Possibility of synthesizing a doubly magic superheavy nucleus
NASA Astrophysics Data System (ADS)
Aritomo, Y.
2007-02-01
The possibility of synthesizing a doubly magic superheavy nucleus, 298114184, is investigated on the basis of fluctuation-dissipation dynamics. In order to synthesize this nucleus, we must generate more neutron-rich compound nuclei because of the neutron emissions from excited compound nuclei. The compound nucleus 304114 has two advantages to achieving a high survival probability. First, because of low neutron separation energy and rapid cooling, the shell correction energy recovers quickly. Secondly, owing to neutron emissions, the neutron number in the nucleus approaches that of the double closed shell and the nucleus attains a large fission barrier. Because of these two effects, the survival probability of 304114 does not decrease until the excitation energy E*=50 MeV. These properties lead to a rather high evaporation residue cross section.
Experimental study of the β decay of the very neutron-rich nucleus Ge 85
Korgul, A.; Rykaczewski, Krzysztof Piotr; Grzywacz, Robert Kazimierz; ...
2017-04-04
The β -decay properties of the very neutron-rich nucleus 85Ge, produced in the proton-induced fission of 238U, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of 33 85As 52 populated in 85Geβ γ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N =52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N =52 isotone 81Cu.
Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.
2015-10-15
The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less
DOE R&D Accomplishments Database
Mayer, M. G.
1948-02-01
It has been suggested in the past that special numbers of neutrons or protons in the nucleus form a particularly stable configuration.{sup1} The complete evidence for this has never been summarized, nor is it generally recognized how convincing this evidence is. That 20 neutrons or protons (Ca{sup40}) form a closed shell is predicted by the Hartree model. A number of calculations support this fact.{sup2} These considerations will not be repeated here. In this paper, the experimental facts indicating a particular stability of shells of 50 and 82 protons and of 50, 82, and 126 neutrons will be listed.
B(E2)↑ Measurements for Radioactive Neutron-Rich Ge Isotopes: Reaching the N=50 Closed Shell
NASA Astrophysics Data System (ADS)
Padilla-Rodal, E.; Galindo-Uribarri, A.; Baktash, C.; Batchelder, J. C.; Beene, J. R.; Bijker, R.; Brown, B. A.; Castaños, O.; Fuentes, B.; del Campo, J. Gomez; Hausladen, P. A.; Larochelle, Y.; Lisetskiy, A. F.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego, J. P.; Varner, R. L.; Yu, C.-H.
2005-03-01
The B(E2;0+1→2+1) values for the radioactive neutron-rich germanium isotopes 78,80Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains. A comparison of the experimental results with a shell model calculation demonstrates persistence of the N=50 shell gap and a strong sensitivity of the B(E2) values to the effective interaction.
Building Atoms Shell by Shell.
ERIC Educational Resources Information Center
Sussman, Beverly
1993-01-01
Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…
One-Neutron Removal Measurement Reveals {sup 24}O as a New Doubly Magic Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanungo, R.; Perro, C.; Nociforo, C.
The first measurement of the momentum distribution for one-neutron removal from {sup 24}O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99{+-}4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63{+-}7 mb. The results are well explained with a nearly pure 2s{sub 1/2} neutron spectroscopic factor of 1.74{+-}0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that {sup 24}O is a new doubly magic nucleus.
Core excitations across the neutron shell gap in 207Tl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.; Podolyák, Zs.; Grawe, H.
2015-05-05
The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less
Observation of a γ-decaying millisecond isomeric state in 128Cd80
NASA Astrophysics Data System (ADS)
Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Taprogge, J.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3 (8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18+E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h11/2 and the 0g9/2 orbit, respectively, which is predicted to exist by the shell model.
Single-particle and collective motion in unbound deformed 39Mg
NASA Astrophysics Data System (ADS)
Fossez, K.; Rotureau, J.; Michel, N.; Liu, Quan; Nazarewicz, W.
2016-11-01
Background: Deformed neutron-rich magnesium isotopes constitute a fascinating territory where the interplay between collective rotation and single-particle motion is strongly affected by the neutron continuum. The unbound f p -shell nucleus 39Mg is an ideal candidate to study this interplay. Purpose: In this work, we predict the properties of low-lying resonant states of 39Mg, using a suite of realistic theoretical approaches rooted in the open quantum system framework. Method: To describe the spectrum and decay modes of 39Mg we use the conventional shell model, Gamow shell model, resonating group method, density matrix renormalization group method, and the nonadiabatic particle-plus-rotor model formulated in the Berggren basis. Results: The unbound ground state of 39Mg is predicted to be either a Jπ=7/2 - state or a 3/2 - state. A narrow Jπ=7/2 - ground-state candidate exhibits a resonant structure reminiscent of that of its one-neutron halo neighbor 37Mg, which is dominated by the f7 /2 partial wave at short distances and a p3 /2 component at large distances. A Jπ=3/2 - ground-state candidate is favored by the large deformation of the system. It can be associated with the 1/2 -[321 ] Nilsson orbital dominated by the ℓ =1 wave; hence its predicted width is large. The excited Jπ=1/2 - and 5 /2- states are expected to be broad resonances, while the Jπ=9/2 - and 11/2 - members of the ground-state rotational band are predicted to have very small neutron decay widths. Conclusion: We demonstrate that the subtle interplay between deformation, shell structure, and continuum coupling can result in a variety of excitations in an unbound nucleus just outside the neutron drip line.
Observation of a γ -decaying millisecond isomeric state in 128 Cd 80
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungclaus, A.; Grawe, H.; Nishimura, S.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3(8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18 + E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in themore » 0h 11/2 and the 0g 9/2 orbit, respectively, which is predicted to exist by the shell model.« less
Gaps in nuclear spectra as traces of seniority changes in systems of both neutrons and protons
NASA Astrophysics Data System (ADS)
Zamick, Larry
2016-03-01
There has been a great deal of attention given to the low-lying energy spectrum in a nucleus because of the abundance of experimental data. Likewise, perhaps to a lesser extent but still significant, the high end for a given configuration has been examined. Here, using single j shell calculations as a guide, we examine the middle part of the spectrum resulting from single j shell calculations. Seniority arguments are used to partially explain the midshell behaviors even though in general seniority is not a good quantum number for mixed systems of neutrons and protons.
Dependence of weak interaction rates on the nuclear composition during stellar core collapse
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi
2017-02-01
We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.
Structure analysis for hole-nuclei close to 132Sn by a large-scale shell-model calculation
NASA Astrophysics Data System (ADS)
Wang, Han-Kui; Sun, Yang; Jin, Hua; Kaneko, Kazunari; Tazaki, Shigeru
2013-11-01
The structure of neutron-rich nuclei with a few holes in respect of the doubly magic nucleus 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including orbitals allowing both neutron and proton core excitations, an effective interaction for the extended pairing-plus-quadrupole model with monopole corrections is tested through detailed comparison between the calculation and experimental data. By using the experimental energy of the core-excited 21/2+ level in 131In as a benchmark, monopole corrections are determined that describe the size of the neutron N=82 shell gap. The level spectra, up to 5 MeV of excitation in 131In, 131Sn, 130In, 130Cd, and 130Sn, are well described and clearly explained by couplings of single-hole orbitals and by core excitations.
Structure of Sn 107 studied through single-neutron knockout reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerizza, G.; Ayres, A.; Jones, K. L.
2016-02-04
The neutron-deficient nucleus Sn-107 has been studied by using the one-neutron knockout reaction. By measuring the decay gamma rays and momentum distributions of reaction residues, the spins of the ground, 5/2 +, and first-excited, 7/2 +, states of Sn-107 have been assigned by comparisons to eikonal-model reaction calculations. We also observed limits on the inclusive and exclusive cross sections and transitions due to neutron removals from below the N = 50 closed shell have been observed. New excited states up to 5.5 MeV in Sn-107 have been identified.
Statistical theory of light nucleus reactions with 1p-shell light nuclei
NASA Astrophysics Data System (ADS)
Xiaojun, Sun; Jingshang, Zhang
2017-09-01
The 1p-shell light elements (Li, Be, B, C, N, and O) had long been selected as the most important materials for improving neutron economy in thermal and fast fission reactors and in the design of accelerator-driven spallation neutron sources. A statistical theory of light nucleus reactions (STLN) is proposed to describe the double-differential cross sections for both neutron and light charged particle induced nuclear reactions with 1p-shell light nuclei. The dynamics of STLN is described by the unified Hauser-Feshbach and exciton model, in which the angular momentum and parity conservations are strictly considered in equilibrium and pre-equilibrium processes. The Coulomb barriers of the incoming and outgoing charged particles, which significantly influence the open channels of the reaction, can be reasonably considered in incident channel and different outgoing channels. In kinematics, the recoiling effects in various emission processes are strictly taken into account. The analytical energy and angular spectra of the reaction products in sequential and simultaneous emission processes are obtained in terms of the new integral formula proposed in our recent paper. Taking 12C(n, xn), 9Be(n, xn), 16O(n, xn), and 9Be(p,xn) reactions as examples, we had calculated the double-differential cross sections of outgoing neutrons and compared with the experimental data. In addition, we had also calculated the partition and total kerma coefficients for 12C(n, xn) and 16O(n, xn) reactions, respectively. The existing experimental data can be remarkably well reproduced by STLN, which had been used to set up file-6 in CENDL database.
CONCERNING THE PROBLEM OF THE SYSTEMATIZATION OF $beta$ SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, R.
1956-01-01
S>From data on the energy liberated during KB capture or ing BETA decay, the problem of the construction of a shell model of the nucleus is considered. It is proposed at the BETA transition is carried out by the last particle in the shell. The neutron and proton levels are considered individually. It is stated, that on the basis of the data on topes and the values of the nuclear spins. To obtain agreement with the nuclear binding energies and the data on nuclear reactions, it becomes necessary to propose that the transition of each nucleon causes a lowering ofmore » the bottom of the potentisl well of the nucleus.« less
Project Physics Tests 6, The Nucleus.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 6 are presented in this booklet. Included are 70 multiple-choice and 24 problem-and-essay questions. Nuclear physics fundamentals are examined with respect to the shell model, isotopes, neutrons, protons, nuclides, charge-to-mass ratios, alpha particles, Becquerel's discovery, gamma rays, cyclotrons,…
Coulomb Excitation of the N = 50 nucleus 80Zn
NASA Astrophysics Data System (ADS)
van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.
2008-05-01
Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+-->01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni.
Structure of the spatial periphery of the {sup 11}Li and {sup 11}Be isobars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galanina, L. I., E-mail: galan-lidiya@mail.ru; Zelenskaya, N. S.
2016-07-15
On the basis of the shell model with an extended basis, the structure of {sup 9}Li-{sup 9}Be to {sup 11}Li-{sup 11}Be nuclei is examined with allowance for the competition of {sup jj} coupling and Majorana exchange forces via considering the sequential addition of neutrons, and the respective wave functions are determined. A formalism for calculating the spectroscopic factor for a dineutron and for individual neutrons in nuclei whose wave functions incorporate the mixing of shell configurations is developed. The reactions {sup 9}Li(t, p){sup 11}Li and {sup 9}Be(t, p){sup 11}Be treated with allowance for the mechanisms of dineutron stripping and amore » sequential transfer of two neutrons are considered as an indicator of the proposed structure of lithium and berylliumisotopes. The parameters of the optical potentials, the wave functions for the bound states of transferred particles, and the interaction potentials corresponding to them are determined from a comparison of the theoretical angular distribution of protons from the reaction {sup 9}Be(t, p){sup 11}Be with its experimental counterpart. It is shown that a dineutron periphery of size about 6.4 fm is present in the {sup 11}Li nucleus and that a single-neutron periphery of size about 8 fm is present in the {sup 11}Be nucleus.« less
Isomer spectroscopy of neutron-rich 168Tb 103
Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.; ...
2016-12-29
In-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm thick 9Be target has been used to produce and study the decays of a range of neutron-rich nuclei centred around the doubly mid-shell nucleus 170Dy at the RIBF Facility, RIKEN, Japan. The produced secondary fragments of interest were identified event-by-event using the BigRIPS separator. The fragments were implanted into the WAS3ABI position sensitive silicon active stopper which allowed pixelated correlations between implants and their subsequent β-decay. Discrete γ-ray transitions emitted following decays from either metastable states or excited states populated following beta decay were identifiedmore » using the 84 coaxial high-purity germanium (HPGe) detectors of the EURICA spectrometer, which was complemented by 18 additional cerium-doped lanthanum bromide (LaBr 3) fast-timing scintillation detectors from the FATIMA collaboration. This paper presents the internal decay of a metastable isomeric excited state in the odd-odd nucleus 168Tb, which corresponds to a single proton-neutron hole configuration in the valence maximum nucleus 170Dy. These data represent the first information on excited states in this nucleus, which is the most neutron-rich odd-odd isotope of terbium (Z = 65) studied to date. Here, Nilsson configurations associated with an axially symmetric, prolate-deformed nucleus are proposed for the 168Tb ground state the observed isomeric state by comparison with Blocked BCS-Nilsson calculations.« less
Isomer spectroscopy of neutron-rich 168Tb103
NASA Astrophysics Data System (ADS)
Gurgi, L. A.; Regan, P. H.; Söderström, P.-A.; Watanabe, H.; Walker, P. M.; Podolyák, Zs.; Nishimura, S.; Berry, T. A.; Doornenbal, P.; Lorusso, G.; Isobe, T.; Baba, H.; Xu, Z. Y.; Sakurai, H.; Sumikama, T.; Catford, W. N.; Bruce, A. M.; Browne, F.; Lane, G. J.; Kondev, F. G.; Odahara, A.; Wu, J.; Liu, H. L.; Xu, F. R.; Korkulu, Z.; Lee, P.; Liu, J. J.; Phong, V. H.; Yag, A.; Zhang, G. X.; Alharbi, T.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Kanaoka, H.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Patel, Z.; Roberts, O. J.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Yoshida, S.; Valiente-Dòbon, J. J.
2017-11-01
In-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm thick 9Be target has been used to produce and study the decays of a range of neutron-rich nuclei centred around the doubly mid-shell nucleus 170Dy at the RIBF Facility, RIKEN, Japan. The produced secondary fragments of interest were identified event-by-event using the BigRIPS separator. The fragments were implanted into the WAS3ABI position sensitive silicon active stopper which allowed pixelated correlations between implants and their subsequent β-decay. Discrete γ-ray transitions emitted following decays from either metastable states or excited states populated following beta decay were identified using the 84 coaxial high-purity germanium (HPGe) detectors of the EURICA spectrometer, which was complemented by 18 additional cerium-doped lanthanum bromide (LaBr3) fast-timing scintillation detectors from the FATIMA collaboration. This paper presents the internal decay of a metastable isomeric excited state in the odd-odd nucleus 168Tb, which corresponds to a single proton-neutron hole configuration in the valence maximum nucleus 170Dy. These data represent the first information on excited states in this nucleus, which is the most neutron-rich odd-odd isotope of terbium (Z=65) studied to date. Nilsson configurations associated with an axially symmetric, prolate-deformed nucleus are proposed for the 168Tb ground state the observed isomeric state by comparison with Blocked BCS-Nilsson calculations.
Coulomb Excitation of n-rich nuclei along the N = 50 shell closure
NASA Astrophysics Data System (ADS)
Padilla-Rodal, E.; Galindo-Uribarri, A.; Batchelder, J. C.; Beene, J. R.; Bingham, C.; Brown, B. A.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.
2008-04-01
Recently, we have been investigating characteristics of nuclear states around the neutron-rich mass A=80 region [1]. Using the Radioactive Ion Beams (RIBs) produced at HRIBF, we have successfully measured the B(E2) values for ^78,80,82Ge , using Coulomb excitation in inverse kinematics. For the germanium isotopes, these data allow a study of the systematic trend between the subshell N= 40 and the N=50 shell. Using the same technique, we have measured the B(E2) value of various nuclei along the N=50 shell including the radioactive nucleus ^84Se. This value together with our previously measured ^82Ge, and the recent result on ^80Zn from ISOLDE [2] are providing basic experimental information needed for a better understanding of the neutron-rich nuclei around A˜80. We report the new results and compare with shell model calculations. [1] E. Padilla-Rodal et al., Phys. Rev. Lett. 94 (2005) 122501. [2] J. Van de Walle et al., Phys. Rev. Lett. 99 (2007) 142501.
Isomers and shell evolution in neutron-rich nuclei below the doubly magic nucleus 132Sn
NASA Astrophysics Data System (ADS)
Watanabe, Hiroshi
2018-05-01
The level structures of the very neutron-rich nuclei 128Pd82 and 126Pd80 have been investigated for the first time. A new isomer with a half-life of 5.8(8) μs in 128Pd is proposed to have a spin and parity of 8+ and is associated with a maximally aligned configuration arising from the g9/2Pd proton subshell with seniority υ = 2. The level sequence below the 8+ isomer is similar to that in the N = 82 isotone 130Cd, but the electric quadrupole transition that depopulates the 8+ isomer is more hindered in 128Pd than in 130Cd, as expected in the seniority scheme for a semi-magic, spherical nucleus. For 126Pd, three new isomers with Jπ = (5-), (7-), and (10+) have been identified with half-lives of 0.33(4) μs, 0.44(3) μs, and 23.0(8) ms, respectively. The smaller energy difference between the 10+ and 7- isomers in 126Pd than in the heavier N = 80 isotones can be interpreted as being ascribed to the monopole shift of the h11/2 neutron orbit. The nature of the N = 82 shell closure scrutinized with these characteristic isomers is discussed.
Enhanced low-energy γ -decay strength of 70Ni and its robustness within the shell model
NASA Astrophysics Data System (ADS)
Larsen, A. C.; Midtbø, J. E.; Guttormsen, M.; Renstrøm, T.; Liddick, S. N.; Spyrou, A.; Karampagia, S.; Brown, B. A.; Achakovskiy, O.; Kamerdzhiev, S.; Bleuel, D. L.; Couture, A.; Campo, L. Crespo; Crider, B. P.; Dombos, A. C.; Lewis, R.; Mosby, S.; Naqvi, F.; Perdikakis, G.; Prokop, C. J.; Quinn, S. J.; Siem, S.
2018-05-01
Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their γ -emission probability at very low γ energies. In this work, we present measurements of the γ -decay strength of 70Ni over the wide range 1.3 ≤Eγ≤8 MeV. A significant enhancement is found in the γ -decay strength for transitions with Eγ<3 MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed E 1 -strength calculations within the quasiparticle time-blocking approximation, which describe our data above Eγ≃5 MeV very well. Moreover, large-scale shell-model calculations indicate an M 1 nature of the low-energy γ strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation, and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.
In-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm thick 9Be target has been used to produce and study the decays of a range of neutron-rich nuclei centred around the doubly mid-shell nucleus 170Dy at the RIBF Facility, RIKEN, Japan. The produced secondary fragments of interest were identified event-by-event using the BigRIPS separator. The fragments were implanted into the WAS3ABI position sensitive silicon active stopper which allowed pixelated correlations between implants and their subsequent β-decay. Discrete γ-ray transitions emitted following decays from either metastable states or excited states populated following beta decay were identifiedmore » using the 84 coaxial high-purity germanium (HPGe) detectors of the EURICA spectrometer, which was complemented by 18 additional cerium-doped lanthanum bromide (LaBr3) fast-timing scintillation detectors from the FATIMA collaboration. This paper presents the internal decay of a metastable isomeric excited state in the odd-odd nucleus 168Tb, which corresponds to a single proton-neutron hole configuration in the valence maximum nucleus 170Dy. These data represent the first information on excited states in this nucleus, which is the most neutron-rich odd-odd isotope of terbium (Z=65) studied to date. Nilsson configurations associated with an axially symmetric, prolate-deformed nucleus are proposed for the 168Tb ground state the observed isomeric state by comparison with Blocked BCS-Nilsson calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.
In-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm thick 9Be target has been used to produce and study the decays of a range of neutron-rich nuclei centred around the doubly mid-shell nucleus 170Dy at the RIBF Facility, RIKEN, Japan. The produced secondary fragments of interest were identified event-by-event using the BigRIPS separator. The fragments were implanted into the WAS3ABI position sensitive silicon active stopper which allowed pixelated correlations between implants and their subsequent β-decay. Discrete γ-ray transitions emitted following decays from either metastable states or excited states populated following beta decay were identifiedmore » using the 84 coaxial high-purity germanium (HPGe) detectors of the EURICA spectrometer, which was complemented by 18 additional cerium-doped lanthanum bromide (LaBr 3) fast-timing scintillation detectors from the FATIMA collaboration. This paper presents the internal decay of a metastable isomeric excited state in the odd-odd nucleus 168Tb, which corresponds to a single proton-neutron hole configuration in the valence maximum nucleus 170Dy. These data represent the first information on excited states in this nucleus, which is the most neutron-rich odd-odd isotope of terbium (Z = 65) studied to date. Here, Nilsson configurations associated with an axially symmetric, prolate-deformed nucleus are proposed for the 168Tb ground state the observed isomeric state by comparison with Blocked BCS-Nilsson calculations.« less
Highlights of modern nuclear structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, P. J.
1998-09-11
Excitations of nuclei close to magic {sup 132}Sn have been investigated by analysis of fission product {gamma}-ray data measured at Eurogam II using a {sup 248}Cm source. Results for the N=82 isotopes up to {sup 136}Xe, for the one proton-one neutron nucleus {sup 134}Sb, and for the N=84 isotones {sup 134}Sn. {sup 135}Sb, and {sup 136}Te are summarized. The interpretation of the observed level spectra is mainly based on shell model calculations using empirical proton-proton interactions from {sup 134}Te, neutron-neutron interactions from is {sup 134}Sn, and proton-neutron interactions estimated (with scaling as A{sup {minus}1/3}) from the well-known {sup 210}Bi spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbin, A. V., E-mail: derbin@pnpi.spb.r; Fomenko, K. A., E-mail: fomenko@jinr.r
The Pauli exclusion principle was tested for nucleons in the {sup 12}C nucleus by using data from the Borexino detector. The approach used consisted in seeking photons, neutrons, and protons, as well as electrons and positrons, emitted in the Pauli-forbidden transitions of nucleons from the 1P{sub 3/2} shell to the filled 1S{sub 1/2} shell. Owing to a uniquely low background level in the Borexino detector and its large mass, the currently most stringent experimental limits were obtained for the probabilities and relative intensities of Pauli-forbidden transitions for the electromagnetic, strong, and weak channels.
NASA Astrophysics Data System (ADS)
Galanina, L. I.; Zelenskaya, N. S.
2017-09-01
Within the theoretical formalism that combines a four-body problem with themultiparticle shell model, it is shown that the cross section for the dineuteron-stripping mechanism is consistent with the experimental angular distribution of protons from the 16O( t, p)18O reaction. This makes it possible to find the wave function for the relative motion of the dineutron and 16O and to obtain thereby the probability density W( r) for the dineutron in 18O, the nn-16O interaction potential, and the root-mean-square distance 〈 L〉 nn between the dineutron and 16O. The respective calculations reveal that, at r ≈ 8 fm, the dineutron probability density and a rather deep nn-16O potential become negligible, which leads to the absence of a dineuntron periphery in 18O. It seems that one can explain this fact by a rather large value (12.19 MeV) of the dineutron binding energy in this nucleus. Thus, the 18O nucleus is quite compact an object, despite the excess of two neutrons, and has a neutron skin rather than a periphery.
Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the 21+ State in Zn80
NASA Astrophysics Data System (ADS)
van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.
2007-10-01
Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 21+ state in Zn78 could be firmly established and for the first time the 2+→01+ transition in Zn80 was observed at 1492(1) keV. B(E2,21+→01+) values were extracted for Zn74,76,78,80 and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, Zn80 is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni78.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hua.
1989-01-01
One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but intelligent truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated truncation scheme is introduced in nuclear physics formore » the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, the author finds that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDUO was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a at Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves chaotically. This information is certainly crucial to understanding quantum chaotic behavior.« less
NASA Astrophysics Data System (ADS)
Alex Brown, B.
The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960's and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.
Nuclear structure studies performed using the (18O,16O) two-neutron transfer reactions
NASA Astrophysics Data System (ADS)
Carbone, D.; Agodi, C.; Cappuzzello, F.; Cavallaro, M.; Ferreira, J. L.; Foti, A.; Gargano, A.; Lenzi, S. M.; Linares, R.; Lubian, J.; Santagati, G.
2018-02-01
Excitation energy spectra and absolute cross section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. This reaction selectively populates two-neutron configurations in the states of the residual nucleus. Exact finite-range coupled reaction channel calculations are used to analyse the data. Two approaches are discussed: the extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre of mass reference frame, derived from shell-model calculations using the Moshinsky transformation brackets. The results describe well the experimental cross section and highlight cluster configurations in the involved wave functions.
Cross-shell excitations from the f p shell: Lifetime measurements in 61Zn
NASA Astrophysics Data System (ADS)
Queiser, M.; Vogt, A.; Seidlitz, M.; Reiter, P.; Togashi, T.; Shimizu, N.; Utsuno, Y.; Otsuka, T.; Honma, M.; Petkov, P.; Arnswald, K.; Altenkirch, R.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Lewandowski, L.; Müller-Gatermann, C.; Régis, J.-M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Wolf, K.; Zell, K.-O.
2017-10-01
Lifetimes of excited states in the neutron-deficient nucleus 61Zn were measured employing the recoil-distance Doppler-shift (RDDS) and the electronic fast-timing methods at the University of Cologne. The nucleus of interest was populated as an evaporation residue in 40Ca(24Mg,n 2 p )61Zn and 58Ni(α ,n )61Zn reactions at 67 and 19 MeV, respectively. Five lifetimes were measured for the first time, including the lifetime of the 5 /21- isomer at 124 keV. Short lifetimes from the RDDS analysis are corrected for Doppler-shift attenuation (DSA) in the target and stopper foils. Ambiguous observations in previous measurements were resolved. The obtained lifetimes are compared to predictions from different sets of shell-model calculations in the f p , f5 /2p g9 /2 , and multishell f p -g9 /2d5 /2 model spaces. The band built on the 9 /21+ state exhibits a prolate deformation with β ≈0.24 . Especially, the inclusion of cross-shell excitation into the 1 d5 /2 orbital is found to be decisive for the description of collectivity in the first excited positive-parity band.
In-beam γ -ray spectroscopy of the neutron-rich platinum isotope 200Pt toward the N =126 shell gap
NASA Astrophysics Data System (ADS)
John, P. R.; Valiente-Dobón, J. J.; Mengoni, D.; Modamio, V.; Lunardi, S.; Bazzacco, D.; Gadea, A.; Wheldon, C.; Rodríguez, T. R.; Alexander, T.; de Angelis, G.; Ashwood, N.; Barr, M.; Benzoni, G.; Birkenbach, B.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Bottoni, S.; Bowry, M.; Bracco, A.; Browne, F.; Bunce, M.; Camera, F.; Corradi, L.; Crespi, F. C. L.; Melon, B.; Farnea, E.; Fioretto, E.; Gottardo, A.; Grente, L.; Hess, H.; Kokalova, Tz.; Korten, W.; Kuşoǧlu, A.; Lenzi, S.; Leoni, S.; Ljungvall, J.; Menegazzo, R.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Podolyák, Zs.; Pollarolo, G.; Recchia, F.; Reiter, P.; Roberts, O. J.; Şahin, E.; Salsac, M.-D.; Scarlassara, F.; Sferrazza, M.; Söderström, P.-A.; Stefanini, A. M.; Szilner, S.; Ur, C. A.; Vogt, A.; Walshe, J.
2017-06-01
The neutron-rich nucleus 200Pt is investigated via in-beam γ -ray spectroscopy to study the shape evolution in the neutron-rich platinum isotopes towards the N =126 shell closure. The two-neutron transfer reaction 198Pt(82Se, 80Se)200Pt is used to populate excited states of 200Pt. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects γ rays coincident with the 80Se recoils, the binary partner of 200Pt. The binary partner method is applied to extract the γ -ray transitions and build the level scheme of 200Pt. The level at 1884 keV reported by Yates et al. [S. W. Yates, E. M. Baum, E. A. Henry, L. G. Mann, N. Roy, A. Aprahamian, R. A. Meyer, and R. Estep, Phys. Rev. C 37, 1889 (1988)] was confirmed to be at 1882.1 keV and assigned as the (61+) state. An additional γ ray was found and it presumably deexcites the (81+) state. The results are compared with state-of-the-art beyond mean-field calculations, performed for the even-even 190 -204Pt isotopes, revealing that 200Pt marks the transition from the γ -unstable behavior of lighter Pt nuclei towards a more spherical one when approaching the N =126 shell closure.
Search for the invisible decay of neutrons with KamLAND.
Araki, T; Enomoto, S; Furuno, K; Gando, Y; Ichimura, K; Ikeda, H; Inoue, K; Kishimoto, Y; Koga, M; Koseki, Y; Maeda, T; Mitsui, T; Motoki, M; Nakajima, K; Nakamura, K; Ogawa, H; Ogawa, M; Owada, K; Ricol, J-S; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Tada, K; Takeuchi, S; Tamae, K; Tsuda, Y; Watanabe, H; Busenitz, J; Classen, T; Djurcic, Z; Keefer, G; Leonard, D S; Piepke, A; Yakushev, E; Berger, B E; Chan, Y D; Decowski, M P; Dwyer, D A; Freedman, S J; Fujikawa, B K; Goldman, J; Gray, F; Heeger, K M; Hsu, L; Lesko, K T; Luk, K-B; Murayama, H; O'Donnell, T; Poon, A W P; Steiner, H M; Winslow, L A; Jillings, C; Mauger, C; McKeown, R D; Vogel, P; Zhang, C; Lane, C E; Miletic, T; Guillian, G; Learned, J G; Maricic, J; Matsuno, S; Pakvasa, S; Horton-Smith, G A; Dazeley, S; Hatakeyama, S; Rojas, A; Svoboda, R; Dieterle, B D; Detwiler, J; Gratta, G; Ishii, K; Tolich, N; Uchida, Y; Batygov, M; Bugg, W; Efremenko, Y; Kamyshkov, Y; Kozlov, A; Nakamura, Y; Karwowski, H J; Markoff, D M; Rohm, R M; Tornow, W; Wendell, R; Chen, M-J; Wang, Y-F; Piquemal, F
2006-03-17
The Kamioka Liquid scintillator Anti-Neutrino Detector is used in a search for single neutron or two-neutron intranuclear disappearance that would produce holes in the -shell energy level of (12)C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (inv), e.g., n--> 3v or nn--> 2v. The deexcitation of the corresponding daughter nucleus results in a sequence of space and time-correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: tau(n--> inv) > 5.8 x 10(29) years and tau (nn--> inv) > 1.4 x 10(30) years at 90% C.L. These results represent an improvement of factors of approximately 3 and >10(4) and over previous experiments.
Quest for consistent modelling of statistical decay of the compound nucleus
NASA Astrophysics Data System (ADS)
Banerjee, Tathagata; Nath, S.; Pal, Santanu
2018-01-01
A statistical model description of heavy ion induced fusion-fission reactions is presented where shell effects, collective enhancement of level density, tilting away effect of compound nuclear spin and dissipation are included. It is shown that the inclusion of all these effects provides a consistent picture of fission where fission hindrance is required to explain the experimental values of both pre-scission neutron multiplicities and evaporation residue cross-sections in contrast to some of the earlier works where a fission hindrance is required for pre-scission neutrons but a fission enhancement for evaporation residue cross-sections.
High spin structure and intruder configurations in 31P
NASA Astrophysics Data System (ADS)
Ionescu-Bujor, M.; Iordachescu, A.; Napoli, D. R.; Lenzi, S. M.; Mărginean, N.; Otsuka, T.; Utsuno, Y.; Ribas, R. V.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Brandolini, F.; Bucurescu, D.; Cardona, M. A.; De Angelis, G.; De Poli, M.; Della Vedova, F.; Farnea, E.; Gadea, A.; Hojman, D.; Kalfas, C. A.; Kröll, Th.; Lunardi, S.; Martínez, T.; Mason, P.; Pavan, P.; Quintana, B.; Alvarez, C. Rossi; Ur, C. A.; Vlastou, R.; Zilio, S.
2006-02-01
The nucleus 31P has been studied in the 24Mg(16O,2αp) reaction with a 70-MeV 16O beam. A complex level scheme extended up to spins 17/2+ and 15/2-, on positive and negative parity, respectively, has been established. Lifetimes for the new states have been investigated by the Doppler shift attenuation method. Two shell-model calculations have been performed to describe the experimental data, one by using the code ANTOINE in a valence space restricted to the sd shell, and the other by applying the Monte Carlo shell model in a valence space including the sd-fp shells. The latter calculation indicates that intruder excitations, involving the promotion of a T=0 proton-neutron pair to the fp shell, play a dominant role in the structure of the positive-parity high-spin states of 31P.
Yrast excitations of neutron-rich nuclei around doubly magic Tin-132
NASA Astrophysics Data System (ADS)
Bhattacharyya, Pallab Kumar
Investigation of the yrast structures of neutron-rich nuclei around the double closed shell nucleus 132Sn is important in the understanding of simple two-body nucleon-nucleon interactions in that region. However conventional fusion-evaporation methods do not populate these nuclei and β-decay studies are useful only in studying low spin states. The spectroscopy of these nuclei from thick target γ-γ coincidence measurements of deep inelastic heavy ion collisions as well as from fission fragment γ-ray studies using large multidetector arrays are presented in this thesis. Analyses of data from the 124Sn + 665 MeV 136Xe and 130Te + 272 MeV 64Ni deep inelastic experiments identified new yrast isomers in the N = 80 nuclei 134Xe and 136Ba which de- excite by γ-ray cascades concluding with their known 4+/to2+ and 2+/to0+ transitions. The isomeric decay characteristics are presented and discussed in light of the systematic features in N = 80 isotones. By analyzing fission product γ-ray data measured at Eurogam II using a 248Cm source, yrast level structures of the two-, three- and four-proton N = 82 isotones 134Te, 135I and 136Xe were developed, and the proton-proton interactions from the two-body nucleus 134Te were used in interpreting 135I and 136Xe levels using shell model calculations. From the same data the yrast states in the N = 83 isotones 134Sb, 135Te, 136I and 137Xe were explored, and key proton-neutron interactions were extracted from the 134Sb level spectrum which were used in interpreting the levels of the other N = 83 isotones. Similarly yrast states in previously unexplored N = 81 isotones 132Sb and 133Te were also identified and interpreted with shell model calculations; the 132Sb level spectrum yielded important proton-neutron hole interactions. Neutron core-excited states at higher energies were also identified in most of these nuclei. For establishing isotopic assignments of unknown cascades, the γgamma cross coincidences between heavy and light fission partners were vital. Overall, both deep inelastic and fission product studies have contributed to the exploration of an otherwise inaccessible region of the nuclidic chart. This opens up a new horizon in studying the structure of these important neutron-rich nuclei.
Simple Interpretation of Proton-Neutron Interactions in Rare Earth Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oktem, Y.; Cakirli, R. B.; Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520
2007-04-23
Empirical values of the average interactions of the last two protons and last two neutrons, {delta}Vpn, which can be obtained from double differences of binding energies, provide significant information about nuclear structure. Studies of {delta}Vpn showed striking behavior across major shell gaps and the relation of proton-neutron (p-n) interaction strengths to the increasing collectivity and onset of deformation in nuclei. Here we focus on the strong regularity at the {delta}Vpn values in A{approx}150-180 mass region. Experimentally, for each nucleus, the valence p-n interaction strengths increase systematically against the neutron number and it decreases for the observed last neutron number. Thesemore » experimental results give almost nearly perfect parallel trajectories. A microscopic interpretation with a zero range {delta}-interaction in a Nilsson basis gives reasonable agreement for Er-W but more significant discrepancies appear for Gd and Dy.« less
Spin-dependent evolution of collectivity in 112Te
NASA Astrophysics Data System (ADS)
Doncel, M.; Bäck, T.; Qi, C.; Cullen, D. M.; Hodge, D.; Cederwall, B.; Taylor, M. J.; Procter, M.; Giles, M.; Auranen, K.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.
2017-11-01
The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations.
Structure of the exotic He 9 nucleus from the no-core shell model with continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorabbi, Matteo; Calci, Angelo; Navratil, Petr
2018-03-13
Here, the exotic 9He nucleus, which presents one of the most extreme neutron-to-proton ratios, belongs to the N = 7 isotonic chain famous for the phenomenon of ground-state parity inversion with decreasing number of protons. Consequently, it would be expected to have an unnatural (positive) parity ground state similar to 11Be and 10Li. Despite many experimental and theoretical investigations, its structure remains uncertain. Apart from the fact that it is unbound, other properties including the spin and parity of its ground state, and the very existence of additional low-lying resonances are still a matter of debate
NASA Astrophysics Data System (ADS)
Brown, B. Alex
The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960’s and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.
Gamow-Teller transitions between proton h11/2 and neutron h9/2 partner orbitals in 140I
NASA Astrophysics Data System (ADS)
Moon, B.; Moon, C.-B.; Odahara, A.; Lozeva, R.; Söderström, P.-A.; Nishimura, S.; Yuan, C.; Hong, B.; for theNP1112-RIBF87 Collaboration
2018-04-01
The excited states of the neutron-rich nucleus 140I were, for the first time, investigated by a β-delayed γ-ray spectroscopy. The parent nuclide 140Te was produced through the in-flight fission of the 238U beam at 345 MeV per nucleon on a 9Be target at the Radioactive Isotope Beam Factory (RIBF), RIKEN in Japan. The half-life of 140Te was measured to be 350(5) ms and the spin-parity of ground state of 140I was found to be 2-. The spin-parities of three levels at 926, 1188, and 1787 keV were assigned as 1+ based on log f t values. These allowed Gamow-Teller (G-T) transition-states could be interpreted as the transformation of a neutron in the h9/2 orbital into a proton in the h11/2 orbital. Systematic features of level structures and G-T transitions are discussed in the frameworks of the large-scale shell model and deformed shell model.
Beta-decay rate and beta-delayed neutron emission probability of improved gross theory
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki
2014-09-01
A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
NASA Astrophysics Data System (ADS)
Tudora, Anabella; Hambsch, Franz-Josef; Tobosaru, Viorel
2017-09-01
Prompt neutron multiplicity distributions ν(A) are required for prompt emission correction of double energy (2E) measurements of fission fragments to determine pre-neutron fragment properties. The lack of experimental ν(A) data especially at incident neutron energies (En) where the multi-chance fission occurs impose the use of ν(A) predicted by models. The Point-by-Point model of prompt emission is able to provide the individual ν(A) of the compound nuclei of the main and secondary nucleus chains undergoing fission at a given En. The total ν(A) is obtained by averaging these individual ν(A) over the probabilities of fission chances (expressed as total and partial fission cross-section ratios). An indirect validation of the total ν(A) results is proposed. At high En, above 70 MeV, the PbP results of individual ν(A) of the first few nuclei of the main and secondary nucleus chains exhibit an almost linear increase. This shape is explained by the damping of shell effects entering the super-fluid expression of the level density parameters. They tend to approach the asymptotic values for most of the fragments. This fact leads to a smooth and almost linear increase of fragment excitation energy with the mass number that is reflected in a smooth and almost linear behaviour of ν(A).
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Systematization of α-decaying nuclei based on shell structures: The case of even-odd nuclei
NASA Astrophysics Data System (ADS)
Yarman, Tolga; Zaim, Nimet; Yarman, O.; Kholmetskii, Alexander; Arık, Metin
2017-01-01
Previously, we provided a novel systematization of α-decaying even-even nuclei starting with the classically adopted mechanism (Yarman et al., Eur. Phys. J. A 52, 140 (2016)). The decay half-life of an α-decaying nucleus was framed so that i) the α-particle is taken at the outset to be born inside the parent nucleus with a given probability, ii) where it then keeps on bouncing off of the barrier of the parent nucleus till iii) it finally tunnels through the barrier. Knowing beforehand the measured decay half-life, we have taken into consideration, as a parameter, the probability of the α-particle being first born within the parent before it is emitted. We thence developed a scaffold based on shell properties of families composed of alike even-even nuclei. Nevertheless, our model allows us to incorporate any α-decaying nuclei, and along this line, we present a follow-up systematization of even-odd nuclei, with cases of odd-even and odd-odd α-decaying nuclei pending to be considered in a separate contribution. Notwithstanding, we make an effort herein to expand our approach to investigate the effect of "pairing" ( e.g., when a number of nucleons in the given nucleus becomes an even number, instead of the initial odd number, due to the addition of at least one neutron). Our results show that "pairing", as expected, definitely increases the stability of the given nucleus.
Neutron-antineutron oscillations in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dover, C.B.; Gal, A.; Richard, J.M.
1983-03-01
We present calculations of the neutron-antineutron (n-n-bar) annihilation lifetime T in deuterium, /sup 16/O, and /sup 56/Fe in terms of the free-space oscillation time tau/sub n/n-bar. The coupled Schroedinger equations for the n and n-bar wave functions in a nucleus are solved numerically, using a realistic shell-model potential which fits the empirical binding energies of the neu- p tron orbits, and a complex n-bar-nucleus optical potential obtained from fits to p-bar-atom level shifts. Most previous estimates of T in nuclei, which exhibit large variations, are found to be quite inaccurate. When the nuclear-physics aspects of the problem are handled properlymore » (in particular, the finite neutron binding, the nuclear radius, and the surface diffuseness), the results are found to be rather stable with respect to allowable changes in the parameters of the nuclear model. We conclude that experimental limits on T in nuclei can be used to give reasonably precise constraints on tau/sub n/n-bar: T>10/sup 30/ or 10/sup 31/ yr leads to tau/sub n/n-bar>(1.5--2) x 10/sup 7/ or (5--6) x 10/sup 7/ sec, respectively.« less
Cross-shell excitations in Si 31
Tai, P. -L.; Tabor, S. L.; Lubna, R. S.; ...
2017-07-28
The Si-31 nucleus was produced through the O-18(18O, an) fusion-evaporation reaction at E-lab = 24 MeV. Evaporated a particles from the reaction were detected and identified in the Microball detector array for channel selection. Multiple gamma-ray coincidence events were detected in Gammasphere. The energy and angle information for the alpha particles was used to determine the Si-31 recoil kinematics on an event-by-event basis for a more accurate Doppler correction. A total of 22 new states and 52 new gamma transitions were observed, including 14 from states above the neutron separation energy. The positive-parity states predicted by the shell-model calculations inmore » the sd model space agree well with experiment. The negative-parity states were compared with shell-model calculations in the psdpf model space with some variations in the N = 20 shell gap. The best agreement was found with a shell gap intermediate between that originally used for A approximate to 20 nuclei and that previously adapted for P-32,P-34. This variation suggests the need for a more universal cross-shell interaction.« less
Measurement of Isobaric Analogue Resonances of 47Ar with the Active-Target Time Projection Chamber
NASA Astrophysics Data System (ADS)
Bradt, Joshua William
While the nuclear shell model accurately describes the structure of nuclei near stability, the structure of unstable, neutron-rich nuclei is still an area of active research. One region of interest is the set of nuclei near N=28. The shell model suggests that these nuclei should be approximately spherical due to the shell gap predicted by their magic number of neutrons; however, experiments have shown that the nuclei in this region rapidly become deformed as protons are removed from the spherical 48Ca. This makes 46Ar a particularly interesting system as it lies in a transition region between 48Ca and lighter isotones that are known to be deformed. An experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) to measure resonant proton scattering on 46Ar. The resonances observed in this reaction correspond to unbound levels in the 47K intermediate state nucleus which are isobaric analogues of states in the 47Ar nucleus. By measuring the spectroscopic factors of these states in 47Ar, we gain information about the single-particle structure of this system, which is directly related to the size of the N=28 shell gap. Four resonances were observed: one corresponding to the ground state in 47Ar, one corresponding its first excited 1/2- state, and two corresponding to 1/2+ states in either 47Ar or the intermediate state nucleus. However, only a limited amount of information about these states could be recovered due to the low experimental statistics and limited angular resolution caused by pileup rejection and the inability to accurately reconstruct the beam particle track. In addition to the nuclear physics motivations, this experiment served as the radioactive beam commissioning for the Active-Target Time Projection Chamber (AT-TPC). The AT-TPC is a new gas-filled charged particle detector built at the NSCL to measure low-energy radioactive beams from the ReA3 facility. Since the gas inside the detector serves as both the tracking medium and the scattering target, reactions are measured over a continuous range of energies with near-4π solid angle coverage. This experiment demonstrated that tracks recorded by the AT-TPC can be reconstructed to a good resolution, and it established the feasibility of performing similar experiments with this detector in the future.
Calculation of two-neutron multiplicity in photonuclear reactions
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.
1989-01-01
The most important particle emission processes for electromagnetic excitations in nucleus-nucleus collisions are the ejection of single neutrons and protons and also pairs of neutrons and protons. Methods are presented for calculating two-neutron emission cross sections in photonuclear reactions. The results are in a form suitable for application to nucleus-nucleus reactions.
Coalescence Effects on Neutron Production in High Energy Nucleus-Nucleus Collisions
2001-08-01
25/Jun/2001 THESIS 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH- ENERGY NUCLEUS-NUCLEUS COLLISIONS 5b... Energy Nucleus-Nucleus Collisions." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial...School COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH ENERGY NUCLEUS-NUCLEUS COLLISIONS A Thesis Presented for the Master of Science Degree The
NASA Astrophysics Data System (ADS)
Prelas, M. A.; Hora, H.; Miley, G. H.
2014-07-01
Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.
NASA Astrophysics Data System (ADS)
Wu, Hua
One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but "intelligent" truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated turncation scheme is introduced in nuclear physics for the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, we find that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDU0 was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a al Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves "chaotically". This information is certainly crucial to understanding quantum "chaotic" behavior. Also, some of the primitive assumptions of the FDSM are investigated and we concluded that the assumption of the quasi-spin behavior for the so-called abnormal parity particles is inadequate and needs to be extended. Suggestions of extensions are made. Finally, the newly developed physical quantity, the collective spin, is explored in terms of dynamical symmetries in the FDSM.
Watanabe, H; Lorusso, G; Nishimura, S; Otsuka, T; Ogawa, K; Xu, Z Y; Sumikama, T; Söderström, P-A; Doornenbal, P; Li, Z; Browne, F; Gey, G; Jung, H S; Taprogge, J; Vajta, Zs; Wu, J; Yagi, A; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Jungclaus, A; Kameda, D; Kim, G D; Kim, Y K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Moon, C-B; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Nishimura, D; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Simpson, G S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yoshinaga, K
2014-07-25
A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.
Fission fragment mass distributions from 210Po and 213At
NASA Astrophysics Data System (ADS)
Sen, A.; Ghosh, T. K.; Bhattacharya, S.; Banerjee, K.; Bhattacharya, C.; Kundu, S.; Mukherjee, G.; Asgar, A.; Dey, A.; Dhal, A.; Shaikh, Md. Moin; Meena, J. K.; Manna, S.; Pandey, R.; Rana, T. K.; Roy, Pratap; Roy, T.; Srivastava, V.; Bhattacharya, P.
2017-12-01
Background: The influence of shell effect on the dynamics of the fusion fission process and its evolution with excitation energy in the preactinide Hg-Pb region in general is a matter of intense research in recent years. In particular, a strong ambiguity remains for the neutron shell closed 210Po nucleus regarding the role of shell effect in fission around ≈30 -40 MeV of excitation energy. Purpose: We have measured the fission fragment mass distribution of 210Po populated using fusion of 4He+206Pb at different excitation energies and compare the result with recent theoretical predictions as well as with our previous measurement for the same nucleus populated through a different entrance channel. Mass distribution in the fission of the neighboring nuclei 213At is also studied for comparison. Methods: Two large area multiwire proportional counters (MWPC) were used for complete kinematical measurement of the coincident fission fragments. The time of flight differences of the coincident fission fragments were used to directly extract the fission fragment mass distributions. Results: The measured fragment mass distribution for the reactions 4He+206Pb and 4He+209Bi were symmetric and the width of the mass distributions were found to increase monotonically with excitation energy above 36.7 MeV and 32.9 MeV, respectively, indicating the absence of shell effects at the saddle. However, in the fission of 210Po, we find minor deviation from symmetric mass distributions at the lowest excitation energy (30.8 MeV). Conclusion: Persistence of shell effect in fission fragment mass distribution of 210Po was observed at the excitation energy ≈31 MeV as predicted by the theory; at higher excitation energy, however, the present study reaffirms the absence of any shell correction in the fission of 210Po.
Advanced model for the prediction of the neutron-rich fission product yields
NASA Astrophysics Data System (ADS)
Rubchenya, V. A.; Gorelov, D.; Jokinen, A.; Penttilä, H.; Äystö, J.
2013-12-01
The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP).
β -decay studies of very neutron-rich Pd and Ag isotopes
NASA Astrophysics Data System (ADS)
Smith, Karl
2014-03-01
The rapid-neutron capture process (r-process) is attributed as the source of nearly half the elements heavier than iron. To gain insight into the r-process nucleosynthesis, uncertainties such as the nuclear physics involved must be minimized. An experiment was performed to measure properties of neutron-rich nuclei just below the N = 82 shell closure believed to be responsible for production of the A = 130 peak in the solar r-process abundance pattern. β-decay half-lives and neutron branching ratios, Pn values, were measured for Pd and Ag isotopes at the GSI Fragment Separator (FRS). The FRS provided in-flight separation and identification of fission fragments produced by a 900 MeV/u 238U beam. Ions of interest were implanted in the Silicon Implantation detector and Beta Absorber (SIMBA) array. The large pixelation of the array allowed for position-time correlation between implants and the corresponding β-decays. The parent nucleus may decay to an excited state in the daughter, above the neutron separation energy emitting a neutron. These neutrons were moderated and detected in Beta deLayEd Neutron (BELEN) detector surrounding SIMBA. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.
NASA Astrophysics Data System (ADS)
Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.
2017-08-01
Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.
Phenomenological study of nuclear structure of neutron-rich 88Rb isotope
NASA Astrophysics Data System (ADS)
Gupta, Surbhi; Gupta, Anuradha; Bharti, Arun
2018-05-01
A theoretical study of the nuclear structure of odd-odd 88Rb nucleus in the A ˜100 mass region is carried out by using the angular-momentum-projection technique implemented in the Projected Shell Model (PSM). The influence of the high-j orbitals, h11/2 for neutrons and g9/2 for protons on the structure of 88Rb isotope is investigated in the present case by assuming an axial symmetry in the deformed basis. For this isotope, PSM calculations are performed to obtain the yrast line and also the description of the formation of the yrast level structure from multi-quasi-particle configurations. The back-bending in moment of inertia and transition energies have also been calculated and compared with the experimental data.
NASA Astrophysics Data System (ADS)
Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P.-A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.
2016-09-01
The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71 (5) s and Kπ =8- has been identified at 1278 keV, which decays to the ground-state and γ-vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ =8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ-vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.
1p3/2 proton-hole state in 132Sn and the shell structure along N = 82.
Taprogge, J; Jungclaus, A; Grawe, H; Nishimura, S; Doornenbal, P; Lorusso, G; Simpson, G S; Söderström, P-A; Sumikama, T; Xu, Z Y; Baba, H; Browne, F; Fukuda, N; Gernhäuser, R; Gey, G; Inabe, N; Isobe, T; Jung, H S; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kubo, T; Kurz, N; Kwon, Y K; Li, Z; Sakurai, H; Schaffner, H; Steiger, K; Suzuki, H; Takeda, H; Vajta, Zs; Watanabe, H; Wu, J; Yagi, A; Yoshinaga, K; Benzoni, G; Bönig, S; Chae, K Y; Coraggio, L; Covello, A; Daugas, J-M; Drouet, F; Gadea, A; Gargano, A; Ilieva, S; Kondev, F G; Kröll, T; Lane, G J; Montaner-Pizá, A; Moschner, K; Mücher, D; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Wendt, A
2014-04-04
A low-lying state in 131In82, the one-proton hole nucleus with respect to double magic 132Sn, was observed by its γ decay to the Iπ=1/2- β-emitting isomer. We identify the new state at an excitation energy of Ex=1353 keV, which was populated both in the β decay of 131Cd83 and after β-delayed neutron emission from 132Cd84, as the previously unknown πp3/2 single-hole state with respect to the 132Sn core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below 132Sn. The results evidence a surprising absence of proton subshell closures along the chain of N=82 isotones. The consequences of this finding for the evolution of the N=82 shell gap along the r-process path are discussed.
NASA Astrophysics Data System (ADS)
Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene
2017-10-01
The electron, photon, and neutron spectra produced during the interaction between monoenergetic electron beams (8, 10, 12, 15, and 18 MeV) and a 0.05 cm-thick tungsten scattering foil were estimated using Monte Carlo method. Incoming electrons is a pencil beam that after collide with the foil acquires a broader distribution peaked in the same direction of the incoming electrons. Electron spectra show the influence of the binding energy of electrons in the tungsten shells and the increase of the electron fluence. In the interaction between the electrons in the beam and the tungsten atoms in the foil, bremsstrahlung and characteristic photons are produced. These photons are also peaked in the same direction of the incoming beam, and the electron fluence increases as the energy of the electron beam raises. The electron and photon spectra have particles whose energy is larger than the binding energy of neutron in the nucleus. Thus neutron production was noticed for 10, 12, 15, and 18 MeV electron beam. The neutron fluence becomes larger as the energy of the electron beam increases, the neutron spectra are mainly evaporation neutrons for 10 and 12 MeV, and for 15 and 18 MeV knock-on neutrons are also produced. Neutrons are produced in the foil volume having a quasi-isotropic distribution.
Fast-timing lifetime measurements of excited states in Cu67
NASA Astrophysics Data System (ADS)
NiÅ£ǎ, C. R.; Bucurescu, D.; Mǎrginean, N.; Avrigeanu, M.; Bocchi, G.; Bottoni, S.; Bracco, A.; Bruce, A. M.; Cǎta-Danil, G.; Coló, G.; Deleanu, D.; Filipescu, D.; GhiÅ£ǎ, D. G.; Glodariu, T.; Leoni, S.; Mihai, C.; Mason, P. J. R.; Mǎrginean, R.; Negret, A.; Pantelicǎ, D.; Podolyak, Z.; Regan, P. H.; Sava, T.; Stroe, L.; Toma, S.; Ur, C. A.; Wilson, E.
2014-06-01
The half-lives of the 9/2+, 13/2+, and 15/2+ yrast states in the neutron-rich Cu67 nucleus were determined by using the in-beam fast-timing technique. The experimentally deduced E3 transition strength for the decay of the 9/2+ level to the 3/2- ground state indicates that the wave function of this level might contain a collective component arising from the coupling of the odd proton p3/2 with the 3- state in Ni66. Theoretical interpretations of the 9/2+ state are presented within the particle-vibration weak-coupling scheme involving the unpaired proton and the 3- state from Ni66 and within shell-model calculations with a Ni56 core using the jj44b residual interaction. The shell model also accounts reasonably well for the other measured electromagnetic transition probabilities.
Skyrme density functional description of the double magic
NASA Astrophysics Data System (ADS)
Brink, D. M.; Stancu, Fl.
2018-06-01
We calculate the single-particle spectrum of the double magic nucleus
Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation
NASA Astrophysics Data System (ADS)
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-01
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. The one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less
First determination of ground state electromagnetic moments of Fe 53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. J.; Minamisono, K.; Rossi, D. M.
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
First determination of ground state electromagnetic moments of Fe 53
Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...
2017-11-16
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
Shell Evolution towards 78Ni: Low-Lying States in 77Cu
NASA Astrophysics Data System (ADS)
Sahin, E.; Bello Garrote, F. L.; Tsunoda, Y.; Otsuka, T.; de Angelis, G.; Görgen, A.; Niikura, M.; Nishimura, S.; Xu, Z. Y.; Baba, H.; Browne, F.; Delattre, M.-C.; Doornenbal, P.; Franchoo, S.; Gey, G.; Hadyńska-KlÈ©k, K.; Isobe, T.; John, P. R.; Jung, H. S.; Kojouharov, I.; Kubo, T.; Kurz, N.; Li, Z.; Lorusso, G.; Matea, I.; Matsui, K.; Mengoni, D.; Morfouace, P.; Napoli, D. R.; Naqvi, F.; Nishibata, H.; Odahara, A.; Sakurai, H.; Schaffner, H.; Söderström, P.-A.; Sohler, D.; Stefan, I. G.; Sumikama, T.; Suzuki, D.; Taniuchi, R.; Taprogge, J.; Vajta, Z.; Watanabe, H.; Werner, V.; Wu, J.; Yagi, A.; Yalcinkaya, M.; Yoshinaga, K.
2017-06-01
The level structure of the neutron-rich 77Cu nucleus is investigated through β -delayed γ -ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of 77Ni are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in 77Cu are identified for the first time by correlating γ rays with the β decay of 77Ni, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near 78Ni and suggests a single-particle nature for both the 5 /21- and 3 /21- states in 77Cu, leading to doubly magic 78Ni.
Pairing versus quarteting coherence length
NASA Astrophysics Data System (ADS)
Delion, D. S.; Baran, V. V.
2015-02-01
We systematically analyze the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density-dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have, in all considered cases, a long-range character inside the nucleus and a decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in the continuum is investigated. Strong shell effects are put in evidence, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar shape, but with larger values on the nuclear surface. We provide evidence of the important role of proton-neutron correlations by estimating the so-called alpha coherence length, which takes into account the overlap with the proton-neutron part of the α -particle wave function. It turns out that it does not depend on the nuclear size and has a value comparable to the free α -particle radius. We have shown that pairing correlations are mainly concentrated inside the nucleus, while quarteting correlations are connected to the nuclear surface.
Effect of energy transfer from atomic electron shell to an α particle emitted by decaying nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igashov, S. Yu., E-mail: igashov@theor.mephi.ru; Tchuvil’sky, Yu. M.
2016-12-15
The process of energy transfer from the electron shell of an atom to an α particle propagating through the shell is formulated mathematically. Using the decay of the {sup 226}Ra nucleus as an example, it is demonstrated that this phenomenon increases the α-decay intensity in contrast with other known effects of similar type. Moreover, the α decay of the nucleus is more strongly affected by the energy transfer than by all other effects taken together.
Transition Quadrupole Collectivity of Ar and Cl Isotopes Near N = 28
NASA Astrophysics Data System (ADS)
Winkler, R.; Gade, A.; Brown, B. A.; Glasmacher, T.; Baugher, T. R.; Bazin, D.; Grinyer, G. F.; McDaniel, S.; Meharchand, R.; Ratkiewicz, A.; Stroberg, R.; Walsh, K.; Weisshaar, D.; Riley, L. A.
2010-11-01
Measurements of the reduced quadrupole transition strengths, B(E2; 0^+ -> 2^+) of even-even nuclei guide our understanding of the onset collectivity with the addition of valence nucleons beyond the known shell structure of the atomic nucleus. The study of the quadrupole collectivity of neutron-rich ^47,48Ar and ^45,46Cl via relativistic Coulomb excitation was performed using a cocktail of exotic beams produced by the coupled cyclotron facility at NSCL. Particle tracking and identification was achieved on an event-by-event basis using the S800 high-resolution spectrograph. Gamma rays emitted at the reaction target position in coincidence with the detection of scattered particles were observed with the segmented high-purity Germanium array SeGA, a vital tool for the Doppler reconstruction of each observed event. Results from the present work provide insight into the persistence of the N = 28 shell closure and will be discussed in the framework of the shell model utilizing modern effective interactions in the sdpf valence space. This work is supported by the National Science Foundation under Grants No. PHY-0606007 and PHY-0758099.
Nuclear Structure of the Closed Subshell Nucleus 90Zr Studied with the (n,n'(gamma)) Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, P E; Younes, Y; Becker, J A
States in {sup 90}Zr have been observed with the (n,n{prime}{gamma}) reaction using both spallation and monoenergetic accelerator-produced neutrons. A scheme comprised of 81 levels and 157 transitions was constructed concentrating on levels below 5.6 MeV in excitation energy. Spins have been determined by considering data from all experimental studies performed for {sup 90}Zr. Lifetimes have been deduced using the Doppler-shift attenuation method for many of the states and transition rates have been obtained. A spherical shell-model interpretation in terms of particle-hole excitations assuming a {sup 88}Sr closed core is given. In some cases, enhancements in B(M1) and B(E2) values aremore » observed that cannot be explained by assuming simple particle-hole excitations. Shell-model calculations using an extended f pg-shell model space reproduce the spectrum of excited states very well, and the gross features of the B(M1) and B(E2) transition rates. Transition rates for individual levels show discrepancies between calculations and experimental values.« less
An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.
Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio
2018-06-21
2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.
New information on medium-spin structure of {sup 133}Sb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, W.; Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warsaw; Zlomaniec, A.
2009-03-15
Excited states in the nucleus {sup 133}Sb, populated in the fission of {sup 235}U induced by thermal neutrons were studied using the Lohengrin fission-fragment separator. A new 4191.8 keV level in {sup 133}Sb, populated in the decay of the 16.6 {mu}s isomer, was observed. The level is interpreted as the 11/2{sup +} member of the {pi}g{sub 7/2} x core configuration, predicted by the shell model at 4095 keV. Levels corresponding to octupole excitation of the {sup 132}Sn core, identified previously in prompt-{gamma} measurement, were now observed in the isomeric decay.
Inferences of Shell Asymmetry in ICF Implosions using Fluence Compensated Neutron Images at the NIF
NASA Astrophysics Data System (ADS)
Casey, D.; Fittinghoff, D.; Bionta, R.; Smalyuk, V.; Grim, G.; Munro, D.; Spears, B.; Raman, K.; Clark, D.; Kritcher, A.; Hinkel, D.; Hurricane, O.; Callahan, D.; Döppner, T.; Landen, O.; Ma, T.; Le Pape, S.; Ross, S.; Meezan, N.; Pak, A.; Park, H.-S.; Volegov, P.; Merill, F.
2016-10-01
In ICF experiments, a dense shell is imploded and used to compress and heat a hotspot of DT fuel. Controlling the symmetry of this process is both important and challenging. It is therefore important to observe the symmetry of the stagnated shell assembly. The Neutron Imaging System at the NIF is used to observe the primary 14 MeV neutrons from the hotspot and the down-scattered neutrons (6-12 MeV), from the assembled shell but with a strong imprint from the primary-neutron fluence. Using a characteristic scattering angle approximation, we have compensated the image for this fluence effect, revealing information about shell asymmetry that is otherwise difficult to extract without models. Preliminary observations with NIF data show asymmetries in imploded shell, which will be compared with other nuclear diagnostics and postshot simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Murata, Mikio; Katagiri, Nobuyuki; Ishida, Kota; Abe, Kenji; Ishikawa, Masago; Utsunomiya, Iku; Hoshi, Keiko; Miyamoto, Ken-ichi; Taguchi, Kyoji
2009-05-07
It is known that psychostimulants stimulate dopamine transmission in the nucleus accumbens. In the present study, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor-stimulating trace amine, on dopamine concentrations in the nucleus accumbens and prefrontal cortex in freely moving rats, using an in vivo microdialysis technique. Intraperitoneal administration of beta-PEA (12.5 and 25 mg/kg) significantly increased extracellular dopamine levels in the nucleus accumbens shell. The observed increase in the dopamine concentration in nucleus accumbens shell dialysate after intraperitoneal administration of 25 mg/kg beta-PEA was inhibited by pre-treatment with a dopamine uptake inhibitor, GBR12909 (10 mg/kg, i.p.). In contrast, beta-PEA (25 mg/kg, i.p.) did not affect dopamine release in the nucleus accumbens core. Although a high dose of beta-PEA (50 mg/kg) significantly increased dopamine levels in the nucleus accumbens core, the dopamine increasing effect of beta-PEA was more potent in the nucleus accumbens shell. Systemic administration of 12.5 and 25 mg/kg beta-PEA also increased extracellular dopamine levels in the prefrontal cortex of rats. However, systemic 25 mg/kg beta-PEA-induced increases in extracellular dopamine levels were not blocked by GBR12909 within the prefrontal cortex. These results suggest that beta-PEA has a greater effect in the shell than in the core and low-dose beta-PEA stimulates dopamine release in the nucleus accumbens shell through uptake by a dopamine transporter. Similarly, beta-PEA increased extracellular dopamine levels in the prefrontal cortex. Thus, beta-PEA may increase extracellular dopamine concentrations in the mesocorticolimbic pathway.
Task-Evoked Pupillary Responses and Cognitive Processing.
1980-02-01
Yingling, C.D., and Skinner, J.E. Gating of thalanic input to cerebral cortex by nucleus reticularis thalami. In J.E. Desmedt (Ed.), Attention, voluntary...innervated. Peripheral control of these muscles originates In the nucleus Edinger-Westphal (located within the third nerve nucleus at the level of the...thalamus is a thin neuronal shell, the reticular nucleus of the thalamus (Carpenter, 1978). Most of the axons from this shell enter the dorsal thalamus
ERIC Educational Resources Information Center
Kerfoot, Erin C.; Williams, Cedric L.
2011-01-01
The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…
Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats
Salti, Ahmad; Kummer, Kai K.; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana
2016-01-01
We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300
Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.
Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana
2015-12-01
We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Synthesis reactions and radioactive properties of transactinoid elements
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.
1994-10-01
It is well known that the heaviest elements of the periodic table have been synthesized in the cold fusion of magic nuclei of Pb with Z less than 26 ions. Because of dynamic limitations for fusion under strong Coulomb interaction of nuclei, the cross-sections of cold fusion reactions diminish exponentially with growing compound nucleus atomic number. For element Z = 110 produced in the reaction Pb-208(Ni-62,n)(sub 271)110, the expected cross-section is 10(exp -36) sq cm. In still more asymmetric reactions, when isotopes of actinoid elements irradiated with relatively light ions (Z less than or equal 12) are used as the target material, the compound nuclei possess an excitation energy of approx. 50 MeV. At this energy the nuclear shell effects are strongly suppressed and, as a result, in the case of hot compound nuclei of transactinoid elements the fission barrier is practically absent. The transition of these nuclei into the ground state depends strongly on the dynamic properties of the system with respect to the fission degree of freedom. Experimental studies were going on in two directions: (1) determination of the fission time by measuring the prefission neutrons (of Cf-Fm nuclei) in a wide interval of excitation energies; (2) direct synthesis of known nuclides with Z = 102-105 in reactions with ions of Ne-22, Mg-26, Al-27 and P-31 when final nuclei are produced in the ground state after the evaporation of five or six neutrons from the excited compound nuclei (E(sub x) = 50-60 MeV). The dependence of the reaction cross-section (HI, 5-6n) on the atomic number of the compound nucleus in different target-ion combinations points to the possibility of synthesizing new elements in hot fusion reactions. The advantage of these reactions arises from the use of neutron-rich nuclei like Cm-248 and Cf-249 which allows us to synthesize nuclei close to the deformed shell N = 162, for which a considerable growth of stability against spontaneous fission is predicted. Experimental set-ups and methods of detecting rare events of formation and decay of transactinide nuclei are described.
Neutron and weak-charge distributions of the 48Ca nucleus
Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; ...
2015-11-02
What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less
Development of New High Resolution Neutron Detector
NASA Astrophysics Data System (ADS)
Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.
2017-09-01
Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.
Electromagnetic Nucleus - Nucleus Cross Sections Using Energy Dependent Branching Ratios
NASA Astrophysics Data System (ADS)
Adamczyk, Anne; Norbury, John
2009-11-01
Energy dependent branching ratios, derived from Weisskopf-Ewing theory, are presented and compared to an energy independent formalism, developed by Norbury, Townsend, and Westfall. The energy dependent branching ratio formalism is more versatile since it allows for not only neutron and proton emission, but also alpha particle, deuteron, helion, and triton emission. A new theoretical method for calculating electromagnetic dissociation (EMD) nucleus - nucleus cross sections, with energy dependent branching ratios, is introduced. Comparisons of photonuclear and nucleus - nucleus cross sections, using energy dependent and independent branching ratios, to experiment are presented. Experimental efforts, by various groups, have focused on measuring cross sections for proton and neutron emission, because proton and neutron emission is generally more probable than heavier particle emission. Consequently, comparisons of energy dependent and independent branching ratios to experiment are made for photoneutron and photoproton cross sections. EMD cross sections for single neutron, proton, and alpha particle removal are calculated and compared to experimental data for a variety of projectile, target, and energy combinations. Results indicate that using energy dependent branching ratios yields better estimates.
Relativistic Coulomb excitation of 88Kr
NASA Astrophysics Data System (ADS)
Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.
2016-11-01
To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.
Lenard, N R; Zheng, H; Berthoud, H-R
2010-06-01
To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.
First determination of ground state electromagnetic moments of 53Fe
NASA Astrophysics Data System (ADS)
Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.
2017-11-01
The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.
Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher
2015-03-15
Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. Copyright © 2014 Elsevier B.V. All rights reserved.
Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni
NASA Astrophysics Data System (ADS)
Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.
2017-10-01
Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.
Deformation effect in the fast neutron total cross section of aligned /sup 59/Co
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasoli, U.; Pavan, P.; Toniolo, D.
1983-05-01
The variation of the total neutron cross section, ..delta..sigma/sub align/, on /sup 59/Co due to nuclear alignment of the target has been measured over the energy range from 0.8 to 20 MeV employing a cobalt single crystal with a 34% nuclear alignment. The results show that ..delta..sigma/sub align/ oscillates from a minimum of -5% at about 2.5 MeV to a maximum of +1% at about 10 MeV. The data were successfully fitted by optical model coupled-channel calculations. The coupling terms were deduced from a model representing the /sup 59/Co nucleus as a vibrational /sup 60/Ni core coupled to a protonmore » hole in a (1f/sub 7/2/) shell, without free parameters. The optical model parameters were determined by fitting the total cross section, which was independently measured. The theoretical calculations show that, at lower energies, ..delta..sigma/sub align/ depends appreciably on the coupling with the low-lying levels.« less
NASA Astrophysics Data System (ADS)
Juneja, P.; Gupta, S. L.; Pancholi, S. C.; Kumar, Ashok; Mehta, D.; Chaturvedi, L.; Katoch, S. K.; Malik, S.; Shanker, G.; Bhowmik, R. K.; Muralithar, S.; Rodrigues, G.; Singh, R. P.
1996-03-01
High spin states in the odd-odd 164Lu nucleus have been investigated for the first time, through in-beam gamma-ray spectroscopy, following the 150Sm(19F,5n) reaction at beam energy Elab=105 MeV. Four bands, including two signature split bands are identified. The interpretation of the experimental results is discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranked shell model. The πh11/2⊗νi13/2 yrast band exhibits anomalous signature splitting and signature inversion is observed at a spin of 18ħ. This provides the missing datum for the systematics of staggering and signature inversion for the neighboring odd-odd N=93 isotones and supports the predictions of angular-momentum projection calculations by Hara and Sun. In the second signature split πh 11/2h9/2 band, the AB neutron crossing occurs at a rotational frequency of ~0.29 MeV. This is indicative of the disappearance of the blocking effect of the odd neutron.
Gamma-ray spectroscopy of 131Sn81 via the (9Be, 8Be γ) reaction
NASA Astrophysics Data System (ADS)
Burcher, Sean; Bey, A.; Jones, K.; Ahn, S. H.; Ayres, A.; Schmitt, K. T.; Allmond, J.; Galindo-Urribari, A.; Radford, D. C.; Liang, J. F.; Neseraja, C. D.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; O'Malley, P. D.; Cizewski, J. A.; Howard, M. E.; Manning, B. M.; Garcia Ruiz, R. F.; Kozub, R. L.; Matos, M.; Padilla-Rodal, E.
2016-09-01
Nuclear data in the region of the doubly-magic nucleus 132Sn82 is useful for benchmarking nuclear structure theories due to the clean single-particle nature of the nuclear wavefunction near the closed shells. At the Holifield Radioactive Ion Beam Facility (HRIBF) neutron-rich beams in the 132Sn82 region were produced via proton-induced fission of a Uranium-Carbide target. The CLARION array of HPGe detectors was coupled with the HyBall array of CsI detectors to allow for particle-gamma coincidence measurements. The gamma-ray de-excitation of the four lowest lying single-neutron states has been observed for the first time via the (9Be,8Be γ) reaction. The excitation energy of these states have been measured to higher precision than was possible with the previous charged particle measurement. This work was supported in part by the U.S. Department of Energy and the National Science Foundation.
Informing neutron capture nucleosynthesis on short-lived nuclei with (d,p) reactions
NASA Astrophysics Data System (ADS)
Cizewski, Jolie A.; Ratkiewicz, Andrew; Escher, Jutta E.; Lepailleur, Alexandre; Pain, Steven D.; Potel, Gregory
2018-01-01
Neutron capture on unstable nuclei is important in understanding abundances in r-process nucleosynthesis. Previously, the non-elastic breakup of the deuteron in the (d,p) reaction has been shown to provide a neutron that can be captured by the nucleus and the gamma-ray decay of the subsequent compound nucleus can be modelled to predict the gamma-ray decay of the compound nucleus in the (n,γ) reaction. Preliminary results from the 95Mo(d,pγ) reaction in normal kinematics support the (d,pγ) reaction as a valid surrogate for neutron capture. The techniques to measure the (d,pγ) reaction in inverse kinematics have been developed.
ERIC Educational Resources Information Center
Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira
2009-01-01
Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…
Covalent Binding with Neutrons on the Femto-scale
NASA Astrophysics Data System (ADS)
von Oertzen, W.; Kanada-En'yo, Y.; Kimura, M.
2017-06-01
In light nuclei we have well defined clusters, nuclei with closed shells, which serve as centers for binary molecules with covalent binding by valence neutrons. Single neutron orbitals in light neutron-excess nuclei have well defined shell model quantum numbers. With the combination of two clusters and their neutron valence states, molecular two-center orbitals are defined; in the two-center shell model we can place valence neutrons in a large variety of molecular two-center states, and the formation of Dimers becomes possible. The corresponding rotational bands point with their large moments of inertia and the Coriolis decoupling effect (for K = 1/2 bands) to the internal molecular orbital structure in these states. On the basis of these the neutron rich isotopes allow the formation of a large variety molecular structures on the nuclear scale. An extended Ikeda diagram can be drawn for these cases. Molecular bands in Be and Ne-isotopes are discussed as text-book examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.
The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.
Casey, D T; Volegov, P L; Merrill, F E; Munro, D H; Grim, G P; Landen, O L; Spears, B K; Fittinghoff, D N; Field, J E; Smalyuk, V A
2016-11-01
The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.
Proton - Neutron Interactions and The New Atomic Masses
NASA Astrophysics Data System (ADS)
Cakirli, R. B.; Casten, R. F.; Brenner, D. S.; Millman, E. A.
2005-04-01
Proton - neutron interactions determine structural evolution with N and Z including the onset of collectivity, deformation, and phase transitions. We have extracted the interaction of the last proton and the last neutron, called δVpn, from a specific double difference of binding energies using the new mass tabulation [1]. Striking variations are seen near closed shells. In the Pb region, these are interpreted using overlaps of shell model orbits, which are large when both protons and neutrons are in similar orbits, and small when they are not. Further, we used the idea that shell filling follows a typical systematic pattern to look at the correlation of δVpn values to the fractions of the proton and neutron shells that are filled. These results provide useful signatures of structure in exotic nuclei.This work was supported by US DOE Grant Nos. DE-FG02-91ER40609 and DE-FG02-88ER-40417. [1] G. Audi, A.H. Wapstra and C. Thibault, Nucl. Phys.A729, 337 (2003).
Dual neutral particle induced transmutation in CINDER2008
NASA Astrophysics Data System (ADS)
Martin, W. J.; de Oliveira, C. R. E.; Hecht, A. A.
2014-12-01
Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data-the exit channel from the compound nucleus-are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly.
Resource Letter NSM-1: New insights into the nuclear shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, David Jarvis; Hamilton, J. H.
2011-01-01
This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less
Recent Direct Reaction Experimental Studies with Radioactive Tin Beams
Jones, K. L.; Ahn, S.; Allmond, J. M.; ...
2015-01-01
Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn- 106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less
Scale-free models for the structure of business firm networks.
Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene
2010-03-01
We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.
NASA Astrophysics Data System (ADS)
Mullins, S. M.; Schmeing, N. C.; Flibotte, S.; Hackman, G.; Rodriguez, J. L.; Waddington, J. C.; Yao, L.; Andrews, H. R.; Galindo-Uribarri, A.; Janzen, V. P.; Radford, D. C.; Ward, D.; Degraaf, J.; Drake, T. E.; Pilotte, S.; Paul, E. S.
1994-11-01
A superdeformed band has been observed in the N=80 nucleus 145Tb which was produced with the reactions 112Sn(37Cl,2p2n) and 118Sn(31P,4n) at bombarding energies of 187 and 160 MeV, respectively. Since superdeformed bands also exist in the three lighter N=80 isotones 142Sm, 143Eu, and 144Gd, it is now possible to understand the valence-proton configurations of these bands in a systematic way. The T(2) dynamic moment of inertia in 145Tb shows no evidence for the N = 6 quasiproton crossing that is observed in 144Gd. Comparison with cranked Woods-Saxon and total Routhian surface calculations suggests that the proton configuration in 145Tb is 61⊗[404]29/2+ in which the quasiproton crossing is blocked. Furthermore, like 143Eu and 142Sm, there is no evidence in the T (2) for the N=6 quasineutron crossing predicted by the calculations. This may indicate that static neutron pairing correlations are quenched at the N=80 superdeformed shell closure.
Shirayama, Yukihiko; Ishima, Tamaki; Oda, Yasunori; Okamura, Naoe; Iyo, Masaomi; Hashimoto, Kenji
2015-09-15
The role of neuropeptide S (NPS) in depression remains unclear. We examined the antidepressant-like effects of NPS infusions into the shell or core regions of the nucleus accumbens (NAc) and into the bed nucleus of the stria terminalis (BNST) of learned helplessness (LH) rats (an animal model of depression). Infusions of NPS (10 pmol/side) into the NAc shell, but not the NAc core and BNST, exerted antidepressant-like effects in the LH paradigm. Implying that behavioral deficits could be improved in the conditioned avoidance test. Coinfusion of SHA68 (an NPS receptor antagonist, 100 pmol/side) with NPS into the NAc shell blocked these effects. In contrast, NPS receptor antagonism by SHA68 in the BNST induced antidepressant-like effects. Infusions of NPS into the NAc shell or SHA68 into the BNST did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. These results suggest that excitatory and inhibitory actions by the NPS system are integral to the depression in LH animals. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Z.; Zhang, Z. H.; Chen, Q. B.; Zhang, S. Q.; Meng, J.
2018-03-01
The shell-model-like approach is implemented to treat the cranking many-body Hamiltonian based on the covariant density functional theory including pairing correlations with exact particle number conservation. The self-consistency is achieved by iterating the single-particle occupation probabilities back to the densities and currents. As an example, the rotational structures observed in the neutron-rich nucleus 60Fe are investigated and analyzed. Without introducing any ad hoc parameters, the bandheads, the rotational spectra, and the relations between the angular momentum and rotational frequency for the positive-parity band A and negative-parity bands B and C are well reproduced. The essential role of the pairing correlations is revealed. It is found that for band A, the band crossing is due to the change of the last two occupied neutrons from the 1 f5 /2 signature partners to the 1 g9 /2 signature partners. For the two negative-parity signature partner bands B and C, the band crossings are due to the pseudocrossing between the 1 f7 /2 ,5 /2 and the 1 f5 /2 ,1 /2 orbitals. Generally speaking, the deformation parameters β for bands A, B, and C decrease with rotational frequency. For band A, the deformation jumps from β ≈0.19 to β ≈0.29 around the band crossing. In comparison with its signature partner band C, band B exhibits appreciable triaxial deformation.
Black-sphere approximation to nuclei and its application to reactions with neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro
2013-09-01
We briefly review our formula for a proton-nucleus total reaction cross section, σR, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a "black" sphere of radius "a". An extension to reactions involving neutron-rich nuclei is also reported.
Conversion-electron spectroscopy and gamma-gamma angular correlation measurements in 116Sn
NASA Astrophysics Data System (ADS)
Cross, D. S.; Pore, J. L.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Chester, A. S.; Churchman, R.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Liblong, A.; Kanungo, R.; Miller, D. T.; Noakes, B.; Petrache, C. M.; Starosta, K.; Svensson, C. E.; Voss, P.; Wang, Z.-M.; Wilson, J. M.; Wood, J. L.; Yates, S. W.
2017-11-01
The 116Sn nucleus was studied via the β- decay of 116In utilizing the 8π spectrometer and its auxiliary detectors at TRIUMF-ISAC. The resulting K-shell conversion coefficients, K/L ratios, and multipole mixing ratios are presented. The 23+ → 21+ 931 keV and 22+ → 21+ 819 keV transition mixing ratios were re-measured and found to be δ = +1.8_{-0.5}^{+0.7} and -1.83(8), respectively. Newly measured mixing ratios for transitions among the low-lying I^{π} = 4+ states in 116Sn, when combined with γ-ray intensity data, suggest that the 2529 keV 42+ state possesses a neutron broken-pair admixture in addition to its dominant proton 2p-2h component.
NASA Astrophysics Data System (ADS)
Akulov, Yuii A.; Mamyrin, Boris A.
2003-11-01
Experimental data on the variation of tritium nucleus beta decay constant caused by the interaction of the resulting beta-electron with orbital electrons and shell vacancies are reviewed for free atomic tritium and molecular tritium and used to obtain the half-life of atomic tritium (T1/2)a=(12.264±0.018) y, the half-life of the free triton (T1/2)t=(12.238±0.020) y, the axial-vector-to-vector weak-interaction coupling constant ratio (GA/GV)t=-1.2646 ± 0.0035 for beta decay of the triton, and an independent estimate of the free neutron lifetime τn= (890.3 ± 3.9stat ± 1.4syst) s.
Nelson, A J D; Thur, K E; Horsley, R R; Spicer, C; Marsden, C A; Cassaday, H J
2011-03-01
Latent inhibition (LI) manifests as poorer conditioning to a CS that has previously been presented without consequence. There is some evidence that LI can be potentiated by reduced mesoaccumbal dopamine (DA) function but the locus within the nucleus accumbens of this effect is as yet not firmly established. Experiment 1 tested whether 6-hydroxydopamine (6-OHDA)-induced lesions of DA terminals within the core and medial shell subregions of the nucleus accumbens (NAc) would enhance LI under conditions that normally disrupt LI in controls (weak pre-exposure). LI was measured in a thirst motivated conditioned emotional response procedure with 10 pre-exposures (to a noise CS) and 2 conditioning trials. The vehicle-injected and core-lesioned animals did not show LI and conditioned to the pre-exposed CS at comparable levels to the non-pre-exposed controls. 6-OHDA lesions to the medial shell, however, produced potentiation of LI, demonstrated across two extinction tests. In a subsequent experiment, haloperidol microinjected into the medial shell prior to conditioning similarly enhanced LI. These results underscore the dissociable roles of core and shell subregions of the NAc in mediating the expression of LI and indicate that reduced DA function within the medial shell leads to enhanced LI. Copyright © 2010 Elsevier Inc. All rights reserved.
RADinfo Glossary of Radiation Terms
... electrical charge typically found within an atom's nucleus. nucleus: The central part of an atom that contains ... the number of protons and neutrons in the nucleus. picocurie: One one-trillionth (1/1,000,000, ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Charles J.; Kumar, Krishna S.; Michaels, Robert W.
Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments onmore » $${}^{208}$$Pb and $${}^{48}$$Ca respectively; these are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter $${}^{48}$$Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.« less
Monte Carlo based dosimetry for neutron capture therapy of brain tumors
NASA Astrophysics Data System (ADS)
Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid
2016-11-01
Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].
Scale-free models for the structure of business firm networks
NASA Astrophysics Data System (ADS)
Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H. Eugene
2010-03-01
We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a “nucleus,” which is a small well-connected subgraph, “tendrils,” which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a “bulk body,” which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution λ increases, and disappear for λ≥3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.
Determination of electron-nucleus collisions geometry with forward neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, L.; Aschenauer, E.; Lee, J. H.
2014-12-29
There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.
NASA Astrophysics Data System (ADS)
Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.
2017-05-01
The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.
Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Minato, Futoshi; Fukui, Tokuro
2017-11-01
Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.
Photonuclear absorption cross sections
NASA Technical Reports Server (NTRS)
Norbury, John W.
1989-01-01
Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.
ERIC Educational Resources Information Center
Bradfield, Laura A.; McNally, Gavan P.
2010-01-01
We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning…
PREFACE: New nuclear structure phenomena in the vicinity of closed shells
NASA Astrophysics Data System (ADS)
Johnson, A.; Wyss, R.
1995-01-01
The proceedings of the international symposium on "New Nuclear Structure Phenomena in the Vicinity of Closed Shells - SELMA 94", held in Stockholm, Uppsala and on the Baltic Sea from Aug. 30 - Sep. 3 are collected in this volume. Since almost 40% of the session time was kept open for discussions, it is difficult to give full justice to the character of the meeting in a written report. However, since also many posters are presented in this volume, we hope that some of the flavour of this lively symposium will pass onto the reader. We have chosen to group related contributions in order to facilitate the reading. Several articles, though, may fit into several categories. With the event of large detector arrays there has been a tremendous development in the field of nuclear spectroscopy. The discovery of super-deformation has been followed by detailed spectroscopy in the second well. Hence, the concept of shell closure is reinterpreted in general terms, involving shapes different from spherical. Close to the drip lines, we expect new shells and new structure effects to emerge. Loosely bound neutrons may form a new state of nuclear matter. The regions of the nuclear chart far from the line of stability can be explored in the future by means of radioactive ion beams. New structure effects, that one might encounter far from the line of stability was one of the themes of this conference. The strong impact of the nuclear shell model is also evident in other branches of physics, like the structure of metal-clusters. Special attention was paid to the Sn-isotopes. In the Sn-isotopic chain, spectroscopic measurements are extending beyond the doubly-magic nucleus 132Sn. Large efforts have recently been made to study nuclei in the vicinity of the doubly-magic nucleus 100Sn, the other extreme end of the chain. Spectroscopic data on 100Sn would open the entire shell for nuclear structure studies, ranging over a number of 32 neutrons. During the organization of this meeting, the first 100Sn nuclei were observed at GSI, Germany, and in a subsequent experiment at GANIL, France. Results from these experiments were reported during the symposium as were much of the recent data around "classical" shell model nuclei. Neutron deficient nuclei in the Sn region show a variety of phenomena, such as coexisting shapes, enhanced quadrupole transitions etc. The role of intruder states in this mass region as well as the excitation pattern is still a puzzle for experimentalists and theoreticians and was discussed during the meeting. More work is needed until a unified picture of the structure of these nuclei will emerge. The combination of powerful mean-field models, large scale shell model calculations as well as new algebraic approaches to nuclear structure shows the strong and lively development in the field of nuclear theory as was evident from the presentations. It is obvious that great effort is needed to match the rapid development in the field of experimental nuclear structure. The organizing committee expresses special thanks to the Royal Swedish Academy of Sciences, through its Nobel Institute for Physics, for its generous support. We also want to thank the Royal Institute of Technology and Uppsala University for supporting this symposium. All this support was extremely essential for organizing the meeting as well as for rendering it success. We are very pleased about the possibility to print the proceedings of this meeting in Physics Scripta and thank their staff for helpful collaboration. Thanks also to the international advisory committee for its helpful work to select speakers and for suggestions. Conference secretary Inger Ericson's assistance during the meeting as well as the work of the organizing committee is highly appreciated. Finally, we like to thank all speakers and participants for making this symposium extremely lively and exciting. Last but not least: this symposium got its name from little Selma, born 19 January 1994, daughter of A Atac and J Nyberg.
Structure of the exotic 9He nucleus from the no-core shell model with continuum
NASA Astrophysics Data System (ADS)
Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr; Kruse, Michael K. G.; Quaglioni, Sofia; Hupin, Guillaume
2018-03-01
Background: The exotic 9He nucleus, which presents one of the most extreme neutron-to-proton ratios, belongs to the N =7 isotonic chain famous for the phenomenon of ground-state parity inversion with decreasing number of protons. Consequently, it would be expected to have an unnatural (positive) parity ground state similar to 11Be and 10Li. Despite many experimental and theoretical investigations, its structure remains uncertain. Apart from the fact that it is unbound, other properties including the spin and parity of its ground state, and the very existence of additional low-lying resonances are still a matter of debate. Purpose: In this work, we study the properties of 9He by analyzing the n +8He continuum in the context of the ab initio no-core shell model with continuum (NCSMC) formalism with chiral nucleon-nucleon interactions as the only input. Methods: The NCSMC is a state-of-the-art approach for the ab initio description of light nuclei. With its capability to predict properties of bound states, resonances, and scattering states in a unified framework, the method is particularly well suited for the study of unbound nuclei such as 9He. Results: Our analysis produces an unbound 9He nucleus. Two resonant states are found at the energies of ˜1 and ˜3.5 MeV, respectively, above the n +8He breakup threshold. The first state has a spin-parity assignment of Jπ=1/2 - and can be associated with the ground state of 9He, while the second, broader state has a spin parity of 3/2 -. No resonance is found in the 1/2 + channel, only a very weak attraction. Conclusions: We find that the 9He ground-state resonance has a negative parity and thus breaks the parity-inversion mechanism found in the 11Be and 10Li nuclei of the same N =7 isotonic chain.
Itoga, Toshiro; Asano, Yoshihiro; Tanimura, Yoshihiko
2011-07-01
Superheated drop detectors are currently used for personal and environmental dosimetry and their characteristics such as response to neutrons and temperature dependency are well known. A new bubble counter based on the superheated drop technology has been developed by Framework Scientific. However, the response of this detector with the lead shell is not clear especially above several tens of MeV. In this study, the response has been measured with quasi-monoenergetic and monoenergetic neutron sources with and without a lead shell. The experimental results were compared with the results of the Monte Carlo calculations using the 'Event Generator Mode' in the PHITS code with the JENDL-HE/2007 data library to clarify the response of this detector with a lead shell in the entire energy range.
Bradley, K C; Meisel, R L
2001-03-15
Dopamine transmission in the nucleus accumbens can be activated by drugs, stress, or motivated behaviors, and repeated exposure to these stimuli can sensitize this dopamine response. The objectives of this study were to determine whether female sexual behavior activates nucleus accumbens neurons and whether past sexual experience cross-sensitizes neuronal responses in the nucleus accumbens to amphetamine. Using immunocytochemical labeling, c-Fos expression in different subregions (shell vs core at the rostral, middle, and caudal levels) of the nucleus accumbens was examined in female hamsters that had varying amounts of sexual experience. Female hamsters, given either 6 weeks of sexual experience or remaining sexually naive, were tested for sexual behavior by exposure to adult male hamsters. Previous sexual experience increased c-Fos labeling in the rostral and caudal levels but not in the middle levels of the nucleus accumbens. Testing for sexual behavior increased labeling in the core, but not the shell, of the nucleus accumbens. To validate that female sexual behavior can sensitize neurons in the mesolimbic dopamine pathway, the locomotor responses of sexually experienced and sexually naive females to an amphetamine injection were then compared. Amphetamine increased general locomotor activity in all females. However, sexually experienced animals responded sooner to amphetamine than did sexually naive animals. These data indicate that female sexual behavior can activate neurons in the nucleus accumbens and that sexual experience can cross-sensitize neuronal responses to amphetamine. In addition, these results provide additional evidence for functional differences between the shell and core of the nucleus accumbens and across its anteroposterior axis.
Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshinowo, Babatunde O.; Izraelevitch, Federico
The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquiresmore » kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.« less
Neutron knockout from 68,70Ni ground and isomeric states.
NASA Astrophysics Data System (ADS)
Recchia, F.; Weisshaar, D.; Gade, A.; Tostevin, J. A.; Janssens, R. V. F.; Albers, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Chiara, C. J.; Crawford, H. L.; Hoffman, C. R.; Kondev, F. G.; Korichi, A.; Langer, C.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Noji, S.; Prokop, C.; Stroberg, S. R.; Suchyta, S.; Wimmer, K.; Zhu, S.
2018-02-01
Neutron-rich isotopes are an important source of new information on nuclear physics. Specifically, the spin-isospin components in the nucleon-nucleon (NN) interaction, e.g., the proton-neutron tensor force, are expected to modify shell structure in exotic nuclei. These potential changes in the intrinsic shell structure are of fundamental interest. The study of the excitation energy of states corresponding to specific configurations in even-even isotopes, together with the single-particle character of the first excited states of odd-A, neutron-rich Ni isotopes, probes the evolution of the neutron orbitals around the Fermi surface as a function of the neutron number a step forward in the understanding of the region and the nature of the NN interaction at large N/Z ratios. In an experiment carried out at the National Superconducting Cyclotron Laboratory [1], new spectroscopic information was obtained for 68Ni and the distribution of single-particle strengths in 67,69Ni was characterized by means of single-neutron knockout from 68,70Ni secondary beams. The spectroscopic strengths, deduced from the measured partial cross sections to the individual states tagged by their de-exciting gamma rays, is used to identify and quantify configurations that involve neutron excitations across the N = 40 harmonic oscillator shell closure. The de-excitation γ rays were measured with the GRETINA tracking array [2]. The results challenge the validity of the most current shell-model Hamiltonians and effective interactions, highlighting shortcomings that cannot yet be explained. These results suggest that our understanding of the low-energy states in such nuclei is not complete and requires further investigation.
NASA Astrophysics Data System (ADS)
Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.
2015-06-01
The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubovichenko, S. B., E-mail: dubovichenko@gmail.com
2013-10-15
Radiative capture of a neutron to the ground and excited states of the 9Be nucleus is considered using the potential cluster model with forbidden states and with classification of cluster states by the Young schemes taking into account resonance at 622 keV for thermal and astrophysical energies.
Mechanical response and buckling of a polymer simulation model of the cell nucleus
NASA Astrophysics Data System (ADS)
Banigan, Edward; Stephens, Andrew; Marko, John
The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kino, Motoki; Ito, Hirotaka; Kawakatu, Nozomu
We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobemore » and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.« less
Detection of entrapped moisture in honeycomb sandwich structures
NASA Technical Reports Server (NTRS)
Hallmark, W. B.
1967-01-01
Thermal neutron moisture detection system detects entrapped moisture in intercellular areas of bonded honeycomb sandwich structures. A radium/beryllium fast neutron source bombards a specimen. The emitted thermal neutrons from the target nucleus are detected and counted by a boron trifluoride thermal neutron detector.
Generalized seniority on a deformed single-particle basis
NASA Astrophysics Data System (ADS)
Jia, L. Y.
2017-09-01
Recently, I proposed a fast computing scheme for generalized seniority on a spherical single-particle basis [J. Phys. G: Nucl. Part. Phys. 42, 115105 (2015), 10.1088/0954-3899/42/11/115105]. This work redesigns the scheme to make it applicable to deformed single-particle basis. The algorithm is applied to the rare-earth-metal nucleus 94 64 158Gd for intrinsic (body-fixed frame) neutron excitations under the low-momentum NN interaction Vlow -k. By allowing as many as four broken pairs, I compute the lowest 300 intrinsic states of several multipolarities. These states converge well to the exact ones, showing generalized seniority is very effective in truncating the deformed shell model. Under realistic interactions, the picture remains approximately valid: The ground state is a coherent pair condensate and the pairs gradually break up as excitation energy increases.
Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.
2015-11-01
Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.
Cason, J.L. Jr.; Shaw, C.B.
1975-10-21
A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.
Development of a new method for measurement of neutron detector efficiency up to 20 MeV
Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; ...
2014-09-03
A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differmore » substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.« less
NASA Astrophysics Data System (ADS)
Hoffman, Calem
2017-09-01
In the pursuit of a global description of nuclei, extensive experimental studies on short-lived isotopes have provided a wealth of new empirical information. Such data has been used to test theoretical concepts and in the development of innovative ideas. More directly, a novel device at Argonne National Laboratory, the HELIcal Orbit Spectrometer (HELIOS), was focused on providing detailed single-particle information on the malleability of the nuclear magic numbers. Once thought as immovable pillars in nuclear structure, the shell-gaps in nuclei defining magic numbers of nucleons are now well-known to evolve as proton-to-neutron ratios change. And, determination of the underlying components of the nuclear force driving the evolution is at the forefront of nuclear structure research. Additionally, the HELIOS device mentioned above also carries its own aura being that it is formed by a decommissioned MRI solenoid magnet. In this talk recent highlights and advancements in our description of nuclear shell evolution will be the focus along with a few sidestepping comments on the life-cycle and interplay between basic research and the applications of nuclear physics. This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357.
Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu
Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.
Low-spin structure of 51,35,86Br and 50,36,86Kr nuclei: The role of the g7 /2 neutron orbital
NASA Astrophysics Data System (ADS)
Urban, W.; Sieja, K.; Materna, T.; Czerwiński, M.; Rząca-Urban, T.; Blanc, A.; Jentschel, M.; Mutti, P.; Köster, U.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.; Bernards, C.; Fransen, C.; Jolie, J.; Regis, J.-M.; Thomas, T.; Warr, N.
2016-10-01
Low-spin excited levels in 51,35,86Br and 50,36,86Kr, populated following β- decay and the neutron-induced fission of 235U, were measured using the Lohengrin fission-fragment separator and the EXILL array of Ge detectors at the PF1B cold-neutron facility of the Institute Laue-Langevin Grenoble. Improved populations of excited levels in 86Br remove inconsistencies existing in the literature on this nucleus. Directional-linear-polarization correlations, analyzed using newly developed formulas, as well as precise angular correlations allowed the unique 1- and 2- spin and parity assignments to the ground state of 86Br and the 4016.3-keV level in 86Kr, respectively. Based on these results we propose that the Gamow-Teller β- decays of 86Se and 86Br involve the ν g7 /2→π g9 /2 transition in addition to the ν p3 /2→π p3 /2 transition proposed earlier. In 86Kr we have identified 11+, 23+, and 31+ levels, analogous to the mixed-symmetry states in 94Mo, which in 86Kr are from proton excitations, only. Large-scale, shell-model calculations with refined interactions reproduce well excitations in 86Br and 86Kr and support our interpretations.
2010-01-01
Dopamine D2 and D3 autoreceptors are located on presynaptic terminals and are known to control the release and synthesis of dopamine. Dopamine D3 receptors have a fairly restricted pattern of expression in the mammalian brain. Their localization in the nucleus accumbens core and shell is of particular interest because of their association with the rewarding properties of drugs of abuse. Using background subtracted fast scan cyclic voltammetry, we investigated the effects of dopamine D2 and D3 agonists on electrically stimulated dopamine release and uptake rates in the mouse caudate putamen and nucleus accumbens core and shell. The dopamine D2 agonists (−)-quinpirole hydrochloride and 5,6,7,8-tetrahydro-6-(2-propen-1-yl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (B-HT 920) had the same dopamine release inhibition effects on caudate putamen and nucleus accumbens (core and shell) on the basis of their EC50 values and efficacies. This suggests that the dopamine D2 autoreceptor functionality is comparable in all three striatal regions investigated. The dopamine D3 agonists (4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride ((+)-PD 128907) and (±)-7-Hydroxy-2-dipropylaminotetralin hydrobromide (7-OH-DPAT) had a significantly greater effect on dopamine release inhibition in the nucleus accumbens shell than in the caudate putamen. This study confirms that, the dopamine D3 autoreceptor functionality is greater in the nucleus accumbens shell followed by the nucleus accumbens core, with the caudate putamen having the least. Neither dopamine D2 nor D3 agonists affected the uptake rates in nucleus accumbens but concentrations greater than 0.1 μM lowered the uptake rate in caudate putamen. To validate our method of evaluating dopamine D2 and D3 autoreceptors, sulpiride (D2 antagonist) and nafadotride (D3 antagonist) were used to reverse the effects of the dopamine agonists to approximately 100% of the preagonist dopamine release concentration. Finally, these results demonstrate a functional voltammetric assay that characterizes dopamine D2-like agonists as either D2- or D3-preferring agonists by taking advantage of the unique receptor density within the striatum. PMID:20567609
Saddoris, Michael P.; Stamatakis, Alice; Carelli, Regina M.
2013-01-01
During Pavlovian-to-instrumental transfer (PIT), learned Pavlovian cues significantly modulate ongoing instrumental actions. This phenomenon is suggested as a mechanism under which conditioned stimuli may lead to relapse in addicted populations. Following discriminative Pavlovian learning and instrumental conditioning with sucrose, one group of rats (naive) underwent electrophysiological recordings in the nucleus accumbens core and shell during a single PIT session. Other groups, following Pavlovian and instrumental conditioning, were subsequently trained to self-administer cocaine with nosepoke responses, or received yoked saline infusions and nosepoked for water rewards, and then performed PIT while electrophysiological recordings were taken in the nucleus accumbens. Behaviorally, although both naive and saline-treated groups showed increases in lever pressing during the conditioned stimulus cue, this effect was significantly enhanced in the cocaine-treated group. Neurons in the core and shell tracked these behavioral changes. In control animals, core neurons were significantly more likely to encode general information about cues, rewards and responses than those in the shell, and positively correlated with behavioral PIT performance, whereas PIT-specific encoding in the shell, but not core, tracked PIT performance. In contrast, following cocaine exposure, there was a significant increase in neural encoding of all task-relevant events that was selective to the shell. Given that cocaine exposure enhanced both behavior and shell-specific task encoding, these findings suggest that, whereas the core is important for acquiring the information about cues and response contingencies, the shell is important for using this information to guide and modulate behavior and is specifically affected following a history of cocaine self-administration. PMID:21507084
Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats.
Uhari-Väänänen, Johanna; Raasmaja, Atso; Bäckström, Pia; Oinio, Ville; Airavaara, Mikko; Piepponen, Petteri; Kiianmaa, Kalervo
2016-10-01
The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats. Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm. CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm. The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward. Copyright © 2016 by the Research Society on Alcoholism.
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
α decay properties of 297Og within the two-potential approach
NASA Astrophysics Data System (ADS)
Deng, Jun-Gang; Cheng, Jun-Hao; Zheng, Bo; Li, Xiao-Hua
2017-12-01
The α decay half-life of the unknown nucleus 297Og is predicted within the two-potential approach, and α preformation probabilities of 64 odd-A nuclei in the region of proton numbers 82 < Z < 126 and neutron numbers 152 < N < 184, from 251Cf to 295Og, are extracted. In addition, based on the latest experimental data, a new set of parameters for α preformation probabilities considering the shell effect and proton-neutron interaction are obtained. The predicted α decay half-life of 297Og is 0.16 ms within a factor of 4.97. The predicted spin and parity of the ground states for 269Sg, 285Fl and 293Lv are 3/2+, 3/2+ and 5/2+, respectively. Supported by National Natural Science Foundation of China (11205083, 11505100), Construct Program of the Key Discipline in Hunan Province, the Research Foundation of Education Bureau of Hunan Province, China (15A159), the Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2121), the Innovation Group of Nuclear and Particle Physics in USC, the Shandong Province Natural Science Foundation, China (ZR2015AQ007) and Hunan Provincial Innovation Foundation For Postgraduate (CX2017B536)
NASA Astrophysics Data System (ADS)
Yoshida, Sota; Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu
2018-05-01
We perform large-scale shell-model calculations of β -decay properties for neutron-rich nuclei with 13 ≤Z ≤18 and 22 ≤N ≤34 , taking the first-forbidden transitions into account. The natural-parity and unnatural-parity states are calculated in the 0 ℏ ω and 1 ℏ ω model spaces, respectively, within the full s d +p f +s d g valence shell. The calculated β -decay half-lives and β -delayed neutron emission probabilities show good agreement with the experimental data. The first-forbidden transitions make a non-negligible contribution to the half-lives of N ≳28 nuclei. The low-lying Gamow-Teller strengths of even-even nuclei are considerably larger than those of the neighboring odd-A and odd-odd nuclei, strongly affecting the half-lives and neutron emission probabilities. It is shown that this even-odd effect is caused by the Jπ=1+ proton-neutron pairing interaction. We derive a formula to represent the positions of the Gamow-Teller giant resonances from the calculated strength distributions.
NASA Astrophysics Data System (ADS)
Recchia, F.; Weisshaar, D.; Gade, A.; Tostevin, J. A.; Janssens, R. V. F.; Albers, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Chiara, C. J.; Crawford, H. L.; Hoffman, C. R.; Kondev, F. G.; Korichi, A.; Langer, C.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Noji, S.; Prokop, C.; Stroberg, S. R.; Suchyta, S.; Wimmer, K.; Zhu, S.
2016-11-01
The distribution of single-particle strength in Ni,6967 was characterized with one-neutron knockout reactions from intermediate-energy Ni,7068 secondary beams, selectively populating neutron-hole configurations at N =39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ -ray decays, are used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well with shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. These results suggest that our understanding of the low-lying states in the neutron-rich, semimagic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.
Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.
Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S
2008-07-01
Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.
Large-scale shell-model calculation with core excitations for neutron-rich nuclei beyond 132Sn
NASA Astrophysics Data System (ADS)
Jin, Hua; Hasegawa, Munetake; Tazaki, Shigeru; Kaneko, Kazunari; Sun, Yang
2011-10-01
The structure of neutron-rich nuclei with a few nucleons beyond 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including neutron core excitations, a new effective interaction is determined by employing the extended pairing-plus-quadrupole model with monopole corrections. The model provides a systematical description for energy levels of A=133-135 nuclei up to high spins and reproduces available data of electromagnetic transitions. The structure of these nuclei is analyzed in detail, with emphasis of effects associated with core excitations. The results show evidence of hexadecupole correlation in addition to octupole correlation in this mass region. The suggested feature of magnetic rotation in 135Te occurs in the present shell-model calculation.
The s-process in massive stars: the Shell C-burning contribution
NASA Astrophysics Data System (ADS)
Pignatari, Marco; Gallino, R.; Baldovin, C.; Wiescher, M.; Herwig, F.; Heger, A.; Heil, M.; Käppeler, F.
In massive stars the s¡ process (slow neutron capture process) is activated at different tempera- tures, during He¡ burning and during convective shell C¡ burning. At solar metallicity, the neu- tron capture process in the convective C¡ shell adds a substantial contribution to the s¡ process yields made by the previous core He¡ burning, and the final results carry the signature of both processes. With decreasing metallicity, the contribution of the C¡ burning shell to the weak s¡ process rapidly decreases, because of the effect of the primary neutron poisons. On the other hand, also the s¡ process efficiency in the He core decreases with metallicity.
NASA Astrophysics Data System (ADS)
Rubio, B.; Orrigo, S. E. A.; Kucuk, L.; Montaner-Pizá, A.; Fujita, Y.; Fujita, H.; Blank, B.; Gelletly, W.; Adachi, T.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; Cakirli, R. B.; de France, G.; Ganioğlu, E.; Gerbaux, M.; Giovinazzo, J.; Grevy, S.; Kamalou, O.; Kozer, H. C.; Kurtukian-Nieto, T.; Marqués, F. M.; Molina, F.; Oktem, Y.; de Oliveira Santos, F.; Perrot, L.; Popescu, L.; Raabe, R.; Rogers, A. M.; Srivastava, P. C.; Susoy, G.; Suzuki, T.; Tamii, A.; Thomas, J. C.
2014-06-01
This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the Tz = - 2 nucleus 56Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in 56Co, the mirror nucleus of 56Cu.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.
2015-04-01
Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.
NASA Astrophysics Data System (ADS)
Leistenschneider, E.; Reiter, M. P.; Ayet San Andrés, S.; Kootte, B.; Holt, J. D.; Navrátil, P.; Babcock, C.; Barbieri, C.; Barquest, B. R.; Bergmann, J.; Bollig, J.; Brunner, T.; Dunling, E.; Finlay, A.; Geissel, H.; Graham, L.; Greiner, F.; Hergert, H.; Hornung, C.; Jesch, C.; Klawitter, R.; Lan, Y.; Lascar, D.; Leach, K. G.; Lippert, W.; McKay, J. E.; Paul, S. F.; Schwenk, A.; Short, D.; Simonis, J.; Somà, V.; Steinbrügge, R.; Stroberg, S. R.; Thompson, R.; Wieser, M. E.; Will, C.; Yavor, M.; Andreoiu, C.; Dickel, T.; Dillmann, I.; Gwinner, G.; Plaß, W. R.; Scheidenberger, C.; Kwiatkowski, A. A.; Dilling, J.
2018-02-01
A precision mass investigation of the neutron-rich titanium isotopes Ti-5551 was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N =32 shell closure, and the overall uncertainties of the Ti-5552 mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N =32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N =32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
Michel, D. T.; Hu, S. X.; Davis, A. K.; ...
2017-05-10
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Hu, S. X.; Davis, A. K.
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Descriptions of carbon isotopes within the energy density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly themore » blocking effect plays a significant role in the shell model configurations.« less
Single-neutron orbits near 78Ni: Spectroscopy of the N = 49 isotope 79Zn
Orlandi, R.; Mücher, D.; Raabe, R.; ...
2014-12-09
Single-neutron states in the Z=30, N=49 isotope 79Zn have been populated using the 78Zn(d, p) 79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the N=50 shell gap. From the analysis of γ -ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a 5/2 + configuration was assigned to a state at 983more » keV. Comparison with large-scale-shell-model calculations supports a robust neutron N=50 shell-closure for 78Ni. Finally, these data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P; Robey, H F; Park, H-S
2003-08-22
An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significantmore » fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.« less
NASA Astrophysics Data System (ADS)
Starosta, K.; Dewald, A.
2007-04-01
Transition rate measurements are reported for the 2^+1 and 2^+2 states in the N=Z nucleus ^64Ge. The measurement was done utilizing the Recoil Distance Method (RDM) and a unique combination of state of the art instruments at the National Superconducting Cyclotron Laboratory (NSCL). States of interest were populated via an intermediate energy single neutron knock-out reaction. RDM studies of knock-out and fragmentation reaction products hold the promise of reaching far from stability and providing lifetime information for intermediate-spin excited states in a wide range of exotic nuclei. The large-scale Shell Model calculations applying the recently developed GXPF1A interaction are in excellent agreement with the above results. Theoretical analysis suggests that ^64Ge is a collective γ-soft anharmonic vibrator.
Study of yrast bands and electromagnetic properties in neutron-rich 114-128Cd isotopes
NASA Astrophysics Data System (ADS)
Chaudhary, Ritu; Pandit, Rakesh K.; Devi, Rani; Khosa, S. K.
2018-02-01
The projected shell model framework has been employed to carry out a systematic study on the deformation systematics of E (21+) and E (41+) / E (21+) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena and electromagnetic quantities in 114-128Cd isotopes. Present calculations reproduce the observed systematics of the E (21+), R42 and B (E 2 ;2+ →0+) values for 114-128Cd isotopic mass chain and give the evidence that deformation increases as one moves from 114Cd to 118Cd, thereafter it decreases up to 126Cd. This in turn confirms 118Cd to be the most deformed nucleus in this set of isotopic mass chain. The emergence of backbending, decrease in B (E 2) values and change in g-factors in all these isotopes are intimately related to the crossing of g-band by 2-qp bands.
Ding, B.; Liu, Z.; Seweryniak, D.; ...
2017-02-01
Excited states have been observed for the first time in the neutron-deficient nucleus 117Ba using the recoil-decay tagging technique following the heavy-ion fusion-evaporation reaction 64Zn( 58Ni, 2p3n) 117Ba. Prompt γ rays have been assigned to 117Ba through correlations with β-delayed protons following the decay of A = 117 recoils. Through the analysis of the γ–γ coincidence relationships, a high-spin level scheme consisting of two bands has been established in 117Ba. Based on the systematics of the level spacings in the neighboring barium isotopes, the two bands are proposed to have νh 11/2[532]5/2 – and νd 5/2[413]5/2 + configurations, respectively. Lastly,more » the observed band-crossing properties are interpreted in the framework of cranked shell model.« less
The 4-dimensional Langevin approach to low energy nuclear fission
NASA Astrophysics Data System (ADS)
Ivanyuk, F. A.; Ishizuka, C.; Usang, M. D.; Chiba, S.
2018-03-01
We applied the four-dimensional Langevin approach to the description of fission of 235U by neutrons and calculated the dependence of the excitation energy of fission fragments on their mass number. For this we have fitted the compact just-before-scission configuration obtained by the Langevin calculations by the two separated fragments and calculated the intrinsic excitation and the deformation energy of each fragment accurately taking into account the shell and pairing effects and their dependence on the temperature and mass of the fragments. For the sharing of energy between the fission fragments we have used the simplest and most reliable assumption - the temperature of each fragment immediately after the neck rupture is the same as the temperature of mother nucleus just before scission. The calculated excitation energy of fission fragments clearly demonstrates the saw-tooth structure in the dependence on fragment mass number.
ERIC Educational Resources Information Center
Aquili, Luca; Liu, Andrew W.; Shindou, Mayumi; Shindou, Tomomi; Wickens, Jeffery R.
2014-01-01
Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity…
Recchia, F.; Weisshaar, D.; Gade, A.; ...
2016-11-28
The distribution of single-particle strength in 67,69Ni was characterized with one-neutron knockout reactions from intermediate-energy 68,70Ni secondary beams, selectively populating neutron-hole configurations at N = 39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ-ray decays, is used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well to shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. Furthermore, these results suggest that our understanding of the low-lyingmore » states in the neutron-rich, semi-magic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.« less
Effects of Hot-Spot Geometry on Backscattering and Down-Scattering Neutron Spectra
NASA Astrophysics Data System (ADS)
Mohamed, Z. L.; Mannion, O. M.; Forrest, C. J.; Knauer, J. P.; Anderson, K. S.; Radha, P. B.
2017-10-01
The measured neutron spectrum produced by a fusion experiment plays a key role in inferring observable quantities. One important observable is the areal density of an implosion, which is inferred by measuring the scattering of neutrons. This project seeks to use particle-transport simulations to model the effects of hot-spot geometry on backscattering and down-scattering neutron spectra along different lines of sight. Implosions similar to those conducted at the Laboratory of Laser Energetics are modeled by neutron transport through a DT plasma and a DT ice shell using the particle transport codes MCNP and IRIS. Effects of hot-spot geometry are obtained by ``detecting'' scattered neutrons along different lines of sight. This process is repeated for various hot-spot geometries representing known shape distortions between the hot spot and the shell. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates
Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...
2016-02-05
A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less
Measurements of neutron skin in calcium and lead
NASA Astrophysics Data System (ADS)
Michaels, Robert
2017-01-01
Measurement of the parity-violating electron scattering asymmetry from 208Pb has demonstrated a new opportunity at Jefferson Lab to measure the weak charge form factor and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on 208Pb and 48Ca respectively. PREX-I ran in 2010, and CREX and a second run of PREX are currently in preparation. These are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter 48Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces. The measuements are a fundamental test of nuclear structure with applications to heavy ion research and neutron stars. Jefferson Science Associates, LLC, which operates Jefferson Lab for the U.S. DOE under U.S. DOE contract DE-AC05-060R23177.
NASA Astrophysics Data System (ADS)
Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping
We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.
NASA Astrophysics Data System (ADS)
Takechi, M.; Suzuki, S.; Nishimura, D.; Fukuda, M.; Ohtsubo, T.; Nagashima, M.; Suzuki, T.; Yamaguchi, T.; Ozawa, A.; Moriguchi, T.; Ohishi, H.; Sumikama, T.; Geissel, H.; Ishihara, M.; Aoi, N.; Chen, Rui-Jiu; Fang, De-Qing; Fukuda, N.; Fukuoka, S.; Furuki, H.; Inabe, N.; Ishibashi, Y.; Itoh, T.; Izumikawa, T.; Kameda, D.; Kubo, T.; Lee, C. S.; Lantz, M.; Ma, Yu-Gang; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Nishikiori, R.; Niwa, T.; Ohnishi, T.; Okumura, K.; Ogura, T.; Sakurai, H.; Sato, K.; Shimbara, Y.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Tanaka, K.; Uenishi, H.; Winkler, M.; Yanagisawa, Y.; Watanabe, S.; Minomo, K.; Tagami, S.; Shimada, M.; Kimura, M.; Matsumoto, T.; Shimizu, Y. R.; Yahiro, M.
2014-03-01
Reaction cross sections (σR) for 24-38Mg on C targets at the energies of around 240 MeV/nucleon have been measured precisely at RIBF, RIKEN for the purpose of obtaining the crucial information on the changes of nuclear structure in unstable nuclei, especially around the so-called "island of inversion" region. In the island of inversion region, which includes neutron-rich Ne, Na, and Mg isotopes, the vanishing of the N = 20 magic number for neutrons have been discussed along with nuclear deformation. The present result suggest deformation features of Mg isotopes and shows a large cross section of weakly-bound nucleus 37Mg, which could be caused by a neutron halo formation.
Reynolds, Sheila M; Berridge, Kent C
2009-01-01
The nucleus accumbens mediates both appetitive motivation for rewards and fearful motivation toward threats, which are generated in part by glutamate-related circuits organized in a keyboard fashion. At rostral sites of the medial shell, localized glutamate disruptions typically generate intense appetitive behaviors in rats, but the disruption incrementally generates fearful behaviors as microinjection sites move more caudally. We found that exposure to stressful environments caused caudal fear-generating zones to expand rostrally, filling ~90% of the shell. Conversely, a preferred home environment caused fear-generating zones to shrink and appetitive-generating zones to expand caudally, filling ~90% of the shell. Thus, the emotional environments retuned the generation of motivation in corticolimbic circuits. PMID:18344996
Nuclear shapes: Quest for triaxiality in 86Ge and the shape of 98Zr
NASA Astrophysics Data System (ADS)
Werner, V.; Lettmann, M.; Lizarazo, C.; Witt, W.; Cline, D.; Carpenter, M.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Savard, G.; Söderström, P.-A.; Wu, C.-Y.; Zhu, S.
2018-05-01
The region of neutron-rich nuclei above the N = 50 magic neutron shell closure encompasses a rich variety of nuclear structure, especially shapeevolutionary phenomena. This can be attributed to the complexity of sub-shell closures, their appearance and disappearance in the region, such as the N = 56 sub shell or Z = 40 for protons. Structural effects reach from a shape phase transition in the Zr isotopes, over shape coexistence between spherical, prolate, and oblate shapes, to possibly rigid triaxial deformation. Recent experiments in this region and their main physics viewpoints are summarized.
Structure of neutron-rich nuclei around the N = 50 shell-gap closure
NASA Astrophysics Data System (ADS)
Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.
2010-04-01
The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.
Determination of shell content by activation analysis : final report.
DOT National Transportation Integrated Search
1978-08-01
The objective of this study is to determine if neutron activation analysis technique, developed under Research Project 70-1ST, can be used to determine the shell content of a sand-shell mixture. : In order to accomplish this objective, samples of san...
NASA Astrophysics Data System (ADS)
Yarman, Tolga; Zaim, Nimet; Yarman, Ozan; Kholmetskii, Alexander; Arık, Metin
In previous studies, we provided a novel systematization of α-decaying even-even and even-odd nuclei starting with the classically adopted mechanism [T. Yarman et al., Eur. Phys. J. A 52 (2016) 140; Eur. Phys. J. A 53 (2017) 4]. Knowing beforehand the measured decay half-life, we had taken as a parameter the probability of the α-particle as being first born in a unit period of time, within the parent nucleus before it is emitted out. We thence developed a scaffold based on shell properties of families composed of “alike nuclei”. Along the same line, we now present a systematization of odd-even (OE) as well as odd-odd (OO) nuclei. We apply our approach further to the investigation of the effect of pairing (e.g., the effect when the number of nucleons is increased by one neutron), and that of unpairing (e.g., the effect when the number of nucleons is decreased by one neutron); thus it becomes an even number for the case of odd-even nuclei (Case OE), and an odd number in the case of odd-odd nuclei (Case OO). For the first case (OE), we pick the exemplar set 161Re, 217Fr, 243Bk, 263Db; where we delineate by, respectively, Re, Fr, Bk, and Db all of the odd-even or odd-odd isotopes that neighbor the four mentioned odd-even isotopes on the proposed scaffold. We proceed in the same way for the second case (OO). Thus, we choose the exemplar set of odd-odd nuclei 172Ir, 218Ac, 244Es. We then gather all of the Ir, Ac, and Es odd-odd and odd-even isotopes that neighbor the three mentioned odd-odd isotopes on the proposed scaffold. We show that, in the former case, pairing, as expected, generally increases stability of the given nucleus; and in the latter case, unpairing works in just the opposite direction — i.e., it generally increases instability. We disclose “stability peaks” versus Z for both sets of nuclei, we tackle here. Furthermore, we present a study to highlight an outlook of “odd-A nuclei” at hand. Contrary to the general expectation, we unveil no systematic on that.
Enhanced α-Transfer population of the 2ms+ mixed-symmetry state in 52Ti
NASA Astrophysics Data System (ADS)
Ali, Fuad A.; Muecher, Dennis; Bildstein, Vinzenz; Greaves, Beau; Kilic, Ali. I.; Holt, Jason D.; Berner, Christian; Gernhaeuser, R.; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.
2017-09-01
The residual nucleon-nucleon interaction plays a crucial role in nuclear structure physics. In spherical even-even nuclei the quadrupole interaction leads to so called proton-neutron mixed symmetry states, which are sensitive to the underlying subshell structure. We present new data using the MINIBALL germanium array. States in 52Ti were populated via the α-transfer reaction 48Ca(12C,8Be)52Ti using a 48Ca beam from the Maier-Leibnitz-Laboratory in Munich. In the frame work of IBM-2, Alonso et al. have shown that the population of the 2ms+ state is strictly forbidden for the alpha transfer from a doubly magic nucleus. In contrast, we measured a large relative cross section into the 22+ mixed-symmetry state in 52Ti relative to the 21+ state of 31.1(20) %. This value exceeds earlier measurements in the 140Ba nucleus, representing the case of a particular strong population of the 2ms,SUP>+ state. This points towards effects of core polarizations of 48Ca in the low-lying structure of 52Ti. We have performed ab-initio shell model calculations to understand the origin of the discovered discrepancies. Permanent Address: Department of Physics, College of Education, University of Sulaimani, P. O. Box 334, Sulaimani, Kurdistan Region, Iraq.
From the Old to the New World of Nuclear Physics
NASA Astrophysics Data System (ADS)
Stuewer, Roger H.
Physicists passed from the Old to the New World of Nuclear Physics in the two decades between the first and second world wars. The transition occurred against the background of the Great War, the postwar hyperinflation in Germany and Austria, and the greatest intellection migrations in history after the Nazi Civil Service law of 1933, the Anschlussof Austria in March 1938, and the Fascist anti-Semitic laws that fall. It involved Rutherford's discovery of artificial disintegration, Pettersson and Kirsch's challenge of it, and the concomitant rise and fall of Rutherford's satellite model of the nucleus; Gamow's quantum-mechanical theory of alpha decay and his liquid-drop model of the nucleus; the discoveries of deuterium and the deuteron, neutron, and positron, and the inventions of the Cockcroft-Walton accelerator and the cyclotron; the influence of the seventh Solvay Conference; Joliot and Curie's discovery of artificial radioactivity; Pauli's neutrino hypothesis, Fermi's theory of beta decay, and his discovery of the efficacy of slow neutrons in producing nuclear reactions; Bohr's theory of the compound nucleus and Breit and Wigner's theory of neutron-nucleus resonances; and the discovery of nuclear fission, Meitner and Frisch's interpretation of it, and Bohr and Fermi revelation of both in America.
Ho, Chao-Yi; Berridge, Kent C.
2014-01-01
Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense ‘disgust reactions’ (e.g., gapes) to a normally pleasant sensation such as sweetness. Here we aimed to map forebrain candidates more precisely to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol-baclofen microinjections) caused rats to emit excessive sensory disgust reactions to sucrose. Our study compared subregions of nucleus accumbens shell, ventral pallidum, lateral hypothalamus and adjacent extended amygdala. Results indicated the posterior half of ventral pallidum to be the only forebrain site where intense sensory disgust gapes to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness ‘liking’). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust but lesions never did at any site. Further, even inactivations failed to induce disgust in the rostral half of accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior versus rostral halves of medial shell. PMID:25229197
Shell Model Far From Stability: Island of Inversion Mergers
NASA Astrophysics Data System (ADS)
Nowacki, F.; Poves, A.
2018-02-01
In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.
The velocity and composition of supernova ejecta
NASA Technical Reports Server (NTRS)
Colgate, S. A.
1971-01-01
In case of the Gum nebula, a pulsar - a presumed neutron star - is believed to be a relic of the supernova explosion. Regardless of the mechanism of the explosion, the velocity distribution and composition of the ejected matter will be roughly the same. The reimploding mass fraction is presumed to be neutron rich. The final composition is thought to be roughly 1/3 iron and 2/3 silicon, with many small fractions of elements from helium to iron. The termination of helium shell burning occurs because the shell is expanded and cooled by radiation stress. The mass fraction of the helium burning shell was calculated.
Gamma Decay of Unbound Neutron-Hole States in 133Sn
NASA Astrophysics Data System (ADS)
Vaquero, V.; Jungclaus, A.; Doornenbal, P.; Wimmer, K.; Gargano, A.; Tostevin, J. A.; Chen, S.; Nácher, E.; Sahin, E.; Shiga, Y.; Steppenbeck, D.; Taniuchi, R.; Xu, Z. Y.; Ando, T.; Baba, H.; Garrote, F. L. Bello; Franchoo, S.; Hadynska-Klek, K.; Kusoglu, A.; Liu, J.; Lokotko, T.; Momiyama, S.; Motobayashi, T.; Nagamine, S.; Nakatsuka, N.; Niikura, M.; Orlandi, R.; Saito, T.; Sakurai, H.; Söderström, P. A.; Tveten, G. M.; Vajta, Zs.; Yalcinkaya, M.
2017-05-01
Excited states in the nucleus 133Sn, with one neutron outside the double magic 132Sn core, were populated following one-neutron knockout from a 134Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in 133Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of 133Sn is low, Sn=2.402 (4 ) MeV , this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of 132Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β -decay properties for astrophysical simulations may have to be reconsidered.
Gamma Decay of Unbound Neutron-Hole States in ^{133}Sn.
Vaquero, V; Jungclaus, A; Doornenbal, P; Wimmer, K; Gargano, A; Tostevin, J A; Chen, S; Nácher, E; Sahin, E; Shiga, Y; Steppenbeck, D; Taniuchi, R; Xu, Z Y; Ando, T; Baba, H; Garrote, F L Bello; Franchoo, S; Hadynska-Klek, K; Kusoglu, A; Liu, J; Lokotko, T; Momiyama, S; Motobayashi, T; Nagamine, S; Nakatsuka, N; Niikura, M; Orlandi, R; Saito, T; Sakurai, H; Söderström, P A; Tveten, G M; Vajta, Zs; Yalcinkaya, M
2017-05-19
Excited states in the nucleus ^{133}Sn, with one neutron outside the double magic ^{132}Sn core, were populated following one-neutron knockout from a ^{134}Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in ^{133}Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of ^{133}Sn is low, S_{n}=2.402(4) MeV, this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of ^{132}Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β-decay properties for astrophysical simulations may have to be reconsidered.
Design of a novel instrument for active neutron interrogation of artillery shells.
Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.
Design of a novel instrument for active neutron interrogation of artillery shells
Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from 53-7+7% to 74-10+8% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s. PMID:29211773
Ground-state properties of neutron magic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, G., E-mail: gauravphy@gmail.com; Kaushik, M.
2017-03-15
A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of themore » proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.« less
Naked-eye optical flash from gamma-ray burst 080319B: Tracing the decaying neutrons in the outflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan Yizhong; Zhang Bing; Wei Daming
For an unsteady baryonic gamma-ray burst (GRB) outflow, the fast and slow proton shells collide with each other and produce energetic soft gamma-ray emission. If the outflow has a significant neutron component, the ultrarelativistic neutrons initially expand freely until decaying at a larger radius. The late-time proton shells ejected from the GRB central engine, after powering the regular internal shocks, will sweep these {beta}-decay products and give rise to very bright UV/optical emission. The naked-eye optical flash from GRB 080319B, an energetic explosion in the distant Universe, can be well explained in this way.
Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies
NASA Astrophysics Data System (ADS)
Ekejiuba, I. E.; Okeke, P. N.
1993-05-01
Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.
α decay properties of 296Og within the two-potential approach
NASA Astrophysics Data System (ADS)
Deng, Jun-Gang; Zhao, Jie-Cheng; Chen, Jiu-Long; Wu, Xi-Jun; Li, Xiao-Hua
2018-04-01
The present work is a continuation of our previous paper [J.-G. Deng, et al., Chin. Phys. C, 41: 124109 (2017)]. In the present work, the α decay half-life of the unknown nucleus 296Og is predicted within the two-potential approach and the hindrance factors of all 20 even-even nuclei in the same region as 296Og, i.e. proton number 82
Intruder configurations of excited states in the neutron-rich isotopes 33P and 34P
NASA Astrophysics Data System (ADS)
Lubna, R. S.; Tripathi, Vandana; Tabor, S. L.; Tai, P.-L.; Kravvaris, K.; Bender, P. C.; Volya, A.; Bouhelal, M.; Chiara, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; McCutchan, E. A.; Zhu, S.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Paschalis, S.; Petri, M.; Reviol, W.; Sarantites, D. G.
2018-04-01
Excited states in the neutron-rich isotopes 33P and 34P were populated by the 18O+18O fusion-evaporation reaction at Elab=24 MeV. The Gammasphere array was used along with the Microball particle detector array to detect γ transitions in coincidence with the charged particles emitted from the compound nucleus 36S. The use of Microball enabled the selection of the proton emission channel. It also helped in determining the exact position and energy of the emitted proton; this was later employed in kinematic Doppler corrections. 16 new transitions and 13 new states were observed in 33P and 21 γ rays and 20 energy levels were observed in 34P for the first time. The nearly 4 π geometry of Gammasphere allowed the measurement of γ -ray angular distributions leading to spin assignments for many states. The experimental observations for both isotopes were interpreted with the help of shell-model calculations using the (0+1)ℏ ω PSDPF interaction. The calculations accounted for both the 0p-0h and 1p-1h states reasonably well and indicated that 2p-2h excitations might dominate the higher-spin configurations in both 33P and 34P.
Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas
2016-11-03
The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.
Spinodal assisted growing dynamics of critical nucleus in polymer blends
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Qi, Shuanhu; Yan, Dadong
2012-11-01
In metastable polymer blends, nonclassical critical nucleus is not a drop of stable phase in core wrapped with a sharp interface, but a diffuse structure depending on the metastability. Thus, forming a critical nucleus does not mean the birth of a new phase. In the present work, the nonclassical growing dynamics of the critical nucleus is addressed in the metastable polymer blends by incorporating self-consistent field theory and external potential dynamics theory, which leads to an intuitionistic description for the scattering experiments. The results suggest that the growth of nonclassical critical nucleus is controlled by the spinodal-decomposition which happens in the region surrounding the nucleus. This leads to forming the shell structures around the nucleus.
Spectroscopy of the odd-odd fp-shell nucleus {sup 52}Sc from secondary fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gade, A.; Bazin, D.; Mueller, W.F.
2006-03-15
The odd-odd fp-shell nucleus {sup 52}Sc was investigated using in-beam {gamma}-ray spectroscopy following secondary fragmentation of a {sup 55}V and {sup 57}Cr cocktail beam. Aside from the known {gamma}-ray transition at 674(5) keV, a new decay at E{sub {gamma}}=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of {sup 52}Sc irrespective of the choice of the effective interaction. In addition, the frequencymore » of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.« less
Nucleus accumbens shell moderates preference bias during voluntary choice behavior.
Jang, Hyeran; Jung, Kanghoon; Jeong, Jaehoon; Park, Sang Ki; Kralik, Jerald D; Jeong, Jaeseung
2017-09-01
The nucleus accumbens (NAc) shell lies anatomically at a critical intersection within the brain's reward system circuitry, however, its role in voluntary choice behavior remains unclear. Rats with electrolytic lesions in the NAc shell were tested in a novel foraging paradigm. Over a continuous two-week period they freely chose among four nutritionally identical but differently flavored food pellets by pressing corresponding levers. We examined the lesion's effects on three behavioral dynamics components: motivation (when to eat), preference bias (what to choose) and persistence (how long to repeat the same choice). The lesion led to a marked increase in the preference bias: i.e., increased selection of the most-preferred choice option, and decreased selection of the others. We found no effects on any other behavioral measures, suggesting no effect on motivation or choice persistence. The results implicate the NAc shell in moderating the instrumental valuation process by inhibiting excessive bias toward preferred choice options. © The Author (2017). Published by Oxford University Press.
Nucleus accumbens shell moderates preference bias during voluntary choice behavior
Jang, Hyeran; Jung, Kanghoon; Jeong, Jaehoon; Park, Sang Ki; Kralik, Jerald D.
2017-01-01
Abstract The nucleus accumbens (NAc) shell lies anatomically at a critical intersection within the brain’s reward system circuitry, however, its role in voluntary choice behavior remains unclear. Rats with electrolytic lesions in the NAc shell were tested in a novel foraging paradigm. Over a continuous two-week period they freely chose among four nutritionally identical but differently flavored food pellets by pressing corresponding levers. We examined the lesion’s effects on three behavioral dynamics components: motivation (when to eat), preference bias (what to choose) and persistence (how long to repeat the same choice). The lesion led to a marked increase in the preference bias: i.e., increased selection of the most-preferred choice option, and decreased selection of the others. We found no effects on any other behavioral measures, suggesting no effect on motivation or choice persistence. The results implicate the NAc shell in moderating the instrumental valuation process by inhibiting excessive bias toward preferred choice options. PMID:28992274
Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A
2017-11-15
Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking. Copyright © 2017 the authors 0270-6474/17/3711166-15$15.00/0.
NASA Astrophysics Data System (ADS)
Nishibata, H.; Shimoda, T.; Odahara, A.; Morimoto, S.; Kanaya, S.; Yagi, A.; Kanaoka, H.; Pearson, M. R.; Levy, C. D. P.; Kimura, M.
2017-04-01
The structure of excited states in the neutron-rich nucleus 31Mg, which is in the region of the ;island of inversion; associated with the neutron magic number N = 20, is studied by β-γ spectroscopy of spin-polarized 31Na. Among the 31Mg levels below the one neutron separation energy of 2.3 MeV, the spin values of all five positive-parity levels are unambiguously determined by observing the anisotropic β decay. Two rotational bands with Kπ = 1 /2+ and 1 /2- are proposed based on the spins and energies of the levels. Comparison on a level-by-level basis is performed between the experimental results and theoretical calculations by the antisymmetrized molecular dynamics (AMD) plus generator coordinate method (GCM). It is found that various nuclear structures coexist in the low excitation energy region in 31Mg.
Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1991-01-01
Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.
Ho, Chao-Yi; Berridge, Kent C
2014-11-01
Disgust is a prototypical type of negative affect. In animal models of excessive disgust, only a few brain sites are known in which localized dysfunction (lesions or neural inactivations) can induce intense 'disgust reactions' (e.g. gapes) to a normally pleasant sensation such as sweetness. Here, we aimed to map forebrain candidates more precisely, to identify where either local neuronal damage (excitotoxin lesions) or local pharmacological inactivation (muscimol/baclofen microinjections) caused rats to show excessive sensory disgust reactions to sucrose. Our study compared subregions of the nucleus accumbens shell, ventral pallidum, lateral hypothalamus, and adjacent extended amygdala. The results indicated that the posterior half of the ventral pallidum was the only forebrain site where intense sensory disgust gapes in response to sucrose were induced by both lesions and temporary inactivations (this site was previously identified as a hedonic hotspot for enhancements of sweetness 'liking'). By comparison, for the nucleus accumbens, temporary GABA inactivations in the caudal half of the medial shell also generated sensory disgust, but lesions never did at any site. Furthermore, even inactivations failed to induce disgust in the rostral half of the accumbens shell (which also contains a hedonic hotspot). In other structures, neither lesions nor inactivations induced disgust as long as the posterior ventral pallidum remained spared. We conclude that the posterior ventral pallidum is an especially crucial hotspot for producing excessive sensory disgust by local pharmacological/lesion dysfunction. By comparison, the nucleus accumbens appears to segregate sites for pharmacological disgust induction and hedonic enhancement into separate posterior and rostral halves of the medial shell. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Martínez-Hernández, José; Lanuza, Enrique; Martínez-García, Fernando
2012-01-15
Male sexual pheromones are rewarding stimuli for female mice, able to induce conditioned place preference. To test whether processing these natural reinforcing stimuli depends on the dopaminergic innervation of the nucleus accumbens, as for other natural rewards, we compare the effects of specific lesions of the dopaminergic innervation of the medial shell of the nucleus accumbens on two different appetitive behaviours, 'pheromone seeking' and sucrose preferential intake. Female mice, with no previous experience with either adult male chemical stimuli or with sucrose, received injections of 6-hydroxydopamine (or vehicle) in the medial shell of the accumbens. Then, we analyzed their preference for male soiled-bedding and their preferential intake of a sucrose solution, with particular emphasis on the dynamics of acquisition of both natural rewards. The results indicate that both lesioned and sham animals showed similar preference for male sexual pheromones, which was constant along the test (linear dynamics). In contrast, lesioned animals differed from sham operated mice in the dynamics of sucrose consumption in their first test of sucrose preference. Sham animals showed an initial sucrose preference followed by preference for water, which can be interpreted as sucrose neophobia. Lesioned animals showed no preference at the beginning of the test, and a delayed sucrose preference appeared followed by a delayed neophobia. The next day, during a second sucrose-preference test, both groups displayed comparable and sustained preferential sucrose intake. Therefore, dopamine in the medial shell of the nucleus accumbens has a different role on the reward of sexual pheromones and sucrose. Copyright © 2011 Elsevier B.V. All rights reserved.
Electron scattering from high-momentum neutrons in deuterium
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Kuhn, S. E.; Butuceanu, C.; Egiyan, K. S.; Griffioen, K. A.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; Dashyan, N. B.; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Fersch, R. G.; Feuerbach, R. J.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.
2006-03-01
We report results from an experiment measuring the semiinclusive reaction H2(e,e'ps) in which the proton ps is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p→s, and momentum transfer Q2. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a “bound neutron structure function” F2neff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For ps>0.4GeV/c, where the neutron is far off-shell, the model overestimates the value of F2neff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's “off-shell-ness” is one possible effect that can cause the observed deviation.
NASA Astrophysics Data System (ADS)
Quero, D.; Vardaci, E.; Kozulin, E. M.; Zagrebaev, V. A.; Corradi, L.; Pulcini, A.; La Rana, G.; Itkis, I. M.; Knyazheva, G. N.; Novikov, K.; Harca, I.; Fioretto, E.; Stefanini, A. M.; Montanari, D.; Montagnoli, G.; Scarlassara, F.; Szilner, S.; Mijatović, T.; Trzaska, W. H.
2018-05-01
Multi-nucleon transfer reactions are nowadays the only known mean to produce neutron-rich nuclei in the Terra Incognita. The closed-shell region N=126 is crucial for both studying shell-quenching in exotic nuclei and the r-process, being its last “waiting-point”. The choice of suitable reactions is challenging and a favorable case is 136Xe+208Pb, near the Coulomb barrier, because their neutron shell-closures play a stabilizing role, favoring the proton-transfer from lead to xenon. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments. Preliminary results of an experiment held at Laboratori Nazionali di Legnaro with PRISMA, aimed at A and Z identification of the products, will be shown.
NASA Astrophysics Data System (ADS)
Zhao, Yumin
1997-07-01
By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University
Castro, Daniel C; Terry, Rachel A; Berridge, Kent C
2016-01-01
The nucleus accumbens (NAc) contains a hedonic hotspot in the rostral half of medial shell, where opioid agonist microinjections are known to enhance positive hedonic orofacial reactions to the taste of sucrose (‘liking' reactions). Within NAc shell, orexin/hypocretin also has been reported to stimulate food intake and is implicated in reward, whereas blockade of muscarinic acetylcholine receptors by scopolamine suppresses intake and may have anti-reward effects. Here, we show that NAc microinjection of orexin-A in medial shell amplifies the hedonic impact of sucrose taste, but only within the same anatomically rostral site, identical to the opioid hotspot. By comparison, at all sites throughout medial shell, orexin microinjections stimulated ‘wanting' to eat, as reflected by increases in intake of palatable sweet chocolates. At NAc shell sites outside the hotspot, orexin selectively enhanced ‘wanting' to eat without enhancing sweetness ‘liking' reactions. In contrast, microinjections of the antagonist scopolamine at all sites in NAc shell suppressed sucrose ‘liking' reactions as well as suppressing intake of palatable food. Conversely, scopolamine increased aversive ‘disgust' reactions elicited by bitter quinine at all NAc shell sites. Finally, scopolamine microinjections localized to the caudal half of medial shell additionally generated a fear-related anti-predator reaction of defensive treading and burying directed toward the corners of the transparent chamber. Together, these results confirm a rostral hotspot in NAc medial shell as a unique site for orexin induction of hedonic ‘liking' enhancement, similar to opioid enhancement. They also reveal distinct roles for orexin and acetylcholine signals in NAc shell for hedonic reactions and motivated behaviors. PMID:26787120
Roles of nuclear weak rates on the evolution of degenerate cores in stars
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Tsunodaa, Naofumi; Tsunoda, Yuhsuke; Shimizu, Noritaka; Otsuka, Takaharu
2018-01-01
Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass) and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.
Interplay between proton-neutron pairing and deformation in self-conjugated medium mass nuclei
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo; Lacroix, Denis
2016-05-01
We employ a model combining self-consistent mean-field and shell model techniques to study the competition between particle-like and proton-neutron pairing correlations in fp-shell even-even self-conjugate nuclei. Deformation effects are realistically and microscopically described. The resulting approach can give a precise description of pairing correlations and eventually treat the coexistence of different condensate formed of pairs with different total spin/ isospin. The standard BCS calculations are systematically compared with approaches including correlation effects beyond the independent quasi-particle picture. The competition between proton-neutron correlations in the isoscalar and isovector channels is also analyzed, as well as their dependence on the deformation properties.
Progress toward a unified kJ-machine CANDY
NASA Astrophysics Data System (ADS)
Kitagawa, Yoneyoshi; Mori, Yoshitaka; Komeda, Osamu; Hanayama, Ryohei; Ishii, Katsuhiro; Okihara, Shinichiro; Fujita, Kazuhisa; Nakayama, Suisei; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Watari, Takeshi; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Nishimura, Yasuhiko; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Arikawa, Yasunobu; Nagai, Takahiro; Abe, Yuki; Ozaki, Satoshi; Noda, Akira
2016-03-01
To construct a unified experimental machine CANDY using a kJ DPSSL driver in the fast-ignition scheme, the Laser for Fast Ignition Experiment (LFEX) at Osaka is used, showing that the laser-driven ions heat the preimploded core of a deuterated polystyrene (CD) shell target from 0.8 keV to 2 keV, resulting in 5 x 108 DD neutrons best ever obtained in the scheme. 4-J/10-Hz DPSSL laser HAMA is for the first time applied to the CD shell implosion- core heating experiments in the fast ignition scheme to yield neutrons and also to a continuous target injection, which yields neutrons of 3 x 105 n/4πsr n/shot.
Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew
2010-01-01
Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less
Examining the possibility to observe neutron dark decay in nuclei
NASA Astrophysics Data System (ADS)
Pfützner, M.; Riisager, K.
2018-04-01
As proposed recently by Fornal and Grinstein, neutrons can undergo a dark matter decay mode which has not yet been observed. Such a decay could explain the existing discrepancy between two different methods of neutron lifetime measurements. If such neutron decay is possible, then it should occur also in nuclei with sufficiently low neutron binding energy. We examine a few nuclear candidates for the dark neutron decay and we consider the possibilities of their experimental identification. In more detail we discuss the case of 11Be which appears as the most promising nucleus for the observation of neutron dark decay.
Projected Shell Model Description of Positive Parity Band of 130Pr Nucleus
NASA Astrophysics Data System (ADS)
Singh, Suram; Kumar, Amit; Singh, Dhanvir; Sharma, Chetan; Bharti, Arun; Bhat, G. H.; Sheikh, J. A.
2018-02-01
Theoretical investigation of positive parity yrast band of odd-odd 130Pr nucleus is performed by applying the projected shell model. The present study is undertaken to investigate and verify the very recently observed side band in 130Pr theoretically in terms of quasi-particle (qp) configuration. From the analysis of band diagram, the yrast as well as side band are found to arise from two-qp configuration πh 11/2 ⊗ νh 11/2. The present calculations are viewed to have qualitatively reproduced the known experimental data for yrast states, transition energies, and B( M1) / B( E2) ratios of this nucleus. The recently observed positive parity side band is also reproduced by the present calculations. The energy states of the side band are predicted up to spin 25+, which is far above the known experimental spin of 18+ and this could serve as a motivational factor for future experiments. In addition, the reduced transition probability B( E2) for interband transitions has also been calculated for the first time in projected shell model, which would serve as an encouragement for other research groups in the future.
Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells
NASA Astrophysics Data System (ADS)
Uchikata, Nami; Yoshida, Shijun; Pani, Paolo
2016-09-01
The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.
Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim
2005-10-03
The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.
Quasi-spherical accretion in High Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Postnov, Konstantin
2016-07-01
Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.
Using Nucleon Multiplicities to Analyze Anti-Neutrino Interactions with Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkins, Miranda J.
The most commonly used, simple interaction models have not accurately described the nuclear effects on either neutrino-nucleus or anti-neutrino-nucleus interactions. Comparison of data collected by the MINERvA experiment and these models shows a discrepancy in the reconstructed hadronic energy distribution at momentum transfers below 0.8 GeV. Two nuclear model effects that were previously not modeled are possible culprits of this discrepancy. The first is known as random-phase-approximation and the second is the addition of a meson exchange current process, also known as two-particle two-hole due to its result in two particles leaving the nucleus with two holes left in theirmore » place. For the first time a neutron counting software algorithm has been created and used to compare the multiplicity and spatial distributions of neutrons between the simulation and data. There is localized sensitivity to the RPA and 2p2h effects and both help the simulation better describe the data. Ad ditional systematic or model effects are present which cause the simulation to overproduce neutrons, and potential causes are discussed.« less
Nuclear Structure in China 2010
NASA Astrophysics Data System (ADS)
Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui
2011-08-01
Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile fragmentation at the intermediate energy / C. W. Ma ... [et al.].Systematic study of spin assignment and dynamic moment of inertia of high-j intruder band in [symbol]In / K. Y. Ma ... [et al.] -- Signals of diproton emission from the three-body breakup channel of [symbol]Al and [symbol]Mg / Ma Yu-Gang ... [et al.] -- Uncertainties of Th/Eu and Th/Hf chronometers from nucleus masses / Z. M. Niu ... [et al.] -- The chiral doublet bands with [symbol] configuration in A[symbol]100 mass region / B. Qi ... [et al.] -- [symbol] formation probabilities in nuclei and pairing collectivity / Chong Qi -- A theoretical prospective on triggered gamma emission from [symbol]Hf[symbol] isomer / ShuiFa Shen ... [et al.] -- Study of nuclear giant resonances using a Fermi-liquid method / Bao-Xi Sun -- Rotational bands in doubly odd [symbol]Sb / D. P. Sun ... [et al.] -- The study of the neutron N=90 nuclei / W. X. Teng ... [et al.] -- Dynamical modes and mechanisms in ternary reaction of [symbol]Au+[symbol]Au / Jun-Long Tian ... [et al.] -- Dynamical study of X(3872) as a D[symbol] molecular state / B. Wang ... [et al.] -- Super-heavy stability island with a semi-empirical nuclear mass formula / N. Wang ... [et al.] -- Pseudospin partner bands in [symbol]Sb / S. Y. Wang ... [et al.] -- Study of elastic resonance scattering at CIAE / Y. B. Wang ... [et al.] -- Systematic study of survival probability of excited superheavy nuclei / C. J. Xia ... [et al.] -- Angular momentum projection of the Nilsson mean-field plus nearest-orbit pairing interaction model / Ming-Xia Xie ... [et al.] -- Possible shape coexistence for [symbol]Sm in a reflection-asymmetric relativistic mean-field approach / W. Zhang ... [et al.] -- Nuclear pairing reduction due to rotation and blocking / Zhen-Hua Zhang -- Nucleon pair approximation of the shell model: a review and perspective / Y. M. Zhao ... [et al.] -- Band structures in doubly odd [symbol]I / Y. Zheng ... [et al.] -- Lifetimes of high spin states in [symbol]Ag / Y. Zheng ... [et al.] -- Effect of tensor interaction on the shell structure of superheavy nuclei / Xian-Rong Zhou ... [et al.].
Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Radha, P. B.
2004-11-01
Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.
Systematic structure of the neutron drip-line {sup 22}C nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
In the present work we systematically discuss the nuclear structure of the the heaviest particle-bound carbon isotope, {sup 22}C. The ground state wave function of the carbon isotope is calculated using the {sup 20}C core plus two-valence neutron based on a phenomenological mean-field MF potential. We apply the deduced wave function to provide the nuclear matter density which is necessary in the calculations of the total reaction cross section. Calculations show that there is a reasonable good description of the experimental binding energy BE and root-mean square RMS radius. The exotic structure and configuration of the ground state carbon isotopemore » is explained and a consistent explanation on the two-neutron halo (Borromean) nucleus is given.« less
Scissors Mode of 162 Dy Studied from Resonance Neutron Capture
Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; ...
2015-05-28
Multi-step cascade γ-ray spectra from the neutron capture at isolated resonances of 161Dy nucleus were measured at the LANSCE/DANCE time-of-flight facility in Los Alamos National Laboratory. The objectives of this experiment were to confirm and possibly extend the spin assignment of s-wave neutron resonances and get new information on photon strength functions with emphasis on the role of the M1 scissors mode vibration. The preliminary results show that the scissors mode plays a significant role in all transitions between accessible states of the studied nucleus. The photon strength functions describing well our data are compared to results from 3He-induced reactions,more » (n,γ) experiments on Gd isotopes, and (γ,γ’) reactions.« less
NASA Astrophysics Data System (ADS)
Lackenby, B. G. C.; Flambaum, V. V.
2018-07-01
We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.
Is {sup 276}U a doubly magic nucleus?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.
2016-04-19
We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.
Nucleon correlations and the structure of Zn 41 30 71
Bottoni, Simone; Zhu, S.; Janssens, R. V. F.; ...
2017-11-06
Here, the structure of 71Zn was investigated by one-neutron transfer and heavy-ion induced complex (deep-inelastic) reactions using the GRETINA-CHICO2 and the Gammasphere setups, respectively. The observed inversion between the 9/2 + and 1/2 – states is explained in terms of the role of neutron pairing correlations. Non-collective sequences of levels were delineated above the 9/2 + isomeric state. These are interpreted as being associated with a modest oblate deformation in the framework of Monte-Carlo shell-model calculations carried out with the A3DA-m Hamiltonian in the pfg 9/2d 5/2 valence space. Similarities with the structure of 68 28Ni 40 were observed andmore » the shape-coexistence mechanism in the N = 40 region of neutron-rich nuclei is discussed in terms of the so-called Type-II shell evolution, with an emphasis on proton–neutron correlations between valence nucleons, especially those involving the shape-driving g 9/2 neutron orbital.« less
Nucleon correlations and the structure of 41 30 71Zn
NASA Astrophysics Data System (ADS)
Bottoni, S.; Zhu, S.; Janssens, R. V. F.; Carpenter, M. P.; Tsunoda, Y.; Otsuka, T.; Macchiavelli, A. O.; Cline, D.; Wu, C. Y.; Ayangeakaa, A. D.; Bucher, B.; Buckner, M. Q.; Campbell, C. M.; Chiara, C. J.; Crawford, H. L.; Cromaz, M.; David, H. M.; Fallon, P.; Gade, A.; Greene, J. P.; Harker, J.; Hayes, A. B.; Hoffman, C. R.; Kay, B. P.; Korichi, A.; Lauritsen, T.; Sethi, J.; Seweryniak, D.; Walters, W. B.; Weisshaar, D.; Wiens, A.
2017-12-01
The structure of 71Zn was investigated by one-neutron transfer and heavy-ion induced complex (deep-inelastic) reactions using the GRETINA-CHICO2 and the Gammasphere setups, respectively. The observed inversion between the 9/2+ and 1/2- states is explained in terms of the role of neutron pairing correlations. Non-collective sequences of levels were delineated above the 9/2+ isomeric state. These are interpreted as being associated with a modest oblate deformation in the framework of Monte-Carlo shell-model calculations carried out with the A3DA-m Hamiltonian in the pfg9/2d5/2 valence space. Similarities with the structure of 40,28,68Ni were observed and the shape-coexistence mechanism in the N = 40 region of neutron-rich nuclei is discussed in terms of the so-called Type-II shell evolution, with an emphasis on proton-neutron correlations between valence nucleons, especially those involving the shape-driving g9/2 neutron orbital.
Half-life of the 15 /2+ state of
NASA Astrophysics Data System (ADS)
Spagnoletti, P.; Simpson, G. S.; Carroll, R.; Régis, J.-M.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; de France, G.; Ur, C. A.; Urban, W.; Bruce, A. M.; Drouet, F.; Fraile, L. M.; Gaffney, L. P.; Ghitǎ, D. G.; Ilieva, S.; Jolie, J.; Korten, W.; Kröll, T.; Larijarni, C.; Lalkovski, S.; Licǎ, R.; Mach, H.; Mǎrginean, N.; Paziy, V.; Podolyák, Zs.; Regan, P. H.; Scheck, M.; Saed-Samii, N.; Thiamova, G.; Townsley, C.; Vancraeyenest, A.; Vedia, V.; Gargano, A.; Van Isacker, P.
2017-02-01
The half-life of the 15 /21+ state of the 3-valence-proton nucleus
Weak-interaction rates in stellar conditions
NASA Astrophysics Data System (ADS)
Sarriguren, Pedro
2018-05-01
Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.
Bassareo, Valentina; Musio, Paolo; Di Chiara, Gaetano
2011-04-01
Drugs of abuse and palatable food share the ability to stimulate dopamine (DA) transmission in the nucleus accumbens shell. However, while the stimulation of shell DA by food undergoes habituation, that by drugs of abuse does not. This study aims to directly compare the changes of extracellular DA, by microdialysis, in shell and core and prefrontal cortex (PFCX) in response to food- and drug-conditioned stimuli (CSs). Rats were trace-conditioned by Fonzies box (FB) or vanilla box (VB; CS), followed by food: Fonzies, intraoral chocolate solution (food-unconditioned stimulus (US)) and morphine (1.0 mg/Kg sc; drug US). Control (unconditioned) rats received standard food instead of Fonzies, tap water instead of chocolate, saline instead of morphine. Food-CSs increased core but not shell DA, while drug-CSs did the opposite. Food and drug-CSs both increased PFCX DA. Exposure to food-CSs potentiated core and PFCX DA response to food while shell responsiveness was dependent upon the relative CS and US nature. If the CS was intrinsic to the food US (CS = FB/US = Fonzies) the response of shell DA to the US was abolished. If the CS was extrinsic to the food US (CS = FB/US = chocolate; CS = VB/US = Fonzies), shell DA increased in response to the US. Exposure to the drug-CS potentiated the DA response to the drug-US in the shell and in the PFCX, but not in the core. Drug-CSs differentially activate DA as compared to food-CSs in shell and core and differentially affect DA response to the US in these areas. These differences might be relevant for the role of DA in the mechanism of drug addiction.
Maria Goeppert Mayer, the Nuclear Shell Structure, and Magic Numbers
dropdown arrow Site Map A-Z Index Menu Synopsis Maria Goeppert-Mayer, the Nuclear Shell Model, and Magic explanation of how neutrons and protons within atomic nuclei are structured. Called the "nuclear shell American husband, chemical physicist Joseph Mayer. At Argonne, Goeppert-Mayer learned most of her nuclear
Wylie, Douglas R; Pakan, Janelle M P; Huynh, Hang; Graham, David J; Iwaniuk, Andrew N
2012-05-01
Zebrin II (aldolase C) is expressed in a subset of Purkinje cells in the mammalian and avian cerebella such that there is a characteristic parasagittal organization of zebrin-immunopositive stripes alternating with zebrin-immunonegative stripes. Zebrin is expressed not only in the soma and dendrites of Purkinje cells but also in their axonal terminals. Here we describe the distribution of zebrin immunoreactivity in both the vestibular and the cerebellar nuclei of pigeons (Columba livia) and hummingbirds (Calypte anna, Selasphorus rufus). In the medial cerebellar nucleus, zebrin-positive labeling was particularly heavy in the “shell,” whereas the “core” was zebrin negative. In the lateral cerebellar nucleus, labeling was not as heavy, but a positive shell and negative core were also observed. In the vestibular nuclear complex, zebrin-positive terminal labeling was heavy in the dorsolateral vestibular nucleus and the lateral margin of the superior vestibular nucleus. The central and medial regions of the superior nucleus were generally zebrin negative. Labeling was moderate to heavy in the medial vestibular nucleus, particulary the rostral half of the parvocellular subnucleus. A moderate amount of zebrin-positive labeling was present in the descending vestibular nucleus: this was heaviest laterally, and the central region was generally zebrin negative. Zebrin-positive terminals were also observed in the the cerebellovestibular process, prepositus hypoglossi, and lateral tangential nucleus. We discuss our findings in light of similar studies in rats and with respect to the corticonuclear projections to the cerebellar nuclei and the functional connections of the vestibulocerebellum with the vestibular nuclei. Copyright © 2011 Wiley Periodicals, Inc.
New Parameterization of Neutron Absorption Cross Sections
NASA Technical Reports Server (NTRS)
Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.
1997-01-01
Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.
Defect Implosion Experiments (DIME) at OMEGA
NASA Astrophysics Data System (ADS)
Cobble, J. A.; Schmitt, M. J.; Tregillis, I. L.; Obrey, K. D.; Magelssen, G. R.; Wilke, M. D.; Glebov, V.; Marshall, F. J.; Kim, Y. H.; Bradley, P. A.; Batha, S. H.
2010-11-01
The Los Alamos DIME campaign involves perturbed spherical implosions, driven by 60 OMEGA beams with uniform, symmetrical illumination. D-T-filled CH-shell targets with equatorial-plane defects are designed to produce a non-spherical neutron burn region. The objectives of the DIME series are to observe the non-spherical burn with the neutron imaging system (NIS) and to simulate the physics of the neutron and x-ray production. We have demonstrated adequate neutron yield for NIS imaging with targets of diameter 860 μm. All targets are filled with 5 atm of DT. We used two separate shell thicknesses: 8 μm and 15 μm, thus testing both exploding pusher and ablative designs. Defect channel depth ranges from 0 -- 8 μm. Width is 20 -- 40 μm. Perfect targets have no defect. Numerical simulations predict enhanced x-ray emission, that is suggested by experiment. Results from a recent DIME campaign will be discussed.
Decay Pattern of Pygmy States Observed in Neutron-Rich Ne26
NASA Astrophysics Data System (ADS)
Gibelin, J.; Beaumel, D.; Motobayashi, T.; Blumenfeld, Y.; Aoi, N.; Baba, H.; Elekes, Z.; Fortier, S.; Frascaria, N.; Fukuda, N.; Gomi, T.; Ishikawa, K.; Kondo, Y.; Kubo, T.; Lima, V.; Nakamura, T.; Saito, A.; Satou, Y.; Scarpaci, J.-A.; Takeshita, E.; Takeuchi, S.; Teranishi, T.; Togano, Y.; Vinodkumar, A. M.; Yanagisawa, Y.; Yoshida, K.
2008-11-01
Coulomb excitation of the exotic neutron-rich nucleus Ne26 on a Pb208 target was measured at 58MeV/u in order to search for low-lying E1 strength above the neutron emission threshold. This radioactive beam experiment was carried out at the RIKEN Accelerator Research Facility. Using the invariant mass method in the Ne25+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV excitation energy. By performing a multipole decomposition of the differential cross section, a reduced dipole transition probability of B(E1)=0.49±0.16e2fm2 is deduced, corresponding to 4.9±1.6% of the Thomas-Reiche-Kuhn sum rule. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is measured. The extracted decay pattern is not consistent with several mean-field theory descriptions of the pygmy states.
Elastic and inelastic scattering of neutrons on 238U nucleus
NASA Astrophysics Data System (ADS)
Capote, R.; Trkov, A.; Sin, M.; Herman, M. W.; Soukhovitskiĩ, E. Sh.
2014-04-01
Advanced modelling of neutron induced reactions on the 238U nucleus is aimed at improving our knowledge of neutron scattering. Capture and fission channels are well constrained by available experimental data and neutron standard evaluation. A focus of this contribution is on elastic and inelastic scattering cross sections. The employed nuclear reaction model includes - a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides; - the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects; - and a multi-humped fission barrier with absorption in the secondary well described within the optical model for fission. Impact of the advanced modelling on elastic and inelastic scattering cross sections including angular distributions and emission spectra is assessed both by comparison with selected microscopic experimental data and integral criticality benchmarks including measured reaction rates (e.g. JEMIMA, FLAPTOP and BIG TEN). Benchmark calculations provided feedback to improve the reaction modelling. Improvement of existing libraries will be discussed.
Effect of multiple spin species on spherical shell neutron transmission analysis
NASA Technical Reports Server (NTRS)
Semler, T. T.
1972-01-01
A series of Monte Carlo calculations were performed in order to evaluate the effect of separated against merged spin statistics on the analysis of spherical shell neutron transmission experiments for gold. It is shown that the use of separated spin statistics results in larger average capture cross sections of gold at 24 KeV. This effect is explained by stronger windows in the total cross section caused by the interference between potential and J(+) resonances and by J(+) and J(-) resonance overlap allowed by the use of separated spin statistics.
NASA Technical Reports Server (NTRS)
Stelmakh, S.; Grzanka, E.; Zhao, Y.; Palosz, W.; Palosz, B.
2004-01-01
Thermal atomic motions of nanocrystalline Sic were characterized by two temperature atomic factors B(sub core), and B(sub shell). With the use of wide angle neutron diffraction data it was shown that at the diffraction vector above 15A(exp -1) the Wilson plots gives directly the temperature factor of the grain interior (B(sub core)). At lower Q values the slope of the Wilson plot provides information on the relative amplitudes of vibrations of the core and shell atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkubo, Makio
2009-08-15
In s-wave neutron resonances of {sup 40}Ca at E{sub n}{<=}2.5 MeV, S{sub n}/E{sub n} for many levels is found to be of the form 17(n/m) where n, m are small integers. Statistical tests show small probabilities for the observed dispositions of many levels at E{sub n}=(j/k)(1/70)G (j, k; small integers). To meet the requirement of time periodicity of the compound nucleus at resonance, a breathing model is developed, where the excitation energies E{sub x} are written as a sum of inverse integers; E{sub x}=S{sub n}+E{sub n}=G{sigma}(1/k) (k: integer). In {sup 40}Ca+n, the separation energy S{sub n}=8362 keV is written asmore » S{sub n}=(17/70)G=(1/7+1/10)G, where G=34.4 MeV. G is almost equal to the Fermi energy of the nucleus. It is suggested that two oscillators of energy (1/7)G and (1/10)G are excited in {sup 40}Ca by neutron incidence, in which the recurrence energy (1/70)G is resonant with neutrons of energies at (j/k)(1/70)G, forming a simple compound nucleus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenboonruang, Kiadtisak
In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R n, of a heavy nucleus and the proton radius, R p, to be in the order of several percent. To accurately obtain the difference, R n-R p, which is essentially a neutron skin, the Jefferson Lab Lead ( 208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scatteringmore » angle of 5° . Since Z 0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of R n with respect to R p. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 10 7 helicity-window quadruplets. The measured parity-violating electroweak asymmetry A PV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R n-R p = 0.33 +0.16 -0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.« less
Sackett, Deirdre A; Saddoris, Michael P; Carelli, Regina M
2017-01-01
Effective decision-making requires organisms to predict reward values and bias behavior toward the best available option. The mesolimbic dopamine system, including the nucleus accumbens (NAc) shell and core, is involved in this process. Although studies support a role of the shell and core in specific aspects of decision-making (e.g., risk, effort, delay), no studies have directly compared dopamine release dynamics in these subregions to cues exclusively signaling the availability of different reward magnitudes. Here, fast-scan cyclic voltammetry was used to compare rapid dopamine release dynamics in the NAc subregions during a magnitude-based decision-making task. Rats learned that distinct cues signaled the availability of either a small or large reward (one or two sugar pellets), and then were given an opportunity to choose their preferred option. We found that peak dopamine release tracked the more preferred (higher-magnitude) option in both core and shell subregions. Critically, however, overall (i.e., global) dopamine release was significantly higher and longer lasting in the shell and tracked the preferred magnitude during the entire cue period. Further, in the shell (not core), dopamine signaling significantly declined immediately at the lever press for reward but increased during the period of reward consumption. Collectively, the results indicate that although dopamine release in both the core and shell are activated by cues signaling the opportunity to respond for rewards of different magnitudes, dopamine release in the shell plays a differential and unique role in tracking information related to the outcome value of reward.
Assessing Contributions of Nucleus Accumbens Shell Subregions to Reward-Seeking Behavior
Reed, Michael D.; Hildebrand, David G. C.; Santangelo, Gabrielle; Moffa, Anthony; Pira, Ashley S.; Rycyna, Lisa; Radic, Mia; Price, Katherine; Archbold, Jonathan; McConnell, Kristi; Girard, Lauren; Morin, Kristen; Tang, Anna; Febo, Marcelo; Stellar, James R.
2015-01-01
Background The nucleus accumbens (NAc) plays a key role in brain reward processes including drug seeking and reinstatement. Several anatomical, behavioral, and neurochemical studies discriminate between the limbic-associated shell and the motor-associated core regions. Less studied is the fact that the shell can be further subdivided into a dorsomedial shell (NAcDMS) and an intermediate zone (NAcINT) based on differential expression of transient c-Fos and long-acting immediate-early gene ΔFosB upon cocaine sensitization. These disparate expression patterns suggest that NAc shell subregions may play distinct roles in reward-seeking behavior. In this study, we examined potential differences in the contributions of the NAcDMS and the NAcINT to reinstatement of reward-seeking behavior after extinction. Methods Rats were trained to intravenously self-administer cocaine, extinguished, and subjected to a reinstatement test session consisting of either an intracranial microinfusion of amphetamine or vehicle targeted to the NAcDMS or the NAcINT. Results Small amphetamine microinfusions targeted to the NAcDMS resulted in statistically significant reinstatement of lever pressing, whereas no statistical difference was observed for microinfusions targeted to the NAcINT. No significant difference was found for vehicle microinfusions in either case. Conclusion These results suggest heterogeneity in the behavioral relevance of NAc shell subregions, a possibility that can be tested in specific neuronal populations in the future with recently developed techniques including optogenetics. PMID:26048642
NASA Astrophysics Data System (ADS)
Moon, Russell; Calvo, Fabian; Vasiliev, Victor
2006-04-01
Using the principles of the Vortex Theory, it was discovered that when the gamma ray strikes a nucleon, the positively charged pentaquark [and the K^- meson] had to be created by the collision with neutron. This discovery further reveals that if the gamma ray strikes a proton it can create a Neutral Pentaquark [and a D^+ meson]. The neutral pentaquark will consist of an up, up, down, down, and an anti-charm quark, while the D^+ meson will consist of a charm and an anti-down quark. The neutral pentaquark will later decay into a neutron and D^0 meson. Because the vortex theory also reveals that the strong force couples a proton to a neutron, the neutron that was coupled to the proton in the nucleus will also be found amid the debris particles. 1. R. G. Moon, The Vortex Theory, The Beginning. Gordons Publications of Fort Lauderdale Fla., 2003, 184 pp. 2. R. G. Moon, The Vortex Theory Explains the Quark Theory. Gordons Publications of Fort Lauderdale Fla., 2005, 205 pp. 3. R.G. Moon, V.V. Vasiliev, The bases of the vortex theory, Book of abstracts The 53 International Meeting on Nuclear Spectroscopy and Nuclear structure, NUCLEUS-2003, October 7-10, 2003, Moscow, St.-Petersburg, Russia, 2003, p.251 4. R.G. Moon, V.V. Vasiliev, The Vortex Theory and Some Interaction in Nuclear Physics, Book of abstracts The 54 International Meeting on Nuclear Spectroscopy and Nuclear Structure, NUCLEUS-2004, June 22-25, 2004, Belgorod, Russia, 2004, p.259 5. R.G. Moon, V.V. Vasiliev. Explanation of the Conservation of Lepton Number, Book of abstracts LV National Conference on Nuclear Physics, Frontiers in the Physics of Nucleus, June 28-July 1, 2005, Saint-Petersburg, Russia, 2005, p. 347
Current Status of Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Bertulani, Carlos A.; Hussein, Mahir S.
2015-12-01
In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in pursuing a career in nuclear physics.
ERIC Educational Resources Information Center
LaLumiere, Ryan T.; Nawar, Erene M.; McGaugh, James L.
2005-01-01
Previous findings indicate that the basolateral amygdala (BLA) and the nucleus accumbens (NAc) interact in influencing memory consolidation. The current study investigated whether this interaction requires concurrent dopamine (DA) receptor activation in both brain regions. Unilateral, right-side cannulae were implanted into the BLA and the…
NASA Astrophysics Data System (ADS)
Indi Sriprisan, Sirikul; Townsend, Lawrence; Cucinotta, Francis A.; Miller, Thomas M.
Purpose: An analytical knockout-ablation-coalescence model capable of making quantitative predictions of the neutron spectra from high-energy nucleon-nucleus and nucleus-nucleus collisions is being developed for use in space radiation protection studies. The FORTRAN computer code that implements this model is called UBERNSPEC. The knockout or abrasion stage of the model is based on Glauber multiple scattering theory. The ablation part of the model uses the classical evaporation model of Weisskopf-Ewing. In earlier work, the knockout-ablation model has been extended to incorporate important coalescence effects into the formalism. Recently, alpha coalescence has been incorporated, and the ability to predict light ion spectra with the coalescence model added. The earlier versions were limited to nuclei with mass numbers less than 69. In this work, the UBERNSPEC code has been extended to make predictions of secondary neutrons and light ion production from the interactions of heavy charged particles with higher mass numbers (as large as 238). The predictions are compared with published measurements of neutron spectra and light ion energy for a variety of collision pairs. Furthermore, the predicted spectra from this work are compared with the predictions from the recently-developed heavy ion event generator incorporated in the Monte Carlo radiation transport code HETC-HEDS.
NASA Astrophysics Data System (ADS)
Ohkubo, Makio
2016-06-01
In observed neutron resonances, long believed to be a form of quantum chaos, regular family structures are found in the s-wave resonances of many even-even nuclei in the tens keV to MeV region [M.Ohkubo, Phys. Rev. C 87, 014608(2013)]. Resonance reactions take place when the incident de Broglie wave synchronizes with the Poincaré cycle of the compound nucleus, which is composed of several normal modes with periods that are time quantized by inverse Fermi energy. Based on the breathing model of the compound nucleus, neutron resonance energies in family structures are written by simple arithmetic expressions using Sn and small integers. Family structures in observed resonances of 40Ca+n and 37Cl+n are described as simple cases. A model for time quantization is discussed.
Table Resonance Integrals & Thermal Cross Sections Book Review by J. Rowlands Nuclear Reaction Atlas of Neutron Resonances Preface: This book is the fifth edition of what was previously known as BNL extensive list of detailed individual resonance parameters for each nucleus, this book contains thermal
Stretched proton-neutron configurations in fp-shell nuclei (II). Systematics
NASA Astrophysics Data System (ADS)
von Neumann-Cosel, P.; Fister, U.; Jahn, R.; Schenk, P.; Trelle, T. K.; Wenzel, D.; Wienands, U.
1994-03-01
The systematics of the binding energies of stretched proton-neutron configurations ( f{7}/{2}, g{9}/{2}) 8 -, ( p{3}/{2}, g{9}/{2}) 6 -, ( g{9}/{2}, p{3}/{2}) 6- and ( g{9}/{2}) 29 + are studied over a wide range of f p-shell nuclei. The effective proton-neutron interaction energies deduced from the data are nearly constant for ( p{3}/{2}, g{9}/{2}) 6 -and ( g{9}/{2}) 29 + states while the ( f{7}/{2}, g{9}/{2}) 8 - configuration reveals an additional repulsive term proportional to the partial filling of the f{7}/{2} orbit in the target ground state. Two-body matrix elements are extracted. A crude shell model, which predicts that the excitation energy of a stretched state is equal to the sum of the single-particle energies, works well for the 6 - and 9 + states, but fails for the 8 - levels due to neglect of the additional interactions described above. The physics underlying the empirically introduced basic assumptions of the crude shell model is discussed. The binding energies are found to be linearly dependent on the mass number A and the isospin Tz component and are well described by the weak-coupling model of Bansal and French. The derived parameters agree with averaged values of a similar analysis for the single-particle states in the corresponding odd-even neighbours. The data indicate a significant change of the particle-hole energies with closure of the proton f{7}/{2} shell.
Hartree-Fock mass formulas and extrapolation to new mass data
NASA Astrophysics Data System (ADS)
Goriely, S.; Samyn, M.; Heenen, P.-H.; Pearson, J. M.; Tondeur, F.
2002-08-01
The two previously published Hartree-Fock (HF) mass formulas, HFBCS-1 and HFB-1 (HF-Bogoliubov), are shown to be in poor agreement with new Audi-Wapstra mass data. The problem lies first with the prescription adopted for the cutoff of the single-particle spectrum used with the δ-function pairing force, and second with the Wigner term. We find an optimal mass fit if the spectrum is cut off both above EF+15 MeV and below EF-15 MeV, EF being the Fermi energy of the nucleus in question. In addition to the Wigner term of the form VW exp(-λ|N-Z|/A) already included in the two earlier HF mass formulas, we find that a second Wigner term linear in |N-Z| leads to a significant improvement in lighter nuclei. These two features are incorporated into our new Hartree-Fock-Bogoliubov model, which leads to much improved extrapolations. The 18 parameters of the model are fitted to the 2135 measured masses for N,Z>=8 with an rms error of 0.674 MeV. With this parameter set a complete mass table, labeled HFB-2, has been constructed, going from one drip line to the other, up to Z=120. The new pairing-cutoff prescription favored by the new mass data leads to weaker neutron-shell gaps in neutron-rich nuclei.
Shell effects in a multinucleon transfer process
NASA Astrophysics Data System (ADS)
Zhu, Long; Wen, Pei-Wei; Lin, Cheng-Jian; Bao, Xiao-Jun; Su, Jun; Li, Cheng; Guo, Chen-Chen
2018-04-01
The shell effects in multinucleon transfer process are investigated in the systems 136Xe + 198Pt and 136Xe + 208Pb within the dinuclear system (DNS) model. The temperature dependence of shell corrections on potential energy surface is taken into account in the DNS model and remarkable improvement for description of experimental data is noticed. The reactions 136Xe + 186W and 150Nd + 186W are also studied. It is found that due to shell effects the projectile 150Nd is more promising for producing transtarget nuclei rather than 136Xe with neutron shell closure.
Improvement of gross theory of beta-decay for application to nuclear data
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki; Yoshida, Tadashi; Tachibana, Takahiro; Chiba, Satoshi
2017-09-01
A theoretical study of β decay and delayed neutron has been carried out with a global β-decay model, the gross theory. The gross theory is based on a consideration of the sum rule of the β-strength function, and gives reasonable results of β-decay rates and delayed neutron in the entire nuclear mass region. In a fissioning nucleus, neutrons are produced by β decay of neutron-rich fission fragments from actinides known as delayed neutrons. The average number of delayed neutrons is estimated based on the sum of the β-delayed neutron-emission probabilities multiplied by the cumulative fission yield for each nucleus. Such a behavior is important to manipulate nuclear reactors, and when we adopt some new high-burn-up reactors, properties of minor actinides will play an important roll in the system, but these data have not been sufficient. We re-analyze and improve the gross theory. For example, we considered the parity of neutrons and protons at the Fermi surface, and treat a suppression for the allowed transitions in the framework of the gross theory. By using the improved gross theory, underestimated half-lives in the neutron-rich indium isotopes and neighboring region increase, and consequently follow experimental trend. The ability of reproduction (and also prediction) of the β-decay rates, delayed-neutron emission probabilities is discussed. With this work, we have described the development of a programming code of the gross theory of β-decay including the improved parts. After preparation finished, this code can be released for the nuclear data community.
NASA Astrophysics Data System (ADS)
Carjan, Nicolae; Rizea, Margarit; Talou, Patrick
2017-09-01
Prompt fission neutrons (PFN) angular and energy distributions for the reaction 235U(nth,f) are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1) PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10-21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2) PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.
Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes
NASA Astrophysics Data System (ADS)
Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.
2017-09-01
We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.
Beta-Delayed Neutron Spectroscopy of 72Co with VANDLE
NASA Astrophysics Data System (ADS)
Keeler, Andrew; Grzywacz, Robert; King, Thomas; Taylor, Steven; Paulauskas, Stanley; Zachary, Christopher; Vandle Collaboration
2017-09-01
Measurements of simple, closed-shell isotopes far from stability provide important benchmarks for nuclear models and are a key constraint in r-process calculations. In particular, r-process models are sensitive to beta decay lifetimes and branching ratios of these neutron-rich isotopes. In this experiment, the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was used to observe decays of nuclei produced by the fragmentation of 82Se at the National Superconducting Cyclotron Laboratory (NSCL). The neutron and gamma emissions of 72Co were measured to map the beta strength distribution (S_beta) above the neutron separation energy and infer the size of the Z = 28 shell gap in the 78Ni region. An implantation detector made of a radiation-hardened, inorganic scintillator was used to correlate implanted ions with beta decays as well as provide a start signal for the neutron Time of Flight measurement. Funded by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA0002132 and by the Office of Nuclear Physics, U.S. Department of Energy under Awards No. DE-FG02-96ER40983 (UTK).
Collective properties of low-lying octupole excitations in 208
NASA Astrophysics Data System (ADS)
Zhou, X. R.; Zhao, E. G.; Dong, B. G.; Zhang, X. Z.; Long, G. L.
2003-08-01
The octupole strengths of three nuclei: β-stable nucleus 20882Pb 126, neutron skin nucleus 6020Ca 40 and neutron drip line nucleus 288O 20 are studied by using the self-consistent Hartree-Fock calculation with the random phase approximation. The collective properties of low-lying excitations are analyzed by particle-vibration coupling. The results show that there is the coexistence of the collective excitations and the decoupled strong continuum strength near the threshold in the lowest isoscalar states in 6020Ca 40 and 288O 20. For these three nuclei, both the low-lying isoscalar states and giant isoscalar resonance carry isovector strength. The ratio B(IV)/ B(IS) is checked and it is found that, for 20882Pb 126, the ratio is equal to (( N- Z)/ A) 2 in good accuracy, while for 6020Ca 40 and 288O 20, the ratios are much larger than (( N- Z)/ A) 2. The study shows that the enhancement of the ratio is due to the excess neutrons that have small binding energies in 6020Ca 40 and 288O 20.
Helium-Shell Nucleosynthesis and Extinct Radioactivities
NASA Technical Reports Server (NTRS)
Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.
2004-01-01
Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.
Charge radii of neutron-deficient Ca isotopes
NASA Astrophysics Data System (ADS)
Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.
2017-09-01
Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.
Designing an extended energy range single-sphere multi-detector neutron spectrometer
NASA Astrophysics Data System (ADS)
Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Esposito, A.; Pola, A.; Introini, M. V.; Mazzitelli, G.; Quintieri, L.; Buonomo, B.
2012-06-01
This communication describes the design specifications for a neutron spectrometer consisting of 31 thermal neutron detectors, namely Dysprosium activation foils, embedded in a 25 cm diameter polyethylene sphere which includes a 1 cm thick lead shell insert that degrades the energy of neutrons through (n,xn) reactions, thus allowing to extension of the energy range of the response up to hundreds of MeV neutrons. The new spectrometer, called SP2 (SPherical SPectrometer), relies on the same detection mechanism as that of the Bonner Sphere Spectrometer, but with the advantage of determining the whole neutron spectrum in a single exposure. The Monte Carlo transport code MCNPX was used to design the spectrometer in terms of sphere diameter, number and position of the detectors, position and thickness of the lead shell, as well as to obtain the response matrix for the final configuration. This work focuses on evaluating the spectrometric capabilities of the SP2 design by simulating the exposure of SP2 in neutron fields representing different irradiation conditions (test spectra). The simulated SP2 readings were then unfolded with the FRUIT unfolding code, in the absence of detailed pre-information, and the unfolded spectra were compared with the known test spectra. The results are satisfactory and allowed approving the production of a prototypal spectrometer.
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
NASA Astrophysics Data System (ADS)
Wirth, Roland; Roth, Robert
2018-04-01
We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.
NASA Astrophysics Data System (ADS)
Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.
2012-02-01
We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.
Isoscalar neutron-proton pairing and SU(4)-symmetry breaking in Gamow-Teller transitions
NASA Astrophysics Data System (ADS)
Kaneko, K.; Sun, Y.; Mizusaki, T.
2018-05-01
The isoscalar neutron-proton pairing is thought to be important for nuclei with equal number of protons and neutrons but its manifestation in structure properties remains to be understood. We investigate the Gamow-Teller (GT) transitions for the f7 /2-shell nuclei in large-scale shell-model calculations with the realistic Hamiltonian. We show that the isoscalar T =0 ,Jπ=1+ neutron-proton pairing interaction plays a decisive role for the concentration of GT strengths at the first-excited 11+ state in 42Sc, and that the suppression of these strengths in 46V, 50Mn, and 54Co is mainly caused by the spin-orbit force supplemented by the quadrupole-quadrupole interaction. Based on the good reproduction of the charge-exchange reaction data, we further analyze the interplay between the isoscalar and isovector pairing correlations. We conclude that even for the most promising A =42 nuclei where the SU(4) isoscalar-isovector-pairing symmetry is less broken, the probability of forming an isoscalar neutron-proton pairing condensation is less than 60% as compared to the expectation at the SU(4)-symmetry limit.
ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.
ERIC Educational Resources Information Center
DETERLINE, WILLIAM A.; KLAUS, DAVID J.
THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…
NASA Technical Reports Server (NTRS)
Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.
2003-01-01
For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as prefragments, then decay by the emission of nucleons, composites, and gamma rays. Recent improvements to the model have incorporated coalescence effects, which effectively tie up single nucleons in the formation of composites during final-state interactions. Comparison of the improved model s predictions with neutron production data near 0 deg in the CA-40+ H reaction at 357 and 565 MeV/nucleon show marked improvement.
Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering
Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; ...
2012-03-15
We report the first measurement of the parity-violating asymmetry A PV in the elastic scattering of polarized electrons from 208Pb. A PV is sensitive to the radius of the neutron distribution (R n). The result A PV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions R n-R p = 0.33 -0.18 +0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.
Measurement of the neutron radius of 208Pb through parity violation in electron scattering.
Abrahamyan, S; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Averett, T; Babineau, B; Barbieri, A; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Bielarski, T; Boeglin, W; Camsonne, A; Canan, M; Carter, P; Cates, G D; Chen, C; Chen, J-P; Hen, O; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, D; Etile, A; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gasser, E; Gilman, R; Giusa, A; Glamazdin, A; Gomez, J; Grames, J; Gu, C; Hansen, O; Hansknecht, J; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Hyde, C E; Itard, F; Jen, C-M; Jensen, E; Jin, G; Johnston, S; Kelleher, A; Kliakhandler, K; King, P M; Kowalski, S; Kumar, K S; Leacock, J; Leckey, J; Lee, J H; LeRose, J J; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; McCreary, A; McNulty, D; Mercado, L; Meziani, Z-E; Michaels, R W; Mihovilovic, M; Muangma, N; Muñoz-Camacho, C; Nanda, S; Nelyubin, V; Nuruzzaman, N; Oh, Y; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, B; Pomatsalyuk, R; Posik, M; Puckett, A J R; Quinn, B; Rakhman, A; Reimer, P E; Riordan, S; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Slifer, K; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Zhu, P
2012-03-16
We report the first measurement of the parity-violating asymmetry A(PV) in the elastic scattering of polarized electrons from 208Pb. A(PV) is sensitive to the radius of the neutron distribution (R(n)). The result A(PV)=0.656±0.060(stat)±0.014(syst) ppm corresponds to a difference between the radii of the neutron and proton distributions R(n)-R(p)=0.33(-0.18)(+0.16) fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.
Sex differences in neurotensin and substance P following nicotine self-administration in rats.
Pittenger, Steven T; Swalve, Natashia; Chou, Shinnyi; Smith, Misty D; Hoonakker, Amanda J; Pudiak, Cindy M; Fleckenstein, Annette E; Hanson, Glen R; Bevins, Rick A
2016-08-01
Investigator-administered nicotine alters neurotensin and substance P levels in Sprague-Dawley rats. This finding suggested a role of the dopamine-related endogenous neuropeptides in nicotine addiction. We sought to extend this observation by determining the responses of neurotensin and substance P systems (assessed using radioimmunoassay) in male and female rats following nicotine self-administration (SA). Male and female Sprague-Dawley were trained to self-administer nicotine, or receive saline infusions yoked to a nicotine-administering rat during daily sessions (1-h; 21 days). Brains were extracted 3 h after the last SA session. Nicotine SA increased tissue levels of neurotensin in the males in the anterior and posterior caudate, globus pallidus, frontal cortex, nucleus accumbens core and shell, and ventral tegmental area. Nicotine SA also increased tissue levels of neurotensin in the females in the anterior caudate, globus pallidus, nucleus accumbens core and shell, but not in the posterior caudate, frontal cortex, or ventral tegmental area. There were fewer sex differences observed in the substance P systems. Nicotine SA increased tissue levels of substance P in both the males and females in the posterior caudate, globus pallidus, frontal cortex, nucleus accumbens shell, and ventral tegmental area. A sex difference was observed in the nucleus accumbens core, where nicotine SA increased tissue levels of substance P in the males, yet decreased levels in the females. The regulation of neuropeptides following nicotine SA may play a role in the susceptibility to nicotine dependence in females and males. Synapse 70:336-346, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Momentum sharing in imbalanced Fermi systems
NASA Astrophysics Data System (ADS)
Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16
2014-10-01
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
ERIC Educational Resources Information Center
Cheng, Jingjun; Feenstra, Matthijs G. P.
2006-01-01
Combined activation of dopamine D1- and NMDA-glutamate receptors in the nucleus accumbens has been strongly implicated in instrumental learning, the process in which an individual learns that a specific action has a wanted outcome. To assess dopaminergic activity, we presented rats with two sessions (30 trials each) of a one-lever appetitive…
Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni
Crider, B. P.; Prokop, C. J.; Liddick, S. N.; ...
2016-10-15
Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40), the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0 + states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0 + states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions.more » The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons.« less
West, Elizabeth A.
2016-01-01
Nucleus accumbens (NAc) neurons encode features of stimulus learning and action selection associated with rewards. The NAc is necessary for using information about expected outcome values to guide behavior after reinforcer devaluation. Evidence suggests that core and shell subregions may play dissociable roles in guiding motivated behavior. Here, we recorded neural activity in the NAc core and shell during training and performance of a reinforcer devaluation task. Long–Evans male rats were trained that presses on a lever under an illuminated cue light delivered a flavored sucrose reward. On subsequent test days, each rat was given free access to one of two distinctly flavored foods to consume to satiation and were then immediately tested on the lever pressing task under extinction conditions. Rats decreased pressing on the test day when the reinforcer earned during training was the sated flavor (devalued) compared with the test day when the reinforcer was not the sated flavor (nondevalued), demonstrating evidence of outcome-selective devaluation. Cue-selective encoding during training by NAc core (but not shell) neurons reliably predicted subsequent behavioral performance; that is, the greater the percentage of neurons that responded to the cue, the better the rats suppressed responding after devaluation. In contrast, NAc shell (but not core) neurons significantly decreased cue-selective encoding in the devalued condition compared with the nondevalued condition. These data reveal that NAc core and shell neurons encode information differentially about outcome-specific cues after reinforcer devaluation that are related to behavioral performance and outcome value, respectively. SIGNIFICANCE STATEMENT Many neuropsychiatric disorders are marked by impairments in behavioral flexibility. Although the nucleus accumbens (NAc) is required for behavioral flexibility, it is not known how NAc neurons encode this information. Here, we recorded NAc neurons during a training session in which rats learned that a cue predicted a specific reward and during a test session when that reward value was changed. Although encoding in the core during training predicted the ability of rats to change behavior after the reward value was altered, the NAc shell encoded information about the change in reward value during the test session. These findings suggest differential roles of the core and shell in behavioral flexibility. PMID:26818502
Measurement of picosecond lifetimes in neutron-rich Xe isotopes
NASA Astrophysics Data System (ADS)
Ilieva, S.; Kröll, Th.; Régis, J.-M.; Saed-Samii, N.; Blanc, A.; Bruce, A. M.; Fraile, L. M.; de France, G.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Jentschel, M.; Jolie, J.; Korten, W.; Köster, U.; Lalkovski, S.; Lozeva, R.; Mach, H.; Mǎrginean, N.; Mutti, P.; Paziy, V.; Regan, P. H.; Simpson, G. S.; Soldner, T.; Thürauf, M.; Ur, C. A.; Urban, W.; Warr, N.
2016-09-01
Background: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of 235U and 241Pu, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even 138,140,142Xe isotopes lying between the double shell closure N =82 and Z =50 and a deformed region with octupole collectivity. Method: The γ rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N =82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N =90 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasjev, A.V.; Laboratory of Radiation Physics, Institute of Solid State Physics, University of Latvia, LV 2169 Salaspils, Miera str. 31; Frauendorf, S.
The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean-field theory. A large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, whereas a flatter density distribution favors N=184 and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of the central depression are discussed for relativistic and nonrelativistic mean field theories.
The generator coordinate Dirac-Fock method for open-shell atomic systems
NASA Astrophysics Data System (ADS)
Malli, Gulzari L.; Ishikawa, Yasuyuki
1998-11-01
Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.
Quasispherical subsonic accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.
2013-04-01
A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short-term frequency fluctuations, which may correlate or anticorrelate with the observed X-ray luminosity fluctuations.
NASA Astrophysics Data System (ADS)
Bachri, A.; Elmhamdi, A.; Hawron, M.; Grant, P.; Zazoum, B.; Martin, C.
2017-10-01
The xenon time projection chamber (TPC) promises a novel detection method for neutrinoless double-beta decay (0ν β β ) experiments. The TPC is capable of discovering the rare 0ν β β ionization signal of a distinct topological signature, with a decay energy Qββ = 2.458 MeV . However, more frequent internal (within TPC) and external events are also capable of depositing energy in the range of the Qβ β -value inside the chamber, thus mimicking 0ν β β or interfering with its direct observation. In the following paper, we illustrate a methodology for background radiation evaluation, assuming a basic cylindrical design for a toy titanium TPC that is capable of containing 100 kg of xenon gas at 20 atm pressure; we estimate the background budget and analyze the most prominent problematic events via theoretical calculation. Gamma rays emitted from nuclei of 214Bi and 208Tl present in the outer-shell titanium housing of the TPC are an example of such events for which we calculate probabilities of occurrences. We also study the effect of alpha-neutron (α-n)-induced neutrons and calculate their rate. Alpha particles which are created by the decay of naturally occurring uranium and thorium present in most materials, can react with the nucleus of low Z elements, prompting the release of neutrons and leading to thermal neutron capture. Our calculations suggest that the typical polytetrafluoroethylene (PTFE) inner coating of the chamber would constitute the primary material for neutron production, specifically; we find that the fluorine component of Teflon is much more likely to undergo an (α-n) reaction. From known contamination, we calculate an alpha production rate to be 5.5 × 107 alpha/year for the highest-purity titanium vessel with a Teflon lining. Lastly, using measurements of neutron flux from alpha bombardment, we estimate the expected neutron flux from the materials of the proposed toy TPC and identify all gamma rays (prompt or delayed, of energies comparable to the Qβ β -value) originating from thermal neutron capture with all stable elemental isotopes present in the TPC. We show that to limit the most probable reactions to a rate of one event per year or less, the neutron flux would have to be reduced to (3-6) × 10-10 cm-2ṡs-1. The predictions of our crude theoretical calculation are in good agreement with full simulation of TPC radiation background by existing experimental collaboration using xenon for 0ν β β experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Douglas Carl; Loomis, Eric Nicholas
2017-08-17
We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 10 10 to a few 10 11 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 10 14 neutrons). It also pertains to fills of gasmore » diluted with hydrogen, helium ( 3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.« less
α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni
NASA Astrophysics Data System (ADS)
Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.
2015-06-01
Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeV
Persistence of the Z =28 Shell Gap Around 78Ni: First Spectroscopy of 79Cu
NASA Astrophysics Data System (ADS)
Olivier, L.; Franchoo, S.; Niikura, M.; Vajta, Z.; Sohler, D.; Doornenbal, P.; Obertelli, A.; Tsunoda, Y.; Otsuka, T.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Z.; Flavigny, F.; Giacoppo, F.; Gottardo, A.; Hadyńska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Louchart, C.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Ogata, K.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Werner, V.; Wu, J.; Xu, Z.
2017-11-01
In-beam γ -ray spectroscopy of 79Cu is performed at the Radioactive Isotope Beam Factory of RIKEN. The nucleus of interest is produced through proton knockout from a 80Zn beam at 270 MeV /nucleon . The level scheme up to 4.6 MeV is established for the first time and the results are compared to Monte Carlo shell-model calculations. We do not observe significant knockout feeding to the excited states below 2.2 MeV, which indicates that the Z =28 gap at N =50 remains large. The results show that the 79Cu nucleus can be described in terms of a valence proton outside a 78Ni core, implying the magic character of the latter.
Nuclear Structure Near the N=Z Line in the A=80 Region
NASA Astrophysics Data System (ADS)
Gross, Carl J.
1996-11-01
Self-conjugate nuclei are unique laboratory systems which allow specific facets of nuclear structure to be explored. Shell gaps present in the single-particle spectra are reinforced by both proton and neutron Fermi levels. As a result of this localized occupation, proton-neutron correlations can contribute to the overall pairing energy resulting in a more stable system. Through the use of large germanium detector arrays and recoil separators, these nuclei, which are produced with extremely small fusion-evaporation cross-sections, have been observed using in-beam spectroscopic techniques only within the past decade. Typically, only the first two or three transitions have been observed. Now that even more efficient germanium arrays and recoil mass spectrometers are being coupled together, more detailed spectroscopic information may be obtained. Data will be presented for the self-conjugate odd-odd nucleus ^74Rb (D. Rudolph, et al. al.), Phys. Rev. Lett. 76, 376 (1996) whose energy level spacings are more like the even-even isotone ^74Kr than its nearest odd-odd neighbor ^76Rb. The Tz = +1/2 nuclei ^75Rb and ^77Sr (C. J. Gross, et al. al.), Phys. Rev. C 49, R580 (1994) reveal possible evidence for neutron-proton correlations at moderate spins and these data will also be presented. In addition, a systematic study of the Tz = 1 nuclei ^74Kr, ^78Sr, ^82Zr, and ^86Mo (D. Rudolph, et al. al.), Phys. Rev. C 54, 117 (1996) has been undertaken. These nuclei, reveal how the collectivity changes throughout the region. This work was supported by the U. S. Department of Energy under contracts DE-AC05-76OR00033 and DE-AC05-96OR22464.
Coulomb Excitation of the 64Ni Nucleus and Application of Inverse Kinematics
NASA Astrophysics Data System (ADS)
Greaves, Beau; Muecher, Dennis; Ali, Fuad A.; Drake, Tom; Bildstein, Vinzenz; Berner, Christian; Gernhaeuser, Roman; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.
2017-09-01
In this contribution, we present new data on the semi-magic 64Ni nucleus, close to the N =40 harmonic oscillator shell gap. Recent studies suggest a complicated existence of shape coexistence in 68Ni, likely caused by type-II shell evolutions. The region studied here thus might define the ``shore'' of the region of more deformed nuclei in the Island of Inversion below 68Ni. At the Maier-Leibnitz-Laboratory (MLL) in Munich, a beam of 64Ni was excited using Coulomb excitation. The high-granularity MINIBALL HPGe array and a segmented silicon strip detector were used to identify gamma decays in 64Ni. Doppler-shifted attenuation method (DSAM) analysis was applied to the experimental data acquired to resolve the low-lying excited states and acquire a lifetime measurement based on Geant4 simulations of the first excited 2 + state, clarifying the previously conflicting results. Furthermore, we show DSAM data following transfer reactions in inverse kinematics. This new method has the potential to provide insight into tests of ab-initio shell model calculations in the sd-pf shell and for the study of nuclear reaction rates. Supported under NSERC SAPIN-2016-00030.
NASA Astrophysics Data System (ADS)
Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Dai, Lianrong; Draayer, Jerry P.
2018-05-01
An extended pairing Hamiltonian that describes multi-pair interactions among isospin T = 1 and angular momentum J = 0 neutron-neutron, proton-proton, and neutron-proton pairs in a spherical mean field, such as the spherical shell model, is proposed based on the standard T = 1 pairing formalism. The advantage of the model lies in the fact that numerical solutions within the seniority-zero symmetric subspace can be obtained more easily and with less computational time than those calculated from the mean-field plus standard T = 1 pairing model. Thus, large-scale calculations within the seniority-zero symmetric subspace of the model is feasible. As an example of the application, the average neutron-proton interaction in even-even N ∼ Z nuclei that can be suitably described in the f5 pg9 shell is estimated in the present model, with a focus on the role of np-pairing correlations.
Designing Mixed Detergent Micelles for Uniform Neutron Contrast
Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.
2017-09-29
Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less
Designing Mixed Detergent Micelles for Uniform Neutron Contrast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.
Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less
β-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Shibagaki, Shota; Yoshida, Takashi; Kajino, Toshitaka; Otsuka, Takaharu
2018-06-01
Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.
Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theroine, C.; Ebran, A.; Meot, V.
2013-06-10
The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.
Assessing contributions of nucleus accumbens shell subregions to reward-seeking behavior.
Reed, Michael D; Hildebrand, David G C; Santangelo, Gabrielle; Moffa, Anthony; Pira, Ashley S; Rycyna, Lisa; Radic, Mia; Price, Katherine; Archbold, Jonathan; McConnell, Kristi; Girard, Lauren; Morin, Kristen; Tang, Anna; Febo, Marcelo; Stellar, James R
2015-08-01
The nucleus accumbens (NAc) plays a key role in brain reward processes including drug seeking and reinstatement. Several anatomical, behavioral, and neurochemical studies discriminate between the limbic-associated shell and the motor-associated core regions. Less studied is the fact that the shell can be further subdivided into a dorsomedial shell (NAcDMS) and an intermediate zone (NAcINT) based on differential expression of transient c-Fos and long-acting immediate-early gene ΔFosB upon cocaine sensitization. These disparate expression patterns suggest that NAc shell subregions may play distinct roles in reward-seeking behavior. In this study, we examined potential differences in the contributions of the NAcDMS and the NAcINT to reinstatement of reward-seeking behavior after extinction. Rats were trained to intravenously self-administer cocaine, extinguished, and subjected to a reinstatement test session consisting of an intracranial microinfusion of either amphetamine or vehicle targeted to the NAcDMS or the NAcINT. Small amphetamine microinfusions targeted to the NAcDMS resulted in statistically significant reinstatement of lever pressing, whereas no significant difference was observed for microinfusions targeted to the NAcINT. No significant difference was found for vehicle microinfusions in either case. These results suggest heterogeneity in the behavioral relevance of NAc shell subregions, a possibility that can be tested in specific neuronal populations in the future with recently developed techniques including optogenetics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de; Harizanova, Ruzha; Tatchev, Dragomir
2015-02-15
Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enrichedmore » in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.« less
van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P.; Vanderschuren, Louk J. M. J.
2012-01-01
Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054
van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M
2012-01-01
Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.
Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J
2008-10-01
We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.
Fission Reaction Event Yield Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona
FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).
NASA Astrophysics Data System (ADS)
Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu
2016-08-01
Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.
Empirical mass formula with proton-neutron interaction
NASA Astrophysics Data System (ADS)
Tachibana, Takahiro; Uno, Masahiro; Yamada, So; Yamada, Masami
1987-12-01
An atomic mass formula consisting of a gross part, and averge even-odd part and an empirical shell part is studied. The gross part is, apart from a small atomic term, taken to be the sum of nucleon rest masses. Coulomb energies and a polynomial in A1/3 and ‖N-Z‖/A. The shell part includes, in addition to proton and neutron support of nuclear magicities and the cooperative deformation effect. After the first construction of such a formula, refinements have been made in two respects. One is a separate treatment of Z=N odd-odd nuclei suggested by a quartet model, and the other is an improvement of the proton neutron interaction term. By these refinements the root-mean-square deviation of calculated masses from the 1986 Audi-Wapstra masses has been reduced from 538 keV to 460 keV.
Characterizing subcritical assemblies with time of flight fixed by energy estimation distributions
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara
2018-04-01
We present the Time of Flight Fixed by Energy Estimation (TOFFEE) as a measure of the fission chain dynamics in subcritical assemblies. TOFFEE is the time between correlated gamma rays and neutrons, subtracted by the estimated travel time of the incident neutron from its proton recoil. The measured subcritical assembly was the BeRP ball, a 4.482 kg sphere of α-phase weapons grade plutonium metal, which came in five configurations: bare, 0.5, 1, and 1.5 in iron, and 1 in nickel closed fitting shell reflectors. We extend the measurement with MCNPX-PoliMi simulations of shells ranging up to 6 inches in thickness, and two new reflector materials: aluminum and tungsten. We also simulated the BeRP ball with different masses ranging from 1 to 8 kg. A two-region and single-region point kinetics models were used to model the behavior of the positive side of the TOFFEE distribution from 0 to 100 ns. The single region model of the bare cases gave positive linear correlations between estimated and expected neutron decay constants and leakage multiplications. The two-region model provided a way to estimate neutron multiplication for the reflected cases, which correlated positively with expected multiplication, but the nature of the correlation (sub or superlinear) changed between material types. Finally, we found that the areal density of the reflector shells had a linear correlation with the integral of the two-region model fit. Therefore, we expect that with knowledge of reflector composition, one could determine the shell thickness, or vice versa. Furthermore, up to a certain amount and thickness of the reflector, the two-region model provides a way of distinguishing bare and reflected plutonium assemblies.
Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.
2017-10-01
A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth
The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).
Shielding materials for highly penetrating space radiations
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.; Orwoll, Robert A.
1995-01-01
Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers are most effective in reducing the energy of neutrons. Once neutrons are reduced to very low energies, the probability for undergoing a reaction with a nucleus (the cross section) becomes very high. The product of such a reaction is often radioactive and can involve the release of a significant amount of energy. Thus, it is important to provide protection from low energy neutrons during a long duration space flight. Among the light elements, lithium and boron each have an isotope with a large thermal neutron capture cross section, Li-6 and B-10. However, B-10 is more abundant in the naturally-occurring element than Li-6, has a thermal neutron capture cross section four times that of Li-6, and produces the stable products, He-4 and Li-7 in the interaction while Li-6 produces radioactive tritium (H-3). Thus, boron is the best light-weight material for thermal neutron absorption in spacecraft. The work on this project was focused in two areas: computer design where existing computer codes were used, and in some cases modified, to calculate the propagation and interactions of high energy charged particles through various media, and materials development where boron was incorporated into high performance materials.
NASA Astrophysics Data System (ADS)
Murphy, T. J.; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Baumgaertel, J. A.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.
2013-10-01
Mix of shell material into ICF capsule fuel can degrade implosion performance through a number of mechanisms. One way is by dilution of the fusion fuel, which affects performance by an amount that is dependent on the degree of mix at the atomic level. Experiments are underway to quantify the mix of shell material into fuel using directly driven capsules on the National Ignition Facility. Deuterated plastic shells will be utilized with tritium fill so that the production of DT neutrons is indicative of mix at the atomic level. Neutron imaging will locate the burn region and spectroscopic imaging of the doped layers will reveal the location, temperature, and density of the shell material. Correlation of the two will be used to determine the degree of atomic mixing of the shell into the fuel and will be compared to models. This talk will review progress toward the development of an experimental platform to measure burn in the presence of measured mix. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Momentum sharing in imbalanced Fermi systems
Hen, O.; Sargsian, M.; Weinstein, L. B.; ...
2014-10-16
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less
Nuclear physics. Momentum sharing in imbalanced Fermi systems.
Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I
2014-10-31
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.
Jacobs, Edwin H; de Vries, Taco J; Smit, August B; Schoffelmeer, Anton N M
2004-01-01
Long-term drug-induced alterations in neurotransmission within the nucleus accumbens (NAc) shell and core may underlie relapse to drug-seeking behavior and drug-taking upon re-exposure to drugs and drug-associated stimuli (cues) during abstinence. Using an open screening strategy, we recently identified 25 gene transcripts, encoding for proteins involved in neuronal functioning and structure that are down-regulated in rat NAc shell after contingent (active), but not after non-contingent (passive), heroin administration. Studying the expression of the same transcripts in the NAc core by means of quantitative PCR, we now demonstrate that most of these transcripts are up-regulated in that NAc subregion long (3 weeks) after heroin self-administration in rats. A similar up-regulation in gene expression was also apparent in the NAc core of animals with a history of non-contingent heroin administration (yoked controls). These data indicate that heroin self-administration differentially regulates genes in the NAc core as compared with the shell. Moreover, whereas cognitive processes involved in active drug self-administration (e.g., instrumental learning) seems to direct gene expression in the NAc shell, neuroplasticity in the NAc core may be due to the pharmacological effects of heroin (including Pavlovian conditioning), as expressed in rats upon contingent as well as non-contingent administration of heroin.
Nasehi, Mohammad; Ostadi, Elaheh; Khakpai, Fatemeh; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza
2017-05-01
The nucleus accumbens (NAc) glutamatergic and GABAergic systems are involved in memory processes. This study was investigated the involvement of NAc shell GABAergic system on D-AP5 induced memory consolidation deficit. The elevated plus-maze (EPM) test-retest paradigm was employed to assess memory in adult male Wistar rats. The results indicated that post-training intra-NAc shell injection of bicuculline (GABA A receptor antagonist) did not alter emotional memory consolidation. However, post-training intra-NAc shell microinjection of muscimol (GABA A receptor agonist, 0.1μg/rat) and D-AP5 (a competitive NMDA receptor antagonist, 4μg/rat) decreased emotional memory consolidation, suggesting the drugs induced amnesia. Moreover, a sub-threshold dose of muscimol (0.05μg/rat) potentiated the D-AP5 (2μg/rat) response on memory consolidation impairment. On the other hand, the middle dose of bicuculline (0.25μg/rat) reversed memory impairment induced by D-AP5 at the higher dose. Interestingly, there is a synergistic effect between D-AP5 and muscimol on impairment of emotional memory consolidation. None of the above doses changed the locomotor activity. Our results suggest that the glutamatergic and GABAergic neurons of the NAc shell interact with each other for modulation of emotional memory consolidation. Copyright © 2017 Elsevier Inc. All rights reserved.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability
Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
2016-01-01
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478
Fission foil detector calibrations with high energy protons
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.
1995-01-01
Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.
Neutron Nucleic Acid Crystallography.
Chatake, Toshiyuki
2016-01-01
The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.
NASA Astrophysics Data System (ADS)
Brecher, K.
1999-12-01
The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.
ERIC Educational Resources Information Center
Millan, E. Zayra; McNally, Gavan P.
2011-01-01
Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B).…
Beta delayed neutrons for nuclear structure and astrophysics
NASA Astrophysics Data System (ADS)
Grzywacz, Robert
2014-09-01
Beta-delayed neutron emission (β xn) is a significant or even dominant decay channel for the majority of very neutron-rich nuclei, especially for those on the r-process path. The recent theoretical models predicts that it may play more significant role then previously expected for astrophysics and this realization instigated a renewed experimental interest in this topic as a part of a larger scope of research on beta-decay strength distribution. Because studies of the decay strength directly probe relevant physics on the microscopic level, energy-resolved measurements of the beta-decay strength distribution is a better test of nuclear models than traditionally used experimental observables like half-lives and neutron branching ratios. A new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed to directly address this issue. In its first experimental campaign at the Holifield Radioactive Ion Beam Facility neutron energy spectra in key regions of the nuclear chart were measured: near the shell closures at 78Ni and 132Sn, and for the deformed nuclei near 100Rb. In several cases, unexpectedly intense and concentrated, resonant-like, high-energy neutron structures were observed. These results were interpreted within shell model framework which clearly indicated that these neutron emission is driven by nuclear structure effects and are due to large Gamow-Teller type transition matrix elements. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.
Augur, Isabel F; Wyckoff, Andrew R; Aston-Jones, Gary; Kalivas, Peter W; Peters, Jamie
2016-09-28
The ventromedial prefrontal cortex (vmPFC) has been shown to negatively regulate cocaine-seeking behavior, but the precise conditions by which vmPFC activity can be exploited to reduce cocaine relapse are currently unknown. We used viral-mediated gene transfer of designer receptors (DREADDs) to activate vmPFC neurons and examine the consequences on cocaine seeking in a rat self-administration model of relapse. Activation of vmPFC neurons with the Gq-DREADD reduced reinstatement of cocaine seeking elicited by cocaine-associated cues, but not by cocaine itself. We used a retro-DREADD approach to confine the Gq-DREADD to vmPFC neurons that project to the medial nucleus accumbens shell, confirming that these neurons are responsible for the decreased cue-induced reinstatement of cocaine seeking. The effects of vmPFC activation on cue-induced reinstatement depended on prior extinction training, consistent with the reported role of this structure in extinction memory. These data help define the conditions under which chemogenetic activation of extinction neural circuits can be exploited to reduce relapse triggered by reminder cues. The ventromedial prefrontal cortex (vmPFC) projection to the nucleus accumbens shell is important for extinction of cocaine seeking, but its anatomical proximity to the relapse-promoting projection from the dorsomedial prefrontal cortex to the nucleus accumbens core makes it difficult to selectively enhance neuronal activity in one pathway or the other using traditional pharmacotherapy (e.g., systemically administered drugs). Viral-mediated gene delivery of an activating Gq-DREADD to vmPFC and/or vmPFC projections to the nucleus accumbens shell allows the chemogenetic exploitation of this extinction neural circuit to reduce cocaine seeking and was particularly effective against relapse triggered by cocaine reminder cues. Copyright © 2016 the authors 0270-6474/16/3610174-07$15.00/0.
Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste
2014-01-01
Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719
NASA Astrophysics Data System (ADS)
Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Robey, H. F.; Benedetti, L. R.; Berzak Hopkins, L.; Bradley, D. K.; Field, J. E.; Haan, S. W.; Hatarik, R.; Hartouni, E.; Izumi, N.; Johnson, S.; Khan, S.; Lahmann, B.; Landen, O. L.; Le Pape, S.; MacPhee, A. G.; Meezan, N. B.; Milovich, J.; Nagel, S. R.; Nikroo, A.; Pak, A. E.; Petrasso, R.; Remington, B. A.; Rice, N. G.; Springer, P. T.; Stadermann, M.; Widmann, K.; Hsing, W.
2018-05-01
High-mode perturbations and low-mode asymmetries were measured in the deceleration phase of indirectly driven, deuterium gas filled inertial confinement fusion capsule implosions at convergence ratios of 10 to 15, using a new "enhanced emission" technique at the National Ignition Facility [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In these experiments, a high spatial resolution Kirkpatrick-Baez microscope was used to image the x-ray emission from the inner surface of a high-density-carbon capsule's shell. The use of a high atomic number dopant in the shell enabled time-resolved observations of shell perturbations penetrating into the hot spot. This allowed the effects of the perturbations and asymmetries on degrading neutron yield to be directly measured. In particular, mix induced radiation losses of ˜400 J from the hot spot resulted in a neutron yield reduction of a factor of ˜2. In a subsequent experiment with a significantly increased level of short-mode initial perturbations, shown through the enhanced imaging technique to be highly organized radially, the neutron yield dropped an additional factor of ˜2.
Charge Radii of Neutron Deficient Fe,5352 Produced by Projectile Fragmentation
NASA Astrophysics Data System (ADS)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Miller, A. J.; Müller, P.; Nazarewicz, W.; Nörtershäuser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P.-G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.
2016-12-01
Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe,5352 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ ⟨r2⟩ of Fe,5352 are determined relative to stable 56Fe as δ ⟨r2⟩56 ,52=-0.034 (13 ) fm2 and δ ⟨r2⟩56 ,53=-0.218 (13 ) fm2 , respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ ⟨r2⟩. The values of δ ⟨r2⟩ exhibit a minimum at the N =28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ ⟨r2⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ ⟨r2⟩ of closed-shell Ca isotopes.
Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules
NASA Astrophysics Data System (ADS)
Hayes, A. C.; Bradley, P. A.; Grim, G. P.; Jungman, Gerard; Wilhelmy, J. B.
2010-01-01
Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.
NASA Astrophysics Data System (ADS)
Chung, Le Xuan; Bertulani, Carlos A.; Egelhof, Peter; Ilieva, Stoyanka; Khoa, Dao T.; Kiselev, Oleg A.
2017-11-01
The momentum distribution of 11Be fragments produced by the breakup of 12Be interacting with a proton target at 700.5 MeV/u energy has been measured at GSI Darmstadt. To obtain the structure information on the anomaly of the N = 8 neutron shell, the momentum distribution of 11Be fragments from the one-neutron knockout 12Be (p , pn) reaction, measured in inverse kinematics, has been analysed in the distorted wave impulse approximation (DWIA) based on a quasi-free scattering scenario. The DWIA analysis shows a surprisingly strong contribution of the neutron 0d5/2 orbital in 12Be to the transverse momentum distribution of the 11Be fragments. The single-neutron 0d5/2 spectroscopic factor deduced from the present knock-out data is 1.39(10), which is significantly larger than that deduced recently from data of 12Be breakup on a carbon target. This result provides a strong experimental evidence for the dominance of the neutron ν(0d5/2) 2 configuration in the ground state of 12Be.
Dynamical onset of superconductivity and retention of magnetic fields in cooling neutron stars
NASA Astrophysics Data System (ADS)
Ho, Wynn C. G.; Andersson, Nils; Graber, Vanessa
2017-12-01
A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106-107yr . We estimate the size of flux free regions at 107yr to be ≲100 m for a magnetic field of 1011G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 105yr . This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.
Reexamining the role of the (n ,γ f ) process in the low-energy fission of 235U and 239Pu
NASA Astrophysics Data System (ADS)
Lynn, J. E.; Talou, P.; Bouland, O.
2018-06-01
The (n ,γ f ) process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on 235U and 239Pu. Observed fluctuations of the average prompt fission neutron multiplicity and average total γ -ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the M 1 transitions to the prefission γ -ray spectrum of 239Pu is explained by the dominant fission probabilities of 0+ and 2+ transition states, which can only be accessed from compound nucleus states formed by the interaction of s -wave neutrons with the target nucleus in its ground state, and decaying through M 1 transitions. The impact of an additional low-lying M 1 scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. Finally, calculations are extended to the fast energy range where (n ,γ f ) corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.
Schank, J R; Nelson, B S; Damadzic, R; Tapocik, J D; Yao, M; King, C E; Rowe, K E; Cheng, K; Rice, K C; Heilig, M
2015-12-01
Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons coexpressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brenhouse, Heather C; Montalto, Stefanie; Stellar, James R
2006-06-30
Repeated exposure to cocaine leads to behavioral sensitization, which is the augmentation of the locomotor response to a subsequent exposure to the drug. The nucleus accumbens (NAc), a major termination site of dopaminergic neurons, is believed to be involved in behavioral sensitization and studies have demonstrated that the NAc shell can be split into five zones of analysis; the vertex, arch, cone, intermediate and ventrolateral zones [Todtenkopf MS, Stellar JR. Assessment of tyrosine hydroxylase immunoreactive innervation in five subregions of the nucleus accumbens shell in rats treated with repeated cocaine. Synapse 2000;38:261-70]. Several reports show cocaine-induced c-fos expression particularly in the intermediate zone after 14, but not 2, drug-free days following repeated cocaine administration, suggesting that this region may be involved in sensitization and particularly in the later phase of expression, versus the earlier phase of sensitization. Bilateral electrolytic lesions of the intermediate zone were made in two groups of rats, which were then repeatedly exposed to cocaine (15 mg/kg, twice/day for 5 days). One group was subsequently given a single cocaine challenge injection (15 mg/kg) after 14 drug-free days, while the other group was challenged after only 2 drug-free days. Two sham surgery groups in which an electrode was lowered but no current was passed served as controls. Results show that lesioned animals as well as sham controls exhibited behavioral sensitization to the drug. However, following a 14-day drug-free period, the lesioned animals showed significant reduction in sensitization, compared to sham controls. Together these findings suggest that the intermediate zone of the NAc shell is indeed involved in the expression phase of behavioral sensitization to cocaine.
Bossert, Jennifer M; Adhikary, Sweta; St Laurent, Robyn; Marchant, Nathan J; Wang, Hui-Ling; Morales, Marisela; Shaham, Yavin
2016-05-01
In humans, exposure to contexts previously associated with heroin use can provoke relapse. In rats, exposure to heroin-paired contexts after extinction of drug-reinforced responding in different contexts reinstates heroin seeking. We previously demonstrated that the projections from ventral medial prefrontal cortex (vmPFC) to nucleus accumbens (NAc) shell play a role in this reinstatement. The ventral subiculum (vSub) sends glutamate projections to NAc shell and vmPFC. Here, we determined whether these projections contribute to context-induced reinstatement. We trained rats to self-administer heroin (0.05-0.1 mg/kg/infusion) for 3 h per day for 12 days; drug infusions were paired with a discrete tone-light cue. Lever pressing in the presence of the discrete cue was subsequently extinguished in a different context. We then tested the rats for reinstatement in the heroin- and extinction-associated contexts under extinction conditions. We combined Fos with the retrograde tracer Fluoro-Gold (FG) to determine projection-specific activation during the context-induced reinstatement tests. We also used anatomical disconnection procedures to determine whether the vSub → NAc shell and vSub → vmPFC projections are functionally involved in this reinstatement. Exposure to the heroin but not the extinction context reinstated lever pressing. Context-induced reinstatement of heroin seeking was associated with increased Fos expression in vSub neurons, including those projecting to NAc shell and vmPFC. Anatomical disconnection of the vSub → NAc shell projection, but not the vSub → vmPFC projection, decreased this reinstatement. Our data indicate that the vSub → NAc shell glutamatergic projection, but not the vSub → vmPFC projection, contributes to context-induced reinstatement of heroin seeking.
Chau, David T; Rada, Pedro V; Kim, Kay; Kosloff, Rebecca A; Hoebel, Bartley G
2011-01-01
Selective serotonin reuptake inhibitors, such as fluoxetine, have demonstrated the ability to alleviate behavioral depression in the forced swim test; however, the sites and mechanisms of their actions remain to be further elucidated. Previous studies have suggested that behavioral depression in the swim test is mediated in part by acetylcholine (ACh) stimulating the cholinergic M1 receptors in the nucleus accumbens (NAc) shell. The current study tested whether acute, local, and chronic, subcutaneous fluoxetine treatments increase escape motivation during the swim test while simultaneously lowering extracellular ACh in the NAc shell. Experiment 1: Fluoxetine (1.0 mM) infused unilaterally in the NAc shell for 40 min reduced extracellular ACh while simultaneously increasing swimming time. Experiment 2: Fluoxetine (0.2, 0.5, and 0.75 mM) infused bilaterally in the NAc shell on day 3 dose-dependently decreased immobility and increased the total escape attempts (swimming and climbing) compared with Ringer given on day 2. Experiment 3: Fluoxetine (0.5 mM) infused bilaterally in the NAc for 40 min did not affect activities in an open field. Experiment 4: Chronic systemic fluoxetine treatment decreased immobility scores and increased total escape attempt scores compared with control saline treatment. In all, 14 days after the initial swim test, basal extracellular ACh in the shell was still elevated in the saline-treated group, but not in the fluoxetine-treated group. In summary, these data suggest that one of the potential mechanisms by which fluoxetine alleviates behavioral depression in the forced swim test may be to suppress cholinergic activities in the NAc shell. PMID:21525864
Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.
2015-01-01
Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors. PMID:26290234
Keistler, Colby; Barker, Jacqueline M.
2015-01-01
Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context (i.e., addiction). Here we use bilateral lesions in a rat model to show that infralimbic prefrontal cortex (ilPFC) is necessary for appropriate expression of PIT. Further, we show that ilPFC mediates this effect via functional connectivity with nucleus accumbens shell (NAcS). Together, these data provide the first demonstration that a specific cortico-striatal circuit is necessary for cue-invigorated reward seeking during specific PIT. PMID:26373829
Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.
Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less
NASA Astrophysics Data System (ADS)
Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.
2018-04-01
The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.
Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49
Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.; ...
2017-06-21
Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less
The nuclear Thomas-Fermi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, W.D.; Swiatecki, W.J.
1994-08-01
The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear mattermore » and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.« less
The Nuclear Thomas-Fermi Model
DOE R&D Accomplishments Database
Myers, W. D.; Swiatecki, W. J.
1994-08-01
The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.
Atomistic simulations of activated processes in nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Giberti, Federico; Galli, Giulia
Core-shell and Janus nanopartices are promising building blocks for new, highly efficient solar cells. One of the most common synthetic pathways to produce such nanostructures is the use of cation exchange reactions. Although widely used, these procedures are not completely understood. We employed classical Molecular Dynamics and Monte Carlo simulations to understand these transformation at the molecular level; in particular we investigated the conversion from CdSe (sphalerite) to PbSe (rocksalt) NPs with 2-3 nm diameter. In order to recover the equilibrium free energy surfaces we used state of the art enhanced sampling techniques, including Metadynamics. The formation of hybrid core-shell structures resulted to be an activated process, where the limiting step is the transition of a sphalerite to a rocksalt PbSe nucleus. We found that the barrier height and the stability of the two phases depend on the size of the PbSe nucleus, suggesting that the process could proceed via a two step mechanism, where a small sphalerite nucleus is formed first, and it then transforms to a rocksalt nucleus. Our results give insight into possible manipulation processes at the molecular scale, which could be used to stabilize metastable NPs and tune their physical and chemical properties. This work was supported by the DOE Grant No. DE-FG02-06ER46262.
Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn
NASA Astrophysics Data System (ADS)
Gargano, A.; Coraggio, L.; Itaco, N.
2017-09-01
This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.
Empirical mass formula with proton-neutron interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachibana, T.; Uno, M.; Yamada, S.
An atomic mass formula consisting of a gross part, and averge even-odd part and an empirical shell part is studied. The gross part is, apart from a small atomic term, taken to be the sum of nucleon rest masses. Coulomb energies and a polynomial in A/sup 1/3/ and chemically bondN-Zchemically bond/A. The shell part includes, in addition to proton and neutron support of nuclear magicities and the cooperative deformation effect. After the first construction of such a formula, refinements have been made in two respects. One is a separate treatment of Z = N odd-odd nuclei suggested by a quartetmore » model, and the other is an improvement of the proton neutron interaction term. By these refinements the root-mean-square deviation of calculated masses from the 1986 Audi-Wapstra masses has been reduced from 538 keV to 460 keV.« less
Nuclear fusion and carbon flashes on neutron stars
NASA Technical Reports Server (NTRS)
Taam, R. E.; Picklum, R. E.
1978-01-01
This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.
Magnetic moments of light nuclei from lattice quantum chromodynamics
Beane, S. R.; Chang, E.; Cohen, S.; ...
2014-12-16
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m π ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron capturesmore » its dominant structure. Similarly a shell-model-like moment is found for the triton, μ 3H ~ μ p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less
Gamma Ray Imaging of Inertial Confinement Fusion Experiments
NASA Astrophysics Data System (ADS)
Wilde, Carl; Volegov, Petr; Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Fittinghoff, David; Grim, Gary; NIF Nuclear Diagnostic Team Team; Advanced Imaging Team Team
2016-10-01
Experiments consisting of an ablatively driven plastic (CH) shell surrounding a deuterium tritium (DT) fuel region are routinely performed at the National Ignition Facility (NIF). Neutrons produced in the burning fuel in-elastically scatter with carbon atoms in the plastic shell producing 4.4 MeV gamma rays. Providing a spatially resolved distribution of the origin of these gammas can inform models of ablator physics and also provide a bounding volume for the cold fuel (un-burned DT fuel) region. Using the NIF neutron imaging system hardware, initial studies have been performed of the feasibility of imaging these gamma rays. A model of the system has been developed to inform under which experimental conditions this measurement can be made. Presented here is an analysis of the prospects for this diagnostic probe and a proposed set of modifications to the NIF neutron imaging line-of-site to efficiently enable this measurement.
NASA Astrophysics Data System (ADS)
Yang, X. F.; Tsunoda, Y.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Papuga, J.; Sánchez, R.; Wraith, C.; Xie, L.; Yordanov, D. T.
2018-04-01
Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017), 10.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in 73Zn. Additional details relating to the measurement and analysis of the Znm73 hyperfine structure are addressed here to further support its spin-parity assignment 5 /2+ and to estimate its half-life. A systematic investigation of this 5 /2+ isomer indicates that significant collectivity appears due to proton/neutron E 2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole moments with large scale Monte Carlo shell model calculations. In addition, potential energy surface calculations in combination with T plots reveal a triaxial shape for this isomeric state.
NEUTRON ENERGY LEVELS IN A DIFFUSE POTENTIAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, A.; Sil, N.C.
1960-06-01
The energy eigenvalues of neutrons within the nucleus for a spherically symmetrical potential V(r) = --V/sub 0/STAl + exp{(r-- R)/a}!/sup -1/ are investigated by following a new method of Lanczos for solving the differential equation. The s- and p-state energy levels are calculated for atomic mass 200 with the values of parameters adopted by Feshbach et al. in their calculation of the neutron strength function with a similar potential. The results of the calculation agree closely with those of Malenka. (auth)
NASA Astrophysics Data System (ADS)
Inakura, T.; Mizutori, S.; Yamagami, M.; Matsuyanagi, K.
2003-12-01
On the basis of the cranked Skyrme-Hartree-Fock calculations in the three-dimensional coordinate-mesh representation, we suggest that, in addition to the well-known candidate 32S, the neutron-rich nucleus 36S and the drip-line nuclei, 48S and 50S, are also good candidates for finding superdeformed rotational bands in sulfur isotopes. Calculated density distributions for the superdeformed states in 48S and 50S exhibit superdeformed neutron skins.
High-spin structures in the 139Pr nucleus
NASA Astrophysics Data System (ADS)
Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Xiao, Z. G.; Zhang, M.; Yan, W. H.; Wang, R. S.; Xu, Q.; Wu, X. G.; He, C. Y.; Li, G. S.; Zheng, Y.; Li, C. B.; Cao, X. P.; Hu, S. P.; Yao, S. H.; Yu, B. B.
2012-06-01
Background: 139Pr is located in a transitional region of neutron number close to the N=82 shell. The study of its high-spin states and collective bands is important for systematically understanding the nuclear structural characteristics in this region.Purpose: To investigate the high-spin levels and to search for oblate bands in 139Pr.Methods: The high-spin states of 139Pr have been studied via the reaction 124Sn(19F,4n) at a beam energy of 80 MeV. The experiment was carried out at the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data analysis was done by using the γ-γ coincidence method.Results: The level scheme of 139Pr has been expanded with spin up to 45/2ℏ. A total of 39 new levels and 45 new transitions are identified. Four collective band structures at high-spin states have been newly established. From systematic analysis, one of the bands is proposed as a double decoupled band; two bands are proposed as oblate bands with γ˜-60∘; another band is suggested as an oblate-triaxial band with γ˜-90∘. The other characteristics for these bands are discussed.Conclusions: A new level scheme in 139Pr has been established and the collective bands at high spin have been identified. The result shows that the strong oblate shape-driving effect is caused by neutrons at the high-spin states in 139Pr.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.
2013-08-01
Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.
Neutron-$$\\gamma$$ competition for β-delayed neutron emission
Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter
2016-12-19
Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less
In-beam γ -ray spectroscopy of Mn 63
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baugher, T.; Gade, A.; Janssens, R. V. F.
2016-01-01
Background: Neutron-rich, even-mass chromium and iron isotopes approaching neutron number N = 40 have been important benchmarks in the development of shell-model effective interactions incorporating the effects of shell evolution in the exotic regime. Odd-mass manganese nuclei have received less attention, but provide important and complementary sensitivity to these interactions. Purpose: We report the observation of two new γ -ray transitions in 63 Mn , which establish the ( 9 / 2 - ) and ( 11 / 2 - ) levels on top of the previously known ( 7 / 2 - ) first-excited state. The lifetime for themore » ( 7 / 2 - ) and ( 9 / 2 - ) excited states were determined for the first time, while an upper limit could be established for the ( 11 / 2 - ) level. Method: Excited states in 63 Mn have been populated in inelastic scattering from a 9 Be target and in the fragmentation of 65 Fe . γ γ coincidence relationships were used to establish the decay level scheme. A Doppler line-shape analysis for the Doppler-broadened ( 7 / 2 - ) → 5 / 2 - , ( 9 / 2 - ) → ( 7 / 2 - ) , and ( 11 / 2 - ) → ( 9 / 2 - ) transitions was used to determine (limits for) the corresponding excited-state lifetimes. Results: The low-lying level scheme and the excited-state lifetimes were compared with large-scale shell-model calculations using different model spaces and effective interactions in order to isolate important aspects of shell evolution in this region of structural change. Conclusions: While the theoretical ( 7 / 2 - ) and ( 9 / 2 - ) excitation energies show little dependence on the model space, the calculated lifetime of the ( 7 / 2 - ) level and calculated energy of the ( 11 / 2 - ) level reveal the importance of including the neutron g 9 / 2 and d 5 / 2 orbitals in the model space. The LNPS effective shell-model interaction provides the best overall agreement with the new data.« less
Structure Functions of Bound Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian Kuhn
2005-04-01
We describe an experiment measuring electron scattering on a neutron bound in deuterium with coincident detection of a fast, backward-going spectator proton. Our data map out the relative importance of the pure PWIA spectator mechanism and final state interactions in various kinematic regions, and give a first glimpse of the modification of the structure function of a bound neutron as a function of its off-shell mass. We also discuss a new experimental program to study the structure of a free neutron by extending the same technique to much lower spectator momenta.
Single-particle excitations in the level structure of 64Cu
NASA Astrophysics Data System (ADS)
Samanta, S.; Das, S.; Bhattacharjee, R.; Chatterjee, S.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Garg, U.; Neelam, Kumar, N.; Jones, P.; Laskar, Md. Sazedur R.; Babra, F. S.; Biswas, S.; Saha, S.; Singh, P.; Palit, R.
2018-01-01
Excited states of the 64Cu(Z =29 ,N =35 ) nucleus have been probed using heavy-ion-induced fusion evaporation reaction and an array of Compton-suppressed Clovers as detection system for the emitted γ rays. More than 50 new transitions have been identified and the level scheme of the nucleus has been established up to an excitation energy Ex˜6 MeV and spin ˜10 ℏ . The experimental results have been compared with those from large-basis shell-model calculations that facilitated an understanding of the single-particle configurations underlying the level structure of the nucleus.
Enhanced direct-drive implosions with thin high-Z ablation layers.
Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L
2008-02-22
New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.
Vomeronasal inputs to the rodent ventral striatum.
Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A
2008-03-18
Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.
Pulman, K G T; Somerville, E M; Clifton, P G
2010-11-01
Intra-accumbens stimulation of GABA receptors results in a robust increase in food intake. However the differential consequences of stimulating GABA(A) and GABA(B) receptors in the nucleus accumbens have not been extensively explored with respect to feeding behaviour. Here we compare the effects of the GABA(B) receptor agonist baclofen and GABA(A) receptor agonist muscimol, infused into the nucleus accumbens shell, on food intake and related behavior patterns. Baclofen (110-440 ρmol) dose dependently enhanced intake and delayed the onset of satiety within the test period as did the effects of 4-8h food withdrawal. Muscimol (220-660 ρmol) enhanced intake but also disrupted the sequence of associated behaviours at every dose tested. We conclude that GABA(B) receptors in the nucleus accumbens shell may play a role in relation to feeding motivation whereas GABA(A) receptors may, as previously suggested, have a more restricted role in relation to the motor components of approach to food and ingestion. Copyright © 2010 Elsevier Inc. All rights reserved.
Liu, Zhuo; Zhang, Jian-Jun; Liu, Xiao-Dong; Yu, Long-Chuan
2012-06-19
The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) may be a core component in the common molecular pathways for drug addiction. Moreover, studies using animal models of drug addiction have demonstrated that changing CaMKII activity or expression influences animals' responses to the drugs of abuse. Here, we explored the roles of CaMKII in the nucleus accumbens (NAc) shell in the extinction and reinstatement of morphine-seeking behavior. Rats were trained to obtain intravenous morphine infusions through poking hole on a fixed-ratio one schedule. Selective CaMKII inhibitor myristoylated autocamtide-2-inhibitory peptide (myr-AIP) was injected into the NAc shell of rats after the acquisition of morphine self-administration (SA) or before the reinstatement test. The results demonstrated that injection of myr-AIP after acquisition of morphine SA did not influence morphine-seeking in the following extinction days and the number of days spent for reaching extinction criterion. However, pretreatment with myr-AIP before the reinstatement test blocked the reinstatement of morphine-seeking behavior induced by morphine-priming. Our results strongly indicate that CaMKII activity in the NAc shell is essential to the relapse to morphine-seeking. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Measurements of Reaction Cross Sections for 9-11C
NASA Astrophysics Data System (ADS)
Nishizuka, Kenji; Takechi, Maya; Ohtsubo, Takashi; Nishimura, Daiki; Fukuda, Mitsunori; Aoki, Kazuya; Abe, Keijiro; Ikeda, Ayaka; Izumikawa, Takuji; Oikawa, Hiroyuki; Ohnishi, Kosuke; Ohno, Junichi; Ohmika, Shunichiro; Kato, Ikuma; Kanke, Yuki; Kanbe, Shunsuke; Kanda, Naoto; Kikuchi, Haruka; Kitagawa, Atsushi; Sato, Shinji; Sayama, Umito; Shimaya, Jiro; Sugihara, Takanobu; Suzuki, Shinji; Suzuki, Takeshi; Takahashi, Hiroki; Taguchi, Yoshisada; Takei, Yuki; Takeuchi, Yuki; Takenouchi, Arashi; Takemoto, Takanori; Tadano, Natsuki; Tanaka, Masaomi; Tanaka, Yutaro; Chikaato, Kazuya; Du, Hang; Nagai, Takumi; Nagumo, Junya; Fukuda, Shigekazu; Hori, Kensyu; Honma, Akira; Machida, Masahiro; Matsunaga, Satoshi; Mizukami, Atsushi; Mihara, Mototsugu; Miyata, Eri; Murooka, Daiki; Yagi, Shoichi; Yamaoka, Shintaro; Yamaguchi, Takayuki; Yokoyama, Kouhei
In order to probe the differences of matter and charge radii of atomic nucleus in the proton-rich C isotopes, measurements of reaction cross sections (σR) for 9-11C on proton targets in the energy range from 50 to 120A MeV were performed at HIMAC facility, NIRS. Owing to the large differences between proton-proton and proton-neutron scattering cross sections at this intermediate energy region, σR data for atomic nuclei on proton targets are expected to have the sensitivity to the differences between proton and neutron distributions in the nucleus. Present preliminary data are compared with the Glauber calculation, which suggest the larger enhancements of proton distributions in 9C and 10C compared to 11C.
Low-Z shore of the "island of inversion" and the reduced neutron magicity toward 28O
NASA Astrophysics Data System (ADS)
Doornenbal, P.; Scheit, H.; Takeuchi, S.; Utsuno, Y.; Aoi, N.; Li, K.; Matsushita, M.; Steppenbeck, D.; Wang, H.; Baba, H.; Ideguchi, E.; Kobayashi, N.; Kondo, Y.; Lee, J.; Michimasa, S.; Motobayashi, T.; Otsuka, T.; Sakurai, H.; Takechi, M.; Togano, Y.; Yoneda, K.
2017-04-01
The two odd-even fluorine isotopes F,2927 were studied via in-beam γ -ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. A secondary beam of 30Ne was used to induce one-proton and one-proton-two-neutron removal reactions on carbon and polyethylene targets at midtarget energies of 228 MeV/u . Excited states were observed at 915(12) keV for 27F and at 1080(18) keV for 29F. Both were assigned a 1 /21+ spin and parity. The low transition energy for 29F largely disagrees with shell model predictions restricted to the s d model space. Calculations using effective interactions that include the neutron p f shell indicate that the N =20 gap is quenched for 29F, thus extending the "island of inversion" to isotopes with proton number Z =9 . Variations of the N =20 gap further reveal a strong correlation to the 1 /21+ level energy in 29F and suggest a persistent reduced neutron gap for 28O.
Wang, Taofeng; Li, Guangwu; Zhu, Liping; ...
2016-01-08
The dependence of correlations of neutron multiplicity ν and γ-ray multiplicity M γ in spontaneous fission of 252Cf on fragment mass A* and total kinetic energy (TKE) have been investigated by employing the ratio of M γ/ν and the form of M γ(ν). We show for the first time that M γ and ν have a complex correlation for heavy fragment masses, while there is a positive dependence of Mγ for light fragment masses and for near-symmetric mass splits. The ratio M γ/ν exhibits strong shell effects for neutron magic number N=50 and near doubly magic number shell closure atmore » Z=50 and N=82. The γ-ray multiplicity Mγ has a maximum for TKE=165-170 MeV. Above 170 MeV M γ(TKE) is approximately linear, while it deviates significantly from a linear dependence at lower TKE. The correlation between the average neutron and γ-ray multiplicities can be partly reproduced by model calculations.« less
NASA Astrophysics Data System (ADS)
Chong, Y. K.; Velikovich, A. L.; Thornhil, J. W.; Giuliani, J. L.; Knapp, P.; Jennings, C.
2013-10-01
Over the last few years, numerous 1D and 2D MHD simulation studies of deuterium (D) based double-shell gas-puff Z-pinch implosions driven by the Sandia ZR accelerator have been carried out to assess the Z-pinch as a pulsed thermal fusion neutron source. In these studies, an ad-hoc time-dependent shunt impedance model was used within the external driving circuit model in order to account for the unresolved current loss in the MITL and the load. In this study, we incorporate an improved ZR circuit model recently formulated based on the recent Sandia argon gas-puff experiment circuit data into the multi-material version of the Mach +DDTCRE RMHD code. We reinvestigate the effects of multidimensional structure and nonuniform gradients as well as the outer- and inner-shell material interaction on the implosion physics and dynamics of both D-on-D and argon-on-D Z-pinch loads using the model. Then, we characterize the neutron production performance of the Z-pinch loads as a function of total mass, mass ratio and/or radius toward their optimization as a pulsed thernonuclear neutron source. Work supported by DOE/NNSA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000.
Capture Cross-section Measurement of 241Am(n,γ) at J-PARC/MLF/ANNRI
NASA Astrophysics Data System (ADS)
Harada, H.; Ohta, M.; Kimura, A.; Furutaka, K.; Hirose, K.; Hara, K. Y.; Kin, T.; Kitatani, F.; Koizumi, M.; Nakamura, S.; Oshima, M.; Toh, Y.; Igashira, M.; Katabuchi, T.; Mizumoto, M.; Kino, K.; Kiyanagi, Y.; Fujii, T.; Fukutani, S.; Hori, J.; Takamiya, K.
2014-05-01
The 241Am(n, γ) 242Am cross sections have been measured for neutron energies between 0.01 and 10 eV using the Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI) installed at the Materials and Life-science experimental Facility (MLF) in J-PARC. ANNRI combines the strongest neutron-pulsed beam and a high energy resolution γ-ray spectrometer, making possible accurate measurements of neutron capture cross sections for highly radioactive samples. From the measured cross section, the Westcott neutron capture factor and strength of the first three resonances in 241Am are deduced. These results with precision less than 0.5 % are compared with those derived from JENDL-4.0.
Mass Measurements Demonstrate a Strong N = 28 Shell Gap in Argon
Meisel, Z.; George, S.; Ahn, S.; ...
2015-01-15
We present results from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. We report the first mass measurements of 48Ar and 49Ar and find atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively. These masses provide strong evidence for the closed shell nature of neutron number N = 28 in argon, which is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The resulting trend in binding-energy differences, which probes the strength of the N = 28 shell, compares favorably with shell-model calculations in the sd-pf shell using SDPF-Umore » and SDPF-MU Hamiltonians.« less
Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles
NASA Astrophysics Data System (ADS)
Krycka, K. L.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Borchers, J. A.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Dedon, L. R.; Harris, S.; Rhyne, J. J.; Majetich, S. A.
2010-05-01
A new development in small-angle neutron scattering with polarization analysis allows us to directly extract the average spatial distributions of magnetic moments and their correlations with three-dimensional directional sensitivity in any magnetic field. Applied to a collection of spherical magnetite nanoparticles 9.0 nm in diameter, this enhanced method reveals uniformly canted, magnetically active shells in a nominally saturating field of 1.2 T. The shell thickness depends on temperature, and it disappears altogether when the external field is removed, confirming that these canted nanoparticle shells are magnetic, rather than structural, in origin.
Role of shell corrections in the phenomenon of cluster radioactivity
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Singh, Bir Bikram; Sharma, Manoj K.
2018-05-01
The detailed investigation has been carried out to explore the role of shell corrections in the decay of various radioactive parent nuclei in trans-lead region, specifically, which lead to doubly magic 208Pb daughter nucleus through emission of clusters such as 14C, 18,20O, 22,24,26Ne, 28,30 Mg and 34S i. The fragmentation potential comprises of binding energies (BE), Coulomb potential (Vc) and nuclear or proximity potential (VP) of the decaying fragments (or clusters). It is relevant to mention here that the contributions of VLDM (T=0) and δU (T=0) in the BE have been analysed within the Strutinsky renormanlization procedure. In the framework of quantum mechanical fragmentation theory (QMFT), we have investigated the above mentioned cluster decays with and without inclusion of shell corrections in the fragmentation potential for spherical as well as non-compact oriented nuclei. We find that the experimentally observed clusters 14C, 18,20O, 22,24,26 Ne, 28,30 Mg and 34Si having doubly magic 208 Pb daughter nucleus are not strongly minimized, they do so only after the inclusion of shell corrections in the fragmentation potential. The nuclear structure information carried by the shell corrections have been explored via these calculations, within the collective clusterisation process of QMFT, in the study of ground state decay of radioactive nuclei. The role of different parts of fragmentation potentials such as VLDM, δU, Vc and Vp is dually analysed for better understanding of radioactive cluster decay.
Two-nucleon high-spin states, the Bansal-French model and the crude shell model
NASA Astrophysics Data System (ADS)
Chan, Tsan Ung
1987-08-01
Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B2n in the Bansal-French model can be deduced from the A and T linear dependence of Bn and the crude shell model. 7-2 states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.
A Simple Correlation for Neutron Capture Rates from Nuclear Masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, Aaron Joseph
Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In anmore » astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.« less
Benchmark of neutron production cross sections with Monte Carlo codes
NASA Astrophysics Data System (ADS)
Tsai, Pi-En; Lai, Bo-Lun; Heilbronn, Lawrence H.; Sheu, Rong-Jiun
2018-02-01
Aiming to provide critical information in the fields of heavy ion therapy, radiation shielding in space, and facility design for heavy-ion research accelerators, the physics models in three Monte Carlo simulation codes - PHITS, FLUKA, and MCNP6, were systematically benchmarked with comparisons to fifteen sets of experimental data for neutron production cross sections, which include various combinations of 12C, 20Ne, 40Ar, 84Kr and 132Xe projectiles and natLi, natC, natAl, natCu, and natPb target nuclides at incident energies between 135 MeV/nucleon and 600 MeV/nucleon. For neutron energies above 60% of the specific projectile energy per nucleon, the LAQGMS03.03 in MCNP6, the JQMD/JQMD-2.0 in PHITS, and the RQMD-2.4 in FLUKA all show a better agreement with data in heavy-projectile systems than with light-projectile systems, suggesting that the collective properties of projectile nuclei and nucleon interactions in the nucleus should be considered for light projectiles. For intermediate-energy neutrons whose energies are below the 60% projectile energy per nucleon and above 20 MeV, FLUKA is likely to overestimate the secondary neutron production, while MCNP6 tends towards underestimation. PHITS with JQMD shows a mild tendency for underestimation, but the JQMD-2.0 model with a modified physics description for central collisions generally improves the agreement between data and calculations. For low-energy neutrons (below 20 MeV), which are dominated by the evaporation mechanism, PHITS (which uses GEM linked with JQMD and JQMD-2.0) and FLUKA both tend to overestimate the production cross section, whereas MCNP6 tends to underestimate more systems than to overestimate. For total neutron production cross sections, the trends of the benchmark results over the entire energy range are similar to the trends seen in the dominate energy region. Also, the comparison of GEM coupled with either JQMD or JQMD-2.0 in the PHITS code indicates that the model used to describe the first stage of a nucleus-nucleus collision also affects the low-energy neutron production. Thus, in this case, a proper combination of two physics models is desired to reproduce the measured results. In addition, code users should be aware that certain models consistently produce secondary neutrons within a constant fraction of another model in certain energy regions, which might be correlated to different physics treatments in different models.
Search for the Exotic Wobbling Mode in Rhenium-171
2011-05-13
USB hard drive. The decay sequences mentioned above release all of their γ rays within a nanosecond (ns). Data will be recorded when multiple ...events in which multiple detectors measured γ rays within a 120 ns window. An event in which three detectors fired within the coincidence window is...spherical nuclei; however, if the nucleus is axially deformed (non-spherical), the shell model cannot accurately describe its features . The shell model
Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, A. C.; Bradley, P. A.; Grim, G. P.
2010-01-15
Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIFmore » production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.« less
Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers
NASA Astrophysics Data System (ADS)
Shiraga, H.; Fujioka, S.; Nakai, M.; Watari, T.; Nakamura, H.; Arikawa, Y.; Hosoda, H.; Nagai, T.; Koga, M.; Kikuchi, H.; Ishii, Y.; Sogo, T.; Shigemori, K.; Nishimura, H.; Zhang, Z.; Tanabe, M.; Ohira, S.; Fujii, Y.; Namimoto, T.; Sakawa, Y.; Maegawa, O.; Ozaki, T.; Tanaka, K. A.; Habara, H.; Iwawaki, T.; Shimada, K.; Key, M.; Norreys, P.; Pasley, J.; Nagatomo, H.; Johzaki, T.; Sunahara, A.; Murakami, M.; Sakagami, H.; Taguchi, T.; Norimatsu, T.; Homma, H.; Fujimoto, Y.; Iwamoto, A.; Miyanaga, N.; Kawanaka, J.; Kanabe, T.; Jitsuno, T.; Nakata, Y.; Tsubakimoto, K.; Sueda, K.; Kodama, R.; Kondo, K.; Morio, N.; Matsuo, S.; Kawasaki, T.; Sawai, K.; Tsuji, K.; Murakami, H.; Sarukura, N.; Shimizu, T.; Mima, K.; Azechi, H.
2013-11-01
The FIREX-1 project, the goal of which is to demonstrate fuel heating up to 5 keV by fast ignition scheme, has been carried out since 2003 including construction and tuning of LFEX laser and integrated experiments. Implosion and heating experiment of Fast Ignition targets have been performed since 2009 with Gekko-XII and LFEX lasers. A deuterated polystyrene shell target was imploded with the 0.53- μm Gekko-XII, and the 1.053- μm beam of the LFEX laser was injected through a gold cone attached to the shell to generate hot electrons to heat the imploded fuel plasma. Pulse contrast ratio of the LFEX beam was significantly improved. Also a variety of plasma diagnostic instruments were developed to be compatible with harsh environment of intense hard x-rays (γ rays) and electromagnetic pulses due to the intense LFEX beam on the target. Large background signals around the DD neutron signal in time-of-flight record of neutron detector were found to consist of neutrons via (γ,n) reactions and scattered gamma rays. Enhanced neutron yield was confirmed by carefully eliminating such backgrounds. Neutron enhancement up to 3.5 × 107 was observed. Heating efficiency was estimated to be 10-20% assuming a uniform temperature rise model.
Neutron halo in 14B studied via reaction cross sections
NASA Astrophysics Data System (ADS)
Fukuda, M.; Nishimura, D.; Suzuki, S.; Tanaka, M.; Takechi, M.; Iwamoto, K.; Wakabayashi, S.; Yaguchi, M.; Ohno, J.; Morita, Y.; Kamisho, Y.; Mihara, M.; Matsuta, K.; Nagashima, M.; Ohtsubo, T.; Izumikawa, T.; Ogura, T.; Abe, K.; Kikukawa, N.; Sakai, T.; Sera, D.; Suzuki, T.; Yamaguchi, T.; Sato, K.; Furuki, H.; Miyazawa, S.; Ichihashi, N.; Kohno, J.; Yamaki, S.; Kitagawa, A.; Sato, S.; Fukuda, S.
2014-03-01
Reaction cross sections (σR) for the neutron-rich nucleus 14B on Be, C, and Al targets have been measured at several energies in the intermediate energy range of 45-120 MeV/nucleon. The present experimental σR show a significant enhancement relative to the systematics of stable nuclei. The nucleon density distribution was deduced through the fitting procedure with the modified Glauber calculation. The necessity of a long tail in the density distribution was found, which is consistent with the valence neutron in 2s1/2 orbital with the small empirical one-neutron separation energy in 14B.
On The Origin Of Two-Shell Supernova Remnants
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-08-01
It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; ...
2016-12-15
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Reexamining the role of the ( n , γ f ) process in the low-energy fission of U 235 and Pu 239
Lynn, J. E.; Talou, P.; Bouland, O.
2018-06-01
In this paper, themore » $$(n,{\\gamma}f)$$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $$^{235}\\mathrm{U}$$ and $$^{239}\\mathrm{Pu}$$. Observed fluctuations of the average prompt fission neutron multiplicity and average total $${\\gamma}$$-ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the $M1$ transitions to the prefission $${\\gamma}$$-ray spectrum of $$^{239}\\mathrm{Pu}$$ is explained by the dominant fission probabilities of $${0}^{+}$$ and $${2}^{+}$$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through $M1$ transitions. The impact of an additional low-lying $M1$ scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. In conclusion, calculations are extended to the fast energy range where $$(n,{\\gamma}f)$$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.« less
Reexamining the role of the ( n , γ f ) process in the low-energy fission of U 235 and Pu 239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, J. E.; Talou, P.; Bouland, O.
In this paper, themore » $$(n,{\\gamma}f)$$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $$^{235}\\mathrm{U}$$ and $$^{239}\\mathrm{Pu}$$. Observed fluctuations of the average prompt fission neutron multiplicity and average total $${\\gamma}$$-ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the $M1$ transitions to the prefission $${\\gamma}$$-ray spectrum of $$^{239}\\mathrm{Pu}$$ is explained by the dominant fission probabilities of $${0}^{+}$$ and $${2}^{+}$$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through $M1$ transitions. The impact of an additional low-lying $M1$ scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. In conclusion, calculations are extended to the fast energy range where $$(n,{\\gamma}f)$$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.« less
Development of Grazing Incidence Optics for Neutron Imaging and Scattering
NASA Technical Reports Server (NTRS)
Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.
2012-01-01
Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be developed. The availability of these technologies would bring new capabilities to neutron instrumentation and, hence, lead to new scientific breakthroughs. We have established a program to adopt the electroformed nickel replication optics technique for neutron applications and to develop the neutron multilayer replication technology.
Three-Body Forces and the Limit of Oxygen Isotopes
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori
2010-07-01
The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.
Lou, Zhong-ze; Chen, Ling-hong; Liu, Hui-feng; Ruan, Lie-min; Zhou, Wen-hua
2014-01-01
Aim: Glutamatergic neurotransmission in the nucleus accumbens (NAc) is crucial for the relapse to heroin seeking. The aim of this study was to determine whether mGluR5 in the NAc core or shell involved in heroin seeking behavior in rats. Methods: Male SD rats were self-administered heroin under a fixed-ratio 1 (FR1) reinforcement schedule for 14 d, and subsequently withdrawn for 2 weeks. The selective mGluR5 antagonist 2-methyl-6-phenylethynyl-pyridine (MPEP, 5, 15 and 50 nmol per side) was then microinjected into the NAc core or shell 10 min before a heroin-seeking test induced by context, cues or heroin priming. Results: Microinjection of MPEP into the NAc shell dose-dependently decreased the heroin seeking induced by context, cues or heroin priming. In contrast, microinjection of MPEP into the NAc core did not alter the heroin seeking induced by cues or heroin priming. In addition, microinjection with MPEP (15 nmol per side) in the NAc shell reversed both the percentage of open arms entries (OE%) and the percentage of time spent in open arms (OT%) after heroin withdrawal. Microinjection of MPEP (50 nmol per side) in the striatum as a control location did not affect the heroin seeking behavior. Microinjection of MPEP in the 3 locations did not change the locomotion activities. Conclusion: Blockade of mGluR5 in NAc shell in rats specifically suppresses the relapse to heroin-seeking and anxiety-like behavior, suggesting that mGluR5 antagonists may be a potential candidate for the therapy of heroin addiction. PMID:25399651
Parkinson, J A; Olmstead, M C; Burns, L H; Robbins, T W; Everitt, B J
1999-03-15
Dopamine release within the nucleus accumbens (NAcc) has been associated with both the rewarding and locomotor-stimulant effects of abused drugs. The functions of the NAcc core and shell were investigated in mediating amphetamine-potentiated conditioned reinforcement and locomotion. Rats were initially trained to associate a neutral stimulus (Pavlovian CS) with food reinforcement (US). After excitotoxic lesions that selectively destroyed either the NAcc core or shell, animals underwent additional CS-US training sessions and then were tested for the acquisition of a new instrumental response that produced the CS acting as a conditioned reinforcer (CR). Animals were infused intra-NAcc with D-amphetamine (0, 1, 3, 10, or 20 microg) before each session. Shell lesions affected neither Pavlovian nor instrumental conditioning but completely abolished the potentiative effect of intra-NAcc amphetamine on responding with CR. Core-lesioned animals were impaired during the Pavlovian retraining sessions but showed no deficit in the acquisition of responding with CR. However, the selectivity in stimulant-induced potentiation of the CR lever was reduced, as intra-NAcc amphetamine infusions dose-dependently increased responding on both the CR lever and a nonreinforced (control) lever. Shell lesions produced hypoactivity and attenuated amphetamine-induced activity. In contrast, core lesions resulted in hyperactivity and enhanced the locomotor-stimulating effect of amphetamine. These results indicate a functional dissociation of subregions of the NAcc; the shell is a critical site for stimulant effects underlying the enhancement of responding with CR and locomotion after intra-NAcc injections of amphetamine, whereas the core is implicated in mechanisms underlying the expression of CS-US associations.
Hernández, Lizaida; Barreto Estrada, Jennifer L; Ortiz, José G; Carlos Jorge, Juan
2010-01-01
Aim The purpose of this study was to provide a quantitative assessment of female rat sexual behaviors after acute exposure to the A-ring reduced testosterone metabolite, androstanediol (3α-Diol), through the nucleus accumbens (NA) shell. Main outcome measures Quantitative analyses of female rat sexual behaviors and assessment of protein levels for the enzyme glutamic acid decarboxylase isoform 67 (GAD67) and gephyrin, a protein that participates in the clustering of GABA-A receptors in postsynaptic cells, were accomplished. Methods Female rats were ovariectomized and primed with estrogen and progesterone to induce sexual behaviors. Females received a 3α-Diol infusion via guided cannula that aimed to the NA shell five minutes prior to a sexual encounter with a stud male. The following parameters were videotaped and measured in a frame by frame analysis: lordosis quotient (LQ), Lordosis rating (LR), frequency and duration of proceptive behaviors (hopping/darting and ear wiggling). Levels of GAD67 and gephyrin were obtained by Western blot analysis two or twenty-four hours after the sexual encounter. Results Acute exposure to 3α-Diol in the NA shell enhanced LR, ear wiggling, and hopping/darting but not LQ. Some of these behavioral effects were counteracted by co-infusion of 3α-Diol plus the GABAA-receptor antagonist GABAzine. A transient reduction of GAD67 levels in the NA shell was detected. Conclusions The testosterone metabolite 3α-Diol enhances sexual proceptivity, but not receptivity, when infused into the NA shell directly. The GABAergic system may participate in the androgen-mediated enhancement of female rat sexual motivation. PMID:20646182
Larson, Erin B; Graham, Danielle L; Arzaga, Rose R; Buzin, Nicole; Webb, Joseph; Green, Thomas A; Bass, Caroline E; Neve, Rachael L; Terwilliger, Ernest F; Nestler, Eric J; Self, David W
2011-11-09
Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.
East Europe Report, Scientific Affairs, No. 776.
1983-05-11
Washington, D.C. 20402. Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service, 1000...the beginning of neutrons physics--the science of the properties of the neutron and its interactions-with the nucleus and matter . The science has...media, the magnetic properties of matter and phase transitions; in the physics of nuclear reactors and nuclear technology; in developing and applying
The Gamow-state description of the decay energy spectrum of neutron-unbound 25O
NASA Astrophysics Data System (ADS)
Id Betan, R. M.; de la Madrid, R.
2018-02-01
We show the feasibility of calculating the decay energy spectrum of neutron emitting nuclei within the Gamow-state description of resonances by obtaining the decay energy spectrum of 25O. We model this nucleus as a valence neutron interacting with an 24O inert core, and we obtain the resulting resonant energies, widths and decay energy spectra for the ground and first excited states. We also discuss the similarities and differences between the decay energy spectrum of a Gamow state and the Breit-Wigner distribution with energy-dependent width.
High-j neutron excitations outside 136Xe
NASA Astrophysics Data System (ADS)
Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.
2017-08-01
The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.
NASA Astrophysics Data System (ADS)
Gautam, Manjeet Singh
2015-01-01
In the present work, the fusion of symmetric and asymmetric projectile-target combinations are deeply analyzed within the framework of energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus-nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm, which is much larger than a value (a = 0.65 fm) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus-nucleus potential possesses normal diffuseness parameter.
NASA Technical Reports Server (NTRS)
Bond, Howard E.
1992-01-01
A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.
Nehlig, A; Boyet, S
2000-03-06
Caffeine is a behavioral stimulant consumed on a worldwide basis. The question of whether caffeine is addictive has been debated for over a decade. Caffeine acts as a mild positive reinforcer but is not consistently self-administered in humans or animals. With [14C]2-deoxyglucose autoradiography, we studied the effects of increasing doses of caffeine on cerebral glucose utilization in rats. At 1 mg/kg, caffeine activated the caudate nucleus mediating locomotion, and the raphe nuclei and locus coeruleus involved with mood and sleep. After 2.5 and 5 mg/kg caffeine, metabolic activation spread to other components of the nigrostriatal dopaminergic system, the thalamus, ventral tegmental area and amygdala. The functional activation of the shell of the nucleus accumbens, an area involved in addiction and reward, was only induced by the highest dose of caffeine, 10 mg/kg. At this dose, the activation of the shell of the nucleus accumbens occurred together with that of the core of the nucleus accumbens and of most other brain regions. These data correlate well with the known sensitivity of locomotion, mood and sleep to low doses of caffeine. They also show that low doses of caffeine which reflect the usual human level of consumption fail to activate reward circuits in the brain and thus provide functional evidence of the very low addictive potential of caffeine.
Use of 41Ar production to measure ablator areal density in NIF beryllium implosions
Wilson, Douglas Carl; Cassata, W. S.; Sepke, S. M.; ...
2017-02-06
For the first time, 41Ar produced by the (n,Υ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. Here, the measured 1.15 ± 0.17 × 10 +8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanationsmore » are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.« less
Saddoris, Michael P; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M
2015-08-19
Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors. Copyright © 2015 the authors 0270-6474/15/3511572-11$15.00/0.
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Poster Version (Figure 1) NASA's Spitzer Space Telescope captured the picture on the left of comet Holmes in March 2008, five months after the comet suddenly erupted and brightened a millionfold overnight. The contrast of the picture has been enhanced on the right to show the anatomy of the comet. Every six years, comet 17P/Holmes speeds away from Jupiter and heads inward toward the sun, traveling the same route typically without incident. However, twice in the last 116 years, in November 1892 and October 2007, comet Holmes mysteriously exploded as it approached the asteroid belt. Astronomers still do not know the cause of these eruptions. Spitzer's infrared picture at left hand side of figure 1, reveals fine dust particles that make up the outer shell, or coma, of the comet. The nucleus of the comet is within the bright whitish spot in the center, while the yellow area shows solid particles that were blown from the comet in the explosion. The comet is headed away from the sun, which lies beyond the right-hand side of figure 1. The contrast-enhanced picture on the right shows the comet's outer shell, and strange filaments, or streamers, of dust. The streamers and shell are a yet another mystery surrounding comet Holmes. Scientists had initially suspected that the streamers were small dust particles ejected from fragments of the nucleus, or from hyerpactive jets on the nucleus, during the October 2007 explosion. If so, both the streamers and the shell should have shifted their orientation as the comet followed its orbit around the sun. Radiation pressure from the sun should have swept the material back and away from it. But pictures of comet Holmes taken by Spitzer over time show the streamers and shell in the same configuration, and not pointing away from the sun. The observations have left astronomers stumped. The horizontal line seen in the contrast-enhanced picture is a trail of debris that travels along with the comet in its orbit. The Spitzer picture was taken with the spacecraft's multiband imaging photometer at an infrared wavelength of 24 microns.Analytical study of comet nucleus samples
NASA Technical Reports Server (NTRS)
Albee, A. L.
1989-01-01
Analytical procedures for studying and handling frozen (130 K) core samples of comet nuclei are discussed. These methods include neutron activation analysis, x ray fluorescent analysis and high resolution mass spectroscopy.
Theory of quasi-spherical accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.
2012-02-01
A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.
The components of mid- and far-infrared emission from S0 and early-type shell galaxies
NASA Technical Reports Server (NTRS)
Thronson, Harley A., Jr.; Bally, John; Hacking, Perry
1989-01-01
The IRAS database has been used to study detections of about 150 early-type elliptical and S0 galaxies exhibiting a shell structure. No strong evidence for the expected enhancement of either star formation rates or heating of the interstellar medium is found. It is suggested that for some of the sample galaxies either a contribution from warm dust surrounding evolved stars or emission from an active nucleus may be significant.
Isotope effect in heavy/light water suspensions of optically active gold nanoparticles
NASA Astrophysics Data System (ADS)
Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.
2018-04-01
Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.
NCSP IER 422 CED-3b Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, Jesson D.; Cutler, Theresa Elizabeth; Bahran, Rian Mustafa
2017-11-22
A Subcritical Copper-Reflected α-phase Plutonium (SCRαP) integral benchmark experiment has been designed and measured. In this experiment, multiplication is approximated using correlated neutron data from a detector system consisting of 3He tubes inside high density polyethylene (HDPE). Measurements were performed on various subcritical experimental configurations consisting of a weapons-grade plutonium sphere surrounded by different Cu thicknesses. In addition to the proposed base experimental configurations with Cu, additional configurations were performed with the plutonium ball nested in various thicknesses of interleaved HDPE spherical shells mixed in with the Cu shells. The HDPE is intended to provide fast neutron moderation and reflection,more » resulting in additional measurements with differing multiplication, spectra, and nuclear data sensitivity.« less
New nuclear structure data beyond 136Sn
NASA Astrophysics Data System (ADS)
Lozeva, Radomira
2018-05-01
Exotic nuclei beyond the 132Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only few nucleons away. Toward even more neutron-rich nuclei, especially at intermediate mass number, the interplay between single-particle and collective particle-hole excitations competes. In some cases with the extreme addition of neutrons also other effects as the formation of neutron skin, stabilization as sub-shell gaps or orbital crossings may be expected. The knowledge of nuclear ingredients is especially interesting beyond 132Sn and little is known on how the excitation modes develop with the addition of both protons and neutrons and for example systematic prompt and decay studies can be such very sensitive probe. Recently, we have approached this region of nuclei in several experimental measurements following 238U projectile fission on 9Be and n-induced fission on 241Pu and 235U. Consistent data analysis allows to access various spins and excitation energies and provide new input to theory. Examples from these studies on several nuclei in the A 140 region were presented during the conference together with the possible interpretation of the new data. Here, we will illustrate one example on 136I using two complementary data sets.
New low-energy 0 + state and shape coexistence in Ni 70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokop, C. J.; Crider, B. P.; Liddick, S. N.
2015-12-01
In recent models, the neutron-rich Ni isotopes around N = 40 are predicted to exhibit multiple low-energy excited 0(+) states attributed to neutron and proton excitations across both the N = 40 and Z = 28 shell gaps. In Ni-68, the three observed 0(+) states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (0(2)(+)) state at an energy of 1567 keV has been discovered in Ni-70 by using beta-delayed, gamma-ray spectroscopy following the decay of Co-70. The precipitous drop in the energy of the prolate-deformed 0(+)more » level between Ni-68 and Ni-70 with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large fpg(9/2)d(5/2) model space, which predict a 0(2)(+) state at 1525 keV in Ni-70. The result extends the shape-coexistence picture in the region to Ni-70 and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei.« less
Wirtshafter, David; Stratford, Thomas R
2010-09-01
Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50ng/side) or d-amphetamine (10mug/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. Copyright 2010 Elsevier Inc. All rights reserved.
Wirtshafter, David; Stratford, Thomas R.
2011-01-01
Microinjections of the inhibitory GABA-A receptor agonist muscimol into the shell region of the nucleus accumbens (AcbSh) have been reported to induce large increases in food intake, but the effect of these injections on motivational processes is less clear. In the current study, bilateral injections of saline, muscimol (50 ng/side) or D-amphetamine (10 μg/side) were made into the AcbSh of rats trained to lever press on a progressive ratio schedule for food reward. Injections of both muscimol and amphetamine were found to produce a large increase in the breaking point relative to saline injections. This result suggests that inactivation of the AcbSh does not simply drive ingestive behavior, but also affects motivational processes assessed by the progressive ratio schedule. Breaking points were also increased by injections of amphetamine into the AcbSh. PMID:20598739
Bradfield, Laura A; McNally, Gavan P
2010-07-01
We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning about the neutral conditioned stimulus (CS) in Stage II. These results add to a growing body of evidence indicating an important role for the ventral striatum in fear-learning. They suggest that the ventral striatum and AcbSh, in particular, directs learning toward or away from a CS as a consequence of how well that CS predicts the shock unconditioned stimulus (US). AcbSh is required to reduce the processing of established predictors, thereby permitting neutral or less predictive stimuli to be learned about.
Single nucleon emission in relativistic nucleus-nucleus reactions
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.
1992-01-01
Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.
K-mixing in the doubly mid-shell nuclide 170Dy and the role of vibrational degeneracy
NASA Astrophysics Data System (ADS)
Söderström, P.-A.; Walker, P. M.; Wu, J.; Liu, H. L.; Regan, P. H.; Watanabe, H.; Doornenbal, P.; Korkulu, Z.; Lee, P.; Liu, J. J.; Lorusso, G.; Nishimura, S.; Phong, V. H.; Sumikama, T.; Xu, F. R.; Yagi, A.; Zhang, G. X.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C. J.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaoka, H.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Niţă, C. R.; Odahara, A.; Patel, Z.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dòbon, J. J.; Xu, Z. Y.
2016-11-01
A detailed study of the structure of the doubly mid-shell nucleus 104 1 66 170 Dy has been carried out, following isomeric and β decay. We have measured the yrast band up to the spin-parity Jπ =6+ state, the K = 2γ-vibration band up to the 5+ state, a low-lying negative-parity band based on a 2- state that could be a candidate for the lowest energy octupole vibration state within this nucleus, and a candidate for the Kπ =6+ two quasi-particle isomer. This state was determined to have an excitation energy of 1643.91(23) keV and a half life of 0.99(4) μs, with a reduced hindrance for its decay to the ground-state band an order of magnitude lower than predicted by NpNn systematics. This is interpreted as being due to γ-vibrational mixing from a near degeneracy of the isomer and the 6+ state of the γ band. Furthermore, the parent nucleus 170Tb has been determined to have a half-life of 0.91 (+18-13) s with a possible spin-parity of 2-.
Pulman, Kim G T; Somerville, Elizabeth M; Clifton, Peter G
2012-01-01
Stimulation of either GABA(A) or GABA(B) receptors within the nucleus accumbens shell strongly enhances food intake in rats. However the effects of subtype-selective stimulation of GABA receptors on instrumental responses for food reward are less well characterized. Here we contrast the effects of the GABA(A) receptor agonist muscimol and GABA(B) receptor agonist baclofen on instrumental responding for food using a second order reinforcement schedule. Bilateral intra-accumbens administration of baclofen (220-440 pmol) stimulated responding but a higher dose (660 pmol) induced stereotyped oral behaviour that interfered with responding. Baclofen (220-660 pmol) also stimulated intake of freely available chow. Muscimol (220-660 pmol) was without effect on responding for food on this schedule but did stimulate intake of freely available chow. Unilateral administration of either baclofen or muscimol (220 pmol) induced similar patterns of c-fos immunoreactivity in several hypothalamic sites but differed in its induction in the central nucleus of the amygdala. We conclude that stimulation of GABA(A) or GABA(B) receptors in the nucleus accumbens shell of rats produces clearly distinguishable effects on operant responding for food.
Meitzen, John; Pflepsen, Kelsey R; Stern, Christopher M; Meisel, Robert L; Mermelstein, Paul G
2011-01-07
Both hemispheric bias and sex differences exist in striatal-mediated behaviors and pathologies. The extent to which these dimorphisms can be attributed to an underlying neuroanatomical difference is unclear. We therefore quantified neuron soma size and density in the dorsal striatum (CPu) as well as the core (AcbC) and shell (AcbS) subregions of the nucleus accumbens to determine whether these anatomical measurements differ by region, hemisphere, or sex in adult Sprague-Dawley rats. Neuron soma size was larger in the CPu than the AcbC or AcbS. Neuron density was greatest in the AcbS, intermediate in the AcbC, and least dense in the CPu. CPu neuron density was greater in the left in comparison to the right hemisphere. No attribute was sexually dimorphic. These results provide the first evidence that hemispheric bias in the striatum and striatal-mediated behaviors can be attributed to a lateralization in neuronal density within the CPu. In contrast, sexual dimorphisms appear mediated by factors other than gross anatomical differences. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Castro, Daniel C; Berridge, Kent C
2014-03-19
A specialized cubic-millimeter hotspot in the rostrodorsal quadrant of medial shell in nucleus accumbens (NAc) of rats may mediate opioid enhancement of gustatory hedonic impact or "liking". Here, we selectively stimulated the three major subtypes of opioid receptors via agonist microinjections [mu (DAMGO), delta (DPDPE), or kappa (U50488H)] and constructed anatomical maps for functional localizations of consequent changes in hedonic "liking" (assessed by affective orofacial reactions to sucrose taste) versus "wanting" (assessed by changes in food intake). Results indicated that the NAc rostrodorsal quadrant contains a shared opioid hedonic hotspot that similarly mediates enhancements of sucrose "liking" for mu, delta, and kappa stimulations. Within the rostrodorsal hotspot boundaries each type of stimulation generated at least a doubling or higher enhancement of hedonic reactions, with comparable intensities for all three types of opioid stimulation. By contrast, a negative hedonic coldspot was mapped in the caudal half of medial shell, where all three types of opioid stimulation suppressed "liking" reactions to approximately one-half normal levels. Different anatomical patterns were produced for stimulation of food "wanting", reflected in food intake. Altogether, these results indicate that the rostrodorsal hotspot in medial shell is unique for generating opioid-induced hedonic enhancement, and add delta and kappa signals to mu as hedonic generators within the hotspot. Also, the identification of a separable NAc caudal coldspot for hedonic suppression, and separate NAc opioid mechanisms for controlling food "liking" versus "wanting" further highlights NAc anatomical heterogeneity and localizations of function within subregions of medial shell.
Two-nucleon high-spin states, the Bansal-French model and the crude shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, T.U.
Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B/sub 2n/ in the Bansal-French model can be deduced from the A and T linear dependence of B/sub n/ and the crude shell model. 7/sub 2//sup -/ states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.
Large-scale shell-model calculations for 32-39P isotopes
NASA Astrophysics Data System (ADS)
Srivastava, P. C.; Hirsch, J. G.; Ermamatov, M. J.; Kota, V. K. B.
2012-10-01
In this work, the structure of 32-39P isotopes is described in the framework of stateof-the-art large-scale shell-model calculations, employing the code ANTOINE with three modern effective interactions: SDPF-U, SDPF-NR and the extended pairing plus quadrupole-quadrupoletype forces with inclusion of monopole interaction (EPQQM). Protons are restricted to fill the sd shell, while neutrons are active in the sd - pf valence space. Results for positive and negative level energies and electromagnetic observables are compared with the available experimental data.
NASA Astrophysics Data System (ADS)
Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei
2018-03-01
Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.
Ground-state properties of neutron-rich Mg isotopes
NASA Astrophysics Data System (ADS)
Watanabe, S.; Minomo, K.; Shimada, M.; Tagami, S.; Kimura, M.; Takechi, M.; Fukuda, M.; Nishimura, D.; Suzuki, T.; Matsumoto, T.; Shimizu, Y. R.; Yahiro, M.
2014-04-01
We analyze recently measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics (AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by fine tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of deformation parameter is predicted by AMD. Large deformation is seen from 31Mg with N =19 to a drip-line nucleus 40Mg with N =28, indicating that both the N =20 and 28 magicities disappear. N dependence of neutron skin thickness is also predicted by AMD.
Kelsey, John E; Gerety, Lyle P; Guerriero, Rejean M
2009-06-01
We previously demonstrated that lesions of the nucleus accumbens (NAc) core enhanced locomotion and locomotor sensitization to repeated injections of nicotine in rats (Kelsey & Willmore, 2006). In this study, we compared the effects of separate lesions of the NAc core, NAc medial shell, and basolateral amygdala on context-specific locomotor sensitization to repeated injections of 0.4 mg/kg nicotine. Electrolytic lesions of the NAc core increased locomotion, and lesions of the core (but not the shell) and the basolateral amygdala enhanced context-specific locomotor sensitization by enhancing the development of sensitization in paired rats and decreasing expression in unpaired rats relative to sham-operated rats when challenged with an injection of 0.4 mg/kg nicotine in the locomotor chambers. These data are consistent with findings that the NAc core and the basolateral amygdala share a variety of behavioral functions and anatomical connections. The findings that lesions of these structures enhance context-specific locomotor sensitization while typically impairing other reward-related behaviors also indicate that the processes underlying locomotor sensitization and reward are not identical. Copyright (c) 2009 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterov, V. A., E-mail: archerix@ukpost.ua
On the basis of the energy-density method, the effect of simultaneously taking into account the Pauli exclusion principle and the monopole and quadrupole polarizations of interacting nuclei on their interaction potential is considered for the example of the {sup 16}O + {sup 16}O system by using the wave function for the two-center shell model. The calculations performed in the adiabatic approximation reveal that the inclusion of the Pauli exclusion principle and the polarization of interacting nuclei, especially their quadrupole polarization, has a substantial effect on the potential of the nucleus-nucleus interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinov, M; Thomson, R
2015-06-15
Purpose: To investigate dose enhancement to cellular compartments following gold nanoparticle (GNP) uptake in tissue, varying cell and tissue morphology, intra and extracellular GNP distribution, and source energy using Monte Carlo (MC) simulations. Methods: Models of single and multiple cells are developed for normal and cancerous tissues; cells (outer radii 5–10 µm) are modeled as concentric spheres comprising the nucleus (radii 2.5–7.5 µm) and cytoplasm. GNP distributions modeled include homogeneous distributions throughout the cytoplasm, variable numbers of GNP-containing endosomes within the cytoplasm, or distributed in a spherical shell about the nucleus. Gold concentrations range from 1 to 30 mg/g. Dosemore » to nucleus and to cytoplasm for simulations including GNPs are compared to simulations without GNPs to compute Nuclear and Cytoplasm Dose Enhancement Factors (NDEF, CDEF). Photon source energies are between 20 keV and 1.25 MeV. Results: DEFs are highly sensitive to GNP intracellular distribution; for a 2.5 µm radius nucleus irradiated by a 30 keV source, NDEF varies from 1.2 for a single endosome containing all GNPs to 8.2 for GNPs distributed about the nucleus (7 mg/g). DEFs vary with cell dimensions and source energy: NDEFs vary from 2.5 (90 keV) to 8.2 (30 keV) for a 2.5 µm radius nucleus and from 1.1 (90 keV) to 1.3 (30 keV) for a 7.5 µm radius nucleus, both with GNPs in a spherical shell about the nucleus (7 mg/g). NDEF and CDEF are generally different within a single cell. For multicell models, the presence of gold within intervening tissues between source and target perturbs the fluence reaching cellular targets, resulting in DEF inhomogeneities within a population of irradiated cells. Conclusion: DEFs vary by an order of magnitude for different cell models, GNP distributions, and source energies, demonstrating the importance of detailed modelling for advancing GNP development for radiotherapy. Funding provided by the Natural Sciences and Engineering Council of Canada (NSERC), and the Canada Research Chairs Program (CRC)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terashima, S.; Sakaguchi, H.; Takeda, H.
Cross sections and analyzing powers for proton elastic scattering from {sup 116,118,120,122,124}Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm{sup -1} to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.
Cross Section Measurements of the Radioactive 107Pd and Stable 105,108Pd Nuclei at J-PARC/MLF/ANNRI
NASA Astrophysics Data System (ADS)
Nakamura, S.; Kimura, A.; Kitatani, F.; Ohta, M.; Furutaka, K.; Goko, S.; Hara, K. Y.; Harada, H.; Hirose, K.; Kin, T.; Koizumi, M.; Oshima, M.; Toh, Y.; Kino, K.; Hiraga, F.; Kamiyama, T.; Kiyanagi, Y.; Katabuchi, T.; Mizumoto, M.; Igashira, M.; Hori, J.; Fujii, T.; Fukutani, S.; Takamiya, K.
2014-05-01
The measurements of the neutron-capture cross sections were performed for the radioactive 107Pd and stable 105,108Pd nuclei by the time-of flight method using an apparatus called “Accurate Neutron-Nucleus Reaction measurement Instrument (ANNRI)” installed at the neutron Beam Line No.4 of the Materials and Life science experimental Facility (MLF) in the J-PARC. The neutron-capture cross sections of 107Pd and 105,108Pd have been measured in the low energy region from the thermal to a few hundreds eV. From the measurements, new information was obtained for some resonances of these Pd nuclei.
Meyer, Andrew C; Bardo, Michael T
2015-07-01
Previous research suggests both genetic and environmental influences on substance abuse vulnerability. The current work sought to investigate the interaction of genes and environment on the acquisition of amphetamine self-administration as well as amphetamine-stimulated dopamine (DA) release in nucleus accumbens shell using in vivo microdialysis. Inbred Lewis (LEW) and Fischer (F344) rat strains were raised in either an enriched condition (EC), social condition (SC), or isolated condition (IC). Acquisition of amphetamine self-administration (0.1 mg/kg/infusion) was determined across an incrementing daily fixed ratio (FR) schedule. In a separate cohort of rats, extracellular DA and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in the nucleus accumbens shell following an acute amphetamine injection (1 mg/kg). "Addiction-prone" LEW rats had greater acquisition of amphetamine self-administration on a FR1 schedule compared to "addiction-resistant" F344 rats when raised in the SC environment. These genetic differences were negated in both the EC and IC environments, with enrichment buffering against self-administration and isolation enhancing self-administration in both strains. On a FR5 schedule, the isolation-induced increase in amphetamine self-administration was greater in F344 than LEW rats. While no group differences were obtained in extracellular DA, gene × environment differences were obtained in extracellular levels of the metabolite DOPAC. In IC rats only, LEW rats showed attenuation in the amphetamine-induced decrease in DOPAC compared to F344 rats. IC LEW rats also had an attenuated DOPAC response to amphetamine compared to EC LEW rats. The current results demonstrate gene × environment interactions in amphetamine self-administration and amphetamine-induced changes in extracellular DOPAC in nucleus accumbens (NAc) shell. However, the behavioral and neurochemical differences were not related directly, indicating that mechanisms independent of DA metabolism in NAc shell likely mediate the gene × environment effects in amphetamine self-administration.
NASA Astrophysics Data System (ADS)
Kaur, Arshdeep; Kaushal, Pooja; Hemdeep; Gupta, Raj K.
2018-01-01
The decay of various compound nuclei formed via exotic neutron-rich 9Li projectile is studied within the dynamical cluster-decay model (DCM). Following the earlier work of one of us (RKG) and collaborators (M. Kaur et al. (2015) [1]), for an empirically fixed neck-length parameter ΔRemp, the only parameter in the DCM, at a given incident laboratory energy ELab, we are able to fit almost exactly the (total) fusion cross section σfus =∑x=16σxn for 9Li projectile on 208Pb and other targets, with σfus depending strongly on the target mass of the most abundant isotope and its (magic) shell structure. This result shows the predictable nature of the DCM. The neck-length parameter ΔRemp is fixed empirically for the decay of 217At* formed in 9Li + 208Pb reaction at a fixed laboratory energy ELab, and then the total fusion cross section σfus calculated for all other reactions using 9Li as a projectile on different targets. Apparently, this procedure could be used to predict σfus for 9Li-induced reactions where experimental data are not available. Furthermore, optimum choice of "cold" target-projectile combinations, forming "hot" compact configurations, are predicted for the synthesis of compound nucleus 217At* with 8Li + 209Pb as one of the target-projectile combination, or another (t , p) combination 48Ca + 169Tb, with a doubly magic 48Ca, as the best possibility.
Tkachenko, S.; Baillie, N.; Kuhn, S. E.; ...
2014-04-24
In this study, much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.
Strong neutron- γ competition above the neutron threshold in the decay of Co 70
Spyrou, A.; Liddick, S. N.; Naqvi, F.; ...
2016-09-29
The β-decay intensity of 70Co was measured for the first time using the technique of total absorption spectroscopy. The large β-decay Q value [12.3(3) MeV] offers a rare opportunity to study β-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the β intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seemmore » to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global β-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. Finally, a realistic and robust description of the β-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.« less
Constraints on the large-x d/u ratio from electron--nucleus scattering at x>1
DOE Office of Scientific and Technical Information (OSTI.GOV)
O. Hen, A. Accardi, W. Melnitchouk and E. Piasetzky
2011-12-01
Recently the ratio of neutron to proton structure functions F{sub 2}{sup n}/F{sub 2}{sup p} was extracted from a phenomenological correlation between the strength of the nuclear EMC effect and inclusive electron-nucleus cross section ratios at x > 1. Within conventional models of nuclear smearing, this 'in-medium correction' (IMC) extraction constrains the size of nuclear effects in the deuteron structure functions, from which the neutron structure function F{sub 2}{sup n} is usually extracted. The IMC data determine the resulting proton d/u quark distribution ratio, extrapolated to x = 1, to be 0.23 {+-} 0.09 with a 90% confidence level. This ismore » well below the SU(6) symmetry limit of 1/2 and significantly above the scalar diquark dominance limit of 0.« less
The effect of halo nuclear density on reaction cross-section for light ion collision
NASA Astrophysics Data System (ADS)
Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Ismail, E.; Hosny, H.
2015-08-01
In the framework of the optical limit approximation (OLA), the reaction cross-section for halo nucleus — stable nucleus collision at intermediate energy, has been studied. The projectile nuclei are taken to be one-neutron halo (1NHP) and two-neutron halo (2NHP). The calculations are carried out for Gaussian-Gaussian (GG), Gaussian-Oscillator (GO), and Gaussian-2S (G2S) densities for each considered projectile. As a target, the stable nuclei in the range 4-28 of the mass number are used. An analytic expression of the phase shift function has been derived. The zero range approximation is considered in the calculations. Also, the in-medium effect is studied. The obtained results are analyzed and compared with the geometrical reaction cross-section and the available experimental data.
Ferreira, Carlos R.; Gahl, William A.
2017-01-01
Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481
POLARIZATION OF NEUTRONS BY THE STRIPPING REACTION C$sup 12$(d,n)N$sup 1$$sup 3$ (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.; Niewodniczanski, H.
1960-05-01
The polarization of neutrcns emitted from the stripping reaction C/sup 12/(d,n)N/sup 13/ hns been investigated at the reaction angle was / sub lab/ = 15 tained and deuteron energy E/sub d/ = 12.9 Mev. The polarization of neutrons connected with the 3.56 Mev energy level in N/sup 13/ nucleus was found to be --(0.39 combination rat 0.11). Also some general remarks concerning the preliminary results of the polarization of neutrons at the reaction angles 30 tained , 45 tained , and 60 tained are given. (auth)
A new method for detection of distant supernova neutrino bursts
NASA Astrophysics Data System (ADS)
Cline, D.; Fenyves, E.; Foshe, T.; Fuller, G.; Meyer, B.; Wilson, J.
1990-03-01
The feasibility of astrophysical neutrino detectors is studied, which is based on the detection of neutrons produced in neutrino-nucleus inelastic scattering events. Collective nuclear effects greatly enhancing the relevant interaction cross sections over those of single particle interactions are discussed. These effects can help to reduce the mass required for neutrino detectors. An example of a simple detector based on CaCO3 neutrino targets and BF3 neutron counters is presented. Neutron background limitations are discussed and the possibility of forming a coincidence between neutrino detectors and future gravity wave detectors is also considered.
Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.
1987-01-01
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.
1985-09-09
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Fission and Properties of Neutron-Rich Nuclei
NASA Astrophysics Data System (ADS)
Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.
2008-08-01
Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I. Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the spontaneous fission of [symbol]Cf / A. V. Daniel ... [et al.]. Magnetic moment measurements in a radioactive beam environment / N. Benczer-Koller and G. Kumbartzki. g-Factor measurements of picosecond states: opportunities and limitations of the recoil-in-vacuum method / N. J. Stone ... [et al.]. Precision mass measurements and trap-assisted spectroscopy of fission products from Ni to Pd / A. Jokinen -- Fission II. Fission research at IRMM / F.-J. Hambsch. Fission yield measurements at the IGISOL facility with JYFLTRAP / H. Penttilä ... [et al.]. Fission of radioactive beams and dissipation in nuclear matter / A. Heinz (for the CHARMS collaboration). Fission of [symbol]U at 80 MeVlu and search for new neutron-rich isotopes / C.M. Folden, III ... [et al.]. Measurement of the average energy and multiplicity of prompt-fission neutrons and gamma rays from [symbol], [symbol], and [symbol] for incident neutron energies of 1 to 200 MeV / R. C. Haight ... [et al.]. Fission measurements with DANCE / M. Jandel ... [et al.]. Measured and calculated neutron-induced fission cross sections of [symbol]Pu / F. Tovesson and T. S. Hill. The fission barrier landscape / L. Phair and L. G. Moretto. Fast neutron-induced fission of some actinides and sub-actinides / A. B. Lautev ... [et al.] -- Fission III/Nuclear structure III. Complex structure in even-odd staggering of fission fragment yields / M. Caamāno and F. Rejmund. The surrogate method: past, present and future / S. R. Lesher ... [et al]. Effects of nuclear incompressibility on heavy-ion fusion / H. Esbensen and Ş. Mişicu. High spin states in [symbol]Pm / A. Dhal ... [et al]. Structure of [symbol]Sm, spherical vibrator versus softly deformed rotor / J. B. Gupta -- Astrophysics. Measuring the astrophysical S-factor in plasmas / A. Bonasera ... [et al.]. Is there shell quenching or shape coexistence in Cd isotopes near N = 82? / J. K. Hwang, A. V. Ramayya and J. H. Hamilton. Spectroscopy of neutron-rich palladium and cadmium isostopes near A= 120 / M. A. Stoyer and W. B. Walters -- Nuclear structure IV. First observation of new neutron-rich magnesium, aluminum and silicon isotopes / A. Stolz ... [et al.]. Spectroscopy of [symbol]Na revolution of shell structure with isospin / V. Tripathi ... [et al.]. Rearrangement of proton single particle orbitals in neutron-rich potassium isotopes - spectroscopy of [symbol]K / W. Królas ... [et al.]. Laser spectroscopy and the nature of the shape transition at N [symbol] 60 / B. Cheal ... [et al.]. Study of nuclei near stability as fission fragments following heavy-ion reactions / N. Fotiadis. [symbol]C and [symbol]N: lifetime measurements of their first-excited states / M. Wiedeking ... [et al.] -- Nuclear astrophysics. Isomer spectroscopy near [symbol]Sn - first observation of excited states in [symbol]Cd / M. Pfitzner ... [et al.]. Nuclear masses and what they imply for the structures of neutron rich nuclei / A. Awahamian and A. Teymurazyan. Multiple nucleosynthesis processes in the early universe / F. Montes. Single-neutron structure of neutron-rich nuclei near N = 50 and N = 82 / J. A. Cizewski ... [et al.]. [symbol]Cadmium: ugly duckling or young swan / W. B. Walters ... [et al.] -- Nuclear structure V. Evidence for chiral doublet bands in [symbol]Ru / Y. X. Luo ... [et al.]. Unusual octupole shape deformation terms and K-mixing / J. O. Rasmussen ... [et al.]. Spin assignments, mixing ratios, and g-factors in neutron rich [symbol]Cf fission products / C. Goodin ... [et al.]. Level structures and double [symbol]-bands in [symbol]Mo, [symbol]Mo and [symbol]Ru / S. J. Zhu ... [et al.] -- Nuclear theory. Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara ... [et al.]. Nuclear structure, double beta decay and test of physics beyond the standard model / A. Faessler. Collective modes in elastic nuclear matter / Ş. Mişicu and S. Bastrukov. From N = Z to neutron rich: magnetic moments of Cu isotopes at and above the [symbol]Ni and [symbol]Ni double shell closures - what next? / N. J. Stone, J. R. Stone and U. Köster -- Nuclear structure VI. Decay studies of nuclei near [symbol]Ni / R. Grzywacz. Weakening of the [symbol]Ni core for Z > 28, N > 50? / J. A. Winger ... [et al.]. Coulomb excitation of the odd-A [symbol]Cu isotopes with MINIBALL and REX-ISOLDE / I. Stefanescu ... [et al.]. Neutron single particle states and isomers in odd mass nickel isotopes near [symbol]Ni / M. M. Raiabali ... [et al.]. [symbol] and [symbol]-delayed neutron decay studies of [symbol]Ch at the HRIBF / S. V. Ilvushkin ... [et al.] -- Posters. Properties of Fe, Ni and Zn isotope chains near the drip-line / V. N. Tarasov ... [et al.]. Probing nuclear structure of [symbol]Xe / J. B. Gupta. Shape coexistence in [symbol]Zr and large deformation in [symbol]Zr / J. K. Hwang ... [et al.]. Digital electronics and their application to beta decay spectroscopy / S. N. Liddick, S. Padgett and R. Grzywacz. Nuclear shape and structure in neutron-rich [symbol]Tc / Y. X. Luo ... [et al.]. Speeding up the r-process. Investigation of first forbidden [symbol] decays in N > 50 isotopes near [symbol]Ni / S. Padgett ... [et al.]. Yields of fission products from various actinide targets / E. H. Sveiewski ... [et al.].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talmi, Igal
2008-11-11
The discovery of magic numbers led to the shell model. They indicated closure of major shells and are robust: proton magic numbers are rather independent of the occupation of neutron orbits and vice versa. Recently the magic property became less stringent and we hear a lot about the discovery of new magic numbers. These, however, indicate sub-shell closures and strongly depend on occupation numbers and hence, may be called quasi-magic numbers. Some of these have been known for many years and the mechanism for their appearance as well as disappearance, was well understood within the simple shell model. The situationmore » will be illustrated by a few examples which demonstrate the simple features of the shell model. Will this simplicity emerge from the complex computations of nuclear many-body theory?.« less
A novel approach to determine post mortem interval using neutron radiography
Bilheux, Hassina Z.; Cekanova, Maria; Vass, Arpad Alexander; ...
2015-03-06
In this study, neutron radiography (NR) is used non-destructively to measure changes in hydrogen (H) content in decaying tissues as a mean to estimate post-mortem invertal (PMI). After death, tissue undergoes sequential changes consisting of organic and inorganic phase variations, as well as a gradual reduction of tissue water content. H is the primary contributor to NR contrast in biological specimens because (1) it is the most abundant element in biological tissues and (2) its nucleus scatter thermal and cold neutrons more strongly than any other atomic nucleus. These contrast differences can be advantageous in a forensic context to determinemore » small changes in hydrogen concentrations. Dog cadavers were used as a model for human cadavers. Canine tissues and cadavers were exposed to controlled (laboratory settings) and uncontrolled (University of Tennessee Anthropology Research Facility) environmental conditions during putefraction, respectively. Neutron radiographs were supplemented with photographs and histology data to assess the decomposition stage of cadavers. Results demonstrated that the increase in neutron transmission likely corresponded to a decrease in hydrogen content in the tissue, which was correlated with the time of decay of the tissue. Tissues depleted in hydrogen are brighter in the neutron transmission radiographs of skeletal muscles, lung, and bone, under controlled conditions. Over a period of 10 days, changes in neutron transmission through lung and muscle were found to be higher than bone by 8.3%, 7.0 %, and 2.0 %, respectively. Estimation of the PMI was calculated from a natural logarithmic fitting of the NR data. Under controlled conditions, estimation of the PMI was 70% and 63.9 % accurate for bone and lung tissues, while being 1.4% accurate for muscle tissue. All results underestimated the true PMI. In conclusion, neutron radiography can be used for detection of hydrogen changes in decaying tissues to estimate PMI.« less
A novel approach to determine post mortem interval using neutron radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilheux, Hassina Z.; Cekanova, Maria; Vass, Arpad Alexander
In this study, neutron radiography (NR) is used non-destructively to measure changes in hydrogen (H) content in decaying tissues as a mean to estimate post-mortem invertal (PMI). After death, tissue undergoes sequential changes consisting of organic and inorganic phase variations, as well as a gradual reduction of tissue water content. H is the primary contributor to NR contrast in biological specimens because (1) it is the most abundant element in biological tissues and (2) its nucleus scatter thermal and cold neutrons more strongly than any other atomic nucleus. These contrast differences can be advantageous in a forensic context to determinemore » small changes in hydrogen concentrations. Dog cadavers were used as a model for human cadavers. Canine tissues and cadavers were exposed to controlled (laboratory settings) and uncontrolled (University of Tennessee Anthropology Research Facility) environmental conditions during putefraction, respectively. Neutron radiographs were supplemented with photographs and histology data to assess the decomposition stage of cadavers. Results demonstrated that the increase in neutron transmission likely corresponded to a decrease in hydrogen content in the tissue, which was correlated with the time of decay of the tissue. Tissues depleted in hydrogen are brighter in the neutron transmission radiographs of skeletal muscles, lung, and bone, under controlled conditions. Over a period of 10 days, changes in neutron transmission through lung and muscle were found to be higher than bone by 8.3%, 7.0 %, and 2.0 %, respectively. Estimation of the PMI was calculated from a natural logarithmic fitting of the NR data. Under controlled conditions, estimation of the PMI was 70% and 63.9 % accurate for bone and lung tissues, while being 1.4% accurate for muscle tissue. All results underestimated the true PMI. In conclusion, neutron radiography can be used for detection of hydrogen changes in decaying tissues to estimate PMI.« less
On the energy spectrum of cosmogenic neutrons
NASA Astrophysics Data System (ADS)
Malgin, A. S.
2017-11-01
The processes of the generation of cosmogenic neutrons (cg-neutrons) underground are considered. The neutrons produced by cosmic-ray muons in their interactions with matter are called cosmogenic. Deep-inelastic π A-collisions of pions in muon-induced hadronic showers are mainly their source at energies above 30 MeV. The characteristics of the energy spectrum for the generation of cg-neutrons have been determined by invoking the additive quark model of deep-inelastic soft processes and the mechanism for the interactions of high-energy nucleons in a nucleus. The three-component shape of the spectrum is explained, and the energy of the "knee" in the spectrum has been found to depend on the mass number A. The peculiarities of deep-inelastic π A-scattering lead to the conclusion that the spectrum of cg-neutrons steepens sharply at energies above 1 GeV. The calculated quantitative characteristics of the spectrum are compared with those obtained in measurements.
THE POLARIZATION OF NEUTRONS FROM THE C$sup 12$(d,n) N$sup 13$ REACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.; Niewodniczanski, H.
1959-01-01
The polarization of neutroni emitted irom the stripping reaction C/sup 12/(d,n)N/sup 13/ was investigated at the reaction angle theta /sub lab/ = 15 deg and deuteron energy E/sub d/ = I2.9 Mev. The polarization of neutrons connected with the 3.56 Mev energy- level in N/sup 13/ nucleus was found to be - (0.39 plus or minus 0.11). (auth)
NASA Astrophysics Data System (ADS)
Kosmas, T. S.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.
2017-09-01
We investigate the impact of a fourth sterile neutrino at reactor and Spallation Neutron Source neutrino detectors. Specifically, we explore the discovery potential of the TEXONO and COHERENT experiments to subleading sterile neutrino effects through the measurement of the coherent elastic neutrino-nucleus scattering event rate. Our dedicated χ2-sensitivity analysis employs realistic nuclear structure calculations adequate for high purity sub-keV threshold Germanium detectors.
Coulomb Excitation of Neutron-Rich Cd Isotopes at REX-ISOLDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroell, Th.; Behrens, T.; Kruecken, R.
2005-11-21
We report on the 'safe' Coulomb excitation of neutron-rich Cd isotopes in the vicinity of the doubly magic nucleus 132Sn. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma}-decay of excited states has been detected by the MINIBALL array. Preliminary results for the B(E2) values of 122,124Cd are consistent with expectations from phenomenological systematics.
Coulomb excitation of neutron-rich Cd isotopes at REX-ISOLDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroell, Th.; Behrens, T.; Kruecken, R.
2006-04-26
We report on the 'safe' Coulomb excitation of neutron-rich Cd isotopes in the vicinity of the doubly magic nucleus 132Sn. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma}-decay of excited states has been detected by the MINIBALL array. Preliminary results for the B(E2) values of 122,124Cd are consistent with expectations from phenomenological systematics.
Li, Cheng-Shu; Lu, Da-Peng; Cho, Young K
2015-06-01
The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (NAcSh) is a key neural substrate of reward circuitry, but it has not been verified as a classical gustatory nucleus. A recent in vivo electrophysiological study demonstrated that the NAcSh modulates the spontaneous and gustatory activities of hamster pontine taste neurons. In the present study, we investigated whether activation of the NAcSh modulates gustatory responses of the NST neurons. Extracellular single-unit activity was recorded from medullary neurons in urethane-anesthetized hamsters. After taste response was confirmed by delivery of sucrose, NaCl, citric acid, and quinine hydrochloride to the anterior tongue, the NAcSh was stimulated bilaterally with concentric bipolar stimulating electrodes. Stimulation of the ipsilateral and contralateral NAcSh induced firings from 54 and 37 of 90 medullary taste neurons, respectively. Thirty cells were affected bilaterally. No inhibitory responses or antidromic invasion was observed after NAcSh activation. In the subset of taste cells tested, high-frequency electrical stimulation of the NAcSh during taste delivery enhanced taste-evoked neuronal firing. These results demonstrate that two-thirds of the medullary gustatory neurons are under excitatory descending influence from the NAcSh, which is a strong indication of communication between the gustatory pathway and the mesolimbic reward pathway. Copyright © 2015 the American Physiological Society.
Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions
NASA Astrophysics Data System (ADS)
Kumar, Ajay
2014-05-01
A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged particle emission.
Precision Mass Measurements of Cr-6358 : Nuclear Collectivity Towards the N =40 Island of Inversion
NASA Astrophysics Data System (ADS)
Mougeot, M.; Atanasov, D.; Blaum, K.; Chrysalidis, K.; Goodacre, T. Day; Fedorov, D.; Fedosseev, V.; George, S.; Herfurth, F.; Holt, J. D.; Lunney, D.; Manea, V.; Marsh, B.; Neidherr, D.; Rosenbusch, M.; Rothe, S.; Schweikhard, L.; Schwenk, A.; Seiffert, C.; Simonis, J.; Stroberg, S. R.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.
2018-06-01
The neutron-rich isotopes
Protein hydration in solution: Experimental observation by x-ray and neutron scattering
Svergun, D. I.; Richard, S.; Koch, M. H. J.; Sayers, Z.; Kuprin, S.; Zaccai, G.
1998-01-01
The structure of the protein–solvent interface is the subject of controversy in theoretical studies and requires direct experimental characterization. Three proteins with known atomic resolution crystal structure (lysozyme, Escherichia coli thioredoxin reductase, and protein R1 of E. coli ribonucleotide reductase) were investigated in parallel by x-ray and neutron scattering in H2O and D2O solutions. The analysis of the protein–solvent interface is based on the significantly different contrasts for the protein and for the hydration shell. The results point to the existence of a first hydration shell with an average density ≈10% larger than that of the bulk solvent in the conditions studied. Comparisons with the results of other studies suggest that this may be a general property of aqueous interfaces. PMID:9482874
NASA Astrophysics Data System (ADS)
Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.
2013-09-01
The fragmentation cross-sections of relativistic energy nucleus-nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus-nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.
... matter is made up of tiny particles called atoms. At the center of every atom is a nucleus, which holds two types of ... which is a nuclear reactor that can smash atoms to release proton, neutron, and helium ion beams. ...
Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.
2013-08-01
Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.
Projected shell model study of odd-odd f-p-g shell proton-rich nuclei
NASA Astrophysics Data System (ADS)
Palit, R.; Sheikh, J. A.; Sun, Y.; Jain, H. C.
2003-01-01
A systematic study of two-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A˜70 80 region is performed using the projected shell model approach. The study includes Br, Rb, and Y isotopes with N=Z+2 and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N=Z nucleus 74Rb, using the concept of spontaneous symmetry breaking is also presented.
Bull, Cecilia; Freitas, Kelen CC; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott
2014-01-01
Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior. PMID:24903651
Bull, Cecilia; Freitas, Kelen C C; Zou, Shiping; Poland, Ryan S; Syed, Wahab A; Urban, Daniel J; Minter, Sabrina C; Shelton, Keith L; Hauser, Kurt F; Negus, S Stevens; Knapp, Pamela E; Bowers, M Scott
2014-11-01
Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH self-administration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior.
Neutron densities from a global analysis of medium-energy proton-nucleus elastic scattering
NASA Astrophysics Data System (ADS)
Clark, B. C.; Kerr, L. J.; Hama, S.
2003-05-01
A new method for extracting neutron densities from intermediate-energy elastic proton-nucleus scattering observables uses a global Dirac phenomenological approach based on the relativistic impulse approximation. Datasets for 40Ca, 48Ca, and 208Pb in the energy range from 500 MeV to 1040 MeV are considered. The global fits are successful in reproducing the data and in predicting datasets not included in the analysis. Using this global approach, energy-independent neutron densities are obtained. The vector point proton density distribution ρpv is determined from the empirical charge density after unfolding the proton form factor. The other densities, ρnv, ρps, ρns, are parametrized. This work provides energy-independent values for the rms neutron radius Rn and the neutron skin thickness Sn, in contrast to the energy-dependent values obtained by previous studies. In addition, the results presented in this paper show that the expected rms neutron radius and the skin thickness for 40Ca are accurately reproduced. The values of Rn and Sn obtained from the global fits that we consider to be the most reliable are given as follows: for 40Ca, 3.314>Rn>3.310 fm and -0.063>Sn >-0.067 fm; for 48Ca, 3.459>Rn>3.413 fm and 0.102>Sn>0.056 fm; and for 208Pb, 5.550>Rn>5.522 fm and 0.111>Sn>0.083 fm. These values are in reasonable agreement with nonrelativistic Skyrme-Hartree-Fock models and with relativistic Hartree-Bogoliubov models with density-dependent meson-nucleon couplings. The results from the global fits for 48Ca and 208Pb are generally not in agreement with the usual relativistic mean-field models.
Balan, Irina; Warnock, Kaitlin T; Puche, Adam; Gondre-Lewis, Marjorie C; Aurelian, Laure
2018-03-01
Cognitive impulsivity is a heritable trait believed to represent the behavior that defines the volition to initiate alcohol drinking. We have previously shown that a neuronal Toll-like receptor 4 (TLR4) signal located in the central amygdala (CeA) and ventral tegmental area (VTA) controls the initiation of binge drinking in alcohol-preferring P rats, and TLR4 expression is upregulated by alcohol-induced corticotropin-releasing factor (CRF) at these sites. However, the function of the TLR4 signal in the nucleus accumbens shell (NAc-shell), a site implicated in the control of reward, drug-seeking behavior and impulsivity and the contribution of other signal-associated genes, are still poorly understood. Here we report that P rats have an innately activated TLR4 signal in NAc-shell neurons that co-express the α2 GABA A receptor subunit and CRF prior to alcohol exposure. This signal is not present in non-alcohol drinking NP rats. The TLR4 signal is sustained by a CRF amplification loop, which includes TLR4-mediated CRF upregulation through PKA/CREB activation and CRF-mediated TLR4 upregulation through the CRF type 1 receptor (CRFR1) and the MAPK/ERK pathway. NAc-shell Infusion of a neurotropic, non-replicating herpes simplex virus vector for TLR4-specific small interfering RNA (pHSVsiTLR4) inhibits TLR4 expression and cognitive impulsivity, implicating the CRF-amplified TLR4 signal in impulsivity regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
D'Cunha, Tracey M; Daoud, Emilie; Rizzo, Damaris; Bishop, Audrey B; Russo, Melissa; Mourra, Gabrielle; Hamel, Laurie; Sedki, Firas; Shalev, Uri
2017-04-01
Caloric restriction during drug abstinence increases the risk for relapse in addicts. In rats, chronic food restriction during a period of withdrawal following heroin self-administration augments heroin seeking. The mechanisms underlying this effect are largely unknown. Here, we investigated the role of nucleus accumbens (NAc) shell and core dopamine (DA) in food restriction-induced augmentation of heroin seeking. Rats were trained to self-administer heroin (0.1 mg/kg/infusion) for 10 days. Next, rats were moved to the animal colony for a withdrawal period, during which rats were food restricted to 90% of their original body weight (FDR group) or given unrestricted access to food (sated group). On day 14 of food restriction, rats were returned to the operant conditioning chambers for a heroin-seeking test under extinction conditions. Extracellular DA levels were assessed using in vivo microdialysis. In separate experiments, the DA D1-like receptor antagonist SCH39166 (12.5, 25.0, or 50.0 ng/side) was administered into the NAc before the heroin-seeking test. In the NAc shell, pre-test exposure to the heroin-associated context increased DA only in FDR rats; but in the NAc core, DA increased regardless of feeding condition. Food restriction significantly augmented heroin seeking and increased DA in the NAc shell and core during the test. Intra-NAc shell administration of SCH39166 decreased heroin seeking in all rats. In contrast, in the NAc core, SCH39166 selectively decreased the augmentation of heroin-seeking induced by chronic food restriction. Taken together, these results suggest that activation of the DA D1-like receptor in the NAc core is important for food restriction-induced augmentation of heroin seeking.
Ren, Q; Ma, M; Yang, C; Zhang, J-C; Yao, W; Hashimoto, K
2015-01-01
Depression is a core symptom of methamphetamine (METH) withdrawal during the first several weeks of abstinence. However, the precise mechanisms underlying METH withdrawal symptoms remain unknown. Brain-derived neurotrophic factor (BDNF) and its specific receptor, tropomyosin-related kinase (TrkB), have a role the in pathophysiology of depression. In this study, we examined the role of BDNF–TrkB signaling in different brain regions of male mice with METH withdrawal symptoms. Repeated METH (3 mg kg−1 per day for 5 days) administration to mice caused a long-lasting depression-like behavior including anhedonia. Western blot analysis showed that BDNF levels in the nucleus accumbens (NAc) of METH-treated mice were significantly higher than those of control mice whereas BDNF levels in other regions, including the prefrontal cortex and hippocampus, were not altered. METH-induced depression-like behavior, behavioral sensitization and dendritic changes in the NAc shell were improved by subsequent subchronic administration of TrkB antagonist ANA-12 (0.5 mg kg−1 per day for 14 days), but not TrkB agonist 7,8-dihydroxyflavone (10 mg kg−1 per day for 14 days). In vivo microdialysis showed that METH (1 mg kg−1)-induced dopamine release in NAc shell of METH-treated mice was attenuated after subsequent subchronic ANA-12 administration. Interestingly, a single bilateral infusion of ANA-12 into the NAc shell, but not NAc core, showed a rapid and long-lasting therapeutic effect. However, ketamine and paroxetine had no effect. These findings suggest that increased BDNF–TrkB signaling in the NAc shell has an important role in the behavioral abnormalities after withdrawal from repeated METH administration, and that TrkB antagonists are potential therapeutic drugs for withdrawal symptoms in METH abusers. PMID:26506052
Combined few-body and mean-field model for nuclei
NASA Astrophysics Data System (ADS)
Hove, D.; Garrido, E.; Sarriguren, P.; Fedorov, D. V.; Fynbo, H. O. U.; Jensen, A. S.; Zinner, N. T.
2018-07-01
The challenging nuclear many-body problem is discussed along with classifications and qualitative descriptions of existing methods and models. We present detailed derivations of a new method where cluster correlations co-exist with an underlying mean-field described core structure. The variation of an antisymmetrized product of cluster and core wave functions and a given nuclear interaction, provide sets of self-consistent equations of motion. First we test the technique on the neutron dripline nucleus 26O, considered as 24O surrounded by two neutrons. We choose Skyrme effective interactions between all pairs of nucleons. To ensure correct asymptotic behavior we modify the valence neutron–neutron interaction to fit the experimental scattering length in vacuum. This is an example of necessary considerations both of effective interactions between in-medium and free pairs, and renormalizations due to restrictions in allowed Hilbert space. Second, we investigate the heavier neutron dripline nucleus 72Ca, described as 70Ca plus two neutrons. We continuously vary the strength of the Skyrme interaction to fine tune the approach to the dripline. Halo structure in the s-wave is observed followed by the tendency to form Efimov states. Occurrence of Efimov states are prevented by the exceedingly unfavorable system of two light and one heavy particle. Specifically the neutron–neutron scattering length is comparable to the spatial extension of a possible Efimov state, and scaling would place the next of the states outside our galaxy. Our third application is on the proton dripline nucleus 70Kr, described as 68Se plus two protons, which is a prominent waiting point for the astrophysical rapid proton-process. We calculate radiative capture rates and discuss the capture mechanism as being either direct, sequential, virtual sequential or an energy dependent mixture of them. We do not find any 1‑ resonance and therefore no significant E1 transition. This is consistent with the long waiting time, since both E2 and background transitions are very slow. After the applications on dripline nuclei we discuss perspectives with improvements and applications. In the conclusion we summarize while emphasizing the merits of consistently treating both short- and large-distance properties, few- and many-body correlations, ordinary nuclear structure, and concepts of halos and Efimov states.
r-process nucleosynthesis in the high-entropy supernova bubble
NASA Technical Reports Server (NTRS)
Meyer, B. S.; Mathews, G. J.; Howard, W. M.; Woosley, S. E.; Hoffman, R. D.
1992-01-01
We show that the high-temperature, high-entropy evacuated region outside the recent neutron star in a core-collapse supernova may be an ideal r-process site. In this high-entropy environment it is possible that most nucleons are in the form of free neutrons or bound into alpha particles. Thus, there can be many neutrons per seed nucleus even though the material is not particularly neutron rich. The predicted amount of r-process material ejected per event from this environment agrees well with that required by simple galactic evolution arguments. When averaged over regions of different neutron excess in the supernova ejecta, the calculated r-process abundance curve can give a good representation of the solar-system r-process abundances as long as the entropy per baryon is sufficiently high. Neutrino irradiation may aid in smoothing the final abundance distribution.
Neutrino Spectra from Nuclear Weak Interactions in sd-Shell Nuclei under Astrophysical Conditions
NASA Astrophysics Data System (ADS)
Misch, G. Wendell; Sun, Yang; Fuller, George M.
2018-01-01
We present shell model calculations of nuclear neutrino energy spectra for 70 sd-shell nuclei over the mass number range A = 21–35. Our calculations include nuclear excited states as appropriate for the hot and dense conditions characteristic of pre-collapse massive stars. We consider neutrinos produced by charged lepton captures and decays, and for the first time in tabular form, neutral current nuclear deexcitation, providing neutrino energy spectra on the Fuller–Fowler–Newman temperature–density grid for these interaction channels for each nucleus. We use the full sd-shell model space to compute initial nuclear states up to 20 MeV excitation with transitions to final states up to 35–40 MeV, employing a modification of the Brink-Axel hypothesis to handle high-temperature population factors and the nuclear partition functions.
Measurement of 173Lu(n,γ) Cross Sections at DANCE
NASA Astrophysics Data System (ADS)
Roig, O.; Theroine, C.; Ebran, A.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O'Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Vieira, D. J.
2014-05-01
A highly gamma-radioactive target, 3.7 GBq, of 173Lu isotope was placed inside the DANCE array (Detector for Advanced Neutron Capture Experiments) at Los Alamos to study the radiative neutron capture on an unstable isotope. The 173Lu element was produced by naturalHf(p,xn) reactions following by beta-decays at the Isotope Production Facility (IPF). Measurements of radiative neutron capture cross section on 173Lu were achieved at the Los Alamos Neutron Science Center (LANSCE) spallation neutron source facility over the neutron energy range from thermal up to 1 keV. A special configuration was necessary to perform the experiment using the DANCE [1] array due to the high gamma activity of the target. We will report on the target production, the experiment and the results obtained for the radiative neutron capture on 173Lu. The radiative capture cross section was obtained for the first time on this unstable nucleus. Some resonances have been characterized. A comparison with a recent data evaluation is presented.
The effects of collision orientation and energy dependence in multinucleon transfer reactions
NASA Astrophysics Data System (ADS)
Li, Jingjing; Li, Cheng; Wen, Peiwei; Zhang, Feng-Shou
2018-05-01
Multinucleon transfer (MNT) reaction 136Xe+208Pb near Coulomb barrier energies are investigated within the dinuclear system (DNS) model. It is found that the collision orientation has an important influence on the mass distributions attributed to the depth of pocket in the driving potential. The calculation results of the isotopic production show that the energy dependence in neutron-deficient side is more sensitive than that in neutron-rich side. The production of the N = 126 isotones are calculated by GRAZING model, DNS+GEMINI model, and ImQMD+GEMINI model, respectively. It demonstrates that MNT reaction is a promising way to produce neutron-rich isotopes in the region of the neutron shell closure N = 126.
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
NASA Astrophysics Data System (ADS)
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
Mass Measurements beyond the Major r-Process Waiting Point {sup 80}Zn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baruah, S.; Herlert, A.; Schweikhard, L.
2008-12-31
High-precision mass measurements on neutron-rich zinc isotopes {sup 71m,72-81}Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time, the mass of {sup 81}Zn has been experimentally determined. This makes {sup 80}Zn the first of the few major waiting points along the path of the astrophysical rapid neutron-capture process where neutron-separation energy and neutron-capture Q-value are determined experimentally. The astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N=50 shell closure for Z=30.
Prediction for a Four-Neutron Resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
Prediction for a Four-Neutron Resonance
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; ...
2016-10-28
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb
Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.; ...
2017-09-13
Here, this short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4) μs. The multipolaritymore » assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2)[521] and π(3+/2) Nilsson orbitals.« less
NASA Astrophysics Data System (ADS)
Anastasi, A.; Mandaglio, G.; Curciarello, F.; Nasirov, A. K.; Fazio, G.; Giardina, G.
2018-05-01
The investigation of various properties of deexcitation of the same 220Th compound nucleus (CN), formed by the different mass (charge) asymmetric 16O+204Pb, 40Ar+180Hf, 82Se+138Ba and 96Zr+124Sn reactions is presented. The effective fission barrier < B fis > value, as a function of the excitation energy {E}CN* , determined for each intermediate excited nucleus reached along the deexcitation cascade of the CN obtained by the four considered reactions is strongly sensitive to the various orbital angular momentum L=ℓℏ distributions of CN formed with the same excitation energy {E}CN* by the various entrance channels. Therefore, the competition between the fission and evaporation of light particles (neutron, proton, and α-particle) processes along the deexcitation cascade of CN is dependent on the orbital angular momentum distribution of CN. In fact, the ratio between the evaporation residue cross sections obtained when also the charged particles are emitted and the ones obtained after neutron emission only for the same CN with a fixed excitation energy {E}CN* is sensitive to the mass (charge) asymmetry of the entrance channel.
Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb
NASA Astrophysics Data System (ADS)
Gurgi, L. A.; Regan, P. H.; Söderström, P.-A.; Watanabe, H.; Walker, P. M.; Podolyák, Zs.; Nishimura, S.; Berry, T. A.; Doornenbal, P.; Lorusso, G.; Isobe, T.; Baba, H.; Xu, Z. Y.; Sakurai, H.; Sumikama, T.; Catford, W. N.; Bruce, A. M.; Browne, F.; Lane, G. J.; Kondev, F. G.; Odahara, A.; Wu, J.; Liu, H. L.; Xu, F. R.; Korkulu, Z.; Lee, P.; Liu, J. J.; Phong, V. H.; Yagi, A.; Zhang, G. X.; Alharbi, T.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Kanaoka, H.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C. B.; Nishizuka, I.; Nita, C. R.; Patel, Z.; Roberts, O. J.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Kanaya, S.; Valiente-Dobòn, J. J.
2017-09-01
This short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4) μs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2)?[521] and ? π(3+/2) Nilsson orbitals.
Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14
NASA Astrophysics Data System (ADS)
Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration
2018-02-01
Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening for the nitrogen isotopes.
K-mixing in the doubly mid-shell nuclide 170Dy and the role of vibrational degeneracy
Soderstrom, P. -A.; Walker, P. M.; Wu, J.; ...
2016-10-04
Here, a detailed study of the structure of the doubly mid-shell nucleus 170 66Dy 104 has been carried out, following isomeric and β decay. We have measured the yrast band up to the spin-parity J π = 6 + state, the K = 2 γ -vibration band up to the 5 + state, a low-lying negative-parity band based on a 2¯ state that could be a candidate for the lowest energy octupole vibration state within this nucleus, and a candidate for the K π = 6+ two quasi-particle isomer. This state was determined to have an excitation energy of 1643.91(23)more » keV and a half life of 0.99(4) μs, with a reduced hindrance for its decay to the groundstate band an order of magnitude lower than predicted by N pN n systematics. This is interpreted as being due to γ -vibrational mixing from a near degeneracy of the isomer and the 6 + state of the γ band. Furthermore, the parent nucleus 170Tb has been determined to have a half-life of 0.91( +18 –13) s with a possible spin-parity of 2¯.« less
Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210
Cha, Hye Jin; Seong, Yeon-Hee; Song, Min-Ji; Jeong, Ho-Sang; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Kim, Young-Hoon; Kang, Hoil; Kim, Hyoung Soo
2015-01-01
Synthetic cannabinoids JWH-018 and JWH-250 in ‘herbal incense’ also called ‘spice’ were first introduced in many countries. Numerous synthetic cannabinoids with similar chemical structures emerged simultaneously and suddenly. Currently there are not sufficient data on their adverse effects including neurotoxicity. There are only anecdotal reports that suggest their toxicity. In the present study, we evaluated the neurotoxicity of two synthetic cannabinoids (JWH-081 and JWH-210) through observation of various behavioral changes and analysis of histopathological changes using experimental mice with various doses (0.1, 1, 5 mg/kg). In functional observation battery (FOB) test, animals treated with 5 mg/kg of JWH-081 or JWH-210 showed traction and tremor. Their locomotor activities and rotarod retention time were significantly (p<0.05) decreased. However, no significant change was observed in learning or memory function. In histopathological analysis, neural cells of the animals treated with the high dose (5 mg/kg) of JWH-081 or JWH-210 showed distorted nuclei and nucleus membranes in the core shell of nucleus accumbens, suggesting neurotoxicity. Our results suggest that JWH-081 and JWH-210 may be neurotoxic substances through changing neuronal cell damages, especially in the core shell part of nucleus accumbens. To confirm our findings, further studies are needed in the future. PMID:26535086
No-core configuration-interaction model for the isospin- and angular-momentum-projected states
NASA Astrophysics Data System (ADS)
Satuła, W.; Båczyk, P.; Dobaczewski, J.; Konieczka, M.
2016-08-01
Background: Single-reference density functional theory is very successful in reproducing bulk nuclear properties like binding energies, radii, or quadrupole moments throughout the entire periodic table. Its extension to the multireference level allows for restoring symmetries and, in turn, for calculating transition rates. Purpose: We propose a new variant of the no-core-configuration-interaction (NCCI) model treating properly isospin and rotational symmetries. The model is applicable to any nucleus irrespective of its mass and neutron- and proton-number parity. It properly includes polarization effects caused by an interplay between the long- and short-range forces acting in the atomic nucleus. Methods: The method is based on solving the Hill-Wheeler-Griffin equation within a model space built of linearly dependent states having good angular momentum and properly treated isobaric spin. The states are generated by means of the isospin and angular-momentum projection applied to a set of low-lying (multi)particle-(multi)hole deformed Slater determinants calculated using the self-consistent Skyrme-Hartree-Fock approach. Results: The theory is applied to calculate energy spectra in N ≈Z nuclei that are relevant from the point of view of a study of superallowed Fermi β decays. In particular, a new set of the isospin-symmetry-breaking corrections to these decays is given. Conclusions: It is demonstrated that the NCCI model is capable of capturing main features of low-lying energy spectra in light and medium-mass nuclei using relatively small model space and without any local readjustment of its low-energy coupling constants. Its flexibility and a range of applicability makes it an interesting alternative to the conventional nuclear shell model.
Surface-peaked medium effects in the interaction of nucleons with finite nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguayo, F. J.; Arellano, H. F.
We investigate the asymptotic separation of the optical model potential for nucleon-nucleus scattering in momentum space, where the potential is split into a medium-independent term and another depending exclusively on the gradient of the density-dependent g matrix. This decomposition confines the medium sensitivity of the nucleon-nucleus coupling to the surface of the nucleus. We examine this feature in the context of proton-nucleus scattering at beam energies between 30 and 100 MeV and find that the pn coupling accounts for most of this sensitivity. Additionally, based on this general structure of the optical potential we are able to treat both, themore » medium dependence of the effective interaction and the full mixed density as described by single-particle shell models. The calculated scattering observables agree within 10% with those obtained by Arellano, Brieva, and Love in their momentum-space g-folding approach.« less
Separate roles for chromatin and lamins in nuclear mechanics.
Stephens, Andrew D; Banigan, Edward J; Marko, John F
2018-01-01
The cell nucleus houses, protects, and arranges the genome within the cell. Therefore, nuclear mechanics and morphology are important for dictating gene regulation, and these properties are perturbed in many human diseases, such as cancers and progerias. The field of nuclear mechanics has long been dominated by studies of the nuclear lamina, the intermediate filament shell residing just beneath the nuclear membrane. However, a growing body of work shows that chromatin and chromatin-related factors within the nucleus are an essential part of the mechanical response of the cell nucleus to forces. Recently, our group demonstrated that chromatin and the lamina provide distinct mechanical contributions to nuclear mechanical response. The lamina is indeed important for robust response to large, whole-nucleus stresses, but chromatin dominates the short-extension response. These findings offer a clarifying perspective on varied nuclear mechanics measurements and observations, and they suggest several new exciting possibilities for understanding nuclear morphology, organization, and mechanics.
Latagliata, Emanuele Claudio; Puglisi-Allegra, Stefano; Ventura, Rossella; Cabib, Simona
2018-01-01
Previous findings from this laboratory demonstrate: (1) that different classes of addictive drugs require intact norepinephrine (NE) transmission in the medial pre Frontal Cortex (mpFC) to promote conditioned place preference and to increase dopamine (DA) tone in the nucleus accumbens shell (NAc Shell); (2) that only food-restricted mice require intact NE transmission in the mpFC to develop conditioned preference for a context associated with milk chocolate; and (3) that food-restricted mice show a significantly larger increase of mpFC NE outflow then free fed mice when experiencing the palatable food for the first time. In the present study we tested the hypothesis that only the high levels of frontal cortical NE elicited by the natural reward in food restricted mice stimulate mesoaccumbens DA transmission. To this aim we investigated the ability of a first experience with milk chocolate to increase DA outflow in the accumbens Shell and c-fos expression in striatal and limbic areas of food–restricted and ad-libitum fed mice. Moreover, we tested the effects of a selective depletion of frontal cortical NE on both responses in either feeding group. Only in food-restricted mice milk chocolate induced an increase of DA outflow beyond baseline in the accumbens Shell and a c-fos expression larger than that promoted by a novel inedible object in the nucleus accumbens. Moreover, depletion of frontal cortical NE selectively prevented both the increase of DA outflow and the large expression of c-fos promoted by milk chocolate in the NAc Shell of food-restricted mice. These findings support the conclusion that in food-restricted mice a novel palatable food activates the motivational circuit engaged by addictive drugs and support the development of noradrenergic pharmacology of motivational disturbances. PMID:29434542
Radii of neutron drops probed via the neutron skin thickness of nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, P. W.; Gandolfi, S.
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
Radii of neutron drops probed via the neutron skin thickness of nuclei
Zhao, P. W.; Gandolfi, S.
2016-10-10
Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less
NASA Astrophysics Data System (ADS)
Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.
2016-05-01
Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new method for the spectroscopy of transition states (J ,K ) near the fission barrier. Implications of collective rotation on fragment angular momenta are discussed.
A novel approach to determine post mortem interval using neutron radiography.
Bilheux, Hassina Z; Cekanova, Maria; Vass, Arpad A; Nichols, Trent L; Bilheux, Jean C; Donnell, Robert L; Finochiarro, Vincenzo
2015-06-01
One of the most difficult challenges in forensic research is to objectively determine the post-mortem interval (PMI). The accuracy of PMI is critical for determining the timeline of events surrounding a death. Most PMI techniques rely on gross morphological changes of cadavers that are highly sensitive to taphonomic factors. Recent studies have demonstrated that even exhumed individuals exposed to the same environmental conditions with similar PMIs can present different stages of decomposition. After death, tissue undergoes sequential changes consisting of organic and inorganic phase variations, as well as a gradual reduction of tissue water content. Hydrogen (H) is the primary contributor to neutron radiography (NR) contrast in biological specimens because (1) it is the most abundant element in biological tissues and (2) its nucleus scatters thermal and cold neutrons more strongly than any other atomic nucleus. These contrast differences can be advantageous in a forensic context to determine small changes in hydrogen concentrations. Neutron radiography of decaying canine tissues was performed to evaluate the PMI by measuring the changes in H content. In this study, dog cadavers were used as a model for human cadavers. Canine tissues and cadavers were exposed to controlled (laboratory settings, at the University of Tennessee, College of Veterinary Medicine) and uncontrolled (University of Tennessee Anthropology Research Facility) environmental conditions, respectively. Neutron radiographs were supplemented with photographs and histology data to assess the decompositional stages of cadavers. Results demonstrated that the increase in neutron transmission likely corresponded to a decrease in hydrogen content in the tissue, which was correlated with the decay time of the tissue. Tissues depleted in hydrogen were brighter in the neutron transmission radiographs of skeletal muscles, lung, and bone, under controlled conditions. Over a period of 10 days, changes in neutron transmission through lung and muscle were found to be higher than bone by 8.3%, 7.0%, and 2.0%, respectively. Results measured during uncontrolled conditions were more difficult to assess and further studies are necessary. In conclusion, neutron radiography may be used to detect changes in hydrogen abundance that can be correlated with the post-mortem interval. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)
Langford, T.J.; Beise, E.J.; Breuer, H.; Heimbach, C.R.; Ji, G.; Nico, J.S.
2016-01-01
We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2. PMID:27226807
Ikemoto, Satoshi; Qin, Mei; Liu, Zhong-Hua
2005-05-18
When projection analyses placed the nucleus accumbens and olfactory tubercle in the striatal system, functional links between these sites began to emerge. The accumbens has been implicated in the rewarding effects of psychomotor stimulants, whereas recent work suggests that the medial accumbens shell and medial olfactory tubercle mediate the rewarding effects of cocaine. Interestingly, anatomical evidence suggests that medial portions of the shell and tubercle receive afferents from common zones in a number of regions. Here, we report results suggesting that the current division of the ventral striatum into the accumbens core and shell and the olfactory tubercle does not reflect the functional organization for amphetamine reward. Rats quickly learned to self-administer D-amphetamine into the medial shell or medial tubercle, whereas they failed to learn to do so into the accumbens core, ventral shell, or lateral tubercle. Our results suggest that primary reinforcement of amphetamine is mediated via the medial portion of the ventral striatum. Thus, the medial shell and medial tubercle are more functionally related than the medial and ventral shell or the medial and lateral tubercle. The current core-shell-tubercle scheme should be reconsidered in light of recent anatomical data and these functional findings.
Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies
NASA Astrophysics Data System (ADS)
Majetich, Sara
2009-03-01
Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escher, J. E.
Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Here we describe a method for extracting cross sections for neutron-capture on unstable isotopes from indirect (surrogate) measurements. The surrogate reaction, which produces the compound nucleus of interest, has to be described and the decay of the nucleus has to be modeled. We outline the approach for one-neutron pickup and report on the determination of the 90Zr(n, γ ) reaction from surrogate 92Zr(p,d) data, which is compared to the directly-measured capture cross section and thus provides a benchmark for themore » method. We then apply the method to determine the 87Y(n, γ ) cross section, which has not been measured directly. The work was carried out in the context of an LLNL L2 Milestone. This report addresses the theory aspects of the milestone. A complementary document summarizes the experimental efforts [1].« less
Cluster formation in nuclear reactions from mean-field inhomogeneities
NASA Astrophysics Data System (ADS)
Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo
2018-05-01
Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few practical examples will be illustrated. This paper resumes the extended analysis of fluctuations in nuclear matter of ref. [2] and briefly reviews applications to heavy-ion collisions.
Experimental validation of a coupled neutron-photon inverse radiation transport solver
NASA Astrophysics Data System (ADS)
Mattingly, John; Mitchell, Dean J.; Harding, Lee T.
2011-10-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons
NASA Astrophysics Data System (ADS)
Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.
2018-02-01
Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.
Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars
NASA Astrophysics Data System (ADS)
Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.
2013-09-01
Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.
Comet Hartley 2 Gets a Visitor Artist Concept
2010-10-26
This artist concept shows a view of NASA EPOXI mission spacecraft during its Nov. 4, 2010 flyby of comet Hartley 2. The fluffy shell around the comet, called a coma, is made up of gas and dust that blew off the comet core, or nucleus.
Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens
Lazarus, Michael; Shen, Hai-Ying; Cherasse, Yoan; Qu, Wei-Min; Huang, Zhi-Li; Bass, Caroline E.; Winsky-Sommerer, Raphaelle; Semba, Kazue; Fredholm, Bertil B.; Boison, Detlev; Hayaishi, Osamu; Urade, Yoshihiro; Chen, Jiang-Fan
2011-01-01
Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A2A receptors (A2ARs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A2ARs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A2ARs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A2ARs were focally removed from the NAc core or other A2AR-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain. PMID:21734299
Alpha decay properties of the semi-magic nucleus 219Np
NASA Astrophysics Data System (ADS)
Yang, H. B.; Ma, L.; Zhang, Z. Y.; Yang, C. L.; Gan, Z. G.; Zhang, M. M.; Huang, M. H.; Yu, L.; Jiang, J.; Tian, Y. L.; Wang, Y. S.; Wang, J. G.; Liu, Z.; Liu, M. L.; Duan, L. M.; Zhou, S. G.; Ren, Z. Z.; Zhou, X. H.; Xu, H. S.; Xiao, G. Q.
2018-02-01
The semi-magic nucleus 219Np was produced in the fusion reaction 187Re(36Ar, 4n)219Np at the gas-filled recoil separator SHANS (Spectrometer for Heavy Atoms and Nuclear Structure). A fast electronics system based on waveform digitizers was used in the data acquisition and the sampled pulses were processed by digital algorithms. The reaction products were identified using spatial and time correlations between the implants and subsequent α decays. According to the observed α-decay chain, an energy of Eα = 9039 (40) keV and a half-life of T1/2 =0.15-0.07 + 0.72 ms were determined for 219Np. The deduced proton binding energy of 219Np fits well into the systematics, which gives another evidence of that there is no sub-shell closure at Z = 92. The influence of the N = 126 shell closure on the stability of Np isotopes is discussed within the framework of α-decay reduced widths.
Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics
NASA Astrophysics Data System (ADS)
Buchoff, Michael; Hammer, Jim
2015-11-01
One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Fast neutron detection at near-core location of a research reactor with a SiC detector
NASA Astrophysics Data System (ADS)
Wang, Lei; Jarrell, Josh; Xue, Sha; Tan, Chuting; Blue, Thomas; Cao, Lei R.
2018-04-01
The measurable charged-particle produced from the fast neutron interactions with the Si and C nucleuses can make a wide bandgap silicon carbide (SiC) sensor intrinsically sensitive to neutrons. The 4H-SiC Schottky detectors have been fabricated and tested at up to 500 °C, presenting only a slightly degraded energy resolution. The response spectrum of the SiC detectors were also obtained by exposing the detectors to external neutron beam irradiation and at a near-core location where gamma-ray field is intense. The fast neutron flux of these two locations are ∼ 4 . 8 × 104cm-2 ṡs-1 and ∼ 2 . 2 × 107cm-2 ṡs-1, respectively. At the external beam location, a Si detector was irradiated side-by-side with SiC detector to disjoin the neutron response from Si atoms. The contribution of gamma ray, neutron scattering, and charged-particles producing reactions in the SiC was discussed. The fast neutron detection efficiencies were determined to be 6 . 43 × 10-4 for the external fast neutron beam irradiation and 6 . 13 × 10-6 for the near-core fast neutron irradiation.
Development of neutron imaging beamline for NDT applications at Dhruva reactor, India
NASA Astrophysics Data System (ADS)
Shukla, Mayank; Roy, Tushar; Kashyap, Yogesh; Shukla, Shefali; Singh, Prashant; Ravi, Baribaddala; Patel, Tarun; Gadkari, S. C.
2018-05-01
Thermal neutron imaging techniques such as radiography or tomography are very useful tool for various scientific investigations and industrial applications. Neutron radiography is complementary to X-ray radiography, as neutrons interact with nucleus as compared to X-ray interaction with orbital electrons. We present here design and development of a neutron imaging beamline at 100 MW Dhruva research reactor for neutron imaging applications such as radiography, tomography and phase contrast imaging. Combinations of sapphire and bismuth single crystals have been used as thermal neutron filter/gamma absorber at the input of a specially designed collimator to maximize thermal neutron to gamma ratio. The maximum beam size of neutrons has been restricted to ∼120 mm diameter at the sample position. A cadmium ratio of ∼250 with L / D ratio of 160 and thermal neutron flux of ∼ 4 × 107 n/cm2 s at the sample position has been measured. In this paper, different aspects of the beamline design such as collimator, shielding, sample manipulator, digital imaging system are described. Nondestructive radiography/tomography experiments on hydrogen concentration in Zr-alloy, aluminium foam, ceramic metal seals etc. are also presented.
Tritium is a hydrogen atom that has two neutrons in the nucleus and one proton. It is radioactive and behaves like other forms of hydrogen in the environment. Tritium is produced naturally in the upper atmosphere and as a byproduct of nuclear fission.
Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei
NASA Astrophysics Data System (ADS)
Praharaj, Choudhury
2016-03-01
We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.
A neutron track etch detector for electron linear accelerators in radiotherapy
Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip
2010-01-01
Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893
Dipole response of the odd-proton nucleus 205Tl up to the neutron-separation energy
NASA Astrophysics Data System (ADS)
Benouaret, N.; Beller, J.; Pai, H.; Pietralla, N.; Ponomarev, V. Yu; Romig, C.; Schnorrenberger, L.; Zweidinger, M.; Scheck, M.; Isaak, J.; Savran, D.; Sonnabend, K.; Raut, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Kelley, J. H.
2016-11-01
The low-lying electromagnetic dipole strength of the odd-proton nuclide 205Tl has been investigated up to the neutron separation energy exploiting the method of nuclear resonance fluorescence. In total, 61 levels of 205Tl have been identified. The measured strength distribution of 205Tl is discussed and compared to those of even-even and even-odd mass nuclei in the same mass region as well as to calculations that have been performed within the quasi-particle phonon model.
Nuclear Forensics and Radiochemistry: Fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.
Average CsI Neutron Density Distribution from COHERENT Data
NASA Astrophysics Data System (ADS)
Cadeddu, M.; Giunti, C.; Li, Y. F.; Zhang, Y. Y.
2018-02-01
Using the coherent elastic neutrino-nucleus scattering data of the COHERENT experiment, we determine for the first time the average neutron rms radius of
Differences Between a Single- and a Double-Folding Nucleus-^{9}Be Optical Potential
NASA Astrophysics Data System (ADS)
Bonaccorso, A.; Carstoiu, F.; Charity, R. J.; Kumar, R.; Salvioni, G.
2016-05-01
We have recently constructed two very successful n-^9Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus-^9Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon-nucleon cross-sections can be used also to obtain a neutron and/or proton-^9Be imaginary folding potential. We will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain both a n-^9Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of ^8B, ^8Li and ^8C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization.
Accelerator-driven boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Edgecock, Rob
2014-05-01
Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.
Freshwater Fossil Pearls from the Nihewan Basin, Early Early Pleistocene.
Li, Su-Ping; Yao, Pei-Yi; Li, Jin-Feng; Ferguson, David Kay; Min, Long-Rui; Chi, Zhen-Qing; Wang, Yong; Yao, Jian-Xin; Sha, Jin-Geng
2016-01-01
Fossil blister pearls attached to the shells of an Anodonta mollusk from China, early Early Pleistocene, are reported here for the first time. The pearls were investigated in detail using a variety of methods. Micro-CT scanning of the fossil pearls was carried out to discover the inner structure and the pearl nucleus. Using CTAn software, changes in the gray levels of the biggest pearl, which reflect the changing density of the material, were investigated. The results provide us with some clues on how these pearls were formed. Sand grains, shell debris or material with a similar density could have stimulated the development of these pearls. X-ray diffraction analysis of one fossil pearl and the shell to which it was attached reveals that only aragonite exists in both samples. The internal structures of our fossil shells and pearls were investigated using a Scanning Electron Microscope. These investigations throw some light on pearl development in the past.
Reward system and addiction: what dopamine does and doesn't do.
Di Chiara, Gaetano; Bassareo, Valentina
2007-02-01
Addictive drugs share with palatable food the property of increasing extracellular dopamine (DA), preferentially in the nucleus accumbens shell rather than in the core. However, by acting directly on the brain, drugs bypass the adaptive mechanisms (habituation) that constrain the responsiveness of accumbens shell DA to food reward, abnormally facilitating Pavlovian incentive learning and promoting the acquisition of abnormal DA-releasing properties by drug conditioned stimuli. Thus, whereas Pavlovian food conditioned stimuli release core but not shell DA, drug conditioned stimuli do the opposite, releasing shell but not core DA. This process, which results in the acquisition of excessive incentive-motivational properties by drug conditioned stimuli, initiates the drug addiction process. Neuroadaptive processes related to the chronic influence of drugs on subcortical DA might secondarily impair the function of prefronto-striatal loops, resulting in impairments in impulse control and decision making that form the basis for the compulsive feature of drug seeking and its relapsing character.
Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei
Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...
2015-09-10
Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Somnath; Singh, A. K.; Hagemann, G. B.
In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less
NASA Astrophysics Data System (ADS)
Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing
2018-03-01
The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .
Neutron Spectroscopic Factors from Transfer Reactions
NASA Astrophysics Data System (ADS)
Lee, Jenny; Tsang, M. B.
2007-05-01
We have extracted the ground state to ground state neutron spectroscopic factors for 80 nuclei ranging in Z from 3 to 24 by analyzing the past measurements of the angular distributions from (d,p) and (p,d) reactions. We demonstrate an approach that provides systematic and consistent values with a minimum of assumptions. A three-body model with global optical potentials and standard geometry of n-potential is applied. For the 60 nuclei where modern shell model calculations are available, such analysis reproduces, to within 20%, the experimental spectroscopic factors for most nuclei. If we constraint the nucleon-target optical potential and the geometries of the bound neutron-wave function with the modern Hartree-Fock calculations, our deduced neutron spectroscopic factors are reduced by 30% on average.
Radiation shielding composition
Quapp, William J.; Lessing, Paul A.
2000-12-26
A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.
Radiation shielding composition
Quapp, William J.; Lessing, Paul A.
1998-01-01
A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.
Compan, V; Segu, L; Buhot, M C; Daszuta, A
1998-05-18
Quantitative autoradiography was used to examine possible adaptive changes in serotonin 5-HT1B/1D and 5-HT2A/2C receptor binding sites in adult rat basal ganglia, after partial or severe lesions of serotonergic neurons produced by intraraphe injections of variable amounts of 5,7-dihydroxytryptamine. In controls, the 5-HT1B/1D sites labeled with S-CM-G[125I]TNH2 were evenly distributed in the core and the shell of the nucleus accumbens. The density of 5-HT1B/1D sites was higher in the ventral than dorsal part of the striatum and no regional differences were detected along the rostrocaudal axis of the structure. The 5-HT2A/2C sites labeled with [125I]DOI were preferentially distributed in the mediodorsal striatum and higher densities were detected in the shell than core of the nucleus accumbens. Following 5,7-dihydroxytryptamine injections, there were no changes in binding of either receptor subtype after partial lesions entailing 80-90% 5-HT depletions. After severe 5-HT depletions (over 95%), large increases in 5-HT1B/1D binding were observed in the substantia nigra (78%), but no changes took place in the globus pallidus. Increases in 5-HT1B/1D binding were also detected in the shell of the nucleus accumbens (27%). Similar sized increases in 5-HT2A/2C binding (22%) were restricted to the medial striatum. The present results suggest a preferential association between 5-HT1B/1D receptors and the striatonigral neurons containing substance P, as indicated by the striatal distribution of these receptors and their selective increases in the substantia nigra after severe 5-HT deprivation. We recently proposed a similar relationship between the 5-HT4 receptors and the striatopallidal neurons containing met-enkephalin. Moreover, the increases in 5-HT1B/1D binding in the substantia nigra and in the shell of the nucleus accumbens reinforce the view of an implication of this receptor subtype in motor functions. In contrast, the prominent increases in 5-HT2A/2C binding after severe 5-HT deprivation as restricted to the medial region of the striatum and suggest up-regulation of most probably 5-HT2C receptors in a region implicated in cognitive functions. Copyright 1998 Elsevier Science B. V.
Floresco, Stan B; Montes, David R; Tse, Maric M T; van Holstein, Mieke
2018-02-21
The nucleus accumbens (NAc) is a key node within corticolimbic circuitry for guiding action selection and cost/benefit decision making in situations involving reward uncertainty. Preclinical studies have typically assessed risk/reward decision making using assays where decisions are guided by internally generated representations of choice-outcome contingencies. Yet, real-life decisions are often influenced by external stimuli that inform about likelihoods of obtaining rewards. How different subregions of the NAc mediate decision making in such situations is unclear. Here, we used a novel assay colloquially termed the "Blackjack" task that models these types of situations. Male Long-Evans rats were trained to choose between one lever that always delivered a one-pellet reward and another that delivered four pellets with different probabilities [either 50% (good-odds) or 12.5% (poor-odds)], which were signaled by one of two auditory cues. Under control conditions, rats selected the large/risky option more often on good-odds versus poor-odds trials. Inactivation of the NAc core caused indiscriminate choice patterns. In contrast, NAc shell inactivation increased risky choice, more prominently on poor-odds trials. Additional experiments revealed that both subregions contribute to auditory conditional discrimination. NAc core or shell inactivation reduced Pavlovian approach elicited by an auditory CS+, yet shell inactivation also increased responding during presentation of a CS-. These data highlight distinct contributions for NAc subregions in decision making and reward seeking guided by discriminative stimuli. The core is crucial for implementation of conditional rules, whereas the shell refines reward seeking by mitigating the allure of larger, unlikely rewards and reducing expression of inappropriate or non-rewarded actions. SIGNIFICANCE STATEMENT Using external cues to guide decision making is crucial for adaptive behavior. Deficits in cue-guided behavior have been associated with neuropsychiatric disorders, such as attention deficit hyperactivity disorder and schizophrenia, which in turn has been linked to aberrant processing in the nucleus accumbens. However, many preclinical studies have often assessed risk/reward decision making in the absence of explicit cues. The current study fills that gap by using a novel task that allows for the assessment of cue-guided risk/reward decision making in rodents. Our findings identified distinct yet complementary roles for the medial versus lateral portions of this nucleus that provide a broader understanding of the differential contributions it makes to decision making and reward seeking guided by discriminative stimuli. Copyright © 2018 the authors 0270-6474/18/381901-14$15.00/0.
Magnetic Core-Shell Morphology of Structurally Uniform Magnetite Nanoparticles
NASA Astrophysics Data System (ADS)
Krycka, Kathryn
2011-03-01
Magnetic nanoscale structures are intriguing, in part, because of the exotic properties that emerge compared with bulk. The reduction of magnetic moment per atom in magnetite with decreasing nanoparticle size, for example, has been hypothesized to originate from surface disordering to anisotropy-induced radial canting, which are difficult to distinguish using conventional magnetometry. Small-angle neutron scattering (SANS) is ideal for probing structure, both chemical and magnetic, from nm to microns across an ensemble of particles. Adding polarization analysis (PASANS) of the neutron spin orientation before and after interaction with the scattering particles allows the magnetic structure to be separated into its vector components. Application of this novel technique to 9 nm magnetite nanoparticles closed-packed into face-centered crystallites with order of a micron revealed that at nominal saturation the missing magnetic moments unexpectedly interacted to form well-ordered shells 1.0 to 1.5 nm thick canted perpendicular to their ferrimagnetic cores between 160 to 320 K. These shells additionally displayed intra-particle ``cross-talk'', selecting a common orientation over clusters of tens of nanoparticles. However, the shells disappeared when the external field was removed and interparticle magnetic interactions were negligible (300 K), confirming their magnetic origin. This work has been carried out in collaboration with Ryan Booth, Julie Borchers, Wangchun Chen, Liv Dedon, Thomas Gentile, Charles Hogg, Yumi Ijiri, Mark Laver, Sara Majetich, James Rhyne, and Shannon Watson.
Landscape of α preformation probability for even-even nuclei in medium mass region
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou
2018-03-01
The behavior of α cluster preformation probability, in α decay, is a rich source of the structural information, such as the clustering, pairing, and shell evolution in heavy nuclei. Meanwhile, the experimental α decay data have been very recently compiled in the newest table NUBASE2016. Through a least square fit to the available experimental data of nuclear charge radii plus the neutron skin thickness, we obtain a new set of parameters for the two-parameter Fermi nucleon density distributions in target nuclei. Subsequently, we make use of these refreshed inputs, involved in the density-dependent cluster model, to extract α preformation factor ({P}α ) for a large range of medium α emitters with N < 126 from the newest data table. Besides checking the supposed smooth pattern of P α in the open-shell region, the special attention has been paid to those exotic α-decaying nuclei around the Z = 50 and N = 82 shell closures. Moreover, the correlation between the α preformation factor and the microscopic correction of nuclear mass, corresponding to the effect of shell and pairing plus deformation, is in particular investigated, to pursue the valuable knowledge of the P α pattern over the nuclide chart. The feature of α preformation factor along with the neutron-proton asymmetry is then detected and discussed to some extent.
Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Tanaka, Masaomi; Kato, Daiji; Gaigalas, Gediminas; Rynkun, Pavel; Radžiūtė, Laima; Wanajo, Shinya; Sekiguchi, Yuichiro; Nakamura, Nobuyuki; Tanuma, Hajime; Murakami, Izumi; Sakaue, Hiroyuki A.
2018-01-01
Ejected material from neutron star mergers gives rise to electromagnetic emission powered by radioactive decays of r-process nuclei, the so-called kilonova or macronova. While properties of the emission are largely affected by opacities in the ejected material, available atomic data for r-process elements are still limited. We perform atomic structure calculations for r-process elements: Se (Z = 34), Ru (Z = 44), Te (Z = 52), Ba (Z = 56), Nd (Z = 60), and Er (Z = 68). We confirm that the opacities from bound–bound transitions of open f-shell, lanthanide elements (Nd and Er) are higher than those of the other elements over a wide wavelength range. The opacities of open s-shell (Ba), p-shell (Se and Te), and d-shell (Ru) elements are lower than those of open f-shell elements, and their transitions are concentrated in the ultraviolet and optical wavelengths. We show that the optical brightness can be different by > 2 mag depending on the element abundances in the ejecta such that post-merger, lanthanide-free ejecta produce brighter and bluer optical emission. Such blue emission from post-merger ejecta can be observed from the polar directions if the mass of the preceding dynamical ejecta in these regions is small. For the ejecta mass of 0.01 {M}ȯ , observed magnitudes of the blue emission will reach 21.0 mag (100 Mpc) and 22.5 mag (200 Mpc) in the g and r bands within a few days after the merger, which are detectable with 1 m or 2 m class telescopes.
Richard, Jocelyn M.; Plawecki, Andrea M.; Berridge, Kent C.
2013-01-01
Intense fearful behavior and/or intense appetitive eating behavior can be generated by localized amino acid inhibitions along a rostrocaudal anatomical gradient within medial shell of nucleus accumbens of the rat. This can be produced by microinjections in medial shell of either the GABAA agonist muscimol (mimicking intrinsic GABAergic inputs) or the AMPA antagonist DNQX (disrupting corticolimbic glutamate inputs). At rostral sites in medial shell, each drug robustly stimulates appetitive eating and food intake, whereas at more caudal sites the same drugs instead produce increasingly fearful behaviors such as escape, distress vocalizations, and defensive treading (an antipredator behavior rodents emit to snakes and scorpions). Previously we showed that intense motivated behaviors generated by glutamate blockade require local endogenous dopamine and can be modulated in valence by environmental ambience. Here we investigated whether GABAergic generation of intense appetitive and fearful motivations similarly depends on local dopamine signals, and whether the valence of motivations generated by GABAergic inhibition can also be retuned by changes in environmental ambience. We report that the answer to both questions is ‘no’. Eating and fear generated by GABAergic inhibition of accumbens shell does not need endogenous dopamine. Also, the appetitive/fearful valence generated by GABAergic muscimol microinjections resists environmental retuning and is determined almost purely by rostrocaudal anatomical placement. These results suggest that NAc GABAergic release of fear and eating are relatively independent of modulatory dopamine signals, and more anatomically pre-determined in valence balance than release of the same intense behaviors by glutamate disruptions. PMID:23551138
Badrinarayan, Aneesha; Wescott, Seth A.; Vander Weele, Caitlin M.; Saunders, Benjamin T.; Couturier, Brenann E.; Maren, Stephen
2012-01-01
Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems. PMID:23136417
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
Proton-hole and core-excited states in the semi-magic nucleus 131In82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taprogge, J.; Jungclaus, A.; Grawe, H.
2016-11-01
The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131more » are compared to QRPA and shell-model calculations.« less
Evidence of Coherent K+ Meson Production in Neutrino-Nucleus Scattering
NASA Astrophysics Data System (ADS)
Wang, Z.; Marshall, C. M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration
2016-08-01
Neutrino-induced charged-current coherent kaon production νμA →μ-K+A is a rare, inelastic electroweak process that brings a K+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than the neutrino-induced charged-current coherent pion production because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+, μ-, and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3 σ significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talwar, R.; Kay, B. P.; Mitchell, A. J.
The nu 0h(9/2) and nu 0i(13/2) strength at Xe-137, a single neutron outside the N = 82 shell closure, has been determined using the Xe-136(alpha, He-3)Xe-137 reaction carried out at 100 MeV. We confirm the recent observation of the second 13/2(+) state and reassess previous data on the 9/2(-) states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at Sn-133.
Fast Neutron Detection using Pixelated CdZnTe Spectrometers
Streicher, Michael; Goodman, David; Zhu, Yuefeng; ...
2017-05-29
One important important signature of special nuclear materials (SNM) are fast neutrons. Fast neutrons have a low natural background rate and readily penetrate high atomic number materials which easily shield gamma-ray signatures. Thus, fast neutrons provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the smallmore » signals from these recoils. Here, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9 keV x-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally-sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.« less
Quantum Tunneling Model of a P-N Junction in Silvaco
2008-09-01
electrical characteristics of materials on a large scale. According to Niels Bohr, atoms are comprised of three subatomic particles: a negative...nucleus at a specific energy level known as an orbit or shell. The three subatomic particles are held together by the electrostatic force between the
β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station
NASA Astrophysics Data System (ADS)
Lică, R.; Benzoni, G.; Morales, A. I.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Madurga, M.; Sotty, C.; Vedia, V.; De Witte, H.; Benito, J.; Berry, T.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernández-Martínez, G.; Fynbo, H.; Greenlees, P.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Leoni, S.; Lund, M.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Regis, J. M.; Rotaru, F.; Saed-Sami, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.
2017-05-01
Neutron-rich Ba isotopes are expected to exhibit octupolar correlations, reaching their maximum in isotopes around mass A = 146. The odd-A neutron-rich members of this isotopic chain show typical patterns related to non-axially symmetric shapes, which are however less marked compared to even-A ones, pointing to a major contribution from vibrations. In the present paper we present results from a recent study focused on 148-150Cs β-decay performed at the ISOLDE Decay Station equipped with fast-timing detectors. A detailed analysis of the measured decay half-lives and decay scheme of 149Ba is presented, giving a first insight in the structure of this neutron-rich nucleus.