Behind the Scenes of the Spallation Neutron Source â The Linear Accelerator
Galambos, John
2018-06-25
The Spallation Neutron Source at Oak Ridge National Laboratory is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Take a look inside the facility's linear accelerator.
Design of thermal neutron beam based on an electron linear accelerator for BNCT.
Zolfaghari, Mona; Sedaghatizadeh, Mahmood
2016-12-01
An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keehan, S; Franich, R; Taylor, M
Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and themore » ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.« less
Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar
Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.; ...
2017-01-16
Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less
Technical basis for the use of a correlated neutron source in the uranium neutron coincidence collar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Root, Margaret A.; Menlove, Howard Olsen; Lanza, Richard C.
Active neutron coincidence systems are commonly used by international inspectorates to verify a material balance across the various stages of the nuclear fuel cycle. The Uranium Neutron Coincidence Collar (UNCL) is one such instrument; it is used to measure the linear density of 235U (g 235U/cm of active length in assembly) in fresh light water reactor fuel in nuclear fuel fabrication facilities. The UNCL and other active neutron interrogation detectors have historically relied on americium lithium ( 241AmLi) sources to induce fission within the sample in question. Californium-252 is under consideration as a possible alternative to the traditional 241AmLi source.more » Finally, this work relied upon a combination of experiments and Monte Carlo simulations to demonstrate the technical basis for the replacement of 241AmLi sources with 252Cf sources by evaluating the statistical uncertainty in the measurements incurred by each source and assessing the penetrability of neutrons from each source for the UNCL.« less
Measurement and simulation for a complementary imaging with the neutron and X-ray beams
NASA Astrophysics Data System (ADS)
Hara, Kaoru Y.; Sato, Hirotaka; Kamiyama, Takashi; Shinohara, Takenao
2017-09-01
By using a composite source system, we measured radiographs of the thermal neutron and keV X-ray in the 45-MeV electron linear accelerator facility at Hokkaido University. The source system provides the alternative beam of neutron and X-ray by switching the production target onto the electron beam axis. In the measurement to demonstrate a complementary imaging, the detector based on a vacuum-tube type neutron color image intensifier was applied to the both beams for dual-purpose. On the other hand, for reducing background in a neutron transmission spectrum, test measurements using a gadolinium-type neutron grid were performed with a cold neutron source at Hokkaido University. In addition, the simulations of the neutron and X-ray transmissions for various substances were performed using the PHITS code. A data analysis procedure for estimating the substance of sample was investigated through the simulations.
The Spallation Neutron Source accelerator system design
NASA Astrophysics Data System (ADS)
Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.
2014-11-01
The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.
A neutron track etch detector for electron linear accelerators in radiotherapy
Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip
2010-01-01
Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893
Yu, Haiyan; Tang, Xiaobin; Shu, Diyun; Liu, Yuanhao; Geng, Changran; Gong, Chunhui; Hang, Shuang; Chen, Da
2017-03-01
Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high Linear Energy Transfer (LET). It is considered a potential therapeutic approach for non-small cell lung cancer (NSCLC). It could avoid the inaccurate treatment caused by the lung motion during radiotherapy, because the dose deposition mainly depends on the boron localization and neutron source. Thus, B concentration and neutron sources are both principal factors of BNCT, and they play significant roles in the curative effect of BNCT for different cases. The purpose was to explore the feasibility of BNCT treatment for NSCLC with either of two neutron sources (the epithermal reactor at the Massachusetts Institute of Technology named "MIT source" and the accelerator neutron source designed in Argentina named "MEC source") and various boron concentrations. Shallow and deeper lung tumors were defined in the Chinese hybrid radiation phantom, and the Monte Carlo method was used to calculate the dose to tumors and healthy organs. The MEC source was more appropriate to treat the shallow tumor (depth of 6 cm) with a shorter treatment time. However, the MIT source was more suitable for deep lung tumor (depth of 9 cm) treatment, as the MEC source is more likely to exceed the skin dose limit. Thus, a neutron source consisting of more fast neutrons is not necessarily suitable for deep treatment of lung tumors. Theoretical distribution of B in tumors and organs at risk (especially skin) was obtained to meet the treatable requirement of BNCT, which may provide the references to identify the feasibility of BNCT for the treatment of lung cancer using these two neutron sources in future clinical applications.
Response Functions for Neutron Skyshine Analyses
NASA Astrophysics Data System (ADS)
Gui, Ah Auu
Neutron and associated secondary photon line-beam response functions (LBRFs) for point monodirectional neutron sources and related conical line-beam response functions (CBRFs) for azimuthally symmetric neutron sources are generated using the MCNP Monte Carlo code for use in neutron skyshine analyses employing the internal line-beam and integral conical-beam methods. The LBRFs are evaluated at 14 neutron source energies ranging from 0.01 to 14 MeV and at 18 emission angles from 1 to 170 degrees. The CBRFs are evaluated at 13 neutron source energies in the same energy range and at 13 source polar angles (1 to 89 degrees). The response functions are approximated by a three parameter formula that is continuous in source energy and angle using a double linear interpolation scheme. These response function approximations are available for a source-to-detector range up to 2450 m and for the first time, give dose equivalent responses which are required for modern radiological assessments. For the CBRF, ground correction factors for neutrons and photons are calculated and approximated by empirical formulas for use in air-over-ground neutron skyshine problems with azimuthal symmetry. In addition, a simple correction procedure for humidity effects on the neutron skyshine dose is also proposed. The approximate LBRFs are used with the integral line-beam method to analyze four neutron skyshine problems with simple geometries: (1) an open silo, (2) an infinite wall, (3) a roofless rectangular building, and (4) an infinite air medium. In addition, two simple neutron skyshine problems involving an open source silo are analyzed using the integral conical-beam method. The results obtained using the LBRFs and the CBRFs are then compared with MCNP results and results of previous studies.
Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator
NASA Astrophysics Data System (ADS)
Hamm, Robert W.
2000-12-01
Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.
Endo, Akira; Sato, Tatsuhiko
2013-04-01
Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from (252)Cf and (244)Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid.
NASA Astrophysics Data System (ADS)
Rivard, M. J.; Evans, K. E.; Leal, L. C.; Kirk, B. L.
2004-01-01
Californium-252 ( 252Cf) brachytherapy sources emit both neutrons and photons, and have the potential to vastly improve the current standard-of-practice for brachytherapy. While hydrogenous materials readily attenuate the 252Cf fission energy neutrons, high- Z materials are utilized to attenuate the 252Cf gamma-rays. These differences in shielding materials may be exploited when treating with a vaginal applicator to possibly improve patient survival through perturbation of the in vivo linear energy transfer radiation.
NASA Astrophysics Data System (ADS)
Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail
2017-09-01
In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.
NASA Astrophysics Data System (ADS)
Kim, S.-H.; Afanador, R.; Barnhart, D. L.; Crofford, M.; Degraff, B. D.; Doleans, M.; Galambos, J.; Gold, S. W.; Howell, M. P.; Mammosser, J.; McMahan, C. J.; Neustadt, T. S.; Peters, C.; Saunders, J. W.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.
2017-04-01
The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenance activities for cryomodules are introduced.
Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.; ...
2017-02-04
The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-Ho; Afanador, Ralph; Barnhart, Debra L.
The Spallation Neutron Source (SNS) has acquired extensive operational experience of a pulsed proton superconducting linear accelerator (SCL) as a user facility. Numerous lessons have been learned in its first 10 years operation to achieve a stable and reliable operation of the SCL. In this paper, an overview of the SNS SCL design, qualification of superconducting radio frequency (SRF) cavities and ancillary subsystems, an overview of the SNS cryogenic system, the SCL operation including SCL output energy history and downtime statistics, performance stability of the SRF cavities, efforts for SRF cavity performance recovery and improvement at the SNS, and maintenancemore » activities for cryomodules are introduced.« less
The effect of a paraffin screen on the neutron dose at the maze door of a 15 MV linear accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krmar, M.; Kuzmanović, A.; Nikolić, D.
2013-08-15
Purpose: The purpose of this study was to explore the effects of a paraffin screen located at various positions in the maze on the neutron dose equivalent at the maze door.Methods: The neutron dose equivalent was measured at the maze door of a room containing a 15 MV linear accelerator for x-ray therapy. Measurements were performed for several positions of the paraffin screen covering only 27.5% of the cross-sectional area of the maze. The neutron dose equivalent was also measured at all screen positions. Two simple models of the neutron source were considered in which the first assumed that themore » source was the cross-sectional area at the inner entrance of the maze, radiating neutrons in an isotropic manner. In the second model the reduction in the neutron dose equivalent at the maze door due to the paraffin screen was considered to be a function of the mean values of the neutron fluence and energy at the screen.Results: The results of this study indicate that the equivalent dose at the maze door was reduced by a factor of 3 through the use of a paraffin screen that was placed inside the maze. It was also determined that the contributions to the dosage from areas that were not covered by the paraffin screen as viewed from the dosimeter, were 2.5 times higher than the contributions from the covered areas. This study also concluded that the contributions of the maze walls, ceiling, and floor to the total neutron dose equivalent were an order of magnitude lower than those from the surface at the far end of the maze.Conclusions: This study demonstrated that a paraffin screen could be used to reduce the neutron dose equivalent at the maze door by a factor of 3. This paper also found that the reduction of the neutron dose equivalent was a linear function of the area covered by the maze screen and that the decrease in the dose at the maze door could be modeled as an exponential function of the product φ·E at the screen.« less
Characterisation of an accelerator-based neutron source for BNCT versus beam energy
NASA Astrophysics Data System (ADS)
Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.
2002-01-01
Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.
New shielding material development for compact accelerator-driven neutron source
NASA Astrophysics Data System (ADS)
Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei
2017-04-01
The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.
1999-05-11
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.
1999-01-01
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.
NASA Astrophysics Data System (ADS)
Hara, K. Y.; Harada, H.; Toh, Y.; Hori, J.
2013-09-01
A gated photomultiplier tube (PMT) assembled with an LaBr3(Ce) detector was applied toward the prompt γ{hbox-}ray measurement of fast neutron capture reactions. Time-of-flight measurements of the neutron capture reactions of Cl and Al were performed using the 46-MeV electron linear accelerator at the Kyoto University Research Reactor Institute (KURRI) as a pulsed neutron source. The photomultiplier gating technique effectively suppressed the saturation of the PMT output and extended the energy region of the TOF measurement.
Characterization of a neutron imaging setup at the INES facility
NASA Astrophysics Data System (ADS)
Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.
2013-10-01
The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.
Ion Source Development at the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Carr, J.; Carmichael, J.; Goulding, R. H.; Baity, F. W.
2007-08-01
The US Spallation Neutron Source (SNS) has recently begun producing neutrons and is currently on track to becoming a world-leading facility for material science based on neutron scattering. The facility is comprised of an H- ion source, a linear accelerator, an accumulator ring, a liquid-Hg target and a suite of neutron scattering instruments. Over the next several years the average H- current from the ion source will be increased in order to meet the baseline facility requirement of providing 1.4 MW of beam-power to the target and the SNS power upgrade power requirement of 2+ MW on target. Meeting the latter goal will require H- currents of 70-100 mA with an RMS emittance of 0.20-0.35 π mm mrad and a ˜7% duty-factor. To date, the RF-driven-multicusp SNS ion source has only been able to demonstrate sustained operation at 33 mA of beam current at a ˜7% duty-factor. This report details our efforts to develop variations of the current ion source which can meet these requirements. Designs and experimental results are presented for helicon plasma drivers, high-power external antennas, glow-discharge plasma guns and advanced Cs systems.
NASA Astrophysics Data System (ADS)
Ablesimov, V. E.; Dolin, Yu. N.; Kalinychev, A. E.; Tsibikov, Z. S.
2017-10-01
The relation between neutron yield Y and magnetic field energy variations Δ W in the discharge circuit has been studied for a Mather-type plasma-focus camera. The activation technique (activation of silver isotopes) has been used to measure the integral yield of DD neutrons from the source. The time dependence of the neutron yield has been recorded by scintillation detectors. For the device used in the investigations, the neutron yield exhibits a linear dependence on variations in the magnetic field energy Δ W in the discharge circuit at the instant of neutron generation. It is also found that this dependence is related to the initial deuteron pressure in the discharge chamber.
SEE induced in SRAM operating in a superconducting electron linear accelerator environment
NASA Astrophysics Data System (ADS)
Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan
2005-02-01
Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hep, J.; Konecna, A.; Krysl, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less
Prototype Stilbene Neutron Collar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, M. K.; Shumaker, D.; Snyderman, N.
2016-10-26
A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceedsmore » the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.« less
Neutron radiography in Indian space programme
NASA Astrophysics Data System (ADS)
Viswanathan, K.
1999-11-01
Pyrotechnic devices are indispensable in any space programme to perform such critical operations as ignition, stage separation, solar panel deployment, etc. The nature of design and configuration of different types of pyrotechnic devices, and the type of materials that are put in their construction make the inspection of them with thermal neutrons more favourable than any other non destructive testing methods. Although many types of neutron sources are available for use, generally the radiographic quality/exposure duration and cost of source run in opposite directions even after four decades of research and development. But in the area of space activity, by suitably combining the X-ray and neutron radiographic requirements, the inspection of the components can be made economically viable. This is demonstrated in the Indian space programme by establishing a 15 MeV linear accelerator based neutron generator facility to inspect medium to giant solid propellant boosters by X-ray inspection and all types of critical pyro and some electronic components by neutron radiography. Since the beam contains unacceptable gamma, transfer imaging technique has been evolved and the various parameters have been optimised to get a good quality image.
Sun, R K
1990-12-01
To investigate the radiation effect of neutrons near the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory (LBL) with respect to the neutron dose equivalents in nearby occupied areas and at the site boundary, the neutron transport code MORSE, from Oak Ridge National Laboratory (ORNL), was used. These dose equivalents result from both skyshine neutrons transported by air scattering and direct neutrons penetrating the shielding. The ALS neutron sources are a 50-MeV linear accelerator and its transfer line, a 1.5-GeV booster, a beam extraction line, and a 1.9-GeV storage ring. The most conservative total occupational-dose-equivalent rate in the center of the ALS mezzanine, 39 m from the ALS center, was found to be 1.14 X 10(-3) Sv y-1 per 2000-h "occupational" year, and the total environmental-dose-equivalent rate at the ALS boundary, 125 m from the ALS center, was found to be 3.02 X 10(-4) Sv y-1 per 8760-h calendar year. More realistic dose-equivalent rates, using the nominal (expected) storage-ring current, were calculated to be 1.0 X 10(-4) Sv y-1 and 2.65 X 10(-5) Sv y-1 occupational year and calendar year, respectively, which are much lower than the DOE reporting levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, G; Kapadia, A
Purpose: To optimize collimation and shielding for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact clinical neutron imaging system. The envisioned application is cancer diagnosis through Neutron Stimulated Emission Computed Tomography (NSECT). Methods: Collimator designs were tested with an isotropic 2.5 MeV neutron source through GEANT4 simulations. The collimator is a 52×52×52 cm{sup 3} polyethylene block coupled with a 1 cm lead sheet in sequence. Composite opening was modeled into the collimator to permit passage of neutrons. The opening varied in shape (cylindrical vs. tapered), size (1–5 cm source-side and target-side openings) and aperture placements (13–39 cm frommore » source-side). Spatial and energy distribution of neutrons and gammas were tracked from each collimator design. Parameters analyzed were primary beam width (FWHM), divergence, and efficiency (percent transmission) for different configurations of the collimator. Select resultant outputs were then used for simulated NSECT imaging of a virtual breast phantom containing a 2.5 cm diameter tumor to assess the effect of the collimator on spatial resolution, noise, and scan time. Finally, composite shielding enclosure made of polyethylene and lead was designed and evaluated to block 99.99% of neutron and gamma radiation generated in the system. Results: Analysis of primary beam indicated the beam-width is linear to the aperture size. Increasing source-side opening allowed at least 20% more neutron throughput for all designs relative to the cylindrical openings. Maximum throughput for all designs was 364% relative to cylindrical openings. Conclusion: The work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-defined collimated neutron beam that can be used to image samples of interest with millimeter resolution. Balance in output efficiency, noise reduction, and scan time should be considered to determine the optimal design for specific NSECT applications.« less
Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F
2016-07-08
Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.
Capture cross sections on unstable nuclei
NASA Astrophysics Data System (ADS)
Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.
2017-09-01
Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.
Micronucleus induction in Vicia faba roots. Part 2. Biological effects of neutrons below 1 cGy.
Marshall, I; Bianchi, M
1983-08-01
A dose-effect relationship has been established for high-energy neutrons (maximum energy 600 MeV) within a dose range of 0.2 to 80 cGy and for low-energy neutrons produced by a 252Cf source (mean energy 2.35 MeV) for doses between 0.2 and 5 cGy. The frequency of micronuclei was found to increase linearly with dose. The relative biological effectiveness (r.b.e) values calculated using 60Co radiation as a reference were, in the high-dose region, 4.7 +/- 0.4 and 11.8 +/- 1.3 for the high- and low-energy neutrons, respectively. At doses below 1 cGy constant values of 25.4 +/- 4.4 and 63.7 +/- 12 were reached for the respective neutron energies.
Neutron source, linear-accelerator fuel enricher and regenerator and associated methods
Steinberg, Meyer; Powell, James R.; Takahashi, Hiroshi; Grand, Pierre; Kouts, Herbert
1982-01-01
A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.
SU-F-T-657: In-Room Neutron Dose From High Energy Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christ, D; Ding, G
Purpose: To estimate neutron dose inside the treatment room from photodisintegration events in high energy photon beams using Monte Carlo simulations and experimental measurements. Methods: The Monte Carlo code MCNP6 was used for the simulations. An Eberline ESP-1 Smart Portable Neutron Detector was used to measure neutron dose. A water phantom was centered at isocenter on the treatment couch, and the detector was placed near the phantom. A Varian 2100EX linear accelerator delivered an 18MV open field photon beam to the phantom at 400MU/min, and a camera captured the detector readings. The experimental setup was modeled in the Monte Carlomore » simulation. The source was modeled for two extreme cases: a) hemispherical photon source emitting from the target and b) cone source with an angle of the primary collimator cone. The model includes the target, primary collimator, flattening filter, secondary collimators, water phantom, detector and concrete walls. Energy deposition tallies were measured for neutrons in the detector and for photons at the center of the phantom. Results: For an 18MV beam with an open 10cm by 10cm field and the gantry at 180°, the Monte Carlo simulations predict the neutron dose in the detector to be 0.11% of the photon dose in the water phantom for case a) and 0.01% for case b). The measured neutron dose is 0.04% of the photon dose. Considering the range of neutron dose predicted by Monte Carlo simulations, the calculated results are in good agreement with measurements. Conclusion: We calculated in-room neutron dose by using Monte Carlo techniques, and the predicted neutron dose is confirmed by experimental measurements. If we remodel the source as an electron beam hitting the target for a more accurate representation of the bremsstrahlung fluence, it is feasible that the Monte Carlo simulations can be used to help in shielding designs.« less
High-flux neutron source based on a liquid-lithium target
NASA Astrophysics Data System (ADS)
Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.
2013-04-01
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.
High-flux neutron source based on a liquid-lithium target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Paul, M.
2013-04-19
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less
Cross section measurements at LANSCE for defense, science and applications
Nelson, Ronald O.; Schwengner, R.; Zuber, K.
2015-05-28
The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less
Characteristics of a heavy water photoneutron source in boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Danial, Salehi; Dariush, Sardari; M. Salehi, Jozani
2013-07-01
Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.
The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF
NASA Astrophysics Data System (ADS)
Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.
2016-10-01
The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.
The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF
NASA Astrophysics Data System (ADS)
Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.
2017-10-01
The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.
Capture cross sections on unstable nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonchev, A. P.; Escher, J. E.; Scielzo, N.
2017-09-13
Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photonmore » beams. Here, challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.« less
NASA Astrophysics Data System (ADS)
Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.
2015-11-01
The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.
Kinashi, Yuko; Yokomizo, Natsuya; Takahashi, Sentaro
2017-04-01
To use the 53BP1 foci assay to detect DNA double-strand breaks induced by fractionated neutron beam irradiation of normal cells. The Kyoto University Research Reactor heavy-water facility and gamma-ray irradiation system were used as experimental radiation sources. After fixation of Chinese Hamster Ovary cells with 3.6% formalin, immunofluorescence staining was performed. Number and size of foci were analyzed using ImageJ software. Fractionated neutron irradiation induced 25% fewer 53BP1 foci than single irradiation at the same dose. By contrast, gamma irradiation induced 30% fewer 53BP1 foci than single irradiation at the same dose. Fractionated neutron irradiation induced larger foci than gamma irradiation, raising the possibility that persistent unrepaired DNA damage was amplified due to the high linear energy transfer component in the neutron beam. Unrepaired cluster DNA damage was more prevalent after fractionated neutron irradiation than after gamma irradiation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Low Energy Accelerators for Cargo Inspection
NASA Astrophysics Data System (ADS)
Tang, Chuanxiang
Cargo inspection by X-rays has become essential for seaports and airports. With the emphasis on homeland security issues, the identification of dangerous things, such as explosive items and nuclear materials, is the key feature of a cargo inspection system. And new technologies based on dual energy X-rays, neutrons and monoenergetic X-rays have been studied to achieve sufficiently good material identification. An interpretation of the principle of X-ray cargo inspection technology and the features of X-ray sources are presented in this article. As most of the X-ray sources are based on RF electron linear accelerators (linacs), we give a relatively detailed description of the principle and characteristics of linacs. Cargo inspection technologies based on neutron imaging, neutron analysis, nuclear resonance fluorescence and computer tomography are also mentioned here. The main vendors and their products are summarized at the end of the article.
New Neutron Cross-Section Measurements at ORELA for Improved Nuclear Data Calculations
NASA Astrophysics Data System (ADS)
Guber, K. H.; Leal, L. C.; Sayer, R. O.; Koehler, P. E.; Valentine, T. E.; Derrien, H.; Harvey, J. A.
2005-05-01
Many older neutron cross-section evaluations from libraries such as ENDF/B-VI or JENDL-3.2 exhibit deficiencies or do not cover energy ranges that are important for criticality safety applications. These deficiencies may occur in the resolved and unresolved-resonance regions. Consequently, these evaluated data may not be adequate for nuclear criticality calculations where effects such as self-shielding, multiple scattering, or Doppler broadening are important. To support the Nuclear Criticality Predictability Program, neutron cross-section measurements have been initiated at the Oak Ridge Electron Linear Accelerator (ORELA). ORELA is the only high-power white neutron source with excellent time resolution still operating in the United States. It is ideally suited to measure fission, neutron total, and capture cross sections in the energy range from 1 eV to ˜600 keV, which is important for many nuclear criticality safety applications.
On some control problems of dynamic of reactor
NASA Astrophysics Data System (ADS)
Baskakov, A. V.; Volkov, N. P.
2017-12-01
The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....
Neutron time-of-flight spectroscopy measurement using a waveform digitizer
NASA Astrophysics Data System (ADS)
Liu, Long-Xiang; Wang, Hong-Wei; Ma, Yu-Gang; Cao, Xi-Guang; Cai, Xiang-Zhou; Chen, Jin-Gen; Zhang, Gui-Lin; Han, Jian-Long; Zhang, Guo-Qiang; Hu, Ji-Feng; Wang, Xiao-He
2016-05-01
The photoneutron source (PNS, phase 1), an electron linear accelerator (linac)-based pulsed neutron facility that uses the time-of-flight (TOF) technique, was constructed for the acquisition of nuclear data from the Thorium Molten Salt Reactor (TMSR) at the Shanghai Institute of Applied Physics (SINAP). The neutron detector signal used for TOF calculation, with information on the pulse arrival time, pulse shape, and pulse height, was recorded by using a waveform digitizer (WFD). By using the pulse height and pulse-shape discrimination (PSD) analysis to identify neutrons and γ-rays, the neutron TOF spectrum was obtained by employing a simple electronic design, and a new WFD-based DAQ system was developed and tested in this commissioning experiment. The DAQ system developed is characterized by a very high efficiency with respect to millisecond neutron TOF spectroscopy. Supported by Strategic Priority Research Program of the Chinese Academy of Science(TMSR) (XDA02010100), National Natural Science Foundation of China(NSFC)(11475245,No.11305239), Shanghai Key Laboratory of Particle Physics and Cosmology (11DZ2260700)
NASA Astrophysics Data System (ADS)
Zanotti, Olindo; Rezzolla, Luciano; Font, José A.
2003-05-01
We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal topology (i.e. `toroidal neutron stars'). Here our attention is focused on the dynamical response of these objects to axisymmetric perturbations. We show that upon the introduction of perturbations, these systems either become unstable to the runaway instability or exhibit a regular oscillatory behaviour, resulting in a quasi-periodic variation of the accretion rate as well as of the mass quadrupole. The latter, in particular, is responsible for the emission of intense gravitational radiation for which the signal-to-noise ratio at the detector is comparable to or larger than the typical one expected in stellar-core collapse, making these new sources of gravitational waves potentially detectable. We discuss a systematic investigation of the parameter space in both the linear and non-linear regimes, providing estimates of how the gravitational radiation emitted depends on the mass of the torus and on the strength of the perturbation.
The sciences and applications of the Electron LINAC-driven neutron source in Argentina
NASA Astrophysics Data System (ADS)
Granada, J. R.; Mayer, R. E.; Dawidowski, J.; Santisteban, J. R.; Cantargi, F.; Blostein, J. J.; Rodríguez Palomino, L. A.; Tartaglione, A.
2016-06-01
The Neutron Physics group at Centro Atómico Bariloche (CNEA, Argentina) has evolved for more than forty five years around a small 25MeV linear electron accelerator. It constitutes our compact accelerator-driven neutron source (CANS), which is dedicated to the use and development of neutronic methods to tackle problems of basic sciences and technological applications. Its historical first commitment has been the determination of the total cross sections of materials as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons. This also allowed testing theoretical models for the generation of scattering kernels and cross sections. Through the years, our interests moved from classic pulsed neutron diffraction, which included the development of high-precision methods for the determination of very low hydrogen content in metals, towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter. More recently non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with our CANS, testing the capacity and limitations to detect special nuclear material and dangerous substances. Also, the ever-present "bremsstrahlung" radiation has been recognized and tested as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students' experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work.
NASA Astrophysics Data System (ADS)
Daskalakis, Adam; Blain, Ezekiel; Leinweber, Gregory; Rapp, Michael; Barry, Devin; Block, Robert; Danon, Yaron
2017-09-01
A series of neutron scattering benchmark measurements were performed on beryllium and molybdenum with the Rensselaer Polytechnic Institute's Neutron Scattering System. The pulsed neutron source was produced by the Rensselaer Polytechnic Institute's Linear Accelerator and a well collimated neutron beam was incident onto the samples located at a distance of 30.07 m. Neutrons that scattered from the sample were measured using the time-of-flight by eight EJ-301 liquid scintillator detectors positioned 0.5 m from the sample of interest. A total of eight experiments were performed with two sample thicknesses each, measured by detectors placed at two sets of angles. All data were processed using pulse shape analysis that separated the neutron and gamma ray events and included a gamma misclassification correction to account for erroneously identified gamma rays. A detailed model of the neutron scattering system simulated each experiment with several current evaluated nuclear data libraries and their predecessors. Results for each evaluation were compared to the experimental data using a figure-of-merit. The neutron scattering system has been used as a means to quantify a library's performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messous, M.Y.; Belhorma, B.; Labrim, H.
2015-07-01
Neutrons are used for the study of condensed matter. A neutron beam can indeed easily penetrate the solid material and undergo diffraction phenomena. Analysis of the diffused neutrons allows studying the atomic structure of crossed material. Their neutral electric charge makes them nondestructive probe of a great interest. In general, the size of the powder samples is very small and therefore the centering of the beam on these is very crucial. It is in this context we proceed to test a portable neutron monitor for centering and checking beam leak around the shielding to be installed around the diffractometer inmore » TRIGA Mark II of CENM. It's consisting of a scintillation neutron detector NE426 ({sup 6}LiF + ZnS (Ag)) with electronic module and data acquisition system. The effect of radiation from radioactive neutrons source {sup 252}Cf is shown. Sensitivity and differential linearity are also performed. This study indicates several advantages of this detector with very good detection sensitivity and excellent stability during the counting time. (authors)« less
Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.
Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John
2015-11-01
Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron spectrum of a radiotherapy beam in less than 1 h, including setup and data unfolding. This work thus represents a new, fast, and practical method for neutron spectral measurements in radiotherapy.
Simulation of a beam rotation system for a spallation source
NASA Astrophysics Data System (ADS)
Reiss, Tibor; Reggiani, Davide; Seidel, Mike; Talanov, Vadim; Wohlmuther, Michael
2015-04-01
With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ), ranks among the world's most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.
Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferres, Laurent
Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less
Neutron interrogation of high-enriched uranium by a 4 MeV linac
NASA Astrophysics Data System (ADS)
Lakosi, László; Nguyen, Cong Tam
2008-07-01
For revealing unauthorized transport (illicit trafficking) of nuclear materials, a non-destructive method reported earlier, utilizing a 4 MeV linear accelerator for photoneutron interrogation, was further developed. The linac served as a pulsed neutron source for assay of highly enriched uranium. Produced in beryllium or heavy water by bremsstrahlung, neutrons subsequently induced fission in the samples. Delayed neutrons were detected by a newly designed neutron collar built up of 14 3He counters embedded in a polyethylene moderator. A PC controlled multiscaler served as a time analyzer, triggering the detector startup by the beam pulse. Significant progress was achieved in enhancing the detector response, hence the sensitivity for revealing illicit material. A lower sensitivity limit of the order of 10 mg 235U was determined in a 20 s measurement time with a reasonable amount of beryllium (170 g) or of heavy water (100 g) and a mean electron current of 10 μA. Sensitivity can be further enhanced by increasing the measurement time.
The S-Process Branching-Point at 205PB
NASA Astrophysics Data System (ADS)
Tonchev, Anton; Tsoneva, N.; Bhatia, C.; Arnold, C. W.; Goriely, S.; Hammond, S. L.; Kelley, J. H.; Kwan, E.; Lenske, H.; Piekarewicz, J.; Raut, R.; Rusev, G.; Shizuma, T.; Tornow, W.
2017-09-01
Accurate neutron-capture cross sections for radioactive nuclei near the line of beta stability are crucial for understanding s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. We consider photon scattering using monoenergetic and 100% linearly polarized photon beams to obtain the photoabsorption cross section on 206Pb below the neutron separation energy. This observable becomes an essential ingredient in the Hauser-Feshbach statistical model for calculations of capture cross sections on 205Pb. The newly obtained photoabsorption information is also used to estimate the Maxwellian-averaged radiative cross section of 205Pb(n,g)206Pb at 30 keV. The astrophysical impact of this measurement on s-process nucleosynthesis will be discussed. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344.
Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
Blue, Thomas E; Yanch, Jacquelyn C
2003-01-01
This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and the use of microchannels have emerged as viable target cooling options. Neutron fields for reactor-based neutron sources provide an obvious basis of comparison for ABNS field quality. This paper compares Monte Carlo calculations of neutron field quality for an ABNS and an idealized standard reactor neutron field (ISRNF). The comparison shows that with lithium as a target, an ABNS can create a neutron field with a field quality that is significantly better (by a factor of approximately 1.2, as judged by the relative biological effectiveness (RBE)-dose that can be delivered to a tumor at a depth of 6cm) than that for the ISRNF. Also, for a beam current of 10 mA, the treatment time is calculated to be reasonable (approximately 30 min) for the boron concentrations that have been assumed.
Multi-particle inspection using associated particle sources
Bingham, Philip R.; Mihalczo, John T.; Mullens, James A.; McConchie, Seth M.; Hausladen, Paul A.
2016-02-16
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.
High intensity, pulsed thermal neutron source
Carpenter, J.M.
1973-12-11
This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)
Total variation-based neutron computed tomography
NASA Astrophysics Data System (ADS)
Barnard, Richard C.; Bilheux, Hassina; Toops, Todd; Nafziger, Eric; Finney, Charles; Splitter, Derek; Archibald, Rick
2018-05-01
We perform the neutron computed tomography reconstruction problem via an inverse problem formulation with a total variation penalty. In the case of highly under-resolved angular measurements, the total variation penalty suppresses high-frequency artifacts which appear in filtered back projections. In order to efficiently compute solutions for this problem, we implement a variation of the split Bregman algorithm; due to the error-forgetting nature of the algorithm, the computational cost of updating can be significantly reduced via very inexact approximate linear solvers. We present the effectiveness of the algorithm in the significantly low-angular sampling case using synthetic test problems as well as data obtained from a high flux neutron source. The algorithm removes artifacts and can even roughly capture small features when an extremely low number of angles are used.
Thermal neutron detection system
Peurrung, Anthony J.; Stromswold, David C.
2000-01-01
According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.
Fissile solution measurement apparatus
Crane, T.W.; Collinsworth, P.R.
1984-06-11
An apparatus for determining the content of a fissile material within a solution by detecting delayed fission neutrons emitted by the fissile material after it is temporarily irradiated by a neutron source. The apparatus comprises a container holding the solution and having a portion defining a neutron source cavity centrally disposed within the container. The neutron source cavity temporarily receives the neutron source. The container has portions defining a plurality of neutron detector ports that form an annular pattern and surround the neutron source cavity. A plurality of neutron detectors count delayed fission neutrons emitted by the fissile material. Each neutron detector is located in a separate one of the neutron detector ports.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102.
Michilli, D; Seymour, A; Hessels, J W T; Spitler, L G; Gajjar, V; Archibald, A M; Bower, G C; Chatterjee, S; Cordes, J M; Gourdji, K; Heald, G H; Kaspi, V M; Law, C J; Sobey, C; Adams, E A K; Bassa, C G; Bogdanov, S; Brinkman, C; Demorest, P; Fernandez, F; Hellbourg, G; Lazio, T J W; Lynch, R S; Maddox, N; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Scholz, P; Siemion, A P V; Tendulkar, S P; Van Rooy, P; Wharton, R S; Whitlow, D
2018-01-10
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 10 5 radians per square metre to +1.33 × 10 5 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor
NASA Astrophysics Data System (ADS)
O'Kelly, David Sean
Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.
Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
Taheri, Ali; Pazirandeh, Ali
2016-12-01
To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10 7 (n/cm 2 .s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.
Croft, Stephen; Burr, Thomas Lee; Favalli, Andrea; ...
2015-12-10
We report that the declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar – Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to modelmore » the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. Lastly, we find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters« less
THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)
Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...
Real time spectrometer for thermal neutrons from radiotherapic accelerators
NASA Astrophysics Data System (ADS)
Mozzanica, A.; Bartesaghi, G.; Bolognini, D.; Conti, V.; Mascagna, V.; Prest, M.; Scazzi, S.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Bevilacqua, R.; Giannini, G.; Totaro, P.; Vallazza, E.
2007-10-01
Radiotherapy accelerators can produce high energy photon beams for deep tumour treatments. Photons with energies greater than 8 MeV produce neutrons via photoproduction. The PHONES (PHOto NEutron Source) project is developing a neutron moderator to use the photoproduced neutrons for BNCT (Boron Neutron Capture Therapy) in hospital environments. In this framework we are developing a real time spectrometer for thermal neutrons exploiting the bunch structure of the beam. Since the beam is produced by a linear accelerator, in fact, particles are sent to the patient in bunches with a rate of 150-300 Hz depending on the beam type and energy. The neutron spectrum is usually measured with integrating detectors such as bubble dosimeters or TLDs, which integrate over a time interval and an energy one. We are developing a scintillator detector to measure the neutron spectrum in real time in the interval between bunches, that is in the thermal region. The signals from the scintillator are discriminated and sampled by a dedicated clock in a Cyclone II FPGA by Altera, thus obtaining the neutron time of flight spectrum. The exploited physical process in ordinary plastic scintillators is neutron capture by H with a subsequent γ emission. The measured TOF spectrum has been compared with a BF 3 counter one. A dedicated simulation with MCNP is being developed to extract the energy spectrum from the TOF one. The paper will present the results of the prototype measurements and the status of the simulation.
Study of the fission spectrum of less than 1 MeV neutrons using a Lithium-glass detector
NASA Astrophysics Data System (ADS)
Bastola, Suraj; Rees, Lawrence; Bart, Czirr
2011-10-01
The fission spectrum of neutrons with kinetic energies less than 1 MeV is of considerable practical importance for the design of nuclear reactors. However, it is not as precisely known as that for higher energy neutrons. One of the major problems scientists have previously encountered is room return neutrons. These are neutrons that reflect from the walls, ceiling or floor of the lab. Another problem is finding a way to measure accurately the neutron time of flight. This is the time neutrons take to travel from a fission event to the detector. Time of flight is used to measure the neutron energy. To avoid the room return, I am going to perform an experiment about 45 feet above the ground in the BYU Indoor Practice Facility, so that neutrons from the source will not scatter from nearby surfaces and return to the detector. To find the time of flight to a greater accuracy, I have been using a Time to Amplitude Converter (TAC). A TAC has a capacitor that charges linearly as the voltage builds up. With a 12-bit digitizer system, we can measure the time to 0.1 nanoseconds, whereas the same digitizer can only measure time in steps of 4 nanoseconds. So, we will get a more accurate measurement of time of flight with the TAC.
Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons
NASA Technical Reports Server (NTRS)
Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu
2006-01-01
High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.
Boron Neutron Capture Therapy for Malignant Brain Tumors
MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji
2016-01-01
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576
Boron Neutron Capture Therapy for Malignant Brain Tumors.
Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji
2016-07-15
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.
Theoretical models for stellar X-ray polarization in compact objects
NASA Technical Reports Server (NTRS)
Meszaros, P.
1991-01-01
Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.
Atmospheric Ionizing Radiation and Human Exposure
NASA Technical Reports Server (NTRS)
Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.
2005-01-01
Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.
Atmospheric Ionizing Radiation and Human Exposure
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.
2004-01-01
Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.
Study of the effects of neutron irradiation on silicon strip detectors
NASA Astrophysics Data System (ADS)
Guibellino, P.; Panizza, G.; Hall, G.; Sotthibandhu, S.; Ziock, H. J.; Ferguson, P.; Sommer, W. F.; Edwards, M.; Cartiglia, N.; Hubbard, B.; Lesloe, J.; Pitzl, D.; O'Shaughnessy, K.; Rowe, W.; Sadoziski, H. F.-W.; Seiden, A.; Spencer, E.
1992-05-01
Silicon strip detectors and test structures were exposed to neutron fluences up to Φ = 6.1 × 10 14 n/cm 2, using the ISIS neutron source at the Rutherford Appleton Laboratory (UK). In this paper we report some of our results concerning the effects of displacement damage, with a comparison of devices made of silicon of different resistivity. The various samples exposed showed a very similar dependence of the leakage current on the fluence received. We studied the change of effective doping concentration, and observed a behaviour suggesting the onset of type inversion at a fluence of ˜ 2.0 × 10 13 n/cm 2, a value which depends on the initial doping concentration. The linear increase of the depletion voltage for fluences higher than the inversion point could eventually determine the maximum fluence tolerable by silicon detectors.
A new compact, high sensitivity neutron imaging systema)
NASA Astrophysics Data System (ADS)
Caillaud, T.; Landoas, O.; Briat, M.; Rossé, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.
2012-10-01
We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (109-1010 neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 1010. The resolution of this image was 54 μm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a 60Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.
Effects of 1.9 MeV monoenergetic neutrons on Vicia faba chromosomes: microdosimetric considerations.
Geard, C R
1980-01-01
Aerated Vicia faba root meristems were irradiated with 1.9 MeV monoenergetic neutrons. This source of neutrons optimally provides one class of particles (recoil protons) with ranges able to traverse cell nuclei at moderate to high-LET. The volumes of the Vicia faba nuclei were log-normally distributed with a mean of 1100 micrometer3. The yield of chromatid-type aberrations was linear against absorbed dose and near-constant over 5 collection periods (2-12 h), after irradiation. Energy deposition events (recoil protons) determined by microdosimetry were related to cytological changes with the finding that 19% of incident recoil protons initiate visible changes in Vicia faba chromosomes. It is probable that a substantial fraction of recoil proton track length and deposited energy is in insensitive (non-DNA containing) portions of the nuclear volume.
Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu
NASA Astrophysics Data System (ADS)
Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia
2017-09-01
The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.
Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik
2014-02-01
An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.
Maser Emission from Gravitational States on Isolated Neutron Stars
NASA Astrophysics Data System (ADS)
Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.
2018-04-01
Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.
2015-10-01
The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102
NASA Astrophysics Data System (ADS)
Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.
2018-01-01
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
Detecting fission from special nuclear material sources
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-06-05
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.
Computational study of radiation doses at UNLV accelerator facility
NASA Astrophysics Data System (ADS)
Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel
2017-09-01
A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.
NASA Astrophysics Data System (ADS)
Zhou, Jianxin; Kang, Wen; Li, Shuai; Liu, Yudong; Liu, Yiqin; Xu, Shouyan; Guo, Xiaoling; Wu, Xi; Deng, Changdong; Li, Li; Wu, Yuwen; Wang, Sheng
2018-02-01
The China Spallation Neutron Source (CSNS) has two major accelerator systems, a linear accelerator and a rapid cycling synchrotron (RCS). The RCS accelerator is used to accumulate and accelerate protons from the energy of 80 MeV to the design energy of 1.6 GeV at the repetition rate of 25 Hz, and extract the high energy beam to the target. The main magnets of the RCS accelerator are excited by AC current with DC bias. The magnetic field quality is very important for the RCS accelerator operation, since it should guarantee and focus a circulating beam. In order to characterize the AC magnets, a small flip coil measurement system has been developed and one of each type of AC magnets has been studied. The measurement system and selected measurement results are presented in this paper.
Safety and control of accelerator-driven subcritical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rief, H.; Takahashi, H.
1995-10-01
To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut downmore » the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.« less
A Neutron Diffractometer for a Long Pulsed Neutron Source
NASA Astrophysics Data System (ADS)
Sokol, Paul; Wang, Cailin
Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
10 CFR 39.55 - Tritium neutron generator target sources.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Tritium neutron generator target sources. 39.55 Section 39... Equipment § 39.55 Tritium neutron generator target sources. (a) Use of a tritium neutron generator target....77. (b) Use of a tritium neutron generator target source, containing quantities exceeding 1,110 GBg...
NASA Astrophysics Data System (ADS)
Klir, D.; Cikhardt, J.; Kravarik, J.; Kubes, P.; Rezac, K.; Sila, O.; Shishlov, A.; Cherdizov, R.; Fursov, F.; Kokshenev, V.; Kovalchuk, B.; Kurmaev, N.; Labetsky, A.; Ratakhin, N.; Orcikova, H.; Turek, K.
2013-10-01
Fusion neutrons were produced with a deuterium gas-puff z-pinch on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The peak neutron yield from DD reactions reached Yn = (2 . 9 +/- 0 . 3) ×1012 at 100 μg/cm linear mass density of deuterium, 700 ns implosion time and 2.7 MA current. Such a neutron yield means that the scaling law of deuterium z-pinches Yn ~I4 was extended to 3 MA currents. The further increase of neutron yields up to (3 . 7 +/- 0 . 4) ×1012 was achieved by placing a deuterated polyethylene catcher onto the axis. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial nToF detectors, respectively. A stack of CR-39 track detectors showed up to 40 MeV deuterons (or 30 MeV protons) on the z-pinch axis. Since the energy input into plasmas was 70 kJ, the number of DD neutrons per one joule of stored plasma energy exceeded the value of 5 ×107 . This value implies that deuterium gas-puff z-pinches belong to the most efficient plasma-based sources of DD neutrons. This work was partially supported by the GACR grant No. P205/12/0454 and by the RFBR research project No. 13-08-00479-a.
The Los Alamos Neutron Science Center Spallation Neutron Sources
NASA Astrophysics Data System (ADS)
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.
NASA Astrophysics Data System (ADS)
Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.
2017-06-01
In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.
A new approach for modeling gravitational radiation from the inspiral of two neutron stars
NASA Astrophysics Data System (ADS)
Luke, Stephen A.
In this dissertation, a new method of applying the ADM formalism of general relativity to model the gravitational radiation emitted from the realistic inspiral of a neutron star binary is described. A description of the conformally flat condition (CFC) is summarized, and the ADM equations are solved by use of the CFC approach for a neutron star binary. The advantages and limitations of this approach are discussed, and the need for a more accurate improvement to this approach is described. To address this need, a linearized perturbation of the CFC spatial three metric is then introduced. The general relativistic hydrodynamic equations are then allowed to evolve against this basis under the assumption that the first-order corrections to the hydrodynamic variables are negligible compared to their CFC values. As a first approximation, the linear corrections to the conformal factor, lapse function, and shift vector are also assumed to be small compared to the extrinsic curvature and the three metric. A boundary matching method is then introduced as a way of computing the gravitational radiation of this relativistic system without use of the multipole expansion as employed by earlier applications of the CFC approach. It is assumed that at a location far from the source, the three metric is accurately described by a linear correction to Minkowski spacetime. The two polarizations of gravitational radiation can then be computed at that point in terms of the linearized correction to the metric. The evolution equations obtained from the linearized perturbative correction to the CFC approach and the method for recovery of the gravity wave signal are then tested by use of a three-dimensional numerical simulation. This code is used to compute the gravity wave signal emitted a pair of equal mass neutron stars in quasi-stable circular orbits at a point early in their inspiral phase. From this simple numerical analysis, the correct general trend of gravitational radiation is recovered. Comparisons with (5/2) post-Newtonian solutions show a similar gravitational waveform, although inaccuracies are still found to exist from this computation. Finally, several areas for improvement and potential future applications of this technique are discussed.
Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M
2018-03-01
One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.
Remanent Activation in the Mini-SHINE Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micklich, Bradley J.
2015-04-16
Argonne National Laboratory is assisting SHINE Medical Technologies in developing a domestic source of the medical isotope 99Mo through the fission of low-enrichment uranium in a uranyl sulfate solution. In Phase 2 of these experiments, electrons from a linear accelerator create neutrons by interacting in a depleted uranium target, and these neutrons are used to irradiate the solution. The resulting neutron and photon radiation activates the target, the solution vessels, and a shielded cell that surrounds the experimental apparatus. When the experimental campaign is complete, the target must be removed into a shielding cask, and the experimental components must bemore » disassembled. The radiation transport code MCNPX and the transmutation code CINDER were used to calculate the radionuclide inventories of the solution, the target assembly, and the shielded cell, and to determine the dose rates and shielding requirements for selected removal scenarios for the target assembly and the solution vessels.« less
Li, Gang; Xu, Jiayun; Zhang, Jie
2015-01-01
Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am-Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am-Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. Copyright © 2014 Elsevier Ltd. All rights reserved.
Plasma source development for fusion-relevant material testing
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...
2017-05-01
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
Plasma source development for fusion-relevant material testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
Using the HHT to Search for Gravitational Waves
NASA Technical Reports Server (NTRS)
Camp, Jordan
2008-01-01
Gravitational waves are a consequence of Einstein's theory of general relativity applied to the motion of very dense and massive objects such as black holes and neutron stars. Their detection will reveal a wealth of information about these mysterious objects that cannot be obtained with electromagnetic probes. Two projects are underway to attempt the detection of gravitational waves: NASA's Laser Interferometer Space Antenna (LISA), a space based mission being designed to search for waves from supermassive black holes at the centers of galaxies, and the NSF's Laser Interferometer Gravitational Wave Observatory (LIGO), a ground based facility that is now searching for waves from supernovae. pulsars, and the coalescence of black hole and neutron star systems. Because general relativity is an inherently non-linear theory, many of the predicted source waveforms show strong frequency modulation. In addition, the LIGO and LISA detectors are highly sensitive devices that produce a variety of non-linear transient noise features. Thus the unique capabilities of the HHT. the extraction of intrawave modulation and the characterization of non-linear and non-stationary signals, have a natural application to both signal detection and experimental characterization of the detectors. In this talk I will give an overview of the status of the field. including some of the expected sources of gravitational waves, and I will also describe the LISA and LIGO detectors. Then I will describe some applications of the HHT to waveform detection and detector noise characterization.
New sources and instrumentation for neutron science
NASA Astrophysics Data System (ADS)
Gil, Alina
2011-04-01
Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.
Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr
2015-12-31
The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problemmore » are presented.« less
Measuring soil moisture near soil surface...minor differences due to neutron source type
Robert R. Ziemer; Irving Goldberg; Norman A. MacGillivray
1967-01-01
Moisture measurements were made in three media?paraffin, water, saturated sand?with four neutron miusture meters, each containing 226-radium-beryllium, 227-actinium-beryllium, 238-plutonium-beryllium, or 241-americium-beryllium neutron sources. Variability in surface detection by the different sources may be due to differences in neutron sources, in length of source,...
Intense fusion neutron sources
NASA Astrophysics Data System (ADS)
Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.
2010-04-01
The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.
Disc-oscillation resonance and neutron star QPOs: 3:2 epicyclic orbital model
NASA Astrophysics Data System (ADS)
Urbanec, M.; Török, G.; Šrámková, E.; Čech, P.; Stuchlík, Z.; Bakala, P.
2010-11-01
The high-frequency quasi-periodic oscillations (HF QPOs) that appear in the X-ray fluxes of low-mass X-ray binaries remain an unexplained phenomenon. Among other ideas, it has been suggested that a non-linear resonance between two oscillation modes in an accretion disc orbiting either a black hole or a neutron star plays a role in exciting the observed modulation. Several possible resonances have been discussed. A particular model assumes resonances in which the disc-oscillation modes have the eigenfrequencies equal to the radial and vertical epicyclic frequencies of geodesic orbital motion. This model has been discussed for black hole microquasar sources as well as for a group of neutron star sources. Assuming several neutron (strange) star equations of state and Hartle-Thorne geometry of rotating stars, we briefly compare the frequencies expected from the model to those observed. Our comparison implies that the inferred neutron star radius RNS is larger than the related radius of the marginally stable circular orbit rms for nuclear matter equations of state and spin frequencies up to 800 Hz. For the same range of spin and a strange star (MIT) equation of state, the inferrred radius is RNS ˜ rms. The “Paczyński modulation” mechanism considered within the model requires that RNS < rms. However, we find this condition to be fulfilled only for the strange matter equation of state, masses below 1 M⊙, and spin frequencies above 800 Hz. This result most likely falsifies the postulation of the neutron star 3:2 resonant eigenfrequencies being equal to the frequencies of geodesic radial and vertical epicyclic modes. We suggest that the 3:2 epicyclic modes could stay among the possible choices only if a fairly non-geodesic accretion flow is assumed, or if a different modulation mechanism operates.
NASA Astrophysics Data System (ADS)
Fujibuchi, Toshioh; Kodaira, Satoshi; Sawaguchi, Fumiya; Abe, Yasuyuki; Obara, Satoshi; Yamaguchi, Masae; Kawashima, Hajime; Kitamura, Hisashi; Kurano, Mieko; Uchihori, Yukio; Yasuda, Nakahiro; Koguchi, Yasuhiro; Nakajima, Masaru; Kitamura, Nozomi; Sato, Tomoharu
2015-04-01
We measured the recoil charged particles from secondary neutrons produced by the photonuclear reaction in a water phantom from a 10-MV photon beam from medical linacs. The absorbed dose and the dose equivalent were evaluated from the linear energy transfer (LET) spectrum of recoils using the CR-39 plastic nuclear track detector (PNTD) based on well-established methods in the field of space radiation dosimetry. The contributions and spatial distributions of these in the phantom on nominal photon exposures were verified as the secondary neutron dose and neutron dose equivalent. The neutron dose equivalent normalized to the photon-absorbed dose was 0.261 mSv/100 MU at source to chamber distance 90 cm. The dose equivalent at the surface gave the highest value, and was attenuated to less than 10% at 5 cm from the surface. The dose contribution of the high LET component of ⩾100 keV/μm increased with the depth in water, resulting in an increase of the quality factor. The CR-39 PNTD is a powerful tool that can be used to systematically measure secondary neutron dose distributions in a water phantom from an in-field to out-of-field high-intensity photon beam.
Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J
2012-04-01
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.
2012-04-15
The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile,more » made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.« less
NASA Astrophysics Data System (ADS)
Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.
2012-12-01
The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.
Ultra-short ion and neutron pulse production
Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.
2006-01-10
An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.
Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.
2003-02-01
The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.
Response functions for neutron skyshine analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gui, A.A.; Shultis, J.K.; Faw, R.E.
1997-02-01
Neutron and associated secondary photon line-beam response functions (LBRFs) for point monodirectional neutron sources are generated using the MCNP Monte Carlo code for use in neutron skyshine analysis employing the integral line-beam method. The LBRFs are evaluated at 14 neutron source energies ranging from 0.01 to 14 MeV and at 18 emission angles from 1 to 170 deg, as measured from the source-to-detector axis. The neutron and associated secondary photon conical-beam response functions (CBRFs) for azimuthally symmetric neutron sources are also evaluated at 13 neutron source energies in the same energy range and at 13 polar angles of source collimationmore » from 1 to 89 deg. The response functions are approximated by an empirical three-parameter function of the source-to-detector distance. These response function approximations are available for a source-to-detector distance up to 2,500 m and, for the first time, give dose equivalent responses that are required for modern radiological assessments. For the CBRFs, ground correction factors for neutrons and secondary photons are calculated and also approximated by empirical formulas for use in air-over-ground neutron skyshine problems with azimuthal symmetry. In addition, simple procedures are proposed for humidity and atmospheric density corrections.« less
The Los Alamos Neutron Science Center Spallation Neutron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less
The Los Alamos Neutron Science Center Spallation Neutron Sources
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
2017-10-26
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less
A Signature Distinguishing Fissile From Non-Fissile Materials Using Linearly Polarized Gamma Rays
NASA Astrophysics Data System (ADS)
Mueller, J. M.; Ahmed, M. W.; Karwowski, H. J.; Myers, L. S.; Sikora, M. H.; Stave, S.; Tompkins, J. R.; Zimmerman, W. R.; Weller, H. R.
2013-04-01
Photofission of ^233,235,238U, ^239,240Pu, and ^232Th was induced by nearly 100% linearly polarized, high intensity (˜10^7 γs per second), and nearly-monoenergetic γ-ray beams of energies between 5.6 and 7.3 MeV at the High Intensity γ-ray Source (HIγS). An array of 18 liquid scintillating detectors was used to measure prompt fission neutron angular distributions. The ratio of prompt fission neutron yields parallel to the plane of beam polarization to the yields perpendicular to this plane was measured as a function of beam and neutron energy, as described in a recent publication showing results from ^235,238U, ^239Pu, and ^232Th [1]. A ratio near unity was found for ^233,235U and ^239Pu while a significant ratio (˜1.5-3) was found for ^238U, ^240Pu, and ^232Th. This large difference could be used to distinguish fissile isotopes (such as ^233,235U and ^239Pu) from non-fissile isotopes (such as ^238U, ^240Pu, and ^232Th). Polarization ratios as a function of the relative abundance of fissile to non-fissile isotopes will be presented. [4pt] [1] J. M. Mueller et al., Phys. Rev. C 85, 014605 (2012).
78 FR 21567 - Installation of Radiation Alarms for Rooms Housing Neutron Sources
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-11
... [Docket No. PRM-73-15; NRC-2011-0251] Installation of Radiation Alarms for Rooms Housing Neutron Sources... amend its regulations to require the installation of radiation alarms for rooms housing neutron sources... alarms for rooms housing neutron sources. The petitioner stated that the use of alarms can be effective...
Neutron and X-ray powder diffraction study of skutterudite thermoelectrics
Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...
2016-02-17
N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less
NASA Astrophysics Data System (ADS)
McDermott, B. J.; Blain, E.; Daskalakis, A.; Thompson, N.; Youmans, A.; Choun, H. J.; Steinberger, W.; Danon, Y.; Barry, D. P.; Block, R. C.; Epping, B. E.; Leinweber, G.; Rapp, M. R.
2017-07-01
A new array of four Deuterated Benzene (C6D6 ) detectors has been installed at the Gaerttner Linear Accelerator Center at Rensselaer Polytechnic Institute for the purpose of measuring neutron capture cross sections in the keV region. Measurements were performed on samples of 181Ta in the unresolved resonance region (URR) using a filtered-beam technique, by which a 30 cm iron filter was placed in a white-spectrum neutron beam to remove all time-dependent γ -ray background and all neutrons except those transmitted through resonance-potential interference "windows" in the iron. The resulting filtered beam was effectively a quasimonoenergetic neutron source, which was used for performing measurements on isotopes with narrow level spacings in the URR. The capture cross-section results obtained for two thicknesses of tantalum are in agreement with those documented in the JEFF-3.2 library, as are the average resonance parameters obtained via a fit to the data using the sammy-fitacs code.
Lithium and boron based semiconductors for thermal neutron counting
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Tower, Joshua; Hong, Huicong; Cirignano, Leonard; Higgins, William; Shah, Kanai
2011-09-01
Thermal neutron detectors in planar configuration were fabricated from LiInSe2 and B2Se3 crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. Pulse height spectra were collected from 241AmBe (neutron source on all samples), as well as 137Cs and 60Co gamma ray sources. In this study, the resistivity of all crystals is reported and the collected pulse height spectra are presented for fabricated devices. Note that, the 241AmBe neutron source was custom designed with polyethylene around the source as the neutron moderator, mainly to thermalize the fast neutrons before reaching the detectors. Both LiInSe2 and B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
ICANS-XIV. The fourteenth meeting of the international collaboration on advanced neutron sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J. M., ed.; Tobin, C. A., ed.
1999-02-10
The meeting began with a reception on Sunday evening. Monday's plenary sessions included status reports on the four operating spallation neutron sources, IPNS, ISIS, KENS, and the Lujan Center; on the INR source under construction at Troitsk; on the IBR-2 pulsed reactor at Dubna; and on proposals for five new installations. We also heard reports on spin-off activities: the ASTE tests (liquid mercury target tests at the AGS accelerator at Brookhaven), the ACoM activities (developments aimed to provide cold moderators suitable for high-power pulsed sources), and the International Workshop on Cold Moderators for Pulsed Neutron Sources, held in September 1997more » at Argonne. Jose Alonso and Bob Macek delivered enlightening invited talks overviewing linear accelerators and rings for spallation neutron sources. The rest of the meeting was devoted to targets and moderators and to instrumentation in a normal rotation of ICANS topics. There were altogether 84 oral reports and 23 poster presentations. On Tuesday and on Wednesday morning, we divided into separate series of sessions on Instrumentation and on Targets and Moderators. In the first, we had reports and discussions on instrumentation and techniques, on computer software, on instrument suites, and on new instruments and equipment. In the second series were sessions on liquid target systems, on solid target systems, on neutron production and target physics, on moderator physics and performance, and on target and moderator neutronics. The Tuesday evening meetings went on until 10:00, making for a 14-hour working day. That everyone willingly endured the long hours is a credit to the dedication of the attendees. On Wednesday afternoon, we boarded buses for the 1-hour trip to Argonne, where attendees toured IPNS and the Advanced Photon Source. Returning to Starved Rock, we enjoyed boat rides on the Illinois River and then a barbecue banquet dinner at the Lodge. All day Thursday and Friday morning, the attendees, in small working groups, discussed next-generation powder diffractometers, critical heat flux limitations on solid targets, monte carlo instrument simulation, prospects for high- and low-energy spectroscopy, small angle scattering and reflectometry, and the roles of solid and liquid targets in high-power pulsed spallation sources. Representatives of the laboratories participating in ICANS met Thursday evening to discuss the outcome of ICANS XIV and to decide whether, where, and when the next meeting would take place. They agreed to meet again in about 2 years in Japan. After the lunch break on Friday, the working group chairs presented the findings of their groups to the participants in a final plenary session, and the meeting adjourned with good feelings of accomplishment.« less
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Mitrofanov, I. G.; Chin, G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sagdeev, R.; Sanin, A. B.; Starr, R. D.; Su, J. J.
2014-12-01
The fraction of hydrogen-bearing species embedded in planetary regolith can be determined from the ratio between measured epithermal neutron leakage flux and the flux measured from similar dry regolith. The Lunar Reconnaissance Orbiter (LRO) spacecraft is equipped with the Lunar Exploration Neutron Detector (LEND) instrument to measure embedded hydrogen in the Moon's polar regions and elsewhere. We have investigated the relative contribution of lunar and non-lunar (spacecraft-sourced) neutrons by modeling maps of the measured count rate from three of the LEND detector systems using linear combinations of maps compiled from the Lunar Prospector Neutron Spectrometer (LPNS) and the LEND detectors, demonstrating that the two systems are compatible and enabling reference signal to be inferred to enable detecting hydrogen and hydrogen-bearing volatiles. The pole-to-equator contrast ratio in epithermal neutrons indicates that the average concentration of hydrogen in the Moon's polar regolith above 80° north or south latitude is ~110 ppmw, or 0.10±0.01 wt% water-equivalent hydrogen. Above 88° north or south, the concentration increases to ~140 ppmw, or 0.13±0.02 wt% water-equivalent hydrogen. Nearly identical suppression of neutron flux at both the north and south poles, despite differences in topography and distribution of permanently-shadowed regions, supports the contention that hydrogen is broadly distributed in the polar regions and increasingly concentrated approaching the poles. Similarity in the degree of neutron suppression in low-energy and high-energy epithermal neutrons suggests that the hydrogen fraction is relatively uniform with depth down to ~1 m; the neutron leakage flux is insensitive to greater depth.
Measuring soil moisture near soil surface ... minor differences due to neutron source type
Robert R. Ziemer; Irving Goldberg; Norman A. MacGillivray
1967-01-01
Abstract - Moisture measurements were made in three media--paraffin, water, saturated sand--with four neutron moisture meters, each containing 226-radium-beryllium, 227-actinium-beryllium, 239-plutonium-beryllium, or 241-americium-beryllium neutron sources. Variability in surface detection by the different sources may be due to differences in neutron sources, in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; C.J. Wharton
2008-08-01
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) andmore » high explosive (HE) filled munitions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seabury, E. H.; Chichester, D. L.; Wharton, C. J.
2009-03-10
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM)more » and high explosive (HE) filled munitions.« less
Characterization of a high repetition-rate laser-driven short-pulsed neutron source
NASA Astrophysics Data System (ADS)
Hah, J.; Nees, J. A.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.
2018-05-01
We demonstrate a repetitive, high flux, short-pulsed laser-driven neutron source using a heavy-water jet target. We measure neutron generation at 1/2 kHz repetition rate using several-mJ pulse energies, yielding a time-averaged neutron flux of 2 × 105 neutrons s‑1 (into 4π steradians). Deuteron spectra are also measured in order to understand source characteristics. Analyses of time-of-flight neutron spectra indicate that two separate populations of neutrons, ‘prompt’ and ‘delayed’, are generated at different locations. Gamma-ray emission from neutron capture 1H(n,γ) is also measured to confirm the neutron flux.
Andreani, C.; Anderson, I. S.; Carpenter, J. M.; ...
2014-12-24
In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less
NASA Astrophysics Data System (ADS)
Ofek, R.; Tsechanski, A.; Shani, G.
1988-05-01
In the present study a method used to normalize a collimated 14.7 MeV neutron beam is introduced. It combined a measurement of the fast neutron scalar flux passing through the collimator, using a copper foil activation, with a neutron transport calculation of the foil activation per unit source neutron, carried out by the discrete-ordinates transport code DOT 4.2. The geometry of the collimated neutron beam is composed of a D-T neutron source positioned 30 cm in front of a 6 cm diameter collimator, through a 120 cm thick paraffin wall. The neutron flux emitted from the D-T source was counted by an NE-213 scintillator, simultaneously with the irradiation of the copper foil. Thus, the determination of the normalization factor of the D-T source is used for an absolute flux calibration of the NE-213 scintillator. The major contributions to the uncertainty in the determination of the normalization factor, and their origins, are discussed.
Electronic neutron sources for compensated porosity well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A. X.; Antolak, A. J.; Leung, K. -N.
2012-08-01
The viability of replacing Americium–Beryllium (Am–Be) radiological neutron sources in compensated porosity nuclear well logging tools with D–T or D–D accelerator-driven neutron sources is explored. The analysis consisted of developing a model for a typical well-logging borehole configuration and computing the helium-3 detector response to varying formation porosities using three different neutron sources (Am–Be, D–D, and D–T). The results indicate that, when normalized to the same source intensity, the use of a D–D neutron source has greater sensitivity for measuring the formation porosity than either an Am–Be or D–T source. The results of the study provide operational requirements that enablemore » compensated porosity well logging with a compact, low power D–D neutron generator, which the current state-of-the-art indicates is technically achievable.« less
Spallation Neutron Source reaches megawatt power
Dr. William F. Brinkman
2017-12-09
The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.
NASA Astrophysics Data System (ADS)
Hayakawa, T.; Shizuma, T.; Miyamoto, S.; Amano, S.; Takemoto, A.; Yamaguchi, M.; Horikawa, K.; Akimune, H.; Chiba, S.; Ogata, K.; Fujiwara, M.
2016-04-01
We have measured the azimuthal anisotropy of neutrons emitted from the
Multiple source associated particle imaging for simultaneous capture of multiple projections
Bingham, Philip R; Hausladen, Paul A; McConchi, Seth M; Mihalczo, John T; Mullens, James A
2013-11-19
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing neutron radiography. For example, in one exemplary method, an object is interrogated with a plurality of neutrons. The plurality of neutrons includes a first portion of neutrons generated from a first neutron source and a second portion of neutrons generated from a second neutron source. Further, at least some of the first portion and the second portion are generated during a same time period. In the exemplary method, one or more neutrons from the first portion and one or more neutrons from the second portion are detected, and an image of the object is generated based at least in part on the detected neutrons from the first portion and the detected neutrons from the second portion.
Morrison, John L.; Stephens, Alan G.; Grover, S. Blaine
2001-11-20
An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.
Cyclotron-based neutron source for BNCT
NASA Astrophysics Data System (ADS)
Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.
2013-04-01
Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.
NASA Astrophysics Data System (ADS)
Yasin, Zafar; Negoita, Florin; Tabbassum, Sana; Borcea, Ruxandra; Kisyov, Stanimir
2017-12-01
The plastic scintillators are used in different areas of science and technology. One of the use of these scintillator detectors is as beam loss monitors (BLM) for new generation of high intensity heavy ion in superconducting linear accelerators. Operated in pulse counting mode with rather high thresholds and shielded by few centimeters of lead in order to cope with radiofrequency noise and X-ray background emitted by accelerator cavities, they preserve high efficiency for high energy gamma ray and neutrons produced in the nuclear reactions of lost beam particles with accelerator components. Efficiency calculation and calibration of detectors is very important before their practical usage. In the present work, the efficiency of plastic scintillator detectors is simulated using FLUKA for different gamma and neutron sources like, 60Co, 137Cs and 238Pu-Be. The sources are placed at different positions around the detector. Calculated values are compared with the measured values and a reasonable agreement is observed.
Development of 3He LPSDs and read-out system for the SANS spectrometer at CPHS
NASA Astrophysics Data System (ADS)
Huang, T. C.; Gong, H.; Shao, B. B.; Wang, X. W.; Zhang, Y.; Pang, B. B.
2014-01-01
The Compact Pulsed Hadron Source (CPHS) is a 13-MeV proton-linac-driven neutron source under construction in Tsinghua University. Time-of-flight (TOF) small-angle neutron scattering (SANS) spectrometer is one of the first instruments to be built. It is designed to use linear position-sensitive detectors (LPSDs) of 3He gas proportional counters to cover a 1 m×1 m area. Prototypical LPSDs (Φ = 12 mm, L=1 m) have been made and read-out system is developed based on charge division. This work describes the in-house fabrication of the prototypical LPSDs and design of the read-out system including front-end electronics and data acquisition (DAQ) system. Key factors of the front-end electronics are studied and optimized with PSPICE simulation. DAQ system is designed based on VME bus architecture and FPGA Mezzanine Card (FMC) standard with high flexibility and extendibility. Preliminary experiments are carried out and the results are present and discussed.
Accelerator based epithermal neutron source
NASA Astrophysics Data System (ADS)
Taskaev, S. Yu.
2015-11-01
We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.
Spectrometers for compact neutron sources
NASA Astrophysics Data System (ADS)
Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.
2018-03-01
We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.
Manglos, S.H.
1988-03-10
A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S
2015-01-01
The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
Neutron activation analysis system
Taylor, M.C.; Rhodes, J.R.
1973-12-25
A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)
Fission-neutrons source with fast neutron-emission timing
NASA Astrophysics Data System (ADS)
Rusev, G.; Baramsai, B.; Bond, E. M.; Jandel, M.
2016-05-01
A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.
NASA Astrophysics Data System (ADS)
Mukherjee, Bhaskar; Makowski, Dariusz; Simrock, Stefan
2005-06-01
The neutron and gamma doses are crucial to interpreting the radiation effects in microelectronic devices operating in a high-energy accelerator environment. This report highlights a method for an accurate estimation of photoneutron and the accompanying bremsstrahlung (gamma) doses produced by a 450 MeV electron linear accelerator (linac) operating in pulsed mode. The principle is based on the analysis of thermoluminescence glow-curves of TLD-500 (Aluminium Oxide) and TLD-700 (Lithium Fluoride) dosimeter pairs. The gamma and fast neutron response of the TLD-500 and TLD-700 dosimeter pairs were calibrated with a 60Co (gamma) and a 241Am-Be (α, n) neutron standard-source, respectively. The Kinetic Energy Released in Materials (kerma) conversion factor for photoneutrons was evaluated by folding the neutron kerma (dose) distribution in 7LiF (the main component of the TLD-700 dosimeter) with the energy spectra of the 241Am-Be (α, n) neutrons and electron accelerator produced photoneutrons. The neutron kerma conversion factors for 241Am-Be neutrons and photoneutrons were calculated to be 2.52×10 -3 and 1.37×10 -3 μGy/a.u. respectively. The bremsstrahlung (gamma) dose conversion factor was evaluated to be 7.32×10 -4 μGy/a.u. The above method has been successfully utilised to assess the photoneutron and bremsstrahlung doses from a 450 MeV electron linac operating at DESY Research Centre in Hamburg, Germany.
DEVELOPMENT OF ISOTOPICALLY ENRICHED BORON-DOPED ALUMINA DOSIMETER FOR THERMAL NEUTRONS.
Sato, Fuminobu; Maekawa, Tatsuro; Kariba, Tomoharu; Kusaka, Sachie; Tanaka, Teruya; Murata, Isao
2017-12-01
A novel optically stimulated luminescence (OSL) detector containing isotopically enriched boron was developed for thermal neutron dosimetry. Alumina containing isotopically enriched boron (Al2O3:B) was synthesised by the sol-gel method. The Al2O3:B was annealed up to ~1800 K. For X-ray diffractometer (XRD) analysis, the diffraction pattern of the Al2O3:B had reflex peaks corresponding to α-Al2O3. The sensitivity of Al2O3:B to photons was slightly 2% of that of a commercial Al2O3:C. The Al2O3:B detector had satisfactory linearity in X-ray dose measurement. A thermal neutron field was constructed using a 241Am-Be neutron source and graphite blocks. A pair of Al2O3:10B and Al2O3:11B detectors were set in the thermal neutron field. The response of Al2O3:10B was larger than that of Al2O3:11B owing to the 10B(n,α)7Li reactions. The sensitivity of Al2O3:10B to thermal neutrons was estimated to be two orders less than the photon sensitivity. Therefore, the pair of Al2O3:10B and Al2O3:11B detectors were useful for thermal neutron dosimetry. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Guan, X.; Murata, I.; Wang, T.
2017-09-01
The performance of an epithermal neutron flux monitor developed for boron neutron capture therapy (BNCT) is verified by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results indicate that the developed epithermal neutron flux monitor works well and it can be efficiently used in practical applications to measure the epithermal neutron fluxes of ABNSs in a high accuracy.
NASA Astrophysics Data System (ADS)
Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors
2017-03-01
At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.
SEQUOIA: A Newly Operating Chopper Spectrometer at the SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, Alexander I; Sherline, Todd E; Clancy, James P
2010-01-01
A fine resolution chopper spectrometer (SEQUOIA) recently received first neutrons at the SNS. The commissioning phase of the instrument is underway. SEQUOIA is designed to utilize neutrons of an incident energy (Ei) between 10-2000 meV. A monochromatic beam is provided on a sample, 20 m from the decoupled ambient temperature H2O moderator, by filtering the white beam with a Fermi chopper located 18 m from the source. After interacting with the sample, neutrons are detected by an array of 3He linear position sensitive tubes located on a vertical cylinder with a radius of 5.5 m. This contribution presents current resultsmore » from the commissioning experiments and compares SEQUOIA s actual and predicted performance. These commissioning experiments include characterization of the beam by monitors, determination of the chopper phase offsets, and runs with V and C4H2I2S. The predicted performance is provided by analytical calculations and Monte Carlo simulations.« less
Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator
NASA Astrophysics Data System (ADS)
Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.
2014-12-01
Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.
Negative ion-driven associated particle neutron generator
Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...
2015-10-09
We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less
Cyclotron-based neutron source for BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitsumoto, T.; Yajima, S.; Tsutsui, H.
2013-04-19
Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutronmore » collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.« less
Neutron Yield With a Pulsed Surface Flashover Deuterium Source
NASA Astrophysics Data System (ADS)
Guethlein, G.; Falabella, S.; Sampayan, S. E.; Meyer, G.; Tang, V.; Kerr, P.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact, low average power ion source is needed. Towards that end, we are testing a high current, pulsed surface flashover ion source, with deuterated titanium as the spark contacts. Neutron yield and source lifetime data will be presented using a low voltage (<100 kV) deuterated target. With 20 ns spark drive pulses we have shown >106 neutrons/s with 1 kHz PRF
Methods for absorbing neutrons
Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID
2012-07-24
A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.
Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.
2010-06-22
An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.
DOE R&D Accomplishments Database
Brun, T. O.; Carpenter, J. M.; Krohn, V. E.; Ringo, G. R.; Cronin, J. W.; Dombeck, T. W.; Lynn, J. W.; Werner, S. A.
1979-01-01
Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm{sup 3}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, Alberto; Gohar, Yousry
2016-06-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the timemore » is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.« less
Experimental demonstration of a compact epithermal neutron source based on a high power laser
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.
2017-07-01
Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.
Distinguishing Fissile From Non-Fissile Materials Using Linearly Polarized Gamma Rays
NASA Astrophysics Data System (ADS)
Mueller, J. M.; Ahmed, M. W.; Karwowski, H. J.; Myers, L. S.; Sikora, M. H.; Weller, H. R.; Zimmerman, W. R.; Randrup, J.; Vogt, R.
2014-03-01
Photofission of 232Th, 233 , 235 , 238U, 237Np, and 239,240Pu was induced by nearly 100% linearly polarized, high intensity (~107 γs per second), and nearly-monoenergetic γ-ray beams of energies between 5.3 and 7.6 MeV at the High Intensity γ-ray Source (HI γS). An array of 12-18 liquid scintillating detectors was used to measure prompt fission neutron yields. The ratio of prompt fission neutron yields parallel to the plane of beam polarization to the yields perpendicular to this plane was measured as a function of beam and neutron energy. A ratio near unity was found for 233,235U, 237Np, and 239Pu while a significant ratio (~1.5-3) was found for 232Th, 238U, and 240Pu. This large difference could be used to distinguish fissile isotopes (such as 233,235U and 239Pu) from non-fissile isotopes (such as 232Th, 238U, and 240Pu). The measured ratios agree with the results of a fission calculation (FREYA) which used with previously measured photofission fragment angular distributions as input. Partially supported by DHS (2010-DN-077-ARI046-02), DOE (DE-AC52-07NA27344 and DE-AC02-05CH11231), and the DOE Office of Science Graduate Fellowship Program (DOE SCGF).
SELF-REACTIVATING NEUTRON SOURCE FOR A NEUTRONIC REACTOR
Newson, H.W.
1959-02-01
Reactors of the type employing beryllium in a reflector region around the active portion and to a neutron source for use therewith are discussed. The neutron source is comprised or a quantity of antimony permanently incorporated in, and as an integral part of, the reactor in or near the beryllium reflector region. During operation of the reactor the natural occurring antimony isotope of atomic weight 123 absorbs neutrons and is thereby transformed to the antimony isotope of atomic weight 124, which is radioactive and emits gamma rays. The gamma rays react with the beryllium to produce neutrons. The beryllium and antimony thus cooperate to produce a built in neutron source which is automatically reactivated by the operation of the reactor itself and which is of sufficient strength to maintain the slow neutron flux at a sufficiently high level to be reliably measured during periods when the reactor is shut down.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Liu, Y; Nie, L
Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics aremore » measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.« less
Compact D-D/D-T neutron generators and their applications
NASA Astrophysics Data System (ADS)
Lou, Tak Pui
2003-10-01
Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.
Smaller, Lower-Power Fast-Neutron Scintillation Detectors
NASA Technical Reports Server (NTRS)
Patel, Jagdish; Blaes, Brent
2008-01-01
Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.
SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center
NASA Astrophysics Data System (ADS)
Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.
2011-11-01
This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.
CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.
Hawkes, N P; Thomas, D J; Taylor, G C
2016-09-01
The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.
NASA Technical Reports Server (NTRS)
Hill, J. E.; Black, J. K.; Jahoda, K.; Tamagawa, T.; Iwakiri, W.; Kitaguchi, T.; Kubota, M.; Kaaret, P.; Mccurdy, R.; Miles, D. M.;
2016-01-01
The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study. The PRAXyS observatory carries an X-ray Polarimeter Instrument (XPI) capable of measuring the linear polarization from a variety of high energy sources, including black holes, neutron stars, and supernova remnants. The XPI is comprised of two identical mirror-Time Projection Chamber (TPC) polarimeter telescopes with a system effective area of 124 sq cm at 3 keV, capable of photon limited observations for sources as faint as 1 mCrab. The XPI is built with well-established technologies. This paper will describe the performance of the XPI flight mirror with the engineering test unit polarimeter
NASA Astrophysics Data System (ADS)
Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.
2009-06-01
At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.
A Targeted Search for Point Sources of EeV Neutrons
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q. D.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Auger Collaboration101, The Pierre
2014-07-01
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine "target sets," in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.
Exploiting Fission Chain Reaction Dynamics to Image Fissile Materials
NASA Astrophysics Data System (ADS)
Chapman, Peter Henry
Radiation imaging is one potential method to verify nuclear weapons dismantlement. The neutron coded aperture imager (NCAI), jointly developed by Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL), is capable of imaging sources of fast (e.g., fission spectrum) neutrons using an array of organic scintillators. This work presents a method developed to discriminate between non-multiplying (i.e., non-fissile) neutron sources and multiplying (i.e., fissile) neutron sources using the NCAI. This method exploits the dynamics of fission chain-reactions; it applies time-correlated pulse-height (TCPH) analysis to identify neutrons in fission chain reactions. TCPH analyzes the neutron energy deposited in the organic scintillator vs. the apparent neutron time-of-flight. Energy deposition is estimated from light output, and time-of-flight is estimated from the time between the neutron interaction and the immediately preceding gamma interaction. Neutrons that deposit more energy than can be accounted for by their apparent time-of-flight are identified as fission chain-reaction neutrons, and the image is reconstructed using only these neutron detection events. This analysis was applied to measurements of weapons-grade plutonium (WGPu) metal and 252Cf performed at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) in July 2015. The results demonstrate it is possible to eliminate the non-fissile 252Cf source from the image while preserving the fissileWGPu source. TCPH analysis was also applied to additional scenes in which theWGPu and 252Cf sources were measured individually. The results of these separate measurements further demonstrate the ability to remove the non-fissile 252Cf source and retain the fissileWGPu source. Simulations performed using MCNPX-PoliMi indicate that in a one hour measurement, solid spheres ofWGPu are retained at a 1sigma level for neutron multiplications M -˜ 3.0 and above, while hollowWGPu spheres are retained for M -˜ 2.7 and above.
A route to the brightest possible neutron source?
Taylor, Andrew; Dunne, Mike; Bennington, Steve; Ansell, Stuart; Gardner, Ian; Norreys, Peter; Broome, Tim; Findlay, David; Nelmes, Richard
2007-02-23
We review the potential to develop sources for neutron scattering science and propose that a merger with the rapidly developing field of inertial fusion energy could provide a major step-change in performance. In stark contrast to developments in synchrotron and laser science, the past 40 years have seen only a factor of 10 increase in neutron source brightness. With the advent of thermonuclear ignition in the laboratory, coupled to innovative approaches in how this may be achieved, we calculate that a neutron source three orders of magnitude more powerful than any existing facility can be envisaged on a 20- to 30-year time scale. Such a leap in source power would transform neutron scattering science.
Femtosecond electron bunches, source and characterization
NASA Astrophysics Data System (ADS)
Thongbai, C.; Kusoljariyakul, K.; Rimjaem, S.; Rhodes, M. W.; Saisut, J.; Thamboon, P.; Wichaisirimongkol, P.; Vilaithong, T.
2008-03-01
A femtosecond electron source has been developed at the Fast Neutron Research Facility (FNRF), Chiang Mai University, Thailand. So far, it has produced electron bunches as short as σ z˜180 fs with (1-6)×10 8 electrons per microbunch. The system consists of an RF-gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. Coherent transition radiation emitted at wavelengths equal to and longer than the bunch length is used in a Michelson interferometer to determine the bunch length by autocorrelation technique. The experimental setup and results of the bunch length measurement are described.
NASA Astrophysics Data System (ADS)
Kornev, V. A.; Askinazi, L. G.; Belokurov, A. A.; Chernyshev, F. V.; Lebedev, S. V.; Melnik, A. D.; Shabelsky, A. A.; Tukachinsky, A. S.; Zhubr, N. A.
2017-12-01
The paper presents DD neutron flux measurements in neutron beam injection (NBI) experiments aimed at the optimization of target plasma and heating beam parameters to achieve maximum neutron flux in the TUMAN-3M compact tokamak. Two ion sources of different design were used, which allowed the separation of the beam’s energy and power influence on the neutron rate. Using the database of experiments performed with the two ion sources, an empirical scaling was derived describing the neutron rate dependence on the target plasma and heating beam parameters. Numerical modeling of the neutron rate in the NBI experiments performed using the ASTRA transport code showed good agreement with the scaling.
International workshop on cold neutron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, G.J.; West, C.D.
1991-08-01
The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more ofmore » a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.
Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.
Synfuel production in nuclear reactors
Henning, C.D.
Apparatus and method for producing synthetic fuels and synthetic fuel components by using a neutron source as the energy source, such as a fusion reactor. Neutron absorbers are disposed inside a reaction pipe and are heated by capturing neutrons from the neutron source. Synthetic fuel feedstock is then placed into contact with the heated neutron absorbers. The feedstock is heated and dissociates into its constituent synfuel components, or alternatively is at least preheated sufficiently to use in a subsequent electrolysis process to produce synthetic fuels and synthetic fuel components.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
D-D neutron generator development at LBNL.
Reijonen, J; Gicquel, F; Hahto, S K; King, M; Lou, T-P; Leung, K-N
2005-01-01
The plasma and ion source technology group in Lawrence Berkeley National Laboratory is developing advanced, next generation D-D neutron generators. There are three distinctive developments, which are discussed in this presentation, namely, multi-stage, accelerator-based axial neutron generator, high-output co-axial neutron generator and point source neutron generator. These generators employ RF-induction discharge to produce deuterium ions. The distinctive feature of RF-discharge is its capability to generate high atomic hydrogen species, high current densities and stable and long-life operation. The axial neutron generator is designed for applications that require fast pulsing together with medium to high D-D neutron output. The co-axial neutron generator is aimed for high neutron output with cw or pulsed operation, using either the D-D or D-T fusion reaction. The point source neutron generator is a new concept, utilizing a toroidal-shaped plasma generator. The beam is extracted from multiple apertures and focus to the target tube, which is located at the middle of the generator. This will generate a point source of D-D, T-T or D-T neutrons with high output flux. The latest development together with measured data will be discussed in this article.
Accelerating fissile material detection with a neutron source
Rowland, Mark S.; Snyderman, Neal J.
2018-01-30
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.
Pappas, D.S.
1987-07-31
The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.
Quantitative NDA of isotopic neutron sources.
Lakosi, L; Nguyen, C T; Bagi, J
2005-01-01
A non-destructive method for assaying transuranic neutron sources was developed, using a combination of gamma-spectrometry and neutron correlation technique. Source strength or actinide content of a number of PuBe, AmBe, AmLi, (244)Cm, and (252)Cf sources was assessed, both as a safety issue and with respect to combating illicit trafficking. A passive neutron coincidence collar was designed with (3)He counters embedded in a polyethylene moderator (lined with Cd) surrounding the sources to be measured. The electronics consist of independent channels of pulse amplifiers and discriminators as well as a shift register for coincidence counting. The neutron output of the sources was determined by gross neutron counting, and the actinide content was found out by adopting specific spontaneous fission and (alpha,n) reaction yields of individual isotopes from the literature. Identification of an unknown source type and constituents can be made by gamma-spectrometry. The coincidences are due to spontaneous fission in the case of Cm and Cf sources, while they are mostly due to neutron-induced fission of the Pu isotopes (i.e. self-multiplication) and the (9)Be(n,2n)(8)Be reaction in Be-containing sources. Recording coincidence rate offers a potential for calibration, exploiting a correlation between the Pu amount and the coincidence-to-total ratio. The method and the equipment were tested in an in-field demonstration exercise, with participation of national public authorities and foreign observers. Seizure of the illicit transport of a PuBe source was simulated in the exercise, and the Pu content of the source was determined. It is expected that the method could be used for identification and assay of illicit, found, or not documented neutron sources.
NASA Astrophysics Data System (ADS)
Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; Maekawa, Fujio; Kosako, Kazuaki; Nakamura, Tomoo; Maekawa, Hiroshi; Youssef, Mahmoud Z.; Kumar, Anil; Abdou, Mohamed A.
1994-02-01
A pseudo-line source has been realized by using an accelerator based D-T point neutron source. The pseudo-line source is obtained by time averaging of continuously moving point source or by superposition of finely distributed point sources. The line source is utilized for fusion blanket neutronics experiments with an annular geometry so as to simulate a part of a tokamak reactor. The source neutron characteristics were measured for two operational modes for the line source, continuous and step-wide modes, with the activation foil and the NE213 detectors, respectively. In order to give a source condition for a successive calculational analysis on the annular blanket experiment, the neutron source characteristics was calculated by a Monte Carlo code. The reliability of the Monte Carlo calculation was confirmed by comparison with the measured source characteristics. The shape of the annular blanket system was a rectangular with an inner cavity. The annular blanket was consist of 15 mm-thick first wall (SS304) and 406 mm-thick breeder zone with Li2O at inside and Li2CO3 at outside. The line source was produced at the center of the inner cavity by moving the annular blanket system in the span of 2 m. Three annular blanket configurations were examined; the reference blanket, the blanket covered with 25 mm thick graphite armor and the armor-blanket with a large opening. The neutronics parameters of tritium production rate, neutron spectrum and activation reaction rate were measured with specially developed techniques such as multi-detector data acquisition system, spectrum weighting function method and ramp controlled high voltage system. The present experiment provides unique data for a higher step of benchmark to test a reliability of neutronics design calculation for a realistic tokamak reactor.
Assessment of the neutron cross section database for mercury for the ORNL spallation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.
1996-06-01
Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the surveymore » included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.« less
NASA Astrophysics Data System (ADS)
Faghihi, F.; Khalili, S.
2013-08-01
This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco, Manuel
The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the sourcemore » was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.« less
USDA-ARS?s Scientific Manuscript database
Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Cheng, K. S.; Pines, D.
1989-01-01
The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.
Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S
2014-08-01
The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mercury Thermal Hydraulic Loop (MTHL) Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felde, David K.; Crye, Jason Michael; Wendel, Mark W.
2017-03-01
The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.
NASA Astrophysics Data System (ADS)
Osawa, Yuta; Imoto, Shoichi; Kusaka, Sachie; Sato, Fuminobu; Tanoshita, Masahiro; Murata, Isao
2017-09-01
Boron Neutron Capture Therapy (BNCT) is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS) are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.
A compact neutron scatter camera for field deployment
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
2016-08-23
Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less
Neutron Radiation Characteristics of Plutonium Dioxide Fuel
NASA Technical Reports Server (NTRS)
Taherzadeh, M.
1972-01-01
The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the Pu isotopes, reactions with low Z impurities in the fuel, and reactions with O-18. For spontaneous fission neutrons a value of (1.95 plus or minus 0.07) X 1,000 n/s/q PuO2 is obtained. The neutron yield from (alpha, neutron) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha particle energies and all center-of-mass angles. The results indicate a neutron emission rate of (1.42 plus or minus 0.32) X 10,000 n/s/q PuO2. The neutron yield from (alpha, neutron) reactions with low Z impurities in the fuel is presented in tabular form for one part per million of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.
Measurements of the total cross section of natBe with thermal neutrons from a photo-neutron source
NASA Astrophysics Data System (ADS)
Liu, L. X.; Wang, H. W.; Ma, Y. G.; Cao, X. G.; Cai, X. Z.; Chen, J. G.; Zhang, G. L.; Han, J. L.; Zhang, G. Q.; Hu, J. F.; Wang, X. H.; Li, W. J.; Yan, Z.; Fu, H. J.
2017-11-01
The total neutron cross sections of natural beryllium in the neutron energy region of 0.007 to 0.1 eV were measured by using a time-of-flight (TOF) technique at the Shanghai Institute of Applied Physics (SINAP). The low energy neutrons were obtained by moderating the high energy neutrons from a pulsed photo-neutron source generated from a 16 MeV electron linac. The time dependent neutron background component was determined by employing the 12.8 cm boron-loaded polyethylene (PEB) (5% w.t.) to block neutron TOF path and using the Monte Carlo simulation methods. The present data was compared with the fold Harvey data with the response function of the photo-neutron source (PNS, phase-1). The present measurement of total cross section of natBe for thermal neutrons based on PNS has been developed for the acquisition of nuclear data needed for the Thorium Molten Salt Reactor (TMSR).
[Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].
Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa
2014-01-01
Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.
NASA Astrophysics Data System (ADS)
Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.
2017-02-01
A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.
NASA Astrophysics Data System (ADS)
Serebrov, A. P.
2018-03-01
The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.
Improved neutron-gamma discrimination for a 3He neutron detector using subspace learning methods
Wang, C. L.; Funk, L. L.; Riedel, R. A.; ...
2017-02-10
3He gas based neutron linear-position-sensitive detectors (LPSDs) have been applied for many neutron scattering instruments. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio on the orders of 10 5-10 6. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher linear discriminant analysis (FLDA)more » and three multivariate analyses (MVAs) of the features were performed. The NGD ratios are improved by about 10 2-10 3 times compared with the traditional PHA method. Finally, our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.« less
NASA Astrophysics Data System (ADS)
Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki
2015-10-01
For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.
NASA Astrophysics Data System (ADS)
Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.
2018-03-01
In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.
Deuterium-lithium plasma as a source of fusion neutrons
NASA Astrophysics Data System (ADS)
Chirkov, A. Yu; Vesnin, V. R.
2017-11-01
The concepts of deuterium-tritium (D-T) fusion neutron source are currently developed for hybrid fusion-fission systems and the waste transmutation ones. The need to use tritium technologies is a deterrent factor in this promising direction of energy production. Potential possibilities of using systems that do not require tritium developments are of a significant interest. A deuterium-deuterium (D-D) reaction is considered for the use in demonstration fusion neutron sources. The product of this reaction is tritium, which will burn in the plasma with the emission of fast neutrons. D-D reaction is significantly slower then D-T reaction. Present study shows an increase in neutron yield using a powerful injection of the beam of deuterium atoms. The reactions of the deuterium with lithium isotopes are considered. In some of these reactions, fast neutrons can be obtained. The results of the calculation of the neutron yield from the deuterium lithium plasma are discussed. The estimates of the parameters needed for the realization of a source of fusion neutrons are presented.
NASA Astrophysics Data System (ADS)
Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.
2015-07-01
LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.
Cason, J.L. Jr.; Shaw, C.B.
1975-10-21
A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.
NASA Astrophysics Data System (ADS)
Santarius, John; Navarro, Marcos; Michalak, Matthew; Fancher, Aaron; Kulcinski, Gerald; Bonomo, Richard
2016-10-01
A newly initiated research project will be described that investigates methods for detecting shielded special nuclear materials by combining multi-dimensional neutron sources, forward/adjoint calculations modeling neutron and gamma transport, and sparse data analysis of detector signals. The key tasks for this project are: (1) developing a radiation transport capability for use in optimizing adaptive-geometry, inertial-electrostatic confinement (IEC) neutron source/detector configurations for neutron pulses distributed in space and/or phased in time; (2) creating distributed-geometry, gas-target, IEC fusion neutron sources; (3) applying sparse data and noise reduction algorithms, such as principal component analysis (PCA) and wavelet transform analysis, to enhance detection fidelity; and (4) educating graduate and undergraduate students. Funded by DHS DNDO Project 2015-DN-077-ARI095.
NASA Astrophysics Data System (ADS)
Basiri, H.; Tavakoli-Anbaran, H.
2018-01-01
Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.
NASA Astrophysics Data System (ADS)
Piscitelli, F.; Mauri, G.; Messi, F.; Anastasopoulos, M.; Arnold, T.; Glavic, A.; Höglund, C.; Ilves, T.; Lopez Higuera, I.; Pazmandi, P.; Raspino, D.; Robinson, L.; Schmidt, S.; Svensson, P.; Varga, D.; Hall-Wilton, R.
2018-05-01
The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in U.K.. The results on the detailed detector characterization are discussed in this manuscript.
Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Roth, Markus
2015-05-01
An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.
Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector
NASA Astrophysics Data System (ADS)
Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.
2016-07-01
The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.
Hard X-ray spectra of neutron stars and black hole candidates
NASA Technical Reports Server (NTRS)
Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.
1997-01-01
The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.
NASA Astrophysics Data System (ADS)
Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET
2018-02-01
In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
Strategy for the absolute neutron emission measurement on ITER.
Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S
2010-10-01
Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.
Menlove, Howard Olsen; Belian, Anthony P.; Geist, William H.; ...
2017-10-07
The purpose of this paper is to provide a solution to a decades old safeguards problem in the verification of the fissile concentration in fresh light water reactor (LWR) fuel assemblies. The problem is that the burnable poison (e.g. Gd 2O 3) addition to the fuel rods decreases the active neutron assay for the fuel assemblies. This paper presents a new innovative method for the verification of the 235U linear mass density in fresh LEU fuel assemblies that is insensitive to the burnable poison content. The technique makes use of the 238U atoms in the fuel rods to self-interrogate themore » 235U mass. The innovation for the new approach is that the 238U spontaneous fission (SF) neutrons from the rods induces fission reactions (IF) in the 235U that are time correlated with the SF source neutrons. Thus, the coincidence gate counting rate benefits from both the nu-bar of the 238U SF (2.07) and the 235U IF (2.44) for a fraction of the IF reactions. Whereas, the 238U SF background has no time-correlation boost. The higher the detection efficiency, the higher the correlated boost because background neutron counts from the SF are being converted to signal doubles. This time-correlation in the IF signal increases signal/background ratio that provides a good precision for the net signal from the 235U mass. The hard neutron energy spectrum makes the technique insensitive to the burnable poison loading where a Cd or Gd liner on the detector walls is used to prevent thermal-neutron reflection back into the fuel assembly from the detector. Here, we have named the system the fast-neutron passive collar (FNPC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menlove, Howard Olsen; Belian, Anthony P.; Geist, William H.
The purpose of this paper is to provide a solution to a decades old safeguards problem in the verification of the fissile concentration in fresh light water reactor (LWR) fuel assemblies. The problem is that the burnable poison (e.g. Gd 2O 3) addition to the fuel rods decreases the active neutron assay for the fuel assemblies. This paper presents a new innovative method for the verification of the 235U linear mass density in fresh LEU fuel assemblies that is insensitive to the burnable poison content. The technique makes use of the 238U atoms in the fuel rods to self-interrogate themore » 235U mass. The innovation for the new approach is that the 238U spontaneous fission (SF) neutrons from the rods induces fission reactions (IF) in the 235U that are time correlated with the SF source neutrons. Thus, the coincidence gate counting rate benefits from both the nu-bar of the 238U SF (2.07) and the 235U IF (2.44) for a fraction of the IF reactions. Whereas, the 238U SF background has no time-correlation boost. The higher the detection efficiency, the higher the correlated boost because background neutron counts from the SF are being converted to signal doubles. This time-correlation in the IF signal increases signal/background ratio that provides a good precision for the net signal from the 235U mass. The hard neutron energy spectrum makes the technique insensitive to the burnable poison loading where a Cd or Gd liner on the detector walls is used to prevent thermal-neutron reflection back into the fuel assembly from the detector. Here, we have named the system the fast-neutron passive collar (FNPC).« less
NASA Astrophysics Data System (ADS)
Menlove, Howard; Belian, Anthony; Geist, William; Rael, Carlos
2018-01-01
The purpose of this paper is to provide a solution to a decades old safeguards problem in the verification of the fissile concentration in fresh light water reactor (LWR) fuel assemblies. The problem is that the burnable poison (e.g. Gd2O3) addition to the fuel rods decreases the active neutron assay for the fuel assemblies. This paper presents a new innovative method for the verification of the 235U linear mass density in fresh LEU fuel assemblies that is insensitive to the burnable poison content. The technique makes use of the 238U atoms in the fuel rods to self-interrogate the 235U mass. The innovation for the new approach is that the 238U spontaneous fission (SF) neutrons from the rods induces fission reactions (IF) in the 235U that are time correlated with the SF source neutrons. Thus, the coincidence gate counting rate benefits from both the nu-bar of the 238U SF (2.07) and the 235U IF (2.44) for a fraction of the IF reactions. Whereas, the 238U SF background has no time-correlation boost. The higher the detection efficiency, the higher the correlated boost because background neutron counts from the SF are being converted to signal doubles. This time-correlation in the IF signal increases signal/background ratio that provides a good precision for the net signal from the 235U mass. The hard neutron energy spectrum makes the technique insensitive to the burnable poison loading where a Cd or Gd liner on the detector walls is used to prevent thermal-neutron reflection back into the fuel assembly from the detector. We have named the system the fast-neutron passive collar (FNPC).
NASA Astrophysics Data System (ADS)
Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard
2010-08-01
We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.
Calibration factors for the SNOOPY NP-100 neutron dosimeter
NASA Astrophysics Data System (ADS)
Moscu, D. F.; McNeill, F. E.; Chase, J.
2007-10-01
Within CANDU nuclear power facilities, only a small fraction of workers are exposed to neutron radiation. For these individuals, roughly 4.5% of the total radiation equivalent dose is the result of exposure to neutrons. When this figure is considered across all workers receiving external exposure of any kind, only 0.25% of the total radiation equivalent dose is the result of exposure to neutrons. At many facilities, the NP-100 neutron dosimeter, manufactured by Canberra Industries Incorporated, is employed in both direct and indirect dosimetry methods. Also known as "SNOOPY", these detectors undergo calibration, which results in a calibration factor relating the neutron count rate to the ambient dose equivalent rate, using a standard Am-Be neutron source. Using measurements presented in a technical note, readings from the dosimeter for six different neutron fields in six source-detector orientations were used, to determine a calibration factor for each of these sources. The calibration factor depends on the neutron energy spectrum and the radiation weighting factor to link neutron fluence to equivalent dose. Although the neutron energy spectra measured in the CANDU workplace are quite different than that of the Am-Be calibration source, the calibration factor remains constant - within acceptable limits - regardless of the neutron source used in the calibration; for the specified calibration orientation and current radiation weighting factors. However, changing the value of the radiation weighting factors would result in changes to the calibration factor. In the event of changes to the radiation weighting factors, it will be necessary to assess whether a change to the calibration process or resulting calibration factor is warranted.
Neutron response of GafChromic® EBT2 film
NASA Astrophysics Data System (ADS)
Hsiao, Ming-Chen; Liu, Yuan-Hao; Chen, Wei-Lin; Jiang, Shiang-Huei
2013-03-01
Neutron and gamma-ray mixed field dosimetry remains one of the most challenging topics in radiation dosimetry studies. However, the requirement for accurate mixed field dosimetry is increasing because of the considerable interest in high-energy radiotherapy machines, medical ion beams and BNCT epithermal neutron beams. Therefore, this study investigated the GafChromic® EBT2 film. The linearity, reproducibility, energy dependence and homogeneity of the film were tested in a 60Co medical beam, 6-MV LINAC and 10-MV LINAC. The linearity and self-developing effect of the film irradiated in an epithermal neutron beam were also examined. These basic detector characteristics showed that EBT2 film can be effectively applied in mixed field dosimetry. A general detector response model was developed to determine the neutron relative effectiveness (RE) values. The RE value of fast neutrons varies with neutron spectra. By contrast, the RE value of thermal neutrons was determined as a constant; it is only 32.5% in relation to gamma rays. No synergy effect was observed in this study. The lithium-6 capture reaction dominates the neutron response in the thermal neutron energy range, and the recoil hydrogen dose becomes the dominant component in the fast neutron energy region. Based on this study, the application of the EBT2 film in the neutron and gamma-ray mixed field is feasible.
Nested Focusing Optics for Compact Neutron Sources
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.
Development of a Time-tagged Neutron Source for SNM Detection
Ji, Qing; Ludewigt, Bernhard; Wallig, Joe; ...
2015-06-18
Associated particle imaging (API) is a powerful technique for special nuclear material (SNM) detection and characterization of fissile material configurations. A sealed-tube neutron generator has been under development by Lawrence Berkeley National Laboratory to reduce the beam spot size on the neutron production target to 1 mm in diameter for a several-fold increase in directional resolution and simultaneously increases the maximum attainable neutron flux. A permanent magnet 2.45 GHz microwave-driven ion source has been adopted in this time-tagged neutron source. This type of ion source provides a high plasma density that allows the use of a sub-millimeter aperture for themore » extraction of a sufficient ion beam current and lets us achieve a much reduced beam spot size on target without employing active focusing. The design of this API generator uses a custom-made radial high voltage insulator to minimize source to neutron production target distance and to provide for a simple ion source cooling arrangement. Preliminary experimental results showed that more than 100 µA of deuterium ions have been extracted, and the beam diameter on the neutron production target is around 1 mm.« less
Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.
Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O
2015-12-01
BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paul, Sabyasachi; Sahoo, G S; Tripathy, S P; Sharma, S C; Ramjilal; Ninawe, N G; Sunil, C; Gupta, A K; Bandyopadhyay, T
2014-06-01
A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK_n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.
Characterization of the Energy Spectrum at the Indiana University Neutron Source
2011-03-01
CHARACTERIZATION OF THE ENERGY SPECTRUM AT THE INDIANA UNIVERSITY NREP NEUTRON SOURCE THESIS Matthew R. Halstead, Civilian AFIT/GNE/ENP/11-M08...subject to copyright protection in the United States. AFIT/GNE/ENP/11-M08 CHARACTERIZATION OF THE ENERGY SPECTRUM AT THE INDIANA UNIVERSITY NREP NEUTRON...The neutron source at the Indiana University Cyclotron Facility produces neu- trons via proton bombardment of a natural beryllium (100% 9Be) target
ESS Cryogenic System Process Design
NASA Astrophysics Data System (ADS)
Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II
2015-12-01
The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.
X-ray Measurements of a Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; A.J. Caffrey
2001-08-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X-rays are a normal byproduct from a neutron generator and depending on their intensity and energy they can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measuredmore » with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x-rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and the x-ray emission appears to be axially symmetric within the neutron generator.« less
Neutron star dynamics under time-dependent external torques
NASA Astrophysics Data System (ADS)
Gügercinoǧlu, Erbil; Alpar, M. Ali
2017-11-01
The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.
Stripper foil failure modes and cures at the Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho
2011-01-01
The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the $H^0$ excited states created during the $H^-$ charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming $H^-$ beam, which circled around to strike the foilmore » bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.« less
Stripper foil failure modes and cures at the Oak Rdige Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plum, M.A.; Raparia, D.; Cousineau, S.M.
2011-03-28
The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H{sup 0} excited states created during the H{sup -} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H{sup -} beam, which circled aroundmore » to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, Brian G.
These are slides from a presentation on the basics of neutrons. A few topics covered are: common origins of terrestrial neutron radiation, neutron sources, neutron energy, interactions, detecting neutrons, gammas from neutron interactions, neutron signatures in gamma-ray spectra, neutrons and NaI, neutron fluence to dose (msV), instruments' response to neutrons.
NASA Astrophysics Data System (ADS)
Guan, X. C.; Gong, Y.; Murata, I.; Wang, T. S.
2018-05-01
The performance of the neutron flux monitors from 20 keV to 1 MeV developed for boron neutron capture therapy (BNCT) is studied by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results show that the performance of the neutron flux monitors is very satisfactory and they can be efficiently used in practical applications to measure the neutron fluxes from 20 keV to 1 MeV of ABNSs for BNCT to high accuracy.
A laser-induced repetitive fast neutron source applied for gold activation analysis
NASA Astrophysics Data System (ADS)
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.
A laser-induced repetitive fast neutron source applied for gold activation analysis.
Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki
2012-12-01
A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).
Quantitative non-destructive assay of PuBe neutron sources
NASA Astrophysics Data System (ADS)
Lakosi, László; Bagi, János; Nguyen, Cong Tam
2006-02-01
PuBe neutron sources were assayed, using a combination of high resolution γ-spectrometry (HRGS) and neutron correlation technique. In a previous publication [J. Bagi, C. Tam Nguyen, L. Lakosi, Nucl. Instr. and Meth. B 222 (2004) 242] a passive neutron well-counter was reported with 3He tubes embedded in a polyamide (TERRAMID) moderator (lined inside with Cd) surrounding the sources to be measured. Gross and coincidence neutron counting was performed, and the Pu content of the sources was found out from isotope analysis and by adopting specific (α, n) reaction yields of the Pu isotopes and 241Am in Be, based on supplier's information and literature data. The method was further developed and refined. Evaluation algorithm was more precisely worked out. The contribution of secondary (correlated) neutrons to the total neutron output was derived from the coincidence (doubles) count rate and taken into account in assessing the Pu content. A new evaluation of former results was performed. Assay was extended to other PuBe sources, and new results were added. In order to attain higher detection efficiency, a more efficient moderator was also applied, with and without Cd shielding around the assay chamber. Calibration seems possible using neutron measurements only (without γ-spectrometry), based on a correlation between the Pu amount and the coincidence-to-total ratio. It is expected that the method could be used for Pu accountancy and safeguards verification as well as identification and assay of seized, found, or not documented PuBe neutron sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, Robert Dennis; Cleveland, Steven L.
The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible usingmore » gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.« less
NASA Astrophysics Data System (ADS)
Michalak, Matthew K.
The objectives of the work presented here include understanding key operating principles and providing precise data sets that can be used to test inertial electrostatic confinement (IEC) fusion theory and optimize IEC device operation. The underlying physical behavior was separated from superficial trends observed in an IEC device at the University of Wisconsin-Madison (UW). The effects of changing voltage (30-170 kV) and current (30-100 mA) were thoroughly explored, pressure effects (0.15-1.25 mTorr) were mapped, and the effect of impurities in the system was quantified. The most challenging part of this work was designing a high voltage feedthrough that could reliably operate at higher voltages for far longer times than previously attained. A system to detect conventional explosives using fusion neutrons was also designed, constructed, and tested. Precise data sets were created by taking into account and minimizing the effects of short and long term trends in the experiment. Detailed meter current scans were taken that showed a linear relationship of the neutron production rate with current. Cathode voltage scans were slightly greater than linear in the neutron rate from 30 to 170 kV, but the rate increase diminished to near linear as 170 kV was approached. A new high voltage feedthrough was designed that surpassed the performance of past UW IEC lab feedthroughs and shows promise for long duration operation at still higher voltages. Limitations of other equipment in the IEC lab prevented testing the feedthrough to voltages above 175 kV. A more robust construction of the feedthrough and reducing the consequences of a feedthrough failure were also important design criteria that were met. A detector array was made to detect explosives via the 10.8 MeV neutron capture prompt gamma from nitrogen. Signals from four separate detectors were combined to make the individual detectors act similar to one large detector. The detector signals were both summed and combined to compare the performance of the two methods. An overwhelming background radiation signal and insufficient time resolution were two factors that led to the combined signal not performing as well as the summed signal.
NASA Astrophysics Data System (ADS)
Saltos, Andrea
In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.
Activation product transport in fusion reactors. [RAPTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, A.C.
1983-01-01
Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the depositionmore » and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs.« less
A system for monitoring the radiation effects of a proton linear accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.
2016-12-15
The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.
Performance comparison of NE213 detectors for their application in moisture measurement
Naqvi; Nagadi; Rehman; Kidwai
2000-10-01
The pulse shape discrimination (PSD) characteristic and neutron detection efficiency of NE213 detectors have been measured for their application in moisture measurements using 252Cf and 241Am-Be sources. In PSD studies, neutron peak to valley (Pn/V) ratio and figure of merit M were measured at four different bias values for cylindrical 50, 125 and 250 mm diameter NE213 detectors. The result of this study has shown that better PSD performance with the NE213 detector can be achieved with a smaller volume detector in conjunction with a neutron source with smaller gamma-ray/neutron ratio. The neutron detection efficiency of the 125 mm diameter NE213 detector for 241Am-Be and 252Cf source spectra was determined at 0.85, 1.25 and 1.75 MeV bias energies using the experimental neutron detection efficiency data of the same detector over 0.1-10 MeV energy range. Due to different energy spectra of the 241Am-Be and 252Cf sources, integrated efficiency of the 125 mm diameter NE213 detector for the two sources shows bias dependence. At smaller bias, 252Cf source has larger efficiency but as the bias is increased, the detector has larger efficiency for 241Am-Be source. This study has revealed that NE213 detector has better performance (such as PSD and neutron detection efficiency) in simultaneous detection of neutron and gamma-rays in moisture measurements, if it is used in conjunction with 241Am-Be source at higher detector bias.
Design of a setup for 252Cf neutron source for storage and analysis purpose
NASA Astrophysics Data System (ADS)
Hei, Daqian; Zhuang, Haocheng; Jia, Wenbao; Cheng, Can; Jiang, Zhou; Wang, Hongtao; Chen, Da
2016-11-01
252Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg 252Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.
Activation of Dosimeters Used in qa of Medical Linear Accelerators
NASA Astrophysics Data System (ADS)
Polaczek-Grelik, Kinga; Nowacka, Magdalena; Raczkowski, Maciej
2017-09-01
This paper presents the first results of a project intended to investigate γ-radiation activity induced in dosimeters used in clinical practice during routine quality assurance of high-energy photon beams emitted by electron linear accelerators. Two aspects of the activation via photonuclear reactions (X, n) of therapeutic beam and subsequent capture of secondary neutrons (n,γ) are under considerations: the influence of activation on intrinsic background of the dosimeters and exposure of dosimetrists who operate this equipment. The activation of several types of ionization chambers as well as the silicon diodes was studied after long-time exposure (10 000 MUs) of the 15 MV photon beam (Elekta Synergy). Photon fluxes obtained from spectra of γ-rays registered by HPGe spectrometer were subsequently converted to equivalent doses using appropriate coefficients. The main contribution to the induced activity comes from the neutron capture process on Al, Mn and Cu, therefore it decays quite fast with the half-lives of the order of 15 minutes. Nevertheless, the activation of chlorine was also observed. The estimated equivalent doses to skin and eye lens were in the range 0.19 - 0.62 μSv/min. However, no influence on intrinsic background signal of all studied dosimeters was observed. The preliminary results indicate that induced radioactivity of dosimeters is strongly influenced by therapeutic beam quality and neutron source strength of particular linac. This dependence will be studied deeper in order to quantify it more precisely.
Slow neutron mapping technique for level interface measurement
NASA Astrophysics Data System (ADS)
Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.
2017-01-01
Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.
The performance of the upgraded Los Alamos Neutron Source
NASA Astrophysics Data System (ADS)
Ito, Takeyasu; LANL UCN Source Collaboration
2017-09-01
Los Alamos National Laboratory has been operating an ultracold (UCN) source based on a solid deuterium (SD2) UCN converter driven by spallation neutrons for over 10 years. It has recently been successfully upgraded, by replacing the cryostat that contains the cold neutron moderator, SD2 volume, and vertical UCN guide. The horizontal UCN guide that transports UCN out of the radiation shield was also replaced. The new design reflects lessons learned from the 10+ year long operation of the previous version of the UCN source and is optimized to maximize the cold neutron flux at the SD2 volume, featuring a close coupled cold neutron moderator, and maximize the transport of the UCN to experiments. During the commissioning of the upgraded UCN source, data were collected to measure its performance, including cold neutron spectra as a function of the cold moderator temperature, and the UCN density in a vessel outside the source. In this talk, after a brief overview of the design of the upgraded source, the results of the performance tests and comparison to prediction will be presented. This work was funded by LANL LDRD.
NASA Astrophysics Data System (ADS)
Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.
2017-06-01
The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.
Saclay Compact Accelerator-driven Neutron Sources (SCANS)
NASA Astrophysics Data System (ADS)
Marchix, A.; Letourneau, A.; Tran, HN; Chauvin, N.; Menelle, A.; Ott, F.; Schwindling, J.
2018-06-01
For next decade, the European neutron scattering community will face of important changes, as many facilities will close, strictly fission-based sources. This statement mainly concerns France with the planned closure of Orphee and ILL. At CEA-Saclay, the project SONATE has been launched in order to provide a high intensity neutron source in Saclay site, this project is based on Compact Accelerator-driven Neutron Sources technology coupled to high-intensity beams. The goal of SONATE is to develop a 50 kW target, aiming to produce at least a neutron yield of 1013 s-1 in pulse mode with a peak current of 100 mA. We have investigated in this document the best combinations of beam/target which would lead to this substantial neutron yields. Further investigations and tests have to be carry out, especially due to sparse data on thick target and such low-energy beams considered in this document. An intermediate step to the SONATE project is under test and development, called IPHI-NEUTRON, which would lead to provide a small-size neutron facility mainly devoted to neutron imagery for industry. This step is based on the existing 3 MeV proton beam, named IPHI. Best target candidates are Lithium and Beryllium, leading respectively to a neutron yield of about 2.1013 s-1 and 4.1012 s-1.
Study of neutron shielding collimators for curved beamlines at the European Spallation Source
NASA Astrophysics Data System (ADS)
Santoro, V.; DiJulio, D. D.; Ansell, S.; Cherkashyna, N.; Muhrer, G.; Bentley, P. M.
2018-06-01
The European Spallation Source is being constructed in Lund, Sweden and is planned to be the world’s brightest pulsed spallation neutron source for cold and thermal neutron beams (≤ 1 eV). The facility uses a 2 GeV proton beam to produce neutrons from a tungsten target. The neutrons are then moderated in a moderator assembly consisting of both liquid hydrogen and water compartments. Surrounding the moderator are 22 beamports, which view the moderator’s outside surfaces. The beamports are connected to long neutron guides that transport the moderated neutrons to the sample position via reflections. As well as the desired moderated neutrons, fast neutrons coming directly from the target can find their way down the beamlines. These can create unwanted sources of background for the instruments. To mitigate such a kind of background, several instruments will use curved guides to lose direct line-of-sight (LoS) to the moderator and the target. In addition instruments can also use shielding collimators to reduce the amount of fast neutrons further traveling down the guide due to albedo reflections or streaming. Several different materials have been proposed for this purpose. We present the results of a study of different options for collimators and identify the optimal choices that balance cost, background and activation levels.
NASA Astrophysics Data System (ADS)
Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis
2017-01-01
A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.
Coaxial CVD diamond detector for neutron diagnostics at ShenGuang III laser facility.
Yu, Bo; Liu, Shenye; Chen, Zhongjing; Huang, Tianxuan; Jiang, Wei; Chen, Bolun; Pu, Yudong; Yan, Ji; Zhang, Xing; Song, Zifeng; Tang, Qi; Hou, Lifei; Ding, Yongkun; Zheng, Jian
2017-06-01
A coaxial, high performance diamond detector has been developed for neutron diagnostics of inertial confinement fusion at ShenGuangIII laser facility. A Φ10 mm × 1 mm "optical grade" chemical-vapor deposition diamond wafer is assembled in coaxial-designing housing, and the signal is linked to a SubMiniature A connector by the cathode cone. The coaxial diamond detector performs excellently for neutron measurement with the full width at half maximum of response time to be 444 ps for a 50 Ω measurement system. The average sensitivity is 0.677 μV ns/n for 14 MeV (DT fusion) neutrons at an electric field of 1000 V/mm, and the linear dynamic range is beyond three orders of magnitude. The ion temperature results fluctuate widely from the neutron time-of-flight scintillator detector results because of the short flight length. These characteristics of small size, large linear dynamic range, and insensitive to x-ray make the diamond detector suitable to measure the neutron yield, ion temperature, and neutron emission time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C. L.; Funk, L. L.; Riedel, R. A.
3He gas based neutron linear-position-sensitive detectors (LPSDs) have been applied for many neutron scattering instruments. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio on the orders of 10 5-10 6. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher linear discriminant analysis (FLDA)more » and three multivariate analyses (MVAs) of the features were performed. The NGD ratios are improved by about 10 2-10 3 times compared with the traditional PHA method. Finally, our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.« less
Liu, Zheng; Li, Gang; Liu, Linmao
2014-04-01
This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neutron coincidence detectors employing heterogeneous materials
Czirr, J. Bartley; Jensen, Gary L.
1993-07-27
A neutron detector relies upon optical separation of different scintillators to measure the total energy and/or number of neutrons from a neutron source. In pulse mode embodiments of the invention, neutrons are detected in a first detector which surrounds the neutron source and in a second detector surrounding the first detector. An electronic circuit insures that only events are measured which correspond to neutrons first detected in the first detector followed by subsequent detection in the second detector. In spectrometer embodiments of the invention, neutrons are thermalized in the second detector which is formed by a scintillator-moderator and neutron energy is measured from the summed signals from the first and second detectors.
Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E
2005-12-01
The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Sikolenko, Vadim
2004-09-01
The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.
Schubert Review 2017 2-page summary of AmBe project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, A.
2017-04-04
Accelerator-based neutron sources to replace Americium Beryllium (AmBe) radiological sources used for oil well logging are needed for safety and security purposes. DT neutron generators have successfully been used in the past for some measurements, but are less sensitive to rock porosity than the AmBe spectrum is. Additionally, the well-logging industry has decades of data calibrated to the AmBe neutron spectrum. Ideally, if this industry were required to use an accelerator source, they would like a similar neutron spectrum to the AmBe source, with a yield of at least 1×10 7 n/s.
Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.
2017-08-01
The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.
NASA Astrophysics Data System (ADS)
Didi, Abdessamad; Dadouch, Ahmed; Bencheikh, Mohamed; Jai, Otman
2017-09-01
The neutron activation analysis is a method of exclusively elemental analysis. Its implementation of irradiates the sample which can be analyzed by a high neutron flux, this method is widely used in developed countries with nuclear reactors or accelerators of particle. The purpose of this study is to develop a prototype to increase the neutron flux such as americium-beryllium and have the opportunity to produce radioisotopes. Americium-beryllium is a mobile source of neutron activity of 20 curie, and gives a thermal neutron flux of (1.8 ± 0.0007) × 106 n/cm2 s when using water as moderator, when using the paraffin, the thermal neutron flux increases to (2.2 ± 0.0008) × 106 n/cm2 s, in the case of adding two solid beryllium barriers, the distance between them is 24 cm, parallel and symmetrical about the source, the thermal flux is increased to (2.5 ± 0.0008) × 106 n/cm2 s and in the case of multi-source (6 sources), with-out barriers, increases to (1.17 ± 0.0008) × 107 n/cm2 s with a rate of increase equal to 4.3 and with the both barriers flux increased to (1.37 ± 0.0008) × 107 n/cm2 s.
Modulating the Neutron Flux from a Mirror Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryutov, D D
2011-09-01
A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronousmore » detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.« less
Systematic neutron guide misalignment for an accelerator-driven spallation neutron source
NASA Astrophysics Data System (ADS)
Zendler, C.; Bentley, P. M.
2016-08-01
The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.
Recent UCN source developments at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seestrom, S.J.; Anaya, J.M.; Bowles, T.J.
The most intense sources of ultra cold neutrons (UCN) have bee built at reactors where the high average thermal neutron flux can overcome the low UCN production rate to achieve usable densities of UCN. At spallation neutron sources the average flux available is much lower than at a reactor, though the peak flux can be comparable or higher. The authors have built a UCN source that attempts to take advantage of the high peak flux available at the short pulse spallation neutron source at the Los Alamos Neutron Science Center (LANSCE) to generate a useful number of UCN. In themore » source UCN are produced by Doppler-shifted Bragg scattering of neutrons to convert 400-m/s neutrons down into the UCN regime. This source was initially tested in 1996 and various improvements were made based on the results of the 1996 running. These improvements were implemented and tested in 1997. In sections 2 and 3 they discuss the improvements that have been made and the resulting source performance. Recently an even more interesting concept was put forward by Serebrov et al. This involves combining a solid Deuterium UCN source, previously studied by Serebrov et al., with a pulsed spallation source to achieve world record UCN densities. They have initiated a program of calculations and measurements aimed at verifying the solid Deuterium UCN source concept. The approach has been to develop an analytical capability, combine with Monte Carlo calculations of neutron production, and perform benchmark experiments to verify the validity of the calculations. Based on the calculations and measurements they plan to test a modified version of the Serebrov UCN factory. They estimate that they could produce over 1,000 UCN/cc in a 15 liter volume, using 1 {micro}amp of 800 MeV protons for two seconds every 500 seconds. They will discuss the result UCN production measurements in section 4.« less
Development of a thin scintillation films fission-fragment detector and a novel neutron source
NASA Astrophysics Data System (ADS)
Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.
2015-08-01
Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.
Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources
NASA Technical Reports Server (NTRS)
Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.
1972-01-01
Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.
Simulations of a PSD Plastic Neutron Collar for Assaying Fresh Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Paul; Newby, Jason; McElroy, Robert Dennis
The potential performance of a notional active coincidence collar for assaying uranium fuel based on segmented detectors constructed from the new PSD plastic fast organic scintillator with pulse shape discrimination capability was investigated in simulation. Like the International Atomic Energy Agency's present Uranium Neutron Collar for LEU (UNCL), the PSD plastic collar would also function by stimulating fission in the 235U content of the fuel with a moderated 241Am/Li neutron source and detecting instances of induced fission via neutron coincidence counting. In contrast to the moderated detectors of the UNCL, the fast time scale of detection in the scintillator eliminatesmore » statistical errors due to accidental coincidences that limit the performance of the UNCL. However, the potential to detect a single neutron multiple times historically has been one of the properties of organic scintillator detectors that has prevented their adoption for international safeguards applications. Consequently, as part of the analysis of simulated data, a method was developed by which true neutron-neutron coincidences can be distinguished from inter-detector scatter that takes advantage of the position and timing resolution of segmented detectors. Then, the performance of the notional simulated coincidence collar was evaluated for assaying a variety of fresh fuels, including some containing burnable poisons and partial defects. In these simulations, particular attention was paid to the analysis of fast mode measurements. In fast mode, a Cd liner is placed inside the collar to shield the fuel from the interrogating source and detector moderators, thereby eliminating the thermal neutron flux that is most sensitive to the presence of burnable poisons that are ubiquitous in modern nuclear fuels. The simulations indicate that the predicted precision of fast mode measurements is similar to what can be achieved by the present UNCL in thermal mode. For example, the statistical accuracy of a ten-minute measurement of fission coincidences collected in fast mode will be approximately 1% for most fuels of interest, yielding a ~1.4% error after subtraction of a five minute measurement of the spontaneous fissions from 238U in the fuel, a ~2% error in analyzed linear density after accounting for the slope of the calibration curve, and a ~2.9% total error after addition of an assumed systematic error of 2%.« less
Neutron star dynamics under time dependent external torques
NASA Astrophysics Data System (ADS)
Alpar, M. A.; Gügercinoğlu, E.
2017-12-01
The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).
Temporal narrowing of neutrons produced by high-intensity short-pulse lasers
Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...
2015-07-28
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less
Single Crystal Diffuse Neutron Scattering
Welberry, Richard; Whitfield, Ross
2018-01-11
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
Single Crystal Diffuse Neutron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welberry, Richard; Whitfield, Ross
Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less
Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code
NASA Astrophysics Data System (ADS)
Faghihi, F.; Mehdizadeh, S.; Hadad, K.
Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.
γ production and neutron inelastic scattering cross sections for 76Ge
NASA Astrophysics Data System (ADS)
Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.
2013-11-01
The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.
Los Alamos Neutron Science Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less
Neutron calibration sources in the Daya Bay experiment
Liu, J.; Carr, R.; Dwyer, D. A.; ...
2015-07-09
We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. Thus, the design characteristics have been validated in the Daya Bay anti-neutrino detector.
High power neutron production targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wender, S.
1996-06-01
The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.
Neutron radiation characteristics of plutonium dioxide fuel
NASA Technical Reports Server (NTRS)
Taherzadeh, M.
1972-01-01
The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the Pu isotopes, (alpha, n) reactions with low Z impurities in the fuel, and (alpha, n) reactions with O-18. For spontaneous fission neutrons a value of (1.95 + or - 0.07) X 1,000 n/s/g PuO2 is obtained. The neutron yield from (alpha, n) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha-particle energies and all center-of-mass angles. The results indicate a neutron emission rate of (1.14 + or - 0.26) X 10,000 n/s/g PuO2. The neutron yield from (alpha, n) reactions with low Z impurities in the fuel is presented in tabular form for one part part per million of each impurity. The total neutron yield due to the combined effects of all the impurities depends upon the fractional weight concentration of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.
In situ calibration of neutron activation system on the large helical device
NASA Astrophysics Data System (ADS)
Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.
2017-11-01
In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.
NASA Astrophysics Data System (ADS)
Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan
2015-05-01
Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.
The US Spallation Neutron Source Project
NASA Astrophysics Data System (ADS)
Olsen, David K.
1997-10-01
Slow neutrons, with wavelengths between a few tenths to a few tens of angstroms, are an important probe for condensed-matter physics and are produced with either fission reactors or accelerator-based spallation sources. The Spallation Neutron Source (SNS) is a collaborative project between DOE National Laboratories including LBNL, LANL, BNL, ANL and ORNL to build the next research neutron source in the US. This source will be sited at ORNL and is being designed to serve the needs of the neutron science community well into the next century. The SNS consists of a 1.1-mA H- front end and a 1.0-GeV high-intensity pulsed proton linac. The 1-ms pulses from the linac will be compressed in a 221-m-circumference accumulator ring to produce 600-ns pulses at a 60-Hz rate. This accelerator system will produce spallation neutrons from a 1.0-MW liquid Hg target for a broad spectrum of neutron scattering research with an initial target hall containing 18 instruments. The baseline conceptual design, critical issues, upgrade possibilities, and the collaborative arrangement will be discussed. It is expected that SNS construction will commence in FY99 and, following a seven year project, start operation in 2006.
Forming images with thermal neutrons
NASA Astrophysics Data System (ADS)
Vanier, Peter E.; Forman, Leon
2003-01-01
Thermal neutrons passing through air have scattering lengths of about 20 meters. At further distances, the majority of neutrons emanating from a moderated source will scatter multiple times in the air before being detected, and will not retain information about the location of the source, except that their density will fall off somewhat faster than 1/r2. However, there remains a significant fraction of the neutrons that will travel 20 meters or more without scattering and can be used to create an image of the source. A few years ago, a proof-of-principle "camera" was demonstrated that could produce images of a scene containing sources of thermalized neutrons and could locate a source comparable in strength with an improvised nuclear device at ranges over 60 meters. The instrument makes use of a coded aperture with a uniformly redundant array of openings, analogous to those used in x-ray and gamma cameras. The detector is a position-sensitive He-3 proportional chamber, originally used for neutron diffraction. A neutron camera has many features in common with those designed for non-focusable photons, as well as some important differences. Potential applications include detecting nuclear smuggling, locating non-metallic land mines, assaying nuclear waste, and surveying for health physics purposes.
Program for studying fundamental interactions at the PIK reactor facilities
NASA Astrophysics Data System (ADS)
Serebrov, A. P.; Vassiljev, A. V.; Varlamov, V. E.; Geltenbort, P.; Gridnev, K. A.; Dmitriev, S. P.; Dovator, N. A.; Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A.; Martemyanov, V. P.; Murashkin, A. N.; Neustroev, P. V.; Onegin, M. S.; Petelin, A. L.; Pirozhkov, A. N.; Polyushkin, A. O.; Prudnikov, D. V.; Ryabov, V. L.; Samoylov, R. M.; Sbitnev, S. V.; Fomin, A. K.; Fomichev, A. V.; Zimmer, O.; Cherniy, A. V.; Shoka, I. V.
2016-05-01
A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4' channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4' channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.
Recent skyshine calculations at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtyarenko, P.
1997-12-01
New calculations of the skyshine dose distribution of neutrons and secondary photons have been performed at Jefferson Lab using the Monte Carlo method. The dose dependence on neutron energy, distance to the neutron source, polar angle of a source neutron, and azimuthal angle between the observation point and the momentum direction of a source neutron have been studied. The azimuthally asymmetric term in the skyshine dose distribution is shown to be important in the dose calculations around high-energy accelerator facilities. A parameterization formula and corresponding computer code have been developed which can be used for detailed calculations of the skyshinemore » dose maps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.
2015-07-23
LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). Thesemore » covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.« less
Setup and Calibration of SLAC's Peripheral Monitoring Stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, C.
2004-09-03
The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communicationmore » lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated or measured). Detector response for both detectors is dependent upon the energy of the incident radiation; this trend had to be accounted for in the calibration of the BF{sub 3} detector. Energy dependence did not have to be taken into consideration when calibrating the GM detectors since GM detector response is only dependent on radiation energy below 100 keV; SLAC only produces a spectrum of gamma radiation above 100 keV. For the GM detector, calibration consisted of bringing a {sup 137}Cs source and a NIST-calibrated RADCAL Radiation Monitor Controller (model 9010) out to the field; the absolute dose rate was determined by the RADCAL device while simultaneously irradiating the GM detector to obtain a scaler reading corresponding to counts per minute. Detector response was then calculated. Calibration of the BF{sub 3} detector was done using NIST certified neutron sources of known emission rates and energies. Five neutron sources ({sup 238}PuBe, {sup 238}PuB, {sup 238}PuF4, {sup 238}PuLi and {sup 252}Cf) with different energies were used to account for the energy dependence of the response. The actual neutron dose rate was calculated by date-correcting NIST source data and considering the direct dose rate and scattered dose rate. Once the total dose rate (sum of the direct and scattered dose rates) was known, the response vs. energy curve was plotted. The first station calibrated (PMS6) was calibrated with these five neutron sources; all subsequent stations were calibrated with one neutron source and the energy dependence was assumed to be the same.« less
Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors
NASA Technical Reports Server (NTRS)
Coker, Robert; Putnam, Gabriel
2012-01-01
The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This advance could be applied to direct propulsion through guided fission products or as a secondary energy source for high impulse electric propulsion. It would help meet national needs for highly efficient energy sources with limited dependence on fossil fuels or conflict materials, and it would improve the use of low grade fissile materials which would help reduce national stockpiles and waste.
Overview of the Neutron experimental facilities at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Michal
2016-06-30
This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.
A compact ion source for intense neutron generation
NASA Astrophysics Data System (ADS)
Perkins, Luke Torrilhon
Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and therefore control the neutron output (pulse width, repetition rate and magnitude) while operating at low pressures (~5 mTorr). In the experimental testing presented herein, a prototype, 5 cm-diameter, inductively driven ion source has produced unsaturated hydrogen beam current densities in excess of 1 A/cm2 and monatomic species fractions in excess of 90%. This satisfactory performance, with respect to the targeted neutron output, was achieved with a 2 MHz, 60 kW pulse of RF to produce a ~20μs plasma pulse at <100 Hz.
YAP:Ce scintillator characteristics for neutron detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viererbl, L.; Klupak, V.; Vins, M.
2015-07-01
YAP:Ce (YAlO{sub 3}:Ce{sup +}, Yttrium Aluminum Perovskite, Ce{sup +} doped) crystals with appropriate converters seem like prospective scintillators for neutron detection. An important aspect for neutron detection with inorganic scintillators is the ability to discriminate neutron radiation from gamma radiation by pulse height of signals. For a detailed measurement of the aspect, a YAP:Ce crystal scintillator with lithium or hydrogen converters and a photomultiplier was used. A plutonium-beryllium neutron source and horizontal neutron channel beams of the LVR-15 research reactor were used as neutron sources. The measurement confirmed the possibility to use the YAP:Ce scintillator for neutron radiation detection. Themore » degree of discrimination between neutron and gamma radiation for different detection configurations was studied. (authors)« less
Research of fundamental interactions with use of ultracold neutrons
NASA Astrophysics Data System (ADS)
Serebrov, A. P.
2017-01-01
Use of ultracold neutrons (UCN) gives unique opportunities of a research of fundamental interactions in physics of elementary particles. Search of the electric dipole moment of a neutron (EDM) aims to test models of CP violation. Precise measurement of neutron lifetime is extremely important for cosmology and astrophysics. Considerable progress in these questions can be reached due to supersource of ultracold neutrons on the basis of superfluid helium which is under construction now in PNPI NRC KI. This source will allow us to increase density of ultracold neutrons approximately by 100 times in respect to the best UCN source at high flux reactor of Institute Laue-Langevin (Grenoble, France). Now the project and basic elements of the source are prepared, full-scale model of the source is tested, the scientific program is developed. Increase in accuracy of neutron EDM measurements by order of magnitude, down to level 10-27 -10-28 e cm is planned. It is highly important for physics of elementary particles. Accuracy of measurement of neutron lifetime can be increased by order of magnitude also. At last, at achievement of UCN density ˜ 103 - 104 cm-3, the experiment search for a neutron-antineutron oscillations using UCN will be possible. The present status of the project and its scientific program will be discussed.
The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source
Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...
2015-07-18
The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.
Fundamental neutron physics beamline at the spallation neutron source at ORNL
Fomin, N.; Greene, G. L.; Allen, R. R.; ...
2014-11-04
In this paper, we describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. Finally, we present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.
Importance biasing scheme implemented in the PRIZMA code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandiev, I.Z.; Malyshkin, G.N.
1997-12-31
PRIZMA code is intended for Monte Carlo calculations of linear radiation transport problems. The code has wide capabilities to describe geometry, sources, material composition, and to obtain parameters specified by user. There is a capability to calculate path of particle cascade (including neutrons, photons, electrons, positrons and heavy charged particles) taking into account possible transmutations. Importance biasing scheme was implemented to solve the problems which require calculation of functionals related to small probabilities (for example, problems of protection against radiation, problems of detection, etc.). The scheme enables to adapt trajectory building algorithm to problem peculiarities.
NASA Astrophysics Data System (ADS)
Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.
2017-09-01
Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.
Neutron skyshine measurements at Fermilab.
Cossairt, J D; Coulson, L V
1985-02-01
Neutron skyshine has been a significant source of environmental radiation exposure at many high-energy proton accelerators. A particularly troublesome source of skyshine neutrons has existed at Fermilab during operation of the 400-GeV high-energy physics program. This paper reports on several measurements of this source made with a DePangher precision long counter at large distances. The spatial distribution of the neutron skyshine can approximately be described as an inverse square law dependence multiplied by an exponential with an approximate attenuation length of 1200 +/- 300 m. The absolute magnitude of the distributions can be matched directly to the conventionally measured absorbed dose distribution near the source.
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum wasmore » measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.« less
X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator
NASA Astrophysics Data System (ADS)
Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.
2011-06-01
Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60° between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.
Hexagonal Uniformly Redundant Arrays (HURAs) for scintillator based coded aperture neutron imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamage, K.A.A.; Zhou, Q.
2015-07-01
A series of Monte Carlo simulations have been conducted, making use of the EJ-426 neutron scintillator detector, to investigate the potential of using hexagonal uniformly redundant arrays (HURAs) for scintillator based coded aperture neutron imaging. This type of scintillator material has a low sensitivity to gamma rays, therefore, is of particular use in a system with a source that emits both neutrons and gamma rays. The simulations used an AmBe source, neutron images have been produced using different coded-aperture materials (boron- 10, cadmium-113 and gadolinium-157) and location error has also been estimated. In each case the neutron image clearly showsmore » the location of the source with a relatively small location error. Neutron images with high resolution can be easily used to identify and locate nuclear materials precisely in nuclear security and nuclear decommissioning applications. (authors)« less
Microtron MT 25 as a source of neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kralik, M.; Solc, J.; Chvatil, D.
2012-08-15
The objective was to describe Microtron MT25 as a source of neutrons generated by bremsstrahlung induced photonuclear reactions in U and Pb targets. Bremsstrahlung photons were produced by electrons accelerated at energy 21.6 MeV. Spectral fluence of the generated neutrons was calculated with MCNPX code and then experimentally determined at two positions by means of a Bonner spheres spectrometer in which the detector of thermal neutrons was replaced by activation Mn tablets or track detectors CR-39 with a {sup 10}B radiator. The measured neutron spectral fluence and the calculated anisotropy served for the estimation of neutron yield from the targetsmore » and for the determination of ambient dose equivalent rate at the place of measurement. Microtron MT25 is intended as one of the sources for testing neutron sensitive devices which will be sent into the space.« less
The Sao Paulo Microtron: Equipment and Planned Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, M. N.; Maidana, N. L.; Vanin, V. R.
2007-10-26
The Linear Accelerator Laboratory (LAL) of the Instituto de Fisica da Universidade de Sao Paulo (IFUSP) is building a two-stage racetrack microtron, which will generate continuous wave electron beams with energies up to 38 MeV. This paper describes the characteristics of the accelerator, and reports on the experimental equipment that will be available in order to pursue the photonuclear physics research program. Operation will begin with the first stage (5 MeV), and concentrate on NRF (Nuclear Resonance Fluorescence) measurements and radiation physics studies. Planned experiments for the second stage explore the cw character of the beam on coincidence experiments. Amore » photon tagger has been already tested with radioactive sources and is ready to be installed. Gamma and neutron detector arrays are being developed for the detailed study of photoneutron reactions. Plans include the study of NRF and pygmy resonances, near the neutron binding energy.« less
NASA Astrophysics Data System (ADS)
Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.
2018-01-01
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .
An Accelerator Neutron Source for BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, Thomas, E
2006-03-14
The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability,more » and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.« less
Diffraction in neutron imaging-A review
NASA Astrophysics Data System (ADS)
Woracek, Robin; Santisteban, Javier; Fedrigo, Anna; Strobl, Markus
2018-01-01
Neutron imaging is a highly successful experimental technique ever since adequate neutron sources were available. In general, neutron imaging is performed with a wide wavelength spectrum for best flux conditions in transmission geometry. Neutrons provide outstanding features in the penetration of many structural materials, which often makes them more suited for bulk sample studies than other forms of radiation, often in particular as they are also highly sensitive to some light elements, especially Hydrogen. In contrast to neutron scattering applications, imaging resolves macroscopic structures, nowadays down to, in the best case, below 10 micrometre, directly in real space. However, since more than a decade there is a growing number of techniques and applications in neutron imaging that - supported by powerful neutron sources - are taking advantage of wavelength resolved measurements. In this review we summarize and discuss this outstanding development and how wavelength resolved transmission neutron imaging is successfully exploiting diffraction mechanisms to access crystal structure information in the Angstrom regime, which conventionally is probed in reciprocal space by diffraction techniques. In particular the combination of information gained in real space and on crystallographic length scales makes this neutron imaging technique a valuable tool for a wide range of new applications, while it also qualifies neutron imaging to fully profit from the new generation of powerful pulsed neutron sources.
NASA Astrophysics Data System (ADS)
Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo
2009-03-01
We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jassby, D.L.; Hendel, H.W.; Bosch, H.S.
1988-05-01
The response of polyethylene-moderated U-235 fission counters is only weakly dependent on incident neutron energy, while the response of unmoderated U-238 or Th-232 fission counters increases strongly with energy. A given concentration of D-T neutrons in a mixed DT-DD source results in a unique relative detector response that depends on the parameters R14 and R2.5, where R14 is the ratio of the unmoderated U-238 and moderated U-235 detector efficiencies for a pure 14-MeV neutron source, and R2.5 is the corresponding ratio for a pure 2.5 MeV source. We have determined R14 and R2.5 using D-D and D-T neutron generators insidemore » the TFTR vacuum vessel. The results indicate that, for our detector geometry, the ratio of U-238 to U-235 count rates should increase by a factor of about 3 when the fusion neutron source changes from pure D-D to pure D-T. This calibration is being applied to recent TFTR /open quotes/supershot/close quotes/ data, where the uncollided neutron flux in the post-beam phase contains a high proportion of D-T neutrons from the burnup of D-D tritons. 8 refs., 4 figs,. 2 tabs.« less
The accelerator neutron source for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.
2016-11-01
The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steyerl, A.
1993-09-01
Within the past two and one half years of the project ``Surface Physics With Cold and Thermal Neutron Reflectometry`` a new thermal neutron reflectometer was constructed at the Rhode Island Nuclear Science Center (RINSC). It was used to study various liquid and solid surfaces. Furthermore, neutron reflection experiments were be un at different laboratories in collaboration with Dr. G.P. Fetcher (at Argonne National Laboratory), Dr. T. Russell (IBM Almaden) and Drs. S.K. Satija and A. Karim (at the National Institute for Standards and Technology). The available resources allowed partial construction of an imaging system for ultracold neutrons. It is expectedmore » to provide an extremely high resolution in momentum and energy transfer in surface studies using neutron reflectometry. Much of the work reported here was motivated by the possibility of later implementation at the planned Advanced Neutron Source at Oak Ridge. In a separate project the first concrete plans for an intense source of ultracold neutrons for the Advanced Neutron Source were developed.« less
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Abolfazl; Afrakoti, Iman Esmaili Paeen
2017-04-01
Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The 241Am-9Be and 252Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions.
Development of a thin scintillation films fission-fragment detector and a novel neutron source
Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...
2015-08-26
Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less
NASA Astrophysics Data System (ADS)
Martin, Jeffery
2016-09-01
The free neutron is an excellent laboratory for searches for physics beyond the standard model. Ultracold neutrons (UCN) are free neutrons that can be confined to material, magnetic, and gravitational traps. UCN are compelling for experiments requiring long observation times, high polarization, or low energies. The challenge of experiments has been to create enough UCN to reach the statistical precision required. Production techniques involving neutron interactions with condensed matter systems have resulted in some successes, and new UCN sources are being pursued worldwide to exploit higher UCN densities offered by these techniques. I will review the physics of how the UCN sources work, along with the present status of the world's efforts. research supported by NSERC, CFI, and CRC.
Time-correlated neutron analysis of a multiplying HEU source
NASA Astrophysics Data System (ADS)
Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.
2015-06-01
The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.
Development of deterministic transport methods for low energy neutrons for shielding in space
NASA Technical Reports Server (NTRS)
Ganapol, Barry
1993-01-01
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in aluminum. As an external verification, the results from MGSLAB and MGSEMI were compared to ANISN/PC, a routinely used neutron transport code, showing excellent agreement. In an application to an aluminum shield, the FN method seems to generate reasonable results.
Electron volt spectroscopy on a pulsed neutron source
NASA Astrophysics Data System (ADS)
Newport, R. J.; Penfold, J.; Williams, W. G.
1984-07-01
The principal design aspects of a pulsed source neutron spectrometer in which the scattered neutron energy is determined by a resonance absorption filter difference method are discussed. Calculations of the accessible dynamic range, resolution and spectrum simulations are given for the spectrometer on a high intensity pulsed neutron source, such as the spallation neutron source (SNS) now being constructed at the Rutherford Appleton Laboratory. Special emphasis is made of the advantage gained by placing coarse and fixed energy-sensitive filters before and after the scatterer; these enhance the inelastic/elastic descrimination of the method. A brief description is given of a double difference filter method which gives a superior difference peak shape, as well as a better energy transfer resolution. Finally, some first results of scattering from zirconium hydride, obtained on a test spectrometer, are presented.
Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji
2012-08-29
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options.
2012-01-01
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options. PMID:22929110
A neutron Albedo system with time rejection for landmine and IED detection
NASA Astrophysics Data System (ADS)
Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.
2011-10-01
A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.
Radioactivity in atomic-bomb samples from exposure to environmental neutrons.
Endo, S; Shizuma, K; Tanaka, K; Ishikawa, M; Rühm, W; Egbert, S D; Hoshi, M
2007-12-01
For about one decade, activation measurements performed on environmental samples from a distance larger than 1 km from the hypocenter of the atomic-bomb explosion over Hiroshima suggested much higher thermal neutron fluences to the survivors than predicted. This caused concern among the radiation protection community and prompted a complete re-evaluation of all aspects of survivor dosimetry. While it was shown recently that secondary neutrons from cosmic radiation and other sources have probably been the reason for the high measured concentrations of the long-lived radioisotope 36Cl in these samples, the source for high measured concentrations of the short-lived radionuclides 152Eu and 60Co has not yet been investigated in detail. In order to quantify the production of 152Eu and 60Co in environmental samples by secondary neutrons from cosmic radiation, thermal neutron fluxes were measured by means of a He gas proportional counter in various buildings where these samples had been and still are being stored. Because a 252Cf neutron source has been operated occasionally close to one of the sample storage rooms, additional neutron flux measurements were carried out when the neutron source was in operation. The thermal neutron fluxes measured ranged from 0.00017 to 0.00093 n cm(-2) s(-1) and depended on the floor number of the investigated building. Based on the measured neutron fluxes, the specific activities from the reactions 151Eu(n,gamma)152Eu and 59Co(n,gamma)60Co in the atomic-bomb samples were estimated to be 7.9 mBq g(-1) Eu and 0.27 mBq g(-1) Co, respectively, in saturation. These activities are much lower than those recently measured in samples that had been exposed to atomic-bomb neutrons. It is therefore concluded that environmental and moderated 252Cf neutrons are not the source for the high activities that had been measured in these samples.
Uncertainty quantification in fission cross section measurements at LANSCE
Tovesson, F.
2015-01-09
Neutron-induced fission cross sections have been measured for several isotopes of uranium and plutonium at the Los Alamos Neutron Science Center (LANSCE) over a wide range of incident neutron energies. The total uncertainties in these measurements are in the range 3–5% above 100 keV of incident neutron energy, which results from uncertainties in the target, neutron source, and detector system. The individual sources of uncertainties are assumed to be uncorrelated, however correlation in the cross section across neutron energy bins are considered. The quantification of the uncertainty contributions will be described here.
Schoenborn, Benno P
2010-11-01
The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.
High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
David L. Chichester; James T. Johnson; Edward H. Seabury
2012-07-01
Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials.more » The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and experiments, using fission-spectrum neutron sources to assess neutron transmission through composite low-Z attenuators.« less
Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K
2017-09-01
Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is necessary. Finally, concepts are presented for modifying the generated neutron spectra to achieve particular targeted spectra, simulating Cf or workplace environments.
NASA Astrophysics Data System (ADS)
Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.
2014-05-01
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U
2014-05-21
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Thermal Neutron Imaging Using A New Pad-Based Position Sensitive Neutron Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dioszegi I.; Vanier P.E.; Salwen C.
2016-10-29
Thermal neutrons (with mean energy of 25 meV) have a scattering mean free path of about 20 m in air. Therefore it is feasible to find localized thermal neutron sources up to ~30 m standoff distance using thermal neutron imaging. Coded aperture thermal neutron imaging was developed in our laboratory in the nineties, using He-3 filled wire chambers. Recently a new generation of coded-aperture neutron imagers has been developed. In the new design the ionization chamber has anode and cathode planes, where the anode is composed of an array of individual pads. The charge is collected on each of themore » individual 5x5 mm2 anode pads, (48x48 in total, corresponding to 24x24 cm2 sensitive area) and read out by application specific integrated circuits (ASICs). The high sensitivity of the ASICs allows unity gain operation mode. The new design has several advantages for field deployable imaging applications, compared to the previous generation of wire-grid based neutron detectors. Among these are the rugged design, lighter weight and use of non-flammable stopping gas. For standoff localization of thermalized neutron sources a low resolution (11x11 pixel) coded aperture mask has been fabricated. Using the new larger area detector and the coarse resolution mask we performed several standoff experiments using moderated californium and plutonium sources at Idaho National Laboratory. In this paper we will report on the development and performance of the new pad-based neutron camera, and present long range coded-aperture images of various thermalized neutron sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suhara, Tadahiro; Kanada-En'yo, Yoshiko
We investigate the linear-chain structures in highly excited states of {sup 14}C using a generalized molecular-orbital model, by which we incorporate an asymmetric configuration of three {alpha} clusters in the linear-chain states. By applying this model to the {sup 14}C system, we study the {sup 10}Be+{alpha} correlation in the linear-chain state of {sup 14}C. To clarify the origin of the {sup 10}Be+{alpha} correlation in the {sup 14}C linear-chain state, we analyze linear 3 {alpha} and 3{alpha} + n systems in a similar way. We find that a linear 3{alpha} system prefers the asymmetric 2{alpha} + {alpha} configuration, whose origin ismore » the many-body correlation incorporated by the parity projection. This configuration causes an asymmetric mean field for two valence neutrons, which induces the concentration of valence neutron wave functions around the correlating 2{alpha}. A linear-chain structure of {sup 16}C is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abedin, Ahmad Firdaus Zainal, E-mail: firdaus087@gmail.com; Ibrahim, Noorddin; Zabidi, Noriza Ahmad
2015-04-29
Neutron radiation is able to determine the signature of land mine detection based on backscattering energy spectrum of landmine. In this study, the Monte Carlo simulation of backscattered fast neutrons was performed on four basic elements of land mine; hydrogen, nitrogen, oxygen and carbon. The moderation of fast neutrons to thermal neutrons and their resonances cross-section between 0.01 eV until 14 MeV were analysed. The neutrons energies were divided into 29 groups and ten million neutrons particles histories were used. The geometries consist of four main components: neutrons source, detectors, landmine and soil. The neutrons source was placed at the originmore » coordinate and shielded with carbon and polyethylene. Americium/Beryllium neutron source was placed inside lead casing of 1 cm thick and 2.5 cm height. Polyethylene was used to absorb and disperse radiation and was placed outside the lead shield of width 10 cm and height 7 cm. Two detectors were placed between source with distance of 8 cm and radius of 1.9 cm. Detectors of Helium-3 was used for neutron detection as it has high absorption cross section for thermal neutrons. For the anomaly, the physical is in cylinder form with radius of 10 cm and 8.9 cm height. The anomaly is buried 5 cm deep in the bed soil measured 80 cm radius and 53.5 cm height. The results show that the energy spectrum for the four basic elements of landmine with specific pattern which can be used as indication for the presence of landmines.« less
Characterization of a prototype neutron portal monitor detector
NASA Astrophysics Data System (ADS)
Nakhoul, Nabil
The main objective of this thesis is to provide characterization measurements on a prototype neutron portal monitor (NPM) detector constructed at the University of Massachusetts Lowell. NPM detectors are deployed at all United States border crossings and shipping ports to stop the illicit transfer of weapons-grade plutonium (WGPu) into our country. This large prototype detector with its 0.93 square meter face area is based on thermal neutron capture in 6Li as an alternate technology to the current, very expensive, 3He-based NPM. A neutron detection efficiency of 27.5 % is measured with a 252Cf source which has a spontaneous fission neutron spectrum very similar to that of 240Pu in WGPu. Measurements with an intense 137Cs source establish the extreme insensitivity of the prototype NPM to gamma-ray backgrounds with only one additional count registered for 1.1 million incident gamma rays. This detector also has the ability to locate neutron sources to within an angle of a few degrees. Its sensitivity is further demonstrated by discovering in a few-second measurement the presence of a 2 curie PuBe neutron source even at a distance of 95.5 feet. This thesis also covers in considerable detail the design features that give rise to both a high intrinsic neutron detection efficiency and an extreme gamma-ray insensitivity.
The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.
Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John
2005-01-01
The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.
Characterization of the new neutron imaging and materials science facility IMAT
NASA Astrophysics Data System (ADS)
Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried
2018-04-01
IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
NASA Astrophysics Data System (ADS)
Franklyn, C. B.
2011-12-01
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.
NASA Astrophysics Data System (ADS)
Takada, M.; Taniguchi, S.; Nakamura, T.; Nakao, N.; Uwamino, Y.; Shibata, T.; Fujitaka, K.
2001-06-01
We have developed a phoswich neutron detector consisting of an NE213 liquid scintillator surrounded by an NE115 plastic scintillator to distinguish photon and neutron events in a charged-particle mixed field. To obtain the energy spectra by unfolding, the response functions to neutrons and photons were obtained by the experiment and calculation. The response functions to photons were measured with radionuclide sources, and were calculated with the EGS4-PRESTA code. The response functions to neutrons were measured with a white neutron source produced by the bombardment of 135 MeV protons onto a Be+C target using a TOF method, and were calculated with the SCINFUL code, which we revised in order to calculate neutron response functions up to 135 MeV. Based on these experimental and calculated results, response matrices for photons up to 20 MeV and neutrons up to 132 MeV could finally be obtained.
A comparison of untagged gamma-ray and tagged-neutron yields from 241AmBe and 238PuBe sources.
Scherzinger, J; Al Jebali, R; Annand, J R M; Fissum, K G; Hall-Wilton, R; Koufigar, S; Mauritzson, N; Messi, F; Perrey, H; Rofors, E
2017-09-01
Untagged gamma-ray and tagged-neutron yields from 241 AmBe and 238 PuBe mixed-field sources have been measured. Gamma-ray spectroscopy measurements from 1 to 5MeV were performed in an open environment using a CeBr 3 detector and the same experimental conditions for both sources. The shapes of the distributions are very similar and agree well with previous data. Tagged-neutron measurements from 2 to 6MeV were performed in a shielded environment using a NE-213 liquid-scintillator detector for the neutrons and a YAP(Ce) detector to tag the 4.44MeVgamma-rays associated with the de-excitation of the first-excited state of 12 C. Again, the same experimental conditions were used for both sources. The shapes of these distributions are also very similar and agree well with previous data, each other, and the ISO recommendation. Our 238 PuBe source provides approximately 2.6 times more 4.44MeVgamma-rays and 2.4 times more neutrons over the tagged-neutron energy range, the latter in reasonable agreement with the original full-spectrum source-calibration measurements performed at the time of their acquisition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Indoor Fast Neutron Generator for Biophysical and Electronic Applications
NASA Astrophysics Data System (ADS)
Cannuli, A.; Caccamo, M. T.; Marchese, N.; Tomarchio, E. A.; Pace, C.; Magazù, S.
2018-05-01
This study focuses the attention on an indoor fast neutron generator for biophysical and electronic applications. More specifically, the findings obtained by several simulations with the MCNP Monte Carlo code, necessary for the realization of a shield for indoor measurements, are presented. Furthermore, an evaluation of the neutron spectrum modification caused by the shielding is reported. Fast neutron generators are a valid and interesting available source of neutrons, increasingly employed in a wide range of research fields, such as science and engineering. The employed portable pulsed neutron source is a MP320 Thermo Scientific neutron generator, able to generate 2.5 MeV neutrons with a neutron yield of 2.0 x 106 n/s, a pulse rate of 250 Hz to 20 KHz and a duty factor varying from 5% to 100%. The neutron generator, based on Deuterium-Deuterium nuclear fusion reactions, is employed in conjunction with a solid-state photon detector, made of n-type high-purity germanium (PINS-GMX by ORTEC) and it is mainly addressed to biophysical and electronic studies. The present study showed a proposal for the realization of a shield necessary for indoor applications for MP320 neutron generator, with a particular analysis of the transport of neutrons simulated with Monte Carlo code and described the two main lines of research in which the source will be used.
FABRICATION OF NEUTRON SOURCES
Birden, J.H.
1959-04-21
A method is presented for preparing a neutron source from polonium-210 and substances, such as beryllium and boron, characterized by emission of neutrons upon exposure to alpha particles from the polonium. According to the invention, a source is prepared by placing powdered beryllium and a platinum foil electroplated with polonium-2;.0 in a beryllium container. The container is sealed and then heated by induction to a temperature of 450 to 1100 deg C to volatilize the polonium off the foil into the powder. The heating step is terminated upon detection of a maximum in the neutron flux level.
Evaluation of neutron sources for ISAGE-in-situ-NAA for a future lunar mission.
Li, X; Breitkreutz, H; Burfeindt, J; Bernhardt, H-G; Trieloff, M; Hopp, J; Jessberger, E K; Schwarz, W H; Hofmann, P; Hiesinger, H
2011-11-01
For a future Moon landing, a concept for an in-situ NAA involving age determination using the (40)Ar-(39)Ar method is developed. A neutron source (252)Cf is chosen for sample irradiation on the Moon. A special sample-in-source irradiation geometry is designed to provide a homogeneous distribution of neutron flux at the irradiation position. Using reflector, the neutron flux is likely to increase by almost 200%. Sample age of 1Ga could be determined. Elemental analysis using INAA is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang
2012-06-26
A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.
NASA Astrophysics Data System (ADS)
Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.
2017-11-01
Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.
Pappas, Daniel S.
1989-01-01
Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.
Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I
2014-06-01
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...
2018-01-29
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
Calibration of neutron detectors on the Joint European Torus.
Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L
2017-10-01
The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
Progress in Mirror-Based Fusion Neutron Source Development.
Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V
2015-12-04
The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Gregor, Jens; Bingham, Philip R
2014-01-01
At the present, neutron sources cannot be fabricated small and powerful enough in order to achieve high resolution radiography while maintaining an adequate flux. One solution is to employ computational imaging techniques such as a Magnified Coded Source Imaging (CSI) system. A coded-mask is placed between the neutron source and the object. The system resolution is increased by reducing the size of the mask holes and the flux is increased by increasing the size of the coded-mask and/or the number of holes. One limitation of such system is that the resolution of current state-of-the-art scintillator-based detectors caps around 50um. Tomore » overcome this challenge, the coded-mask and object are magnified by making the distance from the coded-mask to the object much smaller than the distance from object to detector. In previous work, we have shown via synthetic experiments that our least squares method outperforms other methods in image quality and reconstruction precision because of the modeling of the CSI system components. However, the validation experiments were limited to simplistic neutron sources. In this work, we aim to model the flux distribution of a real neutron source and incorporate such a model in our least squares computational system. We provide a full description of the methodology used to characterize the neutron source and validate the method with synthetic experiments.« less
Fission meter and neutron detection using poisson distribution comparison
Rowland, Mark S; Snyderman, Neal J
2014-11-18
A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.
Analysis of neutron and gamma-ray streaming along the maze of NRCAM thallium production target room.
Raisali, G; Hajiloo, N; Hamidi, S; Aslani, G
2006-08-01
Study of the shield performance of a thallium-203 production target room has been investigated in this work. Neutron and gamma-ray equivalent dose rates at various points of the maze are calculated by simulating the transport of streaming neutrons, and photons using Monte Carlo method. For determination of neutron and gamma-ray source intensities and their energy spectrum, we have applied SRIM 2003 and ALICE91 computer codes to Tl target and its Cu substrate for a 145 microA of 28.5 MeV protons beam. The MCNP/4C code has been applied with neutron source term in mode n p to consider both prompt neutrons and secondary gamma-rays. Then the code is applied for the prompt gamma-rays as the source term. The neutron-flux energy spectrum and equivalent dose rates for neutron and gamma-rays in various positions in the maze have been calculated. It has been found that the deviation between calculated and measured dose values along the maze is less than 20%.
Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H
2018-05-01
A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamantov, Eugene
2015-06-12
We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less
Assessment of neutron dosemeters around standard sources and nuclear fissile objects.
Raimondi, N; Tournier, B; Groetz, J E; Piot, J; Riebler, E; Crovisier, P; Chambaudet, A; Cabanné, N
2002-01-01
In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.
The entrainment matrix of a superfluid nucleon mixture at finite temperatures
NASA Astrophysics Data System (ADS)
Leinson, Lev B.
2018-06-01
It is considered a closed system of non-linear equations for the entrainment matrix of a non-relativistic mixture of superfluid nucleons at arbitrary temperatures below the onset of neutron superfluidity, which takes into account the essential dependence of the superfluid energy gap in the nucleon spectra on the velocities of superfluid flows. It is assumed that the protons condense into the isotropic 1S0 state, and the neutrons are paired into the spin-triplet 3P2 state. It is derived an analytic solution to the non-linear equations for the entrainment matrix under temperatures just below the critical value for the neutron superfluidity onset. In general case of an arbitrary temperature of the superfluid mixture the non-linear equations are solved numerically and fitted by simple formulas convenient for a practical use with an arbitrary set of the Landau parameters.
Boron selenide semiconductor detectors for thermal neutron counting
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Tower, Joshua; Cirignano, Leonard; Shah, Kanai
2013-09-01
Thermal neutron detectors in planar configuration were fabricated from B2Se3 (Boron Selenide) crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. In this study, the resistivity of crystals is reported and the collected pulse height spectra are presented for devices irradiated with the 241AmBe neutron source. Long-term stability of the B2Se3 devices for neutron detection under continuous bias and without being under continuous bias was investigated and the results are reported. The B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
NASA Astrophysics Data System (ADS)
Grozdanov, D. N.; Aliyev, F. A.; Hramco, C.; Kopach, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Gundorin, N. A.; Ruskov, I. N.
2018-03-01
A series of experiments has been conducted at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in order to study the possibility of determining the moisture content of coke using a standard neutron source. The proposed method is based on a measurement of the spectrum of prompt γ rays emitted when samples are irradiated by fast and/or thermal neutrons. The moisture content is determined from the area of the peaks of characteristic γ rays produced in the radiative capture of thermal neutrons by the proton ( E γ = 2.223 MeV) and inelastic scattering of fast neutrons by 16O (Eγ = 6.109 MeV). The 239Pu-Be neutron source (< E n > 4.5 MeV) with an intensity of 5 × 106 n/s was used to irradiate the samples under study. A scintillation detector based on a BGO crystal was used to register the characteristic γ radiation from the inelastic fast neutron scattering and slow (thermal) neutron capture. This paper presents the results of humidity measurement in the range of 2-50% [1, 2].
Calibration of a Silver Detector using a PuBe Source
2012-06-14
solid state mechanisms [12]. If the source used for calibration has a known neutron flux , the detector efficiency can be determine by allowing a neutron ...between the normalized neutron flux at the different silver foil locations compared to the flux at the bottom right detector location. The differences are... neutron detection system used at the FRCHX to determine the nominal calibration factors. The type of silver detector used in the FRCHX experiment
Experimental validation of a coupled neutron-photon inverse radiation transport solver
NASA Astrophysics Data System (ADS)
Mattingly, John; Mitchell, Dean J.; Harding, Lee T.
2011-10-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
Searching for X-ray Pulsations from Neutron Stars Using NICER
NASA Astrophysics Data System (ADS)
Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas
2017-08-01
The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.
Searching for X-ray Pulsations from Neutron Stars Using NICER
NASA Astrophysics Data System (ADS)
Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination
2018-01-01
The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caillaud, T.; Landoas, O.; Briat, M.
Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was usedmore » to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.« less
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
Monte Carlo study of neutron-ambient dose equivalent to patient in treatment room.
Mohammadi, A; Afarideh, H; Abbasi Davani, F; Ghergherehchi, M; Arbabi, A
2016-12-01
This paper presents an analytical method for the calculation of the neutron ambient dose equivalent H* (10) regarding patients, whereby the different concrete types that are used in the surrounding walls of the treatment room are considered. This work has been performed according to a detailed simulation of the Varian 2300C/D linear accelerator head that is operated at 18MV, and silver activation counter as a neutron detector, for which the Monte Carlo MCNPX 2.6 code is used, with and without the treatment room walls. The results show that, when compared to the neutrons that leak from the LINAC, both the scattered and thermal neutrons are the major factors that comprise the out-of field neutron dose. The scattering factors for the limonite-steel, magnetite-steel, and ordinary concretes have been calculated as 0.91±0.09, 1.08±0.10, and 0.371±0.01, respectively, while the corresponding thermal factors are 34.22±3.84, 23.44±1.62, and 52.28±1.99, respectively (both the scattering and thermal factors are for the isocenter region); moreover, the treatment room is composed of magnetite-steel and limonite-steel concretes, so the neutron doses to the patient are 1.79 times and 1.62 times greater than that from an ordinary concrete composition. The results also confirm that the scattering and thermal factors do not depend on the details of the chosen linear accelerator head model. It is anticipated that the results of the present work will be of great interest to the manufacturers of medical linear accelerators. Copyright © 2016. Published by Elsevier Ltd.
QPO observations related to neutron star equations of state
NASA Astrophysics Data System (ADS)
Stuchlik, Zdenek; Urbanec, Martin; Török, Gabriel; Bakala, Pavel; Cermak, Petr
We apply a genetic algorithm method for selection of neutron star models relating them to the resonant models of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems. It was suggested that pairs of kilo-hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density ρc . These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR,ρc , Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR,ρc , Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR,ρ, Ω, EOS) into chromosome we used Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.
Neutron star equation of state and QPO observations
NASA Astrophysics Data System (ADS)
Urbanec, Martin; Stuchlík, Zdeněk; Török, Gabriel; Bakala, Pavel; Čermák, Petr
2007-12-01
Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilohertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density rho_{c}. These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR, rho_{c}, Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR, rho_{c}, Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR, rho_{c}, Ω, EOS) into the chromosome we use the Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.
Neutron threshold activation detectors (TAD) for the detection of fissions
NASA Astrophysics Data System (ADS)
Gozani, Tsahi; Stevenson, John; King, Michael J.
2011-10-01
Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique, called Threshold Activation Detection (TAD), is to utilize appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation and then measure the radioactively decaying activation products (typically beta and gamma rays) well after the source pulse. The activation material should possess certain properties: a suitable half-life of the order of seconds; an energy threshold below which the numerous source neutrons will not activate it (e.g., 3 MeV); easily detectable activation products (typically >1 MeV beta and gamma rays) and have a usable cross-section for the selected reaction. Ideally the substance would be a part of the scintillator. There are several good material candidates for the TAD, including fluorine, which is a major constituent of available scintillators such as BaF 2, CaF 2 and hydrogen free liquid fluorocarbon. Thus the fluorine activation products, in particular the beta particles, can be measured with a very high efficiency in the detector. The principles, applications and experimental results obtained with the fluorine based TAD are discussed.
Principles for timing at spallation neutron sources based on developments at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, R. O.; Merl, R. B.; Rose, C. R.
2001-01-01
Due to AC-power-grid frequency fluctuations, the designers for accelerator-based spallation-neutron facilities have worked to optimize the conflicting demands of accelerator and neutron chopper performance. For the first time, we are able to quantitatively access the tradeoffs between these two constraints and design or upgrade a facility to optimize total system performance using powerful new simulation techniques. We have modeled timing systems that integrate chopper controllers and chopper hardware and built new systems. Thus, at LANSCE, we now operate multiple chopper systems and the accelerator as simple slaves to a single master-timing-reference generator. Based on this experience we recommend that spallationmore » neutron sources adhere to three principles. First, timing for pulsed sources should be planned starting with extraction at a fixed phase and working backwards toward the leading edge of the beam pulse. Second, accelerator triggers and storage ring extraction commands from neutron choppers offer only marginal benefits to accelerator-based spallation sources. Third, the storage-ring RF should be phase synchronized with neutron choppers to provide extraction without the one orbit timing uncertainty.« less
The National Spallation Neutron Source (NSNS) Project
NASA Astrophysics Data System (ADS)
Appleton, Bill R.
1997-05-01
The need and justification for new sources and instrumentation in neutron science have been firmly established by numerous assessments since the early 1970s by the scientific community and the Department of Energy (DOE). In their 1996 budget, the DOE Office of Energy Research asked ORNL to lead the R&D and conceptual design effort for a next-generation spallation neutron source to be used for neutron scattering. To accomplish this, the NSNS collaboration involving five national laboratories (ANL, BNL, LANL, LBNL, and ORNL) has been formed. The NSNS reference design is for a 1-GeV linac and accumulator ring that delivers 1-MW proton beams in microsend pulses to a mercuty target; neutrons are produced by the spallation reaction, moderated, and guided into an experimental hall for neutron scattering. The design includes the necessary flexibility to upgrade the source in stages to significantly higher powers in the future and to expand the experimental capabilities. This talk will describe the origins at NSNS, the current funding status, progress on the technical design, user community input and the intended uses, and future prospects.
Revised SNAP III Training Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Calvin Elroy; Gonzales, Samuel M.; Myers, William L.
The Shielded Neutron Assay Probe (SNAP) technique was developed to determine the leakage neutron source strength of a radioactive object. The original system consisted of an Eberline TM Mini-scaler and discrete neutron detector. The system was operated by obtaining the count rate with the Eberline TM instrument, determining the absolute efficiency from a graph, and calculating the neutron source strength by hand. In 2003 the SNAP III, shown in Figure 1, was designed and built. It required the operator to position the SNAP, and then measure the source-to-detector and detectorto- reflector distances. Next the operator entered the distance measurements andmore » started the data acquisition. The SNAP acquired the required count rate and then calculated and displayed the leakage neutron source strength (NSS). The original design of the SNAP III is described in SNAP III Training Manual (ER-TRN-PLN-0258, Rev. 0, January 2004, prepared by William Baird) This report describes some changes that have been made to the SNAP III. One important change is the addition of a LEMO connector to provide neutron detection output pulses for input to the MC-15. This feature is useful in active interrogation with a neutron generator because the MC-15 has the capability to only record data when it is not gated off by a pulse from the neutron generator. This avoids recording of a lot of data during the generator pulses that are not useful. Another change was the replacement of the infrared RS-232 serial communication output by a similar output via a 4-pin LEMO connector. The current document includes a more complete explanation of how to estimate the amount of moderation around a neutron-emitting source.« less
Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization
NASA Astrophysics Data System (ADS)
Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon
2017-07-01
This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.
NASA Astrophysics Data System (ADS)
Andreani, C.; Senesi, R.; Paccagnella, A.; Bagatin, M.; Gerardin, S.; Cazzaniga, C.; Frost, C. D.; Picozza, P.; Gorini, G.; Mancini, R.; Sarno, M.
2018-02-01
This paper presents a neutron accelerated study of soft errors in advanced electronic devices used in space missions, i.e. Flash memories performed at the ChipIr and VESUVIO beam lines at the ISIS spallation neutron source. The two neutron beam lines are set up to mimic the space environment spectra and allow neutron irradiation tests on Flash memories in the neutron energy range above 10 MeV and up to 800 MeV. The ISIS neutron energy spectrum is similar to the one occurring in the atmospheric as well as in space and planetary environments, with intensity enhancements varying in the range 108- 10 9 and 106- 10 7 respectively. Such conditions are suitable for the characterization of the atmospheric, space and planetary neutron radiation environments, and are directly applicable for accelerated tests of electronic components as demonstrated here in benchmark measurements performed on flash memories.
NASA Astrophysics Data System (ADS)
Salem, Y. O.; Nachab, A.; Roy, C.; Nourreddine, A.
2016-10-01
We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H∗(10) and Hp(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.
Manglos, Stephen H.
1989-06-06
A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.
Single-view 3D reconstruction of correlated gamma-neutron sources
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.
2017-01-05
We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less
Single-view 3D reconstruction of correlated gamma-neutron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.
We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less
NASA Astrophysics Data System (ADS)
Grimes, T. F.; Hagen, A. R.; Archambault, B. C.; Taleyarkhan, R. P.
2018-03-01
This paper describes the development of a SNM detection system for interrogating 1m3 cargos via the combination of a D-D neutron interrogation source (with and without reflectors) and tensioned metastable fluid detectors (TMFDs). TMFDs have been previously shown (Taleyarkhan et al., 2008; Grimes et al., 2015; Grimes and Taleyarkhan, 2016; Archambault et al., 2017; Hagen et al., 2016) to be capable of using Threshold Energy Neutron Analysis (TENA) techniques to reject the ∼2.45 MeV D-D interrogating neutrons while still remaining sensitive to >2.45 MeV neutrons resulting from fission in the target (HEU) material. In order to enhance the performance, a paraffin reflector was included around the accelerator head. This reflector was used to direct neutrons into the package to increase the fission signal, lower the energy of the interrogating neutrons to increase the fission cross-section with HEU, and, also to direct interrogating neutrons away from the detectors in order to enhance the required discrimination between interrogating and fission neutrons. Experiments performed with a 239 Pu-Be neutron source and MnO2 indicated that impressive performance gains could be made by placing a parabolic paraffin moderator between the interrogation source and an air-filled cargo container with HEU placed at the center. However, experiments with other cargo fillers (as specified in the well-known ANSI N42.41-2007 report), and with HEU placed in locations other than the center of the package indicated that other reflector geometries might be superior due to over-"focusing" and the increased solid angle effects due to the accommodation of the moderator geometry. The best performance for the worst case of source location and box fill was obtained by placing the reflector only behind the D-D neutron source rather than in front of it. Finally, it was shown that there could be significant gains in the ability to detect concealed SNM by operating the system in multiple geometric configurations. Worst case scenarios were created by filling the box with hydrogenous material and placing the HEU as far away as possible from the neutron source. The performance of the system in the worst-case scenarios were greatly improved by exchanging the location of the accelerator and the opposite TMFD panel half way through interrogation. Using this operation, scenarios with positions of the concealed SNM that were once the most challenging to successfully detect became readily detectable.
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of neutron interactions with Ge detectors
NASA Astrophysics Data System (ADS)
Baginova, Miloslava; Vojtyla, Pavol; Povinec, Pavel P.
2018-07-01
Interactions of neutrons with a high-purity germanium detector were studied experimentally and by simulations using the GEANT4 tool. Elastic and inelastic scattering of fast neutrons as well as neutron capture on Ge nuclei were observed. Peaks induced by inelastic scattering of neutrons on 70Ge, 72Ge, 73Ge, 74Ge and 76Ge were well visible in the γ-ray spectra. In addition, peaks due to inelastic scattering of neutrons on copper and lead nuclei, including the well-known peak of 208Pb at 2614.51 keV, were detected. The GEANT4 simulations showed that the simulated spectrum was in a good agreement with the experimental one. Differences between the simulated and the measured spectra were due to the high γ-ray intensity of the used neutron source, physics implemented in GEANT4 and contamination of the neutron source.
Grusell, E; Condé, H; Larsson, B; Rönnqvist, T; Sornsuntisook, O; Crawford, J; Reist, H; Dahl, B; Sjöstrand, N G; Russel, G
1990-01-01
Spallation is induced in a heavy material by 72-MeV protons. The resulting neutrons can be characterized by an evaporation spectrum with a peak energy of less than 2 MeV. The neutrons are moderated in two steps: first in iron and then in carbon. Results from neutron fluence measurements in a perspex phantom placed close to the moderator are presented. Monte Carlo calculations of neutron fluence in a water phantom are also presented under some chosen configurations of spallation source and moderator. The calculations and measurements are in good agreement and show that, for proton currents of less than 0.5 mA, useful thermal-neutron fluences are attainable in the depth of the brain. However, the dose contribution from the unavoidable gamma background component has not been included in the present investigation.
Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki
2009-10-01
Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be reduced by approximately 70% at any position without influencing the primary beam used in treatment. This study was performed by assuming the HIMAC beamline; however, this study provides important information for reoptimizing the arrangement and the materials of beamline devices and designing a new facility for passive carbon-ion radiotherapy and probably passive proton radiotherapy.
Study of a nTHGEM-based thermal neutron detector
NASA Astrophysics Data System (ADS)
Li, Ke; Zhou, Jian-Rong; Wang, Xiao-Dong; Xiong, Tao; Zhang, Ying; Xie, Yu-Guang; Zhou, Liang; Xu, Hong; Yang, Gui-An; Wang, Yan-Feng; Wang, Yan; Wu, Jin-Jie; Sun, Zhi-Jia; Hu, Bi-Tao
2016-07-01
With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in 3He gas supply, research on new types of neutron detector as an alternative to 3He is a research hotspot in the field of particle detection. GEM (Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic nTHGEM (neutron THick GEM) for neutron detection. The performance of the nTHGEM working in different Ar/CO2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single nTHGEM has been tested for 2-D imaging using a 252Cf neutron source. The key parameters of the performance of the nTHGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector. Supported by National Natural Science Foundation of China (11127508, 11175199, 11205253, 11405191), Key Laboratory of Neutron Physics, CAEP (2013DB06, 2013BB04) and CAS (YZ201512)
NASA Astrophysics Data System (ADS)
Watanabe, Yukinobu; Kin, Tadahiro; Araki, Shouhei; Nakayama, Shinsuke; Iwamoto, Osamu
2017-09-01
A comprehensive research program on deuteron nuclear data motivated by development of accelerator-based neutron sources is being executed. It is composed of measurements of neutron and gamma-ray yields and production cross sections, modelling of deuteron-induced reactions and code development, nuclear data evaluation and benchmark test, and its application to medical radioisotopes production. The goal of this program is to develop a state-of-the-art deuteron nuclear data library up to 200 MeV which will be useful for the design of future (d,xn) neutron sources. The current status and future plan are reviewed.
Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility
Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea; ...
2016-10-17
Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the basic acceleration mechanism, which remains an ongoing challenge.« less
Neutron imaging with the short-pulse laser driven neutron source at the TRIDENT Laser Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guler, Nevzat; Volegov, Petr Lvovich; Favalli, Andrea
Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at themore » laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ~5x10 9 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5 to 35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ~1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. Finally, these experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the basic acceleration mechanism, which remains an ongoing challenge.« less
NASA Astrophysics Data System (ADS)
Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald
2017-09-01
Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.
Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.
Shan, Qing; Chu, Shengnan; Jia, Wenbao
2015-11-01
Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gräfe, James L.
2017-09-01
Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and experimental work are required to determine the feasibility of this new technique termed Proton Neutron Gamma-X Detection (PNGXD). The initial concept of this procedure is presented in this paper as well as future research directions.
NASA Astrophysics Data System (ADS)
Tudora, Anabella; Hambsch, Franz-Josef; Tobosaru, Viorel
2017-09-01
Prompt neutron multiplicity distributions ν(A) are required for prompt emission correction of double energy (2E) measurements of fission fragments to determine pre-neutron fragment properties. The lack of experimental ν(A) data especially at incident neutron energies (En) where the multi-chance fission occurs impose the use of ν(A) predicted by models. The Point-by-Point model of prompt emission is able to provide the individual ν(A) of the compound nuclei of the main and secondary nucleus chains undergoing fission at a given En. The total ν(A) is obtained by averaging these individual ν(A) over the probabilities of fission chances (expressed as total and partial fission cross-section ratios). An indirect validation of the total ν(A) results is proposed. At high En, above 70 MeV, the PbP results of individual ν(A) of the first few nuclei of the main and secondary nucleus chains exhibit an almost linear increase. This shape is explained by the damping of shell effects entering the super-fluid expression of the level density parameters. They tend to approach the asymptotic values for most of the fragments. This fact leads to a smooth and almost linear increase of fragment excitation energy with the mass number that is reflected in a smooth and almost linear behaviour of ν(A).
Zhang, Wenyi; Fujikawa, Kazuo; Endo, Satoru; Ishikawa, Masayori; Ohtaki, Megu; Ikeda, Hideo; Hoshi, Masaharu
2003-06-01
The relative biological effectiveness (RBE) of various energy neutrons produced from a Schenkel-type accelerator at the Research Institute for Radiation Biology and Medicine, Hiroshima University (HIRRAC), compared with 60Co gamma-ray radiation was determined. The neutron radiations and gamma-ray radiation produced good linear changes in the frequency of micronuclei induced in the root-tip cells of Allium cepa onion irradiated as dry dormant seeds (seed assay) and seedlings (seedling assay) with varying radiation doses. Therefore the RBE for radiation-induced micronuclei can be calculated as the ratio of the slopes of the fitted linear dose response for the neutron radiations and the 60Co gamma-ray radiation. The RBE values by seed assay and seedling assay decreased to 174 +/- 7, from 216 +/- 9, and to 31.4 +/- 1.0, from 45.3 +/- 1.3 (one standard error), respectively, when neutron energies increased to 1.0 MeV, from 0.2 MeV, in the present study. Furthermore, the ratio of the micronucleus induction rates of seed assay to seedling assay by gamma-ray radiation was much lower than that by neutron radiations.
Advancing Materials Science using Neutrons at Oak Ridge National Laboratory
Carpenter, John
2018-02-14
Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklyn, C. B.
2011-12-13
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Liu, Y; Nie, L
2015-06-15
Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30more » ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.« less
The analysis of complex mixed-radiation fields using near real-time imaging.
Beaumont, Jonathan; Mellor, Matthew P; Joyce, Malcolm J
2014-10-01
A new mixed-field imaging system has been constructed at Lancaster University using the principles of collimation and back projection to passively locate and assess sources of neutron and gamma-ray radiation. The system was set up at the University of Manchester where three radiation sources: (252)Cf, a lead-shielded (241)Am/Be and a (22)Na source were imaged. Real-time discrimination was used to find the respective components of the neutron and gamma-ray fields detected by a single EJ-301 liquid scintillator, allowing separate images of neutron and gamma-ray emitters to be formed. (252)Cf and (22)Na were successfully observed and located in the gamma-ray image; however, the (241)Am/Be was not seen owing to surrounding lead shielding. The (252)Cf and (241)Am/Be neutron sources were seen clearly in the neutron image, demonstrating the advantage of this mixed-field technique over a gamma-ray-only image where the (241)Am/Be source would have gone undetected. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The investigation of fast neutron Threshold Activation Detectors (TAD)
NASA Astrophysics Data System (ADS)
Gozani, T.; King, M. J.; Stevenson, J.
2012-02-01
The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major constituent of available scintillators (e.g., BaF2, CaF2, hydrogen free liquid fluorocarbon). Thus the activation products of the fast prompt neutrons, in particular, the beta particles, can be measured with a very high efficiency in the detector. Other detectors and substances were investigated, such as 6Li and even common detectors such as NaI. The principles and experimental results obtained with F, NaI and 6Li based TAD are shown. The various contributing activation products are identified. The insensitivity of the fluorine based TAD to (d,D) neutrons is demonstrated. Ways and means to reduce or subtract the various neutron induced activations of NaI detector are elucidated along with its fast neutron detection capabilities. 6Li could also be a useful TAD.
SOURCE OF PRODUCTS OF NUCLEAR FISSION
Harteck, P.; Dondes, S.
1960-03-15
A source of fission product recoil energy suitable for use in radiation chemistry is reported. The source consists of thermal neutron irradiated glass wool having a diameter of 1 to 5 microns and containing an isotope fissionable by thermal neutrons, such as U/sup 235/.
Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA
2012-04-10
A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.
KINETICS OF LOW SOURCE REACTOR STARTUPS. PART II
DOE Office of Scientific and Technical Information (OSTI.GOV)
hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.
1962-06-01
A computational technique is described for computation of the probability distribution of power level for a low source reactor startup. The technique uses a mathematical model, for the time-dependent probability distribution of neutron and precursor concentration, having finite neutron lifetime, one group of delayed neutron precursors, and no spatial dependence. Results obtained by the technique are given. (auth)
NASA Astrophysics Data System (ADS)
Lavelle, Christopher M.
Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otake, M.; Schull, W.J.
The occurrence of lenticular opacities among atomic bomb survivors in Hiroshima and Nagasaki detected in 1963-1964 has been examined in reference to their ..gamma.. and neutron doses. A lenticular opacity in this context implies an ophthalmoscopic and slit lamp biomicroscopic defect in the axial posterior aspect of the lens which may or may not interfere measureably with visual acuity. Several different dose-response models were fitted to the data after the effects of age at time of bombing (ATB) were examined. Some postulate the existence of a threshold(s), others do not. All models assume a ''background'' exists, that is, that somemore » number of posterior lenticular opacities are ascribable to events other than radiation exposure. Among these alternatives we can show that a simple linear ..gamma..-neutron relationship which assumes no threshold does not fit the data adequately under the T65 dosimetry, but does fit the recent Oak Ridge and Lawrence Livermore estimates. Other models which envisage quadratic terms in gamma and which may or may not assume a threshold are compatible with the data. The ''best'' fit, that is, the one with the smallest X/sup 2/ and largest tail probability, is with a ''linear gamma:linear neutron'' model which postulates a ..gamma.. threshold but no threshold for neutrons. It should be noted that the greatest difference in the dose-response models associated with the three different sets of doses involves the neutron component, as is, of course, to be expected. No effect of neutrons on the occurrence of lenticular opacities is demonstrable with either the Lawrence Livermore or Oak Ridge estimates.« less
NEUTRON MEASURING METHOD AND APPARATUS
Seaborg, G.T.; Friedlander, G.; Gofman, J.W.
1958-07-29
A fast neutron fission detecting apparatus is described consisting of a source of fast neutrons, an ion chamber containing air, two electrodes within the ion chamber in confronting spaced relationship, a high voltage potential placed across the electrodes, a shield placed about the source, and a suitable pulse annplifier and recording system in the electrode circuit to record the impulse due to fissions in a sannple material. The sample material is coated onto the active surface of the disc electrode and shielding means of a material having high neutron capture capabilities for thermal neutrons are provided in the vicinity of the electrodes and about the ion chamber so as to absorb slow neutrons of thermal energy to effectively prevent their diffusing back to the sample and causing an error in the measurement of fast neutron fissions.
NASA Astrophysics Data System (ADS)
Hamel, M. C.; Polack, J. K.; Poitrasson-Rivière, A.; Clarke, S. D.; Pozzi, S. A.
2017-01-01
In this work we present a technique for isolating the gamma-ray and neutron energy spectra from multiple radioactive sources localized in an image. Image reconstruction algorithms for radiation scatter cameras typically focus on improving image quality. However, with scatter cameras being developed for non-proliferation applications, there is a need for not only source localization but also source identification. This work outlines a modified stochastic origin ensembles algorithm that provides localized spectra for all pixels in the image. We demonstrated the technique by performing three experiments with a dual-particle imager that measured various gamma-ray and neutron sources simultaneously. We showed that we could isolate the peaks from 22Na and 137Cs and that the energy resolution is maintained in the isolated spectra. To evaluate the spectral isolation of neutrons, a 252Cf source and a PuBe source were measured simultaneously and the reconstruction showed that the isolated PuBe spectrum had a higher average energy and a greater fraction of neutrons at higher energies than the 252Cf. Finally, spectrum isolation was used for an experiment with weapons grade plutonium, 252Cf, and AmBe. The resulting neutron and gamma-ray spectra showed the expected characteristics that could then be used to identify the sources.
An equivalent n-source for WGPu derived from a spectrum-shifted PuBe source
NASA Astrophysics Data System (ADS)
Ghita, Gabriel; Sjoden, Glenn; Baciak, James; Walker, Scotty; Cornelison, Spring
2008-04-01
We have designed, built, and laboratory-tested a unique shield design that transforms the complex neutron spectrum from PuBe source neutrons, generated at high energies, to nearly exactly the neutron signature leaking from a significant spherical mass of weapons grade plutonium (WGPu). This equivalent "X-material shield assembly" (Patent Pending) enables the harder PuBe source spectrum (average energy of 4.61 MeV) from a small encapsulated standard 1-Ci PuBe source to be transformed, through interactions in the shield, so that leakage neutrons are shifted in energy and yield to become a close reproduction of the neutron spectrum leaking from a large subcritical mass of WGPu metal (mean energy 2.11 MeV). The utility of this shielded PuBe surrogate for WGPu is clear, since it directly enables detector field testing without the expense and risk of handling large amounts of Special Nuclear Materials (SNM) as WGPu. Also, conventional sources using Cf-252, which is difficult to produce, and decays with a 2.7 year half life, could be replaced by this shielded PuBe technology in order to simplify operational use, since a sealed PuBe source relies on Pu-239 (T½=24,110 y), and remains viable for more than hundreds of years.
The continued development of the Spallation Neutron Source external antenna H- ion sourcea)
NASA Astrophysics Data System (ADS)
Welton, R. F.; Carmichael, J.; Desai, N. J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.
2010-02-01
The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H- ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to ˜100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced ˜35 mA (beam current required by the ramp up plan) with availability of ˜97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date.
Neutron Imaging Development at China Academy of Engineering Physics (CAEP)
NASA Astrophysics Data System (ADS)
Li, Hang; Wang, Sheng; Cao, Chao; Huo, Heyong; Tang, Bin
Based the China Mianyang Research Reactor (CMRR) and D-T accelerator neutron source, thermal neutron, cold neutron and fast neutron imaging facilities are all installed at China Academy of Engineering Physics (CAEP). Various samples have been imaged by different energy neutrons and shown the neutron imaging application in industry, aerospace and so on. The facilities parameters and recent neutron imaging development will be shown in this paper.
Evaluation of neutron skyshine from a cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huyashi, K.; Nakamura, T.
1984-06-01
The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with various detectors in the environment surrounding the cyclotron of the Institute for Nuclear Study, University of Tokyo. The source neutrons were produced by stopping a 52-MeV proton beam into a carbon beam stopper and were extracted upward from the opening in the concrete shield surrounding the cyclotron and then leaked into the atmosphere through the cyclotron building. The dose distribution and the spectrum of neutrons near the beam stopper were also measured in order to get information on the skyshine source. Themore » measured skyshine neutron spectra and dose distribution were analyzed with two codes, MMCR2 and SKYSHINE-II, with the result that the calculated results are in good agreement with the experiment. Valuable characteristics of this experiment are the determination of the energy spectrum and dose distribution of source neutron and the measurement of skyshine neutrons from an actual large-scale accelerator building to the exclusion of direct neutrons transported through the air. This experiment must be useful as a kind of benchmark experiment on the skyshine phenomenon.« less
Calibration of time of flight detectors using laser-driven neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.
2015-07-15
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
Calibration of time of flight detectors using laser-driven neutron source.
Mirfayzi, S R; Kar, S; Ahmed, H; Krygier, A G; Green, A; Alejo, A; Clarke, R; Freeman, R R; Fuchs, J; Jung, D; Kleinschmidt, A; Morrison, J T; Najmudin, Z; Nakamura, H; Norreys, P; Oliver, M; Roth, M; Vassura, L; Zepf, M; Borghesi, M
2015-07-01
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
Calibration of time of flight detectors using laser-driven neutron source
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.
2015-07-01
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Markus; Vogel, Sven C.; Bourke, Mark Andrew M.
A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron sourcemore » the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >10 10 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for characterization of irradiated fuels. Potential operational advantages compared to a spallation neutron source include reduced shielding complexity, reduced energy requirements, and a production target free of fission products. Contributors to this report include experts in laser-driven neutron production (Roth, Fernandez), laser design (Haefner, Siders, Leemans), laser target design (Glenzer), spallation target/moderator design (Mocko), neutron instrumentation and characterization applications (Vogel, Bourke).« less
NASA Astrophysics Data System (ADS)
Skuhersky, Michael
2013-04-01
IsoDAR (Isotope Decay-At-Rest) is a proposed high-intensity source of electron antineutrinos intended for use in searches for beyond standard model physics, the main analysis being a short baseline search for sterile neutrinos at a kiloton scale liquid scintillator detector. The source uses a compact cyclotron to deliver 600kW of protons at 60 MeV/nucleon in the form of H2^+ onto a Beryllium target which produces a large intermediate energy neutron flux. These neutrons thermalize and capture on a 99.9% pure ^7Li sleeve, which produces ^8Li at rest, which subsequently beta decays producing νe. Due to the high neutron fluxes, large duty factor, and low background environment surrounding the neutrino detector, we need to understand the activation risk and design a shield to minimize this risk allowing for the safe operation of the source. I will report on my neutron activation studies and the benchmarking of Geant4 for these applications.
Fast neutron counting in a mobile, trailer-based search platform
NASA Astrophysics Data System (ADS)
Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.
2017-12-01
Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.
Multi-Constraint Multi-Variable Optimization of Source-Driven Nuclear Systems
NASA Astrophysics Data System (ADS)
Watkins, Edward Francis
1995-01-01
A novel approach to the search for optimal designs of source-driven nuclear systems is investigated. Such systems include radiation shields, fusion reactor blankets and various neutron spectrum-shaping assemblies. The novel approach involves the replacement of the steepest-descents optimization algorithm incorporated in the code SWAN by a significantly more general and efficient sequential quadratic programming optimization algorithm provided by the code NPSOL. The resulting SWAN/NPSOL code system can be applied to more general, multi-variable, multi-constraint shield optimization problems. The constraints it accounts for may include simple bounds on variables, linear constraints, and smooth nonlinear constraints. It may also be applied to unconstrained, bound-constrained and linearly constrained optimization. The shield optimization capabilities of the SWAN/NPSOL code system is tested and verified in a variety of optimization problems: dose minimization at constant cost, cost minimization at constant dose, and multiple-nonlinear constraint optimization. The replacement of the optimization part of SWAN with NPSOL is found feasible and leads to a very substantial improvement in the complexity of optimization problems which can be efficiently handled.
Jiang, C Y; Tong, X; Brown, D R; Glavic, A; Ambaye, H; Goyette, R; Hoffmann, M; Parizzi, A A; Robertson, L; Lauter, V
2017-02-01
Modern spallation neutron sources generate high intensity neutron beams with a broad wavelength band applied to exploring new nano- and meso-scale materials from a few atomic monolayers thick to complicated prototype device-like systems with multiple buried interfaces. The availability of high performance neutron polarizers and analyzers in neutron scattering experiments is vital for understanding magnetism in systems with novel functionalities. We report the development of a new generation of the in situ polarized 3 He neutron polarization analyzer for the Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. With a new optical layout and laser system, the 3 He polarization reached and maintained 84% as compared to 76% in the first-generation system. The polarization improvement allows achieving the transmission function varying from 50% to 15% for the polarized neutron beam with the wavelength band of 2-9 Angstroms. This achievement brings a new class of experiments with optimal performance in sensitivity to very small magnetic moments in nano systems and opens up the horizon for its applications.
MTS-6 detectors calibration by using 239Pu-Be neutron source.
Wrzesień, Małgorzata; Albiniak, Łukasz; Al-Hameed, Hiba
2017-10-17
Thermoluminescent detectors, type MTS-6, containing isotope 6Li (lithium) are sensitive in the range of thermal neutron energy; the 239Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a 6Li isotope, by using 239Pu-Be neutron radiation source. In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (239Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma. The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm2/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block. The calibration coefficient for the used batch of detectors is (6.80±0.42)×10-7 Sv/impulse. Med Pr 2017;68(6):705-710. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Bioenvironmental Engineer’s Guide to Ionizing Radiation
2005-10-01
mercury x-rays 186 (4 % ) - y Ra -226 radon x-rays Luminous Products, Neutron (tl/2: 1600 y) Alpha photons from daughters: Sources (w/ Be ) Rn-222, Po...Radioisotope Thermoelectric (t1,2: 88 y) Generators Pu-239 Alpha uranium x-rays Nuclear Weapons, Neutron (t1 /2: 2.4 x 104 y) Sources (w/ Be ...Calibration Am-241 .60 (36 %) - Static Eliminators, Chemical (h2: 432 y) Alpha n Agent Detectors, Neutron neptunium x-rays Sources (w/ Be ) 11 October 2005
The ionizing radiation environment of LDEF prerecovery predictions
NASA Technical Reports Server (NTRS)
Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang
1991-01-01
The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.
Towards high-resolution neutron imaging on IMAT
NASA Astrophysics Data System (ADS)
Minniti, T.; Tremsin, A. S.; Vitucci, G.; Kockelmann, W.
2018-01-01
IMAT is a new cold-neutron imaging facility at the neutron spallation source ISIS at the Rutherford Appleton Laboratory, U.K.. The ISIS pulsed source enables energy-selective and energy-resolved neutron imaging via time-of-flight (TOF) techniques, which are available in addition to the white-beam neutron radiography and tomography options. A spatial resolution of about 50 μm for white-beam neutron radiography was achieved early in the IMAT commissioning phase. In this work we have made the first steps towards achieving higher spatial resolution. A white-beam radiography with 18 μm spatial resolution was achieved in this experiment. This result was possible by using the event counting neutron pixel detector based on micro-channel plates (MCP) coupled with a Timepix readout chip with 55 μm sized pixels, and by employing an event centroiding technique. The prospects for energy-selective neutron radiography for this centroiding mode are discussed.
Senftle, F.E.; Macy, R.J.; Mikesell, J.L.
1979-01-01
The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.
Study of different solutes for determination of neutron source strength based on the water bath
NASA Astrophysics Data System (ADS)
Khabaz, Rahim
2018-09-01
Time required for activation to saturation and background measurement is considered a limitation of strength determination of radionuclide neutron sources using manganese bath system (MBS). The objective of this research was to evaluate the other solutes based on water bath for presentation of the suitable replacement with MBS. With the aid Monte Carlo simulation, for three neutron sources, having different neutron spectra, immersed in six aqueous solutions, i.e., Na2SO4, VOSO4, MnSO4, Rh2(SO4)3, In2(SO4)3, I2O5, the correction factors in all nuclei of solutions for neutron losses with different process were obtained. The calculations results indicate that the Rh2(SO4)3 and VOSO4 are best options for replacing with MnSO4.
Concept of DT fuel cycle for a fusion neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.
2015-03-15
A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of thismore » device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)« less
Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source
NASA Astrophysics Data System (ADS)
McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart
2016-08-01
Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Reyna, David
In this work we investigate a method that confirms the operability of neutron detectors requiring neither radiological sources nor radiation-generating devices. This is desirable when radiological sources are not available, but confidence in the functionality of the instrument is required. The “source”, based on the production of neutrons in high-Z materials by muons, provides a tagged, low-background and consistent rate of neutrons that can be used to check the functionality of or calibrate a detector. Using a Monte Carlo guided optimization, an experimental apparatus was designed and built to evaluate the feasibility of this technique. Through a series of trialmore » measurements in a variety of locations we show that gated muon-induced neutrons appear to provide a consistent source of neutrons (35.9 ± 2.3 measured neutrons/10,000 muons in the instrument) under normal environmental variability (less than one statistical standard deviation for 10,000 muons) with a combined environmental + statistical uncertainty of ~18% for 10,000 muons. This is achieved in a single 21-22 minute measurement at sea level.« less
NASA Astrophysics Data System (ADS)
Fomin, A. K.; Serebrov, A. P.; Zherebtsov, O. M.; Leonova, E. N.; Chaikovskii, M. E.
2017-01-01
We propose an experiment on search for neutron-antineutron oscillations based on the storage of ultracold neutrons (UCN) in a material trap. The sensitivity of the experiment mostly depends on the trap size and the amount of UCN in it. In Petersburg Nuclear Physics Institute (PNPI) a high-intensity UCN source is projected at the WWR-M reactor, which must provide UCN density 2-3 orders of magnitude higher than existing sources. The results of simulations of the designed experimental scheme show that the sensitivity can be increased by ˜ 10-40 times compared to sensitivity of previous experiment depending on the model of neutron reflection from walls.
Neutron crosstalk between liquid scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.
2015-05-01
We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less
Volegov, P. L.; Danly, C. R.; Merrill, F. E.; ...
2015-11-24
The neutron imaging system at the National Ignition Facility is an important diagnostic tool for measuring the two-dimensional size and shape of the source of neutrons produced in the burning deuterium-tritium plasma during the stagnation phase of inertial confinement fusion implosions. Few two-dimensional projections of neutronimages are available to reconstruct the three-dimensionalneutron source. In our paper, we present a technique that has been developed for the 3Dreconstruction of neutron and x-raysources from a minimal number of 2D projections. Here, we present the detailed algorithms used for this characterization and the results of reconstructedsources from experimental data collected at Omega.
Neutron reflecting supermirror structure
Wood, J.L.
1992-12-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.
Neutron reflecting supermirror structure
Wood, James L.
1992-01-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.
Neutron spectroscopy with scintillation detectors using wavelets
NASA Astrophysics Data System (ADS)
Hartman, Jessica
The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the effects of photons and allow for source characterization based solely on the neutron response. The unfolding technique was performed through polynomial fitting and optimization techniques in MATLAB, and provided an energy spectrum for the PuBe source.
Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma
NASA Technical Reports Server (NTRS)
Reinmann, J. J.; Layman, R. W.
1977-01-01
Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.
Photonuclear Contributions to SNS Pulse Shapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker C.; Iverson, Erik B.; Gallmeier, Franz X.
Short-pulsed sources like the Spallation Neutron Source (SNS) and ISIS produce bursts of neutron pulses at rates of 10-60 Hz, with sub-microsecond proton pulses impacting on high-Z target materials. Moderators are grouped around the target to receive the fast neutrons generated from spallation reactions to moderate them effciently to thermal and sub-thermal energies and to feed narrow neutron pulses to neutron scattering instruments. The scattering instruments use the neutrons as a probe for material investigations, and make use of time-of-flight (TOF) methods for resolving the neutron energy. The energy resolution of scattering instruments depends on the narrow time-structure of themore » neutron pulses, while neutrons in the long tail of the emission time distributions can degrade the instrument performance and add undesired background to measurements. The SNS neutronics team is investigating a possible source term impacting the background at short-pulsed spallation sources. The ISIS TS2 project claims to have significantly reduced neutron scattering instrument background levels by the elimination or reduction of iron shielding in the target-moderator-reflector assembly. An alternative hypothesis, also proposed by ISIS, suggests that this apparent reduction arises from moving beamline shielding away from the neutron guide channels, reducing albedo down the beamlines. In both hypotheses, the background neutrons in question are believed to be generated by photonuclear reactions. If the background neutrons are indeed generated via photonuclear channels, then they are generated in a time-dependent fashion, since most of the high-energy photons capable of inducing photonuclear production are gone within a few microseconds following the proton pulse. To evaluate this e ect, we have enabled photonuclear reactions in a series of studies for the SNS first target station (FTS) taking advantage of its Monte Carlo model. Using a mixture of ENDF/B VII.0 and TENDL-2014 photonuclear cross sections available and the CEM03 physics model within MCNPX 2.6.0 in the simulation, we are able to estimate the impact of photoneutron production on both overall neutron production and delayed neutron production. We find that a significant number of photon-induced neutrons are produced a few milliseconds after the proton pulse, following prompt gamma emission through the capture of neutrons in the slowing-down and thermalization processes. We name these "slowing-down delayed neutrons" to distinguish them from either "activation-delayed neutrons" or "beta-delayed neutrons." The beta-delayed and activation-delayed neutrons were not part of this study, and will be addressed elsewhere. While these other delayed neutron channels result in the time-independent (constant) production of fast neutrons outside of the prompt pulse, the slowing-down delayed neutrons also a ect the shape of the pulses. Although numerically insignificant in most cases, we describe a set of scenarios related to T0-chopper operation in which the slowing-down delayed neutrons may be important.« less
Hashimoto, Y; Hiraga, F; Kiyanagi, Y
2015-12-01
We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
3D imaging of neutron tracks using confocal microscopy
NASA Astrophysics Data System (ADS)
Gillmore, Gavin; Wertheim, David; Flowers, Alan
2016-04-01
Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4 and 10 microns. Thus this study suggests that, using confocal microscopy, 3D imaging of neutron tracks in SSNTDs is feasible. (1) Wertheim D, Gillmore G, Brown L, Petford N. A new method of imaging particle tracks in solid state nuclear track detectors. J Microsc. 2010; 237: 1-6.
A 23-GROUP NEUTRON THERMALIZATION CROSS SECTION LIBRARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doctor, R.D.; Boling, M.A.
1963-07-15
A set of 23-group neutron cross sections for use in the calculation of neutron thermalization and thermal neutron spectral effects in SNAP reactors is compiled. The sources and methods used to obtain the cross sections are described. (auth)
Energy & mass-charge distribution peculiarities of ion emitted from penning source
NASA Astrophysics Data System (ADS)
Mamedov, N. V.; Kolodko, D. V.; Sorokin, I. A.; Kanshin, I. A.; Sinelnikov, D. N.
2017-05-01
The optimization of hydrogen Penning sources used, in particular, in plasma chemical processing of materials and DLC deposition, is still very important. Investigations of mass-charge composition of these ion source emitted beams are particular relevant for miniature linear accelerators (neutron flux generators) nowadays. The Penning ion source energy and mass-charge ion distributions are presented. The relation between the discharge current abrupt jumps with increasing plasma density in the discharge center and increasing potential whipping (up to 50% of the anode voltage) is shown. Also the energy spectra in the discharge different modes as the pressure and anode potential functions are presented. It has been revealed that the atomic hydrogen ion concentration is about 5-10%, and it weakly depends on the pressure and the discharge current (in the investigated range from 1 to 10 mTorr and from 50 to 1000 μA) and increases with the anode voltage (up 1 to 3,5 kV).
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian; Behling, Spencer; Baldez, Phoenix
Here, the feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved amore » 36% neutron detection efficiency (ϵϵ) and an View the MathML source11.7μs neutron die-away time (ττ) for a doubles figure-of-merit (ϵ 2/τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.« less
The high-resolution time-of-flight spectrometer TOFTOF
NASA Astrophysics Data System (ADS)
Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried
2007-10-01
The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
Cowles, Christian; Behling, Spencer; Baldez, Phoenix; ...
2018-01-12
Here, the feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved amore » 36% neutron detection efficiency (ϵϵ) and an View the MathML source11.7μs neutron die-away time (ττ) for a doubles figure-of-merit (ϵ 2/τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.« less
NASA Astrophysics Data System (ADS)
Arimoto, Y.; Higashi, N.; Igarashi, Y.; Iwashita, Y.; Ino, T.; Katayama, R.; Kitaguchi, M.; Kitahara, R.; Matsumura, H.; Mishima, K.; Nagakura, N.; Oide, H.; Otono, H.; Sakakibara, R.; Shima, T.; Shimizu, H. M.; Sugino, T.; Sumi, N.; Sumino, H.; Taketani, K.; Tanaka, G.; Tanaka, M.; Tauchi, K.; Toyoda, A.; Tomita, T.; Yamada, T.; Yamashita, S.; Yokoyama, H.; Yoshioka, T.
2015-11-01
A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with 6Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.
DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY
Dessauer, G.
1960-05-10
A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.
Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel
2013-02-12
A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A.
In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons.more » The results suggested that the concept of a multi-stage detection system will work in practice.« less
Generation of nanosecond neutron pulses in vacuum accelerating tubes
NASA Astrophysics Data System (ADS)
Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.
2014-06-01
The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.
New developments in the McStas neutron instrument simulation package
NASA Astrophysics Data System (ADS)
Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.
2014-07-01
The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.
New production systems at ISOLDE
NASA Astrophysics Data System (ADS)
Hagebø, E.; Hoff, P.; Jonsson, O. C.; Kugler, E.; Omtvedt, J. P.; Ravn, H. L.; Steffensen, K.
1992-08-01
New target systems for the ISOLDE on-line mass separator facility are presented. Targets of carbides, metal/graphite mixtures, foils of refractory metals, molten metals and oxides have been tested. Beams of high intensity of neutron-rich isotopes of a large number of elements are obtained from a uranium carbide target with a hot plasma-discharge ion source. A target of ZrO 2 has been shown to provide high intensity beams of neutron-deficient isotopes of Mn, Cu, Zn, Ga, Ge, As, Se, Br, Kr and Rb, while a SiC target with a hot plasma ion source gives intense beams of radioactive isotopes of a number of light elements. All these systems are rather chemically unselective. Chemically selective performance has been obtained for several systems, i.e.: the production of neutron-deficient Au from ( 3He, pχn) reactions on a Pt/graphite target with a hot plasma ion source; the production of neutron-deficient Lu and LuF + and Hf and HfF 3+ from a Ta-foil target with a hot plasma ion source under CF 4 addition; the production of neutron-deficient Sr as SrF + and Y as YF 2+ form a Nb-foil target with a W surface ionizer under CF 4 addition; the production of neutron-deficient Se as COSe + from a ZrO 2 target with a hot plasma ion source under O 2 addition; and the production of radioactive F from a SiC target with a hot plasma ion source operating in Al vapour.
Optimizing moderation of He-3 neutron detectors for shielded fission sources
Rees, Lawrence B.; Czirr, J. Bart
2012-07-10
Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.
2013-08-01
Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.
Fast neutron imaging device and method
Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.
2014-02-11
A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Alexis Chanel
The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.
Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE
Borges, Nicholas; Losko, Adrian; Vogel, Sven
2018-02-13
The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less
Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Nicholas; Losko, Adrian; Vogel, Sven
The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI) with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. In this work, we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolvedmore » neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.« less
Marchese, N; Cannuli, A; Caccamo, M T; Pace, C
2017-01-01
Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.
Skyshine at neutron energies less than or equal to 400 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsmiller, A.G. Jr.; Barish, J.; Childs, R.L.
1980-10-01
The dose equivalent at an air-ground interface as a function of distance from an assumed azimuthally symmetric point source of neutrons can be calculated as a double integral. The integration is over the source strength as a function of energy and polar angle weighted by an importance function that depends on the source variables and on the distance from the source to the filed point. The neutron importance function for a source 15 m above the ground emitting only into the upper hemisphere has been calculated using the two-dimensional discrete ordinates code, DOT, and the first collision source code, GRTUNCL,more » in the adjoint mode. This importance function is presented for neutron energies less than or equal to 400 MeV, for source cosine intervals of 1 to .8, .8 to .6 to .4, .4 to .2 and .2 to 0, and for various distances from the source to the field point. As part of the adjoint calculations a photon importance function is also obtained. This importance function for photon energies less than or equal to 14 MEV and for various source cosine intervals and source-to-field point distances is also presented. These importance functions may be used to obtain skyshine dose equivalent estimates for any known source energy-angle distribution.« less
NASA Astrophysics Data System (ADS)
Musgrave, M. M.; Baeßler, S.; Balascuta, S.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Chupp, T. E.; Cianciolo, V.; Crawford, C.; Craycraft, K.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Grammer, K.; Greene, G. L.; Hamblen, J.; Hayes, C.; Huffman, P.; Jiang, C.; Kucuker, S.; McCrea, M.; Mueller, P. E.; Penttilä, S. I.; Snow, W. M.; Tang, E.; Tang, Z.; Tong, X.; Wilburn, W. S.
2018-07-01
Accurately measuring the neutron beam polarization of a high flux, large area neutron beam is necessary for many neutron physics experiments. The Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source (SNS) is a pulsed neutron beam that was polarized with a supermirror polarizer for the NPDGamma experiment. The polarized neutron beam had a flux of ∼ 109 neutrons per second per cm2 and a cross sectional area of 10 × 12 cm2. The polarization of this neutron beam and the efficiency of a RF neutron spin rotator installed downstream on this beam were measured by neutron transmission through a polarized 3He neutron spin-filter. The pulsed nature of the SNS enabled us to employ an absolute measurement technique for both quantities which does not depend on accurate knowledge of the phase space of the neutron beam or the 3He polarization in the spin filter and is therefore of interest for any experiments on slow neutron beams from pulsed neutron sources which require knowledge of the absolute value of the neutron polarization. The polarization and spin-reversal efficiency measured in this work were done for the NPDGamma experiment, which measures the parity violating γ-ray angular distribution asymmetry with respect to the neutron spin direction in the capture of polarized neutrons on protons. The experimental technique, results, systematic effects, and applications to neutron capture targets are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki
Purpose: Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy weremore » identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. Methods: A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. Results: It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be reduced by approximately 70% at any position without influencing the primary beam used in treatment. Conclusions: This study was performed by assuming the HIMAC beamline; however, this study provides important information for reoptimizing the arrangement and the materials of beamline devices and designing a new facility for passive carbon-ion radiotherapy and probably passive proton radiotherapy.« less
IEC-Based Neutron Generator for Security Inspection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Linchun; Miley, George H.
2002-07-01
Large nuclear reactors are widely employed for electricity power generation, but small nuclear radiation sources can also be used for a variety of industrial/government applications. In this paper we will discuss the use of a small neutron source based on Inertial Electrostatic Confinement (IEC) of accelerated deuterium ions. There is an urgent need of highly effective detection systems for explosives, especially in airports. While current airport inspection systems are strongly based on X-ray technique, neutron activation including Thermal Neutron Analysis (TNA) and Fast Neutron Analysis (FNA) is powerful in detecting certain types of explosives in luggage and in cargoes. Basicmore » elements present in the explosives can be measured through the (n, n'?) reaction initiated by fast neutrons. Combined with a time-of-flight technique, a complete imaging of key elements, hence of the explosive materials, is obtained. Among the various neutron source generators, the IEC is an ideal candidate to meet the neutron activation analysis requirements. Compared with other accelerators and radioisotopes such as {sup 252}Cf, the IEC is simpler, can be switched on or off, and can reliably produce neutrons with minimum maintenance. Theoretical and experimental studies of a spherical IEC have been conducted at the University of Illinois. In a spherical IEC device, 2.54-MeV neutrons of {approx}10{sup 8} n/s via DD reactions over recent years or 14-MeV neutrons of {approx}2x10{sup 10} n/s via DT reactions can be obtained using an ion gun injection technique. The possibility of the cylindrical IEC in pulsed operation mode combining with pulsed FNA method would also be discussed. In this paper we examine the possibility of using an alternative cylindrical IEC configuration. Such a device was studied earlier at the University of Illinois and it provides a very convenient geometry for security inspection. However, to calculate the neutron yield precisely with this configuration, an understanding of the potential wall trapping and acceleration of ions is needed. The theory engaged is an extension of original analytic study by R.L. Hirsh on the potential well structure in a spherical IEC device, i.e. roughly a 'line' source of neutrons from a cylindrical IEC is a 'point' source from the spherical geometry. Thus our present study focuses on the cylindrical IEC for its convenient application in an FNA detecting system. The conceptual design and physics of ion trapping and re-circulation in a cylindrical IEC intended for neutron-based inspection system will be presented. (authors)« less
Real-time neutron imaging of gas turbines
NASA Astrophysics Data System (ADS)
Stewart, P. A. E.
1987-06-01
The current status of real-time neutron radiography imaging is briefly reviewed, and results of tests carried out on cold neutron sources are reported. In particular, attention is given to demonstrations of neutron radiography on a running gas turbine engine. The future role of real-time neutron imaging in engineering diagnostics is briefly discussed.
The neutron imaging diagnostic at NIF (invited).
Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C
2012-10-01
A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.
Analysis of neutron propagation from the skyshine port of a fusion neutron source facility
NASA Astrophysics Data System (ADS)
Wakisaka, M.; Kaneko, J.; Fujita, F.; Ochiai, K.; Nishitani, T.; Yoshida, S.; Sawamura, T.
2005-12-01
The process of neutron leaking from a 14 MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a 3He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The 3He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within ˜30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{exp(-r/λD)}/{r} and the parameters Q and λD are discussed.
Research opportunities with compact accelerator-driven neutron sources
NASA Astrophysics Data System (ADS)
Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.
2016-10-01
Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.
Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H
2012-10-01
Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.
ANALYSIS OF THE MOMENTS METHOD EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloster, R.L.
1959-09-01
Monte Cario calculations show the effects of a plane water-air boundary on both fast neutron and gamma dose rates. Multigroup diffusion theory calculation for a reactor source shows the effects of a plane water-air boundary on thermal neutron dose rate. The results of Monte Cario and multigroup calculations are compared with experimental values. The predicted boundary effect for fast neutrons of 7.3% agrees within 16% with the measured effect of 6.3%. The gamma detector did not measure a boundary effect because it lacked sensitivity at low energies. However, the effect predicted for gamma rays of 5 to 10% is asmore » large as that for neutrons. An estimate of the boundary effect for thermal neutrons from a PoBe source is obtained from the results of muitigroup diffusion theory calcuiations for a reactor source. The calculated boundary effect agrees within 13% with the measured values. (auth)« less
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...
2018-02-21
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun
2018-03-01
The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.
Active interrogation using low-energy nuclear reactions
NASA Astrophysics Data System (ADS)
Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula
2005-09-01
High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.
The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.
Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less
Neutron skyshine from intense 14-MeV neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T.; Hayashi, K.; Takahashi, A.
1985-07-01
The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with the high-efficiency rem counter, the multisphere spectrometer, and the NE-213 scintillator in the environment surrounding an intense 14-MeV neutron source facility. The dose distribution and the energy spectra of neutrons around the facility used as a skyshine source have also been measured to enable the absolute evaluation of the skyshine effect. The skyshine effect was analyzed by two multigroup Monte Carlo codes, NIMSAC and MMCR-2, by two discrete ordinates S /sub n/ codes, ANISN and DOT3.5, and by the shield structure designmore » code for skyshine, SKYSHINE-II. The calculated results show good agreement with the measured results in absolute values. These experimental results should be useful as benchmark data for shyshine analysis and for shielding design of fusion facilities.« less
A Fast Pulse, High Intensity Neutron Source Based Upon The Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bures, B.; Madden, R.; Blobner, F.; Elliott, K. Wilson
2009-12-01
Alameda Applied Sciences Corporation (AASC) has built a bench-top source of fast neutrons (˜10-30 ns, 2.45 MeV), that is portable and can be scaled to operate at ˜100 Hz. The source is a Dense Plasma Focus driven by three different capacitor banks: a 40 J/30 kA/100 Hz driver; a 500 J/130 kA/2 Hz driver and a 3 kJ/350 kA/0.5 Hz driver. At currents of ˜130 kA, this source produces ˜1×107 (DD) n/pulse. The neutron pulse widths are ˜10-30 ns and may be controlled by adjusting the DPF electrode geometry and operating parameters. This paper describes the scaling of the fast neutron output with current from such a Dense Plasma Focus source. For each current and driver, different DPF head designs are required to match to the current rise-time, as the operating pressure and anode radius/shape are varied. Doping of the pure D2 gas fill with Ar or Kr was shown earlier to increase the neutron output. Results are discussed in the light of scaling laws suggested by prior literature.
Developments in neutron beam devices and an advanced cold source for the NIST research reactor
NASA Astrophysics Data System (ADS)
Williams, Robert E.; Rowe, J. Michael
2002-01-01
The last 5 yr has been a period of steady growth in instrument capabilities and utilization at the National Institute of Standards and Technology Center for Neutron Research. Since the installation of the liquid hydrogen cold source in 1995, all of the instruments originally planned for the Cold Neutron Research Facility have been completed and made available to users, and three new thermal neutron instruments have been installed. Currently, an advanced cold source is being fabricated that will better couple the reactor core and the existing network of neutron guides. Many improvements are also being made in neutron optics to enhance the beam characteristics of certain instruments. For example, optical filters will be installed that will increase the fluxes at the two 30-m SANS instruments by as much as two. Sets of MgF 2 biconcave lenses have been developed for SANS that have demonstrated a significant improvement in resolution over conventional pinhole collimation. The recently commissioned high-flux backscattering spectrometer incorporates a converging guide, a large spherically focusing monochromator and analyzer, and a novel phase space transform chopper, to achieve very high intensity while maintaining excellent energy resolution. Finally, a prototype low background, doubly focusing neutron monochromator is nearing completion that will be the heart of a new cold neutron spectrometer, as well as two new thermal neutron triple axis spectrometers.
Neutron sources for investigations on extracted beams in Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenov, V. L.
An overview is presented of the current status and prospects for the development of neutron sources intended for investigations on extracted beams in Russia. The participation of Russia in international scientific organizations is demonstrated.
Perforated semiconductor neutron detectors for battery operated portable modules
NASA Astrophysics Data System (ADS)
McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy
2007-09-01
Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.
Goddard, Braden; Croft, Stephen; Lousteau, Angela; ...
2016-05-25
Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with ( α,n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured spectra ofmore » various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. Finally, the singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis.« less
Characterization of the graphite pile as a source of thermal neutrons
NASA Astrophysics Data System (ADS)
Vykydal, Zdenek; Králík, Miloslav; Jančář, Aleš; Kopecký, Zdeněk; Dressler, Jan; Veškrna, Martin
2015-11-01
A new graphite pile designed to serve as a standard source of thermal neutrons has been built at the Czech Metrology Institute. Actual dimensions of the pile are 1.95 m (W)×1.95 m (L)×2.0 m (H). At its center, there is a measurement channel whose dimensions are 0.4 m×0.4 m×1.25 m (depth). The channel is equipped with a calibration bench, which allows reproducible placement of the tested/calibrated device. At a distance of 80 cm from the channel axis, six holes are symmetrically located allowing the placement of radionuclide neutron sources of Pu-Be and/or Am-Be type. Spatial distribution of thermal neutron fluence in the cavity was calculated in detail with the MCNP neutron transport code. Experimentally, it was measured with two active detectors: a small 3He proportional detector by the French company LMT, type 0.5 NH 1/1 KF, and a silicon pixel detector Timepix with 10B converter foil. The relative values of thermal neutron fluence rate obtained with active detectors were converted to absolute ones using thermal neutron fluence rates measured by means of gold foil activation. The quality of thermal neutron field was characterized by the cadmium ratio.
Thekkedath, Siji Cyriac; Raman, R Ganapathi; Musthafa, M M; Bakshi, A K; Pal, Rupali; Dawn, Sandipan; Kummali, Abdul Haneefa; Huilgol, Nagraj G; Selvam, T Palani; Datta, D
2016-01-01
The photo-neutron dose equivalents of 15 MV Elekta precise accelerators were measured for different depths in phantom, for various field sizes, at different distances from the isocenter in the patient plane and for various wedged fields. Fast and thermal neutrons are measured using passive detectors such as Columbia Resin-39 and pair of thermoluminescent dosimetry (TLD) 600 and TLD 700 detector from Elekta medical linear accelerator. It is found that fast photo-neutron dose rate decreases as the depth increases, with a maximum of 0.57 ± 0.08 mSv/Gy photon dose at surface and minimum of 0.09 ± 0.02 mSv/Gy photon dose at 15 cm depth of water equivalent phantom with 10 cm backscatter. Photo neutrons decreases from 1.28 ± 0.03 mSv/Gy to 0.063 ± 0.032 when measured at isocenter and at 100 cm far from the field edge along the longitudinal direction in the patient plane. Fast and thermal neutron doses increases from 0.65 ± 0.05 mSv/Gy to 1.08 ± 0.07 mSv/Gy as the field size increases; from 5 cm × 5 cm to 30 cm × 30 cm for fast neutrons. With increase in wedge field angle from 0° to 60°, it is observed that the fast neutron dose increases from 0.42 ± 0.03 mSv/Gy to 0.95 ± 0.05 mSv/Gy.s Measurements indicate the photo-neutrons at few field sizes are slightly higher than the International Electrotechnical Commission standard specifications. Photo-neutrons from Omni wedged fields are studied in details. These studies of the photo-neutron energy response will enlighten the neutron dose to radiation therapy patients and are expected to further improve radiation protection guidelines.
Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre
2016-09-01
To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.
Moderator design studies for a new neutron reference source based on the D-T fusion reaction
NASA Astrophysics Data System (ADS)
Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.
2016-06-01
The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.
Nodal weighting factor method for ex-core fast neutron fluence evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, R. T.
The nodal weighting factor method is developed for evaluating ex-core fast neutron flux in a nuclear reactor by utilizing adjoint neutron flux, a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV, the unit fission source, and relative assembly nodal powers. The method determines each nodal weighting factor for ex-core neutron fast flux evaluation by solving the steady-state adjoint neutron transport equation with a fictitious unit detector cross section for neutron energy above 1 or 0.1 MeV as the adjoint source, by integrating the unit fission source with a typical fission spectrum to the solved adjointmore » flux over all energies, all angles and given nodal volume, and by dividing it with the sum of all nodal weighting factors, which is a normalization factor. Then, the fast neutron flux can be obtained by summing the various relative nodal powers times the corresponding nodal weighting factors of the adjacent significantly contributed peripheral assembly nodes and times a proper fast neutron attenuation coefficient over an operating period. A generic set of nodal weighting factors can be used to evaluate neutron fluence at the same location for similar core design and fuel cycles, but the set of nodal weighting factors needs to be re-calibrated for a transition-fuel-cycle. This newly developed nodal weighting factor method should be a useful and simplified tool for evaluating fast neutron fluence at selected locations of interest in ex-core components of contemporary nuclear power reactors. (authors)« less
Solutions of Boltzmann`s Equation for Mono-energetic Neutrons in an Infinite Homogeneous Medium
DOE R&D Accomplishments Database
Wigner, E. P.
1943-11-30
Boltzman's equation is solved for the case of monoenergetic neutrons created by a plane or point source in an infinite medium which has spherically symmetric scattering. The customary solution of the diffusion equation appears to be multiplied by a constant factor which is smaller than 1. In addition to this term the total neutron density contains another term which is important in the neighborhood of the source. It varies as 1/r{sup 2} in the neighborhood of a point source. (auth)
Neutron Science TeraGrid Gateway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Vickie E; Chen, Meili; Cobb, John W
The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNSmore » will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.« less
NASA Astrophysics Data System (ADS)
Bushuev, A. V.; Kozhin, A. F.; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E.
2016-12-01
An active neutron method for measuring the residual mass of 235U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual 235U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of 238U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.
Development and Characterization of a High Sensitivity Segmented Fast Neutron Spectrometer (FaNS-2)
Langford, T.J.; Beise, E.J.; Breuer, H.; Heimbach, C.R.; Ji, G.; Nico, J.S.
2016-01-01
We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and 3He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a 3He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earth's surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated 252Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2. PMID:27226807
NASA Astrophysics Data System (ADS)
Mazrou, H.; Bezoubiri, F.
2018-07-01
In this work, a new program developed under MATLAB environment and supported by the Bayesian software WinBUGS has been combined to the traditional unfolding codes namely MAXED and GRAVEL, to evaluate a neutron spectrum from the Bonner spheres measured counts obtained around a shielded 241AmBe based-neutron irradiator located at a Secondary Standards Dosimetry Laboratory (SSDL) at CRNA. In the first step, the results obtained by the standalone Bayesian program, using a parametric neutron spectrum model based on a linear superposition of three components namely: a thermal-Maxwellian distribution, an epithermal (1/E behavior) and a kind of a Watt fission and Evaporation models to represent the fast component, were compared to those issued from MAXED and GRAVEL assuming a Monte Carlo default spectrum. Through the selection of new upper limits for some free parameters, taking into account the physical characteristics of the irradiation source, of both considered models, good agreement was obtained for investigated integral quantities i.e. fluence rate and ambient dose equivalent rate compared to MAXED and GRAVEL results. The difference was generally below 4% for investigated parameters suggesting, thereby, the reliability of the proposed models. In the second step, the Bayesian results obtained from the previous calculations were used, as initial guess spectra, for the traditional unfolding codes, MAXED and GRAVEL to derive the solution spectra. Here again the results were in very good agreement, confirming the stability of the Bayesian solution.
An Update on 3He Correlation Function Research for the SNS nEDM collaboration
NASA Astrophysics Data System (ADS)
Reid, Austin; Golub, Robert; Dipert, Robert
2016-09-01
In the 65 years since Ramsey's null result for the neutron's permanent electric dipole moment (nEDM), techniques have become increasingly sensitive, establishing the present upper limit of 3 ×10-26 e .cm . This value was limited by an unexpected source of error: a freqency shift with linear dependence on the electric field colloquially called a false EDM. The next generation nEDM sensing apparatus being developed for the Spallation Neutron Source at Oak Ridge National Laboratory uses a 3He comagenetometer in a pure helium-II bath. The false EDM in 3He may be related to the 3He's position autocorrelation function, which in turn is accessible by a detailed study of T1 decay in hyperpolarized 3He. Existing measurements of this system were limited by temperature, noise, and 3He concentration. Dramatic improvements have been made on all three fronts by improving the thermal connection between the measurment cell and the dilution refrigerator, by adding additional shielding and a SQUID package, and by developing a MEOP 3He polarization system. Data collection is underway. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-97ER41042.
a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-05-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staples, P.A.; Egan, J.J.; Kegel, G.H.R.
1994-06-01
Prompt fission neutron spectrum measurements at the University of Massachusetts Lowell 5.5 MV Van de Graaff accelerator laboratory require that the neutron detector efficiency be well known over a neutron energy range of 100 keV to 20 MeV. The efficiency of the detector, has been determined for energies greater than 5.0 MeV using the Weapons Neutron Research (WNR) white neutron source at the Los Alamos Meson Physics Facility (LAMPF) in a pulsed beam, time-of-flight (TOF) experiment. Carbon matched polyethylene and graphite scatterers were used to obtain a hydrogen spectrum. The detector efficiency was determined using the well known H(n,n) scatteringmore » cross section. Results are compared to the detector efficiency calculation program SCINFUL available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.« less
An airport cargo inspection system based on X-ray and thermal neutron analysis (TNA).
Ipe, Nisy E; Akery, A; Ryge, P; Brown, D; Liu, F; Thieu, J; James, B
2005-01-01
A cargo inspection system incorporating a high-resolution X-ray imaging system with a material-specific detection system based on Ancore Corporation's patented thermal neutron analysis (TNA) technology can detect bulk quantities of explosives and drugs concealed in trucks or cargo containers. The TNA process utilises a 252Cf neutron source surrounded by a moderator. The neutron interactions with the inspected object result in strong and unique gamma-ray signals from nitrogen, which is a key ingredient in modern high explosives, and from chlorinated drugs. The TNA computer analyses the gamma-ray signals and automatically determines the presence of explosives or drugs. The radiation source terms and shielding design of the facility are described. For the X-ray generator, the primary beam, leakage radiation, and scattered primary and leakage radiation were considered. For the TNA, the primary neutrons and tunnel scattered neutrons as well as the neutron-capture gamma rays were considered.
Characterization of the Shielded Neutron Source at Triangle Universities Nuclear Laboratory
NASA Astrophysics Data System (ADS)
Hobson, Chad; Finch, Sean; Howell, Calvin; Malone, Ron; Tornow, Wernew
2016-09-01
In 2015, Triangle Universities Nuclear Laboratory rebuilt its shielded neutron source (SNS) with the goal of improving neutron beam collimation and reducing neutron and gamma-ray backgrounds. Neutrons are produced via the 2H(d,n)3He reaction and then collimated by heavy shielding to form a beam. The SNS has the ability to produce both a rectangular and circular neutron beam through use of two collimators with different beam apertures. Our work characterized both the neutron beam profiles as well as the neutron and gamma-ray backgrounds at various locations around the SNS. This characterization was performed to provide researchers who use the SNS with beam parameters necessary to plan and conduct an experiment. Vertical and horizontal beam profiles were measured at two different distances from the neutron production cell by scanning a small plastic scintillator across the face of the beam at various energies for each collimator. Background neutron and gamma-ray intensities were measured using time-of-flight techniques at 10 MeV and 16 MeV with the rectangular collimator. We present results on the position and size of neutron beam as well as on the structure and magnitude of the backgrounds.
Neutron detection using a water Cherenkov detector with pure water and a single PMT
NASA Astrophysics Data System (ADS)
Sidelnik, Iván; Asorey, Hernán; Blostein, Juan Jerónimo; Gómez Berisso, Mariano
2017-12-01
We present the performance of a novel neutron detector based on a water Cherenkov detector (WCD) employing pure water and a single photomultiplier tube (PMT). The experiments presented in this work were performed using 241AmBe and 252Cf neutron sources in different neutron moderator and shielding configurations. We show that fast neutrons from the 241AmBe and 241Cf sources, as well as thermal neutrons from a neutron moderator, despite having different spectral characteristics, produce essentially the same pulse histogram shape. This characteristic pulse-height histogram shapes are recorded as a clear signature of neutrons with energies lower than ≃ 11 MeV . This is verified in different experimental conditions. Our estimation of the neutron detection efficiency is at the level of (15±5)%, for fast neutrons. Since water is the material employed as active volume, the results of this study are of interest for the construction of low cost and large active volume neutron detectors for various applications. Of special importance are those related with space weather phenomena monitoring as well as those for the detection of fissile special nuclear material, including uranium or plutonium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, S. D.; Hamel, M. C.; Bourne, M. M.
Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulseshape discrimination, organic liquid scintillatorsmore » are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 10 6 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. Lastly, we have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.« less
Detectors for Active Interrogation Applications
NASA Astrophysics Data System (ADS)
Clarke, S. D.; Hamel, M. C.; Bourne, M. M.; Pozzi, S. A.
Active interrogation creates an environment that is particularly challenging from a radiation-detection standpoint: the elevated background levels from the source can mask the desired signatures from the SNM. Neutron based interrogation experiments have shown that nanosecond-level timing is required to discriminate induced-fission neutrons from the scattered source neutrons. Previous experiments using high-energy bremsstrahlung X-rays have demonstrated the ability to induce and detect prompt photofission neutrons from single target materials; however, a real-world application would require spectroscopic capability to discern between photofission neutrons emitted by SNM and neutrons emitted by other reactions in non-SNM. Using digital pulse-shape discrimination, organic liquid scintillators are capable of reliably detecting neutrons in an intense gamma-ray field. Photon misclassification rates as low as 1 in 106 have been achieved, which is approaching the level of gaseous neutron detectors such as 3He without the need for neutron moderation. These scintillators also possess nanosecond-timing resolution, making them candidates for both neutron-and photon-driven active interrogation systems. We have applied an array of liquid and NaI(Tl) scintillators to successfully image 13.7 kg of HEU interrogated by a DT neutron generator; the system was in the direct presence of the accelerator during the experiment.
Neutronic analysis of the 1D and 1E banks reflux detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, A.
1999-12-21
Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely,more » the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.« less
Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS
NASA Astrophysics Data System (ADS)
Klinkby, E. B.; Knudsen, E. B.; Willendrup, P. K.; Lauritzen, B.; Nonbøl, E.; Bentley, P.; Filges, U.
2014-07-01
Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides. The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates in the vicinity of the guide. In addition the logging mechanism is employed to record the scatterings along the guides which is exploited to simulate the supermirror quality requirements (i.e. m-values) needed at different positions along the beam guide to transport neutrons in the same guide/source setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maekawa, Fujio; Meigo, Shin-ichiro; Kasugai, Yoshimi
2005-05-15
A neutronic benchmark experiment on a simulated spallation neutron target assembly was conducted by using the Alternating Gradient Synchrotron at Brookhaven National Laboratory and was analyzed to investigate the prediction capability of Monte Carlo simulation codes used in neutronic designs of spallation neutron sources. The target assembly consisting of a mercury target, a light water moderator, and a lead reflector was bombarded by 1.94-, 12-, and 24-GeV protons, and the fast neutron flux distributions around the target and the spectra of thermal neutrons leaking from the moderator were measured in the experiment. In this study, the Monte Carlo particle transportmore » simulation codes NMTC/JAM, MCNPX, and MCNP-4A with associated cross-section data in JENDL and LA-150 were verified based on benchmark analysis of the experiment. As a result, all the calculations predicted the measured quantities adequately; calculated integral fluxes of fast and thermal neutrons agreed approximately within {+-}40% with the experiments although the overall energy range encompassed more than 12 orders of magnitude. Accordingly, it was concluded that these simulation codes and cross-section data were adequate for neutronics designs of spallation neutron sources.« less
PHOTON SPECTRA IN NPL STANDARD RADIONUCLIDE NEUTRON FIELDS.
Roberts, N J
2017-09-23
A HPGe detector has been used to measure the photon spectra from the majority of radionuclide neutron sources in use at NPL (252Cf, 241Am-Be, 241Am-Li, 241Am-B). The HPGe was characterised then modelled to produce a response matrix. The measured pulse height spectra were then unfolded to produce photon fluence spectra. Changes in the photon spectrum with time from a 252Cf source are evident. Spectra from a 2-year-old and 42-year-old 252Cf source are presented showing the change from a continuum to peaks from long-lived isotopes of Cf. Other radionuclide neutron source spectra are also presented and discussed. The new spectra were used to improve the photon to neutron dose equivalent ratios from some earlier work at NPL with GM tubes and EPDs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rogov, A.; Pepyolyshev, Yu.; Carta, M.; d'Angelo, A.
Scintillation detector (SD) is widely used in neutron and gamma-spectrometry in a count mode. The organic scintillators for the count mode of the detector operation are investigated rather well. Usually, they are applied for measurement of amplitude and time distributions of pulses caused by single interaction events of neutrons or gamma's with scintillator material. But in a large area of scientific research scintillation detectors can alternatively be used on a current mode by recording the average current from the detector. For example,the measurements of the neutron pulse shape at the pulsed reactors or another pulsed neutron sources. So as to get a rather large volume of experimental data at pulsed neutron sources, it is necessary to use the current mode detector for registration of fast neutrons. Many parameters of the SD are changed with a transition from an accounting mode to current one. For example, the detector efficiency is different in counting and current modes. Many effects connected with time accuracy become substantial. Besides, for the registration of solely fast neutrons, as must be in many measurements, in the mixed radiation field of the pulsed neutron sources, SD efficiency has to be determined with a gamma-radiation shield present. Here is no calculations or experimental data on SD current mode operation up to now. The response functions of the detectors can be either measured in high-precision reference fields or calculated by a computer simulation. We have used the MCNP code [1] and carried out some experiments for investigation of the plastic performances in a current mode. There are numerous programs performing simulating similar to the MCNP code. For example, for neutrons there are [2-4], for photons - [5-8]. However, all known codes to use (SCINFUL, NRESP4, SANDYL, EGS49) have more stringent restrictions on the source, geometry and detector characteristics. In MCNP code a lot of these restrictions are absent and you need only to write special additions for proton and electron recoil and transfer energy to light output. These code modifications allow taking into account all processes in organic scintillator influence the light yield.
Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI
NASA Astrophysics Data System (ADS)
Yoshida, Shigeo; Murata, Isao; Nakagawa, Tsutomu; Saito, Isao
2011-10-01
The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.
NASA Astrophysics Data System (ADS)
Qi, L.; Wilson, J. N.; Lebois, M.; Al-Adili, A.; Chatillon, A.; Choudhury, D.; Gatera, A.; Georgiev, G.; Göök, A.; Laurent, B.; Maj, A.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Rose, S. J.; Schmitt, C.; Wasilewska, B.; Zeiser, F.
2018-03-01
Prompt fission gamma-ray spectra (PFGS) have been measured for the 239Pu(n,f) reaction using fast neutrons at Ēn=1.81 MeV produced by the LICORNE directional neutron source. The setup makes use of LaBr3 scintillation detectors and PARIS phoswich detectors to measure the emitted prompt fission gamma rays (PFG). The mean multiplicity, average total energy release per fission and average energy of photons are extracted from the unfolded PFGS. These new measurements provide complementary information to other recent work on thermal neutron induced fission of 239Pu and spontaneous fission of 252Cf.
Energy-resolved fast neutron resonance radiography at CSNS
NASA Astrophysics Data System (ADS)
Tan, Zhixin; Tang, Jingyu; Jing, Hantao; Fan, Ruirui; Li, Qiang; Ning, Changjun; Bao, Jie; Ruan, Xichao; Luan, Guangyuan; Feng, Changqin; Zhang, Xianpeng
2018-05-01
The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.
A liquid hydrocarbon deuteron source for neutron generators
NASA Astrophysics Data System (ADS)
Schwoebel, P. R.
2017-06-01
Experimental studies of a deuteron spark source for neutron generators using hydrogen isotope fusion reactions are reported. The ion source uses a spark discharge between electrodes coated with a deuterated hydrocarbon liquid, here Santovac 5, to inhibit permanent electrode erosion and extend the lifetime of high-output neutron generator spark ion sources. Thompson parabola mass spectra show that principally hydrogen and deuterium ions are extracted from the ion source. Hydrogen is the chief residual gas phase species produced due to source operation in a stainless-steel vacuum chamber. The prominent features of the optical emission spectra of the discharge are C+ lines, the hydrogen Balmer Hα-line, and the C2 Swan bands. Operation of the ion source was studied in a conventional laboratory neutron generator. The source delivered an average deuteron current of ˜0.5 A nominal to the target in a 5 μs duration pulse at 1 Hz with target voltages of -80 to -100 kV. The thickness of the hydrocarbon liquid in the spark gap and the consistency thereof from spark to spark influences the deuteron yield and plays a role in determining the beam-focusing characteristics through the applied voltage necessary to break down the spark gap. Higher breakdown voltages result in larger ion beam spots on the target and vice-versa. Because the liquid self-heals and thereby inhibits permanent electrode erosion, the liquid-based source provides long life, with 104 pulses to date, and without clear evidence that, in principle, the lifetime could not be much longer. Initial experiments suggest that an alternative cylindrical target-type generator design can extract approximately 10 times the deuteron current from the source. Preliminary data using the deuterated source liquid as a neutron-producing target are also presented.
NASA Technical Reports Server (NTRS)
Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.
1972-01-01
Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.
Neutron Scattering Announcements
will be added. We encourage everyone interested in neutron scattering to take full advantage of this neutron source ESS. After an initial layout phase using analytical considerations further assessment of Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron
Detection of entrapped moisture in honeycomb sandwich structures
NASA Technical Reports Server (NTRS)
Hallmark, W. B.
1967-01-01
Thermal neutron moisture detection system detects entrapped moisture in intercellular areas of bonded honeycomb sandwich structures. A radium/beryllium fast neutron source bombards a specimen. The emitted thermal neutrons from the target nucleus are detected and counted by a boron trifluoride thermal neutron detector.
What happened to the moon? A lunar history mission using neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breitkreutz, H.; Li, X.; Burfeindt, J.
2011-07-01
The ages of lunar rocks can be determined using the {sup 40}Ar -{sup 39}Ar technique that can be used in-situ on the moon if a neutron source, a noble gas mass spectrometer and a gas extraction and purification system are brought to the lunar surface. A possible instrument for such a task is ISAGE, which combines a strong {sup 252}Cf neutron source and a compact spectrometer for in-situ dating of e.g. the South Pole Aitken impact basin or the potentially very young basalts south of the Aristachus Plateau. In this paper, the design of the neutron source will be discussed.more » The source is assumed to be a hollow sphere surrounded by a reflector, a geometry that provides a very homogeneous flux at the irradiation position inside the sphere. The optimal source geometry depending on the experimental conditions, the costs of transportation for the reflector and the costs of the source itself are calculated. A minimum {sup 252}Cf mass of 1.5 mg is determined. (authors)« less
Thermal neutron calibration channel at LNMRI/IRD.
Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T
2014-10-01
The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Benchmarking shielding simulations for an accelerator-driven spallation neutron source
Cherkashyna, Nataliia; Di Julio, Douglas D.; Panzner, Tobias; ...
2015-08-09
The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS), currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ), at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolithmore » wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code Geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates Geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters) instruments at ESS.« less
Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C
2016-09-01
Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Fuchs, H.; Jakobi, J.; Huisman, J. A.; Diekkrüger, B.; Vereecken, H.
2016-12-01
Cosmic-ray neutron soil moisture probes are an emerging technology that rely on the negative correlation between near-surface fast neutron counts and soil moisture content since hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of temporally changing above- and below-ground biomass and intercepted water in the canopy on the cosmic-ray neutron counts and the calibration parameter N0. For this, two arable fields cropped with winter wheat and sugar beet were instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 200 in-situ soil moisture sensors. In addition, we measured rainfall interception in the wheat canopy at several locations in the field using totalisators and leaf wetness sensors. In order to track the changes in above- and below-ground biomass, roots and plants were sampled approximately every four weeks and LAI was measured weekly during the growing season. Weekly biomass changes were derived by relating LAI to total biomass. As expected, we found an increasing discrepancy between cosmic-ray-derived and in-situ measured soil moisture during the growing season and a sharp decrease in discrepancy after the harvest. In order to quantify the effect of hydrogen stored in the vegetation on fast neutron intensity, we derived time series of the calibration parameter N0 using a weekly moving-window optimization. We found a linear negative relationship between N0 and total fresh biomass and N0 and intercepted precipitation. Using these relationships for the correction of fast neutron intensity reduced the discrepancy between cosmic-ray-derived and in-situ measured soil moisture. Finally, we investigated the temporal dynamics of the thermal-to-epithermal neutron ratio to explore its potential as a predictor for canopy interception and biomass changes.
Design of an Experiment to Measure ann Using 3H(γ, pn)n at HIγS★
NASA Astrophysics Data System (ADS)
Friesen, F. Q. L.; Ahmed, M. W.; Crowe, B. J.; Crowell, A. S.; Cumberbatch, L. C.; Fallin, B.; Han, Z.; Howell, C. R.; Malone, R. M.; Markoff, D.; Tornow, W.; Witała, H.
2016-03-01
We provide an update on the development of an experiment at TUNL for determining the 1S0 neutron-neutron (nn) scattering length (ann) from differential cross-section measurements of three-body photodisintegration of the triton. The experiment will be conducted using a linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) and tritium gas contained in thin-walled cells. The main components of the planned experiment are a 230 Ci gas target system, a set of wire chambers and silicon strip detectors on each side of the beam axis, and an array of neutron detectors on each side beyond the silicon detectors. The protons emitted in the reaction are tracked in the wire chambers and their energy and position are measured in silicon strip detectors. The first iteration of the experiment will be simplified, making use of a collimator system, and silicon detectors to interrogate the main region of interest near 90° in the polar angle. Monte-Carlo simulations based on rigorous 3N calculations have been conducted to validate the sensitivity of the experimental setup to ann. This research supported in part by the DOE Office of Nuclear Physics Grant Number DE-FG02-97ER41033