NASA Astrophysics Data System (ADS)
Takada, M.; Taniguchi, S.; Nakamura, T.; Nakao, N.; Uwamino, Y.; Shibata, T.; Fujitaka, K.
2001-06-01
We have developed a phoswich neutron detector consisting of an NE213 liquid scintillator surrounded by an NE115 plastic scintillator to distinguish photon and neutron events in a charged-particle mixed field. To obtain the energy spectra by unfolding, the response functions to neutrons and photons were obtained by the experiment and calculation. The response functions to photons were measured with radionuclide sources, and were calculated with the EGS4-PRESTA code. The response functions to neutrons were measured with a white neutron source produced by the bombardment of 135 MeV protons onto a Be+C target using a TOF method, and were calculated with the SCINFUL code, which we revised in order to calculate neutron response functions up to 135 MeV. Based on these experimental and calculated results, response matrices for photons up to 20 MeV and neutrons up to 132 MeV could finally be obtained.
Response functions for neutron skyshine analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gui, A.A.; Shultis, J.K.; Faw, R.E.
1997-02-01
Neutron and associated secondary photon line-beam response functions (LBRFs) for point monodirectional neutron sources are generated using the MCNP Monte Carlo code for use in neutron skyshine analysis employing the integral line-beam method. The LBRFs are evaluated at 14 neutron source energies ranging from 0.01 to 14 MeV and at 18 emission angles from 1 to 170 deg, as measured from the source-to-detector axis. The neutron and associated secondary photon conical-beam response functions (CBRFs) for azimuthally symmetric neutron sources are also evaluated at 13 neutron source energies in the same energy range and at 13 polar angles of source collimationmore » from 1 to 89 deg. The response functions are approximated by an empirical three-parameter function of the source-to-detector distance. These response function approximations are available for a source-to-detector distance up to 2,500 m and, for the first time, give dose equivalent responses that are required for modern radiological assessments. For the CBRFs, ground correction factors for neutrons and secondary photons are calculated and also approximated by empirical formulas for use in air-over-ground neutron skyshine problems with azimuthal symmetry. In addition, simple procedures are proposed for humidity and atmospheric density corrections.« less
Measurements of response functions of EJ-299-33A plastic scintillator for fast neutrons
NASA Astrophysics Data System (ADS)
Hartman, J.; Barzilov, A.; Peters, E. E.; Yates, S. W.
2015-12-01
Monoenergetic neutron response functions were measured for an EJ-299-33A plastic scintillator. The 7-MV Van de Graaff accelerator at the University of Kentucky Accelerator Laboratory was used to produce proton and deuteron beams for reactions with gaseous tritium and deuterium targets, yielding monoenergetic neutrons by means of the 3H(p,n)3He, 2H(d,n)3He, and 3H(d,n)4He reactions. The neutron energy was selected by tuning the charged-particle's energy and using the angular dependence of the neutron emission. The resulting response functions were measured for 0.1-MeV steps in neutron energy from 0.1 MeV to 8.2 MeV and from 12.2 MeV to 20.2 MeV. Experimental data were processed using a procedure for digital pulse-shape discrimination, which allowed characterization of the response functions of the plastic scintillator to neutrons only. The response functions are intended for use in neutron spectrum unfolding methods.
Neutron spectroscopy with scintillation detectors using wavelets
NASA Astrophysics Data System (ADS)
Hartman, Jessica
The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the effects of photons and allow for source characterization based solely on the neutron response. The unfolding technique was performed through polynomial fitting and optimization techniques in MATLAB, and provided an energy spectrum for the PuBe source.
Response Functions for Neutron Skyshine Analyses
NASA Astrophysics Data System (ADS)
Gui, Ah Auu
Neutron and associated secondary photon line-beam response functions (LBRFs) for point monodirectional neutron sources and related conical line-beam response functions (CBRFs) for azimuthally symmetric neutron sources are generated using the MCNP Monte Carlo code for use in neutron skyshine analyses employing the internal line-beam and integral conical-beam methods. The LBRFs are evaluated at 14 neutron source energies ranging from 0.01 to 14 MeV and at 18 emission angles from 1 to 170 degrees. The CBRFs are evaluated at 13 neutron source energies in the same energy range and at 13 source polar angles (1 to 89 degrees). The response functions are approximated by a three parameter formula that is continuous in source energy and angle using a double linear interpolation scheme. These response function approximations are available for a source-to-detector range up to 2450 m and for the first time, give dose equivalent responses which are required for modern radiological assessments. For the CBRF, ground correction factors for neutrons and photons are calculated and approximated by empirical formulas for use in air-over-ground neutron skyshine problems with azimuthal symmetry. In addition, a simple correction procedure for humidity effects on the neutron skyshine dose is also proposed. The approximate LBRFs are used with the integral line-beam method to analyze four neutron skyshine problems with simple geometries: (1) an open silo, (2) an infinite wall, (3) a roofless rectangular building, and (4) an infinite air medium. In addition, two simple neutron skyshine problems involving an open source silo are analyzed using the integral conical-beam method. The results obtained using the LBRFs and the CBRFs are then compared with MCNP results and results of previous studies.
Characterization of Deuterated-xylene Scintillator as a Neutron Spectrometer
Di Fulvio, Angela; Becchetti, F. D.; Raymond, R. S.; ...
2016-11-16
We have experimentally characterized the neutron light output response functions of a deuterated-xylene scintillator for neutron energies lower than 10 MeV. We then used the response matrix to unfold the energy distribution of neutrons produced via several reactions, i.e. spontaneous fission, d(d,n)3He, 27Al(d,n)28Si, and 9Be(alpha,n)12C. Organic scintillators based on deuterated compounds show a fast response and good gamma-neutron discrimination capability, similar to proton-based scintillators. Deuterated scintillators can also effectively provide neutron spectra by unfolding measured data with the detector response matrix, without the need of time-of-flight. Deuteron recoils, produced by elastic collisions between deuterium and impinging neutrons, are preferentially forward-scattered.more » This non-isotropic reaction results in distinct peaks in the response functions to monoenergetic neutrons. In this work, we evaluated a custom-fabricated 7.62 cm x 7.62 cm deuterated-xylene (EJ301D) liquid scintillator. This liquid has a low volatility and higher flash point, compared to benzene-based deuterated detectors, e.g. EJ315 and NE230. We measured the EJ301D detector neutron response matrix (up to 6 MeV neutron energy) using an intense Cf252 source and the time-of-flight technique. The number of response functions obtained using our method is only limited by counting statistics and by the experimentally achievable energy resolution. Multi-channel unfolding was performed successfully for neutron spectra with different energy spectra.« less
Study on Response Function of Organic Liquid Scintillator for High-Energy Neutrons
NASA Astrophysics Data System (ADS)
Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takada, Masashi; Ishibashi, Kenji
2005-05-01
Response functions of liquid organic scintillator for neutrons up to 800 MeV have been measured at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS). 800-MeV/u Si ions and 400-MeV/u C ions bombarded a thick carbon target to produce neutrons. The kinetic energies of emitted neutrons were determined by the time-of-flight (TOF) method. Light output for neutrons was evaluated by eliminating events due to gamma-rays and charged particles. The measured response functions were compared with calculations using SCINFUL-QMD and CECIL codes. It was found that SCINFUL-QMD reproduced our experimental data adequately.
Study on Response Function of Organic Liquid Scintillator for High-Energy Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satoh, Daiki; Sato, Tatsuhiko; Endo, Akira
2005-05-24
Response functions of liquid organic scintillator for neutrons up to 800 MeV have been measured at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS). 800-MeV/u Si ions and 400-MeV/u C ions bombarded a thick carbon target to produce neutrons. The kinetic energies of emitted neutrons were determined by the time-of-flight (TOF) method. Light output for neutrons was evaluated by eliminating events due to gamma-rays and charged particles. The measured response functions were compared with calculations using SCINFUL-QMD and CECIL codes. It was found that SCINFUL-QMD reproduced our experimental data adequately.
NASA Astrophysics Data System (ADS)
Kajimoto, Tsuyoshi; Shigyo, Nobuhiro; Sanami, Toshiya; Ishibashi, Kenji; Haight, Robert C.; Fotiades, Nikolaos
2011-02-01
Absolute neutron response functions and detection efficiencies of an NE213 liquid scintillator that was 12.7 cm in diameter and 12.7 cm in thickness were measured for neutron energies between 15 and 600 MeV at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. The experiment was performed with continuous-energy neutrons on a spallation neutron source by 800-MeV proton incidence. The incident neutron flux was measured using a 238U fission ionization chamber. Measured response functions and detection efficiencies were compared with corresponding calculations using the SCINFUL-QMD code. The calculated and experimental values were in good agreement for data below 70 MeV. However, there were discrepancies in the energy region between 70 and 150 MeV. Thus, the code was partly modified and the revised code provided better agreement with the experimental data.
Generation of the neutron response function of an NE213 scintillator for fusion applications
NASA Astrophysics Data System (ADS)
Binda, F.; Eriksson, J.; Ericsson, G.; Hellesen, C.; Conroy, S.; Nocente, M.; Sundén, E. Andersson; JET Contributors
2017-09-01
In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gamma-rays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results.
Neutron response function characterization of 4He scintillation detectors
Kelley, Ryan P.; Rolison, Lucas M.; Lewis, Jason M.; ...
2015-04-15
Time-of-flight measurements were conducted to characterize the neutron energy response of pressurized 4He fast neutron scintillation detectors for the first time, using the Van de Graaff generator at Ohio University. The time-of-flight spectra and pulse height distributions were measured. This data was used to determine the light output response function, which was found to be linear at energies below 3.5 MeV. The intrinsic efficiency of the detector as a function of incident energy was also calculated: the average efficiency up to 10 MeV was 3.1%, with a maximum efficiency of 6.6% at 1.05 MeV. Furthermore, these results will enable developmentmore » of neutron spectrum unfolding algorithms for neutron spectroscopy applications with these detectors.« less
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Bakshi, A. K.; Tripathy, S. P.
2010-09-01
Response matrix for CaSO 4:Dy based neutron dosimeter was generated using Monte Carlo code FLUKA in the energy range thermal to 20 MeV for a set of eight Bonner spheres of diameter 3-12″ including the bare one. Response of the neutron dosimeter was measured for the above set of spheres for 241Am-Be neutron source covered with 2 mm lead. An analytical expression for the response function was devised as a function of sphere mass. Using Frascati Unfolding Iteration Tool (FRUIT) unfolding code, the neutron spectrum of 241Am-Be was unfolded and compared with standard IAEA spectrum for the same.
NASA Astrophysics Data System (ADS)
Meigo, S.
1997-02-01
For neutrons 25, 30 and 65 MeV, the response functions and detection efficiencies of an NE213 liquid scintillator were measured. Quasi-monoenergetic neutrons produced by the 7Li(p,N 0.1) reaction were employed for the measurement and the absolute flux of incident neutrons was determined within 4% accuracy using a proton recoil telescope. Response functions and detection efficiencies calculated with the Monte Carlo codes, CECIL and SCINFUL, were compared with the measured data. It was found that response functions calculated with SCINFUL agreed better with experimental ones than those with CECIL, however, the deuteron light output used in SCINFUL was too low. The response functions calculated with a revised SCINFUL agreed with the experimental ones quite well even for the deuteron bump and peak due to the C(n,d 0) reaction. It was confirmed that the detection efficiencies calculated with the original and the revised SCINFULs agreed with the experimental data within the experimental error, while those with CECIL were about 20% higher in the energy region above 30 MeV.
Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model
Broustas, Constantinos G.; Xu, Yanping; Harken, Andrew D.; Chowdhury, Mashkura; Garty, Guy; Amundson, Sally A.
2017-01-01
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1–1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component. PMID:28140791
Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model.
Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Chowdhury, Mashkura; Garty, Guy; Amundson, Sally A
2017-04-01
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.
NASA Astrophysics Data System (ADS)
Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun
2016-03-01
A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.
Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.
2015-01-01
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118
Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J
2015-09-11
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.
NASA Astrophysics Data System (ADS)
Rebai, M.; Giacomelli, L.; Milocco, A.; Nocente, M.; Rigamonti, D.; Tardocchi, M.; Camera, F.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Giaz, A.; Hu, Z. M.; Marchi, T.; Peng, X. Y.; Gorini, G.
2016-11-01
A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.
NASA Astrophysics Data System (ADS)
Chen, Zhongjing; Zhang, Xing; Pu, Yudong; Yan, Ji; Huang, Tianxuan; Jiang, Wei; Yu, Bo; Chen, Bolun; Tang, Qi; Song, Zifeng; Chen, Jiabin; Zhan, Xiayu; Liu, Zhongjie; Xie, Xufei; Jiang, Shaoen; Liu, Shenye
2018-02-01
The accuracy of the determination of the burn-averaged ion temperature of inertial confinement fusion implosions depends on the unfold process, including deconvolution and convolution methods, and the function, i.e., the detector response, used to fit the signals measured by neutron time-of-flight (nToF) detectors. The function given by Murphy et al. [Rev. Sci. Instrum. 68(1), 610-613 (1997)] has been widely used in Nova, Omega, and NIF. There are two components, i.e., fast and slow, and the contribution of scattered neutrons has not been dedicatedly considered. In this work, a new function, based on Murphy's function has been employed to unfold nToF signals. The contribution of scattered neutrons is easily included by the convolution of a Gaussian response function and an exponential decay. The ion temperature is measured by nToF with the new function. Good agreement with the ion temperature determined by the deconvolution method has been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M., E-mail: marica.rebai@mib.infn.it; Nocente, M.; Rigamonti, D.
2016-11-15
A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compactmore » size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.« less
Extension of applicable neutron energy of DARWIN up to 1 GeV.
Satoh, D; Sato, T; Endo, A; Matsufuji, N; Takada, M
2007-01-01
The radiation-dose monitor, DARWIN, needs a set of response functions of the liquid organic scintillator to assess a neutron dose. SCINFUL-QMD is a Monte Carlo based computer code to evaluate the response functions. In order to improve the accuracy of the code, a new light-output function based on the experimental data was developed for the production and transport of protons deuterons, tritons, (3)He nuclei and alpha particles, and incorporated into the code. The applicable energy of DARWIN was extended to 1 GeV using the response functions calculated by the modified SCINFUL-QMD code.
NASA Astrophysics Data System (ADS)
Hu, Z.; Chen, Z.; Peng, X.; Du, T.; Cui, Z.; Ge, L.; Zhu, W.; Wang, Z.; Zhu, X.; Chen, J.; Zhang, G.; Li, X.; Chen, J.; Zhang, H.; Zhong, G.; Hu, L.; Wan, B.; Gorini, G.; Fan, T.
2017-06-01
A Bonner sphere spectrometer (BSS) plays an important role in characterizing neutron spectra and determining their neutron dose in a neutron-gamma mixed field. A BSS consisting of a set of nine polyethylene spheres with a 3He proportional counter was developed at Peking University to perform neutron spectrum and dosimetry measurements. Response functions (RFs) of the BSS were calculated with the general Monte Carlo code MCNP5 for the neutron energy range from thermal up to 20 MeV, and were experimentally calibrated with monoenergetic neutron beams from 144 keV to 14 MeV on a 4.5 MV Van de Graaff accelerator. The calculated RFs were corrected with the experimental values, and the whole response matrix was completely established. The spectrum of a 241Am-Be source was obtained after unfolding the measurement data of the BSS to the source and in fair agreement with the expected one. The integral ambient dose equivalent corresponding to the spectrum was 0.95 of the expected value. Results of the unfolded spectrum and the integral dose equivalent measured by the BSS verified that the RFs of the BSS were well established.
Fast neutron response of 6Li-depleted CLYC detectors up to 20 MeV
NASA Astrophysics Data System (ADS)
D`Olympia, N.; Chowdhury, P.; Jackson, E. G.; Lister, C. J.
2014-11-01
The response of 6Li-depleted Cs2LiYCl6 (CLYC) to high-energy neutrons has been investigated using a pair of 1 in.×1 in. crystals. These are the first two detectors of their kind, which will comprise a 16-element array for studies in fast neutron spectroscopy. Their thermal neutron response has been compared with standard CLYC crystals with a 6Li enrichment of 95%, demonstrating excellent suppression of the overwhelming thermal neutron background. The response to mono-energetic neutrons over a range of 0.5 to 20 MeV was tested. From this, the response function, energy resolution, and pulse-shape discrimination up to 20 MeV were characterized. Detailed Monte Carlo investigations with MCNPX have been used to show that the dominant reaction mechanisms contributing to the observed response are 35Cl(n,p) and 35Cl(n,α). Preliminary investigations have also demonstrated the possibility for separating events from these two reactions.
Optimization of Thermal Neutron Converter in SiC Sensors for Spectral Radiation Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krolikowski, Igor; Cetnar, Jerzy; Issa, Fatima
2015-07-01
Optimization of the neutron converter in SiC sensors is presented. The sensors are used for spectral radiation measurements of thermal and fast neutrons and optionally gamma ray at elevated temperature in harsh radiation environment. The neutron converter, which is based on 10B, allows to detect thermal neutrons by means of neutron capture reaction. Two construction of the sensors were used to measure radiation in experiments. Sensor responses collected in experiments have been reproduced by the computer tool created by authors, it allows to validate the tool. The tool creates the response matrix function describing the characteristic of the sensors andmore » it was used for detailed analyses of the sensor responses. Obtained results help to optimize the neutron converter in order to increase thermal neutron detection. Several enhanced construction of the sensors, which includes the neutron converter based on {sup 10}B or {sup 6}Li, were proposed. (authors)« less
NASA Astrophysics Data System (ADS)
Tkaczyk, A. H.; Saare, H.; Ipbüker, C.; Schulte, F.; Mastinu, P.; Paepen, J.; Pedersen, B.; Schillebeeckx, P.; Varasano, G.
2018-02-01
This paper describes the characterization of commercially available plastic scintillation detectors to be used as an active shield or veto system to reduce the neutron background resulting from atmospheric muon interactions in low-level nuclear waste assay systems. The shield consists of an array of scintillation detectors surrounding a neutron detection system. Scintillation detectors with different thicknesses are characterized for their response to gamma rays, neutrons, and muons. Response functions to gamma rays were determined and measured in the energy range from 0.6 MeV to 6.0 MeV using radionuclide sources. Neutron response functions were derived from results of time-of-flight measurements at the Van de Graaff accelerator of the INFN Legnaro and from measurements with quasi mono-energetic neutron beams produced at the Van de Graaff accelerator of the JRC Geel. From these data, the light output and resolution functions for protons and electrons were derived. The response to muons was verified by background measurements, i.e. without the presence of any neutron or gamma source. It was found that the muon peak is more pronounced when the detectors are placed horizontally. The results indicate that a scintillator with a minimum thickness of 20 mm is needed to separate events due to atmospheric muons from natural gamma ray background, and contributions due to neutron production in nuclear waste based on only the total energy deposition in the detector. In addition, it was shown that muons can be identified with a coincidence pattern when the detectors are stacked. The effectiveness of the proposed system was demonstrated based on muon induced spallation reactions in a lead sample.
Comparing Geant4 hadronic models for the WENDI-II rem meter response function.
Vanaudenhove, T; Dubus, A; Pauly, N
2013-01-01
The WENDI-II rem meter is one of the most popular neutron dosemeters used to assess a useful quantity of radiation protection, namely the ambient dose equivalent. This is due to its high sensitivity and its energy response that approximately follows the conversion function between neutron fluence and ambient dose equivalent in the range of thermal to 5 GeV. The simulation of the WENDI-II response function with the Geant4 toolkit is then perfectly suited to compare low- and high-energy hadronic models provided by this Monte Carlo code. The results showed that the thermal treatment of hydrogen in polyethylene for neutron <4 eV has a great influence over the whole detector range. Above 19 MeV, both Bertini Cascade and Binary Cascade models show a good correlation with the results found in the literature, while low-energy parameterised models are not suitable for this application.
EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra
NASA Technical Reports Server (NTRS)
Chupp, Edward L.
1997-01-01
UNH was assigned the responsibility to use their accelerator neutron measurements to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution. Direct accelerator-based measurements by UNH of the energy-dependent efficiencies for detecting neutrons with energies from 36 to 720 MeV in NaI were compared with Monte Carlo TASC calculations. The calculated TASC efficiencies are somewhat lower (by about 20%) than the accelerator results in the energy range 70-300 MeV. The measured energy-loss spectrum for 207 MeV neutron interactions in NaI were compared with the Monte Carlo response for 200 MeV neutrons in the TASC indicating good agreement. Based on this agreement, the simulation was considered to be sufficiently accurate to generate a neutron response library to be used by UNH in modifying the TASC fitting program to include a neutron component in the flare spectrum modeling. TASC energy-loss data on the 1991 June 11 flare was transferred to UNH. Also included appendix: Gamma-rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991.
Characterization of the Gamma Response of a Cadmium Capture-gated Neutron Spectrometer
NASA Astrophysics Data System (ADS)
Hogan, Nathaniel; Rees, Lawrence; Czirr, Bart; Bastola, Suraj
2010-10-01
We have studied the gamma response of a newly developed capture-gated neutron spectrometer. Such spectrometers detect a dual signal from incoming neutrons, allowing for differentiation between other particles, such as gamma rays. The neutron provides a primary light pulse in either plastic or liquid scintillator through neutron-proton collisions. A capture material then delivers a second pulse as the moderated neutron captures in the intended material, which then de-excites with the release of gamma energy. The presented spectrometer alternates one centimeter thick plastic scintillators with sheets of cadmium inserted in between for neutron capture. The neutron capture in cadmium offers a release of gamma energy ˜ 9 MeV. To verify that the interaction was caused by a neutron, the response functions of both events must be well known. Due to the prior existence of many capture-gated neutron spectrometers, the proton recoil pulse has already been studied, but the capture pulse is unique to each spectrometer and must be measured. Experimental results agree with theoretical Monte-Carlo code, both suggesting that the optics and geometry of the spectrometer play a large role in its efficiency. Results prove promising for the efficiency of the spectrometer.
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, A. S., E-mail: Ajsen@fysik.dtu.dk; Salewski, M.; Korsholm, S. B.
2014-11-15
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR.
Characterizing Scintillator Response with Neutron Time-of-Flight
NASA Astrophysics Data System (ADS)
Palmisano, Kevin; Visca, Hannah; Caves, Louis; Wilkinson, Corey; McClow, Hannah; Padalino, Stephen; Forrest, Chad; Katz, Joe; Sangster, Craig; Regan, Sean
2017-10-01
Neutron scintillator diagnostics for ICF can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV Tandem Pelletron Accelerator. Neutron signals can be differentiated from gamma signals by employing a coincidence method called the associated particle technique (APT). In this measurement, a 2.1 MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the d(d,n)3He reaction. A BC-412 plastic scintillator, placed at a scattering angle of 152º, detects 1.76 MeV neutrons in coincidence with the 2.56 MeV 3He ions at an associated angle of 10º. The APT is used to identify the 1.76 MeV neutron while the nTOF line determines its energy. By gating only mono-energetic neutrons, the instrument response function of the scintillator can be determined free from background scattered neutrons and gamma rays. Funded in part by a Grant from the DOE, through the Laboratory for Laser Energetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, X. Y.; Chen, Z. J.; Zhang, X.
The 2.5 MeV neutron spectrometer TOFED (Time-Of-Flight Enhanced Diagnostics) has been constructed to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas on EAST. The instrument has a double-ring structure which, in combination with pulse shape digitization, allows for a dual kinematic selection in the time-of-flight/recoil proton energy (tof/E{sub p}) space, thus improving the spectrometer capability to resolve fast ion signatures in the neutron spectrum, in principle up to a factor ≈100. The identification and separation of features from the energetic ions in the neutron spectrum depends on the detailed knowledge of the instrument response function, both in terms ofmore » the light output function of the scintillators and the effect of undesired multiple neutron scatterings in the instrument. This work presents the determination of the light output function of the TOFED plastic scintillator detectors and their geometrical assembly. Results from dedicated experiments with γ-ray sources and quasi-monoenergetic neutron beams are presented. Implications on the instrument capability to perform background suppression based on double kinematic selection are discussed.« less
Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors
Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; ...
2013-03-26
Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less
Spin-isospin excitation of 3He with three-proton final state
NASA Astrophysics Data System (ADS)
Ishikawa, Souichi
2018-01-01
Spin-isospin excitation of the {}^3He nucleus by a proton-induced charge exchange reaction, {}^3He(p,n)ppp, at forward neutron scattering angle is studied in a plane wave impulse approximation (PWIA). In PWIA, cross sections of the reaction are written in terms of proton-neutron scattering amplitudes and response functions of the transition from {}3He to the three-proton state by spin-isospin transition operators. The response functions are calculated with realistic nucleon-nucleon potential models using a Faddeev three-body method. Calculated cross sections agree with available experimental data in substance. Possible effects arising from the uncertainty of proton-neutron amplitudes and three-nucleon interactions in the three-proton system are examined.
CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.
Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A
2016-09-01
A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Huang, Han-Xiong; Ruan, Xi-Chao; Chen, Guo-Chang; Zhou, Zu-Ying; Li, Xia; Bao, Jie; Nie, Yang-Bo; Zhong, Qi-Ping
2009-08-01
The light output function of a varphi50.8 mm × 50.8 mm BC501A scintillation detector was measured in the neutron energy region of 1 to 30 MeV by fitting the pulse height (PH) spectra for neutrons with the simulations from the NRESP code at the edge range. Using the new light output function, the neutron detection efficiency was determined with two Monte-Carlo codes, NEFF and SCINFUL. The calculated efficiency was corrected by comparing the simulated PH spectra with the measured ones. The determined efficiency was verified at the near threshold region and normalized with a Proton-Recoil-Telescope (PRT) at the 8-14 MeV energy region.
The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.
2015-12-01
Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less
The symmetry energy, neutron skin thickness and isovector dipole response of neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Horvat, A.; Paar, N.
2015-04-01
The isotopic evolution of the relationship between the symmetry energy at saturation density of nuclear matter (J), neutron skin thickness (ΔR) and relevant observables related to isovector dipole excitations in neutron rich 116-136Sn isotopes has been investigated in the framework of relativistic nuclear energy density functional theory. The description employs a family of effective interactions with density dependent meson-nucleon couplings (DDME) spanning the range of values J = 30 - 38 MeV.
Roots Revealed - Neutron imaging insight of spatial distribution, morphology, growth and function
NASA Astrophysics Data System (ADS)
Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.
2013-05-01
Root production, distribution and turnover are not easily measured, yet their dynamics are an essential part of understanding and modeling ecosystem response to changing environmental conditions. Root age, order, morphology and mycorrhizal associations all regulate root uptake of water and nutrients, which along with along with root distribution determines plant response to, and impact on its local environment. Our objectives were to demonstrate the ability to non-invasively monitor fine root distribution, root growth and root functionality in Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Plants were propagated in aluminum chambers containing sand then placed into a high flux cold neutron beam line. Dynamics of root distribution and growth were assessed by collecting consecutive CCD radiographs through time. Root functionality was assessed by tracking individual root uptake of water (H2O) or deuterium oxide (D2O) through time. Since neutrons strongly scatter H atoms, but not D atoms, biological materials such as plants are prime candidates for neutron imaging. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. Fungal hyphae associated with the roots were also visible and appeared as dark masses since their diameter was likely several orders of magnitude less than ~100 μm resolution of the detector. The 2D pulse-chase irrigation experiments with H2O and D2O successfully allowed observation of uptake and mass flow of water within the root system. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients, illustrating the ability to track root functionality based on root size, order and distribution within the soil. (L) neutron image of switchgrass growing in sandy soil with 100 μm diameter roots (R) 3D reconstruction of maize seedling following neutron tomography
Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.
2003-02-01
The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.
The Application of Neutron Transport Green's Functions to Threat Scenario Simulation
NASA Astrophysics Data System (ADS)
Thoreson, Gregory G.; Schneider, Erich A.; Armstrong, Hirotatsu; van der Hoeven, Christopher A.
2015-02-01
Radiation detectors provide deterrence and defense against nuclear smuggling attempts by scanning vehicles, ships, and pedestrians for radioactive material. Understanding detector performance is crucial to developing novel technologies, architectures, and alarm algorithms. Detection can be modeled through radiation transport simulations; however, modeling a spanning set of threat scenarios over the full transport phase-space is computationally challenging. Previous research has demonstrated Green's functions can simulate photon detector signals by decomposing the scenario space into independently simulated submodels. This paper presents decomposition methods for neutron and time-dependent transport. As a result, neutron detector signals produced from full forward transport simulations can be efficiently reconstructed by sequential application of submodel response functions.
Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.
Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M
2009-10-01
Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Cheng, K. S.; Pines, D.
1989-01-01
The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.
Itoga, Toshiro; Asano, Yoshihiro; Tanimura, Yoshihiko
2011-07-01
Superheated drop detectors are currently used for personal and environmental dosimetry and their characteristics such as response to neutrons and temperature dependency are well known. A new bubble counter based on the superheated drop technology has been developed by Framework Scientific. However, the response of this detector with the lead shell is not clear especially above several tens of MeV. In this study, the response has been measured with quasi-monoenergetic and monoenergetic neutron sources with and without a lead shell. The experimental results were compared with the results of the Monte Carlo calculations using the 'Event Generator Mode' in the PHITS code with the JENDL-HE/2007 data library to clarify the response of this detector with a lead shell in the entire energy range.
NASA Astrophysics Data System (ADS)
Prettyman, T. H.; Gardner, R. P.; Verghese, K.
1993-08-01
A new specific purpose Monte Carlo code called McENL for modeling the time response of epithermal neutron lifetime tools is described. The weight windows technique, employing splitting and Russian roulette, is used with an automated importance function based on the solution of an adjoint diffusion model to improve the code efficiency. Complete composition and density correlated sampling is also included in the code, and can be used to study the effect on tool response of small variations in the formation, borehole, or logging tool composition and density. An illustration of the latter application is given for the density of a thermal neutron filter. McENL was benchmarked against test-pit data for the Mobil pulsed neutron porosity tool and was found to be very accurate. Results of the experimental validation and details of code performance are presented.
Thermionic switched self-actuating reactor shutdown system
Barrus, Donald M.; Shires, Charles D.; Brummond, William A.
1989-01-01
A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.
A neutron spectrometer based on temperature variations in superheated drop compositions
NASA Astrophysics Data System (ADS)
Apfel, Robert E.; d'Errico, Francesco
2002-01-01
The response of superheated drop detectors (SDDs) to neutron radiation varies in a self-consistent manner with variations in temperature and pressure, making such compositions suitable for neutron spectrometry. The advantage of this approach is that the response functions of candidate materials versus energy as the temperature or pressure is varied are nested and have distinct thresholds, with no thermal neutron response. These characteristics permit unfolding without the uncertainties associated with other spectrometry techniques, where multiple solutions are possible, thus requiring an initial guess of the spectrum. A spectrometer was developed based on the well-established technology for acoustic sensing of bubble events interfaced with a proportional-integral-derivative temperature controller. The active monitor for neutrons, called REMbrandt™, was used as the platform for controlling temperature on a SDD probe and for data acquisition, thereby automating the process of measuring the neutron energy spectrum. The new instrument, called REM-SPEC™, implements and automates the original BINS approach: it adjusts the temperature of the SDD vial in increasing steps and measures the bubble event rate at each step. By using two distinct SDD materials with overlapping responses, the 0.1-20 MeV range of energies relevant to practical spectrometry is readily covered. Initial experiments with an Am-Be source validate the operational protocols of this device.
Optimizing moderation of He-3 neutron detectors for shielded fission sources
Rees, Lawrence B.; Czirr, J. Bart
2012-07-10
Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei
2015-06-01
The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7.8-16.5% below 120 kVp X-ray beams. In this study, we were especially interested in BNCT doses where low energy photon contribution is less to ignore, MCNP model is recognized as the most suitable to simulate wide photon-electron and neutron energy distributed responses of the paired ICs. Also, MCNP provides the best prediction of BNCT source adjustment by the detector's neutron and photon responses.
NASA Astrophysics Data System (ADS)
Saltos, Andrea
In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.
Comparative analysis of proton- and neutron-halo breakups
NASA Astrophysics Data System (ADS)
Mukeru, B.
2018-06-01
A detailed analysis of the proton- and neutron-halo breakup cross sections is presented. Larger neutron-halo breakup cross sections than proton-halo breakup cross sections are obtained. This is found to be mainly due to the projectile structure, namely the ground state wave function and the dipole electric response function. It is also found that the continuum–continuum couplings are stronger in the proton-halo breakup than in the neutron-halo breakup. The increase of proton- and neutron-halo ground state separation energy slightly strengthens these couplings in the proton- and neutron-halo total and nuclear breakups, while they are weakened in the proton- and neutron-halo Coulomb breakups. The Coulomb-nuclear interference remains strongly destructive in both proton- and neutron-halo breakups and this is independent of the ground state separation energy. The results also show that the increase of the neutron-halo ground state separation energy decreases significantly the agreement between the proton- and neutron-halo breakup cross sections, both qualitatively and quantitatively. It is obtained that when the proton-halo ground state separation energy is increased by a factor of 4.380, the proton-halo breakup cross section is reduced by a factor of 4.392, indicating a clear proportionality. However, when the neutron-halo ground state separation energy is increased by the same factor, the neutron-halo total breakup cross section is reduced by a factor of 8.522.
CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Andreani, C.; D'Angelo, A.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Rhodes, N. J.; Schooneveld, E. M.; Senesi, R.; Tardocchi, M.
In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ( 25 meV) to epithermal ( 70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6Li glass, allowing us to measure F(y) up to the fourth 238U absorption energy (Er=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ω>1 eV) and low wavevector (q <10 Å-1) transfers.
Marrale, Maurizio; Brai, Maria; Gennaro, Gaetano; Bartolotta, Antonio; D'Oca, Maria Cristina
2008-02-01
Many efforts have been made to develop neutron capture therapy (NCT) for cancer treatment. Among the challenges in using NCT is the characterization of the features of the mixed radiation field and of its components. In this study, we examined the enhancement of the ESR response of pellets of alanine and ammonium tartrate with gadolinium oxide exposed to a thermal neutron beam. In particular, the ESR response of these dosimeters as a function of the gadolinium content inside the dosimeter was analyzed. We found that the addition of gadolinium improves the sensitivity of both alanine and ammonium tartrate. However, the use of gadolinium reduces or abolishes tissue equivalence because of its high atomic number (Z(Gd) = 64). Therefore, it is necessary to find the optimum compromise between the sensitivity to thermal neutrons and the reduction of tissue equivalence. Our analysis showed that a low concentration of gadolinium oxide (of the order of 5% of the total mass of the dosimeter) can enhance the thermal neutron sensitivity more than 13 times with an insignificant reduction of tissue equivalence.
Datte, P S; Eckart, M; Moore, A S; Thompson, W; Vergel de Dios, G
2016-11-01
Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 10 15 these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ∼2% rms for the square root of the second central moment with ∼500 ps value. Detailed results are presented for three different diode configurations.
Numerical integration of detector response functions via Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
Numerical integration of detector response functions via Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Kelly, K. J.; O'Donnell, J. M.; Gomez, J. A.; Taddeucci, T. N.; Devlin, M.; Haight, R. C.; White, M. C.; Mosby, S. M.; Neudecker, D.; Buckner, M. Q.; Wu, C. Y.; Lee, H. Y.
2017-09-01
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated in this way can be used to create Monte Carlo simulation output spectra a factor of ∼ 1000 × faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. This method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.
Numerical integration of detector response functions via Monte Carlo simulations
Kelly, Keegan John; O'Donnell, John M.; Gomez, Jaime A.; ...
2017-06-13
Calculations of detector response functions are complicated because they include the intricacies of signal creation from the detector itself as well as a complex interplay between the detector, the particle-emitting target, and the entire experimental environment. As such, these functions are typically only accessible through time-consuming Monte Carlo simulations. Furthermore, the output of thousands of Monte Carlo simulations can be necessary in order to extract a physics result from a single experiment. Here we describe a method to obtain a full description of the detector response function using Monte Carlo simulations. We also show that a response function calculated inmore » this way can be used to create Monte Carlo simulation output spectra a factor of ~1000× faster than running a new Monte Carlo simulation. A detailed discussion of the proper treatment of uncertainties when using this and other similar methods is provided as well. Here, this method is demonstrated and tested using simulated data from the Chi-Nu experiment, which measures prompt fission neutron spectra at the Los Alamos Neutron Science Center.« less
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Abolfazl; Afrakoti, Iman Esmaili Paeen
2017-04-01
Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The 241Am-9Be and 252Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mossman, K.L.; Chencharick, J.D.; Scheer, A.C.
1979-04-01
Changes in gustatory function were measured in 51 patients with various forms of cancer who received radiation to the head and neck region. Forty patients (group I) were treated with conventional photon radiation (e.g. 66 Gy/7 weeks), and 11 patients (group II) were treated with cyclotron produced fast neutrons (e.g. 22 Gy/7 weeks). Taste acuity was measured for four taste qualities (salt, sweet, sour, and bitter) by a forced choice-three stimulus drop technique which measured detection and recognition thresholds and by a forced scaling technique which measured taste intensity responsiveness. Subjective complaints of anorexia, dysgeusia, taste loss, and xerostomia weremore » also recorded. Patients were studied before, during and up to two months after therapy. Prior to therapy, detection and recognition thresholds, intensity responsiveness, and the frequency of subjective complaints in patients from groups I and II were statistically equivalent. During and up to 2 months after therapy, taste impairment and frequency of subjective complaints increased significantly in neutron and photon treated patients, but were statistically equivalent. Results of this study indicate that gustatory tissue response as measured by taste detection and recognition and intensity responsiveness, and the frequency of subjective complaints related to taste are statistically equivalent in patients before, during, or up 2 months after they were given either neutron or photon radiation for tumors of the head and neck.« less
Distenfeld, Carl H.
1978-01-01
A method for measuring the dose-equivalent for exposure to an unknown and/or time varing neutron flux which comprises simultaneously exposing a plurality of neutron detecting elements of different types to a neutron flux and combining the measured responses of the various detecting elements by means of a function, whose value is an approximate measure of the dose-equivalent, which is substantially independent of the energy spectra of the flux. Also, a personnel neutron dosimeter, which is useful in carrying out the above method, comprising a plurality of various neutron detecting elements in a single housing suitable for personnel to wear while working in a radiation area.
Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.
We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less
Development and Characterization of a High-Energy Neutron Time-of-Flight Imaging System
Madden, Amanda Christine; Schirato, Richard C.; Swift, Alicia L.; ...
2017-02-09
We present that Los Alamos National Laboratory has developed a prototype of a high-energy neutron time-of-flight imaging system for the non-destructive evaluation of dense, massive, and/or high atomic number objects. High-energy neutrons provide the penetrating power, and thus the high dynamic range necessary to image internal features and defects of such objects. The addition of the time gating capability allows for scatter rejection when paired with a pulsed monoenergetic beam, or neutron energy selection when paired with a pulsed broad-spectrum neutron source. The Time Gating to Reject Scatter and Select Energy (TiGReSSE) system was tested at the Los Alamos Neutronmore » Science Center’s (LANSCE) Weapons Nuclear Research (WNR) facility, a spallation neutron source, to provide proof of concept measurements and to characterize the instrument response. This paper will show results of several objects imaged during this run cycle. In addition, results from system performance metrics such as the Modulation Transfer Function and the Detective Quantum Efficiency measured as a function of neutron energy, characterize the current system performance and inform the next generation of neutron imaging instrument.« less
NASA Astrophysics Data System (ADS)
Henzl, Vladimir; Daub, Brian; French, Jennifer; Matthews, June; Kovash, Michael; Wender, Stephen; Famiano, Michael; Koehler, Katrina; Yuly, Mark
2010-11-01
The determination of the light response of many organic scintillators to various types of radiation has been a subject of numerous experimental as well as theoretical studies in the past. But while the data on light response to particles with energies above 1 MeV are precise and abundant, the information on light response to very low energy particles (i.e. below 1 MeV) is scarce or completely missing. In this study we measured the light response of a BC-418 scintillator to protons with energies from 100 keV to 10 MeV. The experiment was performed at Weapons Neutron Research Facility at LANSCE, Los Alamos. The neutron beam from a spallation source is used to irradiate the active target made from BC-418 plastic scintillator. The recoiled protons detected in the active target are measured in coincidence with elastically scattered incident neutrons detected by and adjacent liquid scintillator. Time of flight of the incident neutron and the knowledge of scattering geometry allow for a kinematically complete and high-precision measurement of the light response as a function of the proton energy.
Measurements of the total cross section of natBe with thermal neutrons from a photo-neutron source
NASA Astrophysics Data System (ADS)
Liu, L. X.; Wang, H. W.; Ma, Y. G.; Cao, X. G.; Cai, X. Z.; Chen, J. G.; Zhang, G. L.; Han, J. L.; Zhang, G. Q.; Hu, J. F.; Wang, X. H.; Li, W. J.; Yan, Z.; Fu, H. J.
2017-11-01
The total neutron cross sections of natural beryllium in the neutron energy region of 0.007 to 0.1 eV were measured by using a time-of-flight (TOF) technique at the Shanghai Institute of Applied Physics (SINAP). The low energy neutrons were obtained by moderating the high energy neutrons from a pulsed photo-neutron source generated from a 16 MeV electron linac. The time dependent neutron background component was determined by employing the 12.8 cm boron-loaded polyethylene (PEB) (5% w.t.) to block neutron TOF path and using the Monte Carlo simulation methods. The present data was compared with the fold Harvey data with the response function of the photo-neutron source (PNS, phase-1). The present measurement of total cross section of natBe for thermal neutrons based on PNS has been developed for the acquisition of nuclear data needed for the Thorium Molten Salt Reactor (TMSR).
NASA Astrophysics Data System (ADS)
Jokisch, D. W.; Rajon, D. A.; Bahadori, A. A.; Bolch, W. E.
2011-11-01
Recoiling hydrogen nuclei are a principle mechanism for energy deposition from incident neutrons. For neutrons incident on the human skeleton, the small sizes of two contrasting media (trabecular bone and marrow) present unique problems due to a lack of charged-particle (protons) equilibrium. Specific absorbed fractions have been computed for protons originating in the human skeletal tissues for use in computing neutron dose response functions. The proton specific absorbed fractions were computed using a pathlength-based range-energy calculation in trabecular skeletal samples of a 40 year old male cadaver.
Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M
2014-04-01
First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.
Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S
2015-05-01
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.
Neutron skyshine calculations with the integral line-beam method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gui, A.A.; Shultis, J.K.; Faw, R.E.
1997-10-01
Recently developed line- and conical-beam response functions are used to calculate neutron skyshine doses for four idealized source geometries. These calculations, which can serve as benchmarks, are compared with MCNP calculations, and the excellent agreement indicates that the integral conical- and line-beam method is an effective alternative to more computationally expensive transport calculations.
Low-energy isovector and isoscalar dipole response in neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Vretenar, D.; Niu, Y. F.; Paar, N.; Meng, J.
2012-04-01
The self-consistent random-phase approximation, based on the framework of relativistic energy density functionals, is employed in the study of isovector and isoscalar dipole response in 68Ni,132Sn, and 208Pb. The evolution of pygmy dipole states (PDSs) in the region of low excitation energies is analyzed as a function of the density dependence of the symmetry energy for a set of relativistic effective interactions. The occurrence of PDSs is predicted in the response to both the isovector and the isoscalar dipole operators, and its strength is enhanced with the increase in the symmetry energy at saturation and the slope of the symmetry energy. In both channels, the PDS exhausts a relatively small fraction of the energy-weighted sum rule but a much larger percentage of the inverse energy-weighted sum rule. For the isovector dipole operator, the reduced transition probability B(E1) of the PDSs is generally small because of pronounced cancellation of neutron and proton partial contributions. The isoscalar-reduced transition amplitude is predominantly determined by neutron particle-hole configurations, most of which add coherently, and this results in a collective response of the PDSs to the isoscalar dipole operator.
Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl
2016-10-01
The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.
Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator
NASA Astrophysics Data System (ADS)
Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.
2015-06-01
This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for <1.0 MeV neutrons; and ranging between a 5-35% reduction for 2.5-3.0 MeV neutrons compared to the EJ-301/309, depending on the scintillator and geometry. Monte Carlo modeling techniques were used to investigate how the neutron beam and accelerator background environment affected the detector response. We find relatively good agreement between our results and the modeling; however, the observed response could not be fully accounted for due to events with pulse pile up, thus leading to contamination of the neutron PSD selected events.
Neutron detection with LiInSe2
NASA Astrophysics Data System (ADS)
Bell, Zane W.; Burger, A.; Matei, Liviu; Groza, Michael; Stowe, Ashley; Tower, Joshua; Kargar, Alireza; Hong, Huicong
2015-08-01
The detection of thermal neutrons has traditionally been accomplished with 3He-tubes, but with the recent shortage of 3He, much research has gone into finding suitable replacements. Both relatively inefficient 10B- and 6LiF-coated silicon diodes and HgI2 have been known for many years, and engineered structures in Si that have been filled with 10B and 6LiF have shown promise. These devices are intended to realize an optimal juxtaposition of neutron-sensitive material and semiconductor and thereby simulate a semiconductor containing B or Li. Such material has been realized for the first time in the form of 6LiInSe2 in which collectable charge from the 6Li(n,t) reaction indicates a neutron event. In this paper we report neutron and gamma responses of 6LiInSe2, we show pulse height spectra from pure gamma sources and from a thermal neutron source, and we derive the μτ product from the position of spectral features as a function of bias voltage. In addition, we demonstrate the observation of the beta decay of 116mIn in samples exposed to thermal neutrons. This feature of the response serves as an additional confirmation of exposure to neutrons.
CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.
Hawkes, N P; Thomas, D J; Taylor, G C
2016-09-01
The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.
Response of six neutron survey meters in mixed fields of fast and thermal neutrons.
Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S
2013-10-01
Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.
NASA Astrophysics Data System (ADS)
Mahl, Adam; Yemam, Henok; Remedes, Tyler; Stuntz, Jack; Koldemir, Unsal; Sellinger, Alan; Greife, Uwe
2015-10-01
This presentation will review the efforts made by an interdisciplinary development project aimed at cost-effective, thermal neutron sensitive, plastic scintillators as part of the communities efforts towards replacing 3He based detectors. Colorado School of Mines researchers with backgrounds in Physics and Chemistry have worked on the incorporation of 10B in plastics through admixture of various commercial and novel dopants developed at CSM. In addition, new fluorescent dopants have been developed for plastic scintillators in an effort towards better understanding quenching effects and scintillator response to thermal neutrons via pulse shape discrimination methods. Results on transparent samples using fluorescent spectroscopy and gamma/neutron excitation will be presented. Funded via Department of Homeland Security - Domestic Nuclear Detection Office.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M.
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes andmore » electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Y.; Gohar, Y.; Maynard, C.
1989-04-01
KAOS/LIB-V: A library of processed nuclear responses for neutronics analyses of nuclear systems has been generated. The library was prepared using the KAOS-V code and nuclear data from ENDF/B-V. The library includes kerma (kinetic energy released in materials) factors and other nuclear response functions for all materials presently of interest in fusion and fission applications for 43 nonfissionable and 15 fissionable isotopes and elements. The nuclear response functions include gas production and tritium-breeding functions, and all important reaction cross sections. KAOS/LIB-V employs the VITAMIN-E weighting function and energy group structure of 174 neutron groups. Auxiliary nuclear data bases, e.g., themore » Japanese evaluated nuclear data library JENDL-2 were used as a source of isotopic cross sections when these data are not provided in ENDF/B-V files for a natural element. These are needed mainly to estimate average quantities such as effective Q-values for the natural element. This analysis of local energy deposition was instrumental in detecting and understanding energy balance deficiencies and other problems in the ENDF/B-V data. Pertinent information about the library and a graphical display of the main nuclear response functions for all materials in the library are given. 35 refs.« less
GADRAS Detector Response Function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G
2014-11-01
The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.
The origin of neutron biological effectiveness as a function of energy.
Baiocco, G; Barbieri, S; Babini, G; Morini, J; Alloni, D; Friedland, W; Kundrát, P; Schmitt, E; Puchalska, M; Sihver, L; Ottolenghi, A
2016-09-22
The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data.
The origin of neutron biological effectiveness as a function of energy
NASA Astrophysics Data System (ADS)
Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.
2016-09-01
The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data.
The origin of neutron biological effectiveness as a function of energy
Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.
2016-01-01
The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data. PMID:27654349
Theis, C; Forkel-Wirth, D; Perrin, D; Roesler, S; Vincke, H
2005-01-01
Monitoring of the radiation environment is one of the key tasks in operating a high-energy accelerator such as the Large Hadron Collider (LHC). The radiation fields consist of neutrons, charged hadrons as well as photons and electrons with energy spectra extending from those of thermal neutrons up to several hundreds of GeV. The requirements for measuring the dose equivalent in such a field are different from standard uses and it is thus necessary to investigate the response of monitoring devices thoroughly before the implementation of a monitoring system can be conducted. For the LHC, it is currently foreseen to install argon- and hydrogen-filled high-pressure ionisation chambers as radiation monitors of mixed fields. So far their response to these fields was poorly understood and, therefore, further investigation was necessary to prove that they can serve their function well enough. In this study, ionisation chambers of type IG5 (Centronic Ltd) were characterised by simulating their response functions by means of detailed FLUKA calculations as well as by calibration measurements for photons and neutrons at fixed energies. The latter results were used to obtain a better understanding and validation of the FLUKA simulations. Tests were also conducted at the CERF facility at CERN in order to compare the results with simulations of the response in a mixed radiation field. It is demonstrated that these detectors can be characterised sufficiently enough to serve their function as radiation monitors for the LHC.
NASA Astrophysics Data System (ADS)
Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.
2012-12-01
The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well controlled workplace field. The CERF (CERN-EU high-energy reference field) facility is a unique example of such a field, where a number of experimental campaigns and Monte Carlo simulations have been performed over the past years. With the aim of performing this kind of workplace performance test, four different ERBSS with different degrees of validation, operated by three groups (CERN, INFN-LNF and Politecnico of Milano), were exposed in two fixed positions at CERF. Using different unfolding codes (MAXED, GRAVEL, FRUIT and FRUIT SGM), the experimental data were analyzed to provide the neutron spectra and the related dosimetric quantities. The results allow assessing the overall performance of each ERBSS and of the unfolding codes, as well as comparing the performance of three ERRCs when used in a neutron field with energy distribution different from the calibration spectrum.
Relativistic direct Urca processes in cooling neutron stars
NASA Astrophysics Data System (ADS)
Leinson, L. B.; Pérez, A.
2001-10-01
We derive a relativistic expression for neutrino energy losses caused by the direct Urca processes in degenerate baryon matter of neutron stars. We use two different ways to calculate the emissivity caused by the reactions to our interest. First we perform a standard calculation by Fermi's ``golden'' rule. The second calculation, resulting in the same expression, is performed with the aid of polarization functions of the medium. Our result for neutrino energy losses strongly differs from previous nonrelativistic results. We also discuss nonconservation of the baryon vector current in reactions through weak charged currents in the medium, when the asymmetry between protons and neutrons is considered. The above effects, not discussed in the literature before, substantially modify the polarization functions responsible for the induced weak charged currents in baryon matter.
Theory and Performance of AIMS for Active Interrogation
NASA Astrophysics Data System (ADS)
Walters, William J.; Royston, Katherine E. K.; Haghighat, Alireza
2014-06-01
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) determination of neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, γ) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water. In the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, γ) cross sections to find the resulting gamma source distribution. Finally, in the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma flux at a detector window. A code, AIMS (Active Interrogation for Monitoring Special-Nuclear-materials), has been written to output the gamma current for an source-detector assembly scanning across the cargo using the pre-calculated values and takes significantly less time than a reference MCNP5 calculation.
Ueda, H; Tanaka, H; Sakurai, Y
2015-10-01
Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elastic and Inelastic Scattering of Neutrons using a CLYC array
NASA Astrophysics Data System (ADS)
Brown, Tristan; Doucet, E.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.
2015-10-01
CLYC scintillators, which have dual neutron and gamma response, have recently ushered in the possibility of fast neutron spectroscopy without time-of-flight (TOF). A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals, where pulse-shape-discrimination is achieved via digital pulse processing, has been commissioned at UMass Lowell. In an experiment at LANSCE, high energy neutrons were used to bombard 56Fe and 238U targets, in order to measure elastic and inelastic neutron scattering cross sections as a function of energy and angle with the array. The array is placed very close to the targets for enhanced geometrical solid angles for scattered neutrons compared to standard neutron-TOF measurements. A pulse-height spectrum of scattered neutrons in the detectors is compared to the energy of the incident neutrons, which is measured via the TOF of the pulsed neutrons from the source to the detectors. Recoil corrections are necessary to combine the energy spectra from all the detectors to obtain angle-integrated elastic and inelastic cross-sections. The detection techniques, analysis procedures and results will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.
DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.
Aslam; Matysiak, W; Atanackovic, J; Waker, A J
2012-06-01
This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to ~0.3 at 51 keV neutron energy. The counter response based on ICRP 60 was comparable to an ideal response of 1.0 above 600 keV, which dropped to ~0.8 at 159 keV and ~0.4 at 51 keV neutron energy. The decline in counter quality factor response based on ICRP 60 was found to be much steeper than that when using the instrument’s built-in function for quality factor.The REM-500 measures a dose equivalent at 727 keV,which is 60% of the ambient dose equivalent, 40% at 159 keV,and 15% at 51 keV. Two algorithms have been developed, one for real time measurement and another to be used post measurement,and their efficacy is demonstrated in determining the quality factor and the ambient dose equivalent in low energy neutron fields, which are typical for the workplace environment in CANDU® nuclear power generating stations.
Lee, K W; Sheu, R J
2015-04-01
High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Results for the response function determination of the Compact Neutron Spectrometer
NASA Astrophysics Data System (ADS)
Gagnon-Moisan, F.; Reginatto, M.; Zimbal, A.
2012-03-01
The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a white field (Emax ~ 17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~ 1.5 MeV to ~ 17 MeV). The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.
Simulation of the neutron response matrix of an EJ309 liquid scintillator
NASA Astrophysics Data System (ADS)
Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Jiang, Haoyu; Lu, Yi; Chen, Jinxiang; Zhang, Guohui
2018-04-01
The neutron response matrix is the basis for measuring the neutron energy spectrum through unfolding the pulse height spectrum detected with a liquid scintillator. Based on the light output of the EJ309 liquid scintillator and the related reaction cross sections, a Monte Carlo code is developed to obtain the neutron response matrix. The effects of the related reactions, the contributions of different number of neutron interactions and the wall effect of the recoil proton are discussed. With the obtained neutron response matrix and the GRAVEL iterative unfolding method, the neutron energy spectra of the 252Cf and the 241AmBe neutron sources are measured, and the results are respectively compared with the theoretical prediction of the 252Cf neutron energy spectrum and the previous results of the 241AmBe neutron energy spectra.
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2016-03-01
Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.
Fast neutron sensitivity of neutron detectors based on Boron-10 converter layers
NASA Astrophysics Data System (ADS)
Mauri, G.; Messi, F.; Kanaki, K.; Hall-Wilton, R.; Karnickis, E.; Khaplanov, A.; Piscitelli, F.
2018-03-01
In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirements in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternative technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the γ-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.
CHELSI: a portable neutron spectrometer for the 20-800 MeV region.
McLean, T D; Olsher, R H; Romero, L L; Miles, L H; Devine, R T; Fallu-Labruyere, A; Grudberg, P
2007-01-01
CHELSI is a CsI-based portable spectrometer being developed at Los Alamos National Laboratory for use in high-energy neutron fields. Based on the inherent pulse shape discrimination properties of CsI(Tl), the instrument flags charged particle events produced via neutron-induced spallation events. Scintillation events are processed in real time using digital signal processing and a conservative estimate of neutron dose rate is made based on the charged particle energy distribution. A more accurate dose estimate can be made by unfolding the 2D charged particle versus pulse height distribution to reveal the incident neutron spectrum from which dose is readily obtained. A prototype probe has been assembled and data collected in quasi-monoenergetic fields at The Svedberg Laboratory (TSL) in Uppsala as well as at the Los Alamos Neutron Science Center (LANSCE). Preliminary efforts at deconvoluting the shape/energy data using empirical response functions derived from time-of-flight measurements are described.
Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A
2014-11-01
A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.
ARE THE kHz QPO LAGS IN NEUTRON STAR 4U 1608–52 DUE TO REVERBERATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cackett, Edward M., E-mail: ecackett@wayne.edu
2016-08-01
X-ray reverberation lags have recently been discovered in both active galactic nuclei (AGNs) and black hole X-ray binaries. A recent study of the neutron star low-mass X-ray binary (LMXB) 4U 1608 52 has also shown significant lags, whose properties hint at a reverberation origin. Here, we adapt general relativistic ray tracing impulse response functions used to model X-ray reverberation in AGNs for neutron star LMXBs. Assuming that relativistic reflection forms the broad iron line and associated reflection continuum, we use reflection fits to the energy spectrum along with the impulse response functions to calculate the expected lags as a functionmore » of energy over the range of observed kHz quasi-periodic oscillation (QPO) frequencies in 4U 1608 52. We find that the lag energy spectrum is expected to increase with increasing energy above 8 keV, while the observed lags in 4U 1608 52 show the opposite behavior. This demonstrates that the lags in the lower kHz QPO of 4U 1608 52 are not solely due to reverberation. We do note, however, that the models appear to be more consistent with the much flatter lag energy spectrum observed in the upper kHz QPO of several neutron star LMXBs, suggesting that lower and upper kHz QPOs may have different origins.« less
Development and application of a hybrid transport methodology for active interrogation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royston, K.; Walters, W.; Haghighat, A.
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed tomore » calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)« less
New narrow-beam neutron spectrometer in complex monitoring system
NASA Astrophysics Data System (ADS)
Mikhalko, Evgeniya; Balabin, Yuriy; Maurchev, Evgeniy; Germanenko, Aleksey
2018-03-01
In the interaction of cosmic rays (CRs) with Earth's atmosphere, neutrons are formed in a wide range of energies: from thermal (E≈0.025 eV) to ultrarelativistic (E>1 GeV). To detect and study CRs, Polar Geophysical Institute (PGI) uses a complex monitoring system containing detectors of various configurations. The standard neutron monitor (NM) 18-NM-64 is sensitive to neutrons with energies E>50 MeV. The lead-free section of the neutron monitor (BSRM) detects neutrons with energies E≈(0.1/1) MeV. Also, for sharing with standard detectors, the Apatity NM station has developed and installed a neutron spectrometer with three energy channels and a particle reception angle of 15 degrees. The configuration of the device makes it possible to study the degree of anisotropy of the particle flux from different directions. We have obtained characteristics of the detector (response function and particle reception angle), as well as geometric dimensions through numerical simulation using the GEANT4 toolkit [Agostinelli et al., 2003]. During operation of the device, we collected database of observations and received preliminary results.
Tooth enamel dosimetric response to 2.8 MeV neutrons
NASA Astrophysics Data System (ADS)
Fattibene, P.; Angelone, M.; Pillon, M.; De Coste, V.
2003-03-01
Tooth enamel dosimetry, based on electron paramagnetic resonance (EPR) spectroscopy, is recognized as a powerful method for individual retrospective dose assessment. The method is mainly used for individual dose reconstruction in the epidemiological studies aimed at the radiation risk analysis. The study of the sensitivity of tooth enamel as a function of radiation quality is one of the main goals of the research in this field. In the present work, tooth enamel dose response in a monoenergetic neutron flux of 2.8 MeV, generated by the D-D reaction, was studied for in air and in phantom irradiations of enamel samples and of whole teeth. EPR measurements were complemented by Monte Carlo calculation and by gamma dose discrimination obtained with thermoluminescent and Geiger-Muller tube measurements. The 2.8 MeV neutrons to 60Co relative sensitivity was 0.33±0.08.
NASA Astrophysics Data System (ADS)
Ayaz-Maierhafer, Birsen; Britt, Carl G.; August, Andrew J.; Qi, Hairong; Seifert, Carolyn E.; Hayward, Jason P.
2017-10-01
In this study, we report on a constrained optimization and tradeoff study of a hybrid, wearable detector array having directional sensing based upon gamma-ray occlusion. One resulting design uses CLYC detectors while the second feasibility design involves the coupling of gamma-ray-sensitive CsI scintillators and a rubber LiCaAlF6 (LiCAF) neutron detector. The detector systems' responses were investigated through simulation as a function of angle in a two-dimensional plane. The expected total counts, peak-to-total ratio, directionality performance, and detection of 40 K for accurate gain stabilization were considered in the optimization. Source directionality estimation was investigated using Bayesian algorithms. Gamma-ray energies of 122 keV, 662 keV, and 1332 keV were considered. The equivalent neutron capture response compared with 3 He was also investigated for both designs.
Organic Scintillator Detector Response Simulations with DRiFT
Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...
2016-06-11
Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less
Organic scintillator detector response simulations with DRiFT
NASA Astrophysics Data System (ADS)
Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.
2016-09-01
This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.
NASA Astrophysics Data System (ADS)
Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi
The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses.
NASA Technical Reports Server (NTRS)
Armstrong, T. W.; Colborn, B. L.
2001-01-01
As part of a study funded by NASA MSFC to assess thecontribution of secondary particles in producing radiation damage to optoelectronics devices located on the International Space Station (IS), Monte Carlo calculations have been made to predict secondary spectra vs. shielding inside ISS modules and in electronics boxes attached on the truss (Armstrong and Colborn, 1998). The calculations take into account secondary neutron, proton, and charged pion production from the ambient galactic cosmic-ray (GCR) proton, trapped proton, and neutron albedo environments. Comparisons of the predicted neutron spectra with measurments made on the Mir space station and other spacecraft have also been made (Armstrong and Colborn, 1998). In this paper, some initial results from folding the predicted neutron spectrum inside ISS modules from Armstrong and Colborn (1998) with several types of radiation effects response functions related to electronics damage and astronaut-dose are given. These results provide an estimate of the practical importance of neutrons compared to protons in assessing radiation effects for the ISS. Also, the important neutron energy ranges for producing these effects have been estimated, which provides guidance for onboard neutron measurement requirements.
Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A
2014-12-01
An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Real-Time Capabilities of a Digital Analyzer for Mixed-Field Assay Using Scintillation Detectors
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Lavietes, A.; Plenteda, R.; Cave, F. D.; Parker, H.; Jones, A.; Astromskas, V.
2017-03-01
Scintillation detectors offer a single-step detection method for fast neutrons and necessitate real-time acquisition, whereas this is redundant in two-stage thermal detection systems using helium-3 and lithium-6, where the fast neutrons need to be thermalized prior to detection. The relative affordability of scintillation detectors and the associated fast digital acquisition systems have enabled entirely new measurement setups that can consist of sizeable detector arrays. These detectors in most cases rely on photomultiplier tubes, which have significant tolerances and result in variations in detector response functions. The detector tolerances and other environmental instabilities must be accounted for in measurements that depend on matched detector performance. This paper presents recent advances made to a high-speed FPGA-based digitizer. The technology described offers a complete solution for fast-neutron scintillation detectors by integrating multichannel high-speed data acquisition technology with dedicated detector high-voltage supplies. This configuration has significant advantages for large detector arrays that require uniform detector responses. We report on bespoke control software and firmware techniques that exploit real-time functionality to reduce setup and acquisition time, increase repeatability, and reduce statistical uncertainties.
Proton recoil scintillator neutron rem meter
Olsher, Richard H.; Seagraves, David T.
2003-01-01
A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otake, M.; Schull, W.J.
This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information onmore » their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.« less
Response of a tissue equivalent proportional counter to neutrons
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Robbins, D. E.; Gibbons, F.; Braby, L. A.
2002-01-01
The absorbed dose as a function of lineal energy was measured at the CERN-EC Reference-field Facility (CERF) using a 512-channel tissue equivalent proportional counter (TEPC), and neutron dose equivalent response evaluated. Although there are some differences, the measured dose equivalent is in agreement with that measured by the 16-channel HANDI tissue equivalent counter. Comparison of TEPC measurements with those made by a silicon solid-state detector for low linear energy transfer particles produced by the same beam, is presented. The measurements show that about 4% of dose equivalent is delivered by particles heavier than protons generated in the conducting tissue equivalent plastic. c2002 Elsevier Science Ltd. All rights reserved.
Little Boy neutron spectrum below 1 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, A.E.
1984-01-01
A high-resolution /sup 3/He ionization chamber of the type development by Cuttler and Shalev was used to study the neutron spectrum from the Little Boy mockup. Measurements were made at distances of 0.75 and 2.0 m and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly, which was operated at power levels from 8.6 to 450 mW. Detector efficiency as a function of energy as well as parameters for correction of pulse-height distributions for proton-recoil and wall effects were determined from a set of response functions for monoenergetic neutrons measured atmore » the Los Alamos 3.75-MeV Van de Graaff Accelerator Facility. Pulse-shape discrimination was used to separate /sup 3/He-recoil pulses from the pulse-height distribution. The spectrum was found to be highly structured, with peaks corresponding to minima in the total neutron cross section of iron. In particular, 15% of the neutrons above the epithermal peak in energy were found to be in the 24-keV iron window. Lesser peaks out to 700 keV are also attributable to filtering action of the weapon's heavy iron casing. Data taken using experimental proton-recoil proportional counters are compared with the high-resolution spectra.« less
Compounds for neutron radiation detectors and systems thereof
Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, Leslie M.
2016-08-30
A composition of matter includes an organic molecule having a composition different than stilbene. The organic molecule is embodied as a crystal, and exhibits: an optical response signature for neutrons; an optical response signature for gamma rays, and performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays. The optical response signature for neutrons is different than the optical response signature for gamma rays.
Neutron-energy-dependent cell survival and oncogenic transformation.
Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J
1999-12-01
Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.
Neutron responsive self-powered radiation detector
Brown, Donald P.; Cannon, Collins P.
1978-01-01
An improved neutron responsive self-powered radiation detector is disclosed in which the neutron absorptive central emitter has a substantially neutron transmissive conductor collector sheath spaced about the emitter and the space between the emitter and collector sheath is evacuated.
Calibration of neutron detectors on the Joint European Torus.
Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L
2017-10-01
The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.
Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu
2012-10-01
The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.
Scintillation detector efficiencies for neutrons in the energy region above 20 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickens, J.K.
1991-01-01
The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data havemore » been made. There is generally overall good agreement (less than 10% differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e. yield versus response pulse height, are generally within about 5% on the average for incident neutron energies between 16 and 50 MeV and for the upper 70% of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon. 32 refs., 6 figs., 2 tabs.« less
Scintillation detector efficiencies for neutrons in the energy region above 20 MeV
NASA Astrophysics Data System (ADS)
Dickens, J. K.
The computer program SCINFUL (for SCINtillator FUL1 response) is a program designed to provide a calculated complete pulse-height response anticipated for neutrons being detected by either an NE-213 (liquid) scintillator or an NE-110 (solid) scintillator in the shape of a right circular cylinder. The point neutron source may be placed at any location with respect to the detector, even inside of it. The neutron source may be monoenergetic, or Maxwellian distributed, or distributed between chosen lower and upper bounds. The calculational method uses Monte Carlo techniques, and it is relativistically correct. Extensive comparisons with a variety of experimental data were made. There is generally overall good agreement (less than 10 pct. differences) of results for SCINFUL calculations with measured integral detector efficiencies for the design incident neutron energy range of 0.1 to 80 MeV. Calculations of differential detector responses, i.e., yield versus response pulse height, are generally within about 5 pct. on the average for incident neutron energies between 16 and 50 MeV and for the upper 70 pct. of the response pulse height. For incident neutron energies between 50 and 80 MeV, the calculated shape of the response agrees with measurements, but the calculations tend to underpredict the absolute values of the measured responses. Extension of the program to compute responses for incident neutron energies greater than 80 MeV will require new experimental data on neutron interactions with carbon.
Responses of selected neutron monitors to cosmic radiation at aviation altitudes.
Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi
2009-06-01
Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose.
SEE induced in SRAM operating in a superconducting electron linear accelerator environment
NASA Astrophysics Data System (ADS)
Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan
2005-02-01
Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, Brian G.
These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, R.P.; Lewis, J.M.; Murer, D.
Previous work has measured the neutron response of pressurized {sup 4}He scintillation detectors, however these studies only examine the response as a function of incident neutron energy. Since the detection mechanism in {sup 4}He detectors is elastic scattering, and the interacting neutron will only deposit a fraction of its incident kinetic energy in the detector gas, an examination of the response of the detector output to deposited energy is necessary to transform these detectors into instruments for neutron spectrometry. Using a combined time-of-flight (TOF) and coincidence scattering method, this paper further characterizes the {sup 4}He light response to fast neutronsmore » by examining the scintillation light yield as a function of deposited energy, measuring the light response up to 5 MeV. These {sup 4}He detectors are simple in design, and are manufactured by Arktis Radiation Detectors in several sizes. The specific model used in this experiment had an active volume 20 cm long with an inner diameter of 4.4 cm, giving a total active volume of 304 cm{sup 3}. The key components include the active volume, filled with 150 bar of helium-4 gas, and photomultiplier tubes (PMTs) mounted at either end of the active volume. The detector body is made of stainless steel. The detector response was experimentally measured using a two-detector coincidence arrangement with a {sup 252}Cf source. Two {sup 4}He detectors were vertically mounted, and the source was placed at a horizontal distance from the center of the bottom detector, forming a right angle. By requiring coincidence between the two detectors, it was confirmed that each neutron interacting in the second (top) detector must first have undergone a scattering interaction in the first (bottom) detector, and the time-of-flight (TOF) technique could then be used to determine the energy of the neutron as it traveled between the two detectors by the difference in time between the two detector events. More importantly, with the scattering angle known, the amount of energy deposited by the neutron in the bottom detector (ER) was also calculated using kinematic scattering equations. This deposited recoil energy was then compared to the corresponding light output for each event to form a deposited energy scintillation light response matrix. Similarly, the system's insensitivity to gammas and its ability to reject gammas by pulse shape discrimination (PSD) are often cited as an important advantage, although a detailed analysis of these capabilities has not yet been performed. This work therefore quantified these parameters in order to further characterize these detectors for future mixed radiation field measurements. Gamma sources were measured spanning a range of gamma-ray energies from 0.122 MeV to 1.332 MeV, including {sup 57}Co, {sup 137}Cs, {sup 54}Mn, and {sup 60}Co. Each source was counted by the {sup 4}He detector and the background subtracted. Taking the ratio of the number of events detected during the experimental source measurement to the number of gammas predicted by MCNPX to pass through the detector volume yields the detector's intrinsic gamma efficiency. The difference between this fraction and unity is therefore a measure of the detector's ability to ignore interfering gamma rays, defined as its inherent gamma rejection rate. The ability of post-processing PSD algorithms to further reduce the number of gammas is also investigated and quantified. Finally, it has been noted that the scintillation signal from a single neutron event can be separated in time into two components: the fast component is a sharp peak that exists on the order of nanoseconds; the slow component is a series of smaller pulses, stretched out over four microseconds. Whereas previous research has exclusively focused on the energy information contained in the slow component, this work demonstrates that the fast component is also sensitive to neutron energy, and the entire scintillation signal can therefore be used. In conclusion, the relationship of fast neutron {sup 4}He scintillation detectors to deposited neutron energy was explored, and will be combined with previous works that measured the scintillation response to incident neutron energy in order to develop a neutron spectrometer. Similarly, the ability of these {sup 4}He detectors to reject interfering gamma rays was also quantified, and so will enable this spectrometer to be deployed in mixed radiation field measurements. Finally, while previous works with these detectors have focused on an analysis of the slow scintillation component, it was demonstrated in this work that the fast component also contains significant energy information.« less
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
NASA Astrophysics Data System (ADS)
Grim, Gary; Eckart, Mark; Hartouni, Edward; Hatarik, Robert; Moore, Alastair; Root, Jaben; Sayre, Daniel; Schlossberg, David; Waltz, Cory
2017-10-01
In mid-2017 the NIF implemented quartz based neutron time-of-flight (nToF) detectors which have a faster and narrower impulse response function (IRF) relative to traditional scintillator detectors. In this presentation we report on comparisons between fusion neutron first moments as measured by quartz and scintillator based detectors using DT layered implosions at the NIF. We report on the change in precision presaged by the quartz converter and quantify the change in both in shot, line-of-site velocity variability. as well as, shot-to-shot variation. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-734511-DRAFT.
Detecting pin diversion from pressurized water reactors spent fuel assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Young S.; Sitaraman, Shivakumar
Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and takingmore » the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.« less
Use of CLYC spectrometer in counter-terrorism applications
NASA Astrophysics Data System (ADS)
Ing, H.; Smith, M. B.; Koslowsky, M. R.; Andrews, H. R.
2015-05-01
A new scintillator crystal, now known as CLYC (Cs2LiYCl6:Ce), has been under development for over 15 years (1). It was primarily of interest for radiation detection applications because of its good energy resolution for gamma rays (< 4% for 662 keV gamma rays) and its capability for detection of thermal neutrons. The pulse shapes of the signals from the two radiations are different, which allow them to be separated electronically, permitting simultaneous detection of gamma rays and neutrons. The crystal is now commercially available. Early investigations of the neutron response by the current authors (2) revealed that CLYC also responds to fast neutrons. In fact, the good energy resolution of the response under monoenergetic neutron irradiations showed that CLYC was an excellent high-energy neutron spectrometer. This discovery has great impact on the field of neutron spectroscopy, which has numerous, although often specialized, applications. This presentation focuses on applications in counter-terrorism scenarios where neutrons may be involved. The relative importance of the fast neutron response of CLYC, compared to the thermal and gamma-ray response, will be discussed for these scenarios.
Use of GaN as a Scintillating Ionizing Radiation Detector
NASA Astrophysics Data System (ADS)
Wensman, Johnathan; Guardala, Noel; Mathur, Veerendra; Alasagas, Leslie; Vanhoy, Jeffrey; Statham, John; Marron, Daniel; Millett, Marshall; Marsh, Jarrod; Currie, John; Price, Jack
2017-09-01
Gallium nitride (GaN) is a III/V direct bandgap semiconductor which has been used in light emitting diodes (LEDs) since the 1990s. Currently, due to a potential for increased efficiency, GaN is being investigated as a replacement for silicon in power electronics finding potential uses ranging from data centers to electric vehicles. In addition to LEDs and power electronics though, doped GaN can be used as a gamma insensitive fast neutron detector due to the direct band-gap, light propagation properties, and response to ionizing radiations. Investigation of GaN as a semiconductor scintillator for use in a radiation detection system involves mapping the response function of the detector crystal over a range of photon and neutron energies, and measurements of light generation in the GaN crystal due to proton, alpha, and nitrogen projectiles. In this presentation we discuss the measurements made to date, and plausible interpretations of the response functions. This work funded in part by the Naval Surface Warfare Center, Carderock Division In-house Laboratory Independent Research program.
PRESCILA: a new, lightweight neutron rem meter.
Olsher, Richard H; Seagraves, David T; Eisele, Shawna L; Bjork, Christopher W; Martinez, William A; Romero, Leonard L; Mallett, Michael W; Duran, Michael A; Hurlbut, Charles R
2004-06-01
Conventional neutron rem meters currently in use are based on 1960's technology that relies on a large neutron moderator assembly surrounding a thermal detector to achieve a rem-like response function over a limited energy range. Such rem meters present an ergonomic challenge, being heavy and bulky, and have caused injuries during radiation protection surveys. Another defect of traditional rem meters is a poor high-energy response above 10 MeV, which makes them unsuitable for applications at high-energy accelerator facilities. Proton Recoil Scintillator-Los Alamos (PRESCILA) was developed as a low-weight (2 kg) alternative capable of extended energy response, high sensitivity, and moderate gamma rejection. An array of ZnS(Ag) based scintillators is located inside and around a Lucite light guide, which couples the scintillation light to a sideview bialkali photomultiplier tube. The use of both fast and thermal scintillators allows the energy response function to be optimized for a wide range of operational spectra. The light guide and the borated polyethylene frame provide moderation for the thermal scintillator element. The scintillators represent greatly improved versions of the Hornyak and Stedman designs from the 1950's, and were developed in collaboration with Eljen Technology. The inherent pulse height advantage of proton recoils over electron tracks in the phosphor grains eliminates the need for pulse shape discrimination and makes it possible to use the PRESCILA probe with standard pulse height discrimination provided by off-the-shelf health physics counters. PRESCILA prototype probes have been extensively tested at both Los Alamos and the German Bureau of Standards, Physikalisch-Technische Bundesanstalt. Test results are presented for energy response, directional dependence, linearity, sensitivity, and gamma rejection. Initial field tests have been conducted at Los Alamos and these results are also given. It is concluded that PRESCILA offers a viable, ergonomically superior, alternative to traditional rem meters that is effective for a wide range of neutron fields. The probe is capable of excellent sensitivity (40 counts per minute per microSv h-1 for 241AmBe) and extended energy response to beyond 20 MeV. Directional response is uniform (+/-15%) over a wide range of energies. Response linearity has been characterized to over 20 mSv h-1. Gamma rejection is effective in gamma fields up to 2 mSv h-1. The PRESCILA technology has been commercialized and is now offered under license by Ludlum Measurements, Inc.
Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons.
Cazzaniga, C; Nocente, M; Tardocchi, M; Croci, G; Giacomelli, L; Angelone, M; Pillon, M; Villari, S; Weller, A; Petrizzi, L; Gorini, G
2013-12-01
Measurements of the response of LaBr3(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on (79)Br, (81)Br, and (139)La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.
Impact of ASTM Standard E722 update on radiation damage metrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePriest, Kendall Russell
2014-06-01
The impact of recent changes to the ASTM Standard E722 is investigated. The methodological changes in the production of the displacement kerma factors for silicon has significant impact for some energy regions of the 1-MeV(Si) equivalent fluence response function. When evaluating the integral over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in an increase in the total 1-MeV(Si) equivalent fluence of 2 7%. Response functions have been produced and are available for users of both the NuGET and MCNP codes.
Light transport feature for SCINFUL.
Etaati, G R; Ghal-Eh, N
2008-03-01
An extended version of the scintillator response function prediction code SCINFUL has been developed by incorporating PHOTRACK, a Monte Carlo light transport code. Comparisons of calculated and experimental results for organic scintillators exposed to neutrons show that the extended code improves the predictive capability of SCINFUL.
Portable Neutron Sensors for Emergency Response Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
,
2012-06-24
This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps formore » neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains μeV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.« less
Neutron-detecting apparatuses and methods of fabrication
Dahal, Rajendra P.; Huang, Jacky Kuan-Chih; Lu, James J. Q.; Danon, Yaron; Bhat, Ishwara B.
2015-10-06
Neutron-detecting structures and methods of fabrication are provided which include: a substrate with a plurality of cavities extending into the substrate from a surface; a p-n junction within the substrate and extending, at least in part, in spaced opposing relation to inner cavity walls of the substrate defining the plurality of cavities; and a neutron-responsive material disposed within the plurality of cavities. The neutron-responsive material is responsive to neutrons absorbed for releasing ionization radiation products, and the p-n junction within the substrate spaced in opposing relation to and extending, at least in part, along the inner cavity walls of the substrate reduces leakage current of the neutron-detecting structure.
A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code
NASA Astrophysics Data System (ADS)
Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu
2016-07-01
The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen
Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less
Tume, P; Lewis, B J; Bennett, L G; Cousins, T
1998-01-01
A survey of the natural background dose equivalent received by Canadian Forces aircrew was conducted using neutron-sensitive bubble detectors (BDs) as the primary detection tool. Since this study was a new application for these detectors, the BD response to neutron dose equivalent (RD) was extended from thermal to 500 MeV in neutron energy. Based upon the extended RD, it was shown that the manufacturer's calibration can be scaled by 1.5 +/- 0.5 to give a BD sensitivity that takes into account recently recommended fluence-to-neutron dose equivalent conversion functions and the cosmogenic neutron spectrum encountered at jet altitudes. An investigation of the effects of systematic bias caused by the cabin environment (i.e., temperature, pressure and relative humidity) on the in-flight measurements was also conducted. Both simulated and actual aircraft climate tests indicated that the detectors are insensitive to the pressure and relative humidity variations encountered during routine jet aircraft operations. Long term conditioning tests also confirmed that the BD-PND model of detector is sensitive to variations in temperature to within +/- 20%. As part of the testing process, the in-flight measurements also demonstrated that the neutron dose equivalent is distributed uniformly throughout a Boeing 707 jet aircraft, indicating that both pilots and flight attendants are exposed to the same neutron field intensity to within experimental uncertainty.
In situ calibration of neutron activation system on the large helical device
NASA Astrophysics Data System (ADS)
Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.
2017-11-01
In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.
Organic Scintillator for Real-Time Neutron Dosimetry
Beyer, Kyle A.; Di Fulvio, Angela; Stolarczyk, Liliana; ...
2017-11-15
We have developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV–0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cfmore » neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom.« less
Thermoluminescence measurements of neutron dose around a medical linac.
Barquero, R; Méndez, R; Iñiguez, M P; Vega, H R; Voytchev, M
2002-01-01
The photoncutron ambient dose around a 18 MV medical electron lineal accelerator has been measured with LiF:Mg,Ti chips of 3 x 3 x 1 mm inside moderating spheres. During the measurements a water phantom was irradiated in a field of 40 x 40 cm2. Two methods have been considered for comparison. In the first, a TLD-600/TLD-700 pair at the centre of a 25 cm diameter paraffine sphere was used, with the system behaving as a rem meter. In the second method, TLD-600/TLD-700 pairs, bare and at the centre of 7.6, 12.7, 20.3, 25.4, and 30.5 cm diameter polyethylene Bonner spheres were used to obtain the neutron spectrum. This was unfolded using the BUNKIUT code with the SPUNIT algorithm and the UTA4 and ARKI response functions. The neutron dose was followed by multiplying the unfolded neutron spectrum by the ambient dose equivalent to neutron fluence conversion factors. Both methods result in 0.5 mSv x Gy(-1) m away from the isocentre.
Organic Scintillator for Real-Time Neutron Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, Kyle A.; Di Fulvio, Angela; Stolarczyk, Liliana
We have developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV–0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cfmore » neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom.« less
Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi
2009-10-01
We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.
Systematics of the electric dipole response in stable tin isotopes
NASA Astrophysics Data System (ADS)
Bassauer, Sergej; von Neumann-Cosel, Peter; Tamii, Atsushi
2018-05-01
The electric dipole is an important property of heavy nuclei. Precise information on the electric dipole response provides information on the electric dipole polarisability which in turn allows to extract important constraints on neutron-skin thickness in heavy nuclei and parameters of the symmetry energy. The tin isotope chain is particularly suited for a systematic study of the dependence of the electric dipole response on neutron excess as it provides a wide mass range of accessible isotopes with little change of the underlying structure. Recently an inelastic proton scattering experiment under forward angles including 0º on 112,116,124Sn was performed at the Research Centre for Nuclear Physics (RCNP), Japan with a focus on the low-energy dipole strength and the polarisability. First results are presented here. Using data from an earlier proton scattering experiment on 120Sn the gamma strength function and level density are determined for this nucleus.
Electric Dipole Polarizability of ^{48}Ca and Implications for the Neutron Skin.
Birkhan, J; Miorelli, M; Bacca, S; Bassauer, S; Bertulani, C A; Hagen, G; Matsubara, H; von Neumann-Cosel, P; Papenbrock, T; Pietralla, N; Ponomarev, V Yu; Richter, A; Schwenk, A; Tamii, A
2017-06-23
The electric dipole strength distribution in ^{48}Ca between 5 and 25 MeV has been determined at RCNP, Osaka from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the first extraction of the electric dipole polarizability α_{D}(^{48}Ca)=2.07(22) fm^{3}. Remarkably, the dipole response of ^{48}Ca is found to be very similar to that of ^{40}Ca, consistent with a small neutron skin in ^{48}Ca. The experimental results are in good agreement with ab initio calculations based on chiral effective field theory interactions and with state-of-the-art density-functional calculations, implying a neutron skin in ^{48}Ca of 0.14-0.20 fm.
Electric Dipole Polarizability of Ca 48 and Implications for the Neutron Skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkhan, J.; Miorelli, M.; Bacca, S.
The electric dipole strength distribution in 48Ca between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the rst extraction of the electric dipole polarizability D( 48Ca) = 2:07(22) fm 3. Remarkably, the dipole response of 48Ca is found to be very similar to that of 40Ca, consistent with a small neutron skin in 48Ca. The experimental results are in good agreement with ab initio calculations based on chiral e ective eld theory interactions and with state-of-the-art density-functional calculations, implying amore » neutron skin in 48Ca of 0:14 - 0:20 fm.« less
Electric Dipole Polarizability of Ca 48 and Implications for the Neutron Skin
Birkhan, J.; Miorelli, M.; Bacca, S.; ...
2017-06-23
The electric dipole strength distribution in 48Ca between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the rst extraction of the electric dipole polarizability D( 48Ca) = 2:07(22) fm 3. Remarkably, the dipole response of 48Ca is found to be very similar to that of 40Ca, consistent with a small neutron skin in 48Ca. The experimental results are in good agreement with ab initio calculations based on chiral e ective eld theory interactions and with state-of-the-art density-functional calculations, implying amore » neutron skin in 48Ca of 0:14 - 0:20 fm.« less
Lithium-containing scintillators for thermal neutron, fast neutron, and gamma detection
Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.
2016-03-01
In one embodiment, a scintillator includes a scintillator material; a primary fluor, and a Li-containing compound, where the Li-containing compound is soluble in the primary fluor, and where the scintillator exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays.
The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, T., E-mail: schmito@uni-mainz.de; Bassler, N.; Blaickner, M.
Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particlemore » spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The alanine detector can be used without difficulty in neutron fields. The response has been understood with the model used which includes the relative effectiveness. Results and the corresponding discussion lead to the conclusion that application in neutron fields for medical purpose is limited by its sensitivity but that it is a useful tool as supplement to other detectors and verification of neutron source descriptions.« less
Dynamic Structure Factor: An Introduction
NASA Astrophysics Data System (ADS)
Sturm, K.
1993-02-01
The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.
Characteristic evaluation of a Lithium-6 loaded neutron coincidence spectrometer.
Hayashi, M; Kaku, D; Watanabe, Y; Sagara, K
2007-01-01
Characteristics of a (6)Li-loaded neutron coincidence spectrometer were investigated from both measurements and Monte Carlo simulations. The spectrometer consists of three (6)Li-glass scintillators embedded in a liquid organic scintillator BC-501A, which can detect selectively neutrons that deposit the total energy in the BC-501A using a coincidence signal generated from the capture event of thermalised neutrons in the (6)Li-glass scintillators. The relative efficiency and the energy response were measured using 4.7, 7.2 and 9.0 MeV monoenergetic neutrons. The measured ones were compared with the Monte Carlo calculations performed by combining the neutron transport code PHITS and the scintillator response calculation code SCINFUL. The experimental light output spectra were in good agreement with the calculated ones in shape. The energy dependence of the detection efficiency was reproduced by the calculation. The response matrices for 1-10 MeV neutrons were finally obtained.
Gómez-Ros, J M; Bedogni, R; Bortot, D; Domingo, C; Esposito, A; Introini, M V; Lorenzoli, M; Mazzitelli, G; Moraleda, M; Pola, A; Sacco, D
2017-04-01
This communication describes two new instruments, based on multiple active thermal neutron detectors arranged within a single moderator, that permit to unfold the neutron spectrum (from thermal to hundreds of MeV) and to determine the corresponding integral quantities with only one exposure. This makes them especially advantageous for neutron field characterisation and workplace monitoring in neutron-producing facilities. One of the devices has spherical geometry and nearly isotropic response, the other one has cylindrical symmetry and it is only sensitive to neutrons incident along the cylinder axis. In both cases, active detectors have been specifically developed looking for the criteria of miniaturisation, high sensitivity, linear response and good photon rejection. The calculated response matrix has been validated by experimental irradiations in neutron reference fields with a global uncertainty of 3%. The measurements performed in realistic neutron fields permitted to determine the neutron spectra and the integral quantities, in particular H*(10). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant
NASA Astrophysics Data System (ADS)
Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.
2016-01-01
Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang
2012-06-26
A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.
NASA Astrophysics Data System (ADS)
Diallo, S. O.; Lin, J. Y. Y.; Abernathy, D. L.; Azuah, R. T.
2016-11-01
Inelastic neutron scattering at high momentum transfers (i.e. Q ≥ 20 A ˚), commonly known as deep inelastic neutron scattering (DINS), provides direct observation of the momentum distribution of light atoms, making it a powerful probe for studying single-particle motions in liquids and solids. The quantitative analysis of DINS data requires an accurate knowledge of the instrument resolution function Ri(Q , E) at each momentum Q and energy transfer E, where the label i indicates whether the resolution was experimentally observed i = obs or simulated i=sim. Here, we describe two independent methods for determining the total resolution function Ri(Q , E) of the ARCS neutron instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. The first method uses experimental data from an archetypical system (liquid 4He) studied with DINS, which are then numerically deconvoluted using its previously determined intrinsic scattering function to yield Robs(Q , E). The second approach uses accurate Monte Carlo simulations of the ARCS spectrometer, which account for all instrument contributions, coupled to a representative scattering kernel to reproduce the experimentally observed response S(Q , E). Using a delta function as scattering kernel, the simulation yields a resolution function Rsim(Q , E) with comparable lineshape and features as Robs(Q , E), but somewhat narrower due to the ideal nature of the model. Using each of these two Ri(Q , E) separately, we extract characteristic parameters of liquid 4He such as the intrinsic linewidth α2 (which sets the atomic kinetic energy 〈 K 〉 ∼α2) in the normal liquid and the Bose-Einstein condensate parameter n0 in the superfluid phase. The extracted α2 values agree well with previous measurements at saturated vapor pressure (SVP) as well as at elevated pressure (24 bars) within experimental precision, independent of which Ri(Q , y) is used to analyze the data. The actual observed n0 values at each Q vary little with the model Ri(Q , E), and the effective Q-averaged n0 values are consistent with each other, and with previously reported values.
Neutron response of GafChromic® EBT2 film
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chen; Liu, Yuan-Hao; Chen, Wei-Lin; Jiang, Shiang-Huei
2013-03-01
Neutron and gamma-ray mixed field dosimetry remains one of the most challenging topics in radiation dosimetry studies. However, the requirement for accurate mixed field dosimetry is increasing because of the considerable interest in high-energy radiotherapy machines, medical ion beams and BNCT epithermal neutron beams. Therefore, this study investigated the GafChromic® EBT2 film. The linearity, reproducibility, energy dependence and homogeneity of the film were tested in a 60Co medical beam, 6-MV LINAC and 10-MV LINAC. The linearity and self-developing effect of the film irradiated in an epithermal neutron beam were also examined. These basic detector characteristics showed that EBT2 film can be effectively applied in mixed field dosimetry. A general detector response model was developed to determine the neutron relative effectiveness (RE) values. The RE value of fast neutrons varies with neutron spectra. By contrast, the RE value of thermal neutrons was determined as a constant; it is only 32.5% in relation to gamma rays. No synergy effect was observed in this study. The lithium-6 capture reaction dominates the neutron response in the thermal neutron energy range, and the recoil hydrogen dose becomes the dominant component in the fast neutron energy region. Based on this study, the application of the EBT2 film in the neutron and gamma-ray mixed field is feasible.
González, Gabriela B.
2012-01-01
Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010
Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.
2017-05-16
A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.
Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter
NASA Astrophysics Data System (ADS)
Priyada, P.; Ashwini, U.; Sarkar, P. K.
2016-05-01
The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10-8 MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome.
Measuring Fission Chain Dynamics Through Inter-event Timing of Correlated Particles
NASA Astrophysics Data System (ADS)
Monterial, Mateusz
Neutrons born from fission may go on to induce subsequent fissions in self-propagating series of reactions resulting in a fission chain. Fissile materials comprise all isotopes capable of sustaining nuclear fission chain reactions, and are therefore a necessary prerequisite for the construction of a nuclear weapon. As a result the accountancy and characterization of fissile material is of great importance for national security and the international community. The rate at which neutrons "multiply" in a fissile material is a function of the composition, total mass, density, and shape of the object. These are key characteristics sought out in areas of nuclear non-proliferation, safeguards, treaty verification and emergency response. This thesis demonstrates a novel technique of measuring the underlying fission chain dynamics in fissile material through temporal correlation of neutrons and gamma rays emitted from fission. Fissile material exhibits key detectable signatures through the emission of correlated neutrons and gamma rays from fission. The Non-Destructive Assay (NDA) community has developed mature techniques of assaying fissile material that detect these signatures, such as neutron counting by thermal capture based detectors, and gamma-ray spectroscopy. An alternative use of fast organic scintillators provides three additional capabilities: (1) discrimination between neutrons and gamma-ray pulses (2) sub-nanosecond scale timing between correlated events (3) measurement of deposited neutron energy in the detector. This thesis leverages these capabilities into to measure a new signature, which is demonstrated to be sensitive to both fissile neutron multiplication and presence of neutronically coupled reflectors. In addition, a new 3D imaging method of sources of correlated gamma rays and neutrons is presented, which can improve estimation of total source volume and localization.
Prompt neutron emission and energy balance in 235U(n,f)
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2017-09-01
Investigations of prompt fission neutron (PFN) emission are of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at JRC-Geel on PFN emission in response to OECD/NEA nuclear data requests is presented in this contribution. The focus lies on on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances taking place at the GELINA facility. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed as a function of incident neutron energy in the resonance region. In addition, fluctuations of prompt neutron multiplicities have also been observed. The goal of the present study is to verify the current knowledge of PFN multiplicity fluctuations and to study correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. Results on PFN multiplicity correlations with fission fragment properties from the present study show significant differences compared to earlier studies on this reaction, induced by thermal neutrons. Specifically, the total kinetic energy dependence of the neutron multiplicity per fission shows an inverse slope FX1TKE/FX2ν approximately 35% weaker than observed in earlier studies of thermal neutron induced fission on 235U. The inverse slope is related to the energy carried away per emitted neutron and is, thereby, closely connected to the energy balance of the fission reaction. The present result should have strong impact on the modeling of both prompt neutron and prompt γ-ray emission in fission of the 236U compound nucleus.
Neutron counter based on beryllium activation
NASA Astrophysics Data System (ADS)
Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.
2014-08-01
The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, Steve M.; Thoreson, Greg G.; Theisen, Lisa A.
2016-05-01
The Gamma Detector Response and Analysis Software–Detector Response Function (GADRAS-DRF) application computes the response of gamma-ray and neutron detectors to incoming radiation. This manual provides step-by-step procedures to acquaint new users with the use of the application. The capabilities include characterization of detector response parameters, plotting and viewing measured and computed spectra, analyzing spectra to identify isotopes, and estimating source energy distributions from measured spectra. GADRAS-DRF can compute and provide detector responses quickly and accurately, giving users the ability to obtain usable results in a timely manner (a matter of seconds or minutes).
ORGANIC SCINTILLATOR FOR REAL-TIME NEUTRON DOSIMETRY.
Beyer, Kyle A; Di Fulvio, Angela; Stolarczyk, Liliana; Parol, Wiktor; Mojzeszek, Natalia; Kopéc, Renata; Clarke, Shaun D; Pozzi, Sara A
2017-11-15
We developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV-0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cf neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.
2017-06-01
The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.
Monte Carlo simulation of the neutron monitor yield function
NASA Astrophysics Data System (ADS)
Mangeard, P.-S.; Ruffolo, D.; Sáiz, A.; Madlee, S.; Nutaro, T.
2016-08-01
Neutron monitors (NMs) are ground-based detectors that measure variations of the Galactic cosmic ray flux at GV range rigidities. Differences in configuration, electronics, surroundings, and location induce systematic effects on the calculation of the yield functions of NMs worldwide. Different estimates of NM yield functions can differ by a factor of 2 or more. In this work, we present new Monte Carlo simulations to calculate NM yield functions and perform an absolute (not relative) comparison with the count rate of the Princess Sirindhorn Neutron Monitor (PSNM) at Doi Inthanon, Thailand, both for the entire monitor and for individual counter tubes. We model the atmosphere using profiles from the Global Data Assimilation System database and the Naval Research Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended model. Using FLUKA software and the detailed geometry of PSNM, we calculated the PSNM yield functions for protons and alpha particles. An agreement better than 9% was achieved between the PSNM observations and the simulated count rate during the solar minimum of December 2009. The systematic effect from the electronic dead time was studied as a function of primary cosmic ray rigidity at the top of the atmosphere up to 1 TV. We show that the effect is not negligible and can reach 35% at high rigidity for a dead time >1 ms. We analyzed the response function of each counter tube at PSNM using its actual dead time, and we provide normalization coefficients between count rates for various tube configurations in the standard NM64 design that are valid to within ˜1% for such stations worldwide.
Bonura, M A; Ruiz, C L; Fehl, D L; Cooper, G W; Chandler, G; Hahn, K D; Nelson, A J; Styron, J D; Torres, J A
2014-11-01
An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement.
NASA Astrophysics Data System (ADS)
Maruyama, Shingo; Anbusathaiah, Varatharajan; Fennell, Amy; Enderle, Mechthild; Takeuchi, Ichiro; Ratcliff, William D.
2014-11-01
We report on the evolution of the magnetic structure of BiFeO3 thin films grown on SrTiO3 substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.
Scintillator fiber optic long counter
McCollum, Tom; Spector, Garry B.
1994-01-01
A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected.
The light output and the detection efficiency of the liquid scintillator EJ-309.
Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G
2014-07-01
The light output response and the neutron and gamma-ray detection efficiency are determined for liquid scintillator EJ-309. The light output function is compared to those of previous studies. Experimental efficiency results are compared to predictions from GEANT4, MCNPX and PENELOPE Monte Carlo simulations. The differences associated with the use of different light output functions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Uncertainty analysis of signal deconvolution using a measured instrument response function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartouni, E. P.; Beeman, B.; Caggiano, J. A.
2016-10-05
A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). Here, we investigate the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate of the physical model’s parameters. Finally, we apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimummore » physical parameters.« less
COMPTEL neutron response at 17 MeV
NASA Technical Reports Server (NTRS)
Oneill, Terrence J.; Ait-Ouamer, Farid; Morris, Joann; Tumer, O. Tumay; White, R. Stephen; Zych, Allen D.
1992-01-01
The Compton imaging telescope (COMPTEL) instrument of the Gamma Ray Observatory was exposed to 17 MeV d,t neutrons prior to launch. These data were analyzed and compared with Monte Carlo calculations using the MCNP(LANL) code. Energy and angular resolutions are compared and absolute efficiencies are calculated at 0 and 30 degrees incident angle. The COMPTEL neutron responses at 17 MeV and higher energies are needed to understand solar flare neutron data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.a; National Research Council; Crivello, Martin
2011-01-01
Purpose: DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ({sup 10}BPA) and for 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX ({sup 10}BOPP). Methods and Materials: Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm {sup 10}B) + neutrons, (2) BOPP (10 ppm {sup 10}B) + neutrons, (3) neutrons alone, and (4) gammamore » rays ({sup 60}Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy ({+-}10%) (thermal neutrons flux = 7.5 10{sup 9} n/cm{sup 2} sec). Results: The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 {+-} 1.1 and 2.4 {+-} 0.6; CBE for BOPP: 8.0 {+-} 2.2 and 2.0 {+-} 1; CBE for BPA: 19.6 {+-} 3.7 and 3.5 {+-} 1.3. Conclusions: BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a biologic model and could be useful for future experimental studies for the application of BNCT to colon carcinoma.« less
Determination of the thermal and epithermal neutron sensitivities of an LBO chamber.
Endo, Satoru; Sato, Hitoshi; Shimazaki, Takuto; Nakajima, Erika; Kotani, Kei; Suda, Mitsuru; Hamano, Tsuyoshi; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Hoshi, Masaharu
2017-08-01
An LBO (Li 2 B 4 O 7 ) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9 Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm 2 , i.e., from the chamber response divided by neutron fluence (cm -2 ). The measured LBO chamber sensitivities were 2.23 × 10 -7 ± 0.34 × 10 -7 (pC cm 2 ) for thermal neutrons and 2.00 × 10 -5 ± 0.12 × 10 -5 (pC cm 2 ) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.
Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy
NASA Astrophysics Data System (ADS)
Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro
2015-01-01
MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.
The development of an energy-independent personnel neutron dosimeter using CR-39
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doremus, S.W.
The addition of specialized (n,{alpha}) radiators to a standard polyethylene/CR-39 (PE/CR-39) neutron dosimetry system was evaluated for improved response to low energy neutrons. Specialized radiators consisting of poly(vinyl alcohol) complexed with boron (natural and enriched boron-10) and poly(acrylic acid) complexed with lithium (enriched lithium-6) were evaluated. The complexion of boron with poly(vinyl alcohol) was accomplished by incorporation or surface coating. The complexion of lithium with poly(acrylic acid) was exclusively performed by incorporation. The dosimeter was designed such that the specialized radiator was in contact with the CR-39 detector (i.e., the specialized radiator was sandwiched between the CR-39 detector and polyethylenemore » radiator). The neutron response of this dosimetry system was investigated using {sup 252}Cf (moderated and bare) spontaneous fission neutrons. Detectors were chemically etched and then read with a Nikon OPTIPHOT microscope. The mean response (tracks {center dot} field{sup {minus}1}) of detectors treated with specialized (n,{alpha}) radiators were evaluated against PE/CR-39 controls. The results of this investigation demonstrate that PE/CR-39 dosimeters equipped with specialized (n,{alpha}) radiators have a noticeable response to low energy neutrons that in many instances is significantly greater than that of the controls. The addition of specialized radiators to this dosimetry system did not effect (diminish) its response to fast neutrons.« less
NASA Astrophysics Data System (ADS)
Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Gongadze, A.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Solovov, V.; Van Esch, P.; Zeitelhack, K.
2013-05-01
The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/~andrei/
NASA Astrophysics Data System (ADS)
Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.
2014-01-01
Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling factors based on recently updated neutron and proton excitation functions (probability of nuclide production in a given nuclear reaction as a function of energy) for commonly measured in situ cosmogenic nuclides. Such scaling factors reflect the influence of the energy distribution of the flux folded with the relevant excitation functions. Resulting scaling factors indicate 3He shows the strongest positive deviation from the flux-based scaling, while 14C exhibits a negative deviation. These results are consistent with a recent Monte Carlo-based study using a different cosmic-ray physics code package but the same excitation functions.
Neutron matter with Quantum Monte Carlo: chiral 3N forces and static response
Buraczynski, M.; Gandolfi, S.; Gezerlis, A.; ...
2016-03-14
Neutron matter is related to the physics of neutron stars and that of neutron-rich nuclei. Moreover, Quantum Monte Carlo (QMC) methods offer a unique way of solving the many-body problem non-perturbatively, providing feedback on features of nuclear interactions and addressing scenarios that are inaccessible to other approaches. Our contribution goes over two recent accomplishments in the theory of neutron matter: a) the fusing of QMC with chiral effective field theory interactions, focusing on local chiral 3N forces, and b) the first attempt to find an ab initio solution to the problem of static response.
NASA Astrophysics Data System (ADS)
Salem, Y. O.; Nachab, A.; Roy, C.; Nourreddine, A.
2016-10-01
We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H∗(10) and Hp(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jassby, D.L.; Hendel, H.W.; Bosch, H.S.
1988-05-01
The response of polyethylene-moderated U-235 fission counters is only weakly dependent on incident neutron energy, while the response of unmoderated U-238 or Th-232 fission counters increases strongly with energy. A given concentration of D-T neutrons in a mixed DT-DD source results in a unique relative detector response that depends on the parameters R14 and R2.5, where R14 is the ratio of the unmoderated U-238 and moderated U-235 detector efficiencies for a pure 14-MeV neutron source, and R2.5 is the corresponding ratio for a pure 2.5 MeV source. We have determined R14 and R2.5 using D-D and D-T neutron generators insidemore » the TFTR vacuum vessel. The results indicate that, for our detector geometry, the ratio of U-238 to U-235 count rates should increase by a factor of about 3 when the fusion neutron source changes from pure D-D to pure D-T. This calibration is being applied to recent TFTR /open quotes/supershot/close quotes/ data, where the uncollided neutron flux in the post-beam phase contains a high proportion of D-T neutrons from the burnup of D-D tritons. 8 refs., 4 figs,. 2 tabs.« less
Monte-Carlo gamma response simulation of fast/thermal neutron interactions with soil elements
USDA-ARS?s Scientific Manuscript database
Soil elemental analysis using characteristic gamma rays induced by neutrons is an effective method of in situ soil content determination. The nuclei of soil elements irradiated by neutrons issue characteristic gamma rays due to both inelastic neutron scattering (e.g., Si, C) and thermal neutron capt...
Scintillator fiber optic long counter
McCollum, T.; Spector, G.B.
1994-03-29
A flat response position sensitive neutron detector capable of providing neutron spectroscopic data utilizing scintillator fiber optic filaments embedded in a neutron moderating housing having an open end through which neutrons enter to be detected is described. 11 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.
2011-12-15
Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with themore » well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 {+-} 0.05 x 10{sup -21} A n{sup -1}{center_dot}cm{sup 2}{center_dot}s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. Conclusions: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.« less
Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo
2011-12-01
A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 ± 0.05 × 10(-21) A n(-1)[middle dot]cm² [middle dot]s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.
MEANS FOR CONTROLLING A NUCLEAR REACTOR
Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.
1957-12-17
This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.
Structure Functions of Bound Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian Kuhn
2005-04-01
We describe an experiment measuring electron scattering on a neutron bound in deuterium with coincident detection of a fast, backward-going spectator proton. Our data map out the relative importance of the pure PWIA spectator mechanism and final state interactions in various kinematic regions, and give a first glimpse of the modification of the structure function of a bound neutron as a function of its off-shell mass. We also discuss a new experimental program to study the structure of a free neutron by extending the same technique to much lower spectator momenta.
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
NASA Astrophysics Data System (ADS)
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
Incident angle dependence of proton response of CR-39 (TS-16) track detector
NASA Technical Reports Server (NTRS)
Oda, K.; Csige, I.; Yamauchi, T.; Miyake, H.; Benton, E. V.
1993-01-01
The proton response of the TS-16 type of CR-39 plastic nuclear track detector has been studied with accelerated and fast neutron induced protons in vacuum and in air. The diameters of etched tracks were measured as a function of etching time and the etch rate ratio and the etch induction layer were determined from the growth curve of the diameter using a variable etch rate ratio model. In the case of the accelerated protons in vacuum an anomalous incident angle dependence of the response is observed.
Baiocco, G; Alloni, D; Babini, G; Mariotti, L; Ottolenghi, A
2015-09-01
Neutron relative biological effectiveness (RBE) is found to be energy dependent, being maximal for energies ∼1 MeV. This is reflected in the choice of radiation weighting factors wR for radiation protection purposes. In order to trace back the physical origin of this behaviour, a detailed study of energy deposition processes with their full dependences is necessary. In this work, the Monte Carlo transport code PHITS was used to characterise main secondary products responsible for energy deposition in a 'human-sized' soft tissue spherical phantom, irradiated by monoenergetic neutrons with energies around the maximal RBE/wR. Thereafter, results on the microdosimetric characterisation of secondary protons were used as an input to track structure calculations performed with PARTRAC, thus evaluating the corresponding DNA damage induction. Within the proposed simplified approach, evidence is suggested for a relevant role of secondary protons in inducing the maximal biological effectiveness for 1 MeV neutrons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of a portable thermal neutron detector based on a boron rich heterodiode
NASA Astrophysics Data System (ADS)
Tomov, R.; Venn, R.; Owens, A.; Peacock, A.
2008-10-01
Results are presented on the development of a portable detector suitable for detection of individual thermal neutrons. The device is based on direct absorption of neutrons in an absorber film containing 10B. The resultant charge arising from the capture products is detected by a p-n junction partly formed from this absorber and internal to the device. When a small bias voltage is applied (typically a few volts) a current pulse is observed due to the movement of this charge in the electric field of the p-n junction. For each detected neutron the charge pulse height, rise time and time of detection are recorded. Device performance, in terms of efficiency and spectral response, is explored as a function of neutron absorber thickness, geometry and overall diode electrical characteristics and validated against neutron source measurements at the UK National Physical Laboratory (NPL). The diodes have a natural background suppression capability through traditional pulse height and pulse rise time discrimination. The manufacturing process permits fabrication of arrays of diodes, with typical areas of ~15 mm2, thus increasing the collecting area and the signal to noise ratio, albeit with increased readout complexity. The associated multi-channel readout electronics is standard, however, and commonly used in existing X-ray sensors. Simple portable sensors based on these heterodiodes are expected to have applications in the detection of nuclear materials in a variety of security related situations.
Combination neutron-gamma ray detector
Stuart, Travis P.; Tipton, Wilbur J.
1976-10-26
A radiation detection system capable of detecting neutron and gamma events and distinguishing therebetween. The system includes a detector for a photomultiplier which utilizes a combination of two phosphor materials, the first of which is in the form of small glass beads which scintillate primarily in response to neutrons and the second of which is a plastic matrix which scintillates in response to gammas. A combination of pulse shape and pulse height discrimination techniques is utilized to provide an essentially complete separation of the neutron and gamma events.
Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer.
Haapaniemi, Aaro; Kankaanranta, Leena; Saat, Riste; Koivunoro, Hanna; Saarilahti, Kauko; Mäkitie, Antti; Atula, Timo; Joensuu, Heikki
2016-05-01
To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT. Copyright © 2016 Elsevier Inc. All rights reserved.
Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi; Kankaanranta, Leena; Saat, Riste
2016-05-01
Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patientsmore » who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.« less
Neutron Capture Measurements on 97Mo with the DANCE Array
NASA Astrophysics Data System (ADS)
Walker, Carrie L.
Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.
Neutron Spectroscopy on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Knauer, J. P.
2012-10-01
The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.
NeutronSTARS: A segmented neutron and charged particle detector for low-energy reaction studies
Akindele, O. A.; Casperson, R. J.; Wang, B. S.; ...
2017-08-10
NeutronSTARS (Neutron-S ilicon T elescope A rray for R eaction S tudies) consists of 2.2-tons of gadolinium-doped liquid scintillator for neutron detection and large area silicon detectors for charged particle identification. This detector array is intended for low-energy-nuclear-reaction measurements that result in the emission of neutrons such as and fission. This paper describes the NeutronSTARS experimental setup, calibration, and the array’s response to neutral and charged particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keehan, S; Franich, R; Taylor, M
Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and themore » ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.« less
Rosenbluth Separation of the π^{0} Electroproduction Cross Section Off the Neutron.
Mazouz, M; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; Defurne, M; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Huber, G M; Hyde, C E; Iqbal, S; Itard, F; Kang, Ho; Kang, Hy; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Martí Jiménez-Argüello, A; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Muangma, N; Muñoz Camacho, C; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zana, L; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P
2017-06-02
We report the first longitudinal-transverse separation of the deeply virtual exclusive π^{0} electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσ_{L}/dt, dσ_{T}/dt, dσ_{LT}/dt, and dσ_{TT}/dt are extracted as a function of the momentum transfer to the recoil system at Q^{2}=1.75 GeV^{2} and x_{B}=0.36. The ed→edπ^{0} cross sections are found compatible with the small values expected from theoretical models. The en→enπ^{0} cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π^{0} electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.
NASA Astrophysics Data System (ADS)
Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.
2013-12-01
To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron decays are thought to originate from the radiation belt. This theory is called CRAND (Cosmic Ray Albedo Neutron Decay). Our observation result is consistent with the CRAND theory prediction in the case of low-energy parts. Moreover, the flux and angular distribution of local neutrons were estimated using the nuclear simulation code 'PHITS' to evaluate the influence of local neutrons on the structure of SEDA-AP and 'Kibo'. The results of our analyses on solar and albedo neutrons are reported in this paper.
Biological Effects of High-Energy Neutrons Measured In Vivo Using a Vertebrate Model
Kuhne, Wendy W.; Gersey, Brad B.; Wilkins, Richard; Wu, Honglu; Wender, Stephen A.; George, Varghese; Dynan, William S.
2009-01-01
Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 0–0.5 Gy of high-energy neutron radiation or 0–15 Gy of reference γ radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference γ radiation, indicates an RBE of 24.9 (95% CI 13.6–40.7). A higher RBE of 48.1 (95% CI 30.0–66.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure. PMID:19772468
Compounds for neutron radiation detectors and systems thereof
Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, M. Leslie
2013-06-11
One embodiment includes a material exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene. Another embodiment includes a substantially pure crystal exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, the substantially pure crystal comprising a material selected from a group consisting of: 1-1-4-4-tetraphenyl-1-3-butadiene; 2-fluorobiphenyl-4-carboxylic acid; 4-biphenylcarboxylic acid; 9-10-diphenylanthracene; 9-phenylanthracene; 1-3-5-triphenylbenzene; m-terphenyl; bis-MSB; p-terphenyl; diphenylacetylene; 2-5-diphenyoxazole; 4-benzylbiphenyl; biphenyl; 4-methoxybiphenyl; n-phenylanthranilic acid; and 1-4-diphenyl-1-3-butadiene.
Radii of neutron drops probed via the neutron skin thickness of nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, P. W.; Gandolfi, S.
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
Radii of neutron drops probed via the neutron skin thickness of nuclei
Zhao, P. W.; Gandolfi, S.
2016-10-10
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
NASA Astrophysics Data System (ADS)
Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.
2017-12-01
Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor based on the average responses of the horizontal and vertical neutron chambers remains spatially stable as the source moves and can be used in addition to the staff monitor at neutron fluxes in the detectors four orders of magnitude lower than on the first wall, where staff detectors are located. Owing to low background, detectors of neutron chambers do not need calibration in the reactor because it is actually determination of the absolute detector efficiency for 14-MeV neutrons, which is a routine out-of-reactor procedure.
Mirzajani, N; Ciolini, R; Di Fulvio, A; Esposito, J; d'Errico, F
2014-06-01
Experimental activities are underway at INFN Legnaro National Laboratories (LNL) (Padua, Italy) and Pisa University aimed at angular-dependent neutron energy spectra measurements produced by the (9)Be(p,xn) reaction, under a 5MeV proton beam. This work has been performed in the framework of INFN TRASCO-BNCT project. Bonner Sphere Spectrometer (BSS), based on (6)LiI (Eu) scintillator, was used with the shadow-cone technique. Proper unfolding codes, coupled to BSS response function calculated by Monte Carlo code, were finally used. The main results are reported here. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkhan, J.; Miorelli, M.; Bacca, S.
The electric dipole strength distribution in 48Ca between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the rst extraction of the electric dipole polarizability D( 48Ca) = 2:07(22) fm 3. Remarkably, the dipole response of 48Ca is found to be very similar to that of 40Ca, consistent with a small neutron skin in 48Ca. The experimental results are in good agreement with ab initio calculations based on chiral e ective eld theory interactions and with state-of-the-art density-functional calculations, implying amore » neutron skin in 48Ca of 0:14 - 0:20 fm.« less
NASA Astrophysics Data System (ADS)
Masuda, Akihiko; Matsumoto, Tetsuro; Iwamoto, Yosuke; Hagiwara, Masayuki; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi; Yashima, Hiroshi; Nakane, Yoshihiro; Nishiyama, Jun; Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji; Harano, Hideki; Nakamura, Takashi
2017-03-01
Quasi-monoenergetic high-energy neutron fields induced by 7Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96-387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.
Non-induction of radioadaptive response in zebrafish embryos by neutrons
Ng, Candy Y.P.; Kong, Eva Y.; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok
2016-01-01
In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. PMID:26850927
Calculation of the neutron diffusion equation by using Homotopy Perturbation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koklu, H., E-mail: koklu@gantep.edu.tr; Ozer, O.; Ersoy, A.
The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent resultsmore » consistent with the existing literature.« less
The response of a bonner sphere spectrometer to charged hadrons.
Agosteo, S; Dimovasili, E; Fassò, A; Silari, M
2004-01-01
Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN.
Response of CMS avalanche photo-diodes to low energy neutrons
NASA Astrophysics Data System (ADS)
Brown, R. M.; Deiters, K.; Ingram, Q.; Renker, D.
2012-12-01
The response of the Avalanche Photo-diodes (APDs) installed in the CMS detector at the LHC to neutrons from 241AmBe and 252Cf sources is reported. Signals in size equivalent to those of up to 106 photo-electrons with the nominal APD gain are observed. Measurements with an APD with the protective epoxy coating removed and with the source placed behind the APD show that there is an important response due to recoil protons from neutron interactions with the hydrogen in the epoxy, in addition to signals from neutron interactions with the silicon of the diode. The effective gain of these signals is much smaller than the diode's nominal gain.
NASA Astrophysics Data System (ADS)
Medich, David C.; Currier, Blake H.; Karellas, Andrew
2014-10-01
A novel technique is presented for obtaining a single in-vivo image containing both functional and anatomical information in a small animal model such as a mouse. This technique, which incorporates appropriate image neutron-scatter rejection and uses a neutron opaque contrast agent, is based on neutron radiographic technology and was demonstrated through a series of Monte Carlo simulations. With respect to functional imaging, this technique can be useful in biomedical and biological research because it could achieve a spatial resolution orders of magnitude better than what presently can be achieved with current functional imaging technologies such as nuclear medicine (PET, SPECT) and fMRI. For these studies, Monte Carlo simulations were performed with thermal (0.025 eV) neutrons in a 3 cm thick phantom using the MCNP5 simulations software. The goals of these studies were to determine: 1) the extent that scattered neutrons degrade image contrast; 2) the contrasts of various normal and diseased tissues under conditions of complete scatter rejection; 3) the concentrations of Boron-10 and Gadolinium-157 required for contrast differentiation in functional imaging; and 4) the efficacy of collimation for neutron scatter image rejection. Results demonstrate that with proper neutron-scatter rejection, a neutron fluence of 2 ×107 n/cm2 will provide a signal to noise ratio of at least one ( S/N ≥ 1) when attempting to image various 300 μm thick tissues placed in a 3 cm thick phantom. Similarly, a neutron fluence of only 1 ×107 n/cm2 is required to differentiate a 300 μm thick diseased tissue relative to its normal tissue counterpart. The utility of a B-10 contrast agent was demonstrated at a concentration of 50 μg/g to achieve S/N ≥ 1 in 0.3 mm thick tissues while Gd-157 requires only slightly more than 10 μg/g to achieve the same level of differentiation. Lastly, neutron collimator with an L/D ratio from 50 to 200 were calculated to provide appropriate scatter rejection for thick tissue biological imaging with neutrons.
MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhold, M.E.; Baker, M.C.
1999-07-25
The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the pointmore » reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Alexis Chanel
The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.
NASA Astrophysics Data System (ADS)
Scherzinger, J.; Al Jebali, R.; Annand, J. R. M.; Fissum, K. G.; Hall-Wilton, R.; Kanaki, K.; Lundin, M.; Nilsson, B.; Perrey, H.; Rosborg, A.; Svensson, H.
2016-12-01
The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.
NASA Astrophysics Data System (ADS)
Zacharatou Jarlskog, Christina; Lee, Choonik; Bolch, Wesley E.; Xu, X. George; Paganetti, Harald
2008-02-01
Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patient's body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patient's age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the field is smaller than the reported scattered photon doses in a typical intensity-modulated photon treatment. Most importantly, our study shows that neutron doses to specific organs depend considerably on the patient's age and body stature. The younger the patient, the higher the dose deposited due to neutrons. Given the fact that the risk also increases with decreasing patient age, this factor needs to be taken into account when treating pediatric patients of very young ages and/or of small body size. The neutron dose from a course of proton therapy treatment (assuming 70 Gy in 30 fractions) could potentially (depending on patient's age, organ, treatment site and area of CT scan) be equivalent to up to ~30 CT scans.
Development of a multi-element microdosimetric detector based on a thick gas electron multiplier
NASA Astrophysics Data System (ADS)
Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.
2017-03-01
A prototype multi-element gaseous microdosimetric detector was developed using the Thick Gas Electron Multiplier (THGEM) technique. The detector aims at measuring neutron and gamma-ray dose rates for weak neutron-gamma radiation fields. The multi-element design was employed to increase the neutron detection efficiency. The prototype THGEM multi-element detector consists of three layers of tissue equivalent plastic hexagons and each layer houses a hexagonal array of seven cylindrical gas cavity elements with equal heights and diameters of 17 mm. The final detector structure incorporates 21 gaseous volumes. Owing to the absence of wire electrodes, the THGEM multi-element detector offers flexible and convenient fabrication. The detector responses to neutron and gamma-ray were investigated using the McMaster Tandetron 7Li(p,n) neutron source. The dosimetric performance of the detector is presented in contrast to the response of a commercial tissue equivalent proportional counter. Compared to the standard TEPC response, the detector gave a consistent microdosimetric response with an average discrepancy of 8 % in measured neutron absorbed dose. An improvement of a factor of 3.0 in neutron detection efficiency has been accomplished with only a small degradation in energy resolution. However, its low energy cut off is about 6 keV/μm, which is not sufficient to measure the gamma-ray dose. This problem will be addressed by increasing the electron multiplication gain using double THGEM layers.
The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper
Mohamed, Walid; Miller, Brandon; Porter, Douglas; Murty, Korukonda
2016-01-01
The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc) and micrograined (MG) copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper. PMID:28773270
Organic metal neutron detector
Butler, M.A.; Ginley, D.S.
1984-11-21
A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.
Little Boy neutron spectrum below 3 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, A.E.; Bennett, E.F.; Yule, T.J.
The leakage neutron spectrum from the Little Boy replica has been measured from 12 keV to 3 MeV using a high-resolution /sup 3/He ionization chamber, and from 1 keV to 3 MeV using proton-recoil proportional counters. The /sup 3/He-spectrometer measurements were made at distances of 0.75 and 2.0 m from the active center and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly. Proton-recoil measurments were made at 90/sup 0/ to the assembly axis at distances of 0.75 and 2.0 m, with a shielded measurement made at 2.0 m to estimatemore » background due to scattering. The /sup 3/He spectrometer was calibrated at Los Alamos using monoenergetic /sup 7/Li(p,n)/sup 7/Be neutrons to generate a family of response functions. The proton-recoil counters were calibrated at Argonne by studying the capture of thermal neutrons by nitrogen in the counters, by observation of the 24-keV neutron resonance in iron, and by relating to the known hydrogen content of the counters. The neutron spectrum from Little Boy was found to be highly structured, with peaks corresponding to minima in the iron total neutron cross section. In particular, influence of the 24-keV iron window was evident in both sets of spectra. The measurements provide information for dosimetry calculations and also a valuable intercomparison of neutron spectrometry using the two different detector types. Spectra measured with both detectors are in essential agreement. 8 references, 7 figures, 2 tables.« less
Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.
1961-11-14
A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)
Pszona, S; Bantsar, A; Tulik, P; Wincel, K; Zaręba, B
2014-10-01
It has been shown that a proportional counter filled with (3)He placed centrally inside a polythene sphere opens a new possibility for measuring gamma photons and neutrons in the separate pulse-height windows. The responses to gamma and neutrons (in terms of ambient dose equivalent) of the detector assembly consisting of 203-mm polythene sphere with centrally positioned 40-mm diameter (3)He proportional counter have been studied. The response to secondary gammas from capture process in hydrogen has also been studied. The rather preliminary studies indicate that the proposed measuring system has very promising features as an ambient dose equivalent device for mixed gamma-neutron fields. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neutron counter based on beryllium activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.
2014-08-21
The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large areamore » gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.« less
NASA Astrophysics Data System (ADS)
Lotfalizadeh, F.; Faghihi, R.; Bahadorzadeh, B.; Sina, S.
2017-07-01
Neutron spectrometry using a single-sphere containing dosimeters has been developed recently, as an effective replacement for Bonner sphere spectrometry. The aim of this study is unfolding the neutron energy spectra using GRNN artificial neural network, from the response of thermoluminescence dosimeters, TLDs, located inside a polyethylene sphere. The spectrometer was simulated using MCNP5. TLD-600 and TLD-700 dosimeters were simulated at different positions in all directions. Then the GRNN was used for neutron spectra prediction, using the TLDs' readings. Comparison of spectra predicted by the network with the real spectra, show that the single-sphere dosimeter is an effective instrument in unfolding neutron spectra.
Response of Cs 2LiYCl 6:Ce (CLYC) to High Energy Protons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coupland, Daniel David Schechtman; Stonehill, Laura Catherine; Goett III, John Jerome
2015-11-23
Cs 2LiYCl 6:Ce (CLYC) is a promising new inorganic scintillator for gamma and neutron detection. As a gamma-ray detector, it exhibits bright light output and better resolution and proportionality of response than traditional gamma-ray scintillators such as NaI. It is also highly sensitive to thermal neutrons through capture on 6Li, and recent experiments have demonstrated sensitivity to fast neutrons through interactions with 35Cl. The response of CLYC to other forms of radiation has not been reported. We have performed the first measurements of the response of CLYC to several-hundred MeV protons. We have collected digitized waveforms from proton events, andmore » compare to those produced by gammas and thermal neutrons. Finally, we discuss the potential for pulse shape discrimination between them.« less
Fast neutron detection at near-core location of a research reactor with a SiC detector
NASA Astrophysics Data System (ADS)
Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.
2018-04-01
The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Styron, Jedediah D.
2016-11-01
This work will focus on the characterization of NTOF detectors fielded on ICF experiments conducted at the Z-experimental facility with emphasis on the MagLif and gas puff campaigns. Three experiments have been proposed. The first experiment will characterize the response of the PMT with respect to the amplitude and width of signals produced by single neutron events. A second experiment will characterize the neutron transit time through the scintillator and the third is to characterize the pulse amplitude for a very specific range of neutron induced charged particle interactions within the scintillator. These experiments will cover incident neutron energies relevantmore » to D-D and D-T fusion reactions. These measurements will be taken as a function of detector bias to cover the entire dynamic range of the detector. Throughout the characterization process, the development of a predictive capability is desired. A new post processing code has been proposed that will calculate a neutron time-of-flight spectrum in units of MeVee. This code will couple the experimentally obtained values and the results obtained with the Monte Carlo code MCNP6. The motivation of this code is to correct for geometry issues when transferring the calibration results from a light lab setting to the Zenvironment. This capability will be used to develop a hypothetical design of LOS270 such that more favorable neutron measurements, requiring less correction, can be made in the future.« less
The JET neutron time-of-flight spectrometer
NASA Astrophysics Data System (ADS)
Elevant, T.; Aronsson, D.; van Belle, P.; Grosshoeg, G.; Hoek, M.; Olsson, M.; Sadler, G.
1991-08-01
An instrument for measuring neutron energy spectra over the interval 1 to 20 MeV has been developed and tested. It is based on time-of-flight measurements in between correlated events in two spatially separated sets of plastic scintillators. This instrument has been installed at the Joint European Tours (JET). We describe here the required operating conditions, performance tests and results of three years of operation during which neutron energy spectra in the 2-3 MeV range from D(d, n) 3He reactions in JET were studied. Some technical details are given and the results from Monte Carlo and analytical model calculations of the spectrometer energy resolution and response function are presented. The efficiency of the system is ≈ 1 × 10 -2 cm 2 counted at the position of the first detector. Together with the geometry conditions at JET this yields 6 × 10 2 counts per 10 15 neutrons emitted. The energy resolution is in the interval from 125 to 133 keV (FWHM) depending on conditions and is known to an accuracy of ±5 keV. Correction for the inevitable random background is dealt with in detail and a reduction procedure valid for fast variations in neutron count-rates is provided. Plasma ion temperatures deduced from the neutron spectra agree within statistical limits with the results from other diagnostic techniques in use at JET. Stable behaviour up to useful count-rates of 3 × 10 3 counts/s have been obtained, making possible the study of neutron spectra on the short time-scales typical of fusion plasmas.
Research on radiation detectors, boiling transients, and organic lubricants
NASA Technical Reports Server (NTRS)
1974-01-01
The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.
Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission
NASA Astrophysics Data System (ADS)
Lestone, J. P.
2016-01-01
A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.
Experimentally Determining β-Decay Intensities for 103,104Nb to Improve R-process Calculations
NASA Astrophysics Data System (ADS)
Gombas, J.; Deyoung, P. D.; Spyrou, A.; Dombos, A. C.; Lyons, S.; SuN Collaboration
2017-09-01
The rapid neutron capture process (r-process) is responsible for the formation of nuclei heavier than iron. This process is theorized to occur in supernovas and/or neutron star mergers. R-process calculations require the accurate knowledge of a significant amount of nuclear properties, the majority of which are not known experimentally. Nuclear masses, β-decay properties and neutron-capture reactions are all input ingredients into r-process models. This present study focuses on the β decay of 103Nb and 104Nb. The β decay of 103Nb and 104Nb, two nuclei found in the r-process, were observed at the NSCL using the Summing NaI (SuN) detector. An unstable beam implanted inside SuN. The γ rays were measured in coincidence with the emitted electrons. The β-decay intensity function was then extracted. The experimentally determined functions for 103Nb and 104Nb will be compared to predictions made by the Quasi Random Phase Approximation (QRPA) model. These theoretical calculations are used in astrophysical models of the r-process. This comparison will lead to a better understanding of the nuclear structure for 103Nb and 104Nb. A more dependable prediction of the formation of heavier nuclei birthed from supernovas or neutron star mergers can then be made. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1613188 and PHY-1306074, and by the Hope College Department of Physics Guess Research Fund.
The use of neutron scattering to determine the functional structure of glycoside hydrolase.
Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko
2016-10-01
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-induction of radioadaptive response in zebrafish embryos by neutrons.
Ng, Candy Y P; Kong, Eva Y; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok
2016-06-01
In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
Tarifeño-Saldivia, A.; Tain, J. L.; Domingo-Pardo, C.; Calviño, F.; Cortés, G.; Phong, V. H.; Riego, A.; Agramunt, J.; Algora, A.; Brewer, N.; Caballero-Folch, R.; Coleman-Smith, P. J.; Davinson, T.; Dillmann, I.; Estradé, A.; Griffin, C. J.; Grzywacz, R.; Harkness-Brennan, L. J.; Kiss, G. G.; Kogimtzis, M.; Labiche, M.; Lazarus, I. H.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Morales, A. I.; Nishimura, S.; Page, R. D.; Podolyák, Z. S.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Simpson, J.; Sokol, E.; Surman, R.; Svirkhin, A.; Thomas, S. L.; Tolosa, A.; Woods, P.
2017-04-01
The conceptual design of the BRIKEN neutron detector at the radioactive ion beam factory (RIBF) of the RIKEN Nishina Center is reported. The BRIKEN setup is a complex system aimed at detecting heavy-ion implants, β particles, γ rays and β-delayed neutrons. The whole setup includes the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and up to 166 3He-filled counters embedded in a high-density polyethylene moderator. The design is quite complex due to the large number and different types of 3He-tubes involved and the additional constraints introduced by the ancillary detectors for charged particles and γ rays. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-counter array, aiming for the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected detector parameters of merit, namely, the average neutron detection efficiency and the efficiency flatness as a function of a reduced number of geometric variables. The response of the neutron detector is obtained from a systematic Monte Carlo simulation implemented in GEANT4. The robustness of the algorithm allowed us to design a versatile detection system, which operated in hybrid mode includes the full neutron counter and two clover detectors for high-precision gamma spectroscopy. In addition, the system can be reconfigured into a compact mode by removing the clover detectors and re-arranging the 3He tubes in order to maximize the neutron detection performance. Both operation modes shows a rather flat and high average efficiency. In summary, we have designed a system which shows an average efficiency for hybrid mode (3He tubes + clovers) of 68.6% and 64% for neutron energies up to 1 and 5 MeV, respectively. For compact mode (only 3He tubes), the average efficiency is 75.7% and 71% for neutron energies up to 1 and 5 MeV, respectively. The performance of the BRIKEN detection system has been also quantified by means of Monte Carlo simulations with different neutron energy distributions.
Kasesaz, Y; Khalafi, H; Rahmani, F
2013-12-01
Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neutron stars velocities and magnetic fields
NASA Astrophysics Data System (ADS)
Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.
2018-01-01
We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.
Thermoluminescence Response of CaF2:Mn, CaFz:Dy and CaSO4:Tm to Protons and Alpha-Particles,
1987-06-01
TLD ) in diverse radiation fields, such as mixed neutron-gamma fields. TL responses of the detector may depend not only on the photon and neutron energy...response of three TLD materials: CaF 2 :Mn, CaF?:Dy and CaSO 4 :Tm. These three materials are commonly used in TLDs , because of their high sensitivities...and suitable readout temperatures. CaS04:Tm powder embedded in polyethylene was investiaged at DREO (Ref. (4)) as a combined neutron/gamma TLD , but
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Review of current neutron detection systems for emergency response
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; ...
2014-09-05
Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 ( 3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution.more » Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 ( 10B), lithium-6 ( 6Li), and gadollinium-157 ( 157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 ( 4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.« less
Review of current neutron detection systems for emergency response
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig
2014-09-01
Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.
NASA Astrophysics Data System (ADS)
Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Delgado, A.; Romero, A.; Esposito, A.
2010-01-01
This communication describes an improved design for a neutron spectrometer consisting of 6Li thermoluminescent dosemeters located at selected positions within a single moderating polyethylene sphere. The spatial arrangement of the dosemeters has been designed using the MCNPX Monte Carlo code to calculate the response matrix for 56 log-equidistant energies from 10 -9 to 100 MeV, looking for a configuration that permits to obtain a nearly isotropic response for neutrons in the energy range from thermal to 20 MeV. The feasibility of the proposed spectrometer and the isotropy of its response have been evaluated by simulating exposures to different reference and workplace neutron fields. The FRUIT code has been used for unfolding purposes. The results of the simulations as well as the experimental tests confirm the suitability of the prototype for environmental and workplace monitoring applications.
A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers
Carrillo, Jan-Michael Y.; Katsaras, John; Sumpter, Bobby G.; ...
2017-01-12
Biological cell membranes are responsible for a range of structural and dynamical phenomena crucial to a cell's well-being and its associated functions. Due to the complexity of cell membranes, lipid bilayer systems are often used as biomimetic models. These systems have led to signficant insights into vital membrane phenomena such as domain formation, passive permeation and protein insertion. Experimental observations of membrane structure and dynamics are, however, limited in resolution, both spatially and temporally. Importantly, computer simulations are starting to play a more prominent role in interpreting experimental results, enabling a molecular under- standing of lipid membranes. Particularly, the synergymore » between scattering experiments and simulations offers opportunities for new discoveries in membrane physics, as the length and time scales probed by molecular dynamics (MD) simulations parallel those of experiments. We also describe a coarse-grained MD simulation approach that mimics neutron scattering data from large unilamellar lipid vesicles over a range of bilayer rigidity. Specfically, we simulate vesicle form factors and membrane thickness fluctuations determined from small angle neutron scattering (SANS) and neutron spin echo (NSE) experiments, respectively. Our simulations accurately reproduce trends from experiments and lay the groundwork for investigations of more complex membrane systems.« less
RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM NEUTRON IRRADIATION
Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.
2016-01-01
Spongiosa in the adult human skeleton consists of three tissues - active marrow (AM), inactive marrow (IM), and trabecularized mineral bone (TB). Active marrow is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues laying within the first 50 μm the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent microCT imaging of a 40-year-old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton [Hough et al PMB (2011)]. This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fractions (SAF) values for protons originating in axial and appendicular bone sites [Jokisch et al PMB (submitted)]. These proton SAFs, bone masses, tissue compositions, and proton production cross-sections, were subsequently used to construct neutron dose response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, active marrow, total shallow marrow, and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged particle equilibrium (CPE) is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM50 DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article. PMID:21983525
Studies on new neutron-sensitive dosimeters using an optically stimulated luminescence technique
NASA Astrophysics Data System (ADS)
Kulkarni, M. S.; Luszik-Bhadra, M.; Behrens, R.; Muthe, K. P.; Rawat, N. S.; Gupta, S. K.; Sharma, D. N.
2011-07-01
The neutron response of detectors prepared using α-Al 2O 3:C phosphor developed using a melt processing technique and mixed with neutron converters was studied in monoenergetic neutron fields. The detector pellets were arranged in two different pairs: α-Al 2O 3:C + 6LiF/α-Al 2O 3:C + 7LiF and α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon, for neutron dosimetry using albedo and recoil proton techniques. The optically stimulated luminescence response of the Al 2O 3:C + 6,7LiF dosimeter to radiation from a 252Cf source was 0.21, in terms of personal dose equivalent Hp(10) and relative to radiation from a 137Cs source. This was comparable to results obtained with similar detectors prepared using commercially available α-Al 2O 3:C phosphor. The Hp(10) response of the α-Al 2O 3:C + 6,7LiF dosimeters was found to decrease by more than two orders of magnitude with increasing neutron energy, as expected for albedo dosimeters. The response of the α-Al 2O 3:C + high-density polyethylene/α-Al 2O 3:C + Teflon dosimeters was small, of the order of 1% to 2% in terms of Hp(10) and relative to radiation from a 137Cs source, for neutron energies greater than 1 MeV.
Estimation of neutron energy distributions from prompt gamma emissions
NASA Astrophysics Data System (ADS)
Panikkath, Priyada; Udupi, Ashwini; Sarkar, P. K.
2017-11-01
A technique of estimating the incident neutron energy distribution from emitted prompt gamma intensities from a system exposed to neutrons is presented. The emitted prompt gamma intensities or the measured photo peaks in a gamma detector are related to the incident neutron energy distribution through a convolution of the response of the system generating the prompt gammas to mono-energetic neutrons. Presently, the system studied is a cylinder of high density polyethylene (HDPE) placed inside another cylinder of borated HDPE (BHDPE) having an outer Pb-cover and exposed to neutrons. The emitted five prompt gamma peaks from hydrogen, boron, carbon and lead can be utilized to unfold the incident neutron energy distribution as an under-determined deconvolution problem. Such an under-determined set of equations are solved using the genetic algorithm based Monte Carlo de-convolution code GAMCD. Feasibility of the proposed technique is demonstrated theoretically using the Monte Carlo calculated response matrix and intensities of emitted prompt gammas from the Pb-covered BHDPE-HDPE system in the case of several incident neutron spectra spanning different energy ranges.
NASA Astrophysics Data System (ADS)
Khezripour, S.; Negarestani, A.; Rezaie, M. R.
2017-08-01
Micromegas detector has recently been used for high-energy neutron (HEN) detection, but the aim of this research is to investigate the response of the Micromegas detector to low-energy neutron (LEN). For this purpose, a Micromegas detector (with air, P10, BF3, 3He and Ar/BF3 mixture) was optimized for the detection of 60 keV neutrons using the MCNP (Monte Carlo N Particle) code. The simulation results show that the optimum thickness of the cathode is 1 mm and the optimum of microgrid location is 100 μm above the anode. The output current of this detector for Ar (3%) + BF3 (97%) mixture is greater than the other ones. This mixture is considered as the appropriate gas for the Micromegas neutron detector providing the output current for 60 keV neutrons at the level of 97.8 nA per neutron. Consecuently, this detector can be introduced as LEN detector.
Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)
Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...
2016-08-26
The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
NASA Astrophysics Data System (ADS)
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
Multiple-wavelength neutron holography with pulsed neutrons
Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio
2017-01-01
Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering—that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique. PMID:28835917
Multiple-wavelength neutron holography with pulsed neutrons.
Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio
2017-08-01
Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF 2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.
Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.
The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less
Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification
Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.; ...
2017-08-11
The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less
Investigation of Workplace-like Calibration Fields via a Deuterium-Tritium (D-T) Neutron Generator.
Mozhayev, Andrey V; Piper, Roman K; Rathbone, Bruce A; McDonald, Joseph C
2017-04-01
Radiation survey meters and personal dosimeters are typically calibrated in reference neutron fields based on conventional radionuclide sources, such as americium-beryllium (Am-Be) or californium-252 (Cf), either unmodified or heavy-water moderated. However, these calibration neutron fields differ significantly from the workplace fields in which most of these survey meters and dosimeters are being used. Although some detectors are designed to yield an approximately dose-equivalent response over a particular neutron energy range, the response of other detectors is highly dependent upon neutron energy. This, in turn, can result in significant over- or underestimation of the intensity of neutron radiation and/or personal dose equivalent determined in the work environment. The use of simulated workplace neutron calibration fields that more closely match those present at the workplace could improve the accuracy of worker, and workplace, neutron dose assessment. This work provides an overview of the neutron fields found around nuclear power reactors and interim spent fuel storage installations based on available data. The feasibility of producing workplace-like calibration fields in an existing calibration facility has been investigated via Monte Carlo simulations. Several moderating assembly configurations, paired with a neutron generator using the deuterium tritium (D-T) fusion reaction, were explored.
Fast response neutron emission monitor for fusion reactor using stilbene scintillator and Flash-ADC.
Itoga, T; Ishikawa, M; Baba, M; Okuji, T; Oishi, T; Nakhostin, M; Nishitani, T
2007-01-01
The stilbene neutron detector which has been used for neutron emission profile monitoring in JT-60U has been improved, to respond to the requirement to observe the high-frequency phenomena in megahertz region such as toroidicity-induced Alfvén Eigen mode in burning plasma as well as the spatial profile and the energy spectrum. This high-frequency phenomenon is of great interest and one of the key issues in plasma physics in recent years. To achieve a fast response in the stilbene detector, a Flash-ADC is applied and the wave form of the anode signal stored directly, and neutron/gamma discrimination was carried out via software with a new scheme for data acquisition mode to extend the count rate limit to MHz region from 1.3 x 10(5) neutron/s in the past, and confirmed the adequacy of the method.
Fast neutron detection with a segmented spectrometer
NASA Astrophysics Data System (ADS)
Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.
2015-01-01
A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.
Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature
NASA Astrophysics Data System (ADS)
Obraztsova, O.; Ottaviani, L.; Klix, A.; Döring, T.; Palais, O.; Lyoussi, A.
2018-01-01
Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C) and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV), wide band gap energy (3.27 eV) and high thermal conductivity (4.9 W/cm·K), SiC can operate in harsh environment (high temperature, high pressure and high radiation level) without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV), higher threshold displacement energy (40-50 eV) and thermal conductivity (22 W/cm·K), which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD) diamond detectors irradiated with 14 MeV neutrons at room temperature.
NASA Astrophysics Data System (ADS)
Feng-Hua, Zhang; Gui-De, Zhou; Kun, Ma; Wen-Juan, Ma; Wen-Yuan, Cui; Bo, Zhang
2016-07-01
Previous studies have shown that, for the three main stages of the development and evolution of asymptotic giant branch (AGB) star s-process models, the neutron exposure distribution (DNE) in the nucleosynthesis region can always be considered as an exponential function, i.e., ρAGB(τ) = C/τ0 exp(-τ/τ0) in an effective range of the neutron exposure values. However, the specific expressions of the proportion factor C and the mean neutron exposure τ0 in the exponential distribution function for different models are not completely determined in the related literature. Through dissecting the basic method to obtain the exponential DNE, and systematically analyzing the solution procedures of neutron exposure distribution functions in different stellar models, the general formulae, as well as their auxiliary equations, for calculating C and τ0 are derived. Given the discrete neutron exposure distribution Pk, the relationships of C and τ0 with the model parameters can be determined. The result of this study has effectively solved the problem to analytically calculate the DNE in the current low-mass AGB star s-process nucleosynthesis model of 13C-pocket radiative burning.
EGRET High Energy Capability and Multiwavelength Flare Studies and Solar Flare Proton Spectra
NASA Technical Reports Server (NTRS)
Chupp, Edward L.
1998-01-01
The accomplishments of the participation in the Compton Gamma Ray Observatory Guest investigator program is summarized in this report. The work involved the study of Energetic Gamma Ray Experiment Telescope (EGRET)/Total Absorption Shower Counter(TASC) flare data. The specific accomplishments were the use of the accelerator neutron measurements obtained at the University of New Hampshire to verify the TASC response function and to modify the TASC fitting program to include a high energy neutron contribution, and to determine a high energy neutron contribution to the emissions from the 1991 June 11, solar flare. The next step in the analysis of this event was doing fits to the TASC energy-loss spectra as a function of time. A significant hardening of the solar proton spectrum over time was found for the flare. Further data was obtained from the Yohkoh HXT time histories and images for the 1991 October 27 flare. The results to date demonstrate that the TASC spectral analysis contributes crucial information on the particle spectrum interacting at the Sun. The report includes a paper accepted for publication, a draft of a paper to be delivered at the 26th International Cosmic Ray Conference and an abstract of a paper to be presented at the Meeting of the American Physical Society.
NASA Astrophysics Data System (ADS)
Sanz, D.; Ruiz, M.; Castro, R.; Vega, J.; Afif, M.; Monroe, M.; Simrock, S.; Debelle, T.; Marawar, R.; Glass, B.
2016-04-01
To aid in assessing the functional performance of ITER, Fission Chambers (FC) based on the neutron diagnostic use case deliver timestamped measurements of neutron source strength and fusion power. To demonstrate the Plant System Instrumentation & Control (I&C) required for such a system, ITER Organization (IO) has developed a neutron diagnostics use case that fully complies with guidelines presented in the Plant Control Design Handbook (PCDH). The implementation presented in this paper has been developed on the PXI Express (PXIe) platform using products from the ITER catalog of standard I&C hardware for fast controllers. Using FlexRIO technology, detector signals are acquired at 125 MS/s, while filtering, decimation, and three methods of neutron counting are performed in real-time via the onboard Field Programmable Gate Array (FPGA). Measurement results are reported every 1 ms through Experimental Physics and Industrial Control System (EPICS) Channel Access (CA), with real-time timestamps derived from the ITER Timing Communication Network (TCN) based on IEEE 1588-2008. Furthermore, in accordance with ITER specifications for CODAC Core System (CCS) application development, the software responsible for the management, configuration, and monitoring of system devices has been developed in compliance with a new EPICS module called Nominal Device Support (NDS) and RIO/FlexRIO design methodology.
Chapman Enskog-maximum entropy method on time-dependent neutron transport equation
NASA Astrophysics Data System (ADS)
Abdou, M. A.
2006-09-01
The time-dependent neutron transport equation in semi and infinite medium with linear anisotropic and Rayleigh scattering is proposed. The problem is solved by means of the flux-limited, Chapman Enskog-maximum entropy for obtaining the solution of the time-dependent neutron transport. The solution gives the neutron distribution density function which is used to compute numerically the radiant energy density E(x,t), net flux F(x,t) and reflectivity Rf. The behaviour of the approximate flux-limited maximum entropy neutron density function are compared with those found by other theories. Numerical calculations for the radiant energy, net flux and reflectivity of the proposed medium are calculated at different time and space.
Mixed crystal organic scintillators
Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang
2014-09-16
A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.
Measurements of fast neutrons by bubble detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo, F.; Martinez, H.; Leal, B.
2013-07-03
Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of themore » detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion devices.« less
High efficiency proportional neutron detector with solid liner internal structures
Kisner, Roger Allen; Holcomb, David Eugene; Brown, Gilbert M.
2014-08-05
A tube-style neutron detector, a panel-style neutron detector incorporating a plurality of tube-style neutron detectors, and a panel-style neutron detector including a plurality of anode wires are provided. A plurality of channels is provided in a neutron detector such that each channel has an inner surface of a coating layer including a neutron-absorbing material. A wire anode is provided at end of each channel so that electrons generated by a charged daughter particle generated by a neutron are collected to detect a neutron-matter interaction. Moderator units can be incorporated into a neutron detector to provide improved detection efficiencies and/or to determine neutron energy spectrum. Gas-based proportional response from the neutron detectors can be employed for special nuclear material (SNM) detection. This neutron detector can provide similar performance to .sup.3He-based detectors without requiring .sup.3He and without containing toxic, flammable, or high-pressure materials.
Application of Advanced Nuclear Emulsion Technique to Fusion Neutron Diagnostics
NASA Astrophysics Data System (ADS)
Nakayama, Y.; Tomita, H.; Morishima, K.; Yamashita, F.; Hayashi, S.; Cheon, MunSeong; Isobe, M.; Ogawa, K.; Naka, T.; Nakano, T.; Nakamura, M.; Kawarabayashi, J.; Iguchi, T.; Ochiai, K.
In order to measure the 2.5 MeV neutrons produced by DD nuclear fusion reactions, we have developed a compact neutron detector based on nuclear emulsion. After optimization of development conditions, we evaluated the response of the detector to an accelerator-based DD neutron source. The absolute efficiency at an energy of 2.5 MeV was estimated to be (4.1±0.2)×10-6 tracks/neutron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.
The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to anmore » un-moderated 252Cf source shielded with 5.08 cm of lead.« less
Neutrino Processes in Neutron Stars
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Voskresensky, D. N.
2010-10-01
The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be included within the Green’s function formalism. Softening of the pion mode with an baryon density increase is explicitly incorporated. We show examples of inconsistencies in calculations without inclusion of medium effects. Then we demonstrate calculations of different reaction rates in non-superfluid nuclear matter with taking into account medium effects. Many new reaction channels are open up in the medium and should be analyzed. Part IV: We discuss the neutrino production reactions in superfluid nuclear systems. The reaction rates of processes associated with the pair breaking and formation are calculated. Special attention is focused on the gauge invariance and the exact fulfillment of the Ward identities for the vector current. Finally we present comparison of calculations of neutron star cooling performed within nuclear medium cooling scenario with the available data.
A new method for measuring the neutron lifetime using an in situ neutron detector
Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn; ...
2017-05-30
Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.
A new method for measuring the neutron lifetime using an in situ neutron detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn
Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.
Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazouz, M.; Ahmed, Z.; Albataineh, H.
2017-06-01
We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσL/dt, dσT/dt, dσLT/dt, and dσTT/dt are extracted as a function of the momentum transfer to the recoil system at Q2=1.75 GeV2 and xB=0.36. The ed→edπ0 cross sections are found compatible with the small values expected from theoretical models. The en→enπ0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results withmore » previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section« less
Rosenbluth Separation of the π0 Electroproduction Cross Section Off the Neutron
NASA Astrophysics Data System (ADS)
Mazouz, M.; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.; Chen, J.-P.; Defurne, M.; de Jager, C. W.; de Leo, R.; Desnault, C.; Deur, A.; El Fassi, L.; Ent, R.; Flay, D.; Friend, M.; Fuchey, E.; Frullani, S.; Garibaldi, F.; Gaskell, D.; Giusa, A.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D.; Holmstrom, T.; Horn, T.; Huang, J.; Huang, M.; Huber, G. M.; Hyde, C. E.; Iqbal, S.; Itard, F.; Kang, Ho.; Kang, Hy.; Kelleher, A.; Keppel, C.; Koirala, S.; Korover, I.; LeRose, J. J.; Lindgren, R.; Long, E.; Magne, M.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Martí Jiménez-Argüello, A.; Meddi, F.; Meekins, D.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Muñoz Camacho, C.; Nadel-Turonski, P.; Nuruzzaman, N.; Paremuzyan, R.; Puckett, A.; Punjabi, V.; Qiang, Y.; Rakhman, A.; Rashad, M. N. H.; Riordan, S.; Roche, J.; Russo, G.; Sabatié, F.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Selvy, L.; Shahinyan, A.; Sirca, S.; Solvignon, P.; Sperduto, M. L.; Subedi, R.; Sulkosky, V.; Sutera, C.; Tobias, W. A.; Urciuoli, G. M.; Wang, D.; Wojtsekhowski, B.; Yao, H.; Ye, Z.; Zana, L.; Zhan, X.; Zhang, J.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Jefferson Lab Hall A Collaboration
2017-06-01
We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions d σL/d t , d σT/d t , d σL T/d t , and d σT T/d t are extracted as a function of the momentum transfer to the recoil system at Q2=1.75 GeV2 and xB=0.36 . The e d →e d π0 cross sections are found compatible with the small values expected from theoretical models. The e n →e n π0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.
Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazouz, M.; Ahmed, Z.; Albataineh, H.
Here, we report the first longitudinal/transverse separation of the deeply virtual exclusivemore » $$\\pi^0$$ electroproduction cross section off the neutron and coherent deuteron. Furthemore, the corresponding four structure functions $$d\\sigma_L/dt$$, $$d\\sigma_T/dt$$, $$d\\sigma_{LT}/dt$$ and $$d\\sigma_{TT}/dt$$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $$x_B$$=0.36. The $$ed \\to ed\\pi^0$$ cross sections are found compatible with the small values expected from theoretical models. The $$en \\to en\\pi^0$$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucleon. By combining our results with previous measurements of $$\\pi^0$$ electroproduction off the proton, we present a flavor decomposition of the $u$ and $d$ quark contributions to the cross section.« less
Rosenbluth Separation of the π 0 Electroproduction Cross Section Off the Neutron
Mazouz, M.; Ahmed, Z.; Albataineh, H.; ...
2017-06-01
Here, we report the first longitudinal/transverse separation of the deeply virtual exclusivemore » $$\\pi^0$$ electroproduction cross section off the neutron and coherent deuteron. Furthemore, the corresponding four structure functions $$d\\sigma_L/dt$$, $$d\\sigma_T/dt$$, $$d\\sigma_{LT}/dt$$ and $$d\\sigma_{TT}/dt$$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $$x_B$$=0.36. The $$ed \\to ed\\pi^0$$ cross sections are found compatible with the small values expected from theoretical models. The $$en \\to en\\pi^0$$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucleon. By combining our results with previous measurements of $$\\pi^0$$ electroproduction off the proton, we present a flavor decomposition of the $u$ and $d$ quark contributions to the cross section.« less
A study on the sensitivity of self-powered neutron detectors (SPNDs)
NASA Astrophysics Data System (ADS)
Lee, Wanno; Cho, Gyuseong; Kim, Kwanghyun; Kim, Hee Joon; choi, Yuseon; Park, Moon Chu; Kim, Soongpyung
2001-08-01
Self-powered neutron detectors (SPNDs) are widely used in reactors to monitor neutron flux, while they have several advantages such as small size, and relatively simple electronics required in conjunction with those usages, they have some intrinsic problems of the low level of output current-a slow response time and the rapid change of sensitivity-that make it difficult to use for a long term. Monte Carlo simulation was used to calculate the escape probability as a function of the birth position of emitted beta particle for geometry of rhodium-based SPNDs. A simple numerical method calculated the initial generation rate of beta particles and the change of generation rate due to rhodium burnup. Using results of the simulation and the simple numerical method, the burnup profile of rhodium number density and the neutron sensitivity were calculated as a function of burnup time in reactors. This method was verified by the comparison of this and other papers, and data of YGN3.4 (Young Gwang Nuclear plant 3, 4) about the initial sensitivity. In addition, for improvement of some properties of rhodium-based SPNDs, which are currently used, a modified geometry is proposed. The proposed geometry, which is tube-type, is able to increase the initial sensitivity due to increase of the escape probability. The escape probability was calculated by changing the thickness of the insulator and compared solid-type with tube-type about each insulator thickness. The method used here can be applied to the analysis and design of other types of SPNDs.
NASA Astrophysics Data System (ADS)
Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.
2015-12-01
The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.
Effects of neutron irradiation on pinning force scaling in state-of-the-art Nb3Sn wires
NASA Astrophysics Data System (ADS)
Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.
2014-01-01
We present an extensive irradiation study involving five state-of-the-art Nb3Sn wires which were subjected to sequential neutron irradiation up to a fast neutron fluence of 1.6 × 1022 m-2 (E > 0.1 MeV). The volume pinning force of short wire samples was assessed in the temperature range from 4.2 to 15 K in applied fields of up to 7 T by means of SQUID magnetometry in the unirradiated state and after each irradiation step. Pinning force scaling computations revealed that the exponents in the pinning force function differ significantly from those expected for pure grain boundary pinning, and that fast neutron irradiation causes a substantial change in the functional dependence of the volume pinning force. A model is presented, which describes the pinning force function of irradiated wires using a two-component ansatz involving a point-pinning contribution stemming from radiation induced pinning centers. The dependence of this point-pinning contribution on fast neutron fluence appears to be a universal function for all examined wire types.
NASA Astrophysics Data System (ADS)
Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.
2012-08-01
A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).
Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E
2005-12-01
The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.
Measurements of the neutron spectrum on the Martian surface with MSL/RAD
NASA Astrophysics Data System (ADS)
Köhler, J.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Hassler, D. M.; Reitz, G.; Brinza, D. E.; Weigle, G.; Appel, J.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Martin, C.; Posner, A.; Rafkin, S.; Kortmann, O.
2014-03-01
The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. An important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, with their deeper penetration depth and ensuing high biological effectiveness. This is very difficult to measure quantitatively, resulting in considerable uncertainties in the total radiation dose. In contrast to charged particles, neutral particles (neutrons and gamma rays) are generally only measured indirectly. Measured spectra are a complex convolution of the incident particle spectrum with the detector response function and must be unfolded. We apply an inversion method (based on a maximum likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. Here we show the first spectra on the surface of Mars and compare them to theoretical predictions. The measured neutron spectrum (ranging from 8 to 740 MeV) translates into a radiation dose rate of 14±4μGy/d and a dose equivalent rate of 61±15μSv/d. This corresponds to 7% of the measured total surface dose rate and 10% of the biologically relevant surface dose equivalent rate on Mars. Measuring the Martian neutron and gamma spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.
Moments of the neutron g₂ structure function at intermediate Q²
Solvignon-Slifer, Patricia H.
2015-07-15
We present new experimental results of the ³He spin structure function g₂ in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d₂ matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.
McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.
2010-12-21
Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.
THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.
2012-06-19
Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to amore » particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd{sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.« less
Fomenko, V; Moreno, B; Million, M; Harrison, J; Akselrod, M
2017-10-25
The neutron-energy dependence of the track-counting sensitivity of fluorescent nuclear track detectors (FNTDs) at two ranges of Mg doping, resulting in different crystal colorations, was investigated. The performance of FNTDs was studied with the following converters: Li-glass for thermal to intermediate-energy neutrons, polyethylene for fast neutrons, and polytetrafluoroethylene (Teflon™) for photon- and radon-background subtraction. The irradiations with monoenergetic neutrons were performed at the National Physics Laboratory (NPL), UK. The energy range was varied from 144 keV to 16.5 MeV in the personal dose equivalent range from 1 to 3 mSv. Monte Carlo simulations were performed to model the response of FNTDs to monoenergetic neutrons. A good agreement with the experimental data was observed suggesting the development of a basic model for future MC studies. Further work will focus on increasing FNTD sensitivity to low-energy neutrons and developing a faster imaging technique for scanning larger areas to improve counting statistics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rogov, A.; Pepyolyshev, Yu.; Carta, M.; d'Angelo, A.
Scintillation detector (SD) is widely used in neutron and gamma-spectrometry in a count mode. The organic scintillators for the count mode of the detector operation are investigated rather well. Usually, they are applied for measurement of amplitude and time distributions of pulses caused by single interaction events of neutrons or gamma's with scintillator material. But in a large area of scientific research scintillation detectors can alternatively be used on a current mode by recording the average current from the detector. For example,the measurements of the neutron pulse shape at the pulsed reactors or another pulsed neutron sources. So as to get a rather large volume of experimental data at pulsed neutron sources, it is necessary to use the current mode detector for registration of fast neutrons. Many parameters of the SD are changed with a transition from an accounting mode to current one. For example, the detector efficiency is different in counting and current modes. Many effects connected with time accuracy become substantial. Besides, for the registration of solely fast neutrons, as must be in many measurements, in the mixed radiation field of the pulsed neutron sources, SD efficiency has to be determined with a gamma-radiation shield present. Here is no calculations or experimental data on SD current mode operation up to now. The response functions of the detectors can be either measured in high-precision reference fields or calculated by a computer simulation. We have used the MCNP code [1] and carried out some experiments for investigation of the plastic performances in a current mode. There are numerous programs performing simulating similar to the MCNP code. For example, for neutrons there are [2-4], for photons - [5-8]. However, all known codes to use (SCINFUL, NRESP4, SANDYL, EGS49) have more stringent restrictions on the source, geometry and detector characteristics. In MCNP code a lot of these restrictions are absent and you need only to write special additions for proton and electron recoil and transfer energy to light output. These code modifications allow taking into account all processes in organic scintillator influence the light yield.
Neutron Detection with Centrifugally-Tensioned Metastable Fluid Detectors (CMTFD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Smagacz, P.; Lapinskas, J.
2006-07-01
Tensioned metastable liquid states at room temperature were utilized to display sensitivity to impinging nuclear radiation, that manifests itself via audio-visual signals that one can see and hear. A centrifugally-tensioned metastable fluid detector (CTMFD), a diamond shaped spinning device rotating about its axis, was used to induce tension states, i.e. negative (sub-vacuum) pressures in liquids. In this device, radiation induced cavitation is audible due to liquid fracture and is visible from formed bubbles, so called hearing and seeing radiation. This type of detectors is selectively insensitive to Gamma rays and associated indication devices could be extremely simple, reliable and inexpensive.more » Furthermore, any liquids with large neutron interaction cross sections could be good candidates. Two liquids, isopentane and methanol, were tested with three neutron sources of Cf-252, PuBe and Pulsed Neutron Generator (PNG) under various configurations of neutron spectra and fluxes. The neutron count rates were measured using a liquid scintillation detector. The CTMFD was operated at preset values of rotating frequency and a response time was recorded when a cavitation occurred. Other parameters, including ambient temperature, ramp rate, delay time between two consecutive cavitations, were kept constant. The distance between the menisci of the liquid in the CTMFD was measured before and after each experiment. In general, the response of liquid molecules in a CTMFD varies with the neutron spectrum and flux. The response time follows an exponential trend with negative pressures for a given neutron count rate and spectra conditions. Isopentane was found to exhibit lower tension thresholds than methanol. On the other hand, methanol offered a larger tension metastability state variation for the various types of neutron sources, indicating the potential for offering significantly better energy resolution abilities for spectroscopic applications. (authors)« less
NASA Astrophysics Data System (ADS)
Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET
2018-02-01
In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia; Carman, M Leslie; Payne, Steve
2014-10-28
An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.
An integrated radiation physics computer code system.
NASA Technical Reports Server (NTRS)
Steyn, J. J.; Harris, D. W.
1972-01-01
An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.
Testing Bonner sphere spectrometers in the JRC-IRMM mono-energetic neutron beams
NASA Astrophysics Data System (ADS)
Bedogni, R.; Domingo, C.; Esposito, A.; Chiti, M.; García-Fusté, M. J.; Lovestam, G.
2010-08-01
Within the framework of the Euratom Transnational Access programme, a specific sub-programme, called NUDAME (neutron data measurements at IRMM), was dedicated to support neutron measurement experiments at the accelerator-based facilities of the JRC-IRMM Geel, Belgium. In this context, the INFN-LNF and UAB groups undertook two separate experiments at the 7 MV Van de Graaff facility, aimed at testing their Bonner sphere spectrometers (BSS) with mono-energetic neutron beams. Both research groups routinely employ the BSS in neutron spectra measurements for radiation protection dosimetry purposes, where accurate knowledge of the BSS response is a mandatory condition for correct dose evaluations. This paper presents the results obtained by both groups, focusing on: (1) the comparison between the value of neutron fluence provided as reference data and that obtained by applying the FRUIT unfolding code to the measured BSS data and (2) the experimental validation of the response matrices of the BSSs, previously derived with Monte Carlo simulations.
Analytical functions to predict cosmic-ray neutron spectra in the atmosphere.
Sato, Tatsuhiko; Niita, Koji
2006-09-01
Estimation of cosmic-ray neutron spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses and the soft-error rates of semiconductor devices. We therefore performed Monte Carlo simulations for estimating neutron spectra using the PHITS code in adopting the nuclear data library JENDL-High-Energy file. Excellent agreements were observed between the calculated and measured spectra for a wide altitude range even at the ground level. Based on a comprehensive analysis of the simulation results, we propose analytical functions that can predict the cosmic-ray neutron spectra for any location in the atmosphere at altitudes below 20 km, considering the influences of local geometries such as ground and aircraft on the spectra. The accuracy of the analytical functions was well verified by various experimental data.
NASA Astrophysics Data System (ADS)
Stankovskiy, Alexey; Çelik, Yurdunaz; Eynde, Gert Van den
2017-09-01
Perturbation of external neutron source can cause significant local power changes transformed into undesired safety-related events in an accelerator driven system. Therefore for the accurate design of MYRRHA sub-critical core it is important to evaluate the uncertainty of power responses caused by the uncertainties in nuclear reaction models describing the particle transport from primary proton energy down to the evaluated nuclear data table range. The calculations with a set of models resulted in quite low uncertainty on the local power caused by significant perturbation of primary neutron yield from proton interactions with lead and bismuth isotopes. The considered accidental event of prescribed proton beam shape loss causes drastic increase in local power but does not practically change the total core thermal power making this effect difficult to detect. In the same time the results demonstrate a correlation between perturbed local power responses in normal operation and misaligned beam conditions indicating that generation of covariance data for proton and neutron induced neutron multiplicities for lead and bismuth isotopes is needed to obtain reliable uncertainties for local power responses.
Structural responses of metallic glasses under neutron irradiation.
Yang, L; Li, H Y; Wang, P W; Wu, S Y; Guo, G Q; Liao, B; Guo, Q L; Fan, X Q; Huang, P; Lou, H B; Guo, F M; Zeng, Q S; Sun, T; Ren, Y; Chen, L Y
2017-12-01
Seeking nuclear materials that possess a high resistance to particle irradiation damage is a long-standing issue. Permanent defects, induced by irradiation, are primary structural changes, the accumulation of which will lead to structural damage and performance degradation in crystalline materials served in nuclear plants. In this work, structural responses of neutron irradiation in metallic glasses (MGs) have been investigated by making a series of experimental measurements, coupled with simulations in ZrCu amorphous alloys. It is found that, compared with crystalline alloys, MGs have some specific structural responses to neutron irradiation. Although neutron irradiation can induce transient vacancy-like defects in MGs, they are fully annihilated after structural relaxation by rearrangement of free volumes. In addition, the rearrangement of free volumes depends strongly on constituent elements. In particular, the change in free volumes occurs around the Zr atoms, rather than the Cu centers. This implies that there is a feasible strategy for identifying glassy materials with high structural stability against neutron irradiation by tailoring the microstructures, the systems, or the compositions in alloys. This work will shed light on the development of materials with high irradiation resistance.
Cancer risk above 1 Gy and the impact for space radiation protection
NASA Astrophysics Data System (ADS)
Schneider, Uwe; Walsh, Linda
2009-07-01
Analyses of the epidemiological data on the Japanese A-bomb survivors, who were exposed to γ-rays and neutrons, provide most current information on the dose-response of radiation-induced cancer. Since the dose span of main interest is usually between 0 and 1 Gy, for radiation protection purposes, the analysis of the A-bomb survivors is often focused on this range. However, estimates of cancer risk for doses larger than 1 Gy are becoming more important for long-term manned space missions. Therefore in this work, emphasis is placed on doses larger than 1 Gy with respect to radiation-induced solid cancer and leukemia mortality. The present analysis of the A-bomb survivors data was extended by including two extra high-dose categories and applying organ-averaged dose instead of the colon-weighted dose. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear and a linear-exponential dose-response relationship using a dose and dose-rate effectiveness factor (DDREF) of both one and two. The work presented here implies that the use of organ-averaged dose, a dose-dependent neutron RBE and the bending-over of the dose-response relationship for radiation-induced cancer could result in a reduction of radiation risk by around 50% above 1 Gy. This could impact radiation risk estimates for space crews on long-term mission above 500 days who might be exposed to doses above 1 Gy. The consequence of using a DDREF of one instead of two increases cancer risk by about 40% and would therefore balance the risk decrease described above.
Development of a point-kinetic verification scheme for nuclear reactor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demazière, C., E-mail: demaz@chalmers.se; Dykin, V.; Jareteg, K.
In this paper, a new method that can be used for checking the proper implementation of time- or frequency-dependent neutron transport models and for verifying their ability to recover some basic reactor physics properties is proposed. This method makes use of the application of a stationary perturbation to the system at a given frequency and extraction of the point-kinetic component of the system response. Even for strongly heterogeneous systems for which an analytical solution does not exist, the point-kinetic component follows, as a function of frequency, a simple analytical form. The comparison between the extracted point-kinetic component and its expectedmore » analytical form provides an opportunity to verify and validate neutron transport solvers. The proposed method is tested on two diffusion-based codes, one working in the time domain and the other working in the frequency domain. As long as the applied perturbation has a non-zero reactivity effect, it is demonstrated that the method can be successfully applied to verify and validate time- or frequency-dependent neutron transport solvers. Although the method is demonstrated in the present paper in a diffusion theory framework, higher order neutron transport methods could be verified based on the same principles.« less
Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre
2016-09-01
To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.
Depth dose and off-axis characteristics of TLD in therapeutic pion beams.
Hogstrom, K R; Irifune, T
1980-07-01
The thermoluminescent (TL) response of LiF (TLD-100, TLD-600, TLD-700) and Li2B4O7 (TLD-800) has been measured as a function of depth and off-axis position in a therapeutic negative-pion beam in order to evaluate their usefulness in pion radiotherapy. TLD-100, TLD-600, and TLD-800 have been shown to be of little use as in vivo dosemeters because the neutron kerma relative to that in tissue changes grossly with depth. The neutron source comes primarily from pion absorption in the lead-alloy collimator. The 200 degrees C TLD-700 response agrees well with the depth dose spectra, except for small changes due to the varying linear energy transfer (LET) distributions. This variation can be partially accounted for by incorporating the known LET response of LiF. The 260 degrees C peak of TLD-700 has been found to be approximately four times more sensitive than the 200 degrees C peak to high LET dose. Using a simple model of the LET responses, the measured 200 degrees C and 260 degrees C peaks predict total dose within +/- 4% and high LET dose within +/- 50%, therefore indicating TLD-700 to be a good in vivo dosemeter for total dose but only an indicator of high LET dose.
Descriptions of carbon isotopes within the energy density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly themore » blocking effect plays a significant role in the shell model configurations.« less
Sato, T; Kataoka, R; Yasuda, H; Yashiro, S; Kuwabara, T; Shiota, D; Kubo, Y
2014-10-01
WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect aircrews from additional SEP exposure. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dose Calibration of the ISS-RAD Fast Neutron Detector
NASA Technical Reports Server (NTRS)
Zeitlin, C.
2015-01-01
The ISS-RAD instrument has been fabricated by Southwest Research Institute and delivered to NASA for flight to the ISS in late 2015 or early 2016. ISS-RAD is essentially two instruments that share a common interface to ISS. The two instruments are the Charged Particle Detector (CPD), which is very similar to the MSL-RAD detector on Mars, and the Fast Neutron Detector (FND), which is a boron-loaded plastic scintillator with readout optimized for the 0.5 to 10 MeV energy range. As the FND is completely new, it has been necessary to develop methodology to allow it to be used to measure the neutron dose and dose equivalent. This talk will focus on the methods developed and their implementation using calibration data obtained in quasi-monoenergetic (QMN) neutron fields at the PTB facility in Braunschweig, Germany. The QMN data allow us to determine an approximate response function, from which we estimate dose and dose equivalent contributions per detected neutron as a function of the pulse height. We refer to these as the "pSv per count" curves for dose equivalent and the "pGy per count" curves for dose. The FND is required to provide a dose equivalent measurement with an accuracy of ?10% of the known value in a calibrated AmBe field. Four variants of the analysis method were developed, corresponding to two different approximations of the pSv per count curve, and two different implementations, one for real-time analysis onboard ISS and one for ground analysis. We will show that the preferred method, when applied in either real-time or ground analysis, yields good accuracy for the AmBe field. We find that the real-time algorithm is more susceptible to chance-coincidence background than is the algorithm used in ground analysis, so that the best estimates will come from the latter.
Mitrofanov, I G; Boynton, W V; Litvak, M L; Sanin, A B; Starr, R D
2011-11-25
Critical comments from Lawrence et al. are considered on the capability of the collimated neutron telescope Lunar Exploration Neutron Detector (LEND) on NASA's Lunar Reconnaissance Orbiter (LRO) for mapping lunar epithermal neutrons, as presented in our paper. We present two different analyses to show that our previous estimated count rates are valid and support the conclusions of that paper.
McStas event logger: Definition and applications
NASA Astrophysics Data System (ADS)
Bergbäck Knudsen, Erik; Bryndt Klinkby, Esben; Kjær Willendrup, Peter
2014-02-01
Functionality is added to the McStas neutron ray-tracing code, which allows individual neutron states before and after a scattering to be temporarily stored, and analysed. This logging mechanism has multiple uses, including studies of longitudinal intensity loss in neutron guides and guide coating design optimisations. Furthermore, the logging method enables the cold/thermal neutron induced gamma background along the guide to be calculated from the un-reflected neutron, using a recently developed MCNPX-McStas interface.
NASA Astrophysics Data System (ADS)
Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.; CLAS Collaboration
2014-04-01
Background: Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x . As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x . Purpose: The Barely Off-shell Nucleon Structure experiment at Jefferson Lab measured the inelastic electron-deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model-independent extraction of the neutron structure function F2(x ,Q2) in the resonance and deep-inelastic regions. Method: A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c and over a nearly 4 π angular range. For the extraction of the free-neutron structure function F2n, spectator protons at backward angles (>100∘ relative to the momentum transfer) and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer, with data taken at beam energies near 2, 4, and 5 GeV. Results: The extracted neutron structure function F2n and its ratio to the inclusive deuteron structure function F2d are presented in both the resonance and the deep-inelastic regions for momentum transfer squared Q2 between 0.7 and 5 GeV2/c2 , invariant mass W between 1 and 2.7 GeV/c2 , and Bjorken x between 0.25 and 0.6 (in the deep-inelastic scattering region). The dependence of the semi-inclusive cross section on the spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Conclusions: Our data set on the structure function ratio F2n/F2d can be used to study neutron resonance excitations, test quark-hadron duality in the neutron, develop more precise parametrizations of structure functions, and investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d /u at x →1 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depriest, Kendall
Unsuccessful attempts by members of the radiation effects community to independently derive the Norgett-Robinson-Torrens (NRT) damage energy factors for silicon in ASTM standard E722-14 led to an investigation of the software coding and data that produced those damage energy factors. The ad hoc collaboration to discover the reason for lack of agreement revealed a coding error and resulted in a report documenting the methodology to produce the response function for the standard. The recommended changes in the NRT damage energy factors for silicon are shown to have significant impact for a narrow energy region of the 1-MeV(Si) equivalent fluence responsemore » function. However, when evaluating integral metrics over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in a small decrease in the total 1- MeV(Si) equivalent fluence of ~0.6% compared to the E722-14 response. Response functions based on the newly recommended NRT damage energy factors have been produced and are available for users of both the NuGET and MCNP codes.« less
NASA Astrophysics Data System (ADS)
Lis, M.; Gómez-Ros, J. M.; Bedogni, R.; Delgado, A.
2008-01-01
The design of a neutron detector with spectrometric capability based on thermoluminescent (TL) 6LiF:Ti,Mg (TLD-600) dosimeters located along three perpendicular axis within a single polyethylene (PE) sphere has been analyzed. The neutron response functions have been calculated in the energy range from 10 -8 to 100 MeV with the Monte Carlo (MC) code MCNPX 2.5 and their shape and behaviour have been used to discuss a suitable configuration for an actual instrument. The feasibility of such a device has been preliminary evaluated by the simulation of exposure to 241Am-Be, bare 252Cf and Fe-PE moderated 252Cf sources. The expected accuracy in the evaluation of energy quantities has been evaluated using the unfolding code FRUIT. The obtained results together with additional calculations performed using MAXED and GRAVEL codes show the spectrometric capability of the proposed design for radiation protection applications, especially in the range 1 keV-20 MeV.
Structure-Property Relationships of Architectural Coatings by Neutron Methods
NASA Astrophysics Data System (ADS)
Nakatani, Alan
2015-03-01
Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.
Gallo, S; Panzeca, S; Longo, A; Altieri, S; Bentivoglio, A; Dondi, D; Marconi, R P; Protti, N; Zeffiro, A; Marrale, M
2015-12-01
This paper reports the preliminary results obtained by Electron Paramagnetic Resonance (EPR) measurements on films of IRGANOX® 1076 phenols with and without low content (5% by weight) of gadolinium oxide (Gd2O3) exposed in the thermal column of the Triga Mark II reactor of LENA (Laboratorio Energia Nucleare Applicata) of Pavia (Italy). Thanks to their size, the phenolic films here presented are good devices for the dosimetry of beams with high dose gradient and which require accurate knowledge of the precise dose delivered. The dependence of EPR signal as function of neutron dose was investigated in the fluence range between 10(11) cm(-2) and 10(14) cm(-2). Linearity of EPR response was found and the signal was compared with that of commercial alanine films. Our analysis showed that gadolinium oxide (5% by weight) can enhance the thermal neutron sensitivity more than 18 times. Irradiated dosimetric films of phenolic compound exhibited EPR signal fading of about 4% after 10 days from irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Myers, Samuel M.
2014-02-01
A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defectsmore » within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.« less
Response functions for computing absorbed dose to skeletal tissues from neutron irradiation
NASA Astrophysics Data System (ADS)
Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.
2011-11-01
Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM50 DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article available at http://stacks.iop.org/0031-9155/56/6873/mmedia.
Response functions for computing absorbed dose to skeletal tissues from neutron irradiation.
Bahadori, Amir A; Johnson, Perry; Jokisch, Derek W; Eckerman, Keith F; Bolch, Wesley E
2011-11-07
Spongiosa in the adult human skeleton consists of three tissues-active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM(50)), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM(50) targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM(50) and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM(50) DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 MeV, substantial differences are observed among the kerma coefficients and DRF. As a result, it is recommended that the AM kerma coefficient be used to estimate the AM DRF, and that the TM kerma coefficient be used to estimate the TM(50) DRF below 10 eV. Between 10 eV and 100 MeV, the appropriate DRF should be used as presented in this study. Above 100 MeV, spongiosa kerma coefficients apply well for estimating skeletal tissue doses. DRF values for each bone site as a function of energy are provided in an electronic annex to this article available at http://stacks.iop.org/0031-9155/56/6873/mmedia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanchini, Erica
A Radiation Portal Monitor (RPM) was developed by the Istituto Nazionale di Fisica Nucleare (INFN) and Ansaldo Nucleare (ANN) within the FP7 SCINTILLA European project. The system was designed to detect both gamma and neutron radiation with a single technology. It is conceived to monitor vehicle and cargo containers in transits across borders or ports, to find radioactive elements and to avoid illegal trafficking of strategic nuclear materials. The system is based on a {sup 3}He-free neutron detection technology using plastic scintillators coupled to Gadolinium to detect and discriminate gamma from neutron signals. During the 3 years of the SCINTILLAmore » project the construction and test of the first two prototypes drove the definition of the final layout of a full RPM system consisting of two twin pillars as a portal for vehicle and cargo container scan. A custom System Control Software (SCS) manages the electronics of the RPM, the ancillary devices and the data analysis. The combination of the detector layout and of the software functionalities enables both to distinguish neutrons and gammas and to identify the energy range of a detected gamma source. The system was initially characterized via static tests with gamma and neutron sources in the INFN laboratory. These measurements were used to calibrate the detector, evaluate the response of the single pillars as well as of the full system, and optimize the RPM configuration and discrimination algorithm. During this phase, specific tests were performed to study the stability over time of the system, monitoring the measured the neutron and gamma count rates over periods of several weeks. The results allow us to demonstrate the reliability and robustness of the RPM. In a second time the RPM performance was studied via dynamic tests performed during the SCINTILLA test and benchmark campaigns. These measurements took place in the JRC ITRAP+10 facility at Ispra (Varese-Italy). The laboratory is equipped with an experimental set-up for dynamic tests of multiple systems according to international standards. The performed measurements utilized radioactive sources with activities selected according to ANSI and IEC standards to test the detector alarm performances in terms of gamma and neutron response, sensitivity to high gamma fields, sensitivity to moderated neutron sources as well as false alarm rates (FAR). In addition, the RPM was tested in challenging configurations exceeding the requirements set by international standards to determine the real limits of the system. The results obtained during these campaigns demonstrated that the system detection efficiency is not only compliant to international standards for its category, but often exceeds them, demonstrating the validity of the chosen technology and of the implemented layout. The positive performance also showed the effectiveness of the SCS and of its functionalities. To further demonstrate the system capabilities, a test in a real-life environment of the RPM is planned to happen in a near future by installing the detectors in a seaport. In this presentation I will give an overview of the RPM characteristics, of its performances as determined in the test campaign mentioned above and of future plans, to demonstrate how this technology can be an effective choice for the realization of {sup 3}He-free RPM detectors. (authors)« less
Characterization of gamma rays existing in the NMIJ standard neutron field.
Harano, H; Matsumoto, T; Ito, Y; Uritani, A; Kudo, K
2004-01-01
Our laboratory provides national standards on fast neutron fluence. Neutron fields are always accompanied by gamma rays produced in neutron sources and surroundings. We have characterised these gamma rays in the 5.0 MeV standard neutron field. Gamma ray measurement was performed using an NE213 liquid scintillator. Pulse shape discrimination was incorporated to separate the events induced by gamma rays from those by neutrons. The measured gamma ray spectra were unfolded with the HEPRO program package to obtain the spectral fluences using the response matrix prepared with the EGS4 code. Corrections were made for the gamma rays produced by neutrons in the detector assembly using the MCNP4C code. The effective dose equivalents were estimated to be of the order of 25 microSv at the neutron fluence of 10(7) neutrons cm(-2).
Abe, Y; Hosoda, H; Arikawa, Y; Nagai, T; Kojima, S; Sakata, S; Inoue, H; Iwasa, Y; Iwano, K; Yamanoi, K; Fujioka, S; Nakai, M; Sarukura, N; Shiraga, H; Norimatsu, T; Azechi, H
2014-11-01
The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.
Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries
NASA Astrophysics Data System (ADS)
Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard
Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.
Jiang, C Y; Tong, X; Brown, D R; Glavic, A; Ambaye, H; Goyette, R; Hoffmann, M; Parizzi, A A; Robertson, L; Lauter, V
2017-02-01
Modern spallation neutron sources generate high intensity neutron beams with a broad wavelength band applied to exploring new nano- and meso-scale materials from a few atomic monolayers thick to complicated prototype device-like systems with multiple buried interfaces. The availability of high performance neutron polarizers and analyzers in neutron scattering experiments is vital for understanding magnetism in systems with novel functionalities. We report the development of a new generation of the in situ polarized 3 He neutron polarization analyzer for the Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. With a new optical layout and laser system, the 3 He polarization reached and maintained 84% as compared to 76% in the first-generation system. The polarization improvement allows achieving the transmission function varying from 50% to 15% for the polarized neutron beam with the wavelength band of 2-9 Angstroms. This achievement brings a new class of experiments with optimal performance in sensitivity to very small magnetic moments in nano systems and opens up the horizon for its applications.
Nuclear spin dependence of time reversal invariance violating effects in neutron scattering
NASA Astrophysics Data System (ADS)
Gudkov, Vladimir; Shimizu, Hirohiko M.
2018-06-01
The spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p -wave resonances.
NASA Astrophysics Data System (ADS)
Brovchenko, Mariya; Duhamel, Isabelle; Dechenaux, Benjamin
2017-09-01
The present paper presents the study carried out in the frame of the DISCOMS project, which stands for "DIstributed Sensing for COrium Monitoring and Safety". This study concerns the calculation of the neutron and gamma radiations received by the considered instrumentation during the normal reactor operation as well as in case of a severe accident for the EPR reactor, outside the reactor pressure vessel and in the containment basemat. This paper summarizes the methods and hypotheses used for the particle transport simulation outside the vessel during normal reactor operation. The results of the simulations are then presented including the responses for distributed Optical Fiber Sensors (OFS), such as the gamma dose and the fast neutron fluence, and for Self Powered Neutron Detectors (SPNDs), namely the neutron and gamma spectra. Same responses are also evaluated for severe accident situations in order to design the SPNDs being sensitive to the both types of received neutron-gamma radiation. By contrast, fibers, involved as transducers in distributed OFS have to resist to the total radiation gamma dose and neutron fluence received during normal operation and the severe accident.
Wilson, Robert D.
2001-03-27
Methods and apparatus are disclosed for determining gas saturation, liquid saturation, porosity and density of earth formations penetrated by a well borehole. Determinations are made from measures of fast neutron and inelastic scatter gamma radiation induced by a pulsed, fast neutron source. The system preferably uses two detectors axially spaced from the neutron source. One detector is preferably a scintillation detector responsive to gamma radiation, and a second detector is preferably an organic scintillator responsive to both neutron and gamma radiation. The system can be operated in cased boreholes which are filled with either gas or liquid. Techniques for correcting all measurements for borehole conditions are disclosed.
NASA Astrophysics Data System (ADS)
Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.
2015-06-01
The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.
Response in thermal neutrons intensity on the activation of seismic processes
NASA Astrophysics Data System (ADS)
Antonova, Valentina; Chubenko, Alexandr; Kryukov, Sergey; Lutsenko, Vadim
2017-04-01
Results of study of thermal and high-energy neutrons intensity during the activation of seismic activity are presented. Installations are located close to the fault of the earth's crust at the high-altitude station of cosmic rays (3340 m above sea level, 20 km from Almaty) in the mountains of Northern Tien-Shan. High correlation and similarity of responses to changes of space and geophysical conditions in the absence of seismic activity are obtained between data of thermal neutron detectors and data of the standard neutron monitor, recording the intensity of high-energy particles. These results confirm the genetic connection of thermal neutrons at the Earth's surface with high-energy neutrons of the galactic origin and suggest same sources of disturbances of their flux. However, observations and analysis of experimental data during the activation of seismic activity showed the frequent breakdown of the correlation between the intensity of thermal and high-energy neutrons and the absence of similarity between variations during these periods. We suppose that the cause of this phenomenon is the additional thermal neutron flux of the lithospheric origin, which appears under these conditions. Method of separating of thermal neutron intensity variations of the lithospheric origin from neutrons variations generated in the atmosphere is proposed. We used this method for analysis of variations of thermal neutrons intensity during earthquakes (with intensity ≥ 3b) in the vicinity of Almaty which took place in 2006-2015. The increase of thermal neutrons flux of the lithospheric origin during of seismic processes activation was observed for 60% of events. However, before the earthquake the increase of thermal neutron flux is only observed for 25-30% of events. It is shown that the amplitude of the additional thermal neutron flux from the Earth's crust is equal to 5-7% of the background level.
Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomelli, L., E-mail: giacomelli@ifp.cnr.it; Tardocchi, M.; Nocente, M.
2016-11-15
This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.
Bass, C D; Beise, E J; Breuer, H; Heimbach, C R; Langford, T J; Nico, J S
2013-07-01
The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% (6)Li is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and (252)Cf neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed. Published by Elsevier Ltd.
Boron selenide semiconductor detectors for thermal neutron counting
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Tower, Joshua; Cirignano, Leonard; Shah, Kanai
2013-09-01
Thermal neutron detectors in planar configuration were fabricated from B2Se3 (Boron Selenide) crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. In this study, the resistivity of crystals is reported and the collected pulse height spectra are presented for devices irradiated with the 241AmBe neutron source. Long-term stability of the B2Se3 devices for neutron detection under continuous bias and without being under continuous bias was investigated and the results are reported. The B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
Surrogate 239Pu(n, fxn) and 241Pu(n, fxn) average fission-neutron-multiplicity measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, J. T.; Alan, B. S.; Akindele, O. A.
2017-09-26
We have constructed a new neutron-charged-particle detector array called NeutronSTARS. It has been described extensively in LLNL-TR-703909 [1] and Akindele et al [2]. We have used this new neutron-charged-particle array to measure the 241Pu and 239Pu fissionneutron multiplicity as a function of equivalent incident-neutron energy from 100 keV to 20 MeV. The experimental approach, detector array, data analysis, and results are summarized in the following sections.
THE POLARIZATION OF NEUTRONS FROM THE STRIPPING OF DEUTERONS ON C$sup 1$$sup 2$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.; Niewodniczanski, H.
1961-01-01
The neutron polarization in the reaction C/sup 12/(d,n)N/sup 13/ at 12.9 Mev is measured as a function of the neutron emission angle. In addition, the neutron energy spectrum is measured at a fixed angle, in order to find the relative numbers of neutrons associated with various energy levels of N/sup 13/. The measured data are used to induce the properties of the N/sup 13/ energy levels studied. (T.F.H.)
Portable neutron spectrometer and dosimeter
Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.
The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.
Portable neutron spectrometer and dosimeter
Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.
1985-01-01
The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Reyna, David
In this work we investigate a method that confirms the operability of neutron detectors requiring neither radiological sources nor radiation-generating devices. This is desirable when radiological sources are not available, but confidence in the functionality of the instrument is required. The “source”, based on the production of neutrons in high-Z materials by muons, provides a tagged, low-background and consistent rate of neutrons that can be used to check the functionality of or calibrate a detector. Using a Monte Carlo guided optimization, an experimental apparatus was designed and built to evaluate the feasibility of this technique. Through a series of trialmore » measurements in a variety of locations we show that gated muon-induced neutrons appear to provide a consistent source of neutrons (35.9 ± 2.3 measured neutrons/10,000 muons in the instrument) under normal environmental variability (less than one statistical standard deviation for 10,000 muons) with a combined environmental + statistical uncertainty of ~18% for 10,000 muons. This is achieved in a single 21-22 minute measurement at sea level.« less
Multifold paths of neutrons in the three-beam interferometer detected by a tiny energy kick
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Hermann; Denkmayr, Tobias; Sponar, Stephan; Lemmel, Hartmut; Jenke, Tobias; Hasegawa, Yuji
2018-05-01
A neutron optical experiment is presented to investigate the paths taken by neutrons in a three-beam interferometer. In various beam paths of the interferometer, the energy of the neutrons is partially shifted so that the faint traces are left along the beam path. By ascertaining an operational meaning to "the particle's path," which-path information is extracted from these faint traces with minimal perturbations. Theory is derived by simply following the time evolution of the wave function of the neutrons, which clarifies the observation in the framework of standard quantum mechanics. Which-way information is derived from the intensity, sinusoidally oscillating in time at different frequencies, which is considered to result from the interfering cross terms between stationary main component and the energy-shifted which-way signals. Final results give experimental evidence that the (partial) wave functions of the neutrons in each beam path are superimposed and present in multiple locations in the interferometer.
Romero, A M; Saez-Vergara, J C; Rodriguez, R; Domínguez-Mompell, R
2004-01-01
CIEMAT, in close co-operation with Iberia Airlines, carried out an extensive programme of in-flight measurements, covering both hemispheres, during the years 2001 and 2002. Although the instrumentation onboard included different active devices, the results presented here were obtained from a polyethylene/tungsten-moderated rem meter (SWENDI2; Eberline) and an ionisation chamber (RSS-131; Reuter-Stokes) used for measuring the ambient dose equivalent due to the neutron and the non-neutron components of cosmic radiation, respectively. This paper presents a study of each of the dose components mentioned as a function of the vertical cut-off rigidity and the flight altitude. The ratio between the two components is also presented to determine the variations in cosmic radiation composition as a function of the aforementioned parameters. The experimental results have also been compared with those predicted by the code EPCARD3.2 for the non-neutron and the neutron components of the ambient dose equivalent.
A search for solar neutrons on a long duration balloon flight
NASA Technical Reports Server (NTRS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-01-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
A search for solar neutrons on a long duration balloon flight
NASA Astrophysics Data System (ADS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-08-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...
2018-11-21
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Skyshine at neutron energies less than or equal to 400 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsmiller, A.G. Jr.; Barish, J.; Childs, R.L.
1980-10-01
The dose equivalent at an air-ground interface as a function of distance from an assumed azimuthally symmetric point source of neutrons can be calculated as a double integral. The integration is over the source strength as a function of energy and polar angle weighted by an importance function that depends on the source variables and on the distance from the source to the filed point. The neutron importance function for a source 15 m above the ground emitting only into the upper hemisphere has been calculated using the two-dimensional discrete ordinates code, DOT, and the first collision source code, GRTUNCL,more » in the adjoint mode. This importance function is presented for neutron energies less than or equal to 400 MeV, for source cosine intervals of 1 to .8, .8 to .6 to .4, .4 to .2 and .2 to 0, and for various distances from the source to the field point. As part of the adjoint calculations a photon importance function is also obtained. This importance function for photon energies less than or equal to 14 MEV and for various source cosine intervals and source-to-field point distances is also presented. These importance functions may be used to obtain skyshine dose equivalent estimates for any known source energy-angle distribution.« less
The use of LiF (TLD-100) as an out-of-field dosimeter.
Kry, Stephen F; Price, Michael; Followill, David; Mourtada, Firas; Salehpour, Mohammad
2007-09-24
The commonly used thermoluminescent dosimeter TLD-100 (Harshaw Chemical Company, Solon, OH) responds not only to photons and electrons, but also to neutrons that are produced during high-energy therapies. As a result, TLD-100 measurements outside of the treatment field are suspect when high-energy radiation is used. Although alternatives such as TLD-700 do not respond to neutrons, specialty dosimeters of this kind are expensive and are not routinely used in most clinics. In the current study, we examined the accuracy of TLD-100 in measuring the out-of-field photon dose as a function of treatment energy. To determine the accuracy of TLD-100 as compared with TLD-700, TLD-100 was irradiated outside of the treatment field by medical accelerators operated at 6, 10, 15, and 18 MV. In an effort to eliminate the response of TLD-100 to neutrons, TLD capsules were encased in varying thicknesses of cadmium foil (0.25 - 0.75 mm) before being irradiated at 18 MV. The out-of-field TLD-100 was found to be accurate at 6 MV and 10 MV, but to be substantially over-responsive at 15 MV and 18 MV (by up to 1063% relative to TLD-700). By wrapping the TLD-100 in up to 0.75 mm of cadmium, it was possible to drastically reduce (down to 39% on average) the over-response of the TLD-100; however, total removal of the over-responsiveness was not possible. Although TLD-100 is well suited for measuring out-of-field dose at energies as high as 10 MV, at higher energies (15 MV or greater), this dosimeter over-responds substantially and should not be used. Although encasing the TLD in cadmium minimized over-response to a degree, the reduction was not sufficient to make TLD-100 viable for measuring out-of-field dose at high treatment energies.
The use of LiF (TLD‐100) as an out‐of‐field dosimeter
Price, Michael; Followill, David; Mourtada, Firas; Salehpour, Mohammad
2007-01-01
The commonly used thermoluminescent dosimeter TLD‐100 (Harshaw Chemical Company, Solon, OH) responds not only to photons and electrons, but also to neutrons that are produced during high‐energy therapies. As a result, TLD‐100 measurements outside of the treatment field are suspect when high‐energy radiation is used. Although alternatives such as TLD‐700 do not respond to neutrons, specialty dosimeters of this kind are expensive and are not routinely used in most clinics. In the current study, we examined the accuracy of TLD‐100 in measuring the out‐of‐field photon dose as a function of treatment energy. To determine the accuracy of TLD‐100 as compared with TLD‐700, TLD‐100 was irradiated outside of the treatment field by medical accelerators operated at 6, 10, 15, and 18 MV. In an effort to eliminate the response of TLD‐100 to neutrons, TLD capsules were encased in varying thicknesses of cadmium foil (0.25 – 0.75 mm) before being irradiated at 18 MV. The out‐of‐field TLD‐100 was found to be accurate at 6 MV and 10 MV, but to be substantially over‐responsive at 15 MV and 18 MV (by up to 1063% relative to TLD‐700). By wrapping the TLD‐100 in up to 0.75 mm of cadmium, it was possible to drastically reduce (down to 39% on average) the over‐response of the TLD‐100; however, total removal of the over‐responsiveness was not possible. Although TLD‐100 is well suited for measuring out‐of‐field dose at energies as high as 10 MV, at higher energies (15 MV or greater), this dosimeter over‐responds substantially and should not be used. Although encasing the TLD in cadmium minimized over‐response to a degree, the reduction was not sufficient to make TLD‐100 viable for measuring out‐of‐field dose at high treatment energies. PACS numbers: 87.52.‐g, 87.53.‐j, 87.53.‐Dq
Photonuclear activation of pure isotopic mediums.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grohman, Mark A.; Lukosi, Eric Daniel
2010-06-01
This work simulated the response of idealized isotopic U-235, U-238, Th-232, and Pu-239 mediums to photonuclear activation with various photon energies. These simulations were conducted using MCNPX version 2.6.0. It was found that photon energies between 14-16 MeV produce the highest response with respect to neutron production rates from all photonuclear reactions. In all cases, Pu-239 responds the highest, followed by U-238. Th-232 produces more overall neutrons at lower photon energies then U-235 when material thickness is above 3.943 centimeters. The time it takes each isotopic material to reach stable neutron production rates in time is directly proportional to themore » material thickness and stopping power of the medium, where thicker mediums take longer to reach stable neutron production rates and thinner media display a neutron production plateau effect, due to the lack of significant attenuation of the activating photons in the isotopic mediums. At this time, no neutron sensor system has time resolutions capable of verifying these simulations, but various indirect methods are possible and should be explored for verification of these results.« less
Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P
2016-09-01
The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Characterization of a tin-loaded liquid scintillator for gamma spectroscopy and neutron detection
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Harvey, Taylor; Weinmann-Smith, Robert; Walker, James; Noh, Young; Farley, Richard; Enqvist, Andreas
2018-07-01
A tin-loaded liquid scintillator has been developed for gamma spectroscopy and neutron detection. The scintillator was characterized in regard to energy resolution, pulse shape discrimination, neutron light output function, and timing resolution. The loading of tin into scintillators with low effective atomic number was demonstrated to provide photopeaks with acceptable energy resolution. The scintillator was shown to have reasonable neutron/gamma discrimination capability based on the charge comparison method. The effect on the discrimination quality of the total charge integration time and the initial delay time for tail charge integration was studied. To obtain the neutron light output function, the time-of-flight technique was utilized with a 252Cf source. The light output function was validated with the MCNPX-PoliMi code by comparing the measured and simulated pule height spectra. The timing resolution of the developed scintillator was also evaluated. The tin-loading was found to have negligible impact on the scintillation decay times. However, a relatively large degradation of timing resolution was observed due to the reduced light yield.
Neutron response characterization for an EJ299-33 plastic scintillation detector
Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; ...
2014-05-10
Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here in this paper, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for bothmore » detectors. A Continuous spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals.« less
Solid polystyrene and deuterated polystyrene light output response to fast neutrons
NASA Astrophysics Data System (ADS)
Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.
2016-04-01
The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.
Solid polystyrene and deuterated polystyrene light output response to fast neutrons.
Simpson, R; Danly, C; Glebov, V Yu; Hurlbut, C; Merrill, F E; Volegov, P L; Wilde, C
2016-04-01
The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.
Solid polystyrene and deuterated polystyrene light output response to fast neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Merrill, F. E.
The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize amore » deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.« less
Measurement and Interpretation of DT Neutron Emission from Tftr.
NASA Astrophysics Data System (ADS)
McCauley, John Scott, Jr.
A fast-ion diffusion coefficient of 0.1 +/- 0.1 m^2s ^{-1} has been deduced from the triton burnup neutron emission profile measured by a collimated array of helium-4 spectrometers. The experiment was performed with high-power deuterium discharges produced by Princeton University's Tokamak Fusion Test Reactor (TFTR). The fast ions monitored were the 1.0 MeV tritons produced from the d(d,t)p triton burnup reaction. These tritons "burn up" with deuterons and emit a 14 MeV neutron by the d(t, alpha)n reaction. The measured radial profiles of DT emission were compared with the predictions of a computer transport code. The ratio of the measured-to -calculated DT yield is typically 70%. The measured DT profile width is typically 5 cm larger than predicted by the transport code. The radial 14 MeV neutron profile was measured by a radial array of helium-4 recoil neutron spectrometers installed in the TFTR Multichannel Neutron Collimator (MCNC). The spectrometers are capable of measuring the primary and secondary neutron fluxes from deuterium discharges. The response to 14 MeV neutrons of the array has been measured by cross calibrating with the MCNC ZnS detector array when the emission from TFTR is predominantly DT neutrons. The response was also checked by comparing a model of the recoil spectrum based on nuclear physics data to the observed spectrum from ^{252 }Cf, ^{238}Pu -Be, and DT neutron sources. Extensions of this diagnostic to deuterium-tritium plasma and the implications for fusion research are discussed.
Nuclear spin dependence of time reversal invariance violating effects in neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudkov, Vladimir; Shimizu, Hirohiko M.
In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.
Nuclear spin dependence of time reversal invariance violating effects in neutron scattering
Gudkov, Vladimir; Shimizu, Hirohiko M.
2018-06-11
In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
NASA Astrophysics Data System (ADS)
Franklyn, C. B.
2011-12-01
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.
Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu
2010-01-01
The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.
Measurement of the Neutron F2 Structure Function via Spectator Tagging with CLAS
NASA Astrophysics Data System (ADS)
Baillie, N.; Tkachenko, S.; Zhang, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Keppel, C. E.; Kuhn, S. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Djalali, C.; Dodge, G.; Domingo, J.; Doughty, D.; Dupre, R.; Dutta, D.; Ent, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Guegan, B.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Heddle, D.; Hicks, K.; Holtrop, M.; Hungerford, E.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ispiryan, M.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Kalantarians, N.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Klimenko, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; McKinnon, B.; Mineeva, T.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, I.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Pisano, S.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhao, B.
2012-04-01
We report on the first measurement of the F2 structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲100MeV/c and their angles to ≳100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65
Measurement of the neutron F 2 structure function via spectator tagging with CLAS
Baillie, N.; Tkachenko, S.; Zhang, J.; ...
2012-04-01
We report on the first measurement of the F 2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≈< 100 MeV and their angles to ≈> 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F 2 n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of x for 0.65 < Q 2 < 4.52 GeV 2, with uncertainties from nuclear correctionsmore » estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F 2 n/F 2 p at 0.2 ≈< x ≈< 0.8, essentially free of nuclear corrections.« less
Direct Observation of Quark-Hadron Duality in the Free Neutron {ital F}{sub 2} Structure Function
Niculescu, I.; Niculescu, G.; Melnitchouk, W.; ...
2015-05-21
Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for themore » neutron in the second and third resonance regions down to Q(2) approximate to 1 GeV2, with violations possibly up to 20% observed in the first resonance region.« less
Characterization of the new neutron imaging and materials science facility IMAT
NASA Astrophysics Data System (ADS)
Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried
2018-04-01
IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cosentino, L.; Pappalardo, A.; Piscopo, M.
During 2014, the second experimental area (EAR2) was completed at the n-TOF neutron beam facility at CERN (n-TOF indicates neutron beam measurements by means of time of flight technique). The neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target. The resulting neutron beam covers the energy range from thermal to several GeV. In this paper, we describe two beam diagnostic devices, both exploiting silicon detectors coupled with neutron converter foils containing {sup 6}Li. The first one is based on four silicon pads and allows monitoring of the neutron beammore » flux as a function of the neutron energy. The second one, in beam and based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely, a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices were characterized with radioactive sources and also tested at the n-TOF facility at CERN. The wide energy and intensity range they proved capable of sustaining made them attractive and suitable to be used in both EAR1 and EAR2 n-TOF experimental areas, where they became immediately operational.« less
Lithium and boron based semiconductors for thermal neutron counting
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Tower, Joshua; Hong, Huicong; Cirignano, Leonard; Higgins, William; Shah, Kanai
2011-09-01
Thermal neutron detectors in planar configuration were fabricated from LiInSe2 and B2Se3 crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. Pulse height spectra were collected from 241AmBe (neutron source on all samples), as well as 137Cs and 60Co gamma ray sources. In this study, the resistivity of all crystals is reported and the collected pulse height spectra are presented for fabricated devices. Note that, the 241AmBe neutron source was custom designed with polyethylene around the source as the neutron moderator, mainly to thermalize the fast neutrons before reaching the detectors. Both LiInSe2 and B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hep, J.; Konecna, A.; Krysl, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less
Measurement of the 97Mo(n ,γ ) reaction with the DANCE γ calorimeter array
NASA Astrophysics Data System (ADS)
Walker, C. L.; Krtička, M.; Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Chyzh, A.; Haight, R. C.; Jandel, M.; Kroll, J.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.
2015-07-01
Spectra of γ rays following the 97Mo(n ,γ ) reaction were measured as a function of incident neutron energy with the DANCE (Detector for Advanced Neutron Capture Experiments) array of 160 BaF2 scintillation detectors at the Los Alamos Neutron Science Center using an enriched 97Mo target. These spectra were used for the assignment of spins of the 97Mo resonances up to neutron energy En=1.7 keV, as well as in the study of photon strength functions (PSFs) in 98Mo. Analysis of the spectra with the nuclear statistical model showed that they can be well reproduced with the same PSF models which well described the γ decay following slow neutron capture in 95Mo. On the other hand, the spectra are inconsistent with PSFs describing some other experimental data in 98Mo.
Microstructural evolution of neutron irradiated 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Microstructural evolution of neutron irradiated 3C-SiC
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...
2017-03-18
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen
Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, David; Leconte, Pierre; Destouches, Christophe
2015-07-01
Two recent papers justified a new experimental program to give a new basis for the validation of {sup 238}U nuclear data, namely neutron induced inelastic scattering and transport codes at neutron fission energies. The general idea is to perform a neutron transmission experiment through natural uranium material. As shown by Hans Bethe, neutron transmissions measured by dosimetric responses are linked to inelastic cross sections. This paper describes the principle and the results of such an experience called EXCALIBUR performed recently (January and October 2014) at the CALIBAN reactor facility. (authors)
Plastic fiber scintillator response to fast neutrons
NASA Astrophysics Data System (ADS)
Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.
2014-11-01
The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.
Plastic fiber scintillator response to fast neutrons.
Danly, C R; Sjue, S; Wilde, C H; Merrill, F E; Haight, R C
2014-11-01
The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.
WINDOWS: a program for the analysis of spectral data foil activation measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.
The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamantov, Eugene
2015-06-12
We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less
Stankunas, Gediminas; Cufar, Aljaz; Tidikas, Andrius; Batistoni, Paola
2017-11-23
Irradiations with 14 MeV fusion neutrons are planned at Joint European Torus (JET) in DT operations with the objective to validate the calculation of the activation of structural materials in functional materials expected in ITER and fusion plants. This study describes the activation and dose rate calculations performed for materials irradiated throughout the DT plasma operation during which the samples of real fusion materials are exposed to 14 MeV neutrons inside the JET vacuum vessel. Preparatory activities are in progress during the current DD operations with dosimetry foils to measure the local neutron fluence and spectrum at the sample irradiation position. The materials included those used in the manufacturing of the main in-vessel components, such as ITER-grade W, Be, CuCrZr, 316 L(N) and the functional materials used in diagnostics and heating systems. The neutron-induced activities and dose rates at shutdown were calculated by the FISPACT code, using the neutron fluxes and spectra that were provided by the preceding MCNP neutron transport calculations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Neutron-multiplicity experiments for enhanced fission modelling
NASA Astrophysics Data System (ADS)
Al-Adili, Ali; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Jansson, Kaj; Solders, Andreas; Rakapoulos, Vasileios; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Oberstedt, Stephan; Prokofiev, Alexander V.; Sundén, Erik A.; Vidali, Marzio; Österlund, Michael; Pomp, Stephan
2017-09-01
The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.
Designing an extended energy range single-sphere multi-detector neutron spectrometer
NASA Astrophysics Data System (ADS)
Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Esposito, A.; Pola, A.; Introini, M. V.; Mazzitelli, G.; Quintieri, L.; Buonomo, B.
2012-06-01
This communication describes the design specifications for a neutron spectrometer consisting of 31 thermal neutron detectors, namely Dysprosium activation foils, embedded in a 25 cm diameter polyethylene sphere which includes a 1 cm thick lead shell insert that degrades the energy of neutrons through (n,xn) reactions, thus allowing to extension of the energy range of the response up to hundreds of MeV neutrons. The new spectrometer, called SP2 (SPherical SPectrometer), relies on the same detection mechanism as that of the Bonner Sphere Spectrometer, but with the advantage of determining the whole neutron spectrum in a single exposure. The Monte Carlo transport code MCNPX was used to design the spectrometer in terms of sphere diameter, number and position of the detectors, position and thickness of the lead shell, as well as to obtain the response matrix for the final configuration. This work focuses on evaluating the spectrometric capabilities of the SP2 design by simulating the exposure of SP2 in neutron fields representing different irradiation conditions (test spectra). The simulated SP2 readings were then unfolded with the FRUIT unfolding code, in the absence of detailed pre-information, and the unfolded spectra were compared with the known test spectra. The results are satisfactory and allowed approving the production of a prototypal spectrometer.
Strategy for the absolute neutron emission measurement on ITER.
Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S
2010-10-01
Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.
NASA Astrophysics Data System (ADS)
Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang
2018-07-01
Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.
Tests of a solution-grown stilbene scintillator in mono-energetic neutron beams of 565 keV and 5 MeV
NASA Astrophysics Data System (ADS)
Dioni, Luca; Gressier, Vincent; Nardin, Gaëlle; Jacqmin, Robert; Stout, Brian; Sumini, Marco
2018-02-01
The results of measurements performed with a solution-grown stilbene scintillator placed in reference mono-energetic neutron fields are presented. The ∅ 25 mm organic scintillator was positioned in 5 MeV and 565 keV neutron fields delivered by the AIFIRA facility at CENBG. The goal of the experiment was to assess the performance of the solution-grown stilbene crystal (n- γ discrimination, response, anisotropy, sensitivity) relative to that of a BC501A liquid scintillator of larger size. Neutron pulse height spectra after gamma discrimination are compared. The results show that the stilbene crystal not only has a better discrimination capability than the BC501A (35% higher FoM) at 5 MeV, but is also able to separate neutrons from gamma-rays at 565 keV and below, a range where the BC501A is inoperative. This study also confirms the anisotropy of the crystal response, as already observed by other groups at different energies.
NASA Astrophysics Data System (ADS)
Lawrence, Chris C.; Polack, J. K.; Febbraro, Michael; Kolata, J. J.; Flaska, Marek; Pozzi, S. A.; Becchetti, F. D.
2017-02-01
The literature discussing pulse-shape discrimination (PSD) in organic scintillators dates back several decades. However, little has been written about PSD techniques that are optimized for neutron spectrum unfolding. Variation in n-γ misclassification rates and in γ/n ratio of incident fields can distort the neutron pulse-height response of scintillators and these distortions can in turn cause large errors in unfolded spectra. New applications in arms-control verification call for detection of lower-energy neutrons, for which PSD is particularly problematic. In this article, we propose techniques for removing distortions on pulse-height response that result from the merging of PSD distributions in the low-pulse-height region. These techniques take advantage of the repeatable shapes of PSD distributions that are governed by the counting statistics of scintillation-photon populations. We validate the proposed techniques using accelerator-based time-of-flight measurements and then demonstrate them by unfolding the Watt spectrum from measurement with a 252Cf neutron source.
The effect of a paraffin screen on the neutron dose at the maze door of a 15 MV linear accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krmar, M.; Kuzmanović, A.; Nikolić, D.
2013-08-15
Purpose: The purpose of this study was to explore the effects of a paraffin screen located at various positions in the maze on the neutron dose equivalent at the maze door.Methods: The neutron dose equivalent was measured at the maze door of a room containing a 15 MV linear accelerator for x-ray therapy. Measurements were performed for several positions of the paraffin screen covering only 27.5% of the cross-sectional area of the maze. The neutron dose equivalent was also measured at all screen positions. Two simple models of the neutron source were considered in which the first assumed that themore » source was the cross-sectional area at the inner entrance of the maze, radiating neutrons in an isotropic manner. In the second model the reduction in the neutron dose equivalent at the maze door due to the paraffin screen was considered to be a function of the mean values of the neutron fluence and energy at the screen.Results: The results of this study indicate that the equivalent dose at the maze door was reduced by a factor of 3 through the use of a paraffin screen that was placed inside the maze. It was also determined that the contributions to the dosage from areas that were not covered by the paraffin screen as viewed from the dosimeter, were 2.5 times higher than the contributions from the covered areas. This study also concluded that the contributions of the maze walls, ceiling, and floor to the total neutron dose equivalent were an order of magnitude lower than those from the surface at the far end of the maze.Conclusions: This study demonstrated that a paraffin screen could be used to reduce the neutron dose equivalent at the maze door by a factor of 3. This paper also found that the reduction of the neutron dose equivalent was a linear function of the area covered by the maze screen and that the decrease in the dose at the maze door could be modeled as an exponential function of the product φ·E at the screen.« less
Estimation of d- 2 H Breakup Neutron Energy Distributions From d- 3 He
Hoop, B.; Grimes, S. M.; Drosg, M.
2017-06-19
A method is described to estimate deuteron-on-deuteron breakup neutron distributions at 0° using deuterium bombardment of 3He. Break-up neutron distributions are modeled with the product of a Fermi-Dirac distribution and a cumulative logistic distribution function. Four measured break-up neutron distributions from 6.15- to 12.0-MeV deuterons on 3He are compared with thirteen measured distributions from 6.83- to 11.03-MeV deuterons on deuterium. Model pararmeters that describe d -3He neutron distributions are used to estimate neutron distributions from 6- to 12-MeV deuterons on deuterium.
Analysis of Quasi-Elastic e-n and e-p Scattering from Deuterium
NASA Astrophysics Data System (ADS)
Balsamo, Alexander; Gilfoyle, Gerard; CLAS12 Collaboration
2017-09-01
One of Jefferson Lab's goals is to unravel the quark-gluon structure of nuclei. We will use the ratio, R, of electron-neutron to electron-proton scattering on deuterium to probe the magnetic form factor of the neutron. We have developed an end-to-end analysis from simulation to extraction of R in quasi-elastic kinematics for an approved experiment with the CLAS12 detector. We focus on neutrons detected in the CLAS12 calorimeters and protons measured with the CLAS12 forward detector. Events were generated with the Quasi-Elastic Event Generator (QUEEG) and passed through the Monte Carlo code gemc to simulate the CLAS12 response. These simulated events were reconstructed using the latest CLAS12 Common Tools. We first match the solid angle for e-n and e-p events. The electron information is used to predict the path of both a neutron and proton through CLAS12. If both particles interact in CLAS12 the e-n and e-p events have the same solid angle. We select QE events by searching for nuclei near the predicted position. An angular cut between the predicted 3-momentum of the nucleon and the measured value, θpq, separates QE and inelastic events. We will show the simulated R as a function of the four-momentum transfer Q2. Work supported by the University of Richmond and the US Department of Energy.
Density Functional Approach to Superfluid Phonon in Inner Crust of Neutron Stars
NASA Astrophysics Data System (ADS)
Inakura, Tsunenori; Matsuo, Masayuki
We investigate superfluid phonon emerging in inner crust of neutron stars by means of the nuclear density functional theory. Adopting the Wigner-Seitz approximation and a single spherical cell, we describe low-lying collective excitation with the dipole multipolarity. It is found that the superfluid phonon standing on the low-density neutron superfluid does not penetrate into the interior of the nuclear cluster. This suggests that the coupling between the superfluid phonon and the lattice phonon could be weak, and it may affect the thermal conductivity of inner crust.
Relativistic Brueckner-Hartree-Fock theory for neutron drops
NASA Astrophysics Data System (ADS)
Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan
2018-05-01
Neutron drops confined in an external field are studied in the framework of relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. The ground-state energies and radii of neutron drops with even numbers from N =4 to N =50 are calculated and compared with results obtained from other nonrelativistic ab initio calculations and from relativistic density functional theory. Special attention has been paid to the magic numbers and to the subshell closures. The single-particle energies are investigated and the monopole effect of the tensor force on the evolutions of the spin-orbit and the pseudospin-orbit splittings is discussed. The results provide interesting insights into neutron-rich systems and can form an important guide for future density functionals.
Quasi solution of radiation transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
There is uncertainty with experimental data as well as with input data of theoretical calculations. The neutron distribution from the variational principle, which takes into account both theoretical and experimental data, is obtained to increase the accuracy and speed of neutronic calculations. The neutron imbalance in mesh cells and the discrepancy between experimentally measured and calculated functional of the neutron distribution are simultaneously minimized. A fast-working and simple-programming iteration method is developed to minimize the objective functional. The method can be used in the core monitoring and control system for (a) power distribution calculations, (b) in- and ex-core detector calibration,more » (c) macro-cross sections or isotope distribution correction by experimental data, and (d) core and detector diagnostics.« less
A new response matrix for a 6LiI scintillator BSS system
NASA Astrophysics Data System (ADS)
Lacerda, M. A. S.; Méndez-Villafañe, R.; Lorente, A.; Ibañez, S.; Gallego, E.; Vega-Carrillo, H. R.
2017-10-01
A new response matrix was calculated for a Bonner Sphere Spectrometer (BSS) with a 6 LiI(Eu) scintillator, using the Monte Carlo N-Particle radiation transport code MCNPX. Responses were calculated for 6 spheres and the bare detector, for energies varying from 1.059E(-9) MeV to 105.9 MeV, with 20 equal-log(E)-width bins per energy decade, totalizing 221 energy groups. A comparison was done among the responses obtained in this work and other published elsewhere, for the same detector model. The calculated response functions were inserted in the response input file of the MAXED code and used to unfold the total and direct neutron spectra generated by the 241Am-Be source of the Universidad Politécnica de Madrid (UPM). These spectra were compared with those obtained using the same unfolding code with the Mares and Schraube matrix response.
NASA Astrophysics Data System (ADS)
Hoshor, Cory; Young, Stephan; Rogers, Brent; Currie, James; Oakes, Thomas; Scott, Paul; Miller, William; Caruso, Anthony
2014-03-01
A novel application of the Pearson Cross-Correlation to neutron spectral discernment in a moderating type neutron spectrometer is introduced. This cross-correlation analysis will be applied to spectral response data collected through both MCNP simulation and empirical measurement by the volumetrically sensitive spectrometer for comparison in 1, 2, and 3 spatial dimensions. The spectroscopic analysis methods discussed will be demonstrated to discern various common spectral and monoenergetic neutron sources.
Application of quasi-distributions for solving inverse problems of neutron and {gamma}-ray transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
The considered inverse problems deal with the calculation of the unknown values of nuclear installations by means of the known (goal) functionals of neutron/{gamma}-ray distributions. The example of these problems might be the calculation of the automatic control rods position as function of neutron sensors reading, or the calculation of experimentally-corrected values of cross-sections, isotopes concentration, fuel enrichment via the measured functional. The authors have developed the new method to solve inverse problem. It finds flux density as quasi-solution of the particles conservation linear system adjointed to equalities for functionals. The method is more effective compared to the one basedmore » on the classical perturbation theory. It is suitable for vectorization and it can be used successfully in optimization codes.« less
Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations
NASA Astrophysics Data System (ADS)
Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET
2017-09-01
The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.
Beta-decay half-lives for short neutron rich nuclei involved into the r-process
NASA Astrophysics Data System (ADS)
Panov, I.; Lutostansky, Yu; Thielemann, F.-K.
2018-01-01
The beta-strength function model based on Finite Fermi-Systems Theory is applied for calculations of the beta-decay half-lives for short neutron rich nuclei involved into the r- process. It is shown that the accuracy of beta-decay half-lives of short-lived neutron-rich nuclei is improving with increasing neutron excess and can be used for modeling of nucleosynthesis of heavy nuclei in the r-process.
Neutron - Alpha irradiation response of superheated emulsion detectors
NASA Astrophysics Data System (ADS)
Felizardo, M.; Morlat, T.; Girard, T. A.; Kling, A.; Fernandes, A. C.; Marques, J. G.; Carvalho, F.; Ramos, A. R.
2017-08-01
We report new experimental investigations of the response of single superheated emulsion detectors with small droplet (<30 μm radii) size distributions to both α- and neutron irradiations. Analysis of the results in terms of the underlying detector physics yields a toy model which reasonably reproduces the observations, and identifies the initial energy of the α in the liquid and distribution of droplet sizes as primarily responsible for the detector capacity to distinguish between nuclear recoil and α events.
Preliminary Analysis of the Multisphere Neutron Spectrometer
NASA Technical Reports Server (NTRS)
Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.
2003-01-01
Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.
A scintillator-based approach to monitor secondary neutron production during proton therapy.
Clarke, S D; Pryser, E; Wieger, B M; Pozzi, S A; Haelg, R A; Bashkirov, V A; Schulte, R W
2016-11-01
The primary objective of this work is to measure the secondary neutron field produced by an uncollimated proton pencil beam impinging on different tissue-equivalent phantom materials using organic scintillation detectors. Additionally, the Monte Carlo code mcnpx-PoliMi was used to simulate the detector response for comparison to the measured data. Comparison of the measured and simulated data will validate this approach for monitoring secondary neutron dose during proton therapy. Proton beams of 155- and 200-MeV were used to irradiate a variety of phantom materials and secondary particles were detected using organic liquid scintillators. These detectors are sensitive to fast neutrons and gamma rays: pulse shape discrimination was used to classify each detected pulse as either a neutron or a gamma ray. The mcnpx-PoliMi code was used to simulate the secondary neutron field produced during proton irradiation of the same tissue-equivalent phantom materials. An experiment was performed at the Loma Linda University Medical Center proton therapy research beam line and corresponding models were created using the mcnpx-PoliMi code. The authors' analysis showed agreement between the simulations and the measurements. The simulated detector response can be used to validate the simulations of neutron and gamma doses on a particular beam line with or without a phantom. The authors have demonstrated a method of monitoring the neutron component of the secondary radiation field produced by therapeutic protons. The method relies on direct detection of secondary neutrons and gamma rays using organic scintillation detectors. These detectors are sensitive over the full range of biologically relevant neutron energies above 0.5 MeV and allow effective discrimination between neutron and photon dose. Because the detector system is portable, the described system could be used in the future to evaluate secondary neutron and gamma doses on various clinical beam lines for commissioning and prospective data collection in pediatric patients treated with proton therapy.
Characterization of boron coated vitreous carbon foam for neutron detection
NASA Astrophysics Data System (ADS)
Lavelle, C. M.; Deacon, Ryan M.; Hussey, Daniel S.; Coplan, Michael; Clark, Charles W.
2013-11-01
Reticulated vitreous carbon (RVC) foams coated with 3-11 μm thick layers of boron carbide (B4C) are experimentally characterized for use as an active material for neutron detection. The potential advantage of this material over thin films is that it can be fabricated in any shape and its porous structure may enhance the emission surface area for ionizing charged particles following thermal neutron capture. A coated foam is also advantageous because the neutron-absorbing material is only on the surface, which is more efficient for α particle emission on a per captured neutron basis. Measurements of the B4C layer thickness of an RVC coated foam, and determination of its elemental composition, are performed using scanning electron microscopy. Neutron transmission measurements using neutron radiography are presented and α particle emission from the coated foam in response to a moderated 252Cf thermal neutron source is demonstrated.
Level densities and γ-ray strength functions in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.
2010-06-01
The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.
Characterization of a 6Li enriched Cs2LiYCl6:Ce scintillator and its application as a γ-ray detector
NASA Astrophysics Data System (ADS)
Qin, Jianguo; Lai, Caifeng; Lu, Xinxin; Zheng, Pu; Zhu, Tonghua; Liu, Rong; Ye, Bangjiao; Zhang, Xinwei
2018-04-01
In this work, we characterize the γ-ray response and efficiency for a cylindrical inorganic Cs2LiYCl6:Ce detector 1‧‧ in diameter and 1‧‧ in height. The energy resolution and linearity are obtained from 21 γ-rays with energies ranging from 0.026 to 2.447 MeV. In addition, the neutron γ-ray discrimination is validated by measuring a 252Cf radioisotope. Gamma-ray response functions and matrix below 7 MeV are simulated using a Monte Carlo approach and validated through the unfolded γ-ray spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parlinski, K.
1962-06-01
A classical selfcorrelation function is found for an atom in the molecule by considering the translation of the free molecule, its rotation and oscillation. The Krieger-Nelkin formula for the differential cross section of incoherent neutron scattering by molecules is derived from the correlation. (auth)
Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data
NASA Astrophysics Data System (ADS)
Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.
2011-01-01
The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklyn, C. B.
2011-12-13
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less
On neutron-gamma mixed field dosimetry with LiF:Mg,Ti at radiation protection dose levels.
Weinstein, M; German, U; Alfassi, Z B
2006-01-01
The possibility of using the specific responses of the high temperature Peaks 6 and 7 and Peaks 4 and 5 to different LET radiations was mentioned in the past mainly for very high doses. The applicability of the two regions method for thermal neutrons--gamma ray mixed field dosimetry was investigated by analysing the response of LiF:Mg,Ti dosemeters irradiated to different ratios of thermal neutrons and gamma rays at radiation protection dose levels encountered in routine work conditions, up to approximately 50 mSv. The Region of Interest method was used to define the areas of the Peaks 4 + 5 and 6 + 7. We found that a simple algorithm can be used to determine with good accuracy the separate contributions of neutron and gamma doses.
Monte Carlo Study of the abBA Experiment: Detector Response and Physics Analysis.
Frlež, E
2005-01-01
The abBA collaboration proposes to conduct a comprehensive program of precise measurements of neutron β-decay coefficients a (the correlation between the neutrino momentum and the decay electron momentum), b (the electron energy spectral distortion term), A (the correlation between the neutron spin and the decay electron momentum), and B (the correlation between the neutron spin and the decay neutrino momentum) at a cold neutron beam facility. We have used a GEANT4-based code to simulate the propagation of decay electrons and protons in the electromagnetic spectrometer and study the energy and timing response of a pair of Silicon detectors. We used these results to examine systematic effects and find the uncertainties with which the physics parameters a, b, A, and B can be extracted from an over-determined experimental data set.
Applications of Elpasolites as a Multimode Radiation Sensor
NASA Astrophysics Data System (ADS)
Guckes, Amber
This study consists of both computational and experimental investigations. The computational results enabled detector design selections and confirmed experimental results. The experimental results determined that the CLYC scintillation detector can be applied as a functional and field-deployable multimode radiation sensor. The computational study utilized MCNP6 code to investigate the response of CLYC to various incident radiations and to determine the feasibility of its application as a handheld multimode sensor and as a single-scintillator collimated directional detection system. These simulations include: • Characterization of the response of the CLYC scintillator to gamma-rays and neutrons; • Study of the isotopic enrichment of 7Li versus 6Li in the CLYC for optimal detection of both thermal neutrons and fast neutrons; • Analysis of collimator designs to determine the optimal collimator for the single CLYC sensor directional detection system to assay gamma rays and neutrons; Simulations of a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system with the optimized collimator to determine the feasibility of detecting nuclear materials that could be encountered during field operations. These nuclear materials include depleted uranium, natural uranium, low-enriched uranium, highly-enriched uranium, reactor-grade plutonium, and weapons-grade plutonium. The experimental study includes the design, construction, and testing of both a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system. Both were designed in the Inventor CAD software and based on results of the computational study to optimize its performance. The handheld CLYC multimode sensor is modular, scalable, low?power, and optimized for high count rates. Commercial?off?the?shelf components were used where possible in order to optimize size, increase robustness, and minimize cost. The handheld CLYC multimode sensor was successfully tested to confirm its ability for gamma-ray and neutron detection, and gamma?ray and neutron spectroscopy. The sensor utilizes wireless data transfer for possible radiation mapping and network?centric deployment. The handheld multimode sensor was tested by performing laboratory measurements with various gamma-ray sources and neutron sources. The single CLYC scintillator collimated directional detection system is portable, robust, and capable of source localization and identification. The collimator was designed based on the results of the computational study and is constructed with high density polyethylene (HDPE) and lead (Pb). The collimator design and construction allows for the directional detection of gamma rays and fast neutrons utilizing only one scintillator which is interchangeable. For this study, a CLYC-7 scintillator was used. The collimated directional detection system was tested by performing laboratory directional measurements with various gamma-ray sources, 252Cf and a 239PuBe source.
Moslehi, Amir; Raisali, Gholamreza
2018-07-01
The response of a microdosimeter for neutrons above 14 MeV is investigated. The mean quality factors and dose-equivalents are determined using lineal energy distributions calculated by Monte Carlo simulations (Geant4 toolkit). From 14 MeV to 5 GeV, the mean quality factors were found to vary between 6.00 and 9.30 and the dose-equivalents were in agreement with the true ambient dose-equivalent at the depth of 10 mm inside the ICRU sphere, H * (10). An energy-independent dose-equivalent response around a median value of 0.86 within 22% uncertainty was obtained. Therefore, the microdosimeter is appropriate for dose-equivalent measurement of high-energy neutrons. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hysteresis of Soil Point Water Retention Functions Determined by Neutron Radiography
NASA Astrophysics Data System (ADS)
Perfect, E.; Kang, M.; Bilheux, H.; Willis, K. J.; Horita, J.; Warren, J.; Cheng, C.
2010-12-01
Soil point water retention functions are needed for modeling flow and transport in partially-saturated porous media. Such functions are usually determined by inverse modeling of average water retention data measured experimentally on columns of finite length. However, the resulting functions are subject to the appropriateness of the chosen model, as well as the initial and boundary condition assumptions employed. Soil point water retention functions are rarely measured directly and when they are the focus is invariably on the main drying branch. Previous direct measurement methods include time domain reflectometry and gamma beam attenuation. Here we report direct measurements of the main wetting and drying branches of the point water retention function using neutron radiography. The measurements were performed on a coarse sand (Flint #13) packed into 2.6 cm diameter x 4 cm long aluminum cylinders at the NIST BT-2 (50 μm resolution) and ORNL-HFIR CG1D (70 μm resolution) imaging beamlines. The sand columns were saturated with water and then drained and rewetted under quasi-equilibrium conditions using a hanging water column setup. 2048 x 2048 pixel images of the transmitted flux of neutrons through the column were acquired at each imposed suction (~10-15 suction values per experiment). Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert’s law in conjunction with beam hardening and geometric corrections. The pixel rows were averaged and combined with information on the known distribution of suctions within the column to give 2048 point drying and wetting functions for each experiment. The point functions exhibited pronounced hysteresis and varied with column height, possibly due to differences in porosity caused by the packing procedure employed. Predicted point functions, extracted from the hanging water column volumetric data using the TrueCell inverse modeling procedure, showed very good agreement with the range of point functions measured within the column using neutron radiography. Extension of these experiments to 3-dimensions using neutron tomography is planned.
Metabolic Dysregulation after Neutron Exposures Expected from an Improvised Nuclear Device
Laiakis, Evagelia C.; Wang, Yi-Wen; Young, Erik F.; Harken, Andrew D.; Xu, Yanping; Smilenov, Lubomir; Garty, Guy Y.; Brenner, David J.; Fornace, Albert J.
2017-01-01
The increased threat of terrorism across the globe has raised fears that certain groups will acquire and use radioactive materials to inflict maximum damage. In the event that an improvised nuclear device (IND) is detonated, a potentially large population of victims will require assessment for radiation exposure. While photons will contribute to a major portion of the dose, neutrons may be responsible for the severity of the biologic effects and cellular responses. We investigated differences in response between these two radiation types by using metabolomics and lipidomics to identify biomarkers in urine and blood of wild-type C57BL/6 male mice. Identification of metabolites was based on a 1 Gy dose of radiation. Compared to X rays, a neutron spectrum similar to that encountered in Hiroshima at 1–1.5 km from the epicenter induced a severe metabolic dysregulation, with perturbations in amino acid metabolism and fatty acid β-oxidation being the predominant ones. Urinary metabolites were able to discriminate between neutron and X rays on day 1 as well as day 7 postirradiation, while serum markers showed such discrimination only on day 1. Free fatty acids from omega-6 and omega-3 pathways were also decreased with 1 Gy of neutrons, implicating cell membrane dysfunction and impaired phospholipid metabolism, which should otherwise lead to release of those molecules in circulation. While a precise relative biological effectiveness value could not be calculated from this study, the results are consistent with other published studies showing higher levels of damage from neutrons, demonstrated here by increased metabolic dysregulation. Metabolomics can therefore aid in identifying global perturbations in blood and urine, and effectively distinguishing between neutron and photon exposures. PMID:28475424
Metabolic Dysregulation after Neutron Exposures Expected from an Improvised Nuclear Device.
Laiakis, Evagelia C; Wang, Yi-Wen; Young, Erik F; Harken, Andrew D; Xu, Yanping; Smilenov, Lubomir; Garty, Guy Y; Brenner, David J; Fornace, Albert J
2017-07-01
The increased threat of terrorism across the globe has raised fears that certain groups will acquire and use radioactive materials to inflict maximum damage. In the event that an improvised nuclear device (IND) is detonated, a potentially large population of victims will require assessment for radiation exposure. While photons will contribute to a major portion of the dose, neutrons may be responsible for the severity of the biologic effects and cellular responses. We investigated differences in response between these two radiation types by using metabolomics and lipidomics to identify biomarkers in urine and blood of wild-type C57BL/6 male mice. Identification of metabolites was based on a 1 Gy dose of radiation. Compared to X rays, a neutron spectrum similar to that encountered in Hiroshima at 1-1.5 km from the epicenter induced a severe metabolic dysregulation, with perturbations in amino acid metabolism and fatty acid β-oxidation being the predominant ones. Urinary metabolites were able to discriminate between neutron and X rays on day 1 as well as day 7 postirradiation, while serum markers showed such discrimination only on day 1. Free fatty acids from omega-6 and omega-3 pathways were also decreased with 1 Gy of neutrons, implicating cell membrane dysfunction and impaired phospholipid metabolism, which should otherwise lead to release of those molecules in circulation. While a precise relative biological effectiveness value could not be calculated from this study, the results are consistent with other published studies showing higher levels of damage from neutrons, demonstrated here by increased metabolic dysregulation. Metabolomics can therefore aid in identifying global perturbations in blood and urine, and effectively distinguishing between neutron and photon exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.A. Bingham; R.M. Ferrer; A.M. ougouag
2009-09-01
An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less
Pappas, D.S.
1987-07-31
The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.
Nuclear Forensics and Radiochemistry: Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
Accounting for neutron exposure in the Japanese atomic bomb survivors.
Cullings, Harry M; Pierce, Donald A; Kellerer, Albrecht M
2014-12-01
The Japanese atomic bomb survivors that were directly exposed to both γ rays and neutrons have been followed by the Radiation Effects Research Foundation (RERF). The estimation of the γ-ray risks requires some adjustment for the greater biological effect of the neutrons per unit dose. Because the small neutron doses and the predominant γ-ray doses are highly correlated, the neutron relative biological effectiveness (RBE) cannot be reliably estimated from the survivors' data and information from radiobiology must be invoked. As data became available on neutron doses, RERF has used a constant neutron RBE value of 10, even though radiobiological studies indicate that the RBE values appear to have considerably larger values at low doses. The approximation RBE = 10 assumes that if the RBE is variable it takes roughly this value in the range of total dose most relevant for linear risk estimation, namely about 1 Gy. We consider some possible RBE functions to explain the correct use and the impact of a dose-dependent RBE. However, we do not advocate any particular choice or even that a variable RBE be employed. Rather we show that the assumed neutron RBE, within a wide range of choices, is far less important to the outcome of risk assessment of the RERF data than generally believed. Some of these misperceptions have been related to the consideration of variable RBE functions, and without due attention to the fact that in the case of the A-bomb survivors' data, the mixed field of neutrons and γ rays must be considered. Therefore, the RBE value of neutrons is much lower than the RBE in pure neutron fields that are used in radiobiological experiments. Thus, applying the pure neutron field RBE to the mixed-field A-bomb radiation can lead to an overestimation of the actual neutron RBE for moderate total dose levels of 1 Gy by a factor of more than four. While in a pure neutron exposure the RBE depends on the neutron dose, in the mixed field it depends on both components of exposure, and in particular, we show that in the RERF setting the RBE depends mainly on the accompanying γ-ray dose.
Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.
Pöllänen, R; Siiskonen, T
2014-08-01
The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Bonner Sphere Spectrometer with extended response matrix
NASA Astrophysics Data System (ADS)
Birattari, C.; Dimovasili, E.; Mitaroff, A.; Silari, M.
2010-08-01
This paper describes the design, calibration and applications at high-energy accelerators of an extended-range Bonner Sphere neutron Spectrometer (BSS). The BSS was designed by the FLUKA Monte Carlo code, investigating several combinations of materials and diameters of the moderators for the high-energy channels. The system was calibrated at PTB in Braunschweig, Germany, using monoenergetic neutron beams in the energy range 144 keV-19 MeV. It was subsequently tested with Am-Be source neutrons and in the simulated workplace neutron field at CERF (the CERN-EU high-energy reference field facility). Since 2002, it has been employed for neutron spectral measurements around CERN accelerators.
Differential die-away analysis system response modeling and detector design
NASA Astrophysics Data System (ADS)
Jordan, K. A.; Gozani, T.; Vujic, J.
2008-05-01
Differential die-away-analysis (DDAA) is a sensitive technique to detect presence of fissile materials such as 235U and 239Pu. DDAA uses a high-energy (14 MeV) pulsed neutron generator to interrogate a shipping container. The signature is a fast neutron signal hundreds of microseconds after the cessation of the neutron pulse. This fast neutron signal has decay time identical to the thermal neutron diffusion decay time of the inspected cargo. The theoretical aspects of a cargo inspection system based on the differential die-away technique are explored. A detailed mathematical model of the system is developed, and experimental results validating this model are presented.
DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY
Dessauer, G.
1960-05-10
A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.
Fast neutron dosemeter using pixelated detector Timepix.
Bulanek, Boris; Ekendahl, Daniela; Prouza, Zdenek
2014-10-01
A Timepix detector covered with polyethylene convertors of different thicknesses is presented as a fast neutron real-time dosemeter. The application of different weighting factors in connection with the position of a signal in a Timepix detector enables one to obtain an energy-dependent signal equal to neutron dose equivalents. A simulation of a Timepix detector covered with polyethylene convertors using monoenergetic neutrons is presented. The experimental set-up of a dosemeter was also produced. The first results of detector response using different fast neutron sources are presented. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Compounds for neutron radiation detectors and systems thereof
Payne, Stephen A; Stoeffl, Wolfgang; Zaitseva, Natalia P; Cherepy, Nerine J; Carman, M. Leslie
2014-05-27
A material according to one embodiment exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene, the material comprising a molecule selected from a group consisting of: two or more benzene rings, one or more benzene rings with a carboxylic acid group, one or more benzene rings with at least one double bound adjacent to said benzene ring, and one or more benzene rings for which at least one atom in the benzene ring is not carbon.
A remotely triggered fast neutron detection instrument based on a plastic organic scintillator
NASA Astrophysics Data System (ADS)
Jones, A. R.; Aspinall, M. D.; Joyce, M. J.
2018-02-01
A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.
Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Cs-133 and I-127
NASA Astrophysics Data System (ADS)
Umezawa, Seigo; Igashira, Masayuki; Katabuchi, Tatuya; Dominic, Moraru; Yanagida, Shotaro; Okamiya, Tomohiro
2017-09-01
The neutron capture cross sections and the capture gamma-ray spectra of 127I and 133Cs at incident neutron energies from 15 to 100 keV have been measured by the time-of-flight method. Capture gamma-rays were detected with an anti-Compton NaI(Tl) spectrometer, and the pulse-height weighting technique was applied to derive capture yields. The capture cross sections of 127I and 133Cs were determined using the standard capture cross section of 197Au. The total errors of the cross sections were 3.8-5.1%. The obtained cross sections were compared with evaluated values in JENDL-4.0 and ENDF/B-VII.1. For 127I, the energy dependence is different between the present results and the evaluations. For 133Cs, the evaluated values in JENDL-4.0 agree with the present results but the evaluated values in ENDF/B-VII.1 are smaller than the present results by 14%-18%. The capture gamma-ray spectra of 133Cs and 127I were derived by unfolding the pulse height spectra with detector response functions.
A remotely triggered fast neutron detection instrument based on a plastic organic scintillator.
Jones, A R; Aspinall, M D; Joyce, M J
2018-02-01
A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.
NASA Astrophysics Data System (ADS)
Martorana, N. S.; Cardella, G.; Lanza, E. G.; Acosta, L.; Andrés, M. V.; Auditore, L.; Catara, F.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.; Vitturi, A.
2018-07-01
The excitation of the Pygmy Dipole Resonance (PDR) in the 68Ni nucleus, above the neutron emission threshold, via an isoscalar probe has been observed for the first time. The excitation has been produced in reactions where a 68Ni beam, obtained by the fragmentation of a 70Zn primary beam at INFN-LNS, impinged on a 12C target. The γ-ray decay was detected using the CsI(Tl) detectors of the CHIMERA multidetector sphere. The 68Ni isotope as well as other heavy ion fragments were detected using the FARCOS array. The population of the PDR was evidenced by comparing the detected γ-ray energy spectra with statistical code calculations. The isotopic resolution of the detection system allows also to directly compare neutron decay channels with the 68Ni channel, better evidencing the PDR decay response function. This comparison allows also the extraction of the PDR cross section and the relative γ-ray angular distribution. The measured γ-ray angular distribution confirms the E1 character of the transition. The γ decay cross section for the excitation of the PDR was measured to be 0.32 mb with a 18% of statistical error.
NASA Astrophysics Data System (ADS)
Hawdon, Aaron; McJannet, David; Wallace, Jim
2014-06-01
The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.
Poster - 25: Neutron Spectral Measurements around a Scanning Proton Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kildea, John; Enger, Shirin; Maglieri, Robert
We describe the measurements of neutron spectra that we undertook around a scanning proton beam at the Skandion proton therapy clinic in Uppsala, Sweden. Measurements were undertaken using an extended energy range Nested Neutron Spectrometer (NNS, Detec Inc., Gatineau, QC) operated in pulsed and current mode. Spectra were measured as a function of location in the treatment room and for various Bragg peak depths. Our preliminary unfolded data clearly show the direct, evaporation and thermal neutron peaks and we can show the effect on the neutron spectrum of a water phantom in the primary proton beam.
Dickson, J.J.
1959-09-15
A bimetallic helix is described comprising a neutronflux-responsive strip and a second strip having the same coefficient of thermal expansion for adjusting the extent to which an inner neutron-absorbing member protrudes from an outer hollow neutron-absorbing member.
From the crust to the core of neutron stars on a microscopic basis
NASA Astrophysics Data System (ADS)
Baldo, M.; Burgio, G. F.; Centelles, M.; Sharma, B. K.; Viñas, X.
2014-09-01
Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.
NASA Astrophysics Data System (ADS)
Hayakawa, T.; Shizuma, T.; Miyamoto, S.; Amano, S.; Takemoto, A.; Yamaguchi, M.; Horikawa, K.; Akimune, H.; Chiba, S.; Ogata, K.; Fujiwara, M.
2016-04-01
We have measured the azimuthal anisotropy of neutrons emitted from the
Measurement of the neutron F2 structure function via spectator tagging with CLAS.
Baillie, N; Tkachenko, S; Zhang, J; Bosted, P; Bültmann, S; Christy, M E; Fenker, H; Griffioen, K A; Keppel, C E; Kuhn, S E; Melnitchouk, W; Tvaskis, V; Adhikari, K P; Adikaram, D; Aghasyan, M; Amaryan, M J; Anghinolfi, M; Arrington, J; Avakian, H; Baghdasaryan, H; Battaglieri, M; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Dey, B; Djalali, C; Dodge, G; Domingo, J; Doughty, D; Dupre, R; Dutta, D; Ent, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fradi, A; Gabrielyan, M Y; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gohn, W; Golovatch, E; Gothe, R W; Graham, L; Guegan, B; Guidal, M; Guler, N; Guo, L; Hafidi, K; Heddle, D; Hicks, K; Holtrop, M; Hungerford, E; Hyde, C E; Ilieva, Y; Ireland, D G; Ispiryan, M; Isupov, E L; Jawalkar, S S; Jo, H S; Kalantarians, N; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; King, P M; Klein, A; Klein, F J; Klimenko, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Markov, N; McKinnon, B; Mineeva, T; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, I; Niculescu, G; Osipenko, M; Ostrovidov, A I; Pappalardo, L; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Pisano, S; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Sober, D I; Sokhan, D; Stepanyan, S; Stepanyan, S S; Stoler, P; Strauch, S; Taiuti, M; Tang, W; Ungaro, M; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zana, L; Zhao, B
2012-04-06
We report on the first measurement of the F(2) structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲100 MeV/c and their angles to ≳100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F(2)(n) data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65
Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN
2011-04-05
A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.
A novel approach to neutron dosimetry.
Balmer, Matthew J I; Gamage, Kelum A A; Taylor, Graeme C
2016-11-01
Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure. This paper reports on the development of an instrument which can estimate the effective dose of a neutron field, accounting for both the direction and the energy distribution. A 6 Li-loaded scintillator was used to perform neutron assays at a number of locations in a 20 × 20 × 17.5 cm 3 water phantom. The variation in thermal and fast neutron response to different energies and field directions was exploited. The modeled response of the instrument to various neutron fields was used to train an artificial neural network (ANN) to learn the effective dose and ambient dose equivalent of these fields. All experimental data published in this work were measured at the National Physical Laboratory (UK). Experimental results were obtained for a number of radionuclide source based neutron fields to test the performance of the system. The results of experimental neutron assays at 25 locations in a water phantom were fed into the trained ANN. A correlation between neutron counting rates in the phantom and neutron fluence rates was experimentally found to provide dose rate estimates. A radionuclide source behind shadow cone was used to create a more complex field in terms of energy and direction. For all fields, the resulting estimates of effective dose rate were within 45% or better of their calculated values, regardless of energy distribution or direction for measurement times greater than 25 min. This work presents a novel, real-time, approach to workplace neutron dosimetry. It is believed that in the research presented in this paper, for the first time, a single instrument has been able to estimate effective dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Univ. of Wisconsin, Madison, WI; Miller, Brandon D.
Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes which migrate to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs where low energy structures have suppressed RIS responses. This relationship between local GB structure and RIS has been demonstrated primarily in ion-irradiated specimens. A 9 wt.% Cr model alloymore » steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of a neutron radiation environment on the RIS response at different GB structures. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy.« less
Photoneutron cross sections for 59Co : Systematic uncertainties of data from various experiments
NASA Astrophysics Data System (ADS)
Varlamov, V. V.; Davydov, A. I.; Ishkhanov, B. S.
2017-09-01
Data on partial photoneutron reaction cross sections (γ ,1n), (γ ,2n), and (γ ,3n) for 59Co obtained in two experiments carried out at Livermore (USA) were analyzed. The sources of radiation in both experiments were the monoenergetic photon beams from the annihilation in flight of relativistic positrons. The total yield was sorted by the neutron multiplicity, taking into account the difference in the neutron energy spectra for different multiplicity. The two quoted studies differ in the method of determining the neutron. Significant systematic disagreements between the results of the two experiments exist. They are considered to be caused by large systematic uncertainties in partial cross sections, since they do not satisfy physical criteria for reliability of the data. To obtain reliable cross sections of partial and total photoneutron reactions a new method combining experimental data and theoretical evaluation was used. It is based on the experimental neutron yield cross section which is rather independent of neutron multiplicity and the transitional neutron multiplicity functions of the combined photonucleon reaction model (CPNRM). The model transitional multiplicity functions were used for the decomposition of the neutron yield cross section into the contributions of partial reactions. The results of the new evaluation noticeably differ from the partial cross sections obtained in the two experimental studies are under discussion.
NASA Astrophysics Data System (ADS)
Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.
2015-09-01
In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.
D-D Neutron Generator Calibrations and Hardware in the LUX-ZEPLIN Dark Matter Search Experiment
NASA Astrophysics Data System (ADS)
Taylor, Will; Lux-Zeplin Collaboration
2016-03-01
The LUX-ZEPLIN (LZ) dark matter search experiment will be a two-phase liquid/gas xenon time projection chamber with 7 tonnes of active liquid xenon (LXe) located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. LZ will utilize an in-situ, absolute calibration of nuclear recoils (NR) in LXe using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used in the LUX detector to measured the NR charge yield in LXe (Qy) to 0.7 keV recoil energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keV - both of which were the lowest energy measurements achieved in the field. These absolute, ultra-low energy calibrations of the NR signal yields in LXe provide clear measurements of the detector response used for the WIMP search analysis. The improvements made for LZ will include shorter neutron pulse times, multiple neutron conduit configurations, and lower energy neutrons. The upgrades allow for even lower energy measurements of the nuclear recoil response in LXe and an independent measurement of Ly, as well as providing less uncertainty in energy reconstruction. In addition to discussing the physics of the neutron calibrations, I will describe the hardware systems used to implement them.
2013-01-01
Background Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10 weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT. Methods The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC) in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify our results, we performed a histopathological examination using F98 rat glioma models. Results Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and the cytoplasm compared with untreated rat glioma models. Conclusions The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic assessment. Early detection of treatment failure can allow a change or supplementation before tumor progression and might lead to an improvement of GB patients’ prognosis. PMID:23915330
Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui
2018-02-01
In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.
Polarized deep inelastic scattering off the neutron from gauge/string duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Jianhua; Mou Zonggang; Department of Physics, Shandong University, Jinan, Shandong, 250100
2010-05-01
We investigate deep inelastic scattering off the polarized 'neutron' using gauge/string duality. The 'neutron' corresponds to a supergravity mode of the neutral dilatino. Through introducing the Pauli interaction term into the action in AdS{sub 5} space, we calculate the polarized deep inelastic structure functions of the 'neutron' in supergravity approximation at large t' Hooft coupling {lambda} and finite x with {lambda}{sup -1/2}<
NASA Astrophysics Data System (ADS)
Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.
Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. After high single doses of neutrons or γ rays, a significant age- and radiation-related deficiency in host defense mechanisms was detected by a shorter mean survival time following challenge with transplantable leukemia cells. Comparison of dose-response curves for life shortening after irradiation with fission-spectrum neutrons or high energy silicon particles indicated high initial slopes for both radiation qualities at low doses, but for higher doses of silicon, the effect per Gy decreased to a value similar to that for γ rays. The two component life-shortening curve for silicon particles has implications for the potential efficacy of radioprotectants. Recent studies on protection against early and late effects by aminothiols, prostaglandins, and other compounds are discussed.
Relativistically correct DD and DT neutron spectra
NASA Astrophysics Data System (ADS)
Appelbe, B.; Chittenden, J.
2014-06-01
We use relativistic kinematics to derive an expression for the energy spectrum of neutrons produced by fusion reactions in deuterium and deuterium-tritium thermal plasmas. The derivation does not require approximations and the obtained expression gives the exact shape of the spectrum. It is shown that the high-energy tail of the neutron spectrum is highly sensitive to the plasma temperature. Simple expressions for the plasma temperature as a function of the neutron spectrum full width at half maximum (FWHM) are given.
Debye-Waller Factor in Neutron Scattering by Ferromagnetic Metals
NASA Astrophysics Data System (ADS)
Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I.
2018-04-01
We obtain an expression for the neutron scattering cross section in the case of an arbitrary interaction of the neutron with the crystal. We give a concise, simple derivation of the Debye-Waller factor as a function of the scattering vector and the temperature. For ferromagnetic metals above the Curie temperature, we estimate the Debye-Waller factor in the range of scattering vectors characteristic of polarized magnetic neutron scattering experiments. In the example of iron, we compare the results of harmonic and anharmonic approximations.
Neutronic analysis of the 1D and 1E banks reflux detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
1999-12-21
Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely,more » the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.« less
Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...
2015-05-08
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, Alberto; Gohar, Yousry
2016-06-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the timemore » is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.« less
Electromagnetic and neutral-weak response functions of 4He and 12C
NASA Astrophysics Data System (ADS)
Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, Steven C.; Schiavilla, R.
2015-06-01
Background: A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Purpose: The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Methods: Their ab initio calculation is a very challenging quantum many-body problem, since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Results: Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. Conclusions: These results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.
Electromagnetic and neutral-weak response functions of 4He and 12C
Lovato, A.; Gandolfi, Stefano; Carlson, Joseph Allen; ...
2015-06-04
A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. The objective of the present work is to calculate the quasielastic electroweak response functions in light nuclei within the realistic dynamical framework outlined above. These response functions determine the inclusive cross section as function of the lepton momentum and energy transfers. Their ab initio calculation is a very challenging quantum many-body problem,more » since it requires summation over the entire excitation spectrum of the nucleus and inclusion in the electroweak currents of one- and many-body terms. Green's functions Monte Carlo methods allow one to circumvent both difficulties by computing the response in imaginary time (the so-called Euclidean response) and hence summing implicitly over the bound and continuum states of the nucleus, and by implementing specific algorithms designed to deal with the complicated spin-isospin structure of nuclear many-body operators. Theoretical predictions for 4He and 12C, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. In conclusion, these results challenge the conventional picture of quasielastic inclusive scattering as being largely dominated by single-nucleon knockout processes.« less
EPR/PTFE dosimetry for test reactor environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vehar, D.W.; Griffin, P.J.; Quirk, T.J.
2011-07-01
The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in photon-only environments. This is necessary to establish requirements for sample preparation, operating parameters and limitations for use in well-defined and predictable environments prior to deployment in the less well-defined mixed environments of test reactors. 3) Characterization of the EPR responses obtained with PTFE in mixed neutron/photon fields. This includes evaluation of the neutron and photon contributions to response, determination of applicable of neutron fluence and photon dose ranges. This paper presents a summary of the research, a description of the EPR/PTFE dosimetry system, and recommendations for preparation and fielding of the dosimetry in photon and mixed neutron/photon environments. (authors)« less
NASA Astrophysics Data System (ADS)
Jebali, R.; Scherzinger, J.; Annand, J. R. M.; Chandra, R.; Davatz, G.; Fissum, K. G.; Friederich, H.; Gendotti, U.; Hall-Wilton, R.; Håkansson, E.; Kanaki, K.; Lundin, M.; Murer, D.; Nilsson, B.; Rosborg, A.; Svensson, H.
2015-09-01
A first comparison has been made between the pulse-shape discrimination characteristics of a novel 4He-based pressurized scintillation detector and a NE-213 liquid-scintillator reference detector using an Am/Be mixed-field neutron and gamma-ray source and a high-resolution scintillation-pulse digitizer. In particular, the capabilities of the two fast neutron detectors to discriminate between neutrons and gamma-rays were investigated. The NE-213 liquid-scintillator reference cell produced a wide range of scintillation-light yields in response to the gamma-ray field of the source. In stark contrast, due to the size and pressure of the 4He gas volume, the 4He-based detector registered a maximum scintillation-light yield of 750keVee to the same gamma-ray field. Pulse-shape discrimination for particles with scintillation-light yields of more than 750keVee was excellent in the case of the 4He-based detector. Above 750keVee its signal was unambiguously neutron, enabling particle identification based entirely upon the amount of scintillation light produced.
Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE
Borges, Nicholas; Losko, Adrian; Vogel, Sven
2018-02-13
The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less
Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Nicholas; Losko, Adrian; Vogel, Sven
The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less
On observation of neutron quantum states in the Earth's gravitational field
NASA Astrophysics Data System (ADS)
Vankov, Anatoli Andrei
2010-03-01
Observation of neutron gravitational quantum states En=mgzn in the peV energy range (z1 is about 10μm in the vertical direction) in the experiment conducted at Laue-Langevin Institute, Grenoble, with ultracold neutrons was recently reported in a series of publications. The purpose of the present work is to analyze the experiment. The experimental apparatus is designed to measure a transmission function T(za), namely, a horizontal flux of relatively fast neutrons (k≫kz in wavelength terms) passing through a slit of variable height za of upper absorbing wall. The quantum states in question are defined by the so-called Airy functions, which are solutions to the stationary 1D equation for a neutron “bouncing” above the perfect mirror in a linear potential field. The Airy functions describe the quantum bouncer (QB), the concept of which is subject to theoretical study of toy 1D models of gravitationally bound particles in nonrelativistic quantum mechanics (QM). This is essentially different from the 3D nonstationary QM object, “the running QB,” investigated in the experiment. The authors assume that there is a connection between T(za) and the probability density distribution P(z,za) for QB states. They devised the “phenomenological model,” in which the quantum pattern should be visible in the transmission curve. We argue, however, that the measured curve T(za) is not sensitive to QB states. Instead, it is sensitive to dynamics of neutron horizontal transport inside the absorbing slit for neutrons of energy values about 105 times greater than eigenvalues En. The latter are related to the neutron transverse mode kz and cannot be termed “energies of neutron gravitational quantum states.” We conclude that the experiment setup and real conditions are not adequate to the claimed objective, and the methodology of measured data treatment is flawed. The authors’ claim that “neutron gravitational quantum states are observed” is neither theoretically nor experimentally substantiated. Final, statistically significant results of the experiment are consistent with our physical reasoning that the experiment is not sensitive to “neutron gravitational quantum states” (in terms of Airy mode) and does not prove even their existence in rigorous quantum-mechanical terms.
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
The LANL/LLNL Program to Measure Prompt Fission Neutron Spectra at LANSCE
NASA Astrophysics Data System (ADS)
Haight, Robert; Wu, Ching Yen; Lee, Hye Young; Taddeucci, Terry; Mosby, Shea; O'Donnell, John; Fotiades, Nikolaos; Devlin, Mattew; Ullmann, John; Nelson, Ronald; Wender, Stephen; White, Morgan; Solomon, Clell; Neudecker, Denise; Talou, Patrick; Rising, Michael; Bucher, Brian; Buckner, Matthew; Henderson, Roger
2015-10-01
Accurate data on the spectrum of neutrons emitted in neutron-induced fission are needed for applications and for a better understanding of the fission process. At LANSCE we have made important progress in understanding systematic uncertainties and in obtaining data for 235U on the low-energy part of the prompt fission neutron spectra (PFNS), a particularly difficult region because down-scattered neutrons go in this direction. We use a double time-of-flight technique to determine energies of incoming and outgoing neutrons. With data acquisition via waveform digitizers, accidental coincidences between fission chamber and neutron detector are measured to high statistical accuracy and then subtracted from measured events. Monte Carlo simulations with high performance computers have proven to be essential in the design to minimize neutron scattering and in calculating detector response. Results from one of three approaches to analyzing the data will be presented. This work is funded by the US Department of Energy, National Nuclear Security Administration and Office of Nuclear Physics.
Electromagnetic and neutral-weak response functions of light nuclei
NASA Astrophysics Data System (ADS)
Lovato, Alessandro
2015-10-01
A major goal of nuclear theory is to understand the strong interaction in nuclei as it manifests itself in terms of two- and many-body forces among the nuclear constituents, the protons and neutrons, and the interactions of these constituents with external electroweak probes via one- and many-body currents. Using imaginary-time projection technique, quantum Monte Carlo allows for solving the time-independent Schrödinger equation even for Hamiltonians including highly spin-isospin dependent two- and three- body forces. I will present a recent Green's function Monte Carlo calculation of the quasi-elastic electroweak response functions in light nuclei, needed to describe electron and neutrino scattering. We found that meson-exchange two-body currents generate excess transverse strength from threshold to the quasielastic to the dip region and beyond. These results challenge the conventional picture of quasi elastic inclusive scattering as being largely dominated by single-nucleon knockout processes. These findings are of particular interest for the interpretation of neutrino oscillation signals.
206Pb+n resonances for E=600-900 keV: Neutron strength functions
NASA Astrophysics Data System (ADS)
Horen, D. J.; Harvey, J. A.; Hill, N. W.
1981-11-01
Data from high resolution neutron transmission and differential scattering measurements performed on 206Pb have been analyzed for E=600-900 keV. Resonance parameters (i.e., E, l, J, and Γn) have been deduced for many of the 161 resonances observed. Strength functions and potential phase shifts for s-, p-, and d-wave neutrons for En-0-900 keV are compared with optical model calculations. It is found that the phase contributed by the external R function as well as the integrated neutron strength functions can be reproduced for the s and d waves with a well depth of V0=50.4 MeV for the real potential and WD=6.0 MeV for an imaginary surface potential. Somewhat smaller values (V0=48.7 MeV and WD=2.0 MeV) are required to reproduce the p-wave data. These values of the real potential are also found to give the experimentally observed binding energies for the 4s12, 3d32, and 3d52 single particle levels (V0=50.4 MeV), and the 3p12 single particle level (V0=48.7 MeV). Nuclear level densities for s and d waves are found to be well represented by a constant temperature model. However, the model under estimates the number of p-wave resonances. NUCLEAR REACTIONS 206Pb(n), (n,n), E=600-900 keV; measured σT(E), σ(E,θ). 207Pb deduced resonance parameters, Jπ, Γn, neutron strength functions, optical model parameters for l=0,1,2.
Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F
2010-01-14
The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.
A neutron track etch detector for electron linear accelerators in radiotherapy
Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip
2010-01-01
Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893
Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility
NASA Astrophysics Data System (ADS)
Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu
2013-11-01
Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.
Calibration of LiBaF3: Ce Scintillator for Fission Spectrum Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeder, Paul L.; Bowyer, Sonya M.
2002-05-21
The scintillator LiBaF3 doped with small amounts of Ce+3 has the ability to distinguish heavy charged particles (p, d, t, or a) from beta and/or gamma radiation based on the presence or absence of ns components in the scintillation light output. Because the neutron capture reaction on 6Li produces recoil alphas and tritons, this scintillator also discriminates between neutron induced events and beta or gamma interactions. An experimental technique using a time-tagged 252Cf source has been used to measure the efficiency of this scintillator for neutron capture, the calibration of neutron capture pulse height, and the pulse height resolution -more » all as a function of incident neutron energy.« less
Energy-resolved fast neutron resonance radiography at CSNS
NASA Astrophysics Data System (ADS)
Tan, Zhixin; Tang, Jingyu; Jing, Hantao; Fan, Ruirui; Li, Qiang; Ning, Changjun; Bao, Jie; Ruan, Xichao; Luan, Guangyuan; Feng, Changqin; Zhang, Xianpeng
2018-05-01
The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.
Fission-neutrons source with fast neutron-emission timing
NASA Astrophysics Data System (ADS)
Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.
2016-05-01
A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.
Relativistic neutrons in active galactic nuclei
NASA Technical Reports Server (NTRS)
Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw
1989-01-01
The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.
Modeling the Effects of Meteorological Conditions on the Neutron Flux
2017-05-22
a statistical model that predicts environmental neutron background as a function of five meteorological variables: inverse barometric pressure...variable of the model was inverse barometric pressure with a contribution an order of magnitude larger than any other variable’s contribution. The...is based on the sensitivity of each sensor. . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Neutron counts from the LNS and inverse pressure
NASA Astrophysics Data System (ADS)
Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.
2016-01-01
We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.
Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew
2010-01-01
Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less
Róg, T; Murzyn, K; Hinsen, K; Kneller, G R
2003-04-15
We present a new implementation of the program nMoldyn, which has been developed for the computation and decomposition of neutron scattering intensities from Molecular Dynamics trajectories (Comp. Phys. Commun 1995, 91, 191-214). The new implementation extends the functionality of the original version, provides a much more convenient user interface (both graphical/interactive and batch), and can be used as a tool set for implementing new analysis modules. This was made possible by the use of a high-level language, Python, and of modern object-oriented programming techniques. The quantities that can be calculated by nMoldyn are the mean-square displacement, the velocity autocorrelation function as well as its Fourier transform (the density of states) and its memory function, the angular velocity autocorrelation function and its Fourier transform, the reorientational correlation function, and several functions specific to neutron scattering: the coherent and incoherent intermediate scattering functions with their Fourier transforms, the memory function of the coherent scattering function, and the elastic incoherent structure factor. The possibility to compute memory function is a new and powerful feature that allows to relate simulation results to theoretical studies. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 657-667, 2003
Enhanced γ -Ray Emission from Neutron Unbound States Populated in β Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tain, J. L.; Valencia, E.; Algora, A.
2015-08-01
Total absorption spectroscopy was used to investigate the β -decay intensity to states above the neutron separation energy followed by γ -ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to the careful control of systematic errors. An unexpectedly large γ intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the branching reaches 57% and 20% respectively, and could be explained as a nuclear structuremore » effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich 94Rb the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled introducing an enhancement of one order-of-magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proved to be correct, leads to a similar increase in the (n, γ) cross section that would have an impact on r process abundance calculations.« less
Enhancing the detector for advanced neutron capture experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, A.; Mosby, S.; Baramsai, B.
2015-05-28
The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We, thus, report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. Furthermore, the upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.
Progress in tagged neutron beams for cargo inspections
NASA Astrophysics Data System (ADS)
Pesente, S.; Nebbia, G.; Viesti, G.; Daniele, F.; Fabris, D.; Lunardon, M.; Moretto, S.; Nad, K.; Sudac, D.; Valkovic, V.
2007-08-01
The use of neutron beams produced via the D + T reaction and tagged by the associated particle technique has been recently applied to cargo container inspections. In the EURITRACK project, a portable sealed-tube neutron generator has been designed and built to deliver 14 MeV neutron beams tagged by a matrix of 64 YAP:Ce alpha-particle detectors read by a multi-anode HAMAMATSU H8500 Photomultiplier Tube. The performances of this alpha-particle detector have been determined as a function of the count rate at the Rudjer Boskovic Institute, Zagreb (Croatia). Moreover, tests of the final detector operated inside the sealed-tube neutron generator are fully satisfactory.
Characterizing Neutron Diagnostics on the nTOF Line at SUNY Geneseo
NASA Astrophysics Data System (ADS)
Harrison, Hannah; Seppala, Hannah; Visca, Hannah; Wakwella, Praveen; Fletcher, Kurt; Padalino, Stephen; Forrest, Chad; Regan, Sean; Sangster, Craig
2016-10-01
Charged particle beams from SUNY Geneseo's 1.7 MV Tandem Pelletron Accelerator induce nuclear reactions that emit neutrons ranging from 0.5 to 17.9 MeV via 2H(d,n)3He and 11B(d,n)12C. This adjustable neutron source can be used to calibrate ICF and HEDP neutron scintillators for ICF diagnostics. However, gamma rays and muons, which are often present during an accelerator-based calibration, are difficult to differentiate from neutron signals in scintillators. To mitigate this problem, a new neutron time-of-flight (nTOF) line has been constructed. The nTOF timing is measured using the associated particle technique. A charged particle produced by the nuclear reaction serves as a start signal, while its associated neutron is the stop signal. Each reaction is analyzed event-by-event to determine whether the scintillator signal was generated by a neutron, gamma or muon. Using this nTOF technique, the neutron response for different scintillation detectors can be determined. Funded in part by a LLE contract through the DOE.
A direct method for unfolding the resolution function from measurements of neutron induced reactions
NASA Astrophysics Data System (ADS)
Žugec, P.; Colonna, N.; Sabate-Gilarte, M.; Vlachoudis, V.; Massimi, C.; Lerendegui-Marco, J.; Stamatopoulos, A.; Bacak, M.; Warren, S. G.; n TOF Collaboration
2017-12-01
The paper explores the numerical stability and the computational efficiency of a direct method for unfolding the resolution function from the measurements of the neutron induced reactions. A detailed resolution function formalism is laid out, followed by an overview of challenges present in a practical implementation of the method. A special matrix storage scheme is developed in order to facilitate both the memory management of the resolution function matrix, and to increase the computational efficiency of the matrix multiplication and decomposition procedures. Due to its admirable computational properties, a Cholesky decomposition is at the heart of the unfolding procedure. With the smallest but necessary modification of the matrix to be decomposed, the method is successfully applied to system of 105 × 105. However, the amplification of the uncertainties during the direct inversion procedures limits the applicability of the method to high-precision measurements of neutron induced reactions.
Neutron dosimetric measurements in shuttle and MIR.
Reitz, G
2001-06-01
Detector packages consisting of thermoluminescence detectors (TLD), nuclear emulsions and plastic track detectors were exposed at identical positions inside MIR space station and on shuttle flights inside Spacelab and Spacehab during different phases of the solar cycle. The objectives of the investigations are to provide data on charge and energy spectra of heavy ions, and the contribution of events with low-energy deposit (protons, electrons, gamma, etc.) to the dose, as well as the contribution of secondaries, such as nuclear disintegration stars and neutrons. For neutron dosimetry 6LiF (TLD600) and 7LiF (TLD700) chips were used both of which have almost the same response to gamma rays but different response to neutrons. Neutrons in space are produced mainly in evaporation and knock-on processes with energies mainly of 1-10 MeV and up to several 100 MeV, respectively. The energy spectrum undergoes continuous changes toward greater depth in the attenuating material until an equilibrium is reached. In equilibrium, the spectrum is a wide continuum extending down to thermal energies to which the 6LiF is sensitive. Based on the difference of absorbed doses in the 6LiF and 7LiF chips, thermal neutron fluxes from 1 to 2.3 cm-2 s-1 are calculated using the assumption that the maximum induced dose in TLD600 for 1 neutron cm-2 is 1.6 x 10(-10) Gy (Horowitz and Freeman, Nucl. Instr. and Meth. 157 (1978) 393). It is assumed that the flux of high-energy neutrons is at least of that quantity. Tissue doses were calculated taking as a mean ambient absorbed dose per neutron 6 x10(-12) Gy cm2 (for a10 MeV neutron). The neutron equivalent doses for the above-mentioned fluxes are 52 micro Gy d-1 and 120 micro Gy d-1. In recent experiments, a personal neutron dosimeter was integrated into the dosimeter packages. First results of this dosimeter which is based on nuclear track detectors with converter foils are reported. For future measurements, a scintillator counter with anticoincidence logic is under development. c2001 Elsevier Science Ltd. All rights reserved.
Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15
NASA Astrophysics Data System (ADS)
Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M.; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E.
2017-08-01
The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, E.J.; Afzal, S.M.J.; Crouse, D.A.
1988-01-01
Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for ..gamma..-radiation. When total doses of 96 or 247 cGy of neutrons or ..gamma.. rays were givenmore » as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and ..gamma..-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. 63 refs., 6 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Coventry, M. D.; Krites, A. M.
Measurements to determine the absolute D-D and D-7Li neutron production rates with a neutron generator running at 100-200 kV acceleration potential were performed using the threshold activation foil technique. This technique provides a clear measure of fast neutron flux and with a suitable model, the neutron output. This approach requires little specialized equipment and is used to calibrate real-time neutron detectors and to verify neutron output. We discuss the activation foil measurement technique and describe its use in determining the relative contributions of D-D and D-7Li reactions to the total neutron yield and real-time detector response and compare to model predictions. The D-7Li reaction produces neutrons with a continuum of energies and a sharp peak around 13.5 MeV for measurement techniques outside of what D-D generators can perform. The ability to perform measurements with D-D neutrons alone, then add D-7Li neutrons for inelastic gamma production presents additional measurement modalities with the same neutron source without the use of tritium. Typically, D-T generators are employed for inelastic scattering applications but have a high regulatory burden from a radiological aspect (tritium inventory, liability concerns) and are export-controlled. D-D and D-7Li generators avoid these issues completely.
Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol
NASA Astrophysics Data System (ADS)
Amaro, F. D.; Monteiro, C. M. B.; Dos Santos, J. M. F.; Antognini, A.
2017-02-01
The high neutron detection efficiency, good gamma-ray discrimination and non-toxicity of 3He made of proportional counters filled with this gas the obvious choice for neutron detection, particularly in radiation portal monitors (RPM), used to control the illicit transport of nuclear material, of which neutron detectors are key components. 3He is very rare and during the last decade this gas has become increasingly difficult to acquire. With the exception of BF3, which is toxic, no other gas can be used for neutron detection in proportional counters. We present an alternative where the 3He atoms are replaced by nanoparticles made of another neutron sensitive material, 10B. The particles are dispersed in a gaseous volume, forming an aerosol with neutron sensitive properties. A proportional counter filled with such aerosol was exposed to a thermal neutron beam and the recorded response indicates that the neutrons have interacted with the particles in the aerosol. This original technique, which transforms a standard proportional gas mixture into a neutron sensitive aerosol, is a breakthrough in the field of radiation detection and has the potential to become an alternative to the use of 3He in proportional counters.
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...
2017-04-18
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R., E-mail: wrwampl@sandia.gov; Myers, Samuel M.
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers,more » and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.« less
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
Use of thermal neutron reflection method for chemical analysis of bulk samples
NASA Astrophysics Data System (ADS)
Papp, A.; Csikai, J.
2014-09-01
Microscopic, σβ, and macroscopic, Σβ, reflection cross-sections of thermal neutrons averaged over bulk samples as a function of thickness (z) are given. The σβ values are additive even for bulk samples in the z=0.5-8 cm interval and so the σβmol(z) function could be given for hydrogenous substances, including some illicit drugs, explosives and hiding materials of ~1000 cm3 dimensions. The calculated excess counts agree with the measured R(z) values. For the identification of concealed objects and chemical analysis of bulky samples, different neutron methods need to be used simultaneously.
NASA Astrophysics Data System (ADS)
Bose, Satya Ranjan
2000-06-01
An in-pool small animal irradiation neutron tube (SAINT) facility was designed, constructed and installed at the University of Virginia Nuclear Research Reactor (UVAR). Thermal neutron flux profiles were measured by foil activation analysis (gold) and verified with DORT and MCNP computer code models. The gamma-ray absorbed dose in the neutron-gamma mixed field was determined from TLD measurements. The SAINT thermal neutron flux was used to investigate the well characterized human breast cancer cell line MCF-7B on both in-vitro samples and in- vivo animal subjects. Boronophenylalanine (BPA enriched in 95% 10B) was used as a neutron capturing agent. The in-vitro response of MCF-7B human breast carcinoma cells to BPA in a mixed field of neutron-gamma radiation or pure 60Co gamma radiation was investigated. The best result (lowest surviving fraction) was observed in cell cultures pre-incubated with BPA and given the neutron irradiation. The least effective treatment consisted of 60Co irradiation only. Immunologically deficient nude mice were inoculated subcutaneously with human breast cancer MCF-7B cells and estradiol pellets (to support tumor growth). The tumor volume in the mouse control group increased over time, as expected. The group of mice exposed only to neutron treatment exhibited initial tumor volume reduction lasting until 35 days following the treatment, followed by renewed tumor growth. Both groups given BPA plus neutron treatment showed continuous reduction in tumor volume over the 55-day observation period. The group given the higher BPA concentration showed the best tumor reduction response. The results on both in-vitro and in-vivo studies showed increased cell killing with BPA, substantiating the incorporation of BPA into the tumor or cell line. Therefore, BNCT may be a possible choice for the treatment of human breast carcinoma. However, prior to the initiation of any clinical studies, it is necessary to determine the therapeutic efficacy in a large animal model.
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Liu, Yuan-Hao; Nievaart, Sander; Chen, Yen-Fu; Wu, Shu-Wei; Chou, Wen-Tsae; Jiang, Shiang-Huei
2011-10-01
High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.
Seasonal CO2 Observations on North and South of Mars as Seen by HEND (Mars Odyssey) and MOLA (MGS)
NASA Technical Reports Server (NTRS)
Litvak, M. L.; Mitrofanov, I. G.; Smith, D. E.; Zuber, M. T.; Boynton, W.; Saunders, R. S.; Drake, D.
2003-01-01
The first year of neutron mapping measurements from the Mars Odyssey spacecraft are presented based on observations from the High Energy Neutron Detector (HEND). The HEND instrument is a part of GRS suite responsible for registration of epithermal and fast neutrons originating in the Mars subsurface layer. The gamma ray and neutron spectrometers measure the scattering of fast neutrons from the Martian surface, which is caused by bombardment of primary cosmic rays and is strongly sensitive to the presence of hydrogen atoms. Even several percent subsurface hydrogen significantly depresses the flux of epithermal and fast neutrons. The recent Mars Odyssey observations detected a considerable amount of hydrogen, almost certainly corresponding to water ice, in the shallow near surface of the southern and northern hemispheres of Mars.
A laser-induced repetitive fast neutron source applied for gold activation analysis
NASA Astrophysics Data System (ADS)
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.
Electronic neutron sources for compensated porosity well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A. X.; Antolak, A. J.; Leung, K. -N.
2012-08-01
The viability of replacing Americium–Beryllium (Am–Be) radiological neutron sources in compensated porosity nuclear well logging tools with D–T or D–D accelerator-driven neutron sources is explored. The analysis consisted of developing a model for a typical well-logging borehole configuration and computing the helium-3 detector response to varying formation porosities using three different neutron sources (Am–Be, D–D, and D–T). The results indicate that, when normalized to the same source intensity, the use of a D–D neutron source has greater sensitivity for measuring the formation porosity than either an Am–Be or D–T source. The results of the study provide operational requirements that enablemore » compensated porosity well logging with a compact, low power D–D neutron generator, which the current state-of-the-art indicates is technically achievable.« less
A laser-induced repetitive fast neutron source applied for gold activation analysis.
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).
Silicon Photomultipliers for Compact Neutron Scatter Cameras
NASA Astrophysics Data System (ADS)
Ruch, Marc L.
The ability to locate and identify special nuclear material (SNM) is critical for treaty verification and emergency response applications. SNM is used as the nuclear explosive in a nuclear weapon. This material emits neutrons, either spontaneously or when interrogated. The ability to form an image of the neutron source can be used for characterization and/or to confirm that the item is a weapon by determining whether its shape is consistent with that of a weapon. Additionally, treaty verification and emergency response applications might not be conducive to non-portable instruments. In future weapons treaties, for example, it is unlikely that host countries will make great efforts to facilitate large, bulky, and/or fragile inspection equipment. Furthermore, inspectors and especially emergency responders may need to access locations not easily approachable by vehicles. Therefore, there is a considerable need for a compact, human-portable neutron imaging system. Of the currently available neutron imaging technologies, only neutron scatter cameras (NSCs) can be made truly compact because aperture-based imagers, and time-encoded imagers, rely on large amounts of materials to modulate the neutron signal. NSCs, in contrast, can be made very small because most of the volume of the imager can be filled with active detector material. Also, unlike other neutron imaging technologies, NSCs have the inherent ability to act as neutron spectrometers which gives them an additional means of identifying a neutron source. Until recently, NSCs have relied on photomultiplier tubes (PMT) readouts, which are bulky and fragile, require high voltage, and are very sensitive to magnetic fields. Silicon photomultipliers (SiPMs) do not suffer from these drawbacks and are comparable to PMTs in many respects such as gain, and cost with better time resolution. Historically, SiPMs have been too noisy for these applications; however, recent advancements have greatly reduced this issue and they have now been shown to be viable alternatives to PMTs for neutron detection applications. In this thesis, the development of a handheld NSC based on SiPMs coupled to stilbene bars is presented. An algorithm for performing image reconstruction with this type of device is detailed. Prototype design optimization is achieved using a series of simulations and the construction of the optimized prototype is described. The device is calibrated through a series of collimated measurements, backscatter-gated measurements, and a time-of-flight measurement. Experimental imaging and spectroscopic results are presented for a measurement of a Cf-252 spontaneous fission source. Simulated detector response, based on measurements performed with components of the design, demonstrates that fission sources of different sizes would be distinguishable. Notably, a significant quantity of plutonium can be confidently distinguished from a point neutron source.
Use of a large time-compensated scintillation detector in neutron time-of-flight measurements
Goodman, Charles D.
1979-01-01
A scintillator for neutron time-of-flight measurements is positioned at a desired angle with respect to the neutron beam, and as a function of the energy thereof, such that the sum of the transit times of the neutrons and photons in the scintillator are substantially independent of the points of scintillations within the scintillator. Extrapolated zero timing is employed rather than the usual constant fraction timing. As a result, a substantially larger scintillator can be employed that substantially increases the data rate and shortens the experiment time.
McStas 1.1: a tool for building neutron Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lefmann, K.; Nielsen, K.; Tennant, A.; Lake, B.
2000-03-01
McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron scattering instrument. The method compares well with the analytical calculations of Popovici.
C7LYC Scintillators and Fast Neutron Spectroscopy
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Wilson, G. L.; D'Olympia, N.; Devlin, M.; Mosby, S.
2016-09-01
Cs2 LiYCl6 (CLYC) scintillators detect both gammas and neutrons with excellent pulse shape discrimination. At UML, fast neutron measurements with a 16-element 1''x1'' CLYC array show promise for low energy nuclear science. CLYC detects fast neutrons via the 35Cl (n,p) reaction (resolution < 10 % at < 8 MeV). In our 7Li-enriched C7LYC, the thermal neutron response from the 6Li(n, α)t reaction is virtually eliminated. The low intrinsic efficiency of CLYC for fast neutrons (< 1 %) is offset by increased solid angle with the array placed near the target, since TOF is not needed for energy resolution. The array was tested at LANL for measuring elastic and inelastic neutron scattering on 56Fe. The incident energy from the white neutron source was measured via TOF, and the scattered neutron energy via the pulse height in CLYC. The array was also tested at CARIBU for measuring beta-delayed neutrons. Larger CLYC crystals are now a reality. Measurements with the first 3'' x 3'' C7LYC crystal are in progress at UML. Results will be discussed in the context of constructing a C7LYC array at FRIB for reaction and decay spectroscopy of neutron-rich fragments. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.
NASA Astrophysics Data System (ADS)
Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad
2018-01-01
The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.
Functional materials analysis using in situ and in operando X-ray and neutron scattering
Peterson, Vanessa K.; Papadakis, Christine M.
2015-01-01
In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them. PMID:25866665
Glasses for Detection of Penetrating Radiation via the Cherenkov Effect
2015-07-01
neutrons . Three peer-‐reviewed publications were written...case is different in neutron interrogation. This project has educated 7 University of...Measurements of thermal neutron response in Cherenkov glassed designed for MeV photon detection,” IEEE
Development of New High Resolution Neutron Detector
NASA Astrophysics Data System (ADS)
Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.
2017-09-01
Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.
Neutron and gamma dose and spectra measurements on the Little Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoots, S.; Wadsworth, D.
1984-06-01
The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in themore » atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.« less
Production cross sections of neutron-rich No-263261 isotopes
NASA Astrophysics Data System (ADS)
Li, Jingjing; Li, Cheng; Zhang, Gen; Zhu, Long; Liu, Zhong; Zhang, Feng-Shou
2017-05-01
The fusion excitation functions of No-263249 are studied by using various reaction systems based on the dinuclear system model. The neutron-rich radioactive beam 22O is used to produce neutron-rich nobelium isotopes, and the new neutron-rich isotopes No-263261 are synthesized by 242Pu(22O,3 n )261No , 244Pu(22O,4 n )262No , and 244Pu(22O,3 n )263No reactions, respectively. The corresponding maximum evaporation residue cross sections are 0.628, 4.649, and 1.638 μ b , respectively. The effects of the three processes (capture, fusion, and survival) in the complete fusion reaction are also analyzed. From investigation, a neutron-rich radioactive beam as the projectile and neutron-rich actinide as the target could be a new selection of the projectile-target combination to produce a neutron-rich heavy nuclide.
Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy
NASA Astrophysics Data System (ADS)
Stetcu, I.; Talou, P.; Kawano, T.
2016-06-01
We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).
NASA Astrophysics Data System (ADS)
Mukherjee, Sumanta; Naik, Yeshwant
2018-04-01
Lithium-zirconium based oxides were prepared by combustion route. Thermal analysis (TG and DTA) was used to study the combustion process. The nucleation and growth stages were identified and their activation energies were predicted. The suitability of these oxide breeders was evaluated based on their radiation stability, variation in thermal behavior upon γ irradiation, neutron absorption and tritium breeding characteristics. Nuclear properties of these oxide ceramics were evaluated with a view to use them as efficient neutron absorbers and simultaneously breed tritium. Total neutron absorption cross sections were evaluated as a function of neutron energy in the range of 0 to 20 MeV. Resonant absorption is predicted for the neutron of energy 2.3 keV manly due to contribution from neutron induced nuclear reactions of 7Li in this energy range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doan, T. C.; Li, J.; Lin, J. Y.
2016-07-15
Solid-state neutron detectors with high performance are highly sought after for the detection of fissile materials. However, direct-conversion neutron detectors based on semiconductors with a measureable efficiency have not been realized. We report here the first successful demonstration of a direct-conversion semiconductor neutron detector with an overall detection efficiency for thermal neutrons of 4% and a charge collection efficiency as high as 83%. The detector is based on a 2.7 μm thick {sup 10}B-enriched hexagonal boron nitride (h-BN) epitaxial layer. The results represent a significant step towards the realization of practical neutron detectors based on h-BN epilayers. Neutron detectors basedmore » on h-BN are expected to possess all the advantages of semiconductor devices including wafer-scale processing, compact size, light weight, and ability to integrate with other functional devices.« less
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...
2018-04-09
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Evolution of the pygmy dipole resonance in Sn isotopes
NASA Astrophysics Data System (ADS)
Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.
2011-04-01
Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.
Precision measurement of the 238 Pu ( n , γ ) cross section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyzh, A.; Wu, C. Y.; Kwan, E.
2013-10-14
Here, the neutron-capture cross section for 238Pu was measured by using the detector for advanced neutron-capture experiments (DANCE) array, which is a highly segmented and highly efficient 4π γ-ray calorimeter. The neutron-capture events were recognized by the total γ-ray energy deposited in DANCE, which is equal to the reaction Q value plus the incident neutron energy. The absolute neutron-capture cross section was derived as a function of incident neutron energy from thermal to about 30 keV. The measured cross section for incident neutron energy below 18 eV was performed for the first time by using the direct method and doesmore » not support the most recently adopted changes in endf/b-vii.1 where the neutron-capture cross section was lowered by as much as a factor of ~3 in the neighborhood of 0.3 eV from those evaluated in ENDF/B-VII.0.« less
NASA Astrophysics Data System (ADS)
Vermeeren, L.; Wéber, M.
2003-06-01
A set of ten Self-Powered Neutron Detectors with Co, Rh and Ag emitters has been irradiated in several channels of the BR2 research reactor at SCK•CEN aiming at a comparison of their performance as thermal neutron flux detectors under various conditions. To allow for a correct interpretation of their signals, all detector sensitivity contributions (prompt and delayed) were calculated using a dedicated Monte Carlo model. The various contributions were also measured separately; the agreement between calculated and experimental data, including data from activation dosimetry, was excellent. Detailed neutron flux profiles were obtained from the SPND data, after correction for the finite detector lengths and for the slow response of delayed SPNDs.
NBS work on neutron resonance radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrack, R.A.
1987-01-01
NBS has been engaged in a wide-ranging program in Neutron Resonance Radiography utilizing both one- and two-dimensional position-sensitive neutron detectors. The ability to perform a position-sensitive assay of up to 16 isotopes in a complex matrix has been demonstrated for a wide variety of sample types, including those with high gamma activity. A major part of the program has been the development and application of the microchannel-plate-based position-sensitive neutron detector. This detector system has high resolution and sensitivity, together with adequate speed of response to be used with neutron time-of-flight techniques. This system has demonstrated the ability to simultaneously imagemore » three isotopes in a sample with no interference.« less
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
237Np absolute delayed neutron yield measurements
NASA Astrophysics Data System (ADS)
Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.
2017-09-01
237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.
PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less
Tomography using monochromatic thermal neutrons with attenuation and phase contrast
NASA Astrophysics Data System (ADS)
Dubus, Francois; Bonse, Ulrich; Biermann, Theodor; Baron, Matthias; Beckmann, Felix; Zawisky, Michael
2002-01-01
Attenuation-contrast tomography with monochromatic thermal neutrons was developed and operated at guide station S18 of the institute Laue-Langevin in Grenoble. From the S18 spectrum the neutron wavelength (lambda) equals 0.18 nm was selected by employing a fore crystal with the silicon 220 reflection at a Bragg angle (Theta) equals 30 degrees. Projections were registered by a position sensitive detector (PSD) consisting of a neutron-to-visible-light converter coupled to a CCD detector. Neutron tomography and its comparison with X-ray tomography is studied. This is of special interest since the cross section for neutron attenuation ((sigma) atom) and the cross section for neutron phase shift (bc) are isotope specific and, in addition, by no means mostly monotonous functions of atomic number Z as are attenuation coefficient ((mu) x) and atomic scattering amplitude (f) in the case of X-rays. Results obtained with n-attenuation tomography will be presented. Possibilities and the setup of an instrument for neutron phase-contrast tomography based on single-crystal neutron interferometry will be described.
Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA
Stoeckl, C.; Boni, R.; Ehrne, F.; ...
2016-05-10
A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
2017-06-13
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeckl, C.; Boni, R.; Ehrne, F.
A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium–tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera inmore » a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less