTech Connect

    Glatzel, Pieter; Mirone, Alessandro; Eeckhout, Sigrid G.; Sikora, Marcin; Giuli, Gabriele

    2007-02-02

    An experimental and theoretical study of the K absorption pre-edge in hematite ({alpha}-Fe2O3) is presented. Resonant inelastic X-ray scattering with a 3p hole in the final states was used to obtain spin-selective absorption spectra. Spectral variations with changing the orientation of the incident X-ray polarization vector with respect to the crystal c-axis in single crystalline hematite are discussed. The experimental results can be successfully modeled using a band-structure approach (WIEN2k with LDA+U). A pre-edge absorption feature is assigned to unoccupied p electronic states due to Fe-Fe interactions, i.e. they are due to non-local transitions.

  9. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    NASA Astrophysics Data System (ADS)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  10. K{sub S} Lambda Photoproduction On The Neutron Within The Resonance Region

    SciTech Connect

    Taylor, Charles E.; Cole, Philip L.

    2014-01-01

    We report some preliminary differential cross section results for the gammad --> K{sub S} Lambda(p) reaction using a circularly-polarized photon beam and an unpolarized LD{sub 2} target. The data was collected at the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. For this study the photon energy ranged from 1.3 to 2.53 GeV, which covers from the reaction threshold through the nucleon resonance regimes. The acceptance- and flux-corrected yields show peaks at the center-of mass energies W = 1.7 and W = 1.9 GeV. These first-time results will aid in unraveling the spectrum of non-strange excited baryons.

  11. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    NASA Astrophysics Data System (ADS)

    Klingler, S.; Maier-Flaig, H.; Gross, R.; Hu, C.-M.; Huebl, H.; Goennenwein, S. T. B.; Weiler, M.

    2016-08-01

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of geff /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  12. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    SciTech Connect

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  13. Neutron and nuclear data revised for the 1997/98 handbook of chemistry and physics

    SciTech Connect

    Holden, N.E.

    1997-07-01

    The 1997/98 Handbook of Chemistry and Physics will contain revised nuclear data information dealing with scattering and absorption properties of neutrons. All of these nuclear data were recently reevaluated. The 2,200 meter per second neutron cross sections and the neutron resonance integrals evaluation was performed in conjunction with the 1997 KAPL Wall-Chart of the Nuclides to insure consistency in the recommended values in the Handbook and on the Chart. The 2,200 meters per second neutron cross sections presented in the Handbook correspond to room temperature neutrons, 20.43 C, or a thermal neutron energy of 0.0253 electron volts, (eV). Neutron resonance integrals are defined over the energy range from 0.5 eV up to 0.1 {times} 10{sup 6} eV. They are averaged over a flux spectrum with a 1/E shape. Evaluated experimental data are derived from either a direct measurement or from 1/E spectrum averaged resonance parameter information. Resonance integrals are presented for neutron capture, charged particle or neutron fission reactions. Thermal neutron scattering is used for the investigation of the static and dynamic properties of condensed matter and it requires a knowledge of neutron scattering lengths. The Handbook presents bound atom neutron coherent scattering lengths in units of fentometers. Stellar slow neutron capture processes occur in a thermal neutron spectrum with temperatures approximately 30 keV. 30 keV Maxwellian averaged neutron cross sections for astrophysical applications are a new parameter presented in the 78th edition of the Handbook. No new parameters will be added to the Table of Isotopes` nuclear information but revised values will be provided for parameters of all known nuclides of the 112 chemical elements.

  14. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  15. Neutron-induced defects in optical fibers

    SciTech Connect

    Rizzolo, S.; Morana, A.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Cannas, M.; Boscaino, R.; Bauer, S.; Perisse, J.; Mace, J-R.; Nacir, B.

    2014-10-21

    We present a study on 0.8 MeV neutron-induced defects up to fluences of 10{sup 17} n/cm{sup 2} in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

  16. Neutron-induced defects in optical fibers

    NASA Astrophysics Data System (ADS)

    Rizzolo, S.; Morana, A.; Cannas, M.; Bauer, S.; Perisse, J.; Mace, J.-R.; Boscaino, R.; Boukenter, A.; Ouerdane, Y.; Nacir, B.; Girard, S.

    2014-10-01

    We present a study on 0.8 MeV neutron-induced defects up to fluences of 1017 n/cm2 in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

  17. Neutron Star Mysteries

    NASA Astrophysics Data System (ADS)

    Mathews, G. J.; Fragile, P. C.; Suh, I.; Wilson, J. R.

    2003-04-01

    Neutron stars provide a unique laboratory in which to explore the nuclear equation of state at high densities. Nevertheless, their interior structure and equation of state have remained a mystery. Recently, a number of advances have been made toward unraveling this mystery. The first direct optical images of a nearby neutron star have been obtained from HST. High quality data for X-ray emission from low-mass X-ray binaries, including observations of nearly coherent oscillations (NCO's) and quasi-periodic oscillations (QPOs) now exist. The existence of a possible absorption feature as well as pulsar light curves and glitches, and studies of soft-gamma repeaters, have all led to significant new constraints on the mass-radius relation and maximum mass of neutron stars. We also discuss how models of supernova explosion dynamics and the associated r-process nucleosynthesis also constrain the nuclear equation of state, along with heavy-ion and monopole resonance data. Recent work on the search for the Friedman-Chandrasekhar-Schutz instability and the effects of internal magnetic fields are also discussed. The overall constraints on the neutron star equation of state are summarized.

  18. β - γ and β-neutron- γ emission in mass A=137 Decay Chain Studied with the Modular Total Absorption Spectrometer (MTAS)

    NASA Astrophysics Data System (ADS)

    Rasco, Charles; Fijałkowska, Aleksandra; Karny, Marek; Rykaczewski, Krzysztof; Wolińska-Cichocka, Marzena; Grzywacz, Robert

    2013-10-01

    The Modular Total Absorption Spectrometer (MTAS) is a detector made up of 19 separate hexagon modules of NaI which results in over a ton of NaI in the MTAS detector. MTAS was designed to capture as much of the electromagnetic energy release in β-decays as possible. MTAS was constructed at the Holifield Radioactive Ion Beam Facility and measured over 20 decay products of 238U fission products in its inaugural measurement campaign in January 2012. The measurements were focused on nuclei identified as important for decay heat analysis of the nuclear fuel cycle. Silicon detectors placed at the center of MTAS to provide β triggers, make for extremely clean signals in MTAS. Preliminary results on the average electromagnetic energy release in the β decay of 137Xe and 137I isotopes will be presented. These isotopes are among the priority 1 cases listed by the NEA. The 137I also has a beta -neutron decay branch that is detected in MTAS. Neutron detection in a large NaI detector will also be discussed. This work was supported by the US DOE by award no. DE-FG02-96ER40978 and by US DOE, Office of Nuclear Physics.

  19. Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Lisov, D.; Behar, A.; Boynton, W. V.; Deflores, L.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Jun, I.; Kozyrev, A. S.; Kuzmin, R. O.; Malakhov, A.; Milliken, R.; Mischna, M.; Moersch, J.; Mokrousov, M.; Nikiforov, S.; Shvetsov, V. N.; Stack, K.; Starr, R.; Tate, C.; Tret'yakov, V. I.; Vostrukhin, A.

    2014-06-01

    Data gathered with the Dynamic Albedo of Neutron (DAN) instrument onboard rover Curiosity were analyzed for variations in subsurface neutron flux and tested for possible correlation with local geological context. A special DAN observation campaign was executed, in which 18 adjacent DAN active measurements were acquired every 0.75-1.0 m to search for the variations of subsurface hydrogen content along a 15 m traverse across geologic contacts between the Sheepbed and Gillespie Lake members of the Yellowknife Bay formation. It was found that several subunits in Sheepbed and Gillespie Lake could be characterized with different depth distributions of water-equivalent hydrogen (WEH) and different chlorine-equivalent abundance responsible for the distribution of neutron absorption elements. The variations of the average WEH at the top 60 cm of the subsurface are estimated at up to 2-3%. Chlorine-equivalent neutron absorption abundances ranged within 0.8-1.5%. The largest difference in WEH and chlorine-equivalent neutron absorption distribution is found between Sheepbed and Gillespie Lake.

  20. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1−xYbxCoIn5

    PubMed Central

    Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng

    2016-01-01

    The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397

  1. Distinguishing S-plus-minus and S-plus-plus electron pairing symmetries by neutron spin resonances in superconducting Sodium-Iron-Cobalt-Arsenic (transitional temperature = 18 Kelvin)

    SciTech Connect

    Das, Tanmoy; Balatsky, Alexander V.; Zhang, Chenglin; Li, Haifeng; Su, Yiki; Nethertom, Tucker; Redding, Caleb; Carr, Scott; Schneidewind, Astrid; Faulhaber, Enrico; Li, Shiliang; Yao, Daoxin; Bruckel, Thomas; Dai, Pengchen; Sobolev, Oleg

    2012-06-05

    A determination of the superconducting (SC) electron pairing symmetry forms the basis for establishing a microscopic mechansim for superconductivity. For iron pnictide superconductors, the s{sup {+-}}-pairing symmetry theory predicts the presence of a sharp neutron spin resonance at an energy below the sum of hole and electron SC gap energies (E {le} 2{Delta}). Although the resonances have been observed for various iron pnictide superconductors, they are broad in energy and can also be interpreted as arising from the s{sup ++}-pairing symmetry with E {ge} 2{Delta}. Here we use inelastic neutron scattering to reveal a sharp resonance at E = 7 meV in the SC NaFe{sub 0.935}Co{sub 0.045}As (T{sub c} = 18 K). By comparing our experiments with calculated spin-excitations spectra within the s{sup {+-}} and s{sup ++}-pairing symmetries, we conclude that the resonance in NaFe{sub 0.935}Co{sub 0.045}As is consistent with the s{sup {+-}}-pairing symmetry, thus eliminating s{sup ++}-pairing symmetry as a candidate for superconductivity.

  2. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,gamma) cross sections of {sup 186,187,188}Os

    SciTech Connect

    Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    Neutron resonance analyses have been performed for the capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os measured at the n{sub T}OF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the {sup 187}Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  3. One-particle properties of deformed N{approx_equal}28 odd-N nuclei with weakly bound or resonant neutrons

    SciTech Connect

    Hamamoto, Ikuko

    2009-01-15

    Possible deformation of odd-N nuclei with N{approx_equal}28 toward the neutron drip line is investigated using the Nilsson diagram based on deformed Woods-Saxon potentials. Both weakly-bound and resonant one-particle levels are properly obtained by directly solving the Schroedinger equation in mesh of space coordinate with the correct boundary condition. If we use the same diffuseness of the potential as that of {beta}-stable nuclei, the energy difference between the neutron 2p{sub 3/2} and 1f{sub 7/2} levels becomes very small or the N=28 energy gap almost disappears, as the binding energies of those levels approach zero. This suggests that the ground states of those neutron drip line nuclei are likely to be deformed. In particular, the spin-parity and the magnetic moment of the ground state of odd-N nuclei, {sub 16}{sup 43}S{sub 27} and {sub 16}{sup 45}S{sub 29}, are examined. Moreover, it is suggested that in {sub 12}{sup 39}Mg{sub 27} lying outside the drip line the lowest resonant state may have 5/2{sup -}, if the N=28 energy gap almost vanishes.

  4. Reaction rate of the 13C(α,n)16O neutron source using the ANC of the -3 keV resonance measured with the THM

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2016-01-01

    The s-process is responsible of the synthesis of most of the nuclei in the mass range 90 ≤ A ≤ 208. It consists in a series of neutron capture reactions on seed nuclei followed by β-decays, since the neutron accretion rate is slower than the β-decay rate. Such small neutron flux is supplied by the 13C(α,n)16O reaction. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures < 108 K, corresponding to an energy interval of 140-230 keV. In this region, the astrophysical S (E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. In this work, we have applied the Trojan Horse Method (THM) to the 13C(6Li,n16O)d quasi-free reaction to extract the 6.356 MeV level resonance parameters, in particular the asymptotic normalization coefficient . A preliminary analysis of a partial data set has lead to , slightly larger than the values in the literature. However, the deduced 13C(α, n)16O reaction rate is in agreement with most results in the literature at ˜ 108 K, with enhanced accuracy thanks to our innovative approach merging together ANC and THM.

  5. GaAs/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing

    NASA Astrophysics Data System (ADS)

    Hartmann, F.; Langer, F.; Bisping, D.; Musterer, A.; Höfling, S.; Kamp, M.; Forchel, A.; Worschech, L.

    2012-04-01

    Al0.6Ga0.4As/GaAs/Al0.6Ga0.4As double-barrier resonant-tunneling diodes (RTD) were grown by molecular beam epitaxy with a nearby, lattice-matched Ga0.89In0.11N0.04As0.96 absorption layer. RTD mesas with ring contacts and an aperture for optical excitation of charge carriers were fabricated on the epitaxial layers. Electrical and optical properties of the RTDs were investigated for different thicknesses of a thin GaAs spacer layer incorporated between the AlGaAs tunnel barrier adjacent to the GaInNAs absorption layer. Illumination of the RTDs with laser light of 1.3 μm wavelength leads to a pronounced photo-effect with a sensitivities of around 103 A/W.

  6. Measurement of the 3He Spin Structure Functions in the Resonance Region: A Test of Quark-Hadron Duality on the Neutron

    SciTech Connect

    Solvignon, Patricia

    2006-08-01

    One of the biggest challenges in the study of the nucleon structure is the understanding of the transition from partonic degrees of freedom to hadronic degrees of freedom. In 1970, Bloom and Gilman noticed that structure function data taken at SLAC in the resonance region average to the scaling curve of deep inelastic scattering (DIS). Early theoretical interpretations suggested that these two very different regimes can be linked under the condition that the quark-gluon and quark-quark interactions are suppressed. Substantial efforts are ongoing to investigate this phenomenon both experimentally and theoretically. Quark-hadron duality has been confirmed for the unpolarized structure function F2 of the proton and the deuteron using data from the experimental Hall C at Jefferson Lab (JLab). Indications of duality have been seen for the proton polarized structure function g1 and the virtual photon asymmetry A1 at JLab Hall B and HERMES. Because of the different resonance behavior, it is expected that the onset of duality for the neutron will happen at lower momentum transfer than for the proton. Now that precise spin structure data in the DIS region are available at large x, data in the resonance region are greatly needed in order to test duality in spin-dependent structure functions. The goal of experiment E01-012 was to provide such data on the neutron (3He) in the moderate momentum transfer (Q2) region, 1.0 < Q2 < 4.0 (GeV/c2), where duality is expected to hold. The experiment ran successfully in early 2003 at Jefferson Lab in Hall B. It was an inclusive measurement of longitudinally polarized electrons scattering from a longitudinally or transversely polarized 3He target. Asymmetries and cross section differences were measured in order to extract the 3He spin structure function g1 and virtual photon asymmetry A1 in the resonance region. A test

  7. Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell

    SciTech Connect

    Behaghel, B.; Tamaki, R.; Watanabe, K.; Sodabanlu, H.; Vandamme, N.; Dupuis, C.; Bardou, N.; Cattoni, A.; Okada, Y.; Sugiyama, M.; Collin, S.; Guillemoles, J.-F.

    2015-02-23

    We study light management in a 430 nm-thick GaAs p-i-n single junction solar cell with 10 pairs of InGaAs/GaAsP multiple quantum wells (MQWs). The epitaxial layer transfer on a gold mirror improves light absorption and increases the external quantum efficiency below GaAs bandgap by a factor of four through the excitation of Fabry-Perot resonances. We show a good agreement with optical simulation and achieve around 10% conversion efficiency. We demonstrate numerically that this promising result can be further improved by anti-reflection layers. This study paves the way to very thin MQWs solar cells.

  8. Measurement of thermal neutron cross-sections and resonance integrals for 164Dy(n,γ) 165Dy and 180Hf(n,γ) 181Hf reactions

    NASA Astrophysics Data System (ADS)

    Cho, Hyun-Je; Kobayashi, Katsuhei; Yamamoto, Shuji; Seo, Kyung-Won; Hwang, Han Yull; Nha, Sang Kyun; Ko, Seung Kook

    2001-04-01

    The thermal neutron cross-sections for the 164Dy(n,γ) 165Dy and the 180Hf(n,γ) 181Hf reactions have been measured by the activation method at the heavy water thermal neutron facility of the Kyoto University Reactor, KUR. The results measured at 0.0253 eV are 2656±98 b for the 164Dy(n,γ) 165Dy reaction and 13.04±0.47 b for the 180Hf(n,γ) 181Hf reaction, respectively. The results have been obtained relative to the reference value of 98.65±0.09 b for the 197Au(n,γ) 198Au reaction. For dysprosium, most of the experimental data and the evaluated ones in ENDF/B-VI and JEF-2.2 are in good agreement with the present value. For hafnium, the previous measurements and the evaluated ones in ENDF/B-VI and JENDL-3.2 are in good agreement with the present result. The resonance integrals for the 164Dy(n,γ) 165Dy and the 180Hf(n,γ) 181Hf reactions have also been measured relative to the reference value of 1550±28 b for the 197Au(n,γ) 198Au reaction using a 1/ E standard neutron spectrum field of the Kinki University Reactor, UTR-KINKI. The present resonance integral for the 164Dy(n,γ) 165Dy reaction is 649±24 b, and the existing experimental and the evaluated data are distributed from 335 to 820 b. The present result for the 180Hf(n,γ) 181Hf reaction is 32.4±1.2 b, and most of the previous measurements and the evaluated values are close to the present measurement. Gryntakis et al. reported the resonance integrals for both reactions, whose results were also in good agreement with the measurements.

  9. Multipolarity analysis for {sup 14}C high-energy resonance populated by ({sup 18}O,{sup 16}O) two-neutron transfer reaction

    SciTech Connect

    Carbone, D. Cavallaro, M.; Bondì, M.; Agodi, C.; Cunsolo, A.; Cappuzzello, F.; Azaiez, F.; Franchoo, S.; Khan, E.; Bonaccorso, A.; Fortunato, L.; Foti, A.; Linares, R.; Lubian, J.; Scarpaci, J. A.; Vitturi, A.

    2015-10-15

    The {sup 12}C({sup 18}O,{sup 16}O){sup 14}C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition.

  10. Non-adiabatic, superfast passage to resonance: an alternative to pulsed fourier transform for absorption line shapes

    NASA Astrophysics Data System (ADS)

    Segel, S. L.; Creel, R. B.; Torgeson, D. R.

    1983-12-01

    We describe the theory, practice and experimental results of a continuous wave (CW) resonance technique which we call non-adiabatic superfast passage (NASP). NASP signal to noise per unit time (SNT) is better than pulsed Fourier transform spectrometers (PFTS) and far better than the conventional CW slow passage NMR using field modulation, lock-in amplifiers and signal averaging techniques. It is most useful in situations of long spin-lattice relaxation time and particularly those cases where the line shape is composed of narrow and broad components, as in a typical second-order quadrupolar perturbed magnetic resonance line shape.

  11. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    NASA Astrophysics Data System (ADS)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  12. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement

    SciTech Connect

    Ma, Jian; Cao, Jianshu

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor’s emission and acceptor’s absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  13. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  14. Magnetization dynamics in La{sub 0.67}Ca{sub 0.33}MnO{sub 3} epitaxial films probed with resonant and non-resonant microwave absorption

    SciTech Connect

    Porwal, Rajni; Pant, R. P.; Budhani, R. C.

    2015-01-07

    Temperature (T) dependent microwave absorption measurements are performed on La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) epitaxial thin films of thickness 100 and 200 nm in an electron paramagnetic resonance spectrometer operating in X-band. The resonant absorption peak is monitored for out-of-plane (H{sup ⊥}) and in-plane (H{sup ∥}) dc magnetic field (H) as the system goes through magnetic ordering. These data suggest a resilient transformation to the ferromagnetic (FM) phase in the vicinity of the Curie temperature (T{sub C}), indicative of a phase separation, which is dominant in the thinner film. The saturation magnetization is calculated from SQUID magnetometry on the same film. A pronounced zero-field absorption is seen in H{sup ∥} geometry displaying anomalous growth in 100 nm film at T < T{sub C}. This feature is correlated with the magneto-conductivity of the manganite which is colossal in the vicinity of T{sub C} in the well-ordered film of thickness 200 nm. Signature of standing spin wave modes is seen in H{sup ⊥} measurements which are analyzed to calculate the spin wave stiffness constant D(T) in the limit of zero temperature. The same is also inferred from the decay of equilibrium magnetization in the framework of Bloch law. These studies reveal that a bulk like LCMO is obtained in the fully relaxed thicker films.

  15. Classical to quantum crossover of the cyclotron resonance in graphene: a study of the strength of intraband absorption

    NASA Astrophysics Data System (ADS)

    Orlita, M.; Crassee, I.; Faugeras, C.; Kuzmenko, A. B.; Fromm, F.; Ostler, M.; Seyller, Th; Martinez, G.; Polini, M.; Potemski, M.

    2012-09-01

    We report on absolute magneto-transmission experiments on highly doped quasi-free-standing epitaxial graphene targeting the classical-to-quantum crossover of the cyclotron resonance. This study allows us to directly extract the carrier density and also other relevant quantities such as the quasiparticle velocity and the Drude weight, which is precisely measured from the strength of the cyclotron resonance. We find that the Drude weight is renormalized with respect to its non-interacting (or random phase approximation) value and that the renormalization is tied to the quasiparticle velocity enhancement. This finding is in agreement with recent theoretical predictions, which attribute the renormalization of the Drude weight in graphene to the interplay between broken Galilean invariance and electron-electron interactions.

  16. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    PubMed

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  17. Investigation of microstructure within metal welds by energy resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Kockelmann, W.; Paradowska, A. M.; Zhang, Shu-Yan; Korsunsky, A. M.; Shinohara, T.; Feller, W. B.; Lehmann, E. H.

    2016-09-01

    The recent development of bright pulsed neutron sources and high resolution neutron counting detectors enables simultaneous acquisition of a neutron transmission spectrum for each pixel of the image. These spectra can be used to reconstruct microstructure parameters within welds, such as strain, texture and phase composition through Bragg edge analysis, and in some cases elemental composition through resonance absorption analysis. In this paper we demonstrate the potential of energy-resolved neutron imaging to study the microstructures of two steel welds, where the spatial distribution of residual strain within the welds, as well as some information on the texture, are obtained with sub-mm spatial resolution. A friction stir weld of two steel plates and a conventional weld of two steel pipes were studied at pulsed neutron facilities, where a Δλ/λ resolution as low as 0.2% can be attained over a wide range of neutron wavelengths ranging from 0.5 Å to 8 Å.

  18. Preliminary assessment of dispersion versus absorption analysis of high spectral and spatial resolution magnetic resonance images in the diagnosis of breast cancer

    PubMed Central

    Weiss, William A.; Medved, Milica; Karczmar, Gregory S.; Giger, Maryellen L.

    2015-01-01

    Abstract. Water resonance lineshapes observed in breast lesions imaged with high spectral and spatial resolution (HiSS) magnetic resonance imaging have been shown to contain diagnostically useful non-Lorentzian components. The purpose of this work is to update a previous method of breast lesion diagnosis by including phase-corrected absorption and dispersion spectra. This update includes information about the shape of the complex water resonance, which could improve the performance of a computer-aided diagnosis breast lesion classification scheme. The non-Lorentzian characteristics observed in complex breast lesion water resonance spectra are characterized by comparing a plot of the real versus imaginary components of the spectrum to that of a perfect complex Lorentzian spectrum, a “dispersion versus absorption” (DISPA) analysis technique. Distortion in the shape of the observed spectra indicates underlying physiologic changes, which have been shown to be correlated with malignancy. These spectral shape distortions in each lesion voxel are quantified by summing the deviations in DISPA radius from an ideal complex Lorentzian spectrum over all Fourier components, yielding a “total radial difference” (TRD). We limited our analysis to those voxels in each lesion with the largest TRD. The number of voxels considered was dependent on the lesion size. The TRD was used to classify voxels from 15 malignant and 8 benign lesions (∼2400 voxels after voxel elimination). Lesion discrimination performance was evaluated for both the average and variance of the TRD within each lesion. Area under the receiver operating characteristic curve (ROC AUC) was used to assess both the voxel- and lesion-based discrimination methods in the task of distinguishing between malignant and benign. In the task of distinguishing voxels from malignant and benign lesions, TRD yielded an AUC of 0.89 (95% confidence interval [0.84, 0.91]). In the task of distinguishing malignant from benign

  19. Off-Resonant Two-Photon Absorption Cross-Section Enhancement of an Organic Chromophore on Gold Nanorods

    PubMed Central

    Sivapalan, Sean T.; Vella, Jarrett H.; Yang, Timothy K.; Dalton, Matthew J.; Haley, Joy E.; Cooper, Thomas M.; Urbas, Augustine M.; Tan, Loon-Seng; Murphy, Catherine J.

    2013-01-01

    Surface-plasmon-initiated interference effects of polyelectrolyte-coated gold nanorods on the two-photon absorption of an organic chromophore were investigated. With polyelectrolyte bearing gold nanorods of 2,4,6 and 8 layers, the role of the plasmonic fields as function of distance on such effects was examined. An unusual distance dependence was found: enhancements in the two-photon cross-section were at a minimum at an intermediate distance, then rose again at a further distance. The observed values of enhancement were compared to theoretical predictions using finite element analysis and showed good agreementdue to constructive and destructive interference effects. PMID:23687561

  20. Dispersion of quadratic nonlinearity of polarized films of chromophore-containing polyimides in the range of resonance absorption

    NASA Astrophysics Data System (ADS)

    Yakimansky, A. V.; Nosova, G. I.; Solovskaya, N. A.; Smirnov, N. N.; Plekhanov, A. I.; Simanchuk, A. E.; Gorkovenko, A. I.

    2011-07-01

    Detailed investigations of the second harmonic generation of a series of new chromophore-containing polyimides in the range of their absorption bands are performed. Polymer films with thickness of 100-400 nm were spin-cast on glass substrates and corona poled. For the samples, the quadratic nonlinearity coefficients are determined from the intensity of the second harmonic generation signal. Fundamental wavelength was varied from 800 to 1400 nm. The quadratic nonlinear coefficient d33 of these materials with respect to the reference sample of quartz crystal are estimated. Maximum values of the second harmonic generation coefficient, d33, are 25-50 pm/V.

  1. X-ray absorption, neutron diffraction, and M{umlt o}ssbauer effect studies of MnZn{endash}ferrite processed through high-energy ball milling

    SciTech Connect

    Fatemi, D.J.; Harris, V.G.; Chen, M.X.; Malik, S.K.; Yelon, W.B.; Long, G.J.; Mohan, A.

    1999-04-01

    MnZn{endash}ferrite has been prepared via high-energy ball milling of elemental oxides MnO, ZnO, and {alpha}-Fe{sub 2}O{sub 3}. Neutron diffraction measurements suggest a high density of vacancies in a spinel structure. The spinel phase appears to comprise 99.8 wt;{percent} of the material in the sample milled for 40 h, with the remainder attributable to unreacted {alpha}-Fe{sub 2}O{sub 3}. The x-ray absorption near-edge structure was analyzed to provide an understanding of the charge state of the constituent Fe ions. This analysis reveals about 2/3 of Fe cations to be trivalent, increasing to about 3/4 after a 5 h anneal at 450;{degree}C. The heat treatment is also observed to induce a cation redistribution in the ball-milled ferrite toward that of a standard processed via ceramics methods. Results from M{umlt o}ssbauer spectroscopy determine the average hyperfine fields in the sample milled 40 h to be 289 and 487 kOe at 295 and 78 K, respectively. The average isomer shift is 0.32 mm/s at 295 K and 0.46 mm/s at 78 K, values which are typical of iron (III) in a spinel oxide lattice. As expected for a cubic-like environment, the quadrupole shifts are very small, ranging from 0.07 mm/s at 295 K to 0.00 mm/s at 78 K. {copyright} {ital 1999 American Institute of Physics.}

  2. High-resolution study of the x-ray resonant Raman scattering process around the 1s absorption edge for aluminium, silicon, and their oxides

    SciTech Connect

    Szlachetko, J.; Dousse, J.-Cl.; Berset, M.; Fennane, K.; Szlachetko, M.; Hoszowska, J.; Barrett, R.; Pajek, M.; Kubala-Kukus, A.

    2007-02-15

    X-ray resonant Raman scattering (RRS) spectra of Al, Al{sub 2}O{sub 3}, Si, and SiO{sub 2} were measured at the European Synchrotron Radiation Facility, using a high-resolution Bragg-type curved crystal spectrometer. The x-ray RRS spectra were collected at several beam energies tuned below the 1s absorption thresholds of Al and Si. Differences in the spectral features between the elemental samples and the oxide ones were clearly observed. The data were interpreted using the second-order perturbation theory within the Kramers-Heisenberg (KH) approach. It is shown that, using the KH formalism, oscillator strengths that are similar to the ones deduced from x-ray absorption measurements can be extracted from emission x-ray RRS spectra. The total cross sections for the x-ray RRS process were derived for the different photon beam energies and compared with theoretical predictions. For elemental silicon, the weak 1s-3p excitation was observed and found to be consistent with results of density of states calculations.

  3. Neutron capture and fission in /sup 254g/ Es

    SciTech Connect

    Halperin, J.; Bigelow, J.E.; O'Kelley, G.D.; Oliver, J.H.; Wiggins, J.T.

    1985-07-01

    Integral neutron capture and neutron fission cross sections have been measured for the 276-day /sup 254g/ Es. Thermal cross sections and resonance integrals were evaluated using a cadmium filter technique. Capture cross sections were determined from alpha-particle spectrum measurements following neutron irradiations with cobalt flux monitors. Fission cross sections were measured using fission track detection techniques with STTU monitors. The fission cross-section values compared favorably with an absorption cross-section determination from a burnout experiment of SVTEs-SVUEs. The integral neutron capture and fission cross sections determined for /sup 254g/ Es are: sigma /sub c/ /sup th/ = 28.3 + or - 2.5 and I /sub c/ = 18.2 + or - 1.5 b, and sigma /sub F/ /sup th/ = 1970 + or - 200 and I /sub F/ = 1200 + or - 250 b.

  4. Heating of coronal holes by the resonant absorption and dissipation of Alfven waves and its relation to solar wind acceleration

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Davila, J. M.

    1995-01-01

    Coronal hole regions are well known sources of high-speed solar wind, however to account for the observed properties of the solar wind a source of momentum and heat must be included. Alfven waves were suggested as the possible source of heating that accelerates the solar wind. We investigate the propagation of the Alfven waves in coronal holes via numerical solution of the linearized 2-D resistive MHD equations in slab geometry. The Alfven waves are driven at the lower boundary of the coronal hole and propagate into the corona. The waves are reflected at the coronal hole boundary and part of the wave energy leaks out of the coronal hole. We compare the calculated wavelengths and the attenuation rate of the fast mode Alfven waves in the leaky waveguide formed by the coronal hole with the analytical ideal MHD solutions. The formation of resonance heating layers is found to occur when shear Alfven waves propagate in an inhomogeneous coronal hole. The heating is enhanced when fast mode waves couple to the shear Alfven waves. The narrow heating layers are formed near the location of the ideal resonance, which might occur near the coronal hole boundary for a nearly constant density coronal hole, surrounded by a higher density plasma. We investigate the dependence of the heating on the driver frequency, the Lundquist number, and on the heliocentric distance. and find that the low frequency Alfven waves can be an efficient source of heating at large distances from the Sun. We discuss the relation of our results to the observed properties of high-speed solar wind and coronal holes.

  5. Resonance-Enhanced Raman Scattering of Ring-Involved Vibrational Modes in the (1)B(2u) Absorption Band of Benzene, Including the Kekule Vibrational Modes ν(9) and ν(10).

    PubMed

    Willitsford, Adam H; Chadwick, C Todd; Kurtz, Stewart; Philbrick, C Russell; Hallen, Hans

    2016-02-01

    Resonance Raman spectroscopy provides much stronger Raman signal levels than its off-resonant counterpart and adds selectivity by excitation tuning. Raman preresonance of benzene has been well studied. On-resonance studies, especially at phonon-allowed absorptions, have received less attention. In this case, we observe resonance of many of the vibration modes associated motion of the carbons in the ring while tuning over the (1)B2u absorption, including the related ν9 (CC stretch Herzberg notation, ν14 Wilson notation) and ν10 (CH-parallel bend Herzberg notation, ν15 Wilson notation) vibrational modes along with the ν2 (CC-stretch or ring-breathing Herzberg notation, ν1 Wilson notation) mode and multiples of the ν18 (CCC-parallel bend Herzberg notation, ν6 Wilson notation) vibrational mode. The ring-breathing mode is found to mix with the b2u modes creating higher frequency composites. Through the use of an optical parametric oscillator (OPO) to tune through the (1)B2u absorption band of liquid benzene, a stiffening (increase in energy) of the vibrational modes is observed as the excitation wavelength nears the (1)B2u absorption peak of the isolated molecule (vapor) phase. The strongest resonance amplitude observed is in the 2 × ν18 (e2g) mode, with nearly twice the intensity of the ring-breathing mode, ν2. Several overtones and combination modes, especially with ν2 (a1g), are also observed to resonate. Raman resonances on phonon-allowed excitations are narrow and permit the measurement of vibrations not Raman-active in the ground state. PMID:26731431

  6. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    SciTech Connect

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-23

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.

  7. Miscibility gap and phonon thermodynamics of Fe-Au alloys studied by inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Muñoz, Jorge A.; Fultz, Brent

    2015-07-01

    Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe-Fe bonds but stiffens the Au-Au and Au-Fe bonds which results in a net stiffening relative to the elemental components.

  8. Protein dynamics in an intermediate state of myoglobin: optical absorption, resonance Raman spectroscopy, and x-ray structure analysis.

    PubMed Central

    Engler, N; Ostermann, A; Gassmann, A; Lamb, D C; Prusakov, V E; Schott, J; Schweitzer-Stenner, R; Parak, F G

    2000-01-01

    A metastable state of myoglobin is produced by reduction of metmyoglobin at low temperatures. This is done either by irradiation with x-rays at 80 K or by electron transfer from photoexcited tris(2, 2'-bipyridine)-ruthenium(II) at 20 K. At temperatures above 150 K, the conformational transition toward the equilibrium deoxymyoglobin is observed. X-ray crystallography, Raman spectroscopy, and temperature-dependent optical absorption spectroscopy show that the metastable state has a six-ligated iron low-spin center. The x-ray structure at 115K proves the similarity of the metastable state with metmyoglobin. The Raman spectra yield the high-frequency vibronic modes and give additional information about the distortion of the heme. Analysis of the temperature dependence of the line shape of the Soret band reveals that a relaxation within the metastable state starts at approximately 120 K. Parameters representative of static properties of the intermediate state are close to those of CO-ligated myoglobin, while parameters representative of dynamics are close to deoxymyoglobin. Thus within the metastable state the relaxation to the equilibrium is initiated by changes in the dynamic properties of the active site. PMID:10733986

  9. New model of the cascade gamma decay of neutron resonances for practitioners: Basic concepts and attainable precision

    NASA Astrophysics Data System (ADS)

    Sukhovoj, A. M.

    2015-03-01

    A model-free extraction of level densities and radiative strength functions for cascade dipole gamma transitions that has been performed to date revealed the need for developing a new model of the deexcitation of compound states of nuclei having arbitrary masses and belonging to any type over a broad range of their excitations. Such a model should provide a practical means for determining thresholds for the breaking of nucleon Cooper pairs below the neutron binding energy, the relationship between the level densities for excitations of the quasiparticle and phonon types, and the emission widths for nuclear-reaction products in excited nuclei. From an analysis of data on the intensities of two-step cascades initiated by radiative thermal-neutron capture, it can be seen that the highest precision in describing available experimental spectra is reached upon taking into account the breaking of three to four Cooper pairs of nucleons.

  10. New model of the cascade gamma decay of neutron resonances for practitioners: Basic concepts and attainable precision

    SciTech Connect

    Sukhovoj, A. M.

    2015-03-15

    A model-free extraction of level densities and radiative strength functions for cascade dipole gamma transitions that has been performed to date revealed the need for developing a new model of the deexcitation of compound states of nuclei having arbitrary masses and belonging to any type over a broad range of their excitations. Such a model should provide a practical means for determining thresholds for the breaking of nucleon Cooper pairs below the neutron binding energy, the relationship between the level densities for excitations of the quasiparticle and phonon types, and the emission widths for nuclear-reaction products in excited nuclei. From an analysis of data on the intensities of two-step cascades initiated by radiative thermal-neutron capture, it can be seen that the highest precision in describing available experimental spectra is reached upon taking into account the breaking of three to four Cooper pairs of nucleons.

  11. Cyclotron Resonance in Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Cyclotron Resonance Absorption/Scattering features provide direct measurement of magnetic field strength in the line forming region. This has enabled the estimation of magnetic field strengths of nearly two dozen neutron stars in accreting high mass binary systems. With improved spectroscopic sensitivity, new X-ray observatories such as NuSTAR, Astrosat and Hitomi are opening the doors to studying detailed features such as the line shape and phase dependence with high significance. Such studies will help understand the nature of matter accumulation in, and outflow from, the magnetically confined accretion column on the neutron star. This talk will describe the results of MHD simulations of the matter flow in such systems, the diagnostics of such flows using cyclotron lines, and comparison with recent observations from NuSTAR and Astrosat.

  12. General Point-Depletion and Fission Product Code System and Four-Group Fission Product Neutron Absorption Chain Data Library Generated from ENDF/B-IV for Thermal Reactors

    1981-12-01

    EPRI-CINDER calculates, for any specified initial fuel (actinide) description and flux or power history, the fuel and fission-product nuclide concentrations and associated properties. Other nuclide chains can also be computed with user-supplied libraries. The EPRI-CINDER Data Library (incorporating ENDF/B-IV fission-product processed 4-group cross sections, decay constants, absorption and decay branching fractions, and effective fission yields) is used in each constant-flux time step calculation and in time step summaries of nuclide decay rates and macroscopic absorptionmore » and barns-per-fission (b/f) absorption cross sections (by neutron group). User-supplied nuclide decay energy and multigroup-spectra data libraries may be attached to permit decay heating and decay-spectra calculations. An additional 12-chain library, explicitly including 27 major fission-product neutron absorbers and 4 fictitious nuclides, may be used to accurately calculate the aggregate macroscopic absorption buildup in fission products.« less

  13. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  14. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  15. Modeling of fast wave absorption by beam ions in DIII-D discharges

    SciTech Connect

    Mau, T. K.; Petty, C. C.; Porkolab, M.; Heidbrink, W. W.

    1999-09-20

    In recent discharges on DIII-D, neutron measurements indicated absorption of the fast wave by energetic deuterium beam ions when the fourth harmonic resonance is on axis, but little or no interaction for the fifth harmonic. In this work, a geometric optics code is used to quantify the beam ion absorption of fast waves as the frequency (or on-axis harmonic resonance) is varied. Isotropic and anisotropic Maxwellians are used to model the beam ion distribution. Wave power flow in this harmonic range has been found to exhibit a strong poloidal and toroidal behavior in its initial transits across the plasma. Absorption along the rays is calculated using the fully thermal and magnetized treatment. Competing with the beam ions for absorption are the minority hydrogen and background electrons. The modeling results are only in partial agreement with experimental observations, indicating that more detailed physics may need to be included. (c) 1999 American Institute of Physics.

  16. Evidence of Spin Resonance Signal in Oxygen Free Superconducting CaFe0.88Co0.12AsF: An Inelastic Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Price, Stephen; Su, Yixi; Xiao, Yinguo; Adroja, Devashibhai T.; Guidi, Tatiana; Mittal, Ranjan; Nandi, Shibabrata; Matsuishi, Satoru; Hosono, Hideo; Brückel, Thomas

    2013-10-01

    The spin excitation spectrum of optimally doped superconducting CaFe0.88Co0.12AsF (Tc˜ 22 K) was studied by means of time-of-flight (ToF) inelastic neutron scattering experiments on a powder sample for temperatures above and below Tc and energies up to 15 meV. In the superconducting state, the spin resonance signal is observed as an enhancement of spectral weight of particle hole excitations of approximately 1.5 times relative to normal state excitations. The resonance energy ER˜ 7 meV scales to Tc via 3.7 kBTc which is in reasonable agreement to the scaling relation reported for other Fe-based compositions. For energies below 5 meV the spectrum of spin flip particle hole excitations in the superconducting state exhibits a strong reduction in spectral weight, indicating the opening of the spin gap. Nonetheless, a complete suppression of magnetic response cannot be observed. In contrast, the normal state spin excitations are not gapped and strongly two dimensional spin fluctuations persist up to temperatures at least as high as 150 K.

  17. Spin resonance in the superconducting state of Li1 -xFexODFe1 -ySe observed by neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Davies, N. R.; Rahn, M. C.; Walker, H. C.; Ewings, R. A.; Woodruff, D. N.; Clarke, S. J.; Boothroyd, A. T.

    2016-10-01

    We have performed inelastic neutron-scattering measurements on a powder sample of the superconductor lithium iron selenide hydroxide Li1 -xFexODFe1 -ySe (x ≃0.16 ,y ≃0.02 ,Tc=41 K ) . The spectrum shows an enhanced intensity below Tc over an energy range of 0.64 ×2 Δ resonance mode found in other unconventional superconductors, and in particular strongly resembles the spin resonance observed in the spectrum of another molecular-intercalated iron selenide Li0.6(ND2)0.2(ND3)0.8Fe2Se2 . The signal can be described with a characteristic two-dimensional wave-vector (π ,0.67 π ) in the Brillouin zone of the iron square lattice, consistent with the nesting vector between electron Fermi sheets.

  18. Continuum absorption spectra in the far wings of the Hg 1S0-->3P1 resonance line broadened by Ar

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Nakamura, T.; Okunishi, M.; Ohmori, K.; Chiba, H.; Ueda, K.

    1996-02-01

    Absolute reduced absorption coefficients for the Hg resonance line at 253.7 nm broadened by Ar were determined between 390 and 430 K in the spectral range from 20 to 1000 cm-1 on the red wing and from 20 to 400 cm-1 on the blue wing. The resultant reduced absorption coefficients are in fair agreement with those obtained by Petzold and Behmenburg [Z. Naturtorsch. Teil A 33, 1461 (1978)]. The observed A 30+<--X 10+ spectrum in the spectral range from 80 to 800 cm-1 on the red wing agrees remarkably well both in shape and magnitude with the quasistatic line shape calculated using the potential-energy curves of the HgAr van der Waals molecule given by Fuke, Saito, and Kaya [J. Chem. Phys. 81, 2591 (1984)], and Yamanouchi et al. [J. Chem. Phys. 88, 205 (1988)]. The blue-wing spectrum is interpreted as the B 31<--X 10+ free-free transition of HgAr by a simulation of the spectrum using uniform semiclassical treatment for the free-free Franck-Condon factor. The source of the satellites on the blue wing is attributed to the phase-interference effect arising from a stationary phase-shift difference between the B- and X-state translational wave functions. The stationary phase-shift difference arises owing to the existence of a maximum in the difference potential between the B and X states. The repulsive branches of the potential-energy curves of HgAr for the X and B states have been revised to give excellent agreement between the observed and calculated spectra, both in shape and magnitude.

  19. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGES

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  20. Infrared absorption properties of the EL2 and the isolated As/sub Ga/ defects in neutron-transmutation-doped GaAs: Generation of an EL2-like defect

    SciTech Connect

    Manasreh, M.O.; Fischer, D.W.

    1989-02-15

    The EL2 and the isolated As/sub Ga/ antisite defects in neutron-transmutation-doped (NTD) GaAs were studied by using the infrared (ir) absorption technique concurrent with thermal annealing. The results show that irradiation with low thermal-neutron doses partially decomposes the EL2 complex in semi-insulating (si) GaAs grown by the liquid-encapsulated Czochralski (LEC) growth technique. On the other hand, a small amount of EL2 is generated in as-grown Ga-rich undoped p-type LEC GaAs. The EL2 defect in low-dose thermal-neutron-irradiated samples (both si and p-type) was found to be stable up to 850 /sup 0/C. High neutron-irradiation doses, however, completely annihilate EL2 but generate a different EL2-like defect (DL2). The DL2 defect is observed after annealing the high-dose NTD samples for 6 min at 600 /sup 0/C. The DL2 concentration is observed to be larger than that of EL2 in as-grown LEC si GaAs by a factor of 2.3 or higher. The photoquenching and thermal recovery properties of DL2 and EL2 defects are identical. However, the DL2 defect does not exhibit the same thermal stability or the zero-phonon line of the EL2 defect. Thermal annealing kinetics shows that DL2 is composed of three point defects. The residual absorption (unquenchable component) after photoquenching the EL2 (DL2) defect is interpreted as the photoionization of the isolated As/sub Ga/ antisite.

  1. Nuclear reactions with 14 MeV neutrons and bremsstrahlungs in giant dipole resonance (GDR) region using small accelerators

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; Van Do, Nguyen; An, Truong Thi; Son, Nguyen Ngoc

    2003-07-01

    In 1974 an accelerator of deterium, namely neutron generator NA-3-C was put into operation and in 1982 another accelerator of electron Microtron MT-17 started its work in the Institute of Physics. Though very modest these accelerators are useful for developing countries as Vietnam in both Nuclear Physics Research and Training. In this report we present some results obtained in studies on Nuclear Data, Nuclear Reactions as well as nuclear activation analysis methods. We also would like to discuss about the possibilities of collaboration in the future.

  2. Magneto-thermoelectric effects in the two-dimensional electron gas of a HgTe quantum well due to THz laser heating by cyclotron resonance absorption

    NASA Astrophysics Data System (ADS)

    Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce

    2015-03-01

    HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.

  3. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid

    NASA Astrophysics Data System (ADS)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.

    2009-10-01

    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  4. Infrared absorption and electron spin resonance studies of nanocrystalline cubic boron nitride/amorphous hydrogenated boron nitride mixed phase thin films

    SciTech Connect

    Lin, S.H.; Brown, I.M.; Feldman, B.J.

    1996-11-01

    Both infrared absorption (IR) and electron spin resonance (ESR) spectroscopies have been used to investigate the complicated structure of nanocrystalline cubic boron nitride/amorphous hydrogenated boron nitride thin films. The ESR spectra from this material consist of a component with a four-line hyperfine structure and/or a component with a ten-line hyperfine structure superimposed upon a broad central line. The hyperfine structures are associated with defect centers located in the nanocrystalline phase, whereas the broad line is attributed to dangling bonds in the amorphous phase. The IR spectra consist of three lines around 1,400 cm{sup {minus}1}: the lines at 1,263 and 1,505 cm{sup {minus}1} originate in a boron-poor amorphous hydrogenated boron nitride region; the line at 1,371 cm{sup {minus}1}, in a boron-rich amorphous hydrogenated boron nitride region. These results, together with previously reported electron diffraction spectra, suggest the following picture: small (2.5 nm) nanocrystallites of cubic boron nitride (about 5% of the material) are imbedded in a mixed amorphous phase. The amorphous region can be approximated by a mixture of boron-rich and boron-poor amorphous hydrogenated boron nitride.

  5. Accumulation of /sup 254g/Es in the neutron irradiation of californium

    SciTech Connect

    Adaev, V.A.; Klinov, A.V.; Mamelin, A.V.; Toporov, Yu.G.

    1987-06-01

    Preliminary calculations have shown that the ratio of the rates of formation and burnup of /sup 254g/Es can be shifted toward the rate of formation, provided that the californium-containing targets are irradiated with neutrons having a very hard spectrum, (the hardness of the neutron spectrum is defined as the ratio of the flux density of ipithermal neutrons per unit mean logarithmic energy decrement to the flux density of the thermal neutrons). For the purpose of experimentally verifying this conclusion, we irradiated two test samples provided with metal cadmium shields and containing a mixture of californium isotopes as the initial material (approx. 70% of the total was /sup 252/Cf nuclei). After target irradiation, the targets were subjected to a radiochemical treatment and the concentration of the products accumulated was analyzed. It follows from a comparison of experimental and calculated data that the published data on the neutron cross section of the einsteinium isotopes render excessive /sup 254g/Es yields and too small /sup 253/Es yields. Therefore a series of calculations was made for the various values of the resonance integral of the /sup 253/Es absorption and of the partial resonances of the radiative capture integrals of /sup 253/Es in the reaction leading to the formation of /sup 254g/Es and /sup 254m/Es. The calculations have shown that the /sup 253/Es yield in the targets can be satisfactorily predicted with a resonance integral I/sub a/ = 3500 b of absorption

  6. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  7. Nucleon-nucleus interaction data base: Total nuclear and absorption cross sections

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.; Chun, S. Y.; Hong, B. S.; Lamkin, S. L.

    1988-01-01

    Neutron total cross sections are represented for Li to Pu targets at energies above 0.1 MeV and less than 100 MeV using a modified nuclear Ramsauer formalism. The formalism is derived for energies above 100 MeV by fitting theoretical cross sections. Neutron absorption cross sections are represented by analytic expressions of similar form, but shape resonance phenomena of the Ramsauer effect is not present. Elastic differential cross sections are given as a renormalized impulse approximation. These cross section data bases are useful for nucleon transport applications.

  8. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method.

  9. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. PMID:27524041

  10. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    SciTech Connect

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and

  11. Resonance Radiation and Excited Atoms

    NASA Astrophysics Data System (ADS)

    Mitchell, Allan C. G.; Zemansky, Mark W.

    2009-06-01

    1. Introduction; 2. Physical and chemical effects connected with resonance radiation; 3. Absorption lines and measurements of the lifetime of the resonance state; 4. Collision processes involving excited atoms; 5. The polarization of resonance radiation; Appendix; Index.

  12. Proton transfer in benzoic acid crystals: A chemical spin-boson problem. Theoretical analysis of nuclear magnetic resonance, neutron scattering, and optical experiments

    NASA Astrophysics Data System (ADS)

    Skinner, J. L.; Trommsdorff, H. P.

    1988-07-01

    The double proton transfer in benzoic acid crystals can be described by a double-minimum potential. At low temperatures one need consider only the two lowest energy eigenstates, which must be coupled to the crystalline phonons in order to obtain relaxation. Thus the benzoic acid system provides a well-defined chemical example of the spin-boson Hamiltonian. Within this model the tunneling relaxation between localized states occurs by one-phonon emission or absorption. Alternatively, at high temperatures the proton transfer is thermally activated. With this simple picture in mind we analyze NMR T1 relaxation experiments. The temperature-dependent proton transfer rate that emerges from the NMR analysis is in good agreement with inelastic neutron scattering experiments. Optical transitions of a dye probe have also been used to determine proton transfer rates in crystalline benzoic acid. Our model allows us to discuss both doped and pure crystal experiments within a unified framework. Thus, we find that all three different experimental probes yield results that are consistent with our simple theoretical picture. From our results we can determine the proton-phonon coupling constant.

  13. Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging.

    PubMed

    Fitsanakis, Vanessa A; Zhang, Na; Anderson, Joel G; Erikson, Keith M; Avison, Malcolm J; Gore, John C; Aschner, Michael

    2008-05-01

    Chronic exposure to manganese (Mn) may lead to a movement disorder due to preferential Mn accumulation in the globus pallidus and other basal ganglia nuclei. Iron (Fe) deficiency also results in increased brain Mn levels, as well as dysregulation of other trace metals. The relationship between Mn and Fe transport has been attributed to the fact that both metals can be transported via the same molecular mechanisms. It is not known, however, whether brain Mn distribution patterns due to increased Mn exposure vs. Fe deficiency are the same, or whether Fe supplementation would reverse or inhibit Mn deposition. To address these questions, we utilized four distinct experimental populations. Three separate groups of male Sprague-Dawley rats on different diets (control diet [MnT], Fe deficient [FeD], or Fe supplemented [FeS]) were given weekly intravenous Mn injections (3 mg Mn/kg body mass) for 14 weeks, whereas control (CN) rats were fed the control diet and received sterile saline injections. At the conclusion of the study, both blood and brain Mn and Fe levels were determined by atomic absorption spectroscopy and magnetic resonance imaging. The data indicate that changes in dietary Fe levels (either increased or decreased) result in regionally specific increases in brain Mn levels compared with CN or MnT animals. Furthermore, there was no difference in either Fe or Mn accumulation between FeS or FeD animals. These data suggest that dietary Fe manipulation, whether increased or decreased, may contribute to brain Mn deposition in populations vulnerable to increased Mn exposure.

  14. Intramolecular electron transfer versus substrate oxidation in lactoperoxidase: investigation of radical intermediates by stopped-flow absorption spectrophotometry and (9-285 GHz) electron paramagnetic resonance spectroscopy.

    PubMed

    Fielding, Alistair J; Singh, Rahul; Boscolo, Barbara; Loewen, Peter C; Ghibaudi, Elena M; Ivancich, Anabella

    2008-09-16

    We have combined the information obtained from rapid-scan electronic absorption spectrophotometry and multifrequency (9-295 GHz) electron paramagnetic resonance (EPR) spectroscopy to unequivocally determine the electronic nature of the intermediates in milk lactoperoxidase as a function of pH and to monitor their reactivity with organic substrates selected by their different accessibilities to the heme site. The aim was to address the question of the putative catalytic role of the protein-based radicals. This experimental approach allowed us to discriminate between the protein-based radical intermediates and [Fe(IV)=O] species, as well as to directly detect the oxidation products by EPR. The advantageous resolution of the g anisotropy of the Tyr (*) EPR spectrum at high fields showed that the tyrosine of the [Fe(IV)=O Tyr (*)] intermediate has an electropositive and pH-dependent microenvironment [g(x) value of 2.0077(0) at pH >or= 8.0 and 2.0066(2) at 4.0

  15. Nuclear magnetic resonance and optical absorption spectroscopic studies on paramagnetic praseodymium(III) complexes with beta-diketone and heterocyclic amines.

    PubMed

    Ansari, A A; Ahmed, Zubair; Iftikhar, K

    2007-09-01

    The optical absorption spectra of [Pr(acac)(3)(H(2)O)(2)].H(2)O, [Pr(acac)(3)phen.H(2)O] and [Pr(acac)(3)bpy] (where acac is the anion of acetylacetone, phen is 1,10-phenanthroline and bpy is 2,2'-bipyridyl) have been analyzed in the visible region in a series of non-aqueous solvents (methanol, ethanol, isopropanol, chloroform, acetonitrile and pyridine). The complexes display four non-hypersensitive 4f-4f transitions ((3)P(2), (3)P(1)+(1)I(6), (3)P(0) and (1)D(2)) from the (3)H(4) ground state. The band shape of the transitions shows remarkable changes upon dissolving in different solvents. Distinctively different band shapes have been observed for phen and bpy complexes. The phen is more effective in producing changes and the splitting of the bands is more pronounced in phen complex since it is a stronger ligand and leads to stronger Pr-N(phen) bond. The splitting of the bands is indicative of partaking of f-orbitals in bonding. The NMR signals of heterocyclic amines have been shifted to high fields while the resonances due to acetylacetone moiety have moved to low fields which is the consequence of change in geometry of the complexes upon coordination of the heterocyclic amines and reflects the importance of geometric factor (3cos(2)theta-1) in changing sign of the shift and to a good approximation the shifts arise predominantly from the dipolar mechanism. The phen complexes have narrower line width than bpy complexes. The line broadening in the case of bpy complexes is suggestive of exchange between inter-converting forms. The bpy possesses some degree of rotational freedom about C(6)-C(6') bond and the two pyridine rings undergo scissoring motion with respect to each other.

  16. Study on the interactions of antiemetic drugs and 12-tungstophosphoric acid by absorption and resonance Rayleigh scattering spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2013-03-01

    In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.

  17. Imaging and Radiography with Nuclear Resonance Fluorescence and Effective-Z (EZ-3D™) Determination; SNM Detection Using Prompt Neutrons from Photon Induced Fission

    NASA Astrophysics Data System (ADS)

    Bertozzi, William; Hasty, Richard; Klimenko, Alexei; Korbly, Stephen E.; Ledoux, Robert J.; Park, William

    2009-03-01

    Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D™) uses electromagnetic scattering processes to yield a three-dimensional map of the effective-Z and the density in a container. The EZ-3D™ method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.

  18. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    SciTech Connect

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  19. X-ray absorption and resonant inelastic x-ray scattering (RIXS) show the presence of Cr{sup +} at the surface and in the bulk of CrF{sub 2}

    SciTech Connect

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2015-07-23

    X-Ray absorption and resonant inelastic x-ray scattering (RIXS) spectra of CrF{sub 2} recorded at the chromium L{sub 2,3} are presented. An atomic multiplet crystal field calculation is compared with the experimental data. Experiment and theory are in agreement once the calculation includes three chromium oxidation states, namely Cr{sup +}, Cr{sup 2+}, and Cr{sup 3+}. X-Ray absorption allows a direct determination of the surface oxidation, while the RIXS spectra shows the presence of these three oxidation states in the sample bulk. To give a quantitative interpretation of the RIXS data the effect of the incomming and outgoing photon penetration depth and self-absorption must be considered. For the much simpler case of MnF{sub 2}, with only one metal oxidation state, the measured RIXS spectra relative intensities are found to be proportional to the square of the sample attenuation length.

  20. Supplement to Theory of Neutron Chain Reactions

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.; Noderer, L. C.

    1952-05-26

    General discussions are given of the theory of neutron chain reactions. These include observations on exponential experiments, the general reactor with resonance fission, microscopic pile theory, and homogeneous slow neutron reactors. (B.J.H.)

  1. Neutron moderation in the Oklo natural reactor and the time variation of α

    NASA Astrophysics Data System (ADS)

    Lamoreaux, S. K.; Torgerson, J. R.

    2004-06-01

    In previous analyses of the Oklo (Gabon) natural reactor to test for a possible time variation of the fine-structure constant α, a Maxwell-Boltzmann low energy neutron spectrum was assumed. We present here an analysis where a more realistic spectrum is employed and show that the most recent isotopic analysis of samples implies a decrease in α, over the last 2×109 years since the reactor was operating, of (αpast-αnow)/α⩾4.5×10-8 (6σ confidence). Issues regarding the interpretation of the shifts of the low energy neutron absorption resonances are discussed.

  2. Inelastic neutron-scattering measurements of a three-dimensional spin resonance in the FeAs-based BaFe1.9Ni0.1As2 superconductor.

    PubMed

    Chi, Songxue; Schneidewind, Astrid; Zhao, Jun; Harriger, Leland W; Li, Linjun; Luo, Yongkang; Cao, Guanghan; Xu, Zhu'an; Loewenhaupt, Micheal; Hu, Jiangping; Dai, Pengcheng

    2009-03-13

    We use inelastic neutron scattering to study magnetic excitations of the FeAs-based superconductor BaFe1.9Ni0.1As2 above and below its T_{c} (=20 K). In addition to gradually open a spin gap at the in-plane antiferromagnetic ordering wave vector (1, 0, 0), the effect of superconductivity is to form a three-dimensional resonance with clear dispersion along the c axis. The intensity of the resonance develops like a superconducting order parameter, and the mode occurs at distinctively different energies at (1, 0, 0) and (1, 0, 1). If the resonance energy is associated with the superconducting gap energy Delta, then Delta is dependent on the wave vector transfers along the c axis. These results suggest that one must be careful in interpreting the superconducting gap energies obtained by surface sensitive probes such as scanning tunneling microscopy and angle resolved photoemission.

  3. Reverse Monte Carlo analysis of the local order in liquid Ge{sub 0.15}Te{sub 0.85} alloys combining neutron scattering and x-ray absorption spectroscopy

    SciTech Connect

    Coulet, Marie-Vanessa; Testemale, Denis; Hazemann, Jean-Louis; Gaspard, Jean-Pierre; Bichara, Christophe

    2005-11-01

    The structure of liquid Ge{sub 0.15}Te{sub 0.85} alloys that exhibit a density anomaly between 633 K and 733 K at ambient pressure was investigated using x-ray absorption spectroscopy at the Ge K edge. Using a reverse Monte Carlo method to combine the present results with neutron scattering data, we show that the volume contraction is associated with an increase of the first neighbor coordination number around both Ge and Te by about one atom. The coordination number of Ge increases from 3{+-}0.3 to 4.1{+-}0.3. These results support an interpretation of the density anomaly in terms of the same Peierls-like distortion mechanism acting in the liquid state and in the neighboring (pure Te and GeTe compound) phases.

  4. Resonance ionization mass spectrometry for isotopic abundance measurements

    NASA Technical Reports Server (NTRS)

    Miller, C. M.

    1986-01-01

    Resonance ionization mass spectrometry (RIMS) is a relatively new laser-based technique for the determination of isotopic abundances. The resonance ionization process depends upon the stepwise absorption of photons from the laser, promoting atoms of the element of interest through progressively higher electronic states until an ion is formed. Sensitivity arises from the efficiency of the resonant absorption process when coupled with the power available from commercial laser sources. Selectivity derives naturally from the distinct electronic structure of different elements. This isobaric discrimination has provided the major impetus for development of the technique. Resonance ionization mass spectrometry was used for analysis of the isotopic abundances of the rare earth lutetium. Isobaric interferences from ytterbium severely effect the ability to measure small amounts of the neutron-deficient Lu isotopes by conventional mass spectrometric techniques. Resonance ionization for lutetium is performed using a continuous-wave laser operating at 452 nm, through a sequential two-photon process, with one photon exciting the intermediate resonance and the second photon causing ionization. Ion yields for microgram-sized quantities of lutetium lie between 10(6) and 10(7) ions per second, at overall ionization efficiencies approaching 10(-4). Discrimination factors against ytterbium greater than 10(6) have been measured. Resonance ionization for technetium is also being explored, again in response to an isobaric interference, molybdenum. Because of the relatively high ionization potential for Tc, three-photon, two-color RIMS processes are being developed.

  5. NEUTRON AND NON-NEUTRON NUCLEAR DATA FOR RADIATION DOSIMETRY

    SciTech Connect

    HOLDEN,N.E.

    1999-09-10

    NEUTRON NUCLEAR DATA THAT IS USED IN REACTOR DOSIMETRY INCLUDE THERMAL NEUTRON CROSS SECTIONS AND NEUTRON RESONANCE INTEGRALS, FISSION SPECTRUM AVERAGED CROSS SECTIONS FOR REACTIONS ON A TARGET NUCLEUS. NON-NEUTRON NUCLEAR DATA USED IN REACTOR DOSIMETRY INCLUDE ISOTOPIC COMPOSITIONS OF TARGET NUCLIDES AND RADIOACTIVE HALF-LIVES, GAMMA-RAY ENERGIES AND INTENSITIES OF REACTION PRODUCT NUCLIDES. ALL OF THESE DATA ARE PERIODICALLY EVALUATED AND RECOMMENDED VALUES ARE PROVIDED IN THE HANDBOOK OF CHEMISTRY AND PHYSICS. THE LATEST RECOMMENDED VALUES ARE DISCUSSED AND THEY ARE CONTRASTED WITH SOME EARLIER NUCLEAR DATA, WHICH WAS PROVIDED WITH NEUTRON DETECTOR FOILS.

  6. A multitask neutron beam line for spallation neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  7. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  8. NEUTRON SHIELDING STRUCTURE

    DOEpatents

    Mattingly, J.T.

    1962-09-25

    A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)

  9. Penetration depth and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} polycrystalline films by ferromagnetic resonance and spin pumping

    SciTech Connect

    Merodio, P.; Ghosh, A.; Lemonias, C.; Gautier, E.; Ebels, U.; Chshiev, M.; Béa, H. E-mail: helene.bea@cea.fr; Baltz, V. E-mail: helene.bea@cea.fr

    2014-01-20

    Spintronics relies on the spin dependent transport properties of ferromagnets (Fs). Although antiferromagnets (AFs) are used for their magnetic properties only, some fundamental F-spintronics phenomena like spin transfer torque, domain wall motion, and tunnel anisotropic magnetoresistance also occur with AFs, thus making AF-spintronics attractive. Here, room temperature critical depths and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} are determined by F-resonance and spin pumping. In particular, we find room temperature critical depths originating from different absorption mechanisms: dephasing for Ir{sub 20}Mn{sub 80} and spin flipping for Fe{sub 50}Mn{sub 50}.

  10. Neutron spin-reorientation experiments

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    Neutron spin-reorientation experiments which give fundamental physics information are described. The magnetic moment of the neutron has been measured to be 1.91304275(45) nuclear magnetons by separated oscillatory fields resonant reorientation's of the spins of neutrons in a beam passing through a magnetic field. In similar resonance experiments with ultracold neutrons trapped in a bottle, the neutron electric dipole moment has been shown to be less than 9 × 10 -26e cm. Neutrons “dressed” with many radio frequency quanta have been studied. The Berry phases of neutrons that have passed through a helical magnetic field or an oscillatory magnetic field have been observed. In neutron interactions experiments with condensed matter, small changes in neutron velocities have been measured by changes in the neutron precessions in magnetic fields before and after the interaction. Parity non-conserving spin rotations of neutrons passing through various materials have been observed and measured and new experiments with H 2 and He are in progress.

  11. Doping explosive materials for neutron radiographic enhancement.

    NASA Technical Reports Server (NTRS)

    Golliher, K. G.

    1971-01-01

    Discussion of studies relating to the selection of doping materials of high neutron absorption usable for enhancing the neutron radiographic imaging of explosive mixtures, without interfering with the proper chemical reaction of the explosives. The results of the studies show that gadolinium oxide is an excellent material for doping explosive mixtures to enhance the neutron radiographic image.

  12. Review of Non-Neutron and Neutron Nuclear Data, 2004

    SciTech Connect

    Holden, Norman E.

    2005-05-24

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 118 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides, and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives, and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  13. REVIEW OF NON-NEUTRON AND NEUTRON NUCLEAR DATA, 2004.

    SciTech Connect

    HOLDEN, N.E.

    2004-09-26

    Review articles are in preparation for the 2004 edition of the CRC Handbook of Chemistry and Physics dealing with the evaluation of both non-neutron and neutron nuclear data. Data on the discovery of element 110, Darmstadtium, and element 111 have been officially accepted, while data on element 11 8 have been withdrawn. Data to be presented include revised values for very short-lived nuclides, long-lived nuclides and beta-beta decay measurements. There has been a reassessment of the spontaneous fission (sf) half-lives, which distinguishes between sf decay half-lives and cluster decay half-lives and with cluster-fission decay. New measurements of isotopic abundance values for many elements will be discussed with an emphasis on the minor isotopes of interest for use in neutron activation analysis measurements. Neutron resonance integrals will be discussed emphasizing the differences between the calculated values obtained from the analytical integration over neutron resonances and the measured values in a neutron reactor-spectrum, which does not quite conform to the assumed 1/E neutron energy spectrum. The method used to determine the neutron resonance integral from measurement, using neutron activation analysis, will be discussed.

  14. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  15. Recent advances in polarized 3 He based neutron spin filter development

    NASA Astrophysics Data System (ADS)

    Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team

    2015-04-01

    Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.

  16. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  17. Supernova matter at subnuclear densities as a resonant Fermi gas: enhancement of neutrino rates.

    PubMed

    Bartl, A; Pethick, C J; Schwenk, A

    2014-08-22

    At low energies nucleon-nucleon interactions are resonant and therefore supernova matter at subnuclear densities has many similarities to atomic gases with interactions dominated by a Feshbach resonance. We calculate the rates of neutrino processes involving nucleon-nucleon collisions and show that these are enhanced in mixtures of neutrons and protons at subnuclear densities due to the large scattering lengths. As a result, the rate for neutrino pair bremsstrahlung and absorption is significantly larger below 10(13) g cm(-3) compared to rates used in supernova simulations.

  18. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  19. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  20. Total absorption by degenerate critical coupling

    SciTech Connect

    Piper, Jessica R. Liu, Victor; Fan, Shanhui

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  1. Investigation of dissimilar metal welds by energy-resolved neutron imaging

    PubMed Central

    Tremsin, Anton S.; Ganguly, Supriyo; Meco, Sonia M.; Pardal, Goncalo R.; Shinohara, Takenao; Feller, W. Bruce

    2016-01-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption. PMID:27504075

  2. Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Goriely, S.

    1998-09-01

    The radiative neutron capture by neutron-rich nuclei is estimated with an improved description of the electric giant dipole resonance. In addition, 3 major effects affecting the capture rates by exotic neutron-rich nuclei are studied. These concern the existence of a low-energy E1 pygmy resonance, the overestimate of the statistical predictions for resonance-deficient nuclei and the direct capture mechanism. The total (n,γ) reaction rates including these 3 effects are evaluated for 3100 neutron-rich nuclei and used in parametric r-process calculations to analyze their impact on the r-abundance distribution.

  3. Resonance parameter measurements and analysis of gadolinium

    SciTech Connect

    Leinweber, G.; Barry, D. P.; Trbovich, M. J.; Burke, J. A.; Drindak, N. J.; Knox, H. D.; Ballad, R. V.; Block, R. C.; Danon, Y.; Severnyak, L. I.

    2006-07-01

    The purpose of the present work is to measure the neutron cross sections of gadolinium accurately. Gd has the highest thermal absorption cross section of any natural element. Therefore it is an important element for thermal reactor applications Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Inst. (RPI) LINAC facility using metallic and liquid Gd samples. The liquid samples were isotopically-enriched in either {sup 155}Gd or {sup 157}Gd. The capture measurements were made at the 25-m flight station with a sodium iodide detector, and the transmission measurements were performed at 15- and 25-m flight stations with {sup 6}Li glass scintillation detectors. The multilevel R-matrix Bayesian code SAMMY was used to extract resonance parameters. The results of the thermal region analysis are significant. Resonance parameters for the low energy doublet, at 0.025 and 0.032 eV, are presented. The thermal (2200 m/s) capture cross section of {sup 157}Gd has been measured to be 11% smaller than that calculated from ENDF/B-VI updated through release 8. Thermal capture cross sections and capture resonance integrals for each isotope as well as elemental gadolinium are presented. In the epithermal region, natural metal samples were measured in capture and transmission. Neutron interaction data up to 300 eV have been analyzed. Substantial improvement to the understanding of gadolinium cross sections is presented, particularly above 180 eV where the ENDF resolved region for {sup 155}Gd ends. (authors)

  4. Epithermal neutron instrumentation at ISIS

    NASA Astrophysics Data System (ADS)

    Gorini, G.; Festa, G.; Andreani, C.

    2014-12-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained.

  5. POLARIZED NEUTRONS IN RHIC

    SciTech Connect

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  6. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  7. Neutron diffraction, Mössbauer effect and electron paramagnetic resonance studies on multiferroic Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3}

    SciTech Connect

    Matteppanavar, Shidaling; Angadi, Basavaraj; Rayaprol, Sudhindra; AV, Anupama; Sahoo, Balaram

    2015-06-24

    Multiferroic Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} ceramics were synthesized via a modified two-stage Columbite method. Single phase formation was confirmed from the analysis of x-ray and neutron diffraction patterns recorded at room temperature. Structural analysis of the diffraction data reveals cubic phase (space group Pm-3m) for the title compound. Magnetic structure of the title compound at room temperature exhibits G-type antiferromagnetic structure. The Mössbauer spectroscopy and Electron Paramagnetic Resonance (EPR) studies were carried out at 300 K. The isomer shift and quadrupole splitting of the Mössbauer spectra confirms the trivalent state of iron (Fe{sup 3+}). The Mössbauer spectra also suggest that the iron and tungsten are randomly distributed at the octahedral, B site. EPR spectra show a single broad line associated with Fe{sup 3+} ions. Both spectra clearly exhibit weak ferromagnetic behaviour of Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} ceramic at 300 K. Considering neutron diffraction, Mössbauer and EPR results together, it may be stated here that Pb(Fe{sub 2/3}W{sub 1/3})O{sub 3} exhibits antiferromagnetic behavior along with weak ferromagnetism at room temperature.

  8. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.

    PubMed

    Patel, Manu U M; Arčon, Iztok; Aquilanti, Giuliana; Stievano, Lorenzo; Mali, Gregor; Dominko, Robert

    2014-04-01

    Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long-cycle-life lithium-sulfur (Li-S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K-edge X-ray absorption near-edge structure (XANES) and (6,7) Li magic-angle spinning (MAS) NMR studies on a Li-S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all-sulfur-based components in the Li-S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using (7) Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li-S batteries.

  9. Proton Resonance Spectroscopy Study of the Effects of L-Ornithine-L-Aspartate on the Development of Encephalopathy, Using Localization Pulses with Reduced Specific Absorption Rate

    NASA Astrophysics Data System (ADS)

    Slotboom, J.; Vogels, B. A. P. M.; Dehaan, J. G.; Creyghton, J. H. N.; Quack, G.; Chamuleau, R. A. F. M.; Bovee, W. M. M. J.

    Using the SADLOVE ( single-shot adiabatic localized volume excitation) localization technique with reduced specific absorption rate phase-compensated 2π pulses for localization, in vivo rat brain spectra were obtained in order to study the possible beneficial effects of L-ornithine-L-aspartate (OA) on the development of encephalopathy induced by hyperammonemia in portacaval shunted rats, an experimental model for subacute hepatic encephalopathy. The in vivo1H spectra were quantified using a conjugate-gradient-based frequency-domain fitting procedure. OA treatment resulted in an about threefold lower increase in train lactate ( P < 0.0001) and a slower increase of brain glutamine ( P = 0.022) concentration. However, these changes in brain metabolism, including a significantly lower ammonia concentration during OA treatment, were not associated with a sig significant improvement in clinical symptoms of encephalopathy, suggesting either insufficient decrease in brain ammonia concentration or another effect of OA treatment counteracting the lowering effect on blood and brain ammonia and on brain glutamine and lactate. It is concluded that localized in vivo1H MRS of the brain in combination with other analytical techniques, such as in vivo microdialysis, is helpful in explaining pathophysiological changes during hyperammonemia-induced encephalopathy.

  10. Low-temperature spin-state transition in LaCoO{sub 3} investigated using resonant x-ray absorption at the Co K edge

    SciTech Connect

    Medarde, M.; Pomjakushina, E.; Conder, K.; Dallera, C.; Grioni, M.; Voigt, J.; Podlesnyak, A.; Neisius, Th.; Tjernberg, O.; Barilo, S. N.

    2006-02-01

    LaCoO{sub 3} displays two broad anomalies in the DC magnetic susceptibility {chi}{sup DC}, occurring, respectively, around 50 K and 500 K. We have investigated the first of them within the 10 Kabsorption spectroscopy (XAS) in the partial fluorescence yield mode. In contrast with previous O K-edge XAS reports, our data show the existence of abrupt changes around 50 K which can be nicely correlated with the anomaly in {chi}{sup DC}. To our knowledge, this is the first time that a clear, quantitative relationship between the temperature dependence of the magnetic susceptibility and that of the XAS spectra is reported. The intensity changes in the preedge region, which are consistent with a transition from a lower to a higher spin state, have been analyzed using a minimal model including the Co 3d and O 2p hybridization in the initial state. The temperature dependence of the Co magnetic moment obtained from the estimated e{sub g} and t{sub 2g} occupations could be satisfactorily reproduced. Also, the decrease of the Co 3d and O 2p hybridization by increasing temperature obtained from this simple model compares favorably with the values estimated from thermal evolution of the crystallographic structure.

  11. Analysis of modulated Ho2PdSi3 crystal structure at Pd K and Ho L absorption edges using resonant elastic X-scattering.

    PubMed

    Nentwich, Melanie; Zschornak, Matthias; Richter, Carsten; Novikov, Dmitri; Meyer, Dirk C

    2016-02-17

    Replacing Si atoms with a transition metal in rare earth disilicides results in a family of intermetallic compounds with a variety of complex magnetic phase transitions. In particular, the family R 2PdSi3 shows interesting magnetic behavior arising from the electronic interaction of the R element with the transition metal in the Si network, inducing the specific structure of the related phase. Within this series, the highest degree of superstructural order was reported for the investigated representative Ho2PdSi3, although several competing superstructures have been proposed in literature. The diffraction anomalous fine structure (DAFS) method is highly sensitive to the local structure of chosen atoms at specific positions within the unit cell of a crystalline phase. In combination with x-ray absorption fine structure (XAFS), this sophisticated synchrotron method has been applied in the present work to several selected reflections, i.a. a satellite reflection. Extensive electronic modeling was used to test the most relevant structure proposals. The [Formula: see text] superstructure has been strongly confirmed, although a small amount of disorder in the modulation is very probable. PMID:26788844

  12. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance.

    PubMed

    Venturi, Luca; Rocculi, Pietro; Cavani, Claudio; Placucci, Giuseppe; Dalla Rosa, Marco; Cremonini, Mauro A

    2007-12-26

    Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.

  13. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance.

    PubMed

    Venturi, Luca; Rocculi, Pietro; Cavani, Claudio; Placucci, Giuseppe; Dalla Rosa, Marco; Cremonini, Mauro A

    2007-12-26

    Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat. PMID:18047277

  14. High-energy magnetic excitations in overdoped La2-xSrxCuO4 studied by neutron and resonant inelastic X-ray scattering

    SciTech Connect

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, Lisa M.; Granroth, Garrett E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2₋xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.

  15. Specific absorption rate in neonates undergoing magnetic resonance procedures at 1.5 T and 3 T

    PubMed Central

    Beqiri, Arian; Price, Anthony N.; Teixeira, Jose Nuno; Hand, Jeffrey W.; Hajnal, Joseph V.

    2015-01-01

    MRI is finding increased clinical use in neonatal populations; the extent to which electromagnetic models used for quantification of specific absorption rate (SAR) by commercial MRI scanners accurately reflect this alternative scenario is unclear. This study investigates how SAR predictions relating to adults can be related to neonates under differing conditions when imaged using 1.5 T and 3 T MRI scanners. Electromagnetic simulations were produced in neonatal subjects of different sizes and positions within a generic MRI body transmit device operating at both 64 MHz and 128 MHz, corresponding to 1.5 T and 3 T MRI scanners, respectively. An adult model was also simulated, as was a spherical salt‐water phantom, which was also used in a calorimetry experiment. The SAR in neonatal subjects was found to be less than that experienced in an adult in all scenarios; however, the overestimation factor was variable. For example a 3 T body scan resulting in local 10 g SAR of 10.1 W kg−1 in an adult would deposit 2.6 W kg−1 in a neonate: an approximately fourfold difference. The SAR experienced by neonatal subjects undergoing MRI is lower than that in adults in equivalent situations. If the safety of such procedures is assessed using adult‐appropriate models then the result is a conservative estimate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25594939

  16. The 234U Neutron Capture Cross Section Measurement at the n_TOF Facility

    SciTech Connect

    Lampoudis, C.; Koehler, Paul Edward; Collaboration, n_TOF

    2008-01-01

    The neutron capture cross-section of {sup 234}U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n{_}TOF, based on a spallation source located at CERN. A 4n BaF{sub 2} array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt {gamma}-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of ENDF in the relevant energy region, indicating the good performance of the n{_}TOF facility and the TAC.

  17. EPR study of gamma and neutron irradiation effects on KU1, KS-4V and Infrasil 301 silica glasses

    NASA Astrophysics Data System (ADS)

    Lagomacini, Juan C.; Bravo, David; León, Mónica; Martín, Piedad; Ibarra, Ángel; Martín, Agustín; López, Fernando J.

    2011-10-01

    Electron paramagnetic resonance (EPR) studies have been carried out on KU1 and KS-4V high purity quartz glasses and commercial silica Infrasil 301, irradiated with gamma rays up to a dose of 11.6 MGy and neutron fluences of 10 21 and 10 22 n/m 2. Gamma irradiations produce a much higher concentration of defect centres (mainly E', POR and NBOHC) for KU1 and I301 than for KS-4V silica. In contrast, neutron irradiation at the highest fluence produces similar concentrations in all silica types. These results agree to a good extent with those obtained in previous optical absorption measurements. Moreover, oxygen-related centres (POR and NBOHC) have been well characterized by means of electron paramagnetic resonance.

  18. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  19. Neutron detector resolution for scattering

    SciTech Connect

    Kolda, S.A.

    1997-03-01

    A resolution function has been determined for scattered neutron experiments at Rensselaer Polytechnic Institute (RPI). This function accounts for the shifting and broadening of the resonance peak due to the additional path length, traveled by the neutron after scattering and prior to detection, along with the broadening of the resonance peak due to the bounce target. This resolution function has been parameterized both in neutron energy and size of the sample disk. Monte Carlo Neutron and Photon (MCNP) modeling has been used to determine the shape of the detector resolution function while assuming that the sample nucleus has an infinite mass. The shape of the function for a monoenergetic neutron point source has been compared to the analytical solution. Additionally, the parameterized detector resolution function has been used to broaden the scatter yield calculated from Evaluated Neutron Data File ENDF/B-VI cross section data for {sup 238}U. The target resolution function has been empirically determined by comparison of the broadened scatter yield and the experimental yield for {sup 238}U. The combined resolution function can be inserted into the SAMMY code to allow resonance analysis for scattering measurements.

  20. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  1. Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance

    PubMed Central

    Grangeon, Sylvain; Claret, Francis; Roosz, Cédric; Sato, Tsutomu; Gaboreau, Stéphane; Linard, Yannick

    2016-01-01

    The structure of nanocrystalline calcium silicate hydrates (C–S–H) having Ca/Si ratios ranging between 0.57 ± 0.05 and 1.47 ± 0.04 was studied using an electron probe micro-analyser, powder X-ray diffraction, 29Si magic angle spinning NMR, and Fourier-transform infrared and synchrotron X-ray absorption spectroscopies. All samples can be described as nanocrystalline and defective tobermorite. At low Ca/Si ratio, the Si chains are defect free and the Si Q 3 and Q 2 environments account, respectively, for up to 40.2 ± 1.5% and 55.6 ± 3.0% of the total Si, with part of the Q 3 Si being attributable to remnants of the synthesis reactant. As the Ca/Si ratio increases up to 0.87 ± 0.02, the Si Q 3 environment decreases down to 0 and is preferentially replaced by the Q 2 environment, which reaches 87.9 ± 2.0%. At higher ratios, Q 2 decreases down to 32.0 ± 7.6% for Ca/Si = 1.38 ± 0.03 and is replaced by the Q 1 environment, which peaks at 68.1 ± 3.8%. The combination of X-ray diffraction and NMR allowed capturing the depolymerization of Si chains as well as a two-step variation in the layer-to-layer distance. This latter first increases from ∼11.3 Å (for samples having a Ca/Si ratio <∼0.6) up to 12.25 Å at Ca/Si = 0.87 ± 0.02, probably as a result of a weaker layer-to-layer connectivity, and then decreases down to 11 Å when the Ca/Si ratio reaches 1.38 ± 0.03. The decrease in layer-to-layer distance results from the incorporation of interlayer Ca that may form a Ca(OH)2-like structure, nanocrystalline and intermixed with C–S–H layers, at high Ca/Si ratios. PMID:27275135

  2. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  3. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  4. Monte Carlo orbit/full wave simulation of ion cyclotron resonance frequency wave damping on resonant ions in tokamaks

    SciTech Connect

    Choi, M.; Chan, V.S.; Pinsker, R.I.; Chiu, S.C.; Heidbrink, W.W.

    2005-07-15

    To investigate the experimentally observed interaction between beam ion species and fast Alfven wave (FW), a Monte Carlo code, ORBIT-RF [V. S. Chan, S. C. Chiu, and Y. A. Omelchenko, Phys. Plasmas 9, 501 (2002)], which solves the time-dependent Hamiltonian guiding center drift equations, has been upgraded to incorporate a steady-state neutral beam ion slowing-down distribution, a quasilinear high harmonic radio frequency diffusion operator and the wave fields from the two-dimensional ion cyclotron resonance frequency full wave code (TORIC4) [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)]. Comparison of ORBIT-RF simulation of power absorption with fixed amplitudes of FW fields from TORIC4 power absorption calculation, which assumes Maxwellian plasma distributions, attains agreement within a factor of two. The experimentally measured enhanced neutron rate is reproduced to within 30% from ORBIT-RF simulation using a single dominant toroidal and poloidal wave number.

  5. Measurement of the lunar neutron density profile

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1975-01-01

    Relatively small discrepancies between Apollo 17 lunar neutron probe experiment (LNPE) data and theoretical calculations by Lingenfelter, Canfield, and Hampel in the effect of Cd absorption on the neutron density, and in the relative Sm-149 to Gd-157 capture rates reported previously, imply that the true lunar Gd-157 capture rate is about one-half of that derived theoretically.

  6. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    NASA Astrophysics Data System (ADS)

    Valencia, E.; Algora, A.; Tain, J. L.; Rice, S.; Agramunt, J.; Zakari-Issoufou, A.-A.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Eronen, T.; Estevez, E.; Farrelly, G. F.; Fallot, M.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Porta, A.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2014-03-01

    To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland) using Total Absorption γ-ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  7. Washing Up with Hot and Cold Running Neutrons: Tests of Fundamental Physical Laws

    SciTech Connect

    Lamoreaux, Steve K.

    2005-05-24

    The properties of the Neutron and its interactions with matter have been long applied to tests of fundamental physical principles. An example of such an application is a test of the stability of the fundamental constants of physics based on possible changes in low energy absorption resonances and the isotopic composition of a prehistoric natural reactor that operated two billion years ago in equatorial Africa. A recent re-analysis of this event indicates that some fundamental constants have changed. The focus of the presentation will be on the uses of cold and ultracold neutrons (UCNs), and in particular, the experimental search for the neutron electric dipole moment (EDM) which would be evidence for time reversal asymmetry in the microscopic interactions within the neutron. Ultracold neutrons are neutrons with kinetic energy sufficiently low that they can be reflected from material surfaces for all angles of incidence, allowing UCNs to be stored in material bottles for times approaching the beta decay lifetime of the neutron. Vagaries associated with the production, transport, and storage of UCNs will be described, and an overview progress on development of a new neutron EDM experiment to be operated at LANSCE will be presented. This new experiment has potential to improve the measurement sensitivity by a factor of 100. Although an EDM has not be observed for any elementary particle, experimental limits have been crucial for testing extensions to the so-called Standard Model of Electroweak Interactions. Our anticipated sensitivity will be sufficient to address questions regarding the observed matter-antimatter asymmetry in the Universe.

  8. Washing Up with Hot and Cold Running Neutrons: Tests of Fundamental Physical Laws

    NASA Astrophysics Data System (ADS)

    Lamoreaux, Steve K.

    2005-05-01

    The properties of the Neutron and its interactions with matter have been long applied to tests of fundamental physical principles. An example of such an application is a test of the stability of the fundamental constants of physics based on possible changes in low energy absorption resonances and the isotopic composition of a prehistoric natural reactor that operated two billion years ago in equatorial Africa. A recent re-analysis of this event indicates that some fundamental constants have changed. The focus of the presentation will be on the uses of cold and ultracold neutrons (UCNs), and in particular, the experimental search for the neutron electric dipole moment (EDM) which would be evidence for time reversal asymmetry in the microscopic interactions within the neutron. Ultracold neutrons are neutrons with kinetic energy sufficiently low that they can be reflected from material surfaces for all angles of incidence, allowing UCNs to be stored in material bottles for times approaching the beta decay lifetime of the neutron. Vagaries associated with the production, transport, and storage of UCNs will be described, and an overview progress on development of a new neutron EDM experiment to be operated at LANSCE will be presented. This new experiment has potential to improve the measurement sensitivity by a factor of 100. Although an EDM has not be observed for any elementary particle, experimental limits have been crucial for testing extensions to the so-called Standard Model of Electroweak Interactions. Our anticipated sensitivity will be sufficient to address questions regarding the observed matter-antimatter asymmetry in the Universe.

  9. Experiments dependent on neutron spin transitions

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    2000-05-01

    Experiments dependent on neutron spin orientation transitions which give fundamental physics information are described. The magnetic moment of the neutron has been measured to be 1.91304275(45) nuclear magnetons by separated oscillatory fields resonant reorientations of the spins of neutrons in a beam passing through a magnetic field. In similar resonance experiments with ultracold neutrons trapped in a bottle, the neutron electric dipole moment has been shown to be less than 9×10 -26 e cm. Neutrons `dressed' with many radiofrequency quanta have been studied. The Berry phases of neutrons that have passed through a helical magnetic field or an oscillatory magnetic field have been observed. In neutron interactions, experiments with condensed matter, small changes in neutron velocities have been measured by changes in the neutron precessions in magnetic fields before and after the interaction. Parity non-conserving spin rotations of neutrons passing through various materials have been observed and measured and new experiments with H 2 and He are in progress.

  10. Experimental and Theoretical Comparison of the O K-Edge Non-Resonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO4

    SciTech Connect

    Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, T.; Wilkerson, Marianne P.; Wolfsberg, Laura E.

    2010-09-14

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g. O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation effects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO41- and provide methodology for obtaining trustworthy and quantitative data on non-conducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by non-resonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO41-, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Time dependent density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t2 molecular orbitals that result from Re 5d and O 2p covalent mixing in Td symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time-dependent density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO4 may serve as a well-defined O K-edge energy and intensity standard for future O K edge XAS studies.

  11. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  12. Experiments with trapped hydrogen atoms and neutrons

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    1995-01-01

    The earliest trapped atom coherent resonance experiments were with material traps or bottles. In the atomic hydrogen maser the atoms are trapped inside a teflon-coated quartz bulb for about a second. Neutrons have been trapped for hundreds of seconds in suitably coated bottles or in superconducting magnetic traps. Results from experiments with trapped atoms and neutrons are given.

  13. Experiments with trapped hydrogen atoms and neutrons

    NASA Astrophysics Data System (ADS)

    Ramsey, Norman F.

    1993-03-01

    The earliest trapped atom coherent resonance experiments were with material traps or bottles. In the atomic hydrogen maser, the atoms are trapped inside a teflon-coated quartz bulb for about a second. Neutrons have been trapped for hundreds of seconds in suitably coated bottles or in superconducting magnetic traps. Results from experiments with trapped atoms and neutrons are reported.

  14. Probing the f-state configuration of URu2Si2 with U LIII-edge resonant x-ray absorption spectroscopy

    SciTech Connect

    Medling, S. A.; Booth, C. H.; Tobin, J. G.; Baumbach, R. E.; Bauer, E. D.; Sokaras, D.; Nordlund, D.; Weng, T. C.

    2015-09-05

    It has often been said that the most interesting physics occurs when competing interactions are of nearly the same magnitude. Such a situation is surely occurring at URu2Si2’s so-called “hidden-order transition”, which garners its name from the missing entropy at a 17.5 K phase transition relative to that expected for a conventional antiferromagnetic phase transition, despite the presence of only a very small ordered magnetic moment. Despite this discrepancy being identified in 1985, the identification of the order parameter remains elusive, although progress toward understand- ing this transition has been steady since that time, and URu2Si2 remains an important research subject today. The work described provides measures of the 5f orbital occupancy and itinerancy using resonant x-ray emission spectroscopy (RXES) at the U LIII absorption edge and measuring U Lα1 emission that potentially acts as a dividing line between different classes of “hidden-order” theories.

  15. Reaction cell for in situ soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering measurements of heterogeneous catalysis up to 1 atm and 250 °C

    SciTech Connect

    Kristiansen, P. T.; Rocha, T. C. R.; Knop-Gericke, A.; Guo, J. H.; Duda, L. C.

    2013-11-15

    We present a novel in situ reaction cell for heterogeneous catalysis monitored in situ by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS). The reaction can be carried out at a total pressure up to 1 atm, a regime that has not been accessible to comparable in situ techniques and thus closes the pressure gap to many industrial standard conditions. Two alternate catalyst geometries were tested: (A) a thin film evaporated directly onto an x-ray transparent membrane with a flowing reaction gas mixture behind it or (B) a powder placed behind both the membrane and a gap of flowing reaction gas mixture. To illustrate the working principle and feasibility of our reaction cell setup we have chosen ethylene epoxidation over a silver catalyst as a test case. The evolution of incorporated oxygen species was monitored by total electron/fluorescence yield O K-XAS as well as O K-RIXS, which is a powerful method to separate contributions from inequivalent sites. We find that our method can reliably detect transient species that exist during catalytic reaction conditions that are hardly accessible using other spectroscopic methods.

  16. Characterization of the coral allene oxide synthase active site with UV-visible absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopy: evidence for tyrosinate ligation to the ferric enzyme heme iron.

    PubMed

    Abraham, B D; Sono, M; Boutaud, O; Shriner, A; Dawson, J H; Brash, A R; Gaffney, B J

    2001-02-20

    Coral allene oxide synthase (AOS), a hemoprotein with weak sequence homology to catalase, is the N-terminal domain of a naturally occurring fusion protein with an 8R-lipoxygenase. AOS converts 8R-hydroperoxyeicosatetraenoic acid to the corresponding allene oxide. The UV--visible absorption and magnetic circular dichroism spectra of ferric AOS and of its cyanide and azide complexes, and the electron paramagnetic resonance spectra of native AOS (high-spin, g = 6.56, 5.22, 2.00) and of its cyanide adduct (low-spin, g = 2.86, 2.24, 1.60) closely resemble the corresponding spectra of bovine liver catalase (BLC). These results provide strong evidence for tyrosinate ligation to the heme iron of AOS as has been established for catalases. On the other hand, the positive circular dichroism bands in the Soret region for all three derivatives of ferric AOS are almost the mirror image of those in catalase. In addition, the cyanide affinity of native AOS (K(d) = 10 mM at pH 7) is about 3 orders of magnitude lower than that of BLC. Thus, while these results conclusively support a common tyrosinate-ligated heme in AOS as in catalase, significant differences exist in the interaction between their respective heme prosthetic groups and protein environments, and in the access of small molecules to the heme iron. PMID:11329294

  17. Neutron capture cross section of Am241

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for En<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. Γn neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553±7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  18. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    PubMed

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic

  19. Water absorption in mortar determined by NMR.

    PubMed

    Pel, L; Hazrati, K; Kopinga, K; Marchand, J

    1998-01-01

    Nuclear magnetic resonance (NMR) offers the possibility to determine moisture profiles in porous building materials. Moreover, the relaxation of the nuclear magnetic resonance signal can provide additional information on the water distribution in the microstructure. For mortar, it is shown that the transverse relaxation yields information on the distribution of water in the gel pores and capillary pores. Moisture profiles and relaxation were measured during water absorption. The effect of the drying treatment on the microstructure and the water absorption was investigated.

  20. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOEpatents

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.