Science.gov

Sample records for neutron star surface

  1. Gravitational waves from surface inhomogeneities of neutron stars

    NASA Astrophysics Data System (ADS)

    Konar, Sushan; Mukherjee, Dipanjan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-11-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted search for continuous gravitational waves with the next generation of instruments.

  2. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    SciTech Connect

    Dong, J. M.; Zuo, W.; Lombardo, U.; Zhang, H. F.

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  3. Polarization of neutron star surface emission: a systematic analysis

    NASA Astrophysics Data System (ADS)

    Taverna, Roberto

    2016-07-01

    New-generation X-ray polarimeters currently under development promise to open a new window in the study of high-energy astrophysical sources. Among them, neutron stars (NSs) appear particularly suited for polarization measurements. Radiation from the (cooling) surface of an NS is expected to exhibit a large intrinsic polarization degree due to the star strong magnetic field (≈ 10 ^{12}-10 ^{15} G). We present an efficient method for computing the observed polarization fraction and polarization angle in the case of radiation coming from the entire surface of an NS, accounting for both vacuum polarization and geometrical effects due to the extended emitting region. Our approach is fairly general and is illustrated in the case of blackbody emission from an NS with either a dipolar or a (globally) twisted magnetic field.

  4. Hydrogen in strong magnetic fields in neutron star surfaces

    NASA Astrophysics Data System (ADS)

    Salpeter, Edwin E.

    1998-12-01

    In magnetic fields of very much more than 0953-8984/10/49/017/img1 G, polyatomic hydrogen molecules, in the form of long chains, are stable. In neutron star surfaces, fields of 0953-8984/10/49/017/img2 G are commonplace and 0953-8984/10/49/017/img3 G has been reported. Liquid hydrogen can form at the higher field with a zero-pressure density of about 0953-8984/10/49/017/img4. At these densities, hydrogen can burn to helium by pycnonuclear reactions even at low temperatures - the `real cold fusion'.

  5. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  6. Surface emission from neutron stars and implications for the physics of their interiors.

    PubMed

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  7. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  8. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  9. Universality of the acceleration due to gravity on the surface of a rapidly rotating neutron star

    SciTech Connect

    AlGendy, Mohammad; Morsink, Sharon M.

    2014-08-20

    On the surface of a rapidly rotating neutron star, the effective centrifugal force decreases the effective acceleration due to gravity (as measured in the rotating frame) at the equator while increasing the acceleration at the poles due to the centrifugal flattening of the star into an oblate spheroid. We compute the effective gravitational acceleration for relativistic rapidly rotating neutron stars and show that for a star with mass M, equatorial radius R{sub e} , and angular velocity Ω, the deviations of the effective acceleration due to gravity from the nonrotating case take on a universal form that depends only on the compactness ratio M/R{sub e} , the dimensionless square of the angular velocity Ω{sup 2}R{sub e}{sup 3}/GM, and the latitude on the star's surface. This dependence is universal, in that it has very little dependence on the neutron star's equation of state. The effective gravity is expanded in the slow-rotation limit to show the dependence on the effective centrifugal force, oblate shape of the star, and the quadrupole moment of the gravitational field. In addition, an empirical fit and simple formula for the effective gravity is found. We find that the increase in the acceleration due to gravity at the poles is of the same order of magnitude as the decrease in the effective acceleration due to gravity at the equator for all realistic value of mass, radius, and spin. For neutron stars that spin with frequencies near 600 Hz, the difference between the effective gravity at the poles and the equator is about 20%.

  10. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  11. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new

  12. Neutron stars : Seen my way

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    2001-09-01

    An unconventional survey is presented of the observable properties of neutron stars and of all astrophysical phenomena possibly related to them, such as their pulsing, clock irregularities, bursting, flickering, and occasional super-Eddington brightness, the generation of cosmic rays, of gamma-ray bursts, of jets, and of synchrotron nebulae, their birth, and their occasional transient appearance as 'supersoft' X-ray sources. The msec pulsars are argued to be born fast, the black-hole candidates to be neutron stars inside of massive disks, and the gamma-ray bursts to be sparks from dense 'blades' accreting spasmodically onto the surfaces of (generally old) neutron stars within " 0.3 Kpc from the Sun. Supernovae - the likely birth events of neutron stars - are thick-walled explosions, not to be described by Sedov-Taylor waves, which illuminate their gaseous environs via collisions of their 'splinters'.

  13. Surface tension of the core-crust interface of neutron stars with global charge neutrality

    NASA Astrophysics Data System (ADS)

    Rueda, Jorge A.; Ruffini, Remo; Wu, Yuan-Bin; Xue, She-Sheng

    2014-03-01

    It has been shown recently that taking into account strong, weak, electromagnetic, and gravitational interactions, and fulfilling the global charge neutrality of the system, a transition layer will happen between the core and crust of neutron stars, at the nuclear saturation density. We use relativistic mean field theory together with the Thomas-Fermi approximation to study the detailed structure of this transition layer and calculate its surface and Coulomb energy. We find that the surface tension is proportional to a power-law function of the baryon number density in the core bulk region. We also analyze the influence of the electron component and the gravitational field on the structure of the transition layer and the value of the surface tension, to compare and contrast with known phenomenological results in nuclear physics. Based on the above results we study the instability against Bohr-Wheeler surface deformations in the case of neutron stars obeying global charge neutrality. Assuming the core-crust transition at nuclear density ρcore≈2.7×1014 g cm-3, we find that the instability sets the upper limit to the crust density, ρcrustcrit≈1.2×1014 g cm-3. This result implies a nonzero lower limit to the maximum electric field of the core-crust transition surface and makes inaccessible a limit of quasilocal charge neutrality in the limit ρcrust=ρcore. The general framework presented here can be also applied to study the stability of sharp phase transitions in hybrid stars as well as in strange stars, both bare and with outer crust. The results of this work open the way to a more general analysis of the stability of these transition surfaces, accounting for other effects such as gravitational binding, centrifugal repulsion, magnetic field induced by rotating electric field, and therefore magnetic dipole-dipole interactions.

  14. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  15. Neutron Star Compared to Manhattan

    NASA Video Gallery

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  16. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  17. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  18. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  19. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  20. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    SciTech Connect

    Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di

    2010-07-15

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.

  1. Dichotomy Between Black Hole and Neutron Star Accretion: Effect of Hard Surface

    NASA Astrophysics Data System (ADS)

    Dhang, Prasun; Mukhopadhyay, Banibrata; Sharma, Prateek

    2016-07-01

    Estimates of accretion rate on to compact objects have been explored based on the well-known, spherically symmetric, inviscid, steady-state solution given by Bondi. This solution assumes that there is a sink of mass at the center -- which in case of a black hole (BH) corresponds to the advection of matter across the event horizon. Other stars, such as a neutron star (NS), have surfaces and hence the infalling matter has to come to rest at the surface. We study the initial value problem in which the matter distribution is uniform and at rest at time t=0 with different inner radial boundary conditions for BHs and NSs: inflow boundary condition valid for BHs; and reflective or settling boundary condition for NSs. We obtain a similarity solution for the flow with inner inflow and reflective boundary conditions (assuming a cold ambient medium) and compare with numerical simulations of the Euler equations. One-dimensional simulations show the formation of an outward propagating and a standing shock in NS system for reflective and settling boundary conditions respectively. Two-dimensional simulations show that both these flows are unstable (locally to convection and globally to a standing shock instability). Numerical simulations show that in steady state, spherical accretion rate on to a NS for reflective boundary condition is suppressed by orders of magnitude compared to that on to a BH.

  2. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  3. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  4. Hyperons and neutron stars

    SciTech Connect

    Vidaña, Isaac

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  5. Neutron Star Structure From Observations

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2006-10-01

    are major difficulties in accounting for atmospheres of unknown composition and uncertain magnetic field strenghs for these stars. The distances to several distant X-ray emitting neutron stars have also been estimated with some precision because they are members of globular clusters, These sources have advantages because, having undergone recent accretion, they should have relatively weak surface magnetic fields and hydrogen-dominated atmospheres. Preliminary results from the interpretation of thermal emissions indicate consistency with a radius in the range of 10-15 km, but only a restricted subset of possible equations of state can account for the (M, R) constraints of all the sources.

  6. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  7. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  8. Jets from Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  9. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  10. Hypercritical accretion onto a magnetized neutron star surface: a numerical approach

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Lee, W. H.; Page, D.

    2010-10-01

    The properties of a new-born neutron star, produced in a core-collapse supernova, can be strongly affected by the possible late fallback which occurs several hours after the explosion. This accretion occurs in the regime dominated by neutrino cooling, explored initially in this context by Chevalier (1989). Here we revisit this approach in a 1D spherically symmetric model and carry out numerical simulations in 2D in an accretion column onto a neutron star, considering detailed microphysics, neutrino cooling and the presence of magnetic fields in ideal MHD. We compare our numerical results with the analytic solutions and explore how the purely hydrodynamical as well as the MHD solutions differ from them, and begin to explore how this may affect the appearance of the remnant as a typical radio pulsar.

  11. On magnetized neutron stars

    SciTech Connect

    Lopes, Luiz; Menezes, Debora E-mail: debora.p.m@ufsc.br

    2015-08-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron and quark stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach explores more deeply the concept of pressure, yielding the so called chaotic magnetic field formalism for the stress tensor. We also use a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density, which allows us to build a parameter free model.

  12. Birth accelerations of neutron stars

    NASA Astrophysics Data System (ADS)

    Heras, Ricardo

    2013-03-01

    We suggest that neutron stars experienced at birth three related physical changes, which may originate in magneto-rotational instabilities: (i) an increase in period from the initial value P 0 to the current value Ps , implying a change of rotational energy Δ E rot; (ii) an exponential decay of its magnetic field from the initial value B 0 to the current surface value Bs , implying a change of radiative energy Δ E rad; and (iii) an increase of space velocity from the initial value v 0 to the current value v, implying a change of kinetic energy Δ E kin. These changes are assumed to be connected by Δ E rad + Δ E kin = Δ E rot. This means that the radiation loss and increase of kinetic energy are both at the expense of a rotational energy loss. It is shown that this energy conversion occurs during times of order of 10-4 s if the neutron stars are born with magnetic fields in the range of 1015-1016 G and initial periods in range 1-20 ms. It is shown that the birth accelerations of neutron stars are of the order of 108g.

  13. Grand unification of neutron stars.

    PubMed

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  14. Grand unification of neutron stars

    PubMed Central

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  15. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  16. The Neutron Star Interior Composition Explorer

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  17. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  18. Theoretical Studies of Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    2003-01-01

    Among the newly discovered classes of X-ray sources which have attracted wide attention are close binary systems in which mass is transferred via Roche lobe overflow from a low mass donor star to its neutron star companion. Many of these sources exhibit intense bursts of X-ray radiation as well as periodic and quasi-periodic phenomena. Intensive analysis of these sources as a class has provided insight into the accretion process in binary star systems and into the magnetic field, rotational, and nuclear evolution of the underlying neutron star. In this proposal we have focused on theoretical studies of the hydrodynamical and nuclear processes that take place on the surface of accreting neutron stars in these systems. The investigation of these processes is critical for providing an understanding of a number of outstanding problems related to their transient behavior and evolution.

  19. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  20. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  1. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter. "Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution." Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth. "For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers." In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star. The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon. The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations. It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of

  2. Chandra Captures Neutron Star Action

    NASA Video Gallery

    This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest...

  3. The Neutron Star Zoo

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  4. Neutron star news and puzzles

    NASA Astrophysics Data System (ADS)

    Prakash, Madappa

    2014-08-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  5. PULSE PROFILES FROM THERMALLY EMITTING NEUTRON STARS

    SciTech Connect

    Turolla, R.; Nobili, L.

    2013-05-10

    The problem of computing the pulse profiles from thermally emitting spots on the surface of a neutron star in general relativity is reconsidered. We show that it is possible to extend Beloborodov's approach to include (multiple) spots of finite size in different positions on the star surface. The results for the pulse profiles are expressed by comparatively simple analytical formulae which involve only elementary functions.

  6. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  7. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  8. Neutron Star - Magnetosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ponce, Marcelo; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2012-03-01

    In this work we report results of the interaction of a neutron star magnetosphere in both collapsing and moving scenarios interacting with an ambient magnetic field. In recent works [1,2], it has been shown the important role and realism associated with studies of electromagnetic environments in some particular regimes, such as: ideal-MHD, force-free, and electro-vacuum. Motivated by this and their astrophysical implications for BBH and hybrid BH-NS mergers [3,4], we study the following cases: collapse of a magnetized NS, head-on collision of a BH-NS, and orbiting merger of a BH-NS. Based in the results from our simulations, we draw some relevant conclusions to the production of jets as described within the force-free formalism. [4pt] [1] C.Palenzuela, L.Lehner and S.Liebling, Science 329, 927 (2010).[0pt] [2] C.Palenzuela, T.Garrett, et al., Phys.Rev.D 82, 044045 (2010).[0pt] [3] L.Lehner, C.Palenzuela, et al., 2011.[0pt] [4] S.Liebling, L.Lehner, et al., Phys.Rev.D 81, 124023 (2010).

  9. The nuclear physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2014-05-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  10. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  11. Old and new neutron stars

    SciTech Connect

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  12. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  13. Nuclear physics problems for accreting neutron stars

    SciTech Connect

    Wallace, R.K.; Woosley, S.E.

    1983-01-01

    The importance of p(e/sup -/nu)n and of (p,..gamma..) reactions on /sup 56/Ni during a thermonuclear runaway on a neutron star surface is pointed out. A fast 16-isotope approximate nuclear reaction network is developed that is suitable for use in hydrodynamic calculations of such events.

  14. Neutron stars are gold mines

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    Neutron stars are not only mines for clues to dense matter physics but may also be the auspicious sources of half of all nuclei heavier than A = 60 in the universe, including the auric isotopes. Although the cold dense matter above the nuclear saturation density cannot be directly explored in the laboratory, gilded constraints on the properties of matter from 1 to 10 times higher density can now be panned from neutron star observations. We show how upcoming observations, such as gravitational wave from mergers, precision timing of pulsars, neutrinos from neutron star birth and X-rays from bursts and thermal emissions, will provide the bullion from which further advances can be smelted.

  15. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  16. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  17. Theory of cooling neutron stars versus observations

    SciTech Connect

    Yakovlev, D. G.; Gnedin, O. Y.; Kaminker, A. D.; Potekhin, A. Y.

    2008-02-27

    We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

  18. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  19. NSCool: Neutron star cooling code

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  20. Statistical theory of thermal evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Yakovlev, D. G.

    2015-02-01

    Thermal evolution of neutron stars is known to depend on the properties of superdense matter in neutron star cores. We suggest a statistical analysis of isolated cooling middle-aged neutron stars and old transiently accreting quasi-stationary neutron stars warmed up by deep crustal heating in low-mass X-ray binaries. The method is based on simulations of the evolution of stars of different masses and on averaging the results over respective mass distributions. This gives theoretical distributions of isolated neutron stars in the surface temperature-age plane and of accreting stars in the photon thermal luminosity-mean mass accretion rate plane to be compared with observations. This approach permits to explore not only superdense matter but also the mass distributions of isolated and accreting neutron stars. We show that the observations of these stars can be reasonably well explained by assuming the presence of the powerful direct Urca process of neutrino emission in the inner cores of massive stars, introducing a slight broadening of the direct Urca threshold (for instance, by proton superfluidity), and by tuning mass distributions of isolated and accreted neutron stars.

  1. The Mystery of the Lonely Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-09-01

    must have formed in our own galaxy, the Milky Way. However, most of these are now invisible, having since long cooled down and become completely inactive while fading out of sight. An unsual neutron star - RX J1856.5-3754 Some years ago, the X-ray source RX J1856.5-3754 was found by the German ROSAT X-ray satellite observatory. Later observations with the Hubble Space Telescope (cf. STScI-PR97-32 ) detected extremely faint optical emission from this source and conclusively proved that it is an isolated neutron star [3]. There is no sign of the associated supernova remnant and it must therefore be at least 100,000 years "old". Most interestingly, and unlike younger isolated neutron stars or neutron stars in binary stellar systems, RX J1856.5-3754 does not show any sign of activity whatsoever, such as variability or pulsations. As a unique member of its class, RX J1856.5-3754 quickly became the centre of great interest among astronomers. It apparently presented the first, very welcome opportunity to perform detailed studies of the structure of a neutron star, without the disturbing influence of ill-understood activity. One particular question arose immediately. The emission of X-rays indicates a very high temperature of RX J1856.5-3754 . However, from the moment of their violent birth, neutron stars are thought to lose energy and to cool down continuously. But then, how can an old neutron star like this one be so hot? One possible explanation is that some interstellar material, gas and/or dust grains, is being captured by its strong gravitational field. Such particles would fall freely towards the surface of the neutron star and arrive there with about half the speed of light. Since the kinetic energy of these particles is proportionate to the second power of the velocity, even small amounts of matter would deposit much energy upon impact, thereby heating the neutron star. The spectrum of RX J1856.5-3754 The new VLT study by van Kerkwijk and Kulkarni of RX J1856

  2. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  3. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1989-01-01

    The following is a summary of work done during the period of Mar. to Oct. 1989. Three major topics were extensively looked into during this time: the reported 2,000 Hz optical signal from the direction of SNR1987A, the possibility that neutron stellar surface magnetic fields do not decay except when the star is accreting, and the 6 Hz QPOs of LMXBs.

  4. Neutron Stars in Binaries and in Isolation

    NASA Astrophysics Data System (ADS)

    Yancopoulos, Sophia

    1996-01-01

    This thesis is a study of neutron stars in three distinct classes. After a brief overview of neutron stars in Chapter 1, the three systems are discussed in order of decreasing luminosity. In Chapter 2, we present a new model for the normal branch of a class of low mass X-ray binaries which show quasiperiodic oscillations: a quasi -periodic modulation in the intensity of their X-ray signal. Chapter 3 discusses a particular radio pulsar which we observed in X-rays with the ROSAT PSPC. Chapter 4 rounds out the thesis with a discussion of a class of neutron stars which have not, to date, been definitively shown to exist. We describe a search for these isolated old neutron stars in the Einstein database, and present the results of our finds. As part of a search for thermal surface radiation from nearby neutron stars, we have carried out a 45,000 s observation of the nearby radio pulsar PSR 1929+10 with the ROSAT PSPC. After background subtraction, a net of 420+/-25 photons in the 0.1-2.0 keV band were detected at the position of the pulsar, corresponding to a luminosity of position of the pulsar, corresponding to a luminosity of 1.2 times 1030 erg/s for a source distance of 250 pc, or {~}3 times 10^{-4} of the pulsar's spin-down luminosity. We find coherent pulsations from PSR 1929+10 at the radio period of 0.2265 s. The folded light curve is well fit by a sinusoidal oscillation with a pulsed fraction of about 30%. The total spectrum is fit by a blackbody with a temperature T_ infty~3.2times10^6 K; the implied emitting area has a radius of less than 50 meters. The maximum of the X-ray light curve coincides with the radio pulse, suggesting we are detecting the hot magnetic polar cap of the star. We discuss the implications of our results for the temperature distribution over the surface of the star, and use this detection to constrain various heating mechanisms for rotation-powered neutron stars. We also use a simple model of general relativistic light bending near the

  5. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-12-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105-106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  6. Super-Eddington winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1990-01-01

    Results are presented from a study of winds driven by a super-Eddington rate of energy deposition near the surface of a neutron star, a condition which may develop following a collision between two neutron stars when more than 10 to the 53rd ergs is radiated during a few seconds. A fraction of that energy, perhaps as large as 10 to the 50th ergs, may be transformed into electron-positron pairs and drive a powerful wind. Using a model of the highly super-Eddington wind, the fraction of energy injected into a wind that emerges as gamma rays is estimated. It is shown that it is possible to reach gamma-ray temperatures with the optically thick winds, provided the energy injection rate is sufficiently high.

  7. Gravitational waves from neutron star binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan

    With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of 2M⊙ neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.

  8. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  9. Superfluid heat conduction and the cooling of magnetized neutron stars

    SciTech Connect

    Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Aguilera, Deborah N

    2008-01-01

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superftuid neutron matter, called superfiuid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field B {approx}> 10{sup 13} C. At density p {approx_equal} 10{sup 12}--10{sup 14} g/cm{sup 3} the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity at when temperature {approx_equal} 10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction show observationally discernible differences.

  10. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  11. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    SciTech Connect

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  12. Model Atmospheres for X-Ray Bursting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  13. Planetary Systems Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander

    1997-01-01

    This project was initiated in 1993, about one year after the announcement of two planets around PSR B1257+12. Its goal was to investigate planetary systems around neutron stars using high precision timing of radio pulsars as a tool. A microsecond precision of the pulse timing analysis, which is equivalent to a millimeter-per-second radial velocity resolution, makes it possible to detect asteroid-mass bodies in orbit around pulsars and to study the dynamics of pulsar planetary systems. The project originally consisted of two longterm efforts: (i) routine observations and timing analysis of the millisecond pulsar PSR B1257+12 which was found to be orbited by at least two earth-mass bodies (Wolszczan and Frail, Nature, 355, 145) and (ii) a sensitive all-sky search for millisecond pulsars to detect further examples of neutron stars with planetary systems. In the third year of the project, it was expanded to include long-term timing observations of slow pulsars in search for planetary systems around these younger neutron stars. The instrumentation used to conduct these investigations included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM-1), the 100-m Effelsberg telescope with the local pulse timing hardware, and the 32-m paraboloid of the Torun Centre for Astronomy in Torun, Poland (TCFA) with the PSPM-2, the second pulsar machine built at Penn State. The PI's collaborators included pulsar groups led by D. Backer (Berkeley), R. Foster (NRL), S. Kulkarni (Caltech), J. Taylor (Princeton) and R. Wielebinski (Bonn). One postdoc (Stuart Anderson), one graduate student (Brian Cadwell) and several undergraduates have been engaged in various aspects of research related to this project.

  14. Quasi-static winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, Paul C.; Melia, Fulvio

    1987-01-01

    A series of numerical models is constructed for radiatively driven, quasi-static winds from the surfaces of hot neutron stars. A mathematical technique is devised that in many cases facilitates the integration of the fluid equations in the vicinity of the sonic point, and an improved treatment of radiative transfer is developed that is appropriate to the exotic physical conditions encountered in the models. Boundary conditions which are more realistic than previous ones are used in these models. In agreement with earlier studies, it is found that radiatively driven winds are likely to be directly relevant to the existence of precursors in fast X-ray transients and to apparent radius variations during the course of some type I bursts, and that the presence of such a wind should prevent the bolometric luminosity of a neutron star from exceeding the Eddington limit by more than a small fractional amount. Formulas describing the wind models are presented which are usable as boundary conditions for calculations of the evolution of the deeper, hydrostatic layers of a neutron-star envelope.

  15. The Nearest Neutron Stars

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1996-01-01

    Extreme Ultraviolet Explorer (EUVE) satellite observations of the Pulsar PSR J0437-4715, the Seyfert Galaxy RX J0437.4-4711, and the Geminga Pulsar are reported on. The main purpose of the PSR J0437-4715 investigation was to examine its soft X-ray flux. The 20 day EUVE observation of RX J0437.4-4711 constitutes a uniformly sampled soft X-ray light curve of a highly variable Seyfert galaxy whose power spectrum can be examined on timescales from 3 hrs. to several days. A unique aspect of the EUVE observation of RX J0437.4-4711 is its long light curve which we have used to measure the power spectrum of soft X-ray variability at low frequencies. Approximately 2100 counts were detected for the Geminga pulsar in a period of 251,000 s by the EUVE Deep Survey instrument. Geminga presents an unusually difficult problem because its multicomponent X-ray spectrum and pulse profile are indicative of a complex distribution of surface emission, and possibly a contribution from nonthermal emission as well.

  16. Nonlinear reflection from the surface of neutron stars and features of radio emission from the pulsar in the Crab nebula

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2016-08-01

    There are no explanations for the high-frequency component of the emission from the pulsar in the Crab nebula, but it may be a manifestation of instability in nonlinear reflection from the star's surface. Radiation from relativistic positrons flying from the magnetosphere to the star and accelerated by the electric field of the polar gap is reflected. The instability involves stimulated scattering on surface waves.

  17. Evolution of the innermost stable orbits around accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Kluzniak, W.; Wagoner, R. V.

    1985-01-01

    The surface of most neutron stars with 'soft' equations of state lies within the innermost stable circular orbit predicted by general relativity. In disk accretion onto a weakly magnetized neutron star, the disk will reach the stellar surface for 'stiff' equations of state, but for soft equations of state the matter will hit the surface in free fall at an angle of about 0.001 to 0.1 radians. All calculations are carried out through first order in the angular momentum of the star.

  18. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  19. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Muranushi, Takayuki; Sekiguchi, Yu-ichiro; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Massive (hypermassive and supramassive) neutron stars are likely to be often formed after the merger of binary neutron stars. We explore the evolution process of the remnant massive neutron stars and gravitational waves emitted by them, based on numerical-relativity simulations for binary neutron star mergers employing a variety of equations of state and choosing a plausible range of the neutron star mass of binaries. We show that the lifetime of remnant hypermassive neutron stars depends strongly on the total binary mass and also on the equations of state. Gravitational waves emitted by the remnant massive neutron stars universally have a quasiperiodic nature of an approximately constant frequency although the frequency varies with time. We also show that the frequency and time-variation feature of gravitational waves depend strongly on the equations of state. We derive a fitting formula for the quasiperiodic gravitational waveforms, which may be used for the data analysis of a gravitational-wave signal.

  20. Close binary neutron star systems

    NASA Astrophysics Data System (ADS)

    Marronetti, Pedro

    1999-12-01

    We present a method to calculate solutions to the initial value problem in (3 + 1) general relativity corresponding to binary neutron-star systems (BNS) in irrotational quasi-equilibrium orbits. The initial value equations are solved using a conformally flat spatial metric tensor. The stellar fluid dynamics corresponds to that of systems with zero vorticity in the inertial reference frame. Irrotational systems like the ones analyzed in the present work are likely to resemble the final stages of the evolution of neutron-star binaries, thus providing insights on the inspiral process. The fluid velocity is derived from the gradient of a scalar potential. A numerical program was developed to solve the elliptic equations for the metric fields and the fluid velocity potential. We discuss the different numerical techniques employed to achieve high resolution across the stellar volume, as well as the methods used to find solutions to the Poisson-like equations with their corresponding boundary conditions. We present sequences of quasi-stable circular orbits which conserve baryonic mass. These sequences mimic the time evolution of the inspiral and are obtained without solving the complex evolution equations. They also provide sets of initial value data for future time evolution codes, which should be valid very close to the final merger. We evaluate the emission of gravitational radiation during the evolution through multipole expansions methods.

  1. Neutrinos from Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Torres, Diego F.; McCauley, Thomas P.; Romero, Gustavo E.; Aharonian, Felix A.

    2003-05-01

    The magnetospheres of accreting neutron stars develop electrostatic gaps with huge potential drops. Protons and ions, accelerated in these gaps along the dipolar magnetic field lines to energies greater than 100 TeV, can impact onto the surrounding accretion disk. A proton-induced cascade develops, and charged pion decays produce ν emission. With extensive disk shower simulations using DPMJET and GEANT4, we have calculated the resulting ν spectrum. We show that the spectrum produced out of the proton beam is a power law. We use this result to propose accretion-powered X-ray binaries (with highly magnetized neutron stars) as a new population of pointlike ν sources for kilometer-scale detectors such as ICECUBE. As a particular example, we discuss the case of A0535+26. We show that ICECUBE should find A0535+26 to be a periodic ν source, one for which the formation and loss of its accretion disk can be fully detected. Finally, we comment briefly on the possibility that smaller telescopes such as AMANDA could also detect A0535+26 by folding observations with the orbital period.

  2. Pocked surface neutron detector

    DOEpatents

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  3. Quark Deconfinement in Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Mellinger, Richard; Weber, Fridolin; Spinella, William; Contrera, Gustavo; Orsaria, Milva

    2017-01-01

    In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars). In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in), the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  4. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  5. Validating Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2010-09-01

    Spectral analysis of transient neutron star X-ray emission during bursts and quiescence were both used to estimate the NS radii for different sources. The validities of these methods need to be verified by performing them on the same source respectively. Transient type-I (thermonuclear) X-ray bursters are excellent candidates for testing the consistency between these methods, since they were detected in both bursts and quiescence. Out of 3 candidates: Cen X-4, Aql X-1 and 4U 1608-52, 4U 1608-52 turns out to be the best one due to the lack of archival RXTE burst data for Cen X-4 and the previous reported significant luminosity and temperature variability for Aql X-1 in quiescence. Therefore, we propose a 25 ks Chandra/ACIS-S observation of 4U 1608-52.

  6. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  7. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  8. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  9. Observations of Neutron Stars with NICER

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity that will be deployed as an attached payload on the International Space Station in August of 2016. By virtue of its unprecedented combination of throughput and fast timing capabilities, NICER will enable an empirical determination of the neutron star equation of state via realistic modeling of the pulsed X-ray radiation from millisecond pulsars. In this talk, I will describe the NICER instrument and measurement techniques it will employ, as well as the expected constraints on neutron star structure, and by extension the behavior of matter at supra-nuclear densities.

  10. Variational calculation of ground-state energy of iron atoms and condensed matter in strong magnetic fields. [at neutron star surfaces

    NASA Technical Reports Server (NTRS)

    Flowers, E. G.; Ruderman, M. A.; Lee, J.-F.; Sutherland, P. G.; Hillebrandt, W.; Mueller, E.

    1977-01-01

    Variational calculations of the binding energies of iron atoms and condensed matter in strong magnetic fields (greater than 10 to the 12th gauss). These calculations include the electron exchange energy. The cohesive energy of the condensed matter, which is the difference between these two binding energies, is of interest in pulsar theories and in the description of the surfaces of neutron stars. It is found that the cohesive energy ranges from 2.6 keV to 8.0 keV.

  11. Numerical Relativity Simulations of Black Holes Binaries, Neutron Star Binaries, and Neutron Star Oscillations

    NASA Astrophysics Data System (ADS)

    Rosofsky, Shawn; Gold, Roman; Chirenti, Cecilia; Miller, Cole

    2017-01-01

    We present the results of numerical relativity simulations, using the Einstein Toolkit, of black hole binaries, neutron star binaries, and neutron star oscillations. The black hole binary simulations represent the source of LIGO's first gravitational wave detection, GW150914. We compare the gravitational wave output of this simulation with the LIGO data LIGO on GW150914. The neutron star binaries we simulated have different mass ratios and equations of state. These simulations were compared with each other to illustrate the effect of different mass ratios and equations of state on binary evolution and gravitational wave emission. To perform the neutron star oscillation simulations, we applied pressure and density perturbations to the star using specific eigenmodes. These evolutions of the stars were then compared to the expected oscillation frequencies of those excited eigemodes and contrasted with simulations of unperturbed neutron stars.

  12. Neutron Star Science with the NuSTAR

    SciTech Connect

    Vogel, J. K.

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  13. Early neutron stars and quark matter

    NASA Astrophysics Data System (ADS)

    Li, You-chen; Kong, Xiao-jun; Wei, Cheng-wen; Ge, Yun-zhao

    1988-03-01

    There may exist quark matter inside early hot neutron stars. Using the general method of Baym and Chin, we evaluated the pressure and density at neutron matter — quark matter phase transition for different temperatures and compared the values for stable hot neutron stars. We found (1) that whenever the neutron star temperature exceeds (+10)K, there will be a core of quark matter; (2) that the bag constant B is the most important determining factor of the quark core size. For a given temperature, the core is the larger, the smaller B is; (3) that by the conservation of baryon number, the total energy released by a star during its cooling is about (+53) ergs.

  14. Transport coefficients in superfluid neutron stars

    SciTech Connect

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  15. Direct URCA process in neutron stars

    NASA Technical Reports Server (NTRS)

    Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel

    1991-01-01

    It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.

  16. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  17. Magneto-thermal evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Pons, J. A.; Miralles, J. A.; Geppert, U.

    2009-03-01

    Context: The presence of magnetic fields in the crust of neutron stars (NSs) causes a non-spherically symmetric temperature distribution. The strong temperature dependence of the magnetic diffusivity and thermal conductivity, together with the heat generated by magnetic dissipation, couple the magnetic and thermal evolution of NSs, which can no longer be formulated as separated one-dimensional problems. Aims: We study the mutual influence of thermal and magnetic evolution in a neutron star's crust in axial symmetry. Taking realistic microphysical inputs into account, we find the heat released by Joule effect consistent with the circulation of currents in the crust, and we incorporate its effects in 2D cooling calculations. Methods: We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite-differences scheme in the radial direction), coupled to the thermal diffusion equation. To improve the boundary conditions, we also revisit the envelope stationary solutions updating the well known T_b-T_s-relations to include the effect of 2D heat transfer calculations and new microphysical inputs. Results: We present the first longterm 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first 10^5-106 years of an NS's life. As a consequence, all neutron stars born with fields over a critical value (>5 × 1013 G) reach similar field strengths (≈2-3 × 1013 G) at late times. Irrespective of the initial magnetic field strength, the temperature becomes so low after 106 years that the magnetic diffusion timescale becomes longer than the typical ages of radiopulsars, thus apparently resulting in no

  18. Magnetic field decay in isolated neutron stars

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Reisenegger, Andreas

    1992-01-01

    Three mechanisms that promote the loss of magnetic flux from an isolated neutron star - Ohmic decay, ambipolar diffusion, and Hall drift - are investigated. Equations of motions are solved for charged particles in the presence of a magnetic field and a fixed background of neutrons, while allowing for the creation and destruction of particles by weak interactions. Although these equations apply to normal neutrons and protons, the present interpretations of their solutions are extended to cover cases of neutron superfluidity and proton superconductivity. The equations are manipulated to prove that, in the presence of a magnetic force, the charged particles cannot be simultaneously in magnetostatic equilibrium and chemical equilibrium with the neutrons. The application of the results to real neutron stars is discussed.

  19. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  20. ULXs: Neutron stars versus black holes

    NASA Astrophysics Data System (ADS)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  1. Neutron stars as laboratories for gravity physics

    SciTech Connect

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².

  2. DISCOVERY OF A NEUTRON STAR OSCILLATION MODE DURING A SUPERBURST

    SciTech Connect

    Strohmayer, Tod; Mahmoodifar, Simin

    2014-10-01

    Neutron stars are among the most compact objects in the universe and provide a unique laboratory for the study of cold ultra-dense matter. While asteroseismology can provide a powerful probe of the interiors of stars, for example, helioseismology has provided unprecedented insights about the interior of the Sun, comparable capabilities for neutron star seismology have not yet been achieved. Here, we report the discovery of a coherent X-ray modulation from the neutron star 4U 1636–536 during the 2001 February 22 thermonuclear superburst seen with NASA's Rossi X-Ray Timing Explorer (RXTE) that is very likely produced by a global oscillation mode. The observed frequency is 835.6440 ± 0.0002 Hz (1.43546 times the stellar spin frequency of 582.14323 Hz) and the modulation is well described by a sinusoid (A + Bsin (φ – φ{sub 0})) with a fractional half-amplitude of B/A = 0.19 ± 0.04% (4-15 keV). The observed frequency is consistent with the expected inertial frame frequency of a rotationally modified surface g-mode, an interfacial mode in the ocean-crust interface, or perhaps an r-mode. Observing an inertial frame frequency—as opposed to a co-rotating frame frequency—appears consistent with the superburst's thermal emission arising from the entire surface of the neutron star, and the mode may become visible by perturbing the local surface temperature. We briefly discuss the implications of the mode detection for the neutron star's projected velocity and mass. Our results provide further strong evidence that global oscillation modes can produce observable modulations in the X-ray flux from neutron stars.

  3. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  4. Energy density functional for nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Erler, J.; Horowitz, C. J.; Nazarewicz, W.; Rafalski, M.; Reinhard, P.-G.

    2013-04-01

    Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [Annu. Rev. Nucl. Part. Sci.ARPSDF0163-899810.1146/annurev-nucl-102711-095018 62, 485 (2012)].Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars.Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals—a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties—are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one.Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius.Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but

  5. Optically thick envelopes around ULXs powered by accreating neutron stars

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Ingram, Adam

    2017-01-01

    Magnetized neutron stars power at least some ultra-luminous X-ray sources. The accretion flow in these cases is interrupted at the magnetospheric radius and then reaches the surface of a neutron star following magnetic field lines. Accreting matter moving along magnetic field lines forms the accretion envelope around the central object. We show that, in case of high mass accretion rates ≳ 1019 g s-1 the envelope becomes closed and optically thick, which influences the dynamics of the accretion flow and the observational manifestation of the neutron star hidden behind the envelope. Particularly, the optically thick accretion envelope results in a multi-color black-body spectrum originating from the magnetospheric surface. The spectrum and photon energy flux vary with the viewing angle, which gives rise to pulsations characterized by high pulsed fraction and typically smooth pulse profiles. The reprocessing of radiation due to interaction with the envelope leads to the disappearance of cyclotron scattering features from the spectrum. We speculate that the super-orbital variability of ultra-luminous X-ray sources powered by accreting neutron stars can be attributed to precession of the neutron star due to interaction of magnetic dipole with the accretion disc.

  6. Strange Stars, Neutron Stars and Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; Horvath, J. E.

    1990-11-01

    RESUMEN. Se ha conjeturado que una partlecula de dieciocho quarks, sin Carga, sin espi'n y sin colar (quark-alfa) podri'a ser estable a ba5as tern peraturas y presiones aiTh COfl respecto a materia extrafla. Presentamos en este trabajo la estmctura de estrellas extraflas incluyendo los efectos y apariencia de parti'culas uark-alfa en las capas exteriores. La estruc tura interna ya no es hoinogenea del centro a la superficie, sino que muestra un centro de materia extrafla, capas s6lidas y una costra delgada de materia normal en la superficie. La superficie de materia nonnal permite la fornaci6n de una magnetosfera, la que se piensa sea el sitlo en donde ocurre la emisi6n del pulsar. La superficie de superflui'do ayuda a explicar el fen6rneno de `glitch', el cual ba sido observado en muchos pulsares. Se discute la ecuaci6n de estado para rnateria quark-alfa relevante en este regimen. ABSTIZACT:It has been conjectured that an quark, uncharged, spinless and colorless particle Cquark-alpha) could be stable at low pressures and temperatures even with respect to strange matter. We present in work tlie structure of stars including the effects of the appearance of quark-alpi' particles ii their outer layers. The internal structure is no longer from tlie center to the surface, but show a strange matter core, a solid and superfluid layers and a thin crust of normal matter at the surface. The normal matter surface allows tlie fon tion of a magnetosphere, whicl is to be tl place where pulsar emission occurs. A superfluid layer helps to explain tlie glitch , wlflch has been observed in . equation of state for quark-alpha matter relevant in regime is also discussed. Keq LA)OtL : ARY S - OF STATF - ?.ACT

  7. Fast radio bursts: the last sign of supramassive neutron stars

    NASA Astrophysics Data System (ADS)

    Falcke, Heino; Rezzolla, Luciano

    2014-02-01

    Context. Several fast radio bursts have been discovered recently, showing a bright, highly dispersed millisecond radio pulse. The pulses do not repeat and are not associated with a known pulsar or gamma-ray burst. The high dispersion suggests sources at cosmological distances, hence implying an extremely high radio luminosity, far larger than the power of single pulses from a pulsar. Aims: We suggest that a fast radio burst represents the final signal of a supramassive rotating neutron star that collapses to a black hole due to magnetic braking. The neutron star is initially above the critical mass for non-rotating models and is supported by rapid rotation. As magnetic braking constantly reduces the spin, the neutron star will suddenly collapse to a black hole several thousand to million years after its birth. Methods: We discuss several formation scenarios for supramassive neutron stars and estimate the possible observational signatures making use of the results of recent numerical general-relativistic calculations. Results: While the collapse will hide the stellar surface behind an event horizon, the magnetic-field lines will snap violently. This can turn an almost ordinary pulsar into a bright radio "blitzar": accelerated electrons from the travelling magnetic shock dissipate a significant fraction of the magnetosphere and produce a massive radio burst that is observable out to z > 0.7. Only a few per cent of the neutron stars need to be supramassive in order to explain the observed rate. Conclusions: We suggest the intriguing possibility that fast radio bursts might trace the solitary and almost silent formation of stellar mass black holes at high redshifts. These bursts could be an electromagnetic complement to gravitational-wave emission and reveal a new formation and evolutionary channel for black holes and neutron stars that are not seen as gamma-ray bursts. If supramassive neutron stars are formed at birth and not by accretion, radio observations of these

  8. Local distribution of old neutron stars

    NASA Technical Reports Server (NTRS)

    Frei, Szolt; Huang, Xiaolan; Paczynski, Bohdan

    1992-01-01

    The local distribution of old disk neutron stars is approximated with a 1D model, in which the steady state distribution in the direction perpendicular to the Galactic plane is calculated, assuming a variety of the initial radio pulsar positions and velocities, and various Galactic potentials. It is found that the local distribution of old neutron stars is dominated by those that were born with very low velocities. The high-velocity neutron stars spend most of their lifetime far in the Galactic halo and do not contribute much to the local density. Therefore, the rms velocity at birth is not a good indicator of the scale height of the old population. The most likely half-density scale height for the old disk neutron stars is approximately 350 pc, the same as for the old disk G, K, and M stars. If gamma-ray bursts originate on old disk neutron stars, then 350 pc should also be the scale height for the bursters.

  9. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    PubMed

    Ho, Wynn C G; Heinke, Craig O

    2009-11-05

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star.

  10. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  11. Limiting rotational period of neutron stars

    NASA Astrophysics Data System (ADS)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  12. Limiting rotational period of neutron stars

    SciTech Connect

    Glendenning, N.K. )

    1992-11-15

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a {ital M}=1.442{ital M}{sub {circle dot}} neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  13. Short-range nucleon correlations and neutrino emission by neutron stars

    SciTech Connect

    Frankfurt, Leonid; Strikman, Mark

    2008-10-13

    We argue that significant probability of protons with momenta above their Fermi surface leads for proton concentrations p/n{>=}1/8 to the enhancement of termally excited direct and modified URCA processes within a cold neutron star, and to a nonzero probability of direct URCA processes for small proton concentrations (p/n{<=}1/8). We evaluate high momentum tails of neutron, proton and electrons distributions within a neutron star. We expect also significantly faster neutrino cooling of hyperon stars.

  14. Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Psaltis, Dimitrios; Arzoumanian, Zaven; Morsink, Sharon; Bauböck, Michi

    2016-11-01

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.

  15. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  16. r-Process nucleosynthesis in neutron star merger disk outflows

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Fernandez, Rodrigo; Roberts, Luke; Foucart, Francois; Kasen, Dan; Metzger, Brian

    2017-01-01

    Neutron star mergers are the most promising site of heavy element synthesis via the rapid neutron-capture process (r-process). Just before the neutron stars merge, they tidally disrupt each other, which unbinds extremely neutron-rich material where nucleosynthesis can easily reach the third r-process peak. After the merger, an accretion disk forms around the central compact object, which is either a black hole or a hypermassive neutron star (HMNS). Neutrino emissions from the disk (and HMNS if there is one) and angular momentum transport processes within the disk drive a neutron-rich outflow off the disk's surface where r-process nucleosynthesis can take place. In this work we investigate r-process nucleosynthesis in the disk outflow and we pay special attention to how the nucleosynthesis depends on the lifetime of the HMNS. Increasing the lifetime of the HMNS not only results in a significantly larger ejecta mass, but also makes the ejecta less neutron-rich thus preventing the r-process from reaching the third peak.

  17. Relativistic model of neutron stars in X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  18. Hybrid stars that masquerade as neutron stars

    SciTech Connect

    Mark Paris; Mark Alford; Matt Braby; Sanjay Reddy

    2004-11-01

    We show that a hybrid (nuclear + quark matter) star can have a mass-radius relationship very similar to that predicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter equation of state, and also for an MIT bag model, each including a phenomenological correction based on gluonic corrections to the equation of state. We obtain hybrid stars as heavy as 2 M{sub solar} for reasonable values of the bag model parameters. For nuclear matter, we use the equation of state calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.

  19. The Neutron Star Interior Composition Explorer (NICER)

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  20. TOPICAL REVIEW: Coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Rasio, Frederic A.; Shapiro, Stuart L.

    1999-06-01

    Coalescing compact binaries with neutron star or black hole components provide the most promising sources of gravitational radiation for detection by the LIGO/VIRGO/GEO/TAMA laser interferometers now under construction. This fact has motivated several different theoretical studies of the inspiral and hydrodynamic merging of compact binaries. Analytic analyses of the inspiral waveforms have been performed in the post-Newtonian approximation. Analytic and numerical treatments of the coalescence waveforms from binary neutron stars have been performed using Newtonian hydrodynamics and the quadrupole radiation approximation. Numerical simulations of coalescing black hole and neutron star binaries are also underway in full general relativity. Recent results from each of these approaches will be described and their virtues and limitations summarized.

  1. Neutron stars as type-I superconductors.

    PubMed

    Buckley, Kirk B W; Metlitski, Max A; Zhitnitsky, Ariel R

    2004-04-16

    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star, leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.

  2. Towards a metallurgy of neutron star crusts.

    PubMed

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties.

  3. Symmetry energy: nuclear masses and neutron stars

    NASA Astrophysics Data System (ADS)

    Pearson, J. M.; Chamel, N.; Fantina, A. F.; Goriely, S.

    2014-02-01

    We describe the main features of our most recent Hartree-Fock-Bogoliubov nuclear mass models, based on 16-parameter generalized Skyrme forces. They have been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value of 30MeV for the symmetry coefficient J , the corresponding root-mean square deviation being 0.549MeV. We find that this conclusion is compatible with measurements of neutron-skin thickness. By constraining the underlying interactions to fit various equations of state of neutron matter calculated ab initio our models are well adapted to a realistic and unified treatment of all regions of neutron stars. We use our models to calculate the composition, the equation of state, the mass-radius relation and the maximum mass. Comparison with observations of neutron stars again favours a value of J = 30 MeV.

  4. Neutron Star Seismology with Accreting Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod

    Neutron stars provide natural laboratories for the study of a number of important topics in fundamental physics, including the composition and equation of state (EOS) of cold matter at the highest densities achievable in nature. The physical conditions in their deep interiors cannot be replicated in terrestrial laboratories, and the nature of matter under such extreme conditions remains one of the major unsolved problems in physics. Direct measurement of the mass - radius relationship for neutron stars is very important for constraining the EOS of dense matter, however, since different phases of dense matter can have similar equations of state, mass and radius measurements alone are not very efficient in determining their interior composition. Additional, complementary observables are needed to more definitively probe the composition of neutron star cores. Asteroseismology, the measurement of the characteristic frequencies of the normal modes of oscillation of stars, can provide a powerful probe of their interiors. For example, helioseismology has provided unprecedented insights about the deep interior of the Sun. Comparable capabilities for neutron star seismology have not yet been achieved, but our recent work indicates that sensitive searches for the signatures of neutron star oscillations can be carried out using the high time resolution, pulse timing data obtained by the Rossi X-ray Timing Explorer (RXTE)-and in the case of a single source the XMM-Newton pn camera-from the population of accreting millisecond X-ray pulsars (AMXPs, Strohmayer & Mahmoodifar 2014a), and in some thermonuclear burst sources (Strohmayer & Mahmoodifar 2014b). It is the primary aim of this proposal to carry out the first such comprehensive search for global oscillation modes across this entire source class of neutron stars using approximately 6 M-sec of RXTE and 100 k-sec of XMMNewton archival data, and thereby significantly advance the nascent field of neutron star seismology. We will

  5. EUV/soft x-ray spectra for low B neutron stars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.

    1995-01-01

    Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.

  6. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  7. Parameters of rotating neutron stars with and without hyperons

    NASA Astrophysics Data System (ADS)

    Bejger, M.

    2013-04-01

    Context. The discovery of a 2 M⊙ neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observational result, several equations of state containing hyperons are consistent with it. Aims: We study global properties of stars using equations of state containing hyperons, and compare them to those without hyperons to find similarities, differences, and limits that can be compared with the astrophysical observations. Methods: Rotating, axisymmetric, and stationary stellar configurations in general relativity are obtained, and their global parameters are studied. Results: Approximate formulæ describing the behavior of the maximum and minimum stellar mass, compactness, surface redshifts, and moments of inertia as functions of spin frequency are provided. We also study the thin disk accretion and compare the spin-up evolution of stars with different moments of inertia.

  8. Neutron stars. [quantum mechanical processes associated with magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  9. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  10. Early neutron stars and quark matter

    NASA Astrophysics Data System (ADS)

    Li, You-Chen; Kong, Xiao-Jun; Wei, Cheng-Wen; Ge, Yun-Zhao

    1988-03-01

    The existence of quark matter (QM) in hot early neutron stars is considered theoretically, using the method of Baym and Chin (1976) to calculate the pressure and density at the phase transition between neutron and quark matter for various temperatures. The results are presented in tables and graphs and discussed in detail. It is found that QM cores can exist whenever the temperature exceeds 10 to the 10th K, and that their radii increase with decreasing QM bag constant. The total energy emitted by a star during cooling is estimated as 10 to the 53rd erg, assuming conservation of baryon number.

  11. An instability in neutron stars at birth.

    PubMed

    Burrows, A; Fryxell, B A

    1992-10-16

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supemova explosion may be inadequate. Whether this "convective" instability is pivotal to the supemova mechanism, pulsar magnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  12. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  13. Gravitational wave background from rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  14. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  15. Constraining Neutron Star Matter with Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Kurkela, Aleksi; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen; Vuorinen, Aleksi

    2014-07-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  16. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    DOE PAGES

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; ...

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-raymore » telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.« less

  17. Few-Body Effects in Neutron Star Matter

    NASA Astrophysics Data System (ADS)

    Takibayev, N.

    2017-03-01

    Neutron resonances in systems of few nuclei, electron capture reactions with formation of excited nuclei, and density oscillation in the neutron star envelopes are investigated. These results allow to propose the special experiments to verify the neutron resonances in the few-body systems and understand the origin of some processes that are going in the neutron star crusts.

  18. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  19. Tidal Love Numbers of Neutron Stars

    SciTech Connect

    Hinderer, Tanja

    2008-04-20

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  20. Fallback Disks, Magnetars and Other Neutron Stars

    NASA Astrophysics Data System (ADS)

    Alpar, M. Ali; Çalışkan, Ş.; Ertan, Ü.

    2013-02-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron stars may have different strengths of the dipole and higher multipole components of the magnetic field is now actually required by observations on the spindown rates of some magnetars. This talk gives a broad overview and some applications of the fallback disk model to particular neutron stars. Salient points are: (i) A fallback disk has already been observed around the AXP 4U 0142+61 some years ago. (ii) The low observed spindown rate of the SGR 0418+5729 provides direct evidence that the dipole component of the field is in the 1012 G range. All properties of the SGR 0418+5729 at its present age can be explained by spindown under torques from a fallback disk. (iii) The anomalous braking index of PSR J1734-3333 can also be explained by the fallback disk model which gives the luminosity, period, period derivative and the period second derivative at the present age. (iv) These and all applications to a variety of other sources employ the same disk physics and evolution, differing only in the initial conditions of the disk.

  1. Confirming a substellar companion candidate around a neutron star

    NASA Astrophysics Data System (ADS)

    Posselt, Bettina; Luhman, Kevin

    2014-08-01

    In a search for substellar companions around young neutron stars, we found an indication for a very faint near-infrared source at the position of the isolated neutron star RXJ0806.4-4123. The suspected near-IR source cannot be the neutron star itself because the latter is much too faint to be detected. Recent Herschel 160 microm observations of the field point to an additional dusty belt around the neutron star. The outer location of the dusty belt could be explained by the presence of a substellar companion around the neutron star. We propose deeper near-infrared observations with FLAMINGOS-2 to confirm that the near-infrared source is real. The observation could provide the first direct detection of a substellar companion around a neutron star. However, even a non-detection would be interesting to constrain evolution models of the dusty belt around the neutron star.

  2. Antikaon condensation and deconfinement phase transition in neutron stars

    SciTech Connect

    Gu Jianfa; Guo Hua; Xu Furong; Li Xiguo; Liu Yuxin

    2006-05-15

    Antikaon condensation and deconfinement phase transition in neutron stars are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase and in the MIT bag model for the deconfined quark matter phase. It is shown that the existence of quark matter phase makes antikaon condensation impossible in neutron stars. The properties of neutron stars are sensitive to the bag constant. For the small values of the bag constant, the pure quark matter core appears and hyperons are strongly suppressed in neutron stars, whereas for the large bag constant, the hadron-quark mixed phase exists in the center of neutron stars. The maximum masses of neutron stars with the quark matter phase are lower than those without the quark matter phase; meanwhile, the maximum masses of neutron stars with the quark matter phase increase with the bag constant.

  3. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    SciTech Connect

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-21

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  4. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-01

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  5. Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Meisel, Zach; Deibel, Alex

    2017-03-01

    Nuclear burning near the surface of an accreting neutron star produces ashes that, when compressed deeper by further accretion, alter the star’s thermal and compositional structure. Bygone nucleosynthesis can be constrained by the impact of compressed ashes on the thermal relaxation of quiescent neutron star transients. In particular, Urca cooling nuclei pairs in nuclear burning ashes that cool the neutron star crust via neutrino emission from {e}--capture/{β }--decay cycles and provide signatures of prior nuclear burning over the ∼century timescales it takes to accrete to the {e}--capture depth of the strongest cooling pairs. Using crust cooling models of the accreting neutron star transient MAXI J0556-332, we show that this source likely lacked Type I X-ray bursts and superbursts ≳120 years ago. Reduced nuclear physics uncertainties in rp-process reaction rates and {e}--capture weak transition strengths for low-lying transitions will improve nucleosynthesis constraints using this technique.

  6. Non-identical neutron star twins

    SciTech Connect

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discuss how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.

  7. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, T. G. F.; Tompitak, M.; Veitch, J.; Vitale, S.; Van Den Broeck, C.

    2015-07-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O (20 ) sources would suffice to distinguish between a stiff, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOSs and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  8. Free fall onto magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Salpeter, E. E.

    Some compact X-ray sources show evidence of cyclotron line radiation from excited electron Landau orbits, powered by hydrogen and helium falling onto a neutron star atmosphere along the magnetic field. The slowing of the incident matter is discussed, including the spread in energy loss due to Coulomb scattering and direct nuclear reactions for disintegrating the α particles. The α disintegrations, followed by neutron capture, lead to nuclear γ rays; the γ-ray intensity is (indirectly) coupled to the Coulomb energy loss and the cyclotron line emission.

  9. Pair fireball precursors of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Zivancev, Charles

    2016-10-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction η of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. For η ˜ 1 the gamma-ray detection horizon of Dmax ≈ 10(Bd/1014 G)3/4 Mpc is much closer than the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo horizon of 200 Mpc, unless the NS surface magnetic field strength is very large, B_d ≲ 10^{15} G. Given the quasi-isotropic nature of the emission, mergers with weaker NS fields could contribute a nearby population of short gamma-ray bursts. Power not dissipated close to the binary is carried to infinity along the open field lines by a large-scale Poynting flux. Reconnection within this outflow, well outside of the pair photosphere, provides a potential site for non-thermal emission, such as a coherent millisecond radio burst.

  10. Why neutron stars have three hairs

    NASA Astrophysics Data System (ADS)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  11. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  12. Constraining the State of Ultra-dense Matter with the Neutron Star Interior Composition Explorer

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-04-01

    [This presentation is submitted on behalf of the entire NICER Science Team] The state of cold matter at densities exceeding those of atomic nuclei remains one of the principal outstanding problems in modern physics. Neutron stars provide the only known setting in the universe where these physical conditions can be explored. Thermal X-ray radiation from the physical surface of a neutron star can serve as a powerful tool for probing the poorly understood behavior of the matter in the dense stellar interior. For instance, realistic modeling of the thermal X-ray modulations observed from rotation-powered millisecond pulsars can produce stringent constraints on the neutron star mass-radius relation, and by extension the state of supra-nuclear matter. I will describe the prospects for precision neutron star equation of state constraints with millisecond pulsars using the forthcoming Neutron Star Interior Composition Explorer (NICER) X-ray timing mission.

  13. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  14. The Origin of Neutron Star Kicks

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2000-05-01

    Despite decades of theoretical investigations, our understanding of core-collapse supernovae remains significantly incomplete. Recent observations show that many supernovae are asymmetric and newly-formed neutron stars have large space velocities. I will discuss the physics of different mechanisms for generating asymmetric explosions and pulsar velocities, including hydrodynamically driven, neutrino and magnetically driven kicks. References: D. Lai and Y.-Z. Qian 1998, ApJ, 505, 844. P. Arras and D. Lai 1999, ApJ, 519, 745. P. Arras and D. Lai 1999, Phys. Rev. D60, 043001. D. Lai 1999, "Physics of Neutron Star Kicks", in press (astro-ph/9912522). D. Lai and P. Goldreich 2000, ApJ, in press (astro-ph/9906400). D. Lai 2000, ApJ, in press (astro-ph/0004066). This research is supported by NASA Grants NAG 5-8484 and NAG 5-8356, and by a research fellowship from the Alfred P. Sloan foundation.

  15. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  16. Fast Fossil Rotation of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  17. Quasinormal modes of superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Gualtieri, L.; Kantor, E. M.; Gusakov, M. E.; Chugunov, A. I.

    2014-07-01

    We study nonradial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasinormal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasinormal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.

  18. Dissipation in relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Gusakov, M. E.; Kantor, E. M.; Chugunov, A. I.; Gualtieri, L.

    2013-01-01

    We analyse damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in Gusakov & Kantor. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f modes, (ii) for radial and p modes such an approximation is poor and (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighbouring oscillation modes. The latter effect can substantially accelerate viscous damping of normal modes in certain stages of neutron-star thermal evolution.

  19. Numerical relativity simulations of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Thierfelder, Marcus; Bernuzzi, Sebastiano; Brügmann, Bernd

    2011-08-01

    We present a new numerical relativity code designed for simulations of compact binaries involving matter. The code is an upgrade of the BAM code to include general relativistic hydrodynamics and implements state-of-the-art high-resolution-shock-capturing schemes on a hierarchy of mesh refined Cartesian grids with moving boxes. We test and validate the code in a series of standard experiments involving single neutron star spacetimes. We present test evolutions of quasiequilibrium equal-mass irrotational binary neutron star configurations in quasicircular orbits which describe the late inspiral to merger phases. Neutron star matter is modeled as a zero-temperature fluid; thermal effects can be included by means of a simple ideal gas prescription. We analyze the impact that the use of different values of damping parameter in the Gamma-driver shift condition has on the dynamics of the system. The use of different reconstruction schemes and their impact in the post-merger dynamics is investigated. We compute and characterize the gravitational radiation emitted by the system. Self-convergence of the waves is tested, and we consistently estimate error bars on the numerically generated waveforms in the inspiral phase.

  20. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  1. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  2. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  3. Axisymmetric toroidal modes of general relativistic magnetized neutron star models

    SciTech Connect

    Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp

    2014-07-20

    We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.

  4. Dragging of inertial frames inside the rotating neutron stars

    SciTech Connect

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades E-mail: kamakshya.modak@saha.ac.in

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  5. A new class of g-modes in neutron stars

    NASA Technical Reports Server (NTRS)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  6. Supernova Explosions and the Birth of Neutron Stars

    SciTech Connect

    Janka, H.-Thomas; Marek, Andreas; Mueller, Bernhard; Scheck, Leonhard

    2008-02-27

    We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic hydrodynamic instability of the stagnant supernova shock against low-mode nonradial deformation and the excitation of gravity-wave activity in the surface and core of the nascent neutron star. Both can have supportive or decisive influence on the inauguration of the explosion, the former by improving the conditions for energy deposition by neutrino heating in the postshock gas, the latter by supplying the developing blast with a flux of acoustic power that adds to the energy transfer by neutrinos. While recent two-dimensional models suggest that the neutrino-driven mechanism may be viable for stars from {approx}8M{sub {center_dot}} to at least 15M{sub {center_dot}}, acoustic energy input has been advocated as an alternative if neutrino heating fails. Magnetohydrodynamic effects constitute another way to trigger explosions in connection with the collapse of sufficiently rapidly rotating stellar cores, perhaps linked to the birth of magnetars. The global explosion asymmetries seen in the recent simulations offer an explanation of even the highest measured kick velocities of young neutron stars.

  7. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    SciTech Connect

    Cheng, Quan; Yu, Yun-Wei

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spin down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.

  8. From neutron stars to quark stars in mimetic gravity

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  9. Nonequilibrium Dynamics and the Evolution of Superfluid Neutron Stars

    NASA Astrophysics Data System (ADS)

    Sauls, Jame

    2016-07-01

    The interior crust and the liquid core of neutron stars are predicted to be a mixture of neutron and proton superfluids and a liquid of relativistic electrons and muons. Quantized vortices in the neutron superfluid and quantized flux lines in the proton superconductor are topological defects of these hadronic condensates. I discuss the roles of nucleation, interaction and evolution of topological defects under non-equilibrium conditions in the context of our current understanding and models of the rotational dynamics of pulsars, as well as thermal and magnetic field evolution of neutron stars. I include some speculative ideas on possibile turbulent vortex states in neutron star interiors.

  10. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2016-12-01

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  11. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-07-01

    The lowest neutron star masses currently measured are in the range 1.0-1.1 M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. recently found empirical formulas relating the mass and surface redshift of non-rotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  12. Probing Neutron Star Evolution with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Wijers, Ralph A. M. J.

    1996-02-01

    The research sponsored by this grant was conducted in two fields of high-energy astrophysics: gamma-ray bursts and evolution of neutron stars. It is unknown at this time whether they are related. The work performed in each area is discussed followed by a full list of publications supported by the grant. My research (with E. Fenimore, L. Lubin, B. Paczyiiski, and A. Ulmer) has focussed on devising tests that could distinguish between BATSE and galactic-halo distance scales using the available data. In the first instance, the issue was whether the early BATSE peak flux distribution could be used to extract more than just a slope of the log N(greater than P) distribution, and whether it joined smoothly to the steeper peak flux distribution of bright bursts. To this end, we analysed the peak flux distribution for the presence of a change in slope. This was done both by fitting models with a core radius to see whether a significant value for it could be found, and by developing a completely model-independent test to search for slope changes in arbitrary distributions that are nearly power laws. A slope change was marginally detected in the first-year BATSE data. Good progress has been made in understanding the evolution of neutron stars and their magnetic fields. Having shown in earlier work that magnetic fields in some neutron stars, particularly Her X-1, do not decay spontaneously on million-year time scales, we set out to check whether such spontaneous decay was needed in isolated radio pulsars, as claimed by many. We found that it is not; rather long decay times or no decay are preferred. Since there are neutron stars with low magnetic fields, one must conclude that there is something in their past that distinguishes them from most pulsars. These so-called recycled pulsars are in binaries much more often than normal pulsars. My research concentrates on the class of scenarios in which the recycled pulsars are initially the same as ordinary high-field radio pulsars

  13. Nonthermal accretion disk models around neutron stars

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Liang, Edison P.

    1994-01-01

    We consider the structure and emission spectra of nonthermal accretion disks around both strongly and weakly magnetized neutron stars. Such disks may be dissipating their gravitational binding energy and transferring their angular momentum via semicontinuous magnetic reconnections. We consider specifically the structure of the disk-stellar magnetospheric boundary where magnetic pressure balances the disk pressure. We consider energy dissipation via reconnection of the stellar field and small-scale disk turbulent fields of opposite polarity. Constraints on the disk emission spectrum are discussed.

  14. Supernovae, neutron stars and biomolecular chirality.

    PubMed

    Bonner, W A; Rubenstein, E

    1987-01-01

    Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds.

  15. Sound Velocity Bound and Neutron Stars

    SciTech Connect

    Bedaque, Paulo; Steiner, Andrew W.

    2015-01-21

    A conjecture that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. Moreover, the bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. Here, we point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.

  16. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  17. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  18. A SECOND NEUTRON STAR IN M4?

    SciTech Connect

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  19. Unified description of astrophysical properties of neutron stars independent of the equation of state

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2015-12-01

    In recent years, a lot of work was done that has revealed some very interesting properties of neutron stars. One can relate the first few multipole moments of a neutron star, or quantities that can be derived from them, with relations that are independent of the equation of state (EoS). This is a very significant result that has great implications for the description of neutron stars and in particular for the description of the spacetime around them. Additionally, it was recently shown that there is a four-parameter analytic spacetime, known as the two-soliton spacetime, which can accurately capture the properties of the geometry around neutron stars. This allows for the possibility of describing in a unified formalism the astrophysically relevant properties of the spacetime around a neutron star independently of the particulars of the EoS for the matter of the star. More precisely, the description of these astrophysical properties is done using an EoS omniscient spacetime that can describe the exterior of any neutron star. In the present work, we investigate properties such as the location of the innermost stable circular orbit RISCO (or the surface of the star when the latter overcomes the former), the various frequencies of perturbed circular equatorial geodesics, the efficiency of an accretion disc, its temperature distribution, and other properties associated with the emitted radiation from the disc, in a way that holds for all possible choices of a realistic EoS for the neutron star. Furthermore, we provide proof of principle that if one were to measure the right combinations of pairs of these properties, with the additional knowledge of the mass of the neutron star, one could determine the EoS of the star.

  20. Spectral Models of Neutron Star Magnetospheres

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1997-01-01

    We revisit the association of unidentified Galactic plane EGRET sources with tracers of recent massive star formation and death. Up-to-date catalogs of OB associations, SNR's, young pulsars, H2 regions and young open clusters were used in finding counterparts for a recent list of EGRET sources. It has been argued for some time that EGRET source positions are correlated with SNR's and OB associations as a class; we extend such analyses by finding additional counterparts and assessing the probability of individual source identifications. Among the several scenarios relating EGRET sources to massive stars, we focus on young neutron stars as the origin of the gamma-ray emission. The characteristics of the candidate identifications are compared to the known gamma-ray pulsar sample and to detailed Galactic population syntheses using our outer gap pulsar model of gamma-ray emission. Both the spatial distribution and luminosity function of the candidates are in good agreement with the model predictions; we infer that young pulsars can account for the bulk of the excess low latitude EGRET sources. We show that with this identification, the gamma-ray point sources provide an important new window into the history of recent massive star death in the solar neighborhood.

  1. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    SciTech Connect

    Gandolfi, Stefano

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  2. Does mass accretion lead to field decay in neutron stars?

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, J.; Nomoto, K.

    1989-01-01

    Adopting the hypothesis of accretion-induced magnetic field decay in neutron stars, the consequent evolution of a neutron star's spin and magnetic field are calculated. The results are consistent with observations of binary and millisecond radio pulsars. Thermomagnetic effects could provide a possible physical mechanism for such accretion-induced field decay.

  3. Relativistic Processes and the Internal Structure of Neutron Stars

    SciTech Connect

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-10-14

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  4. Focused Study of Thermonuclear Bursts on Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chenevez, Jérôme

    2009-05-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.

  5. Microscopic vortex velocity and implications for neutron star dynamics

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, Mehmet Ali

    2016-07-01

    Rotational dynamics of a neutron star is governed by the distribution and motion of vortex lines within the neutron superfluid. Interaction of the vortex lines with the ambient matter plays an important role in the glitches, thermal evolution and magnetic field evolution of pulsars. Thus, correctly treating the vortex motion both in the inner crust and in the outer core of neutron stars is a key ingredient in modeling a great variety of observational phenomena of pulsars. In this work we outline the first principles to calculate the microscopic vortex velocity in the inner crust as well as in the outer core. Then we discuss some implications for neutron star's dynamics.

  6. Neutron star accretion and the neutrino fireball

    SciTech Connect

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-11-26

    The mixing necessary to explain the ``Fe`` line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ``fireball,`` a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion.

  7. Simulations of binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta

    2017-01-01

    The merger of a binary composed of a neutron star and/or a black hole is one of the most promising sources of gravitational waves. If we detected gravitational waves from them, it could tell us a validity of the general relativity in a strong gravitational field and the equation of state of neutron star matter. Furthermore, if gravitational waves from a compact binary merger and a short-hard gamma-ray burst are observed simultaneously, a long-standing puzzle on the central engine of short gamma-ray bursts could be resolved. In addition, compact binary mergers are a theoretical candidate of the rapid process nucleosynthesis site. Motivated by these facts, it is mandatory to build a physically reliable model of compact binary mergers and numerical relativity is a unique approach for this purpose. We are tackling this problem from several directions; the magneto-hydrodynamics, the neutrino radiation transfer, and a comprehensive study with simplified models. I will talk a current status of Kyoto Numerical Relativity group and future prospect on the compact binary mergers.

  8. Gravitomagnetic tidal currents in rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Douçot, Jean

    2017-02-01

    It was recently revealed that a rotating compact body responds dynamically when it is subjected to a gravitomagnetic tidal field, even when this field is idealized as time independent. The dynamical response is characterized by time-changing internal currents, and it was suspected to originate from zero-frequency g -modes and r -modes driven by the tidal forces. In this paper, we provide additional insights into the phenomenon by examining the tidal response of a rotating body within the framework of post-Newtonian gravity. This approach allows us to develop an intuitive picture for the phenomenon, which relies on the close analogy between post-Newtonian gravity and Maxwell's theory of electromagnetism. In this picture, the coupling between the gravitomagnetic tidal field and the body's rotational velocity is naturally expected to produce an unbalanced Lorentz-like force within the body, and it is this force that is responsible for the tidal currents. The simplicity of the fluid equations in the post-Newtonian setting allows us to provide a complete description of the zero-frequency modes and demonstrate their precise role in the establishment of the tidal currents. We estimate the amplitude of these currents, and find that for neutron-star binaries of relevance to LIGO, the scale of the velocity perturbation is measured in kilometers per second when the rotation period is comparable to 100 milliseconds. This estimate indicates that the tidal currents may have a significant impact on the physics of neutron stars near merger.

  9. Gravitomagnetic effect in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debarati; Chakraborty, Chandrachur; Bandyopadhyay, Debades

    2017-01-01

    Rotating bodies in General Relativity produce frame dragging, also known as the gravitomagnetic effect in analogy with classical electromagnetism. In this work, we study the effect of magnetic field on the gravitomagnetic effect in neutron stars with poloidal geometry, which is produced as a result of its rotation. We show that the magnetic field has a non-negligible impact on frame dragging. The maximum effect of the magnetic field appears along the polar direction, where the frame-dragging frequency decreases with increase in magnetic field, and along the equatorial direction, where its magnitude increases. For intermediate angles, the effect of the magnetic field decreases, and goes through a minimum for a particular angular value at which magnetic field has no effect on gravitomagnetism. Beyond that particular angle gravitomagnetic effect increases with increasing magnetic field. We try to identify this `null region' for the case of magnetized neutron stars, both inside and outside, as a function of the magnetic field, and suggest a thought experiment to find the null region of a particular pulsar using the frame dragging effect.

  10. How loud are neutron star mergers?

    NASA Astrophysics Data System (ADS)

    Bernuzzi, Sebastiano; Radice, David; Ott, Christian D.; Roberts, Luke F.; Mösta, Philipp; Galeazzi, Filippo

    2016-07-01

    We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. We find that the emitted gravitational-wave energy in the first ˜10 ms of the life of the resulting hypermassive neutron star (HMNS) is about twice the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable to or larger than that of nonspinning black hole inspiral-mergers. About 0.8-2.5% of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution. We find a clear dependence of the postmerger gravitational wave emission on binary configuration and equation of state and show that it can be encoded as a broad function of the binary tidal coupling constant κ2T. Our results also demonstrate that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to ≲0.7 - 0.8 . This may significantly impact the neutrino pair annihilation mechanism for powering short gamma-ray bursts (sGRB).

  11. Constraining decaying dark matter with neutron stars

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Silk, Joseph

    2015-05-01

    The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ /TeV) ≳ 9 ×10-4 or (mχ /TeV) ≳ 5 ×10-2 and lifetimes τχ ≲1055 s and τχ ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  12. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1996-01-01

    This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.

  13. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  14. Neutron star properties and the equation of state for the core

    NASA Astrophysics Data System (ADS)

    Zdunik, J. L.; Fortin, M.; Haensel, P.

    2017-03-01

    Context. Few unified equations of state for neutron star matter, in which core and crust are described using the same nuclear model, are available. However the use of non-unified equations of state with simplified matching between the crust and core has been shown to introduce uncertainties in the radius determination, which can be larger than the expected precision of the next generation of X-ray satellites. Aims: We aim to eliminate the dependence of the radius and mass of neutron stars on the detailed model for the crust and on the crust-core matching procedure. Methods: We solved the approximate equations of the hydrostatic equilibrium for the crust of neutron stars and obtained a precise formula for the radius that only depends on the core mass and radius, the baryon chemical potential at the core-crust interface, and at the crust surface. For a fully accreted crust one needs, additionally, the value of the total deep crustal heating per one accreted nucleon. Results: For typical neutron star masses, the approximate approach allows us to determine the neutron star radius with an error 0.1% ( 10 m, equivalent to a 1% inaccuracy in the crust thickness). The formalism applies to neutron stars with a catalyzed or a fully accreted crust. The difference in the neutron star radius between the two models is proportional to the total energy release due to deep crustal heating. Conclusions: For a given model of dense matter describing the neutron star core, the radius of a neutron star can be accurately determined independent of the crust model with a precision much better than the 5% precision expected from the next generation of X-ray satellites. This allows us to circumvent the problem of the radius uncertainty that may arise when non-unified equations of state for the crust and core are used.

  15. Probing the possibility of hotspots on the central neutron star in HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Klochkov, D.; Poutanen, J.; Werner, K.

    2017-03-01

    The X-ray spectra of the neutron stars located in the centers of supernova remnants Cas A and HESS J1731-347 are well fit with carbon atmosphere models. These fits yield plausible neutron star sizes for the known or estimated distances to these supernova remnants. The evidence in favor of the presence of a pure carbon envelope at the neutron star surface is rather indirect and is based on the assumption that the emission is generated uniformly by the entire stellar surface. Although this assumption is supported by the absence of pulsations, the observational upper limit on the pulsed fraction is not very stringent. In an attempt to quantify this evidence, we investigate the possibility that the observed spectrum of the neutron star in HESS J1731-347 is a combination of the spectra produced in a hydrogen atmosphere of the hotspots and of the cooler remaining part of the neutron star surface. The lack of pulsations in this case has to be explained either by a sufficiently small angle between the neutron star spin axis and the line of sight, or by a sufficiently small angular distance between the hotspots and the neutron star rotation poles. As the observed flux from a non-uniformly emitting neutron star depends on the angular distribution of the radiation emerging from the atmosphere, we have computed two new grids of pure carbon and pure hydrogen atmosphere model spectra accounting for Compton scattering. Using new hydrogen models, we have evaluated the probability of a geometry that leads to a pulsed fraction below the observed upper limit to be about 8.2%. Such a geometry thus seems to be rather improbable but cannot be excluded at this stage.

  16. Astrophysics of Neutron Stars - Facts and Fiction about their Formation and Functioning

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    An unconventional survey is presented of the observable properties of neutron stars, and of all astrophysical phenomena possibly related to them, such as their pulsing, clock irregularities, bursting, and flickering, the generation of cosmic rays, of gamma-ray bursts, and of jets, their birth, and their occasional transient appearance as 'supersoft' X-ray sources. The msec pulsars are argued to be born fast, the black-hole candidates to be neutron stars inside of massive disks, and the gamma-ray bursts to be sparks from dense 'blades' accreting spasmodically onto the surfaces of (generally) old neutron stars Supernovae - the likely birth events of neutron stars - are thick-walled explosions, not to be described by Sedov-Taylor waves, which illuminate their gaseous environs via collisions of their 'splinters'.

  17. The shear modulus of the neutron star crust and nonradial oscillations of neutron stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.; Van Horn, H. M.; Ogata, S.; Iyetomi, H.; Ichimaru, S.

    1991-01-01

    Shear moduli are calculated for bcc crystalline and rapidly quenched Coulomb solids produced by the Monte Carlo simulation method. The shear moduli are calculated up to the transition temperature and include the effects of thermal fluctuations. An effective shear modulus appropriate to an approximate 'isotropic' body is introduced. It is found that the values of the 'average shear modulus' for the quenched solids remain about the same as those for the corresponding bcc crystals, although the individual shear moduli of the former, disordered solids deviate considerably from the cubic symmetry of the latter. These results are applied to analyses of neutron star oscillations. It is found that the periods of the two interfacial modes are increased by about 10 percent compared to previous results, and that s-mode periods are increased by about 30 percent. The periods of the f and p modes are hardly affected at all. The surface g-mode periods are not greatly affected, while the t-mode periods are increased by 20-25 percent.

  18. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  19. Rotational and magnetic field instabilities in neutron stars

    SciTech Connect

    Kokkotas, Kostas D.

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  20. Gravitational radiation from neutron stars deformed by crustal Hall drift

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Geppert, U.

    2016-07-01

    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  1. Measuring the basic parameters of neutron stars using model atmospheres

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Poutanen, J.; Klochkov, D.; Werner, K.

    2016-02-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  2. Hall Effect in Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, K. N.; Cumming, A.

    2014-08-01

    The crust of Neutron Stars can be approximated by a highly conducting solid crystal lattice. The evolution of the magnetic field in the crust is mediated through Hall effect, namely the electric current is carried by the free electrons of the lattice and the magnetic field lines are advected by the electron fluid. Here, we present the results of a time-dependent evolution code which shows the effect Hall drift has in the large-scale evolution of the magnetic field. In particular we link analytical predictions with simulation results. We find that there are two basic evolutionary paths, depending on the initial conditions compared to Hall equilibrium. We also show the effect axial symmetry combined with density gradient have on suppressing turbulent cascade.

  3. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  4. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  5. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  6. Does mass accretion lead to field decay in neutron stars

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.

    1989-01-01

    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  7. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  8. A Second Neutron Star in M4?

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a ~20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar). Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  9. Spin paramagnetic deformation of a neutron star

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Melatos, A.

    2016-02-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schrödinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect - spin paramagnetism - is most significant in a magnetar, where one typically has μ _B|B|≳ k_B T_e, where μB is the Bohr magneton, B is the magnetic field, and Te is the electron temperature. The spin paramagnetic deformation of a non-barotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ˜10 times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result implies that existing classical predictions underestimate the maximum strength of the gravitational wave signal from rapidly spinning magnetars at birth. Turning the argument around, future gravitational-wave upper limits of increasing sensitivity will place ever-stricter constraints on the physics of Pauli blocking and magnetic domain formation under magnetar conditions.

  10. Resonant Shattering of Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Tsang, David; Read, Jocelyn; Piro, Anthony; Hinderer, Tanja

    2014-08-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (sGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ~10^46-10^47 erg of energy secondsbefore the merger of a NS-NS or NS-black hole binary. Such properties are consistent with Swift/BAT detections of sGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. I will also discuss shattering flares as electromagnetic counterparts to gravitational wave bursts during parabolic and elliptic encounters in dense star clusters.

  11. Relativistic outflow from two thermonuclear shell flashes on neutron stars

    NASA Astrophysics Data System (ADS)

    in't Zand, J. J. M.; Keek, L.; Cavecchi, Y.

    2014-08-01

    We study the exceptionally short (32-43 ms) precursors of two intermediate-duration thermonuclear X-ray bursts observed with the Rossi X-ray Timing Explorer from the neutron stars in 4U 0614+09 and 2S 0918-549. They exhibit photon fluxes that surpass those at the Eddington limit later in the burst by factors of 2.6 to 3.1. We are able to explain both the short duration and the super-Eddington flux by mildly relativistic outflow velocities of 0.1c to 0.3c subsequent to the thermonuclear shell flashes on the neutron stars. These are the highest velocities ever measured from any thermonuclear flash. The precursor rise times are also exceptionally short: about 1 ms. This is inconsistent with predictions for nuclear flames spreading laterally as deflagrations and suggests detonations instead. This is the first time that a detonation is suggested for such a shallow ignition column depth (yign ≈ 1010 g cm-2). The detonation would possibly require a faster nuclear reaction chain, such as bypassing the α-capture on 12C with the much faster 12C(p,γ)13N(α,p)16O process previously proposed. We confirm the possibility of a detonation, albeit only in the radial direction, through the simulation of the nuclear burning with a large nuclear network and at the appropriate ignition depth, although it remains to be seen whether the Zel'dovich criterion is met. A detonation would also provide the fast flame spreading over the surface of the neutron star to allow for the short rise times. This needs to be supported by future two-dimensional calculations of flame spreading at the relevant column depth. As an alternative to the detonation scenario, we speculate on the possibility that the whole neutron star surface burns almost instantly in the auto-ignition regime. This is motivated by the presence of 150 ms precursors with 30 ms rise times in some superexpansion bursts from 4U 1820-30 at low ignition column depths of ~108 g cm-2.

  12. Implications of Intense Magnetic Fields on Neutron-Star Physics

    NASA Astrophysics Data System (ADS)

    Heyl, Jeremy Samuel

    1998-08-01

    -state physics to understand how an intense magnetic field affects the transmission of heat through the envelope of a cooling neutron star. We develop a plane-parallel analytic treatment of the neutron star envelope in an intense magnetic field. The surface emission in this limit is proportional to the square of the cosine of the angle between the radial direction and the magnetic field, the cos2/psi rule. We reexamine the problem of heat flow for weaker fields by numerically integrating the thermal structure of the envelope. We derive the relationship between core temperature and transmitted flux over a wide range of field strengths and geometries. We find that in weaker fields cos2/psi rule is less accurate. We explore how an intense magnetic field affects the observed flux from neutron stars with both iron and light-element envelopes. Although a magnetic field strongly affects the thermal evolution of the neutron star the effect of altering the composition of the envelope is more dramatic. We propose that the emission from anomalous X-ray pulsars is simply the surface thermal emission from isolated neutron stars. (Abstract shortened by UMI.)

  13. Gamow's calculation of the neutron star's critical mass revised

    NASA Astrophysics Data System (ADS)

    Ludwig, Hendrik; Ruffini, Remo

    2014-09-01

    It has at times been indicated that Landau introduced neutron stars in his classic paper of 1932. This is clearly impossible because the discovery of the neutron by Chadwick was submitted more than one month after Landau's work. Therefore, and according to his calculations, what Landau really did was to study white dwarfs, and the critical mass he obtained clearly matched the value derived by Stoner and later by Chandrasekhar. The birth of the concept of a neutron star is still today unclear. Clearly, in 1934, the work of Baade and Zwicky pointed to neutron stars as originating from supernovae. Oppenheimer in 1939 is also well known to have introduced general relativity (GR) in the study of neutron stars. The aim of this note is to point out that the crucial idea for treating the neutron star has been advanced in Newtonian theory by Gamow. However, this pioneering work was plagued by mistakes. The critical mass he should have obtained was 6.9 M ⊙, not the one he declared, namely, 1.5 M ⊙. Probably, he was taken to this result by the work of Landau on white dwarfs. We revise Gamow's calculation of the critical mass regarding calculational and conceptual aspects and discuss whether it is justified to consider it the first neutron-star critical mass. We compare Gamow's approach to other early and modern approaches to the problem.

  14. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  15. Neutron-capture nucleosynthesis in the first stars

    SciTech Connect

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  16. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    Observations with NASA s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, %urstoscillations ) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. Both the compactness parameter beta = GM/c(sup 2)R, and the surface velocity, nu(sub rot) = Omega(sub spin)R, are encoded in the energy-dependent amplitude and shape of the modulation pulses. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time dependent flux from burning neutron stars will be available for comparison with the observed pulse profiles from a future, large collecting area X-ray timing observatory. In addition, recent high resolution burst spectroscopy with XMM/Newton suggests the presence of redshifted absorption lines from the neutron star surface during bursts. This leads to the possibility of using large area, high spectral resolution measurements of X-ray bursts as a precise probe of neutron star structure. In this work I will explore the precision with which constraints on neutron star structure, and hence the dense matter EOS, can be made with the implementation of such programs.

  17. Using a Neutron Star as a Stellar Wind Probe

    NASA Astrophysics Data System (ADS)

    Gregory, P. C.; Neish, C.

    2002-12-01

    LS I+61o303 is a remarkable X-ray and γ -ray emitting Be + neutron star binary, with periodic (26.5 day) radio outbursts. A recent Bayesian analysis demonstrates that the orbital phase and peak flux density of the radio outbursts exhibit a 4.6 year periodic modulation. We present a model that accounts for the radio properties of LS I+61o303 in terms of variable accretion by the neutron star in an eccentric orbit embedded within the dense equatorial wind from the rapidly rotating Be star. The neutron star thus acts as a probe of the wind speed and density. The analysis indicates that the 4.6 year modulation in radio properties results from an outward moving density enhancement or shell in the Be star equatorial disk. We propose that each new shell ejection may be triggered by the interaction of a short lived relativistic wind (ejector phase) from the neutron star, with the rapidly rotating Be star. Our best estimates of the mass accretion rate of the neutron star are in the range ~ 0.001 to ~ 0.01 of the Eddington accretion limit. This translates to an expected luminosity range of ~ 1035 to ~ 1036 ergs s-1 which is comparable to estimates of the total X-ray and γ -ray luminosity for LS I +61o 303. This research was supported in part by a grant from the Canadian Natural Sciences and Engineering Research Council at the University of British Columbia.

  18. High-energy astrophysics: A theoretical analysis of thermal radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1994-01-01

    The unambiguous detection of thermal radiation from the surface of a cooling neutron star was one of the most anxiously awaited results in neutron star physics. This particular Holy Grail was found by Halpern and Holt, who used ROSAT to detect pulsed X-rays from the gamma-ray source Geminga and demonstrate that it was a neutron star, probably a radio pulsar beamed away from us. At an age of approximately 3.4 x 10(exp 5) years, Geminga is in the photon cooling era. Its surface temperature of 5.2 x 10(exp 5) K can be explained within the contexts of both the slow and fast cooling scenarios. In the slow cooling scenario, the surface temperature is too high unless the specific heat of the interior is reduced by extensive baryon pairing. In the fast cooling scenario, the surface temperature will be much too low unless the fast neutrino cooling is shut off by baryon pairing. Two other pulsars, PSR 0656+14 and PSR 1055-52, have also been detected in thermal X-rays by ROSAT. They are also in the photon cooling era. All of this research's neutron star cooling models to date have used the unmagnetized effective temperature-interior temperature relation for the outer boundary condition. Models are being improved by using published magnetic envelope calculations and assumed geometried for the surface magnetic field to determine local interior temperature-emitted flux relations for the surface of the star.

  19. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  20. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    SciTech Connect

    Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

    2012-09-20

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

  1. The dynamics and outcomes of rapid infall onto neutron stars

    SciTech Connect

    Fryer, C.L.; Benz, W.; Herant, M.

    1996-04-01

    We present an extensive study of accretion onto neutron stars in which the velocity of the neutron star and structure of the surrounding medium is such that the Bondi-Hoyle accretion exceeds 10{sup 4} {ital M}{sub {circle_dot}} yr{sup 1}. Two types of initial conditions are considered for a range of entropies and chemical compositions: an atmosphere in pressure equilibrium above the neutron star, and a freely falling inflow of matter from infinity (also parameterized by the infall rate). We then evolve the system with one- and two-dimensional hydrodynamic codes to determine the outcome. For most cases, hypercritical (also termed ``super Eddington``) accretion caused by rapid neutrino cooling allows the neutron star to accrete above the Bondi-Hoyle rate as previously pointed out by Chevalier. However, for a subset of simulations which corresponds to evolutionarily common events, convection driven by neutrino heating can lead to explosions by a mechanism similar to that found in core-collapse supernovae. Armed with the results from our calculations, we are in a position to predict the fate of a range of rapid-infall neutron star accretors present in certain low-mass X-ray binaries, common envelope systems, supernova fallbacks, and Thorne-Zytkow objects (TZOs). A majority of the common envelope systems that we considered led to explosions expelling the envelope, halting the neutron star{close_quote}s inward spiral, and allowing the formation of close binary systems. As a result, the smothered neutron stars produced in the collisions studied by Davies & Benz may also explode, probably preventing them from forming millisecond pulsars. For the most massive supernovae, in which the fallback of material toward the neutron star after a successful explosion is large, we find that a black hole is formed in a few seconds. Finally, we argue that the current set of TZO formation scenarios is inadequate and leads instead to hypercritical accretion and black hole formation.

  2. Searching for substellar companions of young isolated neutron stars

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Neuhäuser, R.; Haberl, F.

    2009-03-01

    Context: Only two planetary systems orbiting old ms-pulsars have been discovered. Young radio pulsars and radio-quiet neutron stars cannot be analysed by the usually-applied radio-pulse-timing technique. However, finding substellar companions orbiting these neutron stars would be of significant importance: the companion may have had an exotic formation, its observation may also enable us to study neutron-star physics. Aims: We investigate the closest young neutron stars to Earth to search for orbiting substellar companions. Methods: Young, thus warm substellar companions are visible in the Near infrared, in which the neutron star itself is much fainter. Four young neutron stars are at sufficient speed to enable a common proper-motion search for substellar companions within few years. Results: For Geminga, RX J0720.4-3125, RX J1856.6-3754, and PSR J1932+1059 we found no comoving companion of masses as low as 12, 15, 11, and 42 Jupiter masses, respectively, for assumed ages of 1, 1, 1, and 3.1 Myr, and distances of 250, 361, 167, and 361 pc, respectively. Near infrared limits are presented for these four and five additional neutron stars for which we have observations for only one epoch. Conclusions: We conclude that young, isolated neutron stars rarely have brown-dwarf companions. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under programme IDs: 66.D-0135, 71.C-0189, 72.C-0051, 74.C-0596, 077.C-0162, 78.C-0686, 79.C-0570.

  3. R-mode constraints from neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Papazoglou, M. C.; Moustakidis, C. C.

    2016-03-01

    The gravitational radiation has been proposed a long time before, as an explanation for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars. Firstly, we employed a set of analytical solution of the Tolman-Oppenheimer-Volkoff equations with special emphasis on the Tolman VII solution. In particular, we tried to clarify the effects of the bulk neutron star properties (mass, radius, density distribution, crust size and elasticity) on the r-mode instability window. We found that the critical angular velocity \\varOmegac depends mainly on the neutron star radius. The effects of the gravitational mass and the mass distribution are almost negligible. Secondly, we studied the effect of the elasticity of the crust, via to the slippage factor S and also the effect of the nuclear equation of state, via the slope parameter L, on the instability window. We found that the crust effects are more pronounced, compared to those originated from the equation of state. Moreover, we proposed simple analytical expressions which relate the macroscopic quantity \\varOmegac to the radius, the parameter L and the factor {S}. We also investigated the possibility to measure the radius of a neutron star and the factor {S} with the help of accurate measures of \\varOmegac and the neutron star temperature. Finally, we studied the effects of the mutual friction on the instability window and discussed the results in comparison with previous similar studies.

  4. Atmospheres of Quiescent Low-Mass Neutron Stars

    NASA Astrophysics Data System (ADS)

    Karpov, Platon; Medin, Zachary; Calder, Alan; Lattimer, James M.

    2016-01-01

    Observations of the neutron stars in quiescent low-mass X-ray binaries are important for determining their masses and radii which can lead to powerful constraints on the dense matter nuclear equation of state. The interpretation of these sources is complex and their spectra differ appreciably from blackbodies. Further progress hinges on reducing the uncertainties stemming from models of neutron star atmospheres. We present a suite of low-temperature neutron star atmospheres of different chemical compositions (pure H and He). Our models are constructed over a range of temperatures [log(T/1 K)=5.3, 5.6, 5.9, 6.2, 6.5] and surface gravities [log(g/1 cm/s2)=14.0, 14.2, 14.4, 14.6]. We generated model atmospheres using zcode - a radiation transfer code developed at Los Alamos National Laboratory. In order to facilitate analytic studies, we developed three-parameter fits to our models, and also compared them to diluted blackbodies in the energy range of 0.4-5 keV (CXO/MGE). From the latter, we extract color-correction factors (fc), which represent the shift of the spectra as compared to a blackbody with the same effective temperature. These diluted blackbodies are also useful for studies of photspheric expansion X-ray bursts. We provide a comparison of our models to previous calculations using the McGill Planar Hydrogen Atmosphere Code (McPHAC). These results enhance our ability to interpret thermal emission from neutron stars and to constrain the mass-radius relationship of these exotic objects.This research was supported in part by the U.S. Department of Energy under grant DE-FG02-87ER40317 and by resources at the Institute for Advanced Computational Science at Stony Brook University. This research was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396.

  5. Suzaku spectroscopy of the neutron star transient 4U 1608-52 during its outburst decay.

    NASA Astrophysics Data System (ADS)

    Armas Padilla, M.; Ueda, Y.; Hori, T.; Shidatsu, M.; Muñoz-Darias, T.

    2017-01-01

    We test the proposed 3-component spectral model for neutron star low mass X-ray binaries using broad-band X-ray data. We have analysed 4 X-ray spectra (0.8-30 keV) obtained with Suzaku during the 2010 outburst of 4U 1608-52, which have allowed us to perform a comprehensive spectral study covering all the classical spectral states. We use a thermally Comptonized continuum component to account for the hard emission, as well as two thermal components to constrain the accretion disc and neutron star surface contributions. We find that the proposed combination of multicolor disc, single-temperature black body and Comptonization components successfully reproduces the data from soft to hard states. In the soft state, our study supports the neutron star surface (or boundary layer) as the dominant source for the Comptonization seed photons yielding the observed weak hard emission, while in the hard state both solutions, either the disc or the neutron star surface, are equally favoured. The obtained spectral parameters as well as the spectral/timing correlations are comparable to those observed in accreting black holes, which support the idea that black hole and neutron star low mass X-ray binaries undergo a similar state evolution during their accretion episodes.

  6. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  7. Instability windows and evolution of rapidly rotating neutron stars.

    PubMed

    Gusakov, Mikhail E; Chugunov, Andrey I; Kantor, Elena M

    2014-04-18

    We consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot, nonaccreting, rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB candidates. We also impose a new theoretical limit on the neutron star spin frequency, which can explain the cutoff spin frequency ∼730  Hz, following from the statistical analysis of accreting millisecond x-ray pulsars. In addition to explaining the observations, our model provides a new tool to constrain superdense matter properties by comparing measured and theoretically predicted resonance temperatures.

  8. Mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-03-01

    Black hole-neutron star binaries are ones of the most promising sources of gravitational waves for upcoming second-generation detectors. To confirm gravitational-wave detection and obtain as much information as possible, it is desirable to observe electromagnetic counterparts simultaneously. It has been pointed out by many authors that various electromagnetic signals are reasonably expected if substantial material is ejected during the binary merger. One plausible mechanism of mass ejection from black hole-neutron star binaries is tidal disruption of neutron stars by the tidal force exerted by black holes. A quantitative study of this dynamical mass ejection requires numerical-relativity simulations. We perform simulations of black hole-neutron star binaries focusing on the dynamical mass ejection for a range of binary parameters including equations of state of neutron star matter. We present important results such as masses and velocities of ejecta obtained by our simulations, and also discuss possible characteristics of electromagnetic counterparts to black hole-neutron star binaries. In particular, we focus on anisotropy and bulk velocity (i.e., the velocity component other than the expansion velocity) of the ejecta, and electromagnetic features resulting from them.

  9. Strangeness in nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  10. Extensive population synthesis of isolated neutron stars with field decay

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Boldin, P. A.; Miralles, J. A.; Pons, J. A.; Posselt, B.

    2011-09-01

    We perform population synthesis studies of different types of neutron stars (thermally emitting isolated neutron stars, normal radio pulsars, magnetars) taking into account the magnetic field decay and using results from the most recent advances in neutron star cooling theory. For the first time, we confront our results with observations using simultaneously the Log N--Log S distribution for nearby isolated neutron stars, the Log N--Log L distribution for magnetars, and the distribution of radio pulsars in the P--Ṗ diagram. For this purpose, we fix a baseline neutron star model (all microphysics input), and other relevant parameters to standard values (velocity distribution, mass spectrum, etc.), only allowing to vary the initial magnetic field strength. We find that our theoretical model is consistent with all sets of data if the initial magnetic field distribution function follows a log-normal law with < log(B0/[G])>~13.25 and σlog B0~0.6. The typical scenario includes about 10% of neutron stars born as magnetars, significant magnetic field decay during the first million years of a NS life (only about a factor of 2 for low field neutron stars but more than an order of magnitude for magnetars), and a mass distribution function dominated by low mass objects. This model explains satisfactorily all known populations. Evolutionary links between different subclasses may exist, although robust conclusions are not yet possible. We apply the obtained field distribution and the model of decay to study long-term evolution of neuton stars till the stage of accretion from the interstellar medium. It is shown that though the subsonic propeller stage can be relatively long, initially highly magnetized neutron stars (B0>~1013 G) reach the accretion regime within the Galactic lifetime if their kick velocities are not too large. The fact that in previous studies made >10 years ago, such objects were not considered results in a slight increase of the Accretor fraction in

  11. Gravitational Waves from Color-Magnetic ``Mountains'' in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Glampedakis, K.; Jones, D. I.; Samuelsson, L.

    2012-08-01

    Neutron stars may harbor the true ground state of matter in the form of strange quark matter. If present, this type of matter is expected to be a color superconductor, a consequence of quark pairing with respect to the color and flavor degrees of freedom. The stellar magnetic field threading the quark core becomes a color-magnetic admixture and, in the event that superconductivity is of type II, leads to the formation of color-magnetic vortices. In this Letter, we show that the volume-averaged color-magnetic vortex tension force should naturally lead to a significant degree of nonaxisymmetry in systems such as radio pulsars. We show that gravitational radiation from such color-magnetic “mountains” in young pulsars, such as the Crab and Vela, could be observable by the future Einstein Telescope, thus, becoming a probe of paired quark matter in neutron stars. The detectability threshold can be pushed up toward the sensitivity level of Advanced LIGO if we invoke an interior magnetic field about a factor ten stronger than the surface polar field.

  12. Gravitational waves from color-magnetic "mountains" in neutron stars.

    PubMed

    Glampedakis, K; Jones, D I; Samuelsson, L

    2012-08-24

    Neutron stars may harbor the true ground state of matter in the form of strange quark matter. If present, this type of matter is expected to be a color superconductor, a consequence of quark pairing with respect to the color and flavor degrees of freedom. The stellar magnetic field threading the quark core becomes a color-magnetic admixture and, in the event that superconductivity is of type II, leads to the formation of color-magnetic vortices. In this Letter, we show that the volume-averaged color-magnetic vortex tension force should naturally lead to a significant degree of nonaxisymmetry in systems such as radio pulsars. We show that gravitational radiation from such color-magnetic "mountains" in young pulsars, such as the Crab and Vela, could be observable by the future Einstein Telescope, thus, becoming a probe of paired quark matter in neutron stars. The detectability threshold can be pushed up toward the sensitivity level of Advanced LIGO if we invoke an interior magnetic field about a factor ten stronger than the surface polar field.

  13. Measuring neutron-star properties via gravitational waves from neutron-star mergers.

    PubMed

    Bauswein, A; Janka, H-T

    2012-01-06

    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.

  14. Hotspot or Heatwave? Getting to Grips with Neutron Star Burst Oscillations

    NASA Technical Reports Server (NTRS)

    Watts, A.

    2005-01-01

    Many accreting neutron stars, including two of the millisecond pulsars, exhibit high frequency oscillations during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. The mechanism that gives rise to the aspzetry, however , remains unclear: possibilities include a hotspot due to uneven fuel distribution, modes of oscillation in the surface layers of the neutron star, or vortices driven by the Coriolis force. I will review some of the latest theory and observations, and present the results of a recent study of variability in the burst oscillations of the millisecond pulsar 51814-338.

  15. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    SciTech Connect

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined.

  16. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars.

    PubMed

    Chakrabarty, Deepto; Morgan, Edward H; Muno, Michael P; Galloway, Duncan K; Wijnands, Rudy; Van Der Klis, Michiel; Markwardt, Craig B

    2003-07-03

    Millisecond pulsars are neutron stars that are thought to have been spun-up by mass accretion from a stellar companion. It is not known whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many neutron stars that are accreting mass from a companion star exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond-period brightness oscillations during bursts from ten neutron stars (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting neutron stars, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most neutron-star models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.

  17. The Quiescent Neutron Star and Hierarchical Triple, 4U2129+47

    NASA Astrophysics Data System (ADS)

    Nowak, Michael; Chakrabarty, Deepto; Wilms, Joern; Kühnel, Matthias

    2016-04-01

    4U 2129+47 is a quiescent, eclipsing neutron star that 35 years ago showed typical "Accretion Disk Corona" (ADC) behavior akin to the prototype of the class, X1822-371. Now faded, 4U 2129+47 provides tests of neutron star quiescent emission. It has shown low temperature thermal emission (the neutron star surface), a power law tail (of unknown origin, although possibly due to a pulsar wind interacting with an incoming accretion stream; Campana et al. 1998), and sinusoidally modulated absorption (the disk) as well as periodic X-ray eclipses. Subsequent XMM-Newton and Chandra observations, taken 2007 through Fall 2015, indicate that the hard tail and sinusoidal modulation disappeared, as if the accretion stream and disk have vanished. With the intiial loss of the hard tail, the soft X-ray flux also dropped, but since has remained steady, showing no signs of further neutron star cooling in the subsequent 8 years. We compare this behavior to recent NuSTAR observations of the quiescent neutron star Cen X-4, where the hard tail seems to persist over a wider range of quiescent flux, and correlate with the soft X-ray. It also has been speculated that 4U 2129+47 is part of a hierarchical triple system, with the third body in a much longer orbit. We use the Chandra and XMM-Newton eclipse ephemeris residuals to describe this third body orbit.

  18. On the mass distribution of neutron stars

    NASA Astrophysics Data System (ADS)

    Valentim, R.; Rangel, E.; Horvath, J. E.

    2011-06-01

    The distribution of masses for neutron stars is analysed using the Bayesian statistical inference, evaluating the likelihood of the proposed Gaussian peaks by using 54 measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37 M⊙ and a much wider second peak at 1.73 M⊙. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to 'label' the systems has been made here). They also accommodate the recent findings of ˜M⊙ masses quite naturally. Finally, we explore the existence of a subgroup around 1.25 M⊙, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to the O-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.

  19. Young Neutron Stars in Extragalactic Supernovae

    NASA Astrophysics Data System (ADS)

    Tehrani, Nathan; Lorimer, D. R.

    2012-01-01

    Pulsars are compact remnants of stellar cores left behind by supernova explosions. They spin rapidly and emit electromagnetic radiation from their magnetic poles, and gradually lose rotational energy. This project tests and expands upon a previous prediction by Perna et al. for the initial spin rates of neutron stars by attempting to model the x-ray emission from extragalactic supernovae. A computer simulation generated a set of pulsars of known initial rotational periods, magnetic field strengths, and ages, and will calculate the expected x-ray luminosities from the known relationship between magnetic field strengths, slow-down rates, and radio luminosities. This experiment expanded upon the original research by incorporating variability in the angle between the magnetic and rotational axes of each pulsar as well as the braking index value, which in the original publication were kept constant. This examines the effect of the angle on pulsars’ x-ray luminosities. The simulated x-ray luminosities were compared to the known x-ray luminosities of known supernova explosions, which served as an upper limit to determine the highest possible initial rotation speeds. Funding was provided through the WVU Summer Undergraduate Research Program.

  20. Physics of systems containing neutron stars

    NASA Astrophysics Data System (ADS)

    Shaham, Jacob

    1995-01-01

    This grant deals with several topics related to the dynamics of systems containing a compact object. Most of our research in 1994 dealt with systems containing Neutron Stars (NS's), but we also addressed systems containing a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's) Low Mass X-Ray Binaries (LMX's) and Cataclysmic Variables (CV's). We also dealt with one aspect of NS structure, namely NS superfluidity. A large fraction of our research dealt with irradiation-driven winds from companions. These winds turned out to be of some importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's.

  1. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  2. Pulse profiles from spinning neutron stars in the Hartle-Thorne approximation

    SciTech Connect

    Psaltis, Dimitrios; Özel, Feryal E-mail: fozel@email.arizone.edu

    2014-09-10

    We present a new numerical algorithm for the calculation of pulse profiles from spinning neutron stars in the Hartle-Thorne approximation. Our approach allows us to formally take into account the effects of Doppler shifts and aberration, of frame dragging, as well as of the oblateness of the stellar surface and of its quadrupole moment. We confirm an earlier result that neglecting the oblateness of the neutron-star surface leads to ≅ 5%-30% errors in the calculated profiles and further show that neglecting the quadrupole moment of its spacetime leads to ≅ 1%-5% errors at a spin frequency of ≅ 600 Hz. We discuss the implications of our results for the measurements of neutron-star masses and radii with upcoming X-ray missions, such as NASA's NICER and ESA's LOFT.

  3. The force-free twisted magnetosphere of a neutron star

    NASA Astrophysics Data System (ADS)

    Akgün, T.; Miralles, J. A.; Pons, J. A.; Cerdá-Durán, P.

    2016-10-01

    We present a detailed analysis of the properties of twisted, force-free magnetospheres of non-rotating neutron stars, which are of interest in the modelling of magnetar properties and evolution. In our models the magnetic field smoothly matches to a current-free (vacuum) solution at some large external radius, and they are specifically built to avoid pathological surface currents at any of the interfaces. By exploring a large range of parameters, we find a few remarkable general trends. We find that the total dipolar moment can be increased by up to 40 per cent with respect to a vacuum model with the same surface magnetic field, due to the contribution of magnetospheric currents to the global magnetic field. Thus, estimates of the surface magnetic field based on the large-scale dipolar braking torque are slightly overestimating the surface value by the same amount. Consistently, there is a moderate increase in the total energy of the model with respect to the vacuum solution of up to 25 per cent, which would be the available energy budget in the event of a fast, global magnetospheric reorganization commonly associated with magnetar flares. We have also found the interesting result of the existence of a critical twist (ϕmax ≲ 1.5 rad), beyond which we cannot find any more numerical solutions. Combining the models considered in this paper with the evolution of the interior of neutron stars will allow us to study the influence of the magnetosphere on the long-term magnetic, thermal, and rotational evolution.

  4. Neutron stars within a relativistic central variational method

    NASA Astrophysics Data System (ADS)

    Hu, Jinniu; Shen, Hong; Toki, Hiroshi

    2017-02-01

    The properties of neutron stars are investigated within the relativistic central variational method by using a realistic nucleon-nucleon (N N ) interaction. The strong repulsion of realistic N N interactions at short distances is treated by a Jastrow central correlation function, whose form is completely determined through minimization of the total energy of the nuclear many-body system. The relativistic Hartree-Fock wave functions are chosen as the trial wave function. In this framework, the equation of state of the neutron star matter in β equilibrium is obtained self-consistently. We further determine the properties of neutron stars via the Tolman-Oppenheimer-Volkoff equation using Bonn A, B, and C potentials. The maximum masses of neutron stars with these realistic potentials are around 2.18 M⊙ and their corresponding radii are around 11 km. These results are in accordance with the calculations of the relativistic Brueckner-Hartree-Fock theory with the same potentials. Furthermore, we also find that the splitting of proton-neutron effective masses will be reversed at high density in the neutron star matter, which are caused by the contribution of short-range correlation on kinetic energy.

  5. The Intermediate Neutron-capture Process and Carbon-enhanced Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Hampel, Melanie; Stancliffe, Richard J.; Lugaro, Maria; Meyer, Bradley S.

    2016-11-01

    Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium, respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP-s/r stars, which show both Ba and Eu enrichment, are particularly puzzling, since the s and the r processes require neutron densities that are more than ten orders of magnitude apart and, hence, are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patterns of CEMP-s/r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterized by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 107-1015 cm-3. With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns, which show an increased production of heavy s-process and r-process elements, but similar abundances of the light s-process elements. Such high values of n may occur in the thermal pulses of asymptotic giant branch stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP-s/r stars shows that our modeled i-process abundances successfully reproduce observed abundance patterns, which could not be previously explained by s-process nucleosynthesis. Because the i-process models fit the abundances of CEMP-s/r stars so well, we propose that this class should be renamed as CEMP-i.

  6. Surface abundances of ON stars

    NASA Astrophysics Data System (ADS)

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  7. Quark-hadron composition of rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Mellinger, Richard D., Jr.

    It is well known that isolated neutron stars spin down over time through magnetic braking. To maintain hydrostatic equilibrium as they do so, the density profile of the star changes. At densities as high as those expected to exist in the interiors of neutron stars, this can lead to changes in the state of matter found there. Given several models for the nuclear equations of state, we use numerical techniques to determine, for each, the quark-hadron composition for varying frequencies and the results are presented in both tabular and graphical forms. The CD-ROM, an appendix to this thesis, is available for viewing at the Media Center of the Library.

  8. A strongly heated neutron star in the transient z source MAXI J0556-332

    SciTech Connect

    Homan, Jeroen; Remillard, Ronald A.; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  9. Strong neutrino cooling by cycles of electron capture and decay in neutron star crusts

    SciTech Connect

    Schatz, Hendrik; Gupta, Sanjib; Moeller, Peter; Beard, Mary; Brown, Edward; Deibel, A. T.; Gasques, Leandro; Hix, William Raphael; Keek, Laurens; Lau, Rita; Steiner, Andrew M; Wiescher, Michael

    2013-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This Urca mechanism has been studied in the context of white dwarfs13 and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models1, 2 computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface.

  10. Supergiant pulses from extragalactic neutron stars

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Wasserman, Ira

    2016-03-01

    We consider radio bursts that originate from extragalactic neutron stars (NSs) by addressing three questions about source distances. What are the physical limitations on coherent radiation at GHz frequencies? Do they permit detection at cosmological distances? How many bursts per NS are needed to produce the inferred burst rate ˜103-104sky-1 d-1? The burst rate is comparable to the NS formation rate in a Hubble volume, requiring only one per NS if they are bright enough. Radiation physics suggests a closer population, requiring more bursts per NS and increasing the chances for repeats. Bursts comprise sub-ns, coherent shot pulses superposed incoherently to produce ms-duration ˜1 Jy amplitudes; each shot pulse can be much weaker than 1 Jy, placing less restrictive requirements on the emission process. None the less, single shot pulses are similar to the extreme, unresolved (<0.4 ns) MJy shot pulse seen from the Crab pulsar, consistent with coherent curvature radiation emitted near the light cylinder by an almost neutral clump with net charge ˜± 1021e and total energy ≳ 1023 erg. Bursts from Gpc distances require incoherent superposition of {˜ } 10^{12}d_Gpc^2 shot pulses or a total energy ≳ 10^{35} d_Gpc^2 erg. The energy reservoir near the light cylinder limits the detection distance to ≲ few × 100 Mpc for a fluence ˜1 Jy ms unless conditions are more extreme than for the Crab pulsar, such as in magnetars. We discuss contributions to dispersion measures from galaxy clusters and we propose tests for the overall picture presented.

  11. The Case of the Neutron Star With a Wayward Wake

    NASA Astrophysics Data System (ADS)

    2006-06-01

    A long observation with NASA's Chandra X-ray Observatory has revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location of the neutron star on the edge of a supernova remnant, and the peculiar orientation of the neutron star wake, pose mysteries that remain unresolved. "Like a kite flying in the wind, the behavior of this neutron star and its wake tell us what sort of gas it must be plowing through," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper accepted to The Astrophysical Journal. "Yet we're still not sure how the neutron star got to its present location." Animation: Sequence of images of J0617 in IC 443 Animation: Sequence of images of J0617 in IC 443 The neutron star, known as CXOU J061705.3+222127, or J0617 for short, appears to lie near the outer edge of an expanding bubble of hot gas associated with the supernova remnant IC 443. Presumably, J0617 was created at the time of the supernova -- approximately 30,000 years ago -- and propelled away from the site of the explosion at about 500,000 miles per hour. However, the neutron star's wake is oriented almost perpendicularly to the direction expected if the neutron star were moving away from the center of the supernova remnant. This apparent misalignment had previously raised doubts about the association of the speeding neutron star with the supernova remnant. Gaensler and his colleagues provide strong evidence that J0617 was indeed born in the same explosion that created the supernova remnant. First, the shape of the neutron star's wake indicates it is moving a little faster than the speed of sound in Composite Images of SNR IC 443 Composite Images of SNR IC 443 the remnant's multimillion-degree gas. The velocity that one can then calculate from this conclusion closely matches the predicted pace of the neutron star. In contrast, if the neutron

  12. Hard X-ray spectra of neutron stars and black hole candidates

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.

    1997-01-01

    The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.

  13. Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars

    DOE PAGES

    Gandolfi, S.

    2015-02-01

    We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.

  14. Electrodynamics of disk-accreting magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  15. The Fate of the Compact Remnant in Neutron Star Mergers

    DOE PAGES

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; ...

    2015-10-06

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less

  16. The Fate of the Compact Remnant in Neutron Star Mergers

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W.

    2015-10-06

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  17. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    SciTech Connect

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-05-20

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  18. Searching for gravitational waves from neutron stars

    NASA Astrophysics Data System (ADS)

    Idrisy, Ashikuzzaman

    In this dissertation we discuss gravitational waves (GWs) and their neutron star (NS) sources. We begin with a general discussion of the motivation for searching for GWs and the indirect experimental evidence of their existence. Then we discuss the various mechanisms through which NS can emit GWs, paying special attention the r-mode oscillations. Finally we end with discussion of GW detection. In Chapter 2 we describe research into the frequencies of r-mode oscillations. Knowing these frequencies can be useful for guiding and interpreting gravitational wave and electromagnetic observations. The frequencies of slowly rotating, barotropic, and non-magnetic Newtonian stars are well known, but subject to various corrections. After making simple estimates of the relative strengths of these corrections we conclude that relativistic corrections are the most important. For this reason we extend the formalism of K. H. Lockitch, J. L. Friedman, and N. Andersson [Phys. Rev. D 68, 124010 (2003)], who consider relativistic polytropes, to the case of realistic equations of state. This formulation results in perturbation equations which are solved using a spectral method. We find that for realistic equations of state the r-mode frequency ranges from 1.39--1.57 times the spin frequency of the star when the relativistic compactness parameter (M/R) is varied over the astrophysically motivated interval 0.110--0.310. Following a successful r-mode detection our results can help constrain the high density equation of state. In Chapter 3 we present a technical introduction to the data analysis tools used in GW searches. Starting from the plane-wave solutions derived in Chapter 1 we develop the F-statistic used in the matched filtering technique. This technique relies on coherently integrating the GW detector's data stream with a theoretically modeled wave signal. The statistic is used to test the null hypothesis that the data contains no signal. In this chapter we also discuss how to

  19. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    SciTech Connect

    Medin, Zach; Cumming, Andrew E-mail: cumming@physics.mcgill.ca

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  20. Constraining the mass-radius relation of neutron stars through superbursts

    NASA Astrophysics Data System (ADS)

    In't Zand, Jean

    2011-10-01

    Superbursts are thermonuclear X-ray flashes on neutron stars that last up to 14~hr. We propose to carry out 2 quick 25 ks XMM-Newton triggered observations on superbursts from any of 30 (candidate) superbursters that persistently radiate at 30% of Eddington or slower, with the purpose to carry out X-ray spectroscopy of the neutron star surface and constrain the mass-radius relation and equation of state of neutron stars. We will make use of superburst alerts from INTEGRAL/IBIS, Swift/BAT and ISS-MAXI. The potential of this program is at least as good as that of the program on EXO 0748-676, but at much reduced exposure requirements (50 ks in total).

  1. Constraining the mass-radius relation of neutron stars through superbursts

    NASA Astrophysics Data System (ADS)

    in't Zand, Jean

    2010-10-01

    Superbursts are thermonuclear X-ray flashes on neutron stars that last up to 14 hr. We propose to carry out 2 quick 25 ks XMM-Newton triggered observations on superbursts from any of 23 (candidate) superbursters that persistently radiate at 30% of Eddington or slower, to carry out high-resolution X-ray spectroscopy of the neutron star surface and constrain the mass-radius relation and equation of state of neutron stars. We will make use of superburst alerts from INTEGRAL/IBIS and Swift/BAT. The potential of this program is at least as good as that of the program on EXO 0748-676, but at much reduced exposure requirements (50 ks in total).

  2. A Coincident Search for Radio and Gravitational Waves from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Cardena, Brett

    2011-05-01

    The merger of neutron star-neutron star binary pairs may be accompanied by the prompt emission of a coherent low-frequency radio pulse. This radio transient is produced as synchrotron radiation caused by the spin and rotation of the surface charge density of a pulsar through the magnetosphere of a larger neutron star, usually referred to as a Magnetar . This type of merger event would also result in the release of a gravitational coalescence wave-form. We will discuss a coincident radio transient and gravitational wave search. This search is being conducted by two radio telescope arrays: The Long Wave Array (LWA) and the Eight-meter-wavelength Transient Array (ETA) in coordination with the Laser Interferometer Gravitational-Wave Observatory (LIGO). We will outline this ongoing coincident search and discuss some preliminary results.

  3. Superfluid hydrodynamics in the inner crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Martin, Noël; Urban, Michael

    2016-12-01

    The inner crust of neutron stars is supposed to be inhomogeneous and composed of dense structures (clusters) that are immersed in a dilute gas of unbound neutrons. Here we consider spherical clusters forming a body-centered cubic (BCC) crystal and cylindrical rods arranged in a hexagonal lattice. We study the relative motion of these dense structures and the neutron gas using superfluid hydrodynamics. Within this approach, which relies on the assumption that Cooper pairs are small compared to the crystalline structures, we find that the entrainment of neutrons by the clusters is very weak since neutrons of the gas can flow through the clusters. Consequently, we obtain a low effective mass of the clusters and a superfluid density that is even higher than the density of unbound neutrons. Consequences for the constraints from glitch observations are discussed.

  4. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  5. Neutrino flavor evolution in binary neutron star merger remnants

    NASA Astrophysics Data System (ADS)

    Frensel, Maik; Wu, Meng-Ru; Volpe, Cristina; Perego, Albino

    2017-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti)neutrino absorption rates on free nucleons and may thus impact the r -process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

  6. Thermonuclear Burning as a Probe of Neutron Star

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2008-01-01

    Thermonuclear fusion is a fundamental process taking place in the matter transferred onto neutron stars in accreting binary systems. The heat deposited by nuclear reactions becomes readily visible in the X-ray band when the burning is either unstable or marginally stable, and results in the rich phenomenology of X-ray bursts, superbursts, and mHz quasiperiodic oscillations. Fast X-ray timing observations with NASA's Rossi X-ray Timing Explorer (RXTE) over the past decade have revealed a wealth of new phenomena associated with thermonuclear burning on neutron stars, including the discovery of nuclear powered pulsations during X-ray bursts and superbursts. I will briefly review our current observational and theoretical understanding of these new phenomena, with an emphasis on recent findings, and discuss what they are telling us about the structure of neutron stars.

  7. Persistent crust-core spin lag in neutron stars

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Lasky, Paul D.

    2015-06-01

    It is commonly believed that the magnetic field threading a neutron star provides the ultimate mechanism (on top of fluid viscosity) for enforcing long-term corotation between the slowly spun-down solid crust and the liquid core. We show that this argument fails for axisymmetric magnetic fields with closed field lines in the core, the commonly used `twisted torus' field being the most prominent example. The failure of such magnetic fields to enforce global crust-core corotation leads to the development of a persistent spin lag between the core region occupied by the closed field lines and the rest of the crust and core. We discuss the repercussions of this spin lag for the evolution of the magnetic field, suggesting that, in order for a neutron star to settle to a stable state of crust-core corotation, the bulk of the toroidal field component should be deposited into the crust soon after the neutron star's birth.

  8. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  9. Gamma-ray bursts and neutron star field decay

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter; Blumenthal, George; Chuang, Kuan-Wen; Hurley, Kevin; Kargatis, Vincent; Liang, Edison; Linder, Eric

    1992-01-01

    Assuming a Galactic origin of gamma-ray bursts, we use pulsar data to calculate the spatial distribution of neutron stars and determine the sampling depths of current detectors. Based on these distance limits, we calculate the corresponding age distribution of Galactic neutron stars and apply an exponential field decay model to test whether the observed high incidence rate of cyclotron lines is consistent with suggested field decay time scales of order 10 exp 7 years. We find that the properties of the observed population of gamma-ray bursts are inconsistent with the idea that bursts originate at arbitrary times on neutron stars whose fields decay on time scales shorter than about 10 exp 9 years. Possible interpretations of this inconsistency are discussed.

  10. Predicting neutron star properties based on chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Laduke, Alison; Sammarruca, Francesca

    2016-09-01

    The energy per nucleon as a function of density, known as the nuclear equation of state, is the crucial input in the structure equations of neutron stars and thus establishes the connection between nuclear physics and compact astrophysical objects. More precisely, the pressure which supports the star against gravitational collapse is mostly determined by the nature of the equation of state of highly neutron-rich matter. In this contribution, we will report on our work in progress to calculate neutron star masses and radii. The equation of state is obtained microscopically from Brueckner-Hartree-Fock calculations based on state-of-the-art nuclear forces which have been developed within the framework of chiral effective field theory. The latter has become popular in recent years as a fundamental and systematic approach firmly connected to low-energy quantum chromodynamics. Supported by the Hill Undergraduate Fellowship and the U.S. Department of Energy.

  11. Merger of binary neutron stars in numerical relativity

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2014-09-01

    The merger of binary neutron stars is one of most promising sources of gravitational waves. It is also a promising candidate for the central engine of short-hard gamma-ray bursts and a source of the strong transient electromagnetic signal that could be the counterpart of gravitational-wave signals. Numerical relativity is probably the unique tool for theoretically exploring the merger process, and now, it is powerful enough to provide us a wide variety of aspects of the binary-neutron-star merger. In this talk, I will summarize our current understanding of the entire merger event that is obtained by a large-scale numerical-relativity simulations. In particular, I focus on the relation between the neutron-star equation of state and gravitational waves emitted during the late inspiral and merger phase, and observable electromagnetic signal that is likely to be emitted by the dynamical ejecta through r-process nucleosynthesis.

  12. Ultrarelativistic electromagnetic counterpart to binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-01-01

    We propose a possibility of ultrarelativistic electromagnetic counterparts to gravitational waves from binary neutron star mergers at nearly all the viewing angles. Our proposed mechanism relies on the merger-shock propagation accelerating a smaller mass in the outer parts of the neutron star crust to a larger Lorentz factor Γ with smaller energy ˜1047Γ-1 erg. This mechanism is difficult to resolve by current 3D numerical simulations. The outflows emit synchrotron flares for seconds to days by shocking the ambient medium. Ultrarelativistic flares shine at an early time and in high-energy bands, potentially detectable by current X-ray to radio instruments, such as Swift XRT and Pan-STARRS, and even in low ambient density ˜10-2 cm-3 by EVLA. The flares probe the merger position and time, and the merger types as black hole-neutron star outflows would be non-/mildly relativistic.

  13. r-MODE Runaway and Rapidly Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Stergioulas, Nikolaos; Kokkotas, Kostas D.; Andersson, Nils; Jones, David Ian

    2002-12-01

    We present a simple spin evolution model that predicts that rapidly rotating accreting neutron stars will mainly be confined to a narrow range of spin-frequencies; P = 1.5 - 5 ms. This is in agreement with current observations of both neutron stars in the Low-Mass X-ray Binaries and millisecond radio pulsars. The main ingredients in the model are: i) the instability of r-modes above a critical spin rate, ii) thermal runaway due to heat released as viscous damping mechanisms counteract the r-mode growth, and iii) a revised estimate of the strength of dissipation due to the presence of a viscous boundary layer at the base of the crust in an old and relatively cold neutron star...

  14. Colloquium: Measuring the neutron star equation of state using x-ray timing

    DOE PAGES

    Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; ...

    2016-04-13

    One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star s rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photonsmore » propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermo- nuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter

  15. Colloquium: Measuring the neutron star equation of state using x-ray timing

    SciTech Connect

    Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Miller, M. Coleman; Morsink, Sharon; Ozel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; van der Klis, Michiel

    2016-04-13

    One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star s rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermo- nuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation

  16. Colloquium: Measuring the neutron star equation of state using x-ray timing

    NASA Astrophysics Data System (ADS)

    Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel

    2016-04-01

    One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of

  17. Magnetized neutron stars with superconducting cores: effect of entrainment

    NASA Astrophysics Data System (ADS)

    Palapanidis, K.; Stergioulas, N.; Lander, S. K.

    2015-09-01

    We construct equilibrium configurations of magnetized, two-fluid neutron stars using an iterative numerical method. Working in Newtonian framework we assume that the neutron star has two regions: the core, which is modelled as a two-component fluid consisting of type-II superconducting protons and superfluid neutrons, and the crust, a region composed of normal matter. Taking a new step towards more complete equilibrium models, we include the effect of entrainment, which implies that a magnetic force acts on neutrons, too. We consider purely poloidal field cases and present improvements to an earlier numerical scheme for solving equilibrium equations, by introducing new convergence criteria. We find that entrainment results in qualitative differences in the structure of field lines along the magnetic axis.

  18. Pairing gap in the inner crust of neutron stars

    SciTech Connect

    Esbensen, H.; Broglia, R.A.; Vigezzi, E.; Barranco, F.

    1995-08-01

    The pairing gap in the inner crust of a neutron star can be strongly affected by the presence of heavy nuclei. The effect is commonly estimated in a semiclassical description, using the local density approximation. It was found that the nuclear specific heat can become comparable to the electronic specific heat at certain densities and temperatures. The quantitative result depends critically upon the magnitude of the pairing gap. We therefore decided to assess the validity of the semiclassical approach. This is done by solving the quantal BCS pairing gap equation for neutrons that are confined to the Wigner-Seitz cell that surrounds a heavy nucleus. We performed calculations that are based on the Gogny pairing force. They are feasible for realistic densities of neutrons and heavy nuclei that are expected to be found in the inner crust of neutron stars. The results will be compared to the semiclassical predictions. This work is in progress.

  19. A propelling neutron star in the enigmatic Be-star γ Cassiopeia

    NASA Astrophysics Data System (ADS)

    Postnov, K.; Oskinova, L.; Torrejón, J. M.

    2017-02-01

    γ Cassiopeia (γ Cas), is known to be a binary system consisting of a Be-type star and a low-mass (M ˜ 1 M⊙) companion of unknown nature orbiting in the Be-disc plane. Here, we apply the quasi-spherical accretion theory on to a compact magnetized star and show that if the low-mass companion of γ Cas is a fast spinning neutron star, the key observational signatures of γ Cas are remarkably well reproduced. Direct accretion on to this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed which emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from γ Cas. We suggest that γ Cas and its analogues constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of γ Cas and its analogues should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from γ Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries.

  20. An accurate metric for the spacetime around rotating neutron stars.

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2017-01-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parameterised by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parameterisation of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a 3-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  1. The collapse of white dwarfs to neutron stars

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Baron, E.

    1992-01-01

    The observable consequences of an accreting white dwarf collapsing directly to a neutron star are considered. The outcome depends critically upon the nature of the wind that is driven by neutrino absorption in the surface layers as the dwarf collapses. Unlike previous calculations which either ignored mass loss or employed inadequate zoning to resolve it, a characteristic mass-loss rate of about 0.005 solar mass/s and an energy input of 5 x 10 exp 50 ergs/s is found. Such a large mass-loss rate almost completely obscures any prompt electromagnetic display and certainly rules out the production by this model of gamma-ray bursts situated at cosmological distances. The occurrence of such collapses with the Milky Way Galaxy might, however, be detected and limited by their nucleosynthesis and gamma-ray line emission. To avoid the overproduction of rare neutron-rich isotopes heavier than iron, such events must be very infrequent, probably happening no more than once every thousand years.

  2. THE FATE OF THE COMPACT REMNANT IN NEUTRON STAR MERGERS

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W.

    2015-10-10

    Neutron star (binary neutron star and neutron star–black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3–2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  3. The Many Faces - and Phases - of Neutron Stars

    SciTech Connect

    Piekarewicz, J.

    2007-10-26

    Understanding the equation of state (EOS) of nuclear matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the EOS of cold baryonic matter with special emphasis on its impact on the structure and dynamics of neutron stars. In particular, I will discuss the many fascinating phases that one encounters as one travels from the low-density crust to the high-density core.

  4. Hall-drift induced magnetic field instability in neutron stars.

    PubMed

    Rheinhardt, M; Geppert, U

    2002-03-11

    In the presence of a strong magnetic field and under conditions as realized in the crust and the superfluid core of neutron stars, the Hall drift dominates the field evolution. We show by a linear analysis that, for a sufficiently strong large-scale background field depending at least quadratically on position in a plane conducting slab, an instability occurs which rapidly generates small-scale fields. Their growth rates depend on the choice of the boundary conditions, increase with the background field strength, and may reach 10(3) times the Ohmic decay rate. The effect of that instability on the rotational and thermal evolution of neutron stars is discussed.

  5. Neutron stars and the distance to gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.; Hurley, Kevin C.

    1991-01-01

    Assuming that gamma-ray bursts originate from galactic neutron stars, an analytic method for studying their statistical properties is outlined. If a significant fraction of all neutron stars are born with space velocities of less than approximately 100 km/s, as suggested by studies of pulsar statistics, then the sampling distance to gamma-ray burst sources should be less than about several hundred pc. These results have important implications on theories of radio-pulsar evolution and magnetic-field decay.

  6. Observing quantum vacuum lensing in a neutron star binary system.

    PubMed

    Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F

    2005-04-29

    In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039.

  7. The Merger Rate of Neutron Star Binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Bailes, M.

    The major uncertainties in the merger rates of neutron star binaries are discussed, as well as a method of placing an upper limit on the binary neutron star population using simple ratios. We find that the merger rate is most unlikely to be greater than 10-5 yr -1 in our Galaxy, but is almost certainly greater than 10-7 yr-1. The prospects for hardening the merger rate in the near future are relatively bleak, with recent deep surveys failing to discover any systems capable of merging within a Hubble time. Other possible mergers involving black holes are briefly discussed.

  8. X-ray spectra from convective photospheres of neutron stars

    SciTech Connect

    Zavlin, V.E.; Pavlov, G.G. |; Shibanov, Yu.A.; Rogers, F.J.; Iglesias, C.A.

    1996-01-17

    We present first results of modeling convective photospheres of neutron stars. We show that in photospheres composed of the light elements convection arises only at relatively low effective temperatures ({le}3 - 5 x 10{sup 4} K), whereas in the case of iron composition it arises at T{sub eff}{le} 3 x 10{sup 5}K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. Thus, it should be taken into account for the proper interpretation of EUV/soft-X-ray observations of the thermal radiation from neutron stars.

  9. Gravitational Waves and the Maximum Spin Frequency of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Patruno, Alessandro; Haskell, Brynmor; D'Angelo, Caroline

    2012-02-01

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient to explain the observations. We show as well that no clear correlation exists between the neutron star magnetic field B and the X-ray outburst luminosity LX when considering an enlarged sample size of millisecond X-ray pulsars.

  10. GRAVITATIONAL WAVES AND THE MAXIMUM SPIN FREQUENCY OF NEUTRON STARS

    SciTech Connect

    Patruno, Alessandro; Haskell, Brynmor; D'Angelo, Caroline

    2012-02-10

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient to explain the observations. We show as well that no clear correlation exists between the neutron star magnetic field B and the X-ray outburst luminosity L{sub X} when considering an enlarged sample size of millisecond X-ray pulsars.

  11. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    NASA Technical Reports Server (NTRS)

    Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1981-01-01

    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.

  12. Neutron star matter in an effective model

    SciTech Connect

    Jha, T. K.; Raina, P. K.; Panda, P. K.; Patra, S. K.

    2006-11-15

    We study an equation of state (EOS) for dense matter in the core of a compact star with hyperons and calculate the star's structure in an effective model using a mean-field approach. With varying incompressibility and effective nucleon mass, we analyze the resulting EOS with hyperons in {beta} equilibrium and their underlying effect on the gross properties of the compact star sequences. The results obtained in our analysis are compared with predictions of other theoretical models and observations. The maximum mass of a compact star lies in the range 1.21-1.96M{sub {center_dot}} for the different EOS obtained in the model.

  13. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars

  14. Strangeness in nuclei and neutron stars: A challenging puzzle

    DOE PAGES

    Lonardoni, Diego; Lovato, Alessandro; Gandolfi, Stefano; ...

    2016-03-25

    The prediction of neutron stars properties is strictly connected to the employed nuclear interactions. The appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying hypernuclear force. Here, we summarize our recent quantum Monte Carlo results on the development of realistic two- and threebody hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei.

  15. Neutron star natal kicks and the long-term survival of star clusters

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  16. The neutron star and black hole initial mass function

    SciTech Connect

    Timmes, F.X. |

    1996-02-01

    Using recently calculated models for massive stellar evolution and supernovae coupled to a model for Galactic chemical evolution, neutron star and black hole birth functions (number of neutron stars and black holes as a function of their mass) are determined for the Milky Way galaxy. For these stars that explode as Type II supernovae, the models give birth functions that are bimodal with peaks at 1.27 and 1.76 {ital M}{sub {circle_dot}} and average masses within those peaks of 1.28 and 1.73 {ital M}{sub {circle_dot}}. For these stars that explode as Type Ib there is a narrower spread of remnant masses, the average being 1.32 {ital M}{sub {circle_dot}}, and less evidence for bimodality. These values will be increased, especially in the more massive Type II supernovae, if significant accretion continues during the initial launching of the shock, and the number of heavier neutron stars could be depleted by black hole formation. The principal reason for the dichotomy in remnant masses for Type II is the difference in the presupernova structure of stars above and below 19 {ital M}{sub {circle_dot}}, the mass separating stars that burn carbon convectively from those that produce less carbon and burn radiatively. The Type Ib{close_quote}s and the lower mass group of the Type II{close_quote}s compare favorably with measured neutron star masses, and in particular to the Thorsett {ital et} {ital al}. (1993) determination of the average neutron star mass in 17 systems; 1.35{plus_minus}0.27 {ital M}{sub {circle_dot}}. Variations in the exponent of a Salpeter initial mass function are shown not to affect the locations of the two peaks in the distribution function, but do affect their relative amplitudes. Sources of uncertainty, in particular placement of the mass cut and sensitivity to the explosion energy, are discussed, and estimates of the total number of neutron stars and black holes in the Galaxy are given. (Abstract Truncated)

  17. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to

  18. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Kobyakov, D. N.; Pethick, C. J.

    2017-02-01

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  19. Extreme neutron stars from Extended Theories of Gravity

    SciTech Connect

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  20. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    SciTech Connect

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-15

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z{<=}6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including {sup 24}O+{sup 24}O and {sup 28}Ne+{sup 28}Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear {sup 24}O+{sup 24}O fusion and find that {sup 24}O should burn at densities near 10{sup 11} g/cm{sup 3}. The energy released from this and similar reactions may be important for the temperature profile of the star.

  1. CONSTRAINTS ON THE NEUTRON STAR AND INNER ACCRETION FLOW IN SERPENS X-1 USING NuSTAR

    SciTech Connect

    Miller, J. M.; Parker, M. L.; Fabian, A. C.; Fuerst, F.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Rana, V.; Bachetti, M.; Barret, D.; Boggs, S. E.; Craig, W. W.; Tomsick, J. A.; Chakrabarty, D.; Christensen, F. E.; Hailey, C. J.; Paerels, F.; Natalucci, L.; Stern, D. K.; Zhang, W. W.

    2013-12-10

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering ''hump'' peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z {sub NS} ≥ 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z {sub NS} ≥ 0.22 and R {sub NS} ≤ 12.6 km (assuming M {sub NS} = 1.4 M {sub ☉} and a = 0, where a = cJ/GM {sup 2}). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  2. A NuSTAR observation of disc reflection from close to the neutron star in 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Miller, J. M.; Chakrabarty, D.; Harrison, F. A.; Kara, E.; Fabian, A. C.

    2015-07-01

    Studying the reflection of X-rays off the inner edge of the accretion disc in a neutron star low-mass X-ray binary allows us to investigate the accretion geometry and to constrain the radius of the neutron star. We report on a NuSTAR observation of 4U 1608-52 obtained during a faint outburst in 2014 when the neutron star, which has a known spin frequency of ν = 620 Hz, was accreting at ≃1-2 per cent of the Eddington limit. The 3-79 keV continuum emission was dominated by a Γ ≃ 2 power law, with an ≃1-2 per cent contribution from a kTbb ≃ 0.3-0.6 keV blackbody component. The high-quality NuSTAR spectrum reveals the hallmarks of disc reflection; a broad iron-line peaking near 7 keV and a Compton back-scattering hump around ≃20-30 keV. Modelling the disc reflection spectrum points to a binary inclination of i ≃30°-40° and a small `coronal' height of h ≲8.5GM/c2. Furthermore, our spectral analysis suggests that the inner disc radius extended to Rin ≃ 7-10GM/c2, close to the innermost stable circular orbit. This constrains the neutron star radius to R ≲21 km and the redshift from the stellar surface to z ≳0.12, for a mass of M = 1.5 M⊙ and a spin parameter of a = 0.29.

  3. Probing thermonuclear flame spreading on neutron stars using burst rise oscillations

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manoneeta; Bhattacharyya, Sudip

    2016-07-01

    Intense X-ray bursts (type-I bursts), originated from runaway thermonuclear processes, are observed from the surfaces of many accreting neutron star Low Mass X-ray Binary (LMXB) systems and they provide an important tool to constrain the neutron star equation of state. Periodic intensity variations during these bursts, termed burst oscillations, are observed in about 10% of thermonuclear bursts. Oscillations during the rising phases of thermonuclear bursts are hypothesized to originate from an expanding hot-spot on the surface of the neutron star. We studied the evolution of oscillations during the rising phase of a large sample of thermonuclear bursts from 10 bursting neutron stars in order to probe the process of burning front propagation during an X-ray burst. Our results show observational evidences of expanding hot-spot with spin modulated flame speeds, possibly due to the effects of the Coriolis force present as a result of the high stellar spin (270-620 Hz). This implies that the flame propagation is latitude-dependent and we address the factors affecting the detection and non-detection of burst rise oscillations in the light of this Coriolis force modulated flame spreading scenario.

  4. Image Comparisons of Black Hole vs. Neutron Dark Star by Ray Tracing

    NASA Astrophysics Data System (ADS)

    Froedge, D. T.

    2015-04-01

    In previous papers we have discussed the concept of a theory of gravitation with local energy conservation, and the properties of a large neutron star resulting when the energy of gravitation resides locally with the particle mass and not in the gravitational field. A large neutron star's surface radius grows closer to the gravitational radius as the mass increases. Since the localization of energy applies to the photon, they do not decrease energy rising in a gravitational field, and can escape. Photon trajectories in a strong gravitational field can be investigated by the use of ray tracing procedures. Only a fraction of the blackbody radiation emitted from the surface escapes into space (about 0.00004% for Sag A*). Because of the low % of escaping radiation, the heavy neutron stars considered in this paper will be referred to as a Neutron Dark Star (NDS). In contrast to the Black Hole (BH) which should be totally dark inside the photon shadow, the NDS will appear as a fuzzy low luminosity ball. For Sag A* a full width half maximum diameter is about 3.85 Schwarzschild radii inside the shadow. (http://www.arxdtf.org/css/Image%20Comparisons.pdf). The Event Horizon Telescope should be able to distinguish the difference between the theories.

  5. Neutron star crustal plate tectonics. I. Magnetic dipole evolution in millisecond pulsars and low-mass X-ray binaries

    SciTech Connect

    Ruderman, M. )

    1991-01-01

    Crust lattices in spinning-up or spinning-down neutron stars have growing shear stresses caused by neutron superfluid vortex lines pinned to lattice nuclei. For the most rapidly spinning stars, this stress will break and move the crust before vortex unpinning occurs. In spinning-down neutron stars, crustal plates will move an equatorial subduction zone in which the plates are forced into the stellar core below the crust. The opposite plate motion occurs in spinning-up stars. Magnetic fields which pass through the crust or have sources in it move with the crust. Spun-up neutron stars in accreting low-mass X-ray binaries LMXBs should then have almost axially symmetric magnetic fields. Spun-down ones with very weak magnetic fields should have external magnetic fields which enter and leave the neutron star surface only near its equator. The lowest field millisecond radiopulsars seem to be orthogonal rotators implying that they have not previously been spun-up in LMXBs but are neutron stars initially formed with periods near 0.001 s that subsequently spin down to their present periods. Accretion-induced white dwarf collapse is then the most plausible genesis for them. 29 refs.

  6. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  7. Low energy excitations of the neutron star core

    NASA Astrophysics Data System (ADS)

    Reddy, Sanjay

    2017-01-01

    I will summarize recent work on low energy excitations in cold dense matter and its implications for thermal and transport properties, and seismology of neutron stars. I argue that a low energy Lagrangian with a handful of low energy constants (LECs) provides an adequate framework for calculations. The LECs can be related to the equation of state of dense matter at zero temperature.

  8. ECCENTRIC MERGERS OF BLACK HOLES WITH SPINNING NEUTRON STARS

    SciTech Connect

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans

    2015-07-01

    We study dynamical capture binary black hole–neutron star (BH–NS) mergers focusing on the effects of the neutron star spin. These events may arise in dense stellar regions, such as globular clusters, where the majority of neutron stars are expected to be rapidly rotating. We initialize the BH–NS systems with positions and velocities corresponding to marginally unbound Newtonian orbits, and evolve them using general-relativistic hydrodynamical simulations. We find that even moderate spins can significantly increase the amount of mass in unbound material. In some of the more extreme cases, there can be up to a third of a solar mass in unbound matter. Similarly, large amounts of tidally stripped material can remain bound and eventually accrete onto the BH—as much as a tenth of a solar mass in some cases. These simulations demonstrate that it is important to treat neutron star spin in order to make reliable predictions of the gravitational wave and electromagnetic transient signals accompanying these sources.

  9. Mechanical Properties of Non-Accreting Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey L.; Heyl, J. S.

    2013-01-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from Soft Gamma-ray Repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014g cm-3 for simulations with an initially perfect BCC lattice. With these crustal properties and the observed properties of PSR J2124-3358 the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone can not be ruled out for triggering the energy in SGR bursts.

  10. Mechanical properties of non-accreting neutron star crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey; Heyl, Jeremy

    2012-11-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from soft Gamma-ray repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014 g cm-3 for simulations with an initially perfect body-centred cubic (BCC) lattice. With these crustal properties and the observed properties of PSR J2124-3358, the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone cannot be ruled out for triggering the energy in SGR bursts.

  11. Equation-of-state-independent relations in neutron stars

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Cardoso, Vitor; Ferrari, Valeria; Gualtieri, Leonardo; Pani, Paolo

    2013-07-01

    Neutron stars are extremely relativistic objects which abound in our universe and yet are poorly understood, due to the high uncertainty on how matter behaves in the extreme conditions which prevail in the stellar core. It has recently been pointed out that the moment of inertia I, the Love number λ, and the spin-induced quadrupole moment Q of an isolated neutron star, are related through functions which are practically independent of the equation of state. These surprising universal I-λ-Q relations pave the way for a better understanding of neutron stars, most notably via gravitational-wave emission. Gravitational-wave observations will probe highly dynamical binaries and it is important to understand whether the universality of the I-λ-Q relations survives strong-field and finite-size effects. We apply a post-Newtonian-affine approach to model tidal deformations in compact binaries and show that the I-λ relation depends on the inspiral frequency, but is insensitive to the equation of state. We provide a fit for the universal relation, which is valid up to a gravitational wave frequency of ˜900Hz and accurate to within a few percent. Our results strengthen the universality of I-λ-Q relations, and are relevant for gravitational-wave observations with advanced ground-based interferometers. We also discuss the possibility of using the Love-compactness relation to measure the neutron-star radius with an uncertainty ≲10% from gravitational-wave observations.

  12. Probing the Internal Composition of Neutron Stars with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2016-03-01

    Gravitational waves from neutron star binaries carry information about the equation of state of supranuclear matter through a parameter called tidal deformability. This parameter measures the quadrupole deformation of a neutron star in the presence of an external field. Its measurability has been assessed in a number of studies, concluding it could provide important information about the equation of state of neutron star matter. In this talk, I will describe a complimentary approach to the problem of equation of state determination, one which focuses on how information from gravitational waves can be translated in ways that could be of direct benefit to nuclear physicists. Specifically, I will talk about what gravitational waves can tell us about the internal composition of neutron stars, information that is directly applicable to equation of state modeling. I will also briefly discuss the importance of spin-induced precession in the quality of information extracted. We acknowledge support from the Onassis Foundation, NSF CAREER Grant PHY-1250636, NSF Award PHY-1306702, and NSF CAREER Grant PHY-1055103.

  13. Very massive neutron stars in Ni's theory of gravity

    NASA Technical Reports Server (NTRS)

    Mikkelsen, D. R.

    1977-01-01

    It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.

  14. NASA HET-DAP Award: Neutron star populations in X-rays and gamma-rays

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    1995-08-01

    The proposed goal of this High Energy Theory/Data Analysis Program grant was the study of neutron stars' emission in X-rays and gamma-rays and their resulting appearance as galactic source populations. In one of the main efforts of this proposal, substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase 1 of the work we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated that the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma-gamma pair production, and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. One main conclusion was that the original Cheng, Ho and Ruderman (1986) picture of outer magnetosphere radiation physics could not reproduce the fluxes seen from newly observed gamma-ray pulsars. Other work on the high energy pulsar emission examined the possibility of MeV-GeV polarization measurements and has developed a new picture of radiation physics and particle acceleration in neutron star magnetospheres. This scheme of radiation in the outer magnetosphere has now been sufficiently developed to provide a substantial new model for pulsar emissions above the radio band. A second major thrust of the neutron star modeling efforts has been a new theoretical study of neutron star atmospheres and models of their thermal surface emission. In Romani et. al. (1995) we reported on a series of model atmospheres based on new opacity data from the OPAL group. A complete description of this new family of models for low field neutron stars with various surface compositions was reported in Rajagopal and Romani (1995). There we also compared our results with X

  15. Gamma-ray bursts generated from phase transition of neutron stars to quark stars

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi

    2017-02-01

    The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.

  16. Neutron Star Mass-Radius Constraints Using Evolutionary Optimization

    NASA Astrophysics Data System (ADS)

    Stevens, A. L.; Fiege, J. D.; Leahy, D. A.; Morsink, S. M.

    2016-12-01

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT, NICER, or a mission similar to LOFT. In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ˜1% achievable in mass and radius if both the inclination and colatitude are ≳60°.

  17. Neutron star equation of state and QPO observations

    NASA Astrophysics Data System (ADS)

    Urbanec, Martin; Stuchlík, Zdeněk; Török, Gabriel; Bakala, Pavel; Čermák, Petr

    2007-12-01

    Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilohertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density rho_{c}. These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR, rho_{c}, Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR, rho_{c}, Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR, rho_{c}, Ω, EOS) into the chromosome we use the Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  18. QPO observations related to neutron star equations of state

    NASA Astrophysics Data System (ADS)

    Stuchlik, Zdenek; Urbanec, Martin; Török, Gabriel; Bakala, Pavel; Cermak, Petr

    We apply a genetic algorithm method for selection of neutron star models relating them to the resonant models of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems. It was suggested that pairs of kilo-hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density ρc . These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR,ρc , Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR,ρc , Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR,ρ, Ω, EOS) into chromosome we used Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  19. Light dark matter scattering in outer neutron star crusts

    NASA Astrophysics Data System (ADS)

    Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph

    2016-09-01

    We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.

  20. Spin evolution of a proto-neutron star

    NASA Astrophysics Data System (ADS)

    Camelio, Giovanni; Gualtieri, Leonardo; Pons, José A.; Ferrari, Valeria

    2016-07-01

    We study the evolution of the rotation rate of a proto-neutron star, born in a core-collapse supernova, in the first seconds of its life. During this phase, the star evolution can be described as a sequence of stationary configurations, which we determine by solving the neutrino transport and the stellar structure equations in general relativity. We include in our model the angular momentum loss due to neutrino emission. We find that the requirement of a rotation rate not exceeding the mass-shedding limit at the beginning of the evolution implies a strict bound on the rotation rate at later times. Moreover, assuming that the proto-neutron star is born with a finite ellipticity, we determine the emitted gravitational wave signal and estimate its detectability by present and future ground-based interferometric detectors.

  1. Prompt merger collapse and the maximum mass of neutron stars.

    PubMed

    Bauswein, A; Baumgarte, T W; Janka, H-T

    2013-09-27

    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.

  2. X-ray studies of neutron stars and their magnetic fields

    PubMed Central

    MAKISHIMA, Kazuo

    2016-01-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1–7) × 108 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states. PMID:27169348

  3. X-ray studies of neutron stars and their magnetic fields

    NASA Astrophysics Data System (ADS)

    Makishima, K.

    2016-05-01

    Utilizing results obtained over the past quarter century mainly with Japanese X-ray astronomy satellites, a review is given to some aspects of neutron stars (NSs), with a particular emphasis on the magnetic fields (MFs) of mass-accreting NSs and magnetars. Measurements of electron cyclotron resonance features in binary X-ray pulsars, using the Ginga and Suzaku observatories, clarified that their surface MFs are concentrated in a narrow range of (1?7) × 10^8 T. Extensive studies of magnetars with Suzaku reinforced their nature as neutron stars with truly strong MFs, and revealed several important clues to their formation, evolution, and physical states. Taking all these results into account, a discussion is made on the origin and evolution of these strong MFs. One possible scenario is that the MF of NSs is a manifestation of some fundamental physics, e.g., neutron spin alignment or chirality violation, and the MF makes transitions from strong to weak states.

  4. Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter

    SciTech Connect

    Todd-Rutel, B.G.; Piekarewicz, J.

    2005-09-16

    An accurately calibrated relativistic parametrization is introduced to compute the ground state properties of finite nuclei, their linear response, and the structure of neutron stars. While similar in spirit to the successful NL3 parameter set, it produces an equation of state that is considerably softer--both for symmetric nuclear matter and for the symmetry energy. This softening appears to be required for an accurate description of several collective modes having different neutron-to-proton ratios. Among the predictions of this model are a symmetric nuclear-matter incompressibility of K=230 MeV and a neutron skin thickness in {sup 208}Pb of R{sub n}-R{sub p}=0.21 fm. The impact of such a softening on various neutron-star properties is also examined.

  5. Simulated magnetic field expulsion in neutron star cores

    NASA Astrophysics Data System (ADS)

    Elfritz, J. G.; Pons, J. A.; Rea, N.; Glampedakis, K.; Viganò, D.

    2016-03-01

    The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in principle permit a deeper understanding of the most important parameters driving their apparent variety, e.g. radio pulsars, magnetars, X-ray dim isolated NSs, gamma-ray pulsars. We describe, for the first time, the results from self-consistent magnetothermal simulations considering not only the effects of the Hall-driven field dissipation in the crust, but also adding a complete set of proposed driving forces in a superconducting core. We emphasize how each of these core-field processes drive magnetic evolution and affect observables, and show that when all forces are considered together in vectorial form, the net expulsion of core magnetic flux is negligible, and will have no observable effect in the crust (consequently in the observed surface emission) on megayear time-scales. Our new simulations suggest that strong magnetic fields in NS cores (and the signatures on the NS surface) will persist long after the crustal magnetic field has evolved and decayed, due to the weak combined effects of dissipation and expulsion in the stellar core.

  6. Stochastic Background from Coalescences of Neutron Star-Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; de Freitas Pacheco, J. A.

    2006-05-01

    In this work, numerical simulations were used to investigate the gravitational stochastic background produced by coalescences of double neutron star systems occurring up to z~5. The cosmic coalescence rate was derived from Monte Carlo methods using the probability distributions for massive binaries to form and for a coalescence to occur in a given redshift. A truly continuous background is produced by events located only beyond the critical redshift z*=0.23. Events occurring in the redshift interval 0.027

  7. Axion mass limit from observations of the neutron star in Cassiopeia A

    SciTech Connect

    Leinson, Lev B.

    2014-08-01

    Direct Chandra observations of a surface temperature of isolated neutron star in Cassiopeia A (Cas A NS) and its cooling scenario which has been recently simultaneously suggested by several scientific teams put stringent constraints on poorly known properties of the superfluid neutron star core. It was found also that the thermal energy losses from Cas A NS are approximately twice more intensive than it can be explained by the neutrino emission. We use these unique data and well-defined cooling scenario to estimate the strength of KSVZ axion interactions with neutrons. We speculate that enlarged energy losses occur owing to emission of axions from superfluid core of the neutron star. If the axion and neutrino losses are comparable we find c{sub n}{sup 2}m{sub a}{sup 2}∼ 5.7× 10{sup -6} eV{sup 2}, where m{sub a} is the axion mass, and c{sub n} is the effective Peccei-Quinn charge of the neutron. (Given the QCD uncertainties of the hadronic axion models, the dimensionless constant c{sub n} could range from -0.05 to  0.14.)

  8. Rotochemical heating with a density-dependent superfluid energy gap in neutron stars

    SciTech Connect

    Gonzalez-Jimenez, Nicolas; Petrovich, Cristobal; Reisenegger, Andreas

    2010-08-04

    When a rotating neutron star loses angular momentum, the reduction of the centrifugal force makes it contract. This perturbs each fluid element, raising the local pressure and originating deviations from beta equilibrium, inducing reactions that release heat (rotochemical heating). This effect has previously been studied by Fernandez and Reisenegger for neutron stars of non-superfluid matter and by Petrovich and Reisenegger for superfluid matter, finding that the system in both cases reaches a quasi-steady state, corresponding to a partial equilibration between compression, due to the loss of angular momentum, and reactions that try to restore the equilibrium. However, Petrovich and Reisenegger assumes a constant value of the superfluid energy gap, whereas theoretical models predict density-dependent gap amplitudes, and therefore gaps that depend on the location in the star. In this work, we try to discriminate between several proposed gap models, comparing predicted surface temperatures to the value measured for the nearest millisecond pulsar, J0437-4715.

  9. Equation of State for Nucleonic and Hyperonic Neutron Stars with Mass and Radius Constraints

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Centelles, Mario; Ramos, Angels

    2017-01-01

    We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2 M⊙ observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation of state of neutron star matter is softened around saturation density, which increases the compactness of canonical neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher densities to fulfil the 2 M⊙ limit. By a slight modification of the parameterization, we also find that the constraints of 2 M⊙ neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic fields in the surface of ∼1015 G and with values of ∼1018 G in the interior can reach maximum masses of 2 M⊙ with radii in the 12–13 km range.

  10. Effects of neutrino emissivity on the cooling of neutron stars in the presence of a strong magnetic field

    SciTech Connect

    Coelho, Eduardo Lenho; Chiapparini, Marcelo; Negreiros, Rodrigo Picanço

    2015-12-17

    One of the most interesting kind of neutron stars are the pulsars, which are highly magnetized neutron stars with fields up to 10{sup 14} G at the surface. The strength of magnetic field in the center of a neutron star remains unknown. According to the scalar virial theorem, magnetic field in the core could be as large as 10{sup 18} G. In this work we study the influence of strong magnetic fields on the cooling of neutron stars coming from direct Urca process. Direct Urca process is an extremely efficient mechanism for cooling a neutron star after its formation. The matter is described using a relativistic mean-field model at zero temperature with eight baryons (baryon octet), electrons and muons. We obtain the relative population of each species of particles as function of baryon density for different magnetic fields. We calculate numerically the cooling of neutron stars for a parametrized magnetic field and compare the results for the case without a magnetic field.

  11. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  12. A NEW CODE FOR PROTO-NEUTRON STAR EVOLUTION

    SciTech Connect

    Roberts, L. F.

    2012-08-20

    A new code for following the evolution and emissions of proto-neutron stars during the first minute of their lives is developed and tested. The code is one dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neutrino transport is incorporated that makes use of variable Eddington factors obtained from a formal solution of the static general relativistic Boltzmann equation with linearized scattering terms. The timescales of neutrino emission and spectral evolution obtained using the new code are broadly consistent with previous results. Unlike other recent calculations, however, the new code predicts that the neutrino-driven wind will be characterized, at least for part of its existence, by a neutron excess. This change, potentially consequential for nucleosynthesis in the wind, is due to an improved treatment of the charged current interactions of electron-flavored neutrinos and anti-neutrinos with nucleons. A comparison is also made between the results obtained using either variable Eddington factors or simple equilibrium flux-limited diffusion. The latter approximation, which has been frequently used in previous studies of proto-neutron star cooling, accurately describes the total neutrino luminosities (to within 10%) for most of the evolution, until the proto-neutron star becomes optically thin.

  13. INVESTIGATING SUPERCONDUCTIVITY IN NEUTRON STAR INTERIORS WITH GLITCH MODELS

    SciTech Connect

    Haskell, B.; Pizzochero, P. M.; Seveso, S.

    2013-02-20

    The high-density interior of a neutron star is expected to contain superconducting protons and superfluid neutrons. Theoretical estimates suggest that the protons will form a type II superconductor in which the stellar magnetic field is carried by flux tubes. The strong interaction between the flux tubes and the neutron rotational vortices could lead to strong ''pinning'', i.e., vortex motion could be impeded. This has important implications especially for pulsar glitch models as it would lead to a large part of the vorticity of the star being decoupled from the ''normal'' component to which the electromagnetic emission is locked. In this Letter, we explore the consequences of strong pinning in the core on the ''snowplow'' model for pulsar glitches, making use of realistic equations of state and relativistic background models for the neutron star. We find that, in general, a large fraction of the pinned vorticity in the core is not compatible with observations of giant glitches in the Vela pulsar. Thus, the conclusion is that either most of the core is in a type I superconducting state or the interaction between vortices and flux tubes is weaker than previously assumed.

  14. Molecular Dynamics of Nuclear Pasta in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Briggs, Christian; da Silva Schneider, Andre

    2014-09-01

    During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces. Between the crust and core lies an interesting interface where matter is neither a single nucleus nor separate nuclei. It exists in a frustrated phase; competition between electromagnetic and strong nuclear forces causes exotic shapes to emerge, referred to as nuclear pasta. We use Molecular Dynamics (MD) to simulate nuclear pasta, with densities between nuclear saturation density and approximately one-tenth saturation density. Using MD particle trajectories, we compute the static structure factor S(q) and dynamical response function to describe both electron-pasta and neutrino-pasta scattering. We relate the structure and properties of nuclear pasta phases to features in S(q). Finally, one can integrate over S(q) to determine transport properties such as the electrical and thermal conductivity. This may help provide a better understanding of X-ray observations of neutron stars. During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces

  15. Rapidly rotating superfluid neutron stars in Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, Shijun; Eriguchi, Yoshiharu

    2004-01-01

    We develop a formulation for constructing and examining rapidly rotating Newtonian neutron star models that contain two superfluids, taking account of the effect of the rotation velocity difference between two superfluids. We assume neutron stars to be composed of the superfluid neutrons and a mixture of the superfluid protons and the normal fluid electrons. To describe Newtonian dynamics of the two superfluids, the Newtonian version of the so-called two-fluid formalism is employed. The effect of the rotation velocity difference on the structure of equilibrium state is treated as a small perturbation to rapidly rotating superfluid stars whose angular velocities of two superfluids are assumed to be exactly the same. We derive basic equations for the perturbed structures of rapidly rotating superfluid stars due to the rotation velocity difference between two superfluids. Assuming the superfluids to obey a simple analytical equation of state proposed by Prix, Comer and Andersson, we obtain numerical solutions for the perturbations and find that the density distributions of the superfluids are strongly dependent on the parameter σ, which appears in the analytical equation of state and characterizes the so-called symmetry energy. It is also found that if the analytical equation of state of Prix et al. is assumed, the perturbations can be represented in terms of the universal functions that are independent of the parameters of the equation of state.

  16. Magnetic fields in mixed neutron-star-plus-wormhole systems

    SciTech Connect

    Aringazin, Ascar; Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta E-mail: v.dzhunushaliev@gmail.com E-mail: b.kleihaus@uni-oldenburg.de

    2015-04-01

    We consider mixed configurations consisting of a wormhole filled by a strongly magnetized isotropic or anisotropic neutron fluid. The nontrivial topology of the spacetime is allowed by the presence of exotic matter. By comparing these configurations with ordinary magnetized neutron stars, we clarify the question of how the presence of the nontrivial topology influences the magnetic field distribution inside the fluid. In the case of an anisotropic fluid, we find new solutions describing configurations, where the maximum of the fluid density is shifted from the center. A linear stability analysis shows that these mixed configurations are unstable.

  17. Relativistic mean field models for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia

    In this dissertation we have created theoretical models for finite nuclei, nuclear matter, and neutron stars within the framework of relativistic mean field (RMF) theory, and we have used these models to investigate the elusive isovector sector and related physics, in particular, the neutron-skin thickness of heavy nuclei, the nuclear symmetry energy, and the properties of neutron stars. To build RMF models that incorporate collective excitations in finite nuclei in addition to their ground-state properties, we have extended the non-relativistic sum rule approach to the relativistic domain. This allows an efficient estimate of giant monopole energies. Moreover, we have combined an exact shell-model-like approach with the mean-field calculation to describe pairing correlations in open-shell nuclei. All the ingredients were then put together to establish the calibration scheme. We have also extended the transformation between model parameters and pseudo data of nuclear matter within the RMF context. Performing calibration in this pseudo data space can not only facilitate the searching algorithm but also make the pseudo data genuine model predictions. This calibration scheme is also supplemented by a covariance analysis enabling us to extract the information content of a model, including theoretical uncertainties and correlation coefficients. A series of RMF models subject to the same isoscalar constraints but one differing isovector assumption were then created using this calibration scheme. By comparing their predictions of the nuclear matter equation of state to both experimental and theoretical constraints, we found that a small neutron skin of about 0.16 fm in Pb208 is favored, indicating that the symmetry energy should be soft. To obtain stronger evidence, we proceeded to examine the evolution of the isotopic chains in both oxygen and calcium. Again, it was found that the model with such small neutron skin and soft symmetry energy can best describe both isotopic

  18. Hypercritical Accretion onto a Newborn Neutron Star and Magnetic Field Submergence

    NASA Astrophysics Data System (ADS)

    Bernal, Cristian G.; Page, Dany; Lee, William H.

    2013-06-01

    We present magnetohydrodynamic numerical simulations of the late post-supernova hypercritical accretion to understand its effect on the magnetic field of the newborn neutron star. We consider as an example the case of a magnetic field loop protruding from the star's surface. The accreting matter is assumed to be non-magnetized, and, due to the high accretion rate, matter pressure dominates over magnetic pressure. We find that an accretion envelope develops very rapidly, and once it becomes convectively stable, the magnetic field is easily buried and pushed into the newly forming neutron star crust. However, for low enough accretion rates the accretion envelope remains convective for an extended period of time and only partial submergence of the magnetic field occurs due to a residual field that is maintained at the interface between the forming crust and the convective envelope. In this latter case, the outcome should be a weakly magnetized neutron star with a likely complicated field geometry. In our simulations we find the transition from total to partial submergence to occur around \\dot{M} \\sim 10\\, M_\\odot yr-1. Back-diffusion of the submerged magnetic field toward the surface, and the resulting growth of the dipolar component, may result in a delayed switch-on of a pulsar on timescales of centuries to millennia.

  19. Diversity of neutron star properties at the fixed neutron-skin thickness of 208Pb

    NASA Astrophysics Data System (ADS)

    Alam, N.; Sulaksono, A.; Agrawal, B. K.

    2015-07-01

    We study the diversities in the properties of the neutron stars arising due to the different choices for the cross coupling between various mesons, which governs the density dependence of the nuclear symmetry energy in the extended relativistic mean-field (RMF) model. For this purpose, we obtain two different families of the extended RMF model corresponding to different nonlinear cross-coupling terms in the isovector part of the effective Lagrangian density. The lowest-order contributions for the δ mesons are also included. The different models within the same family yield wide variation in the value of neutron-skin thickness in the 208Pb nucleus. These models are employed to compute the neutron-star properties such as core-crust transition density, radius and red shift at canonical mass ( 1.4 M⊙) , tidal polarizability parameter, and threshold mass required for the enhanced cooling through the direct Urca process. Most of the neutron-star properties considered are significantly different(10-40%) for the different families of models at a smaller neutron-skin thickness (˜0.15 fm ) in the 208Pb nucleus.

  20. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  1. Stellar encounters involving neutron stars in globular cluster cores

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1992-01-01

    Encounters between a 1.4 solar mass neutron star and a 0.8 solar mass red giant (RG) and between a 1.4 solar mass neutron star (NS) and an 0.8 solar mass main-sequence (MS) star have been successfully simulated. In the case of encounters involving an RG, bound systems are produced when the separation at periastron passage R(MIN) is less than about 2.5 R(RG). At least 70 percent of these bound systems are composed of the RG core and NS forming a binary engulfed in a common envelope of what remains of the former RG envelope. Once the envelope is ejected, a tight white dwarf-NS binary remains. For MS stars, encounters with NSs will produce bound systems when R(MIN) is less than about 3.5 R(MS). Some 50 percent of these systems will be single objects with the NS engulfed in a thick disk of gas almost as massive as the original MS star. The ultimate fate of such systems is unclear.

  2. Neutron-star formation in the carbon-detonation supernova.

    NASA Technical Reports Server (NTRS)

    Wheeler, J. C.; Buchler, J.-R.; Barkat, Z. K.

    1973-01-01

    Neutrino losses, such as those driven by the convective Urca process, may affect the evolution of stars in the mass range from 4 to 8 solar masses so as to lead to collapse of their degenerate carbon/oxygen cores. A corresponding hydrodynamic model is computed which leads to the formation of a 1.3 to 1.4 solar mass neutron star with the expulsion of a small fraction of the mass, about 0.l solar mass at about 20,000 km/sec into the overlying hydrogen envelope. This sets the stage for the Ostriker-Gunn mechanism in which Type II supernovae and pulsars are formed.

  3. On radial oscillations in viscous accretion discs surrounding neutron stars

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1992-01-01

    Radial oscillations resulting from axisymmetric perturbations in viscous accretion disks surrounding neutron stars in X-ray binary systems have been investigated. Within the framework of the alpha-viscosity model a series of hydrodynamic calculations demonstrates that the oscillations are global for alpha of about 1. On the other hand, for alpha of 0.4 or less, the oscillations are local and confined to the disk boundaries. If viscous stresses acting in the radial direction are included, however, it is found that the disk can be stabilized. The application of such instabilities in accretion disks, without reference to the boundary layer region between the neutron star (or magnetosphere) and the inner edge of the disk, to the phenomenology of quasi-periodic oscillations is brought into question.

  4. Shear viscosity due to phonons in superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Manuel, Cristina; Tolos, Laura

    2011-12-01

    We compute the contribution of phonons to the shear viscosity η in superfluid neutron stars, assuming neutron pairing in a S01 channel. We use a Boltzmann equation amended by a collision term that takes into account the binary collisions of phonons. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. Our formulation is rather general, and can be used to extract the shear viscosity due to binary collisions of phonons for other superfluids, such as the cold Fermi gas in the unitarity limit. We find that η∝1/T5, the proportionality factor depending on the equation of state of the system. Our results indicate that the phonon contribution to η cannot be ignored and might have relevant effects in the dynamics of the different oscillation modes of the star.

  5. X-ray spectra from convective photospheres of neutron stars

    NASA Technical Reports Server (NTRS)

    Zavlin, V. E.; Pavlov, G. G.; Shibanov, Yu. A.; Rogers, F. J.; Iglesias, C. A.

    1996-01-01

    The preliminary results from the simulation of convective photospheres of neutron stars are presented. It is shown that in photospheres composed of light elements, convection arises at relatively low effective temperatures of between 3 x 10(exp 4) and 5 x 10(exp 4) K, whereas, in the case of iron composition, it arises at temperatures of less than or equal to 3 x 10(exp 5) K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. It is concluded that depth should be taken into account for the correct interpretation of extreme ultraviolet/soft X-ray observations of the thermal radiation from neutron stars.

  6. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    PubMed

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  7. Vortex Pinning and Dynamics in the Neutron Star Crust.

    PubMed

    Wlazłowski, Gabriel; Sekizawa, Kazuyuki; Magierski, Piotr; Bulgac, Aurel; Forbes, Michael McNeil

    2016-12-02

    The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a qualitatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of "nuclei" (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force per unit length of the vortex line as a function of the vortex element to the nucleus separation.

  8. Vortex Pinning and Dynamics in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Wlazłowski, Gabriel; Sekizawa, Kazuyuki; Magierski, Piotr; Bulgac, Aurel; Forbes, Michael McNeil

    2016-12-01

    The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a qualitatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of "nuclei" (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force per unit length of the vortex line as a function of the vortex element to the nucleus separation.

  9. Electromagnetic and gravitational outputs from binary-neutron-star coalescence.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Liebling, Steven L; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-08-09

    The late stage of an inspiraling neutron-star binary gives rise to strong gravitational wave emission due to its highly dynamic, strong gravity. Moreover, interactions between the stellar magnetospheres can produce considerable electromagnetic radiation. We study this scenario using fully general relativistic, resistive magnetohydrodynamic simulations. We show that these interactions extract kinetic energy from the system, dissipate heat, and power radiative Poynting flux, as well as develop current sheets. Our results indicate that this power can (i) outshine pulsars in binaries, (ii) display a distinctive angular- and time-dependent pattern, and (iii) radiate within large opening angles. These properties suggest that some binary neutron-star mergers are ideal candidates for multimessenger astronomy.

  10. Polarized X-rays from accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  11. Reducing orbital eccentricity in initial data of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke

    2014-09-01

    We develop a method to compute low-eccentricity initial data of binary neutron stars required to perform realistic simulations in numerical relativity. The orbital eccentricity is controlled by adjusting the orbital angular velocity of a binary and incorporating an approaching relative velocity of the neutron stars. These modifications improve the solution primarily through the hydrostatic equilibrium equation for the binary initial data. The orbital angular velocity and approaching velocity of initial data are updated iteratively by performing time evolutions over ˜3 orbits. We find that the eccentricity can be reduced by an order of magnitude compared to standard quasicircular initial data, specifically from ˜0.01 to ≲0.001, by three successive iterations for equal-mass binaries leaving ˜10 orbits before the merger.

  12. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, Will

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  13. On the capture of dark matter by neutron stars

    SciTech Connect

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall E-mail: aeerkoca@gmail.com E-mail: ina@physics.arizona.edu

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10{sup 3} GeV/cm{sup 3}and dark matter mass m{sub χ} ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m{sub χ} ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ{sub χn} ∼ 10{sup −52} cm{sup 2} to σ{sub χn} ∼ 10{sup −57} cm{sup 2}, the dark matter self-interaction cross section limit is σ{sub χχ} ∼< 10{sup −33} cm{sup 2}, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  14. Uncovering the Properties of Young Neutron Stars and Their Surroundings

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Slane, Patrick

    2005-01-01

    The subject grant provides funding through the NASA LTSA program. This five-year grant involves the study of young neutron stars, particularly those in supernova remnants. In the fifth year of this program, the following studies have been undertaken in support of this effort and are discussed in this report. 1) 3C 58; 2) Chandra Survey for Compact Objects in Supernova Remnants; 3) G327.1-1.1; 4) Infrared Emission from Pulsar Wind Nebulae; and Cas A.

  15. SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS

    SciTech Connect

    Tsang, David

    2013-11-10

    We demonstrate that resonant shattering flares can occur during close passages of neutron stars in eccentric or hyperbolic encounters. We provide updated estimates for the rate of close encounters of compact objects in dense stellar environments, which we find are substantially lower than given in previous works. While such occurrences are rare, we show that shattering flares can provide a strong electromagnetic counterpart to the gravitational wave bursts expected from such encounters, allowing triggered searches for these events to occur.

  16. On the capture of dark matter by neutron stars

    NASA Astrophysics Data System (ADS)

    Güver, Tolga; Emre Erkoca, Arif; Hall Reno, Mary; Sarcevic, Ina

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 103 GeV/cm3and dark matter mass mχ lesssim 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for mχ ~ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σχn ~ 10-52 cm2 to σχn ~ 10-57 cm2, the dark matter self-interaction cross section limit is σχχ lesssim 10-33 cm2, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  17. Electric and thermal conductivities of quenched neutron star crusts

    NASA Technical Reports Server (NTRS)

    Ogata, Shuji; Ichimaru, Setsuo

    1990-01-01

    The electric and thermal conductivities in the outer crustal matter of a neutron star quenched into a solid state by cooling are estimated using a Monte Carlo simulation of freezing transition for dense plasmas. The conductivities are calculated by the precise evaluation of the scattering integrals, using the procedure of Ichimaru et al. (1983) and Iyetomi and Ichimaru (1983). The results predict the conductivities lower, by a factor of about 3, than those with the single-phonon approximation.

  18. Tidal Love numbers of a slowly spinning neutron star

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Ferrari, Valeria

    2015-12-01

    By extending our recent framework to describe the tidal deformations of a spinning compact object, we compute for the first time the tidal Love numbers of a spinning neutron star to linear order in the angular momentum. The spin of the object introduces couplings between electric and magnetic distortions, and new classes of spin-induced ("rotational") tidal Love numbers emerge. We focus on stationary tidal fields, which induce axisymmetric perturbations. We present the perturbation equations for both electric-led and magnetic-led rotational Love numbers for generic multipoles and explicitly solve them for various tabulated equations of state and for a tidal field with an electric (even parity) and magnetic (odd parity) component with ℓ=2 , 3, 4. For a binary system close to the merger, various components of the tidal field become relevant. In this case we find that an octupolar magnetic tidal field can significantly modify the mass quadrupole moment of a neutron star. Preliminary estimates, assuming a spin parameter χ ≈0.05 , show modifications ≳10 % relative to the static case, at an orbital distance of five stellar radii. Furthermore, the rotational Love numbers as functions of the moment of inertia are much more sensitive to the equation of state than in the static case, where approximate universal relations at the percent level exist. For a neutron-star binary approaching the merger, we estimate that the approximate universality of the induced mass quadrupole moment deteriorates from 1% in the static case to roughly 6% when χ ≈0.05 . Our results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron-star binaries approaching the merger.

  19. Colored condensates deep inside neutron stars

    NASA Astrophysics Data System (ADS)

    Blaschke, David

    2014-09-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  20. Neutron stars in Scalar-Tensor-Vector Gravity

    NASA Astrophysics Data System (ADS)

    Lopez Armengol, Federico G.; Romero, Gustavo E.

    2017-02-01

    Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to describe Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work, we derive matter-sourced solutions of STVG and construct neutron star models. We aim at exploring STVG predictions about stellar structure in the strong gravity regime. Specifically, we represent spacetime with a static, spherically symmetric manifold, and model the stellar matter content with a perfect fluid energy-momentum tensor. We then derive the modified Tolman-Oppenheimer-Volkoff equation in STVG and integrate it for different equations of state. We find that STVG allows heavier neutron stars than General Relativity (GR). Maximum masses depend on a normalized parameter that quantifies the deviation from GR. The theory exhibits unusual predictions for extreme values of this parameter. We conclude that STVG admits suitable spherically symmetric solutions with matter sources, relevant for stellar structure. Since recent determinations of neutron stars masses violate some GR predictions, STVG appears as a viable candidate for a new gravity theory.

  1. The Neutron Star Interior Composition Explorer Mission of Opportunity

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith

    2014-08-01

    The Neutron Star Interior Composition ExploreR (NICER) is an X-ray astrophysics mission of opportunity (MoO) that will reveal the inner workings of neutron stars, cosmic lighthouses that embody unique gravitational, electromagnetic, and nuclear-physics environments. NICER achieves this objective by deploying a high-heritage instrument as an attached payload on a zenith-side ExPRESS Logistics Carrier (ELC) aboard the International Space Station (ISS). NICER offers order-of-magnitude improvements in time-coherent sensitivity and timing resolution beyond the capabilities of any X-ray observatory flown to date.Through a cost-sharing opportunity between the NASA Science Mission Directorate (SMD) and NASA Space Technology Mission Directorate (STMD) NICER will also demonstrate how neutron stars can serve as deep-space navigation beacons to guide humankind out of Earth orbit, to destinations throughout the Solar System and beyond.I will overview the NICER mission, discuss our experience working with the ISS, and describe the process of forging a partnership between SMD and STMD.

  2. The relevance of ambipolar diffusion for neutron star evolution

    NASA Astrophysics Data System (ADS)

    Passamonti, Andrea; Akgün, Taner; Pons, José A.; Miralles, Juan A.

    2017-03-01

    We study ambipolar diffusion in strongly magnetized neutron stars, with special focus on the effects of neutrino reaction rates and the impact of a superfluid/superconducting transition in the neutron star core. For axisymmetric magnetic field configurations, we determine the deviation from β-equilibrium induced by the magnetic force and calculate the velocity of the slow, quasi-stationary, ambipolar drift. We study the temperature dependence of the velocity pattern and clearly identify the transition to a predominantly solenoidal flow. For stars without superconducting/superfluid constituents and with a mixed poloidal-toroidal magnetic field of typical magnetar strength, we find that ambipolar diffusion proceeds fast enough to have a significant impact on the magnetic field evolution only at low core temperatures, T ≲ 1-2 × 108 K. The ambipolar diffusion time-scale becomes appreciably shorter when fast neutrino reactions are present, because the possibility to balance part of the magnetic force with pressure gradients is reduced. We also find short ambipolar diffusion time-scales in the case of superconducting cores for T ≲ 109 K, due to the reduced interaction between protons and neutrons. In the most favourable scenario, with fast neutrino reactions and superconducting cores, ambipolar diffusion results in advection velocities of several km kyr-1. This velocity can substantially reorganize magnetic fields in magnetar cores, in a way which can only be confirmed by dynamical simulations.

  3. Phenomenological QCD equations of state for neutron stars

    NASA Astrophysics Data System (ADS)

    Kojo, Toru; Powell, Philip D.; Song, Yifan; Baym, Gordon

    2016-12-01

    We delineate the properties of QCD matter at baryon density nB = 1 - 10n0 (n0: nuclear saturation density), through the construction of neutron star equations of state that satisfy the neutron star mass-radius constraints as well as physical conditions on the speed of sound. The QCD matter is described in the 3-window modeling: at nB ≲ 2n0 purely nuclear matter; at nB ≳ 5n0 percolated quark matter; and at 2n0 ≲nB ≲ 5n0 matter intermediate between these two which are constructed by interpolation. Using a schematic quark model with effective interactions inspired from hadron and nuclear physics, we analyze the strength of interactions necessary to describe observed neutron star properties. Our finding is that the interactions should remain as strong as in the QCD vacuum, indicating that gluons at nB = 1 - 10n0 remain non-perturbative even after quark matter formation.

  4. Neutrino scattering rates in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Guo Hua; Liu Yuxin

    2007-03-15

    We take the {delta}-isobar degrees of freedom into account in neutron star matter and evaluate their contributions to neutrino scattering cross sections and mean free paths. The neutron star matter is described by means of an effective hadronic model in the relativistic mean-field approximation. It is found that {delta} isobars may be present in neutron stars. The electron chemical potential does not decrease and the neutrino abundance does not increase with the increase of the density when neutrinos are trapped in the matter with {delta} isobars. The large vector coupling constant between the {delta}{sup -} and neutrino and the high spin of the {delta} influence significantly the neutrino scattering cross section and lead the contribution of the {delta}{sup -} to the dominance of the scattering rates. In neutrino-trapped case, the presence of {delta}s causes the neutrino mean free path to decrease drastically compared to that in the matter in which baryons are only nucleons.

  5. Masses, Radii, and the Equation of State of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Freire, Paulo

    2016-09-01

    We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9-2.0-M⊙ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10-11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties of cold nuclear matter at densities higher than that of the atomic nucleus, a major unsolved problem in modern physics.

  6. Dynamical mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2015-08-01

    We investigate properties of material ejected dynamically in the merger of black hole-neutron star binaries by numerical-relativity simulations. We systematically study the dependence of ejecta properties on the mass ratio of the binary, spin of the black hole, and equation of state of the neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is much more anisotropic than that from binary neutron star mergers. In particular, the dynamical ejecta is concentrated around the orbital plane with a half opening angle of 10°-20° and often sweeps out only a half of the plane. The ejecta mass can be as large as ˜0.1 M⊙, and the velocity is subrelativistic with ˜0.2 - 0.3 c for typical cases. The ratio of the ejecta mass to the bound mass (disk and fallback components) is larger, and the ejecta velocity is larger, for larger values of the binary mass ratio, i.e., for larger values of the black-hole mass. The remnant black hole-disk system receives a kick velocity of O (100 ) km s-1 due to the ejecta linear momentum, and this easily dominates the kick velocity due to gravitational radiation. Structures of postmerger material, velocity distribution of the dynamical ejecta, fallback rates, and gravitational waves are also investigated. We also discuss the effect of ejecta anisotropy on electromagnetic counterparts, specifically a macronova/kilonova and synchrotron radio emission, developing analytic models.

  7. Astronomers Use X-Rays To Probe Gravitational Field Of A Neutron Star

    NASA Astrophysics Data System (ADS)

    2002-06-01

    With NASA's Chandra X-ray Observatory, astronomers have detected features that may be the first direct evidence of the effect of gravity on radiation from a neutron star. This finding, if confirmed, could enable scientists to measure the gravitational field of neutron stars and determine whether they contain exotic forms of matter not seen on Earth. A team led by George Pavlov of Penn State University in University Park observed 1E 1207.4-5209, a neutron star in the center of a supernova remnant about 7,000 light years from Earth. The results were presented on June 6, 2002, at the American Astronomical Society in Albuquerque, NM. Pavlov's group found two dips, or absorption features, in the spectrum of X-rays from the star. If these dips are due to the absorption of X-rays near the star by helium ions in a strong magnetic field, they indicate that the gravitational field reduces the energies of X-rays escaping from near the surface of a neutron star. "This interpretation is consistent with the data," said Pavlov, "but the features may be a blend of many other features. More precise measurements, preferably with Chandra's grating spectrometer, are needed." "These absorption features may be the first evidence of the effect of gravity on radiation near the surface of an isolated neutron star," said Pavlov. "This is particularly important because it would allow us to set limits on the type of matter that comprises this star." Neutron stars are formed when a massive star runs out of fuel and its core collapses. A supernova explosion occurs and the collapsed core is compressed to a hot object about 12 miles in diameter, with a thin atmosphere of hydrogen and possibly heavier ions in a gravitational field 100 billion times as strong as Earth's. These objects, which have a density of more than 1 billion tons per teaspoonful, are called neutron stars because they have been thought to be composed mostly of neutrons. Although neutron stars have been studied extensively for

  8. Neutron star kicks and their relationship to supernovae ejecta mass

    NASA Astrophysics Data System (ADS)

    Bray, J. C.; Eldridge, J. J.

    2016-10-01

    We propose a simple model to explain the velocity of young neutron stars. We attempt to confirm a relationship between the amount of mass ejected in the formation of the neutron star and the `kick' velocity imparted to the compact remnant resulting from the process. We assume that the velocity is given by vkick = α (Mejecta/Mremnant) + β . To test this simple relationship, we use the BPASS (Binary Population and Spectral Synthesis) code to create stellar population models from both single and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply different α and β values, and three different `kick' orientations then record the resulting velocity probability distributions. We find that while a single star population provides a poor fit to the observational data, the binary population provides an excellent fit. Values of α = 70 km s-1 and β = 110 km s-1 reproduce the Hobbs et al. observed two-dimensional velocities, and α = 70 km s-1 and β = 120 km s-1 reproduce their inferred three-dimensional velocity distribution for nearby single neutron stars with ages less than 3 Myr. After testing isotropic, spin-axis aligned and orthogonal to spin-axis `kick' orientations, we find no statistical preference for a `kick' orientation. While ejecta mass cannot be the only factor that determines the velocity of supernova compact remnants, we suggest that it is a significant contributor and that the ejecta-based `kick' should replace the Maxwell-Boltzmann velocity distribution currently used in many population synthesis codes.

  9. Effective no-hair relations for neutron stars and quark stars: Relativistic results

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Kyutoku, Koutarou; Pappas, George; Yunes, Nicolás; Apostolatos, Theocharis A.

    2014-06-01

    Astrophysical charge-free black holes are known to satisfy no-hair relations through which all multipole moments can be specified in terms of just their mass and spin angular momentum. We here investigate the possible existence of no-hair-like relations among multipole moments for neutron stars and quark stars that are independent of their equation of state. We calculate the multipole moments of these stars up to hexadecapole order by constructing uniformly rotating and unmagnetized stellar solutions to the Einstein equations. For slowly rotating stars, we construct stellar solutions to quartic order in spin in a slow-rotation expansion, while for rapidly rotating stars, we solve the Einstein equations numerically with the LORENE and RNS codes. We find that the multipole moments extracted from these numerical solutions are consistent with each other and agree with the quartic-order slow-rotation approximation for spin frequencies below roughly 500 Hz. We also confirm that the current dipole is related to the mass quadrupole in an approximately equation-of-state-independent fashion, which does not break for rapidly rotating neutron stars or quark stars. We further find that the current-octupole and the mass-hexadecapole moments are related to the mass quadrupole in an approximately equation-of-state-independent way to roughly O(10%), worsening in the hexadecapole case. All of our findings are in good agreement with previous work that considered stellar solutions to leading order in a weak-field, Newtonian expansion. In fact, the hexadecapole-quadrupole relation agrees with the Newtonian one quite well even in moderately relativistic regimes. The quartic in spin, slowly rotating solutions found here allows us to estimate the systematic errors in the measurement of the neutron star's mass and radius with future x-ray observations, such as Neutron star Interior Composition ExploreR (NICER) and Large Observatory for X-ray Timing (LOFT). We find that the effect of these

  10. Time-of-Flight Mass Measurements for Nuclear Processes in Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Estradé, A.; Matoš, M.; Schatz, H.; Amthor, A. M.; Bazin, D.; Beard, M.; Becerril, A.; Brown, E. F.; Cyburt, R.; Elliot, T.; Gade, A.; Galaviz, D.; George, S.; Gupta, S. S.; Hix, W. R.; Lau, R.; Lorusso, G.; Möller, P.; Pereira, J.; Portillo, M.; Rogers, A. M.; Shapira, D.; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, M.

    2011-10-01

    We present results from time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory that are relevant for neutron star crust models. The masses of 16 neutron-rich nuclei in the scandium-nickel range were determined simultaneously, with the masses of V61, Cr63, Mn66, and Ni74 measured for the first time with mass excesses of -30.510(890)MeV, -35.280(650)MeV, -36.900(790)MeV, and -49.210(990)MeV, respectively. With these results the locations of the dominant electron capture heat sources in the outer crust of accreting neutron stars that exhibit super bursts are now experimentally constrained. We find the experimental Q value for the Fe66→Mn66 electron capture to be 2.1 MeV (2.6σ) smaller than predicted, resulting in the transition occurring significantly closer to the neutron star surface.

  11. Improved Universal No-Hair Relations for Neutron Stars

    NASA Astrophysics Data System (ADS)

    Majumder, Barun; Yagi, Kent; Yunes, Nicolas

    2016-03-01

    The exterior gravitational field of an astrophysical body can be characterized by its multipole moments. No-hair theorems for black holes state that the exterior gravitational field can be completely described in terms of their mass and spin angular momentum. Similar no-hair like relations have been recently found for neutron stars which are approximately independent of the internal structure of the star. Missions like NICER and LOFT will observe the pulse profiles of millisecond pulsars and thermonuclear bursters. The equation-of-state (EoS) independent relations may break degeneracies among the relevant observables in the modeling of X-ray pulse and atomic line profiles. The amount of EoS independence of these approximately universal relations depends on how one adimensionalizes the multipole moments of the star with stellar mass, spin and radius. We show that for slowly-rotating neutron stars in both non-relativistic limit and full General Relativity, the optimal normalization of the multipole moments exist that minimizes the EoS dependence in the universal relations. The relations among the moment of inertia and higher order moments can be improved from the original ones approximately by a factor of two. Nicolas Yunes acknowledges support from NSF CAREER Award PHY-1250636. Barun Majumder is supported by the Fulbright-Nehru Postdoctoral Research Fellowship.

  12. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  13. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  14. Observable pulsed fractions of thermal emission from neutron stars with toroidal magnetic fields.

    NASA Astrophysics Data System (ADS)

    Henderson, Jillian Anne

    The observed spectra of many thermally emitting neutron stars ("The Magnificent Seven", High-Field Pulsars, etc.) suggest that the surface temperature distribution can be described by hot polar regions surrounded by a cooler equatorial belt. The hotter polar "caps" produce pulsed fractions (P F ) in the x-ray emission that, in some cases, can be quite high (e.g. PSR J1119-6127 with P F = 74 ± 14%, Gonzalez et al. 2007). In neutron stars, such a temperature distribution can be explained by the presence of a strong toroidal field in the crust (Perez-Azorin et al. 2006; Geppert et al. 2006). An elegant description of the relationship between pulsed fraction and rg /R for compact stars with hot spots was first given by Beloborodov 2002. In this study, the relationship between pulsed fraction and stellar radius (P F vs. R) for various configurations of hot spot position, beaming factor and observer angle for a 1.4 solar mass neutron star is explored. The pertinence of spot temperature and size is also examined.

  15. Time-of-flight mass measurements for nuclear processes in neutron star crusts

    SciTech Connect

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik; Amthor, A. M.; Bazin, D.; Beard, Mary; Becerril, A.; Brown, Edward; Elliot, T; Gade, A.; Galaviz, D.; George, S.; Gupta, Sanjib; Hix, William Raphael; Lau, Rita; Moeller, Peter; Pereira, J.; Portillo, M.; Rogers, A. M.; Shapira, Dan; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, Michael

    2011-01-01

    The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Supercon- ducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the Sc Ni element range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of 61V, 63Cr, 66Mn, and 74Ni were measured for the first time with mass excesses of 30.510(890) MeV, 35.280(650) MeV, 36.900(790) MeV, and 49.210(990) MeV, respectively. With the measurement of the 66Mn mass, the location of the two dominant heat sources in the outer crust of accreting neutron stars, which exhibit so called superbursts, is now experimentally constrained. We find that the location of the 66Fe 66Mn electron capture transition occurs sig- nificantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV smaller than predicted by the FRDM mass model. The results also provide new insights into the structure of neutron-rich nuclei around N = 40.

  16. HERSCHEL AND SPITZER OBSERVATIONS OF SLOWLY ROTATING, NEARBY ISOLATED NEUTRON STARS

    SciTech Connect

    Posselt, B.; Pavlov, G. G.; Popov, S.; Wachter, S.

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 mu m) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (<1 kpc) isolated neutron stars. Herschel detected 160 μm emission (>5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ∼10% to ∼20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  17. Herschel and Spitzer Observations of Slowly Rotating, Nearby Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Pavlov, G. G.; Popov, S.; Wachter, S.

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 μm) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (<1 kpc) isolated neutron stars. Herschel detected 160 μm emission (>5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ~10% to ~20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  18. Lense-Thirring precession around neutron stars with known spin

    NASA Astrophysics Data System (ADS)

    Van Doesburgh, Marieke; van der Klis, Michiel

    2016-07-01

    Quasi periodic oscillations (QPOs) between 300 and 1200 Hz in the X-ray emission from low mass X-ray binaries have been linked to Keplerian orbital motion at the inner edge of accretion disks. Lense-Thirring precession is precession of the line of nodes of inclined orbits with respect to the equatorial plane of a rotating object due to the general relativistic effect of frame dragging. The Lense-Thirring model of Stella and Vietri (1998) explains QPOs observed in neutron star low mass X-ray binaries at frequencies of a few tens of Hz by the nodal precession of the orbits at the inner disk edge at a precession frequency, ν_{LT} , identical to the Lense-Thirring precession of a test particle orbit. A quadratic relation between ν_{LT} and the Keplerian orbital frequency, and a linear dependence on spin frequency are predicted. In early work (van Straaten et al., 2003) this quadratic relation was confirmed to remarkable precision in three objects of uncertain spin. Since the initial work, many neutron star spin frequencies have been measured in X-ray sources that show QPOs at both low and high frequency. Using archival data from the Rossi X-ray Timing Explorer, we compare the Lense-Thirring prediction to the properties of quasi periodic oscillations measured in a sample of 14 low mass X-ray binaries of which the neutron star spin frequencies can be inferred from their bursting behaviour. We find that in the range predicted for the precession frequency, we can distinguish two different oscillations that often occur simultaneously. In previous works, these two oscillations have often been confused. For both frequencies, we find correlations with inferred Keplerian frequency characterized by power laws with indices that differ significantly from the prediction of 2.0 and therefore inconsistent with the Lense-Thirring model. Also, the specific moment of inertia of the neutron star required by the observed frequencies exceeds values predicted for realistic equations of

  19. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    SciTech Connect

    Ghezzi, Cristian R.

    2005-11-15

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.

  20. Multimessenger Observations of Neutron Star Mergers: Probing the Physics of High-Density Matter

    NASA Astrophysics Data System (ADS)

    Radice, David

    2016-09-01

    Neutron star mergers are Nature's ultimate hadron colliders. They are extremely violent events resulting in gravitational-waves and electromagnetic emissions that could be detected at distances of several hundred mega-parsecs. Imprinted in these signals are important clues on the properties of high-density matter, waiting to be harnessed by us. In this talk, I will review our current knowledge of neutron star mergers from the theoretical side. I will discuss the prospects of measuring neutron star radii and masses using gravitational-wave observations of the late-inspiral of merging neutron stars. Then, I will show how multimessenger observations of the merger and post-merger evolution of merging neutron stars could be used to place further constrains on the nuclear equation of state at very high densities. Finally, I will discuss the possible role of neutron star mergers in the creation of the r-process nuclei in the Universe.

  1. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).

  2. Neutron environments on the Martian surface.

    PubMed

    Clowdsley, M S; Wilson, J W; Kim, M H; Singleterry, R C; Tripathi, R K; Heinbockel, J H; Badavi, F F; Shinn, J L

    2001-01-01

    Radiation is a primary concern in the planning of a manned mission to Mars. Recent studies using NASA Langley Research Center's HZETRN space radiation transport code show that the low energy neutron fluence on the Martian surface is larger than previously expected. The upper atmosphere of Mars is exposed to a background radiation field made up of a large number of protons during a solar particle event and mixture of light and heavy ions caused by galactic cosmic rays at other times. In either case, these charged ions interact with the carbon and oxygen atoms of the Martian atmosphere through ionization and nuclear collisions producing secondary ions and neutrons which then interact with the atmospheric atoms in a similar manner. In the past, only these downward moving particles have been counted in evaluating the neutron energy spectrum on the surface. Recent enhancements in the HZETRN code allow for the additional evaluation of those neutrons created within the Martian regolith through the same types of nuclear reactions, which rise to the surface. New calculations using this improved HZETRN code show that these upward moving neutrons contribute significantly to the overall neutron spectrum for energies less than 10 MeV.

  3. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C.

    1973-01-01

    The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.

  4. Determining the nuclear equation of state from neutron-star masses and radii

    NASA Technical Reports Server (NTRS)

    Lindblom, Lee

    1992-01-01

    A method is developed for determining the nuclear equation of state directly from a knowledge of the masses and radii of neutron stars. This analysis assumes only that equilibrium neutron-star matter has the stress-energy tensor of an isotropic fluid with a barotropic equation of state, and that general relativity describes a neutron star's internal gravitational field. We present numerical examples which illustrate how well this method will determine the equation of state when the appropriate observational data become available.

  5. Sensitivity of model calculations to uncertain inputs, with an application to neutron star envelopes

    NASA Technical Reports Server (NTRS)

    Epstein, R. I.; Gudmundsson, E. H.; Pethick, C. J.

    1983-01-01

    A method is given for determining the sensitivity of certain types of calculations to the uncertainties in the input physics or model parameters; this method is applicable to problems that involve solutions to coupled, ordinary differential equations. In particular the sensitivity of calculations of the thermal structure of neutron star envelopes to uncertainties in the opacity and equation of state is examined. It is found that the uncertainties in the relationship between the surface and interior temperatures of a neutron star are due almost entirely to the imprecision in the values of the conductive opacity in the region where the ions form a liquid; here the conductive opacity is, for the most part, due to the scattering of electrons from ions.

  6. RELATIONS BETWEEN NEUTRON-STAR PARAMETERS IN THE HARTLE-THORNE APPROXIMATION

    SciTech Connect

    Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal; Berti, Emanuele E-mail: dpsaltis@email.arizona.edu E-mail: berti@phy.olemiss.edu

    2013-11-01

    Using stellar structure calculations in the Hartle-Thorne approximation, we derive analytic expressions connecting the ellipticity of the stellar surface to the compactness, the spin angular momentum, and the quadrupole moment of the spacetime. We also obtain empirical relations between the compactness, the spin angular momentum, and the spacetime quadrupole. Our formulae reproduce the results of numerical calculations to within a few percent and help reduce the number of parameters necessary to model the observational appearance of moderately spinning neutron stars. This is sufficient for comparing theoretical spectroscopic and timing models to observations that aim to measure the masses and radii of neutron stars and to determine the equation of state prevailing in their interiors.

  7. Many-body treatment of white dwarf and neutron stars on the brane

    SciTech Connect

    Azam, Mofazzal; Sami, M.

    2005-07-15

    Brane-world models suggest modification of Newton's law of gravity on the 3-brane at submillimeter scales. The brane-world induced corrections are in higher powers of inverse distance and appear as additional terms with the Newtonian potential. The average interparticle distance in white dwarf and neutron stars is 10{sup -10} cms and 10{sup -13} cms, respectively, and therefore, the effect of submillimeter corrections needs to be investigated. We show, by carrying out simple many-body calculations, that the mass and mass-radius relationship of the white dwarf and neutron stars are not effected by submillimeter corrections. However, our analysis shows that the correction terms in the effective theory give rise to force akin to surface tension in normal liquids.

  8. Measuring neutron star tidal deformability with Advanced LIGO: A Bayesian analysis of neutron star-black hole binary observations

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald P.

    2017-02-01

    The pioneering discovery of gravitational waves (GWs) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observation, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability ΛNS∝(R /M )NS5 using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if nontidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of nontidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than ≃30 . For similarly loud signals, we also find that we can begin to put interesting constraints on ΛNS (factor of 1-2) with individual observations. Next, we study how a population of realistic NSBH detections will improve our measurement of neutron star tidal deformability. For an astrophysically likely population of disruptive NSBH coalescences, we find that 20-35 events are sufficient to constrain ΛNS within ±25 %- 50 % , depending on the neutron star equation of state. For these calculations we assume that LIGO will detect black holes with masses within the astrophysical mass gap. In case the mass gap remains preserved in NSBHs detected by LIGO, we estimate that approximately 25% additional detections will furnish comparable ΛNS measurement accuracy. In both cases, we find that it is the loudest 5-10 events that provide most of the tidal information, and not the combination of tens of low-SNR events, thereby facilitating targeted numerical-GR follow-ups of NSBHs. We find these results

  9. Effect of nuclear saturation parameters on a possible maximum mass of neutron stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2017-02-01

    To systematically examine the possible maximum mass of neutron stars, which is one of the important properties characterizing the physics in high-density regions, I construct neutron star models by adopting phenomenological equations of state with various values of nuclear saturation parameters for low-density regions, which are connected to the equation of state for high-density regions characterized by the possible maximum sound velocity in medium. I derive an empirical formula for the possible maximum mass of neutron stars. If massive neutron stars are observed, it could be possible to get a constraint on the possible maximum sound velocity for high-density regions.

  10. Constraints on binary neutron star merger product from short GRB observations

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2016-02-01

    Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.

  11. Prediction of Black Hole and Neutron Star Mesolensing Events

    NASA Astrophysics Data System (ADS)

    Harding, Alex; Di Stefano, Rosanne; Urama, Johnson; Pham, Dang

    2016-01-01

    Black holes and neutron stars are ideal gravitational lenses because they have large masses and dim optical magnitudes. Lensing induced by nearby stellar objects, typically within a few kpc, is known as mesolensing. We report on our study of the spatial paths of more than 200 compact objects with measured proper motions. We predict their close approaches on the sky to background stars whose positions and magnitudes have been drawn from the Hubble Source Catalog, and from the 2MASS and USNO-A catalogs. By plotting the paths of the stellar remnants many years into the future we make predictions on when detectable events will occur. The observations provide a way of measuring the masses of the neutron star/black hole lenses. We also investigate possible future lensing events that would be caused if the compact object is orbited by dark companions, including exoplanets. Mesolensing events may be caused by exoplanets even if the compact object is unlikely to produce its own event. Constraints can be derived for planet masses and orbits both in cases with event detections and in cases in which no detection is achieved.

  12. Neutrons on a surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  13. Constraints on Neutron Star Crusts from Oscillations in Giant Flares

    SciTech Connect

    Steiner, Andrew W.; Watts, Anna L.

    2009-10-30

    We show that the fundamental seismic shear mode, observed as a quasiperiodic oscillation in giant flares emitted by highly magnetized neutron stars, is particularly sensitive to the nuclear physics of the crust. The identification of an oscillation at {approx_equal}30 Hz as the fundamental crustal shear mode requires a nuclear symmetry energy that depends very weakly on density near saturation. If the nuclear symmetry energy varies more strongly with density, then lower frequency oscillations, previously identified as torsional Alfven modes of the fluid core, could instead be associated with the crust. If this is the case, then future observations of giant flares should detect oscillations at around 18 Hz. An accurate measurement of the neutron-skin thickness of lead will also constrain the frequencies predicted by the model.

  14. Internal composition of proto-neutron stars under strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Dexheimer, V.; Schramm, S.

    2016-08-01

    In this work, we study the effects of magnetic fields and rotation on the structure and composition of proto-neutron stars. A hadronic chiral SU(3) model is applied to cold neutron stars and proto-neutron stars with trapped neutrinos and at fixed entropy per baryon. We obtain general relativistic solutions for neutron and proto-neutron stars endowed with a poloidal magnetic field by solving Einstein-Maxwell field equations in a self-consistent way. As the neutrino chemical potential decreases in value over time, this alters the chemical equilibrium and the composition inside the star, leading to a change in the structure and in the particle population of these objects. We find that the magnetic field deforms the star and significantly alters the number of trapped neutrinos in the stellar interior, together with strangeness content and temperature in each evolution stage.

  15. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  16. Distinguishing Newly Born Strange Stars from Neutron Stars with g-Mode Oscillations

    SciTech Connect

    Fu Weijie; Wei Haiqing; Liu Yuxin

    2008-10-31

    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors.

  17. Distinguishing newly born strange stars from neutron stars with g-mode oscillations.

    PubMed

    Fu, Wei-Jie; Wei, Hai-Qing; Liu, Yu-Xin

    2008-10-31

    The gravity-mode (g-mode) eigenfrequencies of newly born strange quark stars (SQSs) and neutron stars (NSs) are studied. It is found that the eigenfrequencies in SQSs are much lower than those in NSs by almost 1 order of magnitude, since the components of a SQS are all extremely relativistic particles while nucleons in a NS are nonrelativistic. We therefore propose that newly born SQSs can be distinguished from the NSs by detecting the eigenfrequencies of the g-mode pulsations of supernovae cores through gravitational radiation by LIGO-class detectors.

  18. Hypernuclei and the hyperon problem in neutron stars

    SciTech Connect

    Bedaque, Paulo F.; Steiner, Andrew W.

    2015-08-17

    The likely presence of $\\Lambda$ baryons in dense hadronic matter tends to soften the equation of state to an extend that the observed heaviest neutron stars are difficult to explain. Here we analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of $\\Lambda$ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on non-strange dense matter, including its uncertainties, to conclude that the interaction between $\\Lambda$s and dense matter has to become repulsive at densities below three times the nuclear saturation density.

  19. Electron transport through nuclear pasta in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. G.

    2015-10-01

    We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so-called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.

  20. CONSTRAINTS ON NATAL KICKS IN GALACTIC DOUBLE NEUTRON STAR SYSTEMS

    SciTech Connect

    Wong, Tsing-Wai; Willems, Bart; Kalogera, Vassiliki E-mail: b-willems@northwestern.ed

    2010-10-01

    Since the discovery of the first double neutron star (DNS) system in 1975 by Hulse and Taylor, there are currently eight confirmed DNS in our galaxy. For every system, the masses of both neutron stars, the orbital semimajor axis, and eccentricity are measured, and proper motion is known for half of the systems. Using the orbital parameters and kinematic information, if available, as constraints for all systems, we investigate the immediate progenitor mass of the second-born neutron star (NS2) and the magnitude of the supernova kick it received at birth, with the primary goal to understand the core-collapse mechanism leading to neutron star formation. Compared to earlier studies, we use a novel method to address the uncertainty related to the unknown radial velocity of the observed systems. For PSR B1534+12 and PSR B1913+16, the kick magnitudes are 150-270 km s{sup -1} and 190-450 km s{sup -1} (with 95% confidence), respectively, and the progenitor masses of the NS2 are 1.3-3.4 M{sub sun} and 1.4-5.0 M{sub sun} (95%), respectively. These suggest that the NS2 was formed by an iron core-collapse supernova in both systems. For PSR J0737 - 3039, on the other hand, the kick magnitude is only 5-120 km s{sup -1} (95%), and the progenitor mass of the NS2 is 1.3-1.9 M{sub sun} (95%). Because of the relatively low progenitor mass and kick magnitude, the formation of the NS2 in PSR J0737 - 3039 is potentially connected to an electron capture supernova of a massive O-Ne-Mg white dwarf. For the remaining five Galactic DNS, the kick magnitude ranges from several tens to several hundreds of km s{sup -1}, and the progenitor mass of the NS2 can be as low as {approx}1.5 M{sub sun} or as high as {approx}8 M{sub sun}. Therefore, in these systems it is not clear which type of supernova is more likely to form the NS2.

  1. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  2. Gamma-ray emission from young neutron stars

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Liang, Edison P.; Cordes, J. M.

    1991-01-01

    The emission models of Cheng et al. (1986) and Harding (1981) are employed to determine likely candidates for pulsed gamma-ray emission on the basis of recent radio data of pulsars. The recent detection of pulsed gamma rays from PSR 1951+32 lends observational support to the scenario of Cheng et al. which also suggests that PSR 1855+09 might be another excellent gamma-ray pulsar candidate. The possible contribution of young neutron stars to the diffuse high energy glow is also discussed.

  3. Quasiequilibrium sequences of binary neutron stars undergoing dynamical scalarization

    NASA Astrophysics Data System (ADS)

    Taniguchi, Keisuke; Shibata, Masaru; Buonanno, Alessandra

    2015-01-01

    We calculate quasiequilibrium sequences of equal-mass, irrotational binary neutron stars in a scalar-tensor theory of gravity that admits dynamical scalarization. We model neutron stars with realistic equations of state (notably through piecewise polytropic equations of state). Using these quasiequilibrium sequences we compute the binary's scalar charge and binding energy versus orbital angular frequency. We find that the absolute value of the binding energy is smaller than in general relativity, differing at most by ˜14 % at high frequencies for the cases considered. We use the newly computed binding energy and the balance equation to estimate the number of gravitational-wave (GW) cycles during the adiabatic, quasicircular inspiral stage up to the end of the sequence, which is the last stable orbit or the mass-shedding point, depending on which comes first. We find that, depending on the scalar-tensor parameters, the number of GW cycles can be substantially smaller than in general relativity. In particular, we obtain that when dynamical scalarization sets in around a GW frequency of ˜130 Hz , the sole inclusion of the scalar-tensor binding energy causes a reduction of GW cycles from ˜120 Hz up to the end of the sequence (˜1200 Hz ) of ˜11 % with respect to the general-relativity case. (The number of GW cycles from ˜120 Hz to the end of the sequence in general relativity is ˜270 .) We estimate that when the scalar-tensor energy flux is also included the reduction in GW cycles becomes of ˜24 %. Quite interestingly, dynamical scalarization can produce a difference in the number of GW cycles with respect to the general-relativity point-particle case that is much larger than the effect due to tidal interactions, which is on the order of only a few GW cycles. These results further clarify and confirm recent studies that have evolved binary neutron stars either in full numerical relativity or in post-Newtonian theory, and point out the importance of developing

  4. The properties of the progenitor, neutron star, and pulsar wind in the supernova remnant Kes 75

    NASA Astrophysics Data System (ADS)

    Gelfand, J. D.; Slane, P. O.; Temim, T.

    2014-03-01

    By studying composite supernova remnants (SNRs), remnants which contain a pulsar wind nebula (PWN), it is possible to estimate physical properties of the progenitor explosion, central neutron star, and its pulsar wind that are difficult to measure directly. This is best done by fitting the dynamical and broadband spectral properties of a PWN with an evolutionary model for a PWN inside an SNR. We apply such a model to the composite SNR Kes 75, whose associated pulsar PSR J1846-0258 is thought to have an extremely strong surface magnetic field. If ˜ 3 M_⊙ of mass was ejected in the supernova, our model suggests a normal or slightly subenergetic supernova in a low density environment. Additionally, for the measured pre-outburst braking index of p=2.65, our model prefers an age of {˜ 430} years and an initial spin period P_0 ˜ 0.2 s. Lastly, the magnetization of the pulsar wind and energy spectrum of particles injected at the termination shock are similar to those observed from other PWNe powered by less magnetized neutron stars. While further study is needed to verify these results, they are nominally inconsistent with strong neutron star magnetic fields resulting from very fast initial rotation.

  5. RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS

    SciTech Connect

    Cackett, Edward M.; Miller, Jon M.; Ballantyne, David R.; Barret, Didier; Boutelier, Martin; Miller, M. Coleman; Strohmayer, Tod E.

    2010-09-01

    A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c {sup 2}) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk.

  6. Relativistic Lines and Reflection from the Inner Accretion Disks Around Neutron Stars

    NASA Astrophysics Data System (ADS)

    Cackett, Edward M.; Miller, Jon M.; Ballantyne, David R.; Barret, Didier; Bhattacharyya, Sudip; Boutelier, Martin; Miller, M. Coleman; Strohmayer, Tod E.; Wijnands, Rudy

    2010-09-01

    A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c 2) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk.

  7. Second neutron star in globular cluster M4 .

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kałużny, J.; Różyczka, M.; Krzemiński, W.; Thompson, I. B.

    We show that the optical counterpart of the brightest X-ray source C-X 1 in M4 is a ˜ 20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star, probably a millisecond pulsar.

  8. Gravitational wave asteroseismology with fast rotating neutron stars

    SciTech Connect

    Gaertig, Erich; Kokkotas, Kostas D.

    2011-03-15

    We investigate damping and growth times of the quadrupolar f mode for rapidly rotating stars and a variety of different polytropic equations of state in the Cowling approximation. This is the first study of the damping/growth time of these types of oscillations for fast-rotating neutron stars in a relativistic treatment where the spacetime degrees of freedom of the perturbations are neglected. We use these frequencies and damping/growth times to create robust empirical formulae which can be used for gravitational-wave asteroseismology. The estimation of the damping/growth time is based on the quadrupole formula and our results agree very well with Newtonian ones in the appropriate limit.

  9. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  10. CCO Pulsars as Anti-Magnetars: Evidence of Neutron Stars Weakly Magnetized at Birth

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.

    2008-02-01

    Our new study of the two central compact object pulsars, PSR J1210-5226 (P = 424 ms) and PSR J1852+0040 (P = 105 ms), leads us to conclude that a weak natal magnetic field shaped their unique observational properties. In the dipole spin-down formalism, the 2-sigma upper limits on their period derivatives, <2×10-16 for both pulsars, implies surface magnetic field strengths of Bs<3×1011 G and spin periods at birth equal to their present periods to three significant digits. Their X-ray luminosities exceed their respective spin-down luminosities, implying that their thermal spectra are derived from residual cooling and perhaps partly from accretion of supernova debris. For sufficiently weak magnetic fields an accretion disk can penetrate the light cylinder and interact with the magnetosphere while resulting torques on the neutron star remain within the observed limits. We propose the following as the origin of radio-quiet CCOs: the magnetic field, derived from a turbulent dynamo, is weaker if the NS is formed spinning slowly, which enables it to accrete SN debris. Accretion excludes neutron stars born with both Bs<1011 G and P>0.1 s from radio pulsar surveys, where such weak fields are not encountered except among very old (>40 Myr) or recycled pulsars. We predict that these birth properties are common, and may be attributes of the youngest detected neutron star, the CCO in Cassiopeia A, as well as an undetected infant neutron star in the SN 1987A remnant. In view of the far-infrared light echo discovered around Cas A and attributed to an SGR-like outburst, it is especially important to determine via timing whether Cas A hosts a magnetar or not. If not a magnetar, the Cas A NS may instead have undergone a one-time phase transition (corequake) that powered the light echo.

  11. Neutron star models in frames of f (R) gravity

    SciTech Connect

    Astashenok, Artyom V.

    2009-01-01

    Neutron star models in perturbative f (R) gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state. The mass-radius relations for f(R)=R+βR(e{sup -R/R₀}₋1) model and for R² models with cubic corrections are obtained. In the case of R2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10 ρ{sub ns} = 2.7 × 10¹⁴ g/cm³ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ~ 1.9M{sub ⊙}(SLy equation) or to 8.5 km with mass ~ 1.7M{sub ⊙} (FPS equation). This effect can give rise to more compact stars than in GR. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level.

  12. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  13. On the effect of pion condensates on the spectrum of neutron stars

    SciTech Connect

    Kolevatov, S. S.; Andrianov, A. A.; Espriu, D.

    2016-01-22

    There is no precise theory describing the structure of neutron stars. However, inside such objects the baryon density is very high and a pion condensation may occur. These condensates, if they exist, might give a significant effect on a spectrum of neutron stars. We investigate this influence with a help of simplified model to give qualitative picture of the effect.

  14. Neutrinos from SN 1987A and cooling of the nascent neutron star

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Loredo, Thomas J.; Melia, Fulvio

    1988-01-01

    The implications of the detection of neutrinos from SN 1987A for the cooling of the nascent neutron star are considered. The nu-bar(e) number N, the apparent temperature, the cooling time scale measured by the Kamioka and IMB detectors, and the inferred neutron star apparent radius and binding energy are all found to provide striking verification of current supernova theory.

  15. Gamma ray bursts from comet neutron star magnetosphere interaction, field twisting and E sub parallel formation

    SciTech Connect

    Colgate, S.A.

    1990-01-01

    Consider the problem of a comet in a collision trajectory with a magnetized neutron star. The question addressed in this paper is whether the comet interacts strongly enough with a magnetic field such as to capture at a large radius or whether in general the comet will escape a magnetized neutron star. 6 refs., 4 figs.

  16. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ≲ 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  17. Measuring neutron star masses and radii using NICER observations of X-ray oscillations

    NASA Astrophysics Data System (ADS)

    Lamb, Frederick K.; Miller, M. Coleman

    2016-04-01

    Precise and reliable simultaneous measurements of the mass and radius of several neutron stars with different masses would provide valuable guidance for improving models of the properties of cold dense matter. The prime scientific goal of the Neutron star Interior Composition ExploreR (NICER) is to make such measurements by fitting energy-dependent waveform models to the thermal X-ray oscillations observed from rotation-powered millisecond pulsars. These oscillations are thought to be produced as hotter regions of the stellar surface near one or both of the star’s magnetic poles rotate around the star at the star's spin frequency. We first discuss the phenomenology and modeling of these oscillations. We then present the results of parameter estimation studies using synthetic waveform data and Bayesian statistical methods. The synthetic and model waveforms used in this study were computed using the X-ray spectra and radiation beaming patterns given by models of the cool hydrogen atmospheres that NICER is expected to observe. Finally, we discuss the causes and expected sizes of the uncertainties in radius and mass estimates that will be made by NICER using this method.

  18. The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines.

    PubMed

    Bignami, G F; Caraveo, P A; De Luca, A; Mereghetti, S

    2003-06-12

    Isolated neutron stars are highly magnetized, fast-rotating objects that form as an end point of stellar evolution. They are directly observable in X-ray emission, because of their high surface temperatures. Features in their X-ray spectra could in principle reveal the presence of atmospheres, or be used to estimate the strength of their magnetic fields through the cyclotron process, as is done for X-ray binaries. Almost all isolated neutron star spectra observed so far appear as featureless thermal continua. The only exception is 1E1207.4-5209 (refs 7-9), where two deep absorption features have been detected, but with insufficient definition to permit unambiguous interpretation. Here we report a long X-ray observation of the same object in which the star's spectrum shows three distinct features, regularly spaced at 0.7, 1.4 and 2.1 keV, plus a fourth feature of lower significance, at 2.8 keV. These features vary in phase with the star's rotation. The logical interpretation is that they are features from resonant cyclotron absorption, which allows us to calculate a magnetic field strength of 8 x 10(10) G, assuming the absorption arises from electrons.

  19. The Neutron Star Interior Composition Explorer (NICER): Design and Development

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; Berry, Daniel L.; Bhalwani, Shiraz; Brown, Gary L.; Budinoff, Jason G.; Cazeau, Thoniel; Chen, Philip T.; Fan, Terry W.-M.; Gallo, Luis D.; Green, Chris M.; Ha, Kong Q.; Hassouneh, Munther A.; Hestnes, Phyllis; Hoge, Lisa J.; Jacobs, Tawanda M.; Kellogg, James W.; Kenyon, Steven J.; Kozon, Robert P.; Lewis, Jess H.; Liu, Kuochia Alice; Manthripragada, Sridhar S.; Markwardt, Craig B.; Mcginnis, Isaac E.; Miller, Roger L.; Mitchell, Alissa L.; Mitchell, Jason W.; Mohammed, Jelila S.; Monroe, Charles A.; Montt de Garcia, Kristina; Mule, Peter D.; Ngo, Son M.; Norwood, Dwight A.; Okajima, Takashi; Olsen, Lawrence G.; Onyeachu, Chimaobi O.; Peterson, Jacqualine R.; Pham, Karen K.; Pollard, Sue E.; Powers, Daniel F.; Powers, Charles E.; Price, Samuel R.; Ramirez, Julian B.; Rogstad, Eric M.; Savadkin, Bruce; Schweiss, Nancy S.; Semper, Sean R.; Serlemitsos, Peter J.; Winternitz, Luke B.; Wofford, George I.; Wright, Michael R.; Yang, Mike Y.; Yu, Wayne H.

    2016-01-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2{12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray \\concentrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.

  20. The Neutron star Interior Composition Explorer (NICER): design and development

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; Berry, Daniel L.; Bhalwani, Shiraz; Black, J. Kevin; Blaurock, Carl; Bronke, Ginger M.; Brown, Gary L.; Budinoff, Jason G.; Cantwell, Jeffrey D.; Cazeau, Thoniel; Chen, Philip T.; Clement, Thomas G.; Colangelo, Andrew T.; Coleman, Jerry S.; Coopersmith, Jonathan D.; Dehaven, William E.; Doty, John P.; Egan, Mark D.; Enoto, Teruaki; Fan, Terry W.; Ferro, Deneen M.; Foster, Richard; Galassi, Nicholas M.; Gallo, Luis D.; Green, Chris M.; Grosh, Dave; Ha, Kong Q.; Hasouneh, Monther A.; Heefner, Kristofer B.; Hestnes, Phyllis; Hoge, Lisa J.; Jacobs, Tawanda M.; Jørgensen, John L.; Kaiser, Michael A.; Kellogg, James W.; Kenyon, Steven J.; Koenecke, Richard G.; Kozon, Robert P.; LaMarr, Beverly; Lambertson, Mike D.; Larson, Anne M.; Lentine, Steven; Lewis, Jesse H.; Lilly, Michael G.; Liu, Kuochia Alice; Malonis, Andrew; Manthripragada, Sridhar S.; Markwardt, Craig B.; Matonak, Bryan D.; Mcginnis, Isaac E.; Miller, Roger L.; Mitchell, Alissa L.; Mitchell, Jason W.; Mohammed, Jelila S.; Monroe, Charles A.; Montt de Garcia, Kristina M.; Mulé, Peter D.; Nagao, Louis T.; Ngo, Son N.; Norris, Eric D.; Norwood, Dwight A.; Novotka, Joseph; Okajima, Takashi; Olsen, Lawrence G.; Onyeachu, Chimaobi O.; Orosco, Henry Y.; Peterson, Jacqualine R.; Pevear, Kristina N.; Pham, Karen K.; Pollard, Sue E.; Pope, John S.; Powers, Daniel F.; Powers, Charles E.; Price, Samuel R.; Prigozhin, Gregory Y.; Ramirez, Julian B.; Reid, Winston J.; Remillard, Ronald A.; Rogstad, Eric M.; Rosecrans, Glenn P.; Rowe, John N.; Sager, Jennifer A.; Sanders, Claude A.; Savadkin, Bruce; Saylor, Maxine R.; Schaeffer, Alexander F.; Schweiss, Nancy S.; Semper, Sean R.; Serlemitsos, Peter J.; Shackelford, Larry V.; Soong, Yang; Struebel, Jonathan; Vezie, Michael L.; Villasenor, Joel S.; Winternitz, Luke B.; Wofford, George I.; Wright, Michael R.; Yang, Mike Y.; Yu, Wayne H.

    2016-07-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded success- fully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "con- centrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.

  1. Neutron star structure and collective excitations of finite nuclei

    NASA Astrophysics Data System (ADS)

    Paar, N.; Moustakidis, Ch. C.; Marketin, T.; Vretenar, D.; Lalazissis, G. A.

    2014-07-01

    A method is introduced that establishes relations between properties of collective excitations in finite nuclei and the phase transition density nt and pressure Pt at the inner edge separating the liquid core and the solid crust of a neutron star. A theoretical framework that includes the thermodynamic method, relativistic nuclear energy density functionals, and the quasiparticle random-phase approximation is employed in a self-consistent calculation of (nt,Pt) and collective excitations in nuclei. Covariance analysis shows that properties of charge-exchange dipole transitions, isovector giant dipole and quadrupole resonances, and pygmy dipole transitions are correlated with the core-crust transition density and pressure. A set of relativistic nuclear energy density functionals, characterized by systematic variation of the density dependence of the symmetry energy of nuclear matter, is used to constrain possible values for (nt,Pt). By comparing the calculated excitation energies of giant resonances, energy-weighted pygmy dipole strength, and dipole polarizability with available data, we obtain the weighted average values: nt=0.0955±0.0007 fm-3 and Pt=0.59±0.05 MeV fm-3. This approach crucially depends on experimental results for collective excitations in nuclei and, therefore, accurate measurements are necessary to further constrain the structure of the crust of neutron stars.

  2. Tuning up for Gravitational Wave Detection in Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan; Steeghs, Danny; Ransom, Scott

    Rapidly-rotating neutron stars are the only candidates for persistent gravitational wave emis-sion, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g. radio and X-ray) observations. Apart from the expected weakness of the emission, the principal difficulty for such searches is the lack of precision in measurements of the spin as well as the other physical parameters of the system. I present a pilot program of optical and infra-red observations of the stellar counterparts to X-ray bright accreting neutron stars, in order to measure (or improve the precision of) the binary parameters. These measurements will allow optimisation of future gravitational wave searches, and will also facilitate searches of the extensive X-ray timing data from NASA's Rossi X-ray Timing Explorer, to measure the spin frequency (for those systems where it is not precisely known). Observations such as these will provide the best possible chance for detecting the gravitational wave emission from these systems.

  3. The neutron star interior composition explorer (NICER): mission definition

    NASA Astrophysics Data System (ADS)

    Arzoumanian, Z.; Gendreau, K. C.; Baker, C. L.; Cazeau, T.; Hestnes, P.; Kellogg, J. W.; Kenyon, S. J.; Kozon, R. P.; Liu, K.-C.; Manthripragada, S. S.; Markwardt, C. B.; Mitchell, A. L.; Mitchell, J. W.; Monroe, C. A.; Okajima, T.; Pollard, S. E.; Powers, D. F.; Savadkin, B. J.; Winternitz, L. B.; Chen, P. T.; Wright, M. R.; Foster, R.; Prigozhin, G.; Remillard, R.; Doty, J.

    2014-07-01

    Over a 10-month period during 2013 and early 2014, development of the Neutron star Interior Composition Explorer (NICER) mission [1] proceeded through Phase B, Mission Definition. An external attached payload on the International Space Station (ISS), NICER is scheduled to launch in 2016 for an 18-month baseline mission. Its prime scientific focus is an in-depth investigation of neutron stars—objects that compress up to two Solar masses into a volume the size of a city—accomplished through observations in 0.2-12 keV X-rays, the electromagnetic band into which the stars radiate significant fractions of their thermal, magnetic, and rotational energy stores. Additionally, NICER enables the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) demonstration of spacecraft navigation using pulsars as beacons. During Phase B, substantive refinements were made to the mission-level requirements, concept of operations, and payload and instrument design. Fabrication and testing of engineering-model components improved the fidelity of the anticipated scientific performance of NICER's X-ray Timing Instrument (XTI), as well as of the payload's pointing system, which enables tracking of science targets from the ISS platform. We briefly summarize advances in the mission's formulation that, together with strong programmatic performance in project management, culminated in NICER's confirmation by NASA into Phase C, Design and Development, in March 2014.

  4. Modeling mergers of known galactic systems of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Feo, Alessandra; De Pietri, Roberto; Maione, Francesco; Löffler, Frank

    2017-02-01

    We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between 0.75 and 0.99. Specifically, these systems are J1756-2251, J0737-3039A, J1906  +  0746, B1534  +  12, J0453  +  1559 and B1913  +  16. We follow the dynamics of the merger from the late stage of the inspiral process up to  ∼20ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems (q  =  0.75, J0453  +  1559), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and frequencies of the BNS after the merger and the BH properties in the two cases in which the system collapses within the simulated time.

  5. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  6. Smashing the Guitar: An Evolving Neutron Star Bow Shock

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Cordes, J. M.

    2004-01-01

    The Guitar Nebula is a spectacular example of an Hα bow shock nebula produced by the interaction of a neutron star with its environment. The radio pulsar B2224+65 is traveling at ~800-1600 km s-1 (for a distance of 1-2 kpc), placing it on the high-velocity tail of the pulsar velocity distribution. Here we report time evolution in the shape of the Guitar Nebula, the first such observations for a bow shock nebula, as seen in Hα imaging with the Hubble Space Telescope. The morphology of the nebula provides no evidence for anisotropy in the pulsar wind nor for fluctuations in the pulsar wind luminosity. The nebula shows morphological changes over two epochs spaced by 7 years that imply the existence of significant gradients and inhomogeneities in the ambient interstellar medium. These observations offer astrophysically unique, in situ probes of length scales between 5×10-4 and 0.012 pc. Model fitting suggests that the nebula axis-and thus the three-dimensional velocity vector-lies within 20° of the plane of the sky and also jointly constrains the distance to the neutron star and the ambient density.

  7. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    SciTech Connect

    Bagchi, Manjari; Torres, Diego F. E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  8. Supermagnetic Neutron Star Surprises Scientists, Forces Revision of Theories

    NASA Astrophysics Data System (ADS)

    2006-08-01

    Astronomers using radio telescopes from around the world have discovered a spinning neutron star with a superpowerful magnetic field -- called a magnetar -- doing things no magnetar has been seen to do before. The strange behavior has forced them to scrap previous theories about radio pulsars and promises to give new insights on the physics behind these extreme objects. Magnetar Artist's Conception of Magnetar With Radio Beams ALL IMAGES AND ANIMATIONS CREDIT: Bill Saxton, NRAO/AUI/NSF Image and Animation Files Magnetar Graphic (above image, JPEG, 32K) Animation With Sound From GBT Detection of XTE J1810-197 (8.6M) Animation With Sound From GBT Detection of XTE J1810-197 (Full Size, 29M) The magnetar, approximately 10,000 light-years from Earth in the direction of the constellation Sagittarius, is emitting powerful, regularly-timed pulses of radio waves just like radio pulsars, which are neutron stars with far less intense magnetic fields. Usually, magnetars are visible only in X-rays and sometimes very weakly in optical and infrared light. "No one has ever found radio pulses coming from a magnetar before. We thought that magnetars didn't do this," said Fernando Camilo of Columbia University. "This object is going to teach us new things about magnetar physics that we would never have learned otherwise," Camilo added. Neutron stars are the remnants of massive stars that have exploded as supernovae. Containing more mass than the Sun, they are compressed to a diameter of only about 15 miles, making them as dense as atomic nuclei. Ordinary pulsars are neutron stars that emit "lighthouse beams" of radio waves along the poles of their magnetic fields. As the star spins, the beam of radio waves is flung around, and when it passes the direction of Earth, astronomers can detect it with radio telescopes. Scientists have found about 1700 pulsars since their first discovery in 1967. While pulsars have strong magnetic fields, about a dozen neutron stars have been dubbed

  9. Probing Neutron Star Physics with Quasi-Periodic Oscillations in Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela

    2015-04-01

    Neutron stars, the remnants of massive stellar explosions, are prime candidates for studying dense matter physics in conditions not accessible in the laboratory. Among the zoo of neutron star phenomena, magnetars, neutron stars with an extremely high magnetic field, are of particular interest for their spectacular bursting behaviour in X-rays and gamma-rays. They show thousands of recurrent short, bright bursts as well as some of the brightest gamma-ray events, called giant flares, ever observed on earth. The detection of quasi-periodic oscillations (QPOs) in giant flares and, more recently, in small recurrent bursts, is generally interpreted as the observable signature of global oscillations of the neutron star following a star quake. This detection has opened up the potential of neutron star seismology: probing the physical conditions in the interior of the star via the information conveyed in star quakes. In this talk, I will give an overview of observational studies of these sources, focusing on recent detections of QPOs in smaller bursts as well as results from the giant flares. I will then tie these observational results to theoretical models of the star quakes that tie observations to the neutron star interior and crust, and I will finish with an outlook of the future of magnetar seismology. DH is supported by the Moore-Sloan Data Science Environment at NYU.

  10. Supersoft symmetry energy encountering non-Newtonian gravity in neutron stars.

    PubMed

    Wen, De-Hua; Li, Bao-An; Chen, Lie-Wen

    2009-11-20

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  11. Supersoft Symmetry Energy Encountering Non-Newtonian Gravity in Neutron Stars

    SciTech Connect

    Wen Dehua; Li Baoan; Chen Liewen

    2009-11-20

    Considering the non-Newtonian gravity proposed in grand unification theories, we show that the stability and observed global properties of neutron stars cannot rule out the supersoft nuclear symmetry energies at suprasaturation densities. The degree of possible violation of the inverse-square law of gravity in neutron stars is estimated using an equation of state of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.

  12. GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS

    SciTech Connect

    Piro, Anthony L.

    2012-12-10

    Massive stars generally end their lives as neutron stars (NSs) or black holes (BHs), with NS formation typically occurring at the low-mass end and collapse to a BH more likely at the high-mass end. In an intermediate regime, with a mass range that depends on the uncertain details of rotation and mass loss during the star's life, an NS is initially formed, which then experiences fallback accretion and collapse to a BH. The electromagnetic consequence of such an event is not clear. Depending on the progenitor's structure, possibilities range from a long gamma-ray burst to a Type II supernova (which may or may not be jet powered) to a collapse with a weak electromagnetic signature. Gravitational waves (GWs) provide the exciting opportunity to peer through the envelope of a dying massive star and directly probe what is occurring inside. We explore whether fallback onto young NSs can be detected by ground-based interferometers. When the incoming material has sufficient angular momentum to form a disk, the accretion spins up the NS sufficiently to produce non-axisymmetric instabilities and gravitational radiation at frequencies of {approx}700-2400 Hz for {approx}30-3000 s until collapse to a BH occurs. Using a realistic excess cross-power search algorithm, we show that such events are detectable by Advanced LIGO out to Almost-Equal-To 17 Mpc. From the rate of nearby core-collapse supernovae in the past five years, we estimate that there will be {approx}1-2 events each year that are worth checking for fallback GWs. The observation of these unique GW signatures coincident with electromagnetic detections would identify the transient events that are associated with this channel of BH formation, while providing information about the protoneutron star progenitor.

  13. A Survey of Chemical Separation in Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Mckinven, Ryan; Cumming, Andrew; Medin, Zach; Schatz, Hendrik

    2016-06-01

    The heavy element ashes of rp-process hydrogen and helium burning in accreting neutron stars are compressed to high density where they freeze, forming the outer crust of the star. We calculate the chemical separation on freezing for a number of different nuclear mixtures resulting from a range of burning conditions for the rp-process. We confirm the generic result that light nuclei are preferentially retained in the liquid and heavy nuclei in the solid. This is in agreement with the previous study of a 17-component mixture of rp-process ashes by Horowitz et al., but extends that result to a much larger range of compositions. We also find an alternative phase separation regime for the lightest ash mixtures which does not demonstrate this generic behavior. With a few exceptions, we find that chemical separation reduces the expected {Q}{{imp}} in the outer crust compared to the initial rp-process ash, where {Q}{{imp}} measures the mean-square dispersion in atomic number Z of the nuclei in the mixture. We find that the fractional spread of Z plays a role in setting the amount of chemical separation and is strongly correlated to the divergence between the two/three-component approximations and the full component model. The contrast in Y e between the initial rp-process ashes and the equilibrium liquid composition is similar to that assumed in earlier two-component models of compositionally driven convection, except for very light compositions which produce nearly negligible convective driving. We discuss the implications of these results for observations of accreting neutron stars.

  14. Saturation of the f -mode instability in neutron stars. II. Applications and results

    NASA Astrophysics Data System (ADS)

    Pnigouras, Pantelis; Kokkotas, Kostas D.

    2016-07-01

    We present the first results on the saturation of the f -mode instability in neutron stars due to nonlinear mode coupling. Emission of gravitational waves drives the f -mode (fundamental mode) unstable in fast-rotating, newborn neutron stars. The initial growth phase of the mode is followed by its saturation, because of energy leaking to other modes of the star. The saturation point determines the strain of the generated gravitational-wave signal, which can then be used to extract information about the neutron star's equation of state. The parent (unstable) mode couples via parametric resonances with pairs of daughter modes, with the triplets' evolution exhibiting a rich variety of behaviors. We study both supernova- and merger-derived neutron stars, simply modeled as polytropes in a Newtonian context, and show that the parent may couple to many different daughter pairs during the star's evolution through the instability window, with the saturation amplitude changing by orders of magnitude.

  15. Dynamical Tidal Response of a Rotating Neutron Star

    NASA Astrophysics Data System (ADS)

    Landry, Philippe; Poisson, Eric

    2017-01-01

    The gravitational wave phase of a neutron star (NS) binary is sensitive to the deformation of the NS that results from its companion's tidal influence. In a perturbative treatment, the tidal deformation can be characterized by a set of dimensionless constants, called Love numbers, which depend on the NS equation of state. For static NSs, one type of Love number encodes the response to gravitoelectric tidal fields (associated with mass multipole moments), while another does likewise for gravitomagnetic fields (associated with mass currents). A NS subject to a gravitomagnetic tidal field develops internal fluid motions through gravitomagnetic induction; the fluid motions are irrotational, provided the star is non-rotating. When the NS is allowed to rotate, the situation is complicated by couplings between the tidal field and the star's spin. The problem becomes tractable in the slow-rotation limit. In this case, the fluid motions induced by an external gravitomagnetic field are fully dynamical, even if the tidal field is stationary: interior metric and fluid variables are time-dependent, and vary on the timescale of the rotation period. Remarkably, the exterior geometry of the NS remains time-independent.

  16. Star Surface Polluted by Planetary Debris

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Looking at the chemical composition of stars that host planets, astronomers have found that while dwarf stars often show iron enrichment on their surface, giant stars do not. The astronomers think that the planetary debris falling onto the outer layer of the star produces a detectable effect in a dwarf star, but this pollution is diluted by the giant star and mixed into its interior. "It is a little bit like a Tiramisu or a Capuccino," says Luca Pasquini from ESO, lead-author of the paper reporting the results. "There is cocoa powder only on the top!' ESO PR Photo 29/07 ESO PR Photo 29/07 The Structure of Stars Just a few years after the discovery of the first exoplanet it became evident that planets are preferentially found around stars that are enriched in iron. Planet-hosting stars are on average almost twice as rich in metals than their counterparts with no planetary system. The immediate question is whether this richness in metals enhances planet formation, or whether it is caused by the presence of planets. The classic chicken and egg problem. In the first case, the stars would be metal-rich down to their centre. In the second case, debris from the planetary system would have polluted the star and only the external layers would be affected by this pollution. When observing stars and taking spectra, astronomers indeed only see the outer layers and can't make sure the whole star has the same composition. When planetary debris fall onto a star, the material will stay in the outer parts, polluting it and leaving traces in the spectra taken. A team of astronomers has decided to tackle this question by looking at a different kind of stars: red giants. These are stars that, as will the Sun in several billion years, have exhausted the hydrogen in their core. As a result, they have puffed up, becoming much larger and cooler. Looking at the distribution of metals in fourteen planet-hosting giants, the astronomers found that their distribution was rather different from

  17. Four-hair relations for differentially rotating neutron stars in the weak-field limit

    NASA Astrophysics Data System (ADS)

    Bretz, Joseph; Yagi, Kent; Yunes, Nicolas

    2016-03-01

    The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations, the three-hair relations, were found to hold in neutron stars that rotate rigidly, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). The resulting relations include the fourth moment, hence deemed the four-hair relations for differentially rotating neutron stars, and are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.

  18. r-Modes of Neutron Stars with Superfluid Cores

    NASA Astrophysics Data System (ADS)

    Lee, Umin; Yoshida, Shijun

    2003-03-01

    We investigate the modal properties of the r-modes of rotating neutron stars with the core filled with neutron and proton superfluids, taking account of entrainment effects between the superfluids. The stability of the r-modes against gravitational radiation reaction is also examined considering viscous dissipation due to shear and a damping mechanism called ``mutual friction'' between the superfluids in the core. We find that the r-modes in the superfluid core are split into ordinary r-modes and superfluid r-modes, which we call, respectively, ro- and rs-modes. The two superfluids in the core flow together for the ro-modes, while they countermove for the rs-modes. For the ro-modes, the coefficient κ0≡limΩ-->0ω/Ω is equal to 2m/[l'(l'+1)], almost independent of the parameter η that parameterizes the entrainment effects between the superfluids, where Ω is the angular frequency of rotation, ω is the oscillation frequency observed in the corotating frame of the star, and l' and m are the indices of the spherical harmonic function representing the angular dependence of the r-modes. For the rs-modes, on the other hand, κ0 is equal to 2m/[l'(l'+1)] at η=0 (no entrainment), and it almost linearly increases as η is increased from η=0. The ro-modes, for which w'≡v'p- v'n~Ω3, correspond to the r-modes discussed by L. Lindblom & G. Mendell, where v'n and v'p are the Eulerian velocity perturbations of the neutron and proton superfluids, respectively. The mutual friction in the superfluid core is found ineffective to stabilize the r-mode instability caused by the ro-mode except in a few narrow regions of η. The r-mode instability caused by the rs-modes, on the other hand, is extremely weak and easily damped by dissipative processes in the star.

  19. Unified description of neutron superfluidity in the neutron-star crust with analogy to anisotropic multiband BCS superconductors

    SciTech Connect

    Chamel, N.; Goriely, S.; Pearson, J. M.; Onsi, M.

    2010-04-15

    The neutron superfluidity in the inner crust of a neutron star has traditionally been studied considering either homogeneous neutron matter or a small number of nucleons confined inside the spherical Wigner-Seitz cell. Drawing analogies with the recently discovered multiband superconductors, we have solved the anisotropic multiband BCS gap equations with Bloch boundary conditions, thus providing a unified description taking consistently into account both the free neutrons and the nuclear clusters. Calculations have been carried out using the effective interaction underlying our recent Hartree-Fock-Bogoliubov nuclear mass model HFB-16. We have found that even though the presence of inhomogeneities lowers the neutron pairing gaps, the reduction is much less than that predicted by previous calculations using the Wigner-Seitz approximation. We have studied the disappearance of superfluidity with increasing temperature. As an application we have calculated the neutron specific heat, which is an important ingredient for modeling the thermal evolution of newly born neutron stars. This work provides a new scheme for realistic calculations of superfluidity in neutron-star crusts.

  20. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Swank, Jean

    2008-01-01

    magnetic field rotation-powered pulsars are all now called magnetars, because they have pulse periods indicating they are slowing down as they would with magnetic dipole radiation for a surface field above 5x1013 gauss. The accretion disk has been connected to the launching of radio jets from black holes, and even from neutron stars. Estimates of the angular momenta of black holes are being made from different approaches, modelling a high frequency oscillation that may be related to how close the inner part of the accretion disk is to the black hole, modelling the continua spectra of the X-ray emission, and modeling the emission of red-shifted iron that may be emitted from the accretion disk. These investigations require early discovery of the black hole transient with the All Sky Monitor on RXTE or other monitoring information, frequent extended observations, and coordinated observations with missions that give higher energy resolution, or radio and infrared information.

  1. Realistic fission model and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Mathews, G. J.

    2014-05-09

    About half of heavy elements are considered to be produced by the rapid neutron-capture process, r-process. The neutron star merger is one of the viable candidates for the astrophysical site of r-process nucleosynthesis. Nuclear fission reactions play an important role in the r-process of neutron star mergers. However theoretical predictions about fission properties of neutron-rich nuclei have some uncertainties. Especially, their fission fragment distributions are totally unknown and the phenomenologically extrapolated distribution was often applied to nucleosynthesis calculations. In this study, we have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions. We discuss the effects on the r-process in neutron star mergers from the nuclear fission of heavy neutron-rich actinide elements. We also discuss how variations in the fission fragment distributions affect the abundance pattern.

  2. Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective

    NASA Astrophysics Data System (ADS)

    Konar, Sushan; Bagchi, Manjari; Bandyopadhyay, Debades; Banik, Sarmistha; Bhattacharya, Dipankar; Bhattacharyya, Sudip; Gangadhara, R. T.; Gopakumar, A.; Gupta, Yashwant; Joshi, B. C.; Maan, Yogesh; Maitra, Chandreyee; Mukherjee, Dipanjan; Pai, Archana; Paul, Biswajit; Ray, Alak K.; Sutaria, Firoza K.

    2016-12-01

    It is an exceptionally opportune time for astrophysics when a number of next-generation mega-instruments are poised to observe the Universe across the entire electromagnetic spectrum with unprecedented data quality. The Square Kilometre Array (SKA) is undoubtedly one of the major components of this scenario. In particular, the SKA is expected to discover tens of thousands of new neutron stars giving a major fillip to a wide range of scientific investigations. India has a sizeable community of scientists working on different aspects of neutron star physics with immediate access to both the uGMRT (an SKA pathfinder) and the recently launched X-ray observatory Astrosat. The current interests of the community largely centre around studies of (a) the generation of neutron stars and the SNe connection, (b) the neutron star population and evolutionary pathways, (c) the evolution of neutron stars in binaries and the magnetic fields, (d) the neutron star equation of state, (e) the radio pulsar emission mechanism, and (f) the radio pulsars as probes of gravitational physics. Most of these studies are the main goals of the SKA first phase, which is likely to be operational in the next four years. This article summarizes the science goals of the Indian neutron star community in the SKA era, with significant focus on coordinated efforts among the SKA and other existing/upcoming instruments.

  3. Bright transients from strongly-magnetized neutron star-black hole mergers

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Levin, Janna; Murray, Norman W.; Price, Larry

    2016-07-01

    Direct detection of black hole-neutron star pairs is anticipated with the advent of aLIGO. Electromagnetic counterparts may be crucial for a confident gravitational-wave detection as well as for extraction of astronomical information. Yet black hole-neutron star pairs are notoriously dark and so inaccessible to telescopes. Contrary to this expectation, a bright electromagnetic transient can occur in the final moments before merger as long as the neutron star is highly magnetized. The orbital motion of the neutron star magnet creates a Faraday flux and corresponding power available for luminosity. A spectrum of curvature radiation ramps up until the rapid injection of energy ignites a fireball, which would appear as an energetic blackbody peaking in the x ray to γ rays for neutron star field strengths ranging from 1012 to 1016 G respectively and a 10 M⊙ black hole. The fireball event may last from a few milliseconds to a few seconds depending on the neutron star magnetic-field strength, and may be observable with the Fermi Gamma-Ray Burst Monitor with a rate up to a few per year for neutron star field strengths ≳1014 G . We also discuss a possible decaying post-merger event which could accompany this signal. As an electromagnetic counterpart to these otherwise dark pairs, the black-hole battery should be of great value to the development of multi-messenger astronomy in the era of aLIGO.

  4. Hypernuclei and the hyperon problem in neutron stars

    DOE PAGES

    Bedaque, Paulo F.; Steiner, Andrew W.

    2015-08-17

    The likely presence ofmore » $$\\Lambda$$ baryons in dense hadronic matter tends to soften the equation of state to an extend that the observed heaviest neutron stars are difficult to explain. Here we analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of $$\\Lambda$$ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on non-strange dense matter, including its uncertainties, to conclude that the interaction between $$\\Lambda$$s and dense matter has to become repulsive at densities below three times the nuclear saturation density.« less

  5. [Nucleosynthesis, Rotation and Magnetism in Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars

    2004-01-01

    This is my final report on the NASA ATP grant on nucleosynthesis, rotation and magnetism in accreting neutron stars (NAG5-8658). In my last two reports, I summarized the science that I have accomplished, which covered a large range of topics. For this report, I want to point out the graduate students that were partially supported on this grant and where they are now. Andrew Cumming is an Assistant Professor of Physics at McGill University, Greg Ushomirsky is a researcher at MIT s Lincoln Laboratories, Dean Townsley is a postdoctoral researcher at Univ. of Chicago, Chris Deloye is a postdoctoral researcher at Northwestern University. The other two students, Phil Chang and Tony Piro, are still at UCSB and will be completing their PhD s in Summer 05 and Summer 06.

  6. Pulsar H(alpha) Bowshocks probe Neutron Star Physics

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2014-08-01

    We propose a KOALA/AAOmega study of southern pulsar bow shocks. These rare, Balmer-dominated, non-radiative shocks provide an ideal laboratory to study the interaction of the relativistic pulsar wind with the ISM. We will cover H(alpha) at high spectral resolution to measure the kinematics of the upstream ISM and the post-shock flow, while the blue channel measures the Balmer decrement and probes for a faint cooling component. These data, with MHD models, allow us to extract the 3D flow geometry and the orientation and asymmetry of the pulsar wind. These data can also measure the pulsar spindown power, thus estimating the neutron star moment of inertia and effecting a fundamental test of dense matter physics.

  7. Rapid cooling of neutron stars by hyperons and Delta isobars

    NASA Technical Reports Server (NTRS)

    Prakash, Madappa; Prakash, Manju; Lattimer, James M.; Pethick, C. J.

    1992-01-01

    Direct Urca processes with hyperons and/or nucleon isobars can occur in dense matter as long as the concentration of Lambda hyperons exceeds a critical value that is less than 3 percent and is typically about 0.1 percent. The neutrino luminosities from the hyperon Urca processes are about 5-100 times less than the typical luminosity from the nucleon direct Urca process, if the latter process is not forbidden, but they are larger than those expected from other sources. These direct Urca processes provide avenues for rapid cooling of neutron stars which invoke neither exotic states nor the large proton fraction (of order 0.11-0.15) required for the nucleon direct Urca process.

  8. Hypertelescope imaging: from exo-planets to neutron stars

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Le Coroller, Herve; Dejonghe, Julien; Martinache, Frantz; Borkowski, Virginie; Lardiere, Olivier; Koechlin, Laurent

    2003-02-01

    'Densified-pupil multi-aperture imaging arrays', also called hypertelescopes, provide a path towards rich images obtained directly at the focal plane. They typically involve a large Fizeau arrangement, with a small attached 'pupil densifier' serving to gain luminosity at the expense of field. At scales ranging from kilometers to perhaps a million kilometers, such architectures appear of interest for stellar physics, galaxies, cosmology, and neutron star imaging with the larger sizes. Ground testing is initiated and space versions are proposed, particularly to NASA for its Terrestrial Planet Finder. The coronagraphic imaging achievable with this space version is expected to improve the detection sensitivity to attenuating the sky background contribution. Subsequent laser versions can in principle resolve the 'green spots' on an Earth seen at several parsecs. Current design work for a precursor array of 'flying mirrors' driven by solar sails in geostationary orbit will be presented.

  9. Hot Neutron Stars with Hadron-Quark Crossover

    NASA Astrophysics Data System (ADS)

    Masuda, Kota; Hatsuda, Tetsuo; Takatsuka, Tatsuyuki

    2016-12-01

    The effects of the hadron-quark crossover on the bulk properties of cold and hot neutron stars (NSs) are studied. We suggested a new phenomenological equation of state (EOS), which interpolates the two phases at around 3 times the nuclear matter density (ρ0), and found that the cold NSs with the gravitational mass larger than 2M⊙ can be sustained. This is in sharp contrast to the case of the first-order hadron-quark transition where the quark matter inevitably leads to soft EOS. The interpolated EOS is also generalized to the supernova matter at finite temperature to describe the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature of the hot NSs under isentropic condition due to the color degrees of freedom.

  10. Maximum mass of neutron stars with quark matter core

    SciTech Connect

    Takatsuka, Tatsuyuki; Hatsuda, Tetsuo; Masuda, Kota

    2012-11-12

    We propose a new strategy to construct the equation of state (EOS) for neutron stars (NSs) with hadron-quark (H-Q) phase transition, by considering three density-regions. We supplement the EOS at H-Q region, very uncertain due to the confinement-deconfinement problems, by sandwitching in between and matching to the relatively 'well known' EOSs, i.e., the EOS at lower densities (H-phase up to several times nuclear density, calculated from a G-matrix approach) and that at ultra high densities (Q-phase, form a view of asymptotic freedom). Here, as a first step, we try a simple case and discuss the maximum mass of NSs.

  11. Model atmospheres and radiation of magnetic neutron stars: Anisotropic thermal emission

    NASA Technical Reports Server (NTRS)

    Pavlov, G. G.; Shibanov, Yu. A.; Ventura, J.; Zavlin, V. E.

    1994-01-01

    We investigate the anisotropy of the thermal radiation emitted by a surface element of a neutron star atmosphere (e.g., by a polar cap of a radio pulsar). Angular dependences of the partial fluxes at various photon energies, and spectra at various angles are obtained for different values of the effective temperature T(sub eff) and magnetic field strength B, and for different directions of the magnetic field. It is shown that the local radiation of the magnetized neutron star atmospheres is highly anisotropic, with the maximum flux emitted in the magnetic field direction. At high B the angular dependences in the soft X-ray range have two maxima, a high narrow peak along B and a lower and broader maximum at intermediate angles. The radiation is strongly polarized, the modulation of the degree of polarization due to the rotation of the neurtron star may be much higher than that for the radiative flux. The results obtained are compared with recent ROSAT observations of the thermal-like radiation from the radio pulsars PSR 1929+10 and PSR J0437-4715.

  12. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    SciTech Connect

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  13. Deformed neutron stars due to strong magnetic field in terms of relativistic mean field theories

    NASA Astrophysics Data System (ADS)

    Yanase, Kota; Yoshinaga, Naotaka

    2014-09-01

    Some observations suggest that magnetic field intensity of neutron stars that have particularly strong magnetic field, magnetars, reaches values up to 1014-15G. It is expected that there exists more strong magnetic field of several orders of magnitude in the interior of such stars. Neutron star matter is so affected by magnetic fields caused by intrinsic magnetic moments and electric charges of baryons that masses of neutron stars calculated by using Tolman-Oppenheimer-Volkoff equation is therefore modified. We calculate equation of state (EOS) in density-dependent magnetic field by using sigma-omega-rho model that can reproduce properties of stable nuclear matter in laboratory Furthermore we calculate modified masses of deformed neutron stars.

  14. Measuring Ejecta from Inspiralling Binary Neutron Stars using Smoothed-particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rizzo, Monica; O'Shaughnessy, Richard; Faber, Joshua

    2017-01-01

    Gravitational waves, detectable perturbations in spacetime, can arise from astrophysical systems such as inspiralling binary neutron stars, the remnants of the core collapse of massive stars. In the inspiral process, neutron stars, composed of highly dense nuclear matter, are torn apart by each others gravity and eject matter. Using both gravitational waves and direct observations of ejected matter, we may gain valuable new information about the composition of neutron stars. Using several previously studied test cases, we seek to determine how the amount of ejected matter depends on the physical parameters of these systems. To do this, we use a particle-based hydrodynamics code which can accurately simulate binary neutron star systems with variable equation of state, spin, mass ratio, and eccentricity, and includes the lowest-order effects from gravitational wave emission. I would like to thank RIT's College of Science as well as the Center for Computational Relativity and Gravitation for support and funding.

  15. Approximate universal relations among tidal parameters for neutron star binaries

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2017-01-01

    One of largest uncertainties in nuclear physics is the relation between the pressure and density of supranuclear matter: the equation of state. Some of this uncertainty may be removed through future gravitational wave observations of neutron star binaries by extracting the tidal deformabilities (or Love numbers) of neutron stars, a novel way to probe nuclear physics in the high-density regime. Previous studies have shown that only a certain combination of the individual (quadrupolar) deformabilities of each body (the so-called chirp tidal deformability) can be measured with second-generation, gravitational wave interferometers, such as Adv. LIGO, due to correlations between the individual deformabilities. To overcome this, we search for approximately universal (i.e. approximately equation-of-state independent) relations between two combinations of the individual tidal deformabilities, such that once one of them has been measured, the other can be automatically obtained and the individual ones decoupled through these relations. We find an approximately universal relation between the symmetric and the anti-symmetric combination of the individual tidal deformabilities that is equation-of-state-insensitive to 20 % for binaries with masses less than 1.7{{M}⊙} . We show that these relations can be used to eliminate a combination of the tidal parameters from the list of model parameters, thus breaking degeneracies and improving the accuracy in parameter estimation. A simple (Fisher) study shows that the universal binary Love relations can improve the accuracy in the extraction of the symmetric combination of tidal parameters by as much as an order of magnitude, making the overall accuracy in the extraction of this parameter slightly better than that of the chirp tidal deformability. These new universal relations and the improved measurement accuracy on tidal parameters not only are important to astrophysics and nuclear physics, but also impact our ability to probe

  16. ROTATIONAL CORRECTIONS TO NEUTRON-STAR RADIUS MEASUREMENTS FROM THERMAL SPECTRA

    SciTech Connect

    Bauböck, Michi; Özel, Feryal; Psaltis, Dimitrios; Morsink, Sharon M.

    2015-01-20

    We calculate the rotational broadening in the observed thermal spectra of neutron stars spinning at moderate rates in the Hartle-Thorne approximation. These calculations accurately account for the effects of the second-order Doppler boosts as well as for the oblate shapes and the quadrupole moments of the neutron stars. We find that fitting the spectra and inferring the bolometric fluxes under the assumption that a star is not rotating causes an underestimate of the inferred fluxes and, thus, radii. The correction depends on the stellar spin, mass, radius, and the observer's inclination. For a 10 km, 1.4 M {sub ☉} neutron star spinning at 600 Hz, the rotational correction to the flux is ∼1%-4%, while for a 15 km neutron star with the same spin period, the correction ranges from 2% for pole-on sources to 12% for edge-on sources. We calculate the inclination-averaged corrections to inferred radii as a function of the neutron-star radius and mass and provide an empirical formula for the corrections. For realistic neutron-star parameters (1.4 M {sub ☉}, 12 km, 600 Hz), the stellar radius is on the order of 4% larger than the radius inferred under the assumption that the star is not spinning.

  17. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin N.

    2017-01-01

    We study the resonant tidal excitation of g modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave (GW) signal of the inspiral. Previous studies of this type treated the NS core as a normal fluid and thus did not account for its expected superfluidity. The source of buoyancy that supports the g modes is fundamentally different in the two cases: in a normal fluid core, the buoyancy is due to gradients in the proton-to-neutron fraction, whereas in a superfluid core it is due to gradients in the muon-to-electron fraction. The latter yields a stronger stratification and a superfluid NS therefore has a denser spectrum of g modes with frequencies above 10 Hz. As a result, many more g modes undergo resonant tidal excitation as the binary sweeps through the bandwidth of GW detectors such as LIGO. We find that ≃ 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and a normal fluid NS (˜10-3-10-2rad). A phase error of this magnitude is too small to be measured from a single event with the current generation of GW detectors.

  18. Resonant tidal excitation of superfluid neutron stars in coalescing binaries

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Weinberg, Nevin

    2017-01-01

    We study the resonant tidal excitation of g-modes in coalescing superfluid neutron star (NS) binaries and investigate how such tidal driving impacts the gravitational-wave signal of the inspiral. Previous studies treated the NS core as a normal fluid and did not account for its superfluidity. The source of buoyancy that supports the g-modes is fundamentally different in the two cases: in a normal fluid core the buoyancy is due to gradients in the proton-to-neutron fraction whereas in a superfluid core it is due to gradients in the muon-to-electron (or hyperon) fraction. The latter yields a stronger stratification and a superfluid NS has a denser spectrum of g-modes. As a result, many more g-modes undergo resonant tidal excitation during the inspiral. We find that = 10 times more orbital energy is transferred into g-mode oscillations if the NS has a superfluid core rather than a normal fluid core. However, because this energy is transferred later in the inspiral when the orbital decay is faster, the accumulated phase error in the gravitational waveform is comparable for a superfluid and normal fluid NS ( 10-3 -10-2rad). A phase error of this magnitude is too small to be measured with the current generation of gravitational wave detectors.

  19. Neutrino-driven winds from neutron star merger remnants

    NASA Astrophysics Data System (ADS)

    Perego, A.; Rosswog, S.; Cabezón, R. M.; Korobkin, O.; Käppeli, R.; Arcones, A.; Liebendörfer, M.

    2014-10-01

    We present a detailed, three-dimensional hydrodynamic study of the neutrino-driven winds emerging from the remnant of a neutron star merger. Our simulations are performed with the Newtonian, Eulerian code FISH, augmented by a detailed, spectral neutrino leakage scheme that accounts for neutrino absorption. Consistent with earlier two-dimensional studies, a strong baryonic wind is blown out along the original binary rotation axis within ≈100 ms. From this model, we compute a lower limit on the expelled mass of 3.5 × 10-3 M⊙, relevant for heavy element nucleosynthesis. Because of stronger neutrino irradiation, the polar regions show substantially larger electron fractions than those at lower latitudes. The polar ejecta produce interesting r-process contributions from A ≈ 80 to about 130, while the more neutron-rich, lower latitude parts produce elements up to the third r-process peak near A ≈ 195. We calculate the properties of electromagnetic transients powered by the radioactivity in the wind, in addition to the `macronova' transient stemming from the dynamic ejecta. The polar regions produce ultraviolet/optical transients reaching luminosities up to 1041 erg s-1, which peak around 1 d in optical and 0.3 d in bolometric luminosity. The lower latitude regions, due to their contamination with high-opacity heavy elements, produce dimmer and more red signals, peaking after ˜2 d in optical and infrared.

  20. New class of well behaved exact Solutions for static charged Neutron-star with perfect fluid

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj

    2012-01-01

    The paper presents a class of interior solutions of Einstein-Maxwell field equations in general relativity for a static spherically symmetric distribution of a charged fluid. This class of solutions describes well behaved charged fluid balls. This solution gives us wide range of parameter K (0.53≤ K≤0.95), for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=0.95 with X=-0.15, the maximum mass of the star comes out to be M=1.56 M Θ with radius r b ≈9.22 km and the surface red shift Z b ≈0.124207. It has been observed that under well behaved conditions this class of solutions gives us the mass of super dense object within the range of neutron star. However, its neutral counter part is not well behaved.

  1. Non-Quiescent X-ray Emission from Neutron Stars and Black Holes

    SciTech Connect

    Tournear, Derek M

    2003-08-18

    X-ray astronomy began with the detection of the persistent source Scorpius X-1. Shortly afterwards, sources were detected that were variable. Centaurus X-2, was determined to be an X-ray transient, having a quiescent state, and a state that was much brighter. As X-ray astronomy progressed, classifications of transient sources developed. One class of sources, believed to be neutron stars, undergo extreme luminosity transitions lasting a few seconds. These outbursts are believed to be thermonuclear explosions occurring on the surface of neutron stars (type I X-ray bursts). Other sources undergo luminosity changes that cannot be explained by thermonuclear burning and last for days to months. These sources are soft X-ray transients (SXTs) and are believed to be the result of instabilities in the accretion of matter onto either a neutron star or black hole. Type I X-ray bursts provide a tool for probing the surfaces of neutron stars. Requiring a surface for the burning has led authors to use the presence of X-ray bursts to rule out the existence of a black hole (where an event horizon exists not a surface) for systems which exhibit type I X-ray bursts. Distinguishing between neutron stars and black holes has been a problem for decades. Narayan and Heyl have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. We survey 2101.2 ks of data from the USA X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain the first formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.7 {+-} 0.4 x 10{sup -5} bursts s{sup -1}, while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. Applying the framework of Narayan and Heyl we calculate regions of luminosity where the neutron stars are expected to burst and the BHCs

  2. Density dependent hadronic models and the relation between neutron stars and neutron skin thickness

    SciTech Connect

    Avancini, S. S.; Marinelli, J. R.; Menezes, D. P.; Moraes, M. M. W.; Providencia, C.

    2007-05-15

    In the present work, we investigate the main differences in the lead neutron skin thickness, binding energy, surface energy, and density profiles obtained with two different density dependent hadron models. Our results are calculated within the Thomas-Fermi approximation with two different numerical prescriptions and compared with results obtained with a common parametrization of the nonlinear Walecka model. The neutron skin thickness is a reflex of the equation of state properties. Hence, a direct correlation is found between the neutron skin thickness and the slope of the symmetry energy. We show that within the present approximations, the asymmetry parameter for low momentum transfer polarized electron scattering is not sensitive to the model differences.

  3. Supernovae versus Neutron Star Mergers as the Major r-Process Sources.

    PubMed

    Qian

    2000-05-01

    I show that recent observations of r-process abundances in metal-poor stars are difficult to explain if neutron star mergers (NSMs) are the major r-process sources. In contrast, such observations and meteoritic data on 182Hf and 129I in the early solar system support a self-consistent picture of r-process enrichment by supernovae (SNe). While further theoretical studies of r-process production and enrichment are needed for both SNe and NSMs, I emphasize two possible direct observational tests of the SN r-process model: gamma rays from the decay of r-process nuclei in SN remnants and surface contamination of the companion by SN r-process ejecta in binaries.

  4. Constraining a Possible Time Variation of the Gravitational Constant through ``Gravitochemical Heating'' of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Jofré, Paula; Reisenegger, Andreas; Fernández, Rodrigo

    2006-09-01

    A hypothetical time variation of the gravitational constant G would cause neutron star matter to depart from beta equilibrium, due to the changing hydrostatic equilibrium. This induces nonequilibrium beta processes, which release energy that is invested partly in neutrino emission and partly in internal heating. Eventually, the star arrives at a stationary state in which the temperature remains nearly constant, as the forcing through the change of G is balanced by the ongoing reactions. Using the surface temperature of the nearest millisecond pulsar, PSR J0437-4715, inferred from ultraviolet observations, we estimate two upper limits for this variation: (1) |G˙/G|<2×10-10yr-1, if direct Urca reactions are allowed, and (2) |G˙/G|<4×10-12yr-1, considering only modified Urca reactions. The latter is among the most restrictive obtained by other methods.

  5. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    NASA Astrophysics Data System (ADS)

    Reisenegger, Andreas; Zepeda, Felipe S.

    2016-03-01

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.

  6. Bowen-York-type initial data for binaries with neutron stars

    NASA Astrophysics Data System (ADS)

    Clark, Michael; Laguna, Pablo

    2016-09-01

    A new approach to construct initial data for binary systems with neutron star components is introduced. The approach is a generalization of the puncture initial data method for binary black holes based on Bowen-York solutions to the momentum constraint. As with binary black holes, the method allows setting orbital configurations with direct input from post-Newtonian approximations and involves solving only the Hamiltonian constraint. The effectiveness of the method is demonstrated with evolutions of double neutron star and black hole-neutron star binaries in quasicircular orbits.

  7. Modified TOV in gravity's rainbow: properties of neutron stars and dynamical stability conditions

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2016-09-01

    In this paper, we consider a spherical symmetric metric to extract the hydrostatic equilibrium equation of stars in (3+1)-dimensional gravity's rainbow in the presence of cosmological constant. Then, we generalize the hydrostatic equilibrium equation to d-dimensions and obtain the hydrostatic equilibrium equation for this gravity. Also, we obtain the maximum mass of neutron star using the modern equations of state of neutron star matter derived from the microscopic calculations. It is notable that, in this paper, we consider the effects of rainbow functions on the diagrams related to the mass-central mass density (M-ρc) relation and also the mass-radius (M-R) relation of neutron star. We also study the effects of rainbow functions on the other properties of neutron star such as the Schwarzschild radius, average density, strength of gravity and gravitational redshift. Then, we apply the cosmological constant to this theory to obtain the diagrams of M-ρc (or M-R) and other properties of these stars. Next, we investigate the dynamical stability condition for these stars in gravity's rainbow and show that these stars have dynamical stability. We also obtain a relation between mass of neutron stars and Planck mass. In addition, we compare obtained results of this theory with the observational data.

  8. Modified TOV in gravity’s rainbow: properties of neutron stars and dynamical stability conditions

    SciTech Connect

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S.

    2016-09-09

    In this paper, we consider a spherical symmetric metric to extract the hydrostatic equilibrium equation of stars in (3+1)-dimensional gravity’s rainbow in the presence of cosmological constant. Then, we generalize the hydrostatic equilibrium equation to d-dimensions and obtain the hydrostatic equilibrium equation for this gravity. Also, we obtain the maximum mass of neutron star using the modern equations of state of neutron star matter derived from the microscopic calculations. It is notable that, in this paper, we consider the effects of rainbow functions on the diagrams related to the mass-central mass density (M-ρ{sub c}) relation and also the mass-radius (M-R) relation of neutron star. We also study the effects of rainbow functions on the other properties of neutron star such as the Schwarzschild radius, average density, strength of gravity and gravitational redshift. Then, we apply the cosmological constant to this theory to obtain the diagrams of M-ρ{sub c} (or M-R) and other properties of these stars. Next, we investigate the dynamical stability condition for these stars in gravity’s rainbow and show that these stars have dynamical stability. We also obtain a relation between mass of neutron stars and Planck mass. In addition, we compare obtained results of this theory with the observational data.

  9. Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2011-09-01

    We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or antialigned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS=2-5, where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the black hole spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS≲3, or small compactnesses of the neutron stars bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is accordingly large as ≳0.1M⊙, which is required by central engines of short gamma-ray bursts, if the black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the compactness of the neutron star and an appropriately defined “cutoff frequency” in the gravitational-wave spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an overspinning

  10. Probing nuclear bubble structure via neutron star asteroseismology

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2017-01-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy L. Although the frequencies are also sensitive to the entrainment effect, i.e. what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase inside a star of specific mass and radius as a function of L. By comparing the resultant fitting formula to the frequencies of quasi-periodic oscillations (QPOs) observed from the soft-gamma repeaters, we find that each of the observed low-frequency QPOs can be identified either as a torsional oscillation in the bubble phase or as a usual crustal oscillation, given generally accepted values of L for all the stellar models are considered here.

  11. Four-hair relations for differentially rotating neutron stars in the weak-field limit

    NASA Astrophysics Data System (ADS)

    Bretz, Joseph; Yagi, Kent; Yunes, Nicolás

    2015-10-01

    The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations determines all of the multipole moments of a neutron star just from the first three (the mass monopole, the current dipole and the mass quadrupole moment) approximately independently of the equation of state. These three-hair relations were found to hold in neutron stars that rotate rigidly, as is the case in old pulsars, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We here extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). These approximations allow us to analytically derive approximately universal relations that allow us to determine all of the multipole moments of a (perturbative) differentially rotating star in terms of only the first four moments. These new four-hair relations for differentially rotating neutron stars are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.

  12. Probing the effects of a thermonuclear X-ray burst on the neutron star accretion flow with NuSTAR

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Koljonen, K. I. I.; Chakrabarty, D.; Kara, E.; Altamirano, D.; Miller, J. M.; Fabian, A. C.

    2016-03-01

    Observational evidence has been accumulating that thermonuclear X-ray bursts ignited on the surface of neutron stars influence the surrounding accretion flow. Here, we exploit the excellent sensitivity of NuSTAR up to 79 keV to analyse the impact of an X-ray burst on the accretion emission of the neutron star LMXB 4U 1608-52. The ≃200 s long X-ray burst occurred during a hard X-ray spectral state, and had a peak intensity of ≃30-50 per cent of the Eddington limit with no signs of photospheric radius expansion. Spectral analysis suggests that the accretion emission was enhanced up to a factor of ≃5 during the X-ray burst. We also applied a linear unsupervised decomposition method, namely non-negative matrix factorization (NMF), to study this X-ray burst. We find that the NMF performs well in characterizing the evolution of the burst emission and is a promising technique to study changes in the underlying accretion emission in more detail than is possible through conventional spectral fitting. For the burst of 4U 1608-52, the NMF suggests a possible softening of the accretion spectrum during the X-ray burst, which could potentially be ascribed to cooling of a corona. Finally, we report a small (≃3 per cent) but significant rise in the accretion emission ≃0.5 h before the X-ray burst, although it is unclear whether this was related to the X-ray burst ignition.

  13. Einstein@Home Finds a Double Neutron Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Have you been contributing your computer idle time to the Einstein@Home project? If so, youre partly responsible for the programs recent discovery of a new double-neutron-star system that will be key to learning about general relativity and stellar evolution.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The Hunt for PulsarsObserving binary systems containing two neutron stars and in particular, measuring the timing of the pulses when one or both companions is a pulsar can provide highly useful tests of general relativity and binary stellar evolution. Unfortunately, these systems are quite rare: of 2500 known radio pulsars, only 14 of them are in double-neutron-starbinaries.To find more systems like these, we perform large-scale, untargeted radio-pulsar surveys like the ongoing Pulsar-ALFA survey conducted with the enormous 305-m radio telescope at Arecibo Observatory in Puerto Rico. But combing through these data for the signature of a highly accelerated pulsar (the acceleration is a clue that its in a compact binary) is very computationally expensive.PSR J1913+1102s L-band pulse profile, created by phase-aligning and summing all observations. [Adapted from Lazarus et al. 2016]To combat this problem, the Einstein@Home project was developed. Einstein@Home allows anyone to volunteer their personal computers idle time to help run the analysis of survey data in the search for pulsars. In a recent publication led by Patrick Lazarus (Max Planck Institute for Radio Astronomy), the Einstein@Home team announced the discovery of the pulsar PSR J1913+1102 a member of what seems to be a brand new double-neutron-starsystem.An Intriguing DiscoveryLazarus and collaborators followed up on the discovery to obtain timing measurements of the pulsar, which they found to have a spin period of 27.3 ms. They measured PSR J1913+1102 to be in a 4.95-hr, nearly circular (e 0.09) binary orbit with a massive companion

  14. Doppler Imaging of Stars with Surface Inhomogeneities

    NASA Astrophysics Data System (ADS)

    Collier Cameron, A.

    I review recent progress in the field of stellar surface imaging, with particular reference to advanced methods for mapping surface-brightness distributions on magnetically active late-type stars. New signal enhancement techniques, utilising profile information from hundreds or thousands of photospheric lines simultaneously, allows images to be derived for stars several magnitudes fainter than was previously possible. For brighter stars, the same techniques make it possible to map features as small as two or three degrees in extent on the stellar surface. While this opens up whole new areas of research, such as the ability to use starspot tracking to study surface differential rotation patterns on single and binary stars, caution must be exercised in the treatment of ''nuisance parameters'' such as the stellar rotation rate, surface abundances and radial velocity. At the very high S:N levels we now use, the effects of systematic errors in these parameters are easier to identify, isolate and eliminate. This leads to the possibility of measuring precise radial velocity variations (at the few hundred m s-2 level or better) in late-type stars even with equatorial rotation speeds as high as 100 km s-1). This is particularly topical given the recent discovery that one of our prime imaging targets, the young southern K0 dwarf AB Doradus, has an astrometric companion in a highly eccentric orbit with an inferred mass close to the H-burning limit.

  15. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  16. Evidence of thermonuclear flame spreading on neutron stars from burst rise oscillations

    SciTech Connect

    Chakraborty, Manoneeta; Bhattacharyya, Sudip E-mail: sudip@tifr.res.in

    2014-09-01

    Burst oscillations during the rising phases of thermonuclear X-ray bursts are usually believed to originate from flame spreading on the neutron star surface. However, the decrease of fractional oscillation amplitude with rise time, which provides a main observational support for the flame spreading model, have so far been reported from only a few bursts. Moreover, the non-detection and intermittent detections of rise oscillations from many bursts are not yet understood considering the flame spreading scenario. Here, we report the decreasing trend of fractional oscillation amplitude from an extensive analysis of a large sample of Rossi X-ray Timing Explorer Proportional Counter Array bursts from 10 neutron star low-mass X-ray binaries. This trend is 99.99% significant for the best case, which provides, to the best of our knowledge, by far the strongest evidence of such a trend. Moreover, it is important to note that an opposite trend is not found in any of the bursts. The concave shape of the fractional amplitude profiles for all the bursts suggests latitude-dependent flame speeds, possibly due to the effects of the Coriolis force. We also systematically study the roles of low fractional amplitude and low count rate for non-detection and intermittent detections of rise oscillations, and attempt to understand them within the flame spreading scenario. Our results support a weak turbulent viscosity for flame spreading, and imply that burst rise oscillations originate from an expanding hot spot, thus making these oscillations a more reliable tool to constrain the neutron star equations of state.

  17. Discovery of the Neutron Star Spin Frequency in EXO 0748-676

    NASA Technical Reports Server (NTRS)

    Villarreal, Adam R.; Strohmayer, Tod E.

    2004-01-01

    We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we have detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10 (exp -8) similar signal was detected in the rising intervals. The oscillation peak is unresolved at 1 Hz frequency resolution, indicating an oscillation quality factor, Q = nu (sub 0)/Delta nu (sub fwhm) greater than 45, and the average signal amplitude is approximately equal to 3% (rms) The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5 - 15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.

  18. Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Biswal, S. K.; Patra, S. K.

    2017-01-01

    We systematically study the tidal deformability for neutron and hyperon stars using relativistic mean field equations of state (EOSs). The tidal effect plays an important role during the early part of the evolution of compact binaries. Although, the deformability associated with the EOSs has a small correction, it gives a clean gravitational wave signature in binary inspiral. These are characterized by various Love numbers kl(l =2 ,3 ,4 ), that depend on the EOS of a star for a given mass and radius. The tidal effect of star could be efficiently measured through an advanced LIGO detector from the final stages of an inspiraling binary neutron star merger.

  19. EQUATION OF STATE AND NEUTRON STAR PROPERTIES CONSTRAINED BY NUCLEAR PHYSICS AND OBSERVATION

    SciTech Connect

    Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.

    2013-08-10

    Microscopic calculations of neutron matter based on nuclear interactions derived from chiral effective field theory, combined with the recent observation of a 1.97 {+-} 0.04 M{sub Sun} neutron star, constrain the equation of state of neutron-rich matter at sub- and supranuclear densities. We discuss in detail the allowed equations of state and the impact of our results on the structure of neutron stars, the crust-core transition density, and the nuclear symmetry energy. In particular, we show that the predicted range for neutron star radii is robust. For use in astrophysical simulations, we provide detailed numerical tables for a representative set of equations of state consistent with these constraints.

  20. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Observations of thermonuclear (also called Type 1) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here we review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  1. Constraining nuclear equations of state using gravitational waves from hypermassive neutron stars.

    PubMed

    Shibata, Masaru

    2005-05-27

    Latest general relativistic simulations for the merger of binary neutron stars with realistic equations of states (EOSs) show that a hypermassive neutron star of an ellipsoidal figure is formed after the merger if the total mass is smaller than a threshold value which depends on the EOSs. The effective amplitude of quasiperiodic gravitational waves from such hypermassive neutron stars is approximately 6-7 x 10(-21) at a distance of 50 Mpc, which may be large enough for detection by advanced laser interferometric gravitational wave detectors although the frequency is high, approximately 3 kHz. We point out that the detection of such signals may lead to constraining the EOSs for neutron stars.

  2. Mass and Radius of Neutron Stars Constrained by Photospheric Radius Expansion X-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Kim, Myungkuk; Kim, Young-Min; Lee, Chang-Hwan

    Simultaneous measurement of mass and radius of a neutron star is important because it provides strong constraint on the equation of state for nuclear matter inside a neutron star. Type I X-ray Bursts (XRBs) that have been observed in low-mass X-ray binaries sometimes show photospheric radius expansion (PRE). By combining observed fluxes, X-ray spectra, and distances of PRE XRBs and using a statistical analysis, it is possible to simultaneously constrain the mass and radius of a neutron star. However, the mass and radius of a neutron star estimated in this method depends on the opacity of accreted material. We investigate the effect of the opacity on the mass and radius estimation by taking into account the cases that the hydrogen mass fraction of accreted material has narrowly-distributed values. We present preliminary results that are investigated with three different values of hydrogen mass fraction and compare our results with previous studies.

  3. High resolution numerical relativity simulations for the merger of binary magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Wada, Tomohide

    2014-08-01

    We perform high-resolution magnetohydrodynamics simulations of binary neutron star mergers in numerical relativity on the Japanese supercomputer K. The neutron stars and merger remnants are covered by a grid spacing of 70 m, which yields the highest-resolution results among those derived so far. By an in-depth resolution study, we clarify several amplification mechanisms of magnetic fields during the binary neutron star merger for the first time. First, the Kelvin-Helmholtz instability developed in the shear layer at the onset of the merger significantly amplifies the magnetic fields. A hypermassive neutron star (HMNS) formed after the merger is then subject to the nonaxisymmetric magnetorotational instability, which amplifies the magnetic field in the HMNS. These two amplification mechanisms cannot be found with insufficient-resolution runs. We also show that the HMNS eventually collapses to a black hole surrounded by an accretion torus which is strongly magnetized at birth.

  4. Anisotropic mass ejection from black hole-neutron star binaries: Diversity of electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2013-08-01

    The merger of black hole-neutron star binaries can eject substantial material with the mass ˜0.01-0.1M⊙ when the neutron star is disrupted prior to the merger. The ejecta shows significant anisotropy, and travels in a particular direction with the bulk velocity ˜0.2c. This is drastically different from the binary neutron star merger, for which ejecta is nearly isotropic. Anisotropic ejecta brings electromagnetic-counterpart diversity which is unique to black hole-neutron star binaries, such as viewing-angle dependence, polarization, and proper motion. The kick velocity of the black hole, gravitational-wave memory emission, and cosmic-ray acceleration are also discussed.

  5. Hans A. Bethe Prize: Neutron Stars and Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2015-04-01

    Core-collapse supernovae lead to the formation of neutron stars, and both are sensitive to the dense matter equation of state. Hans Bethe first recognized that the matter in the collapsing core of a massive star has a relatively low entropy which prevents nuclear dissociation until nuclei merge near the nuclear saturation density. This recognition means that collapse continues until the core exceeds the saturation density. This prediction forms the foundation for modern simulations of supernovae. These supernovae sample matter up to about twice nuclear saturation density, but neutron stars are sensitive to the equation of state both near the saturation density and at several times higher densities. Two important recent developments are the discovery of two-solar mass neutron stars and refined experimental determinations of the behavior of the symmetry energy of nuclear matter near the saturation density. Combined with the assumption of causality, they imply that the radii of observed neutron stars are largely independent of their mass, and that this radius is in the range of 11 to 13 km. These theoretical results are not only consistent with expectations from theoretical studies of pure neutron matter, but also accumulated observations of both bursting and cooling neutron stars. In the near future, new pulsar timing data, which could lead to larger measured masses as well as measurements of moments of inertia, X-ray observations, such as from NICER, of bursting and other sources, and gravitational wave observations of neutron stars in merging compact binaries, will provide important new constraints on neutron stars and the dense matter equation of state. DOE DE-FG02-87ER-40317.

  6. Neutrino mean free path in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Yuan Yefei; Liu Yuxin

    2009-05-15

    The {delta}-isobar degrees of freedom are taken into account in neutron star matter and their contributions to neutrino mean free paths are evaluated. It is found that the charged-current contributions are comparable to those from the neutral-current reactions. The contributions of {delta}-isobars may be a leading sector of neutrino opacities in neutron star matter, but the effects of the process in which the baryon transforms between nucleon and {delta} are unimportant.

  7. Progress on realistic modeling of black hole-neutron star binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2011-04-01

    Black hole-neutron star (BHNS) binary mergers are important gravitational wave sources and (possibly) gamma ray burst progenitors. The current state of the art of BHNS simulations, while an impressive acheivement, is inadequate in a number of ways--most importantly in its treatment of neutron star matter and neutrino emission. We present a status report on the efforts of the Caltech-Cornell-CITA-WSU collaboration to accurately model BHNS binaries with realistic microphysics.

  8. Subaru/HDS study of CH stars: elemental abundances for stellar neutron-capture process studies

    NASA Astrophysics Data System (ADS)

    Goswami, Aruna; Aoki, Wako; Karinkuzhi, Drisya

    2016-01-01

    A comprehensive abundance analysis providing rare insight into the chemical history of lead stars is still lacking. We present results from high-resolution (R ˜ 50 000) spectral analyses of three CH stars, HD 26, HD 198269 and HD 224959, and, a carbon star with a dusty envelope, HD 100764. Previous studies on these objects are limited by both resolution and wavelength regions and the results differ significantly from each other. We have undertaken to reanalyse the chemical composition of these objects based on high-resolution Subaru spectra covering the wavelength regions 4020-6775 Å. Considering local thermodynamic equilibrium and using model atmospheres, we have derived the stellar parameters, the effective temperatures Teff, surface gravities log g, and metallicities [Fe/H] for these objects. The derived parameters for HD 26, HD 100764, HD 198269 and HD 224959 are (5000, 1.6, -1.13), (4750, 2.0 -0.86), (4500, 1.5, -2.06) and (5050, 2.1, -2.44), respectively. The stars are found to exhibit large enhancements of heavy elements relative to iron in conformity to previous studies. Large enhancement of Pb with respect to iron is also confirmed. Updates on the elemental abundances for several s-process elements (Y, Zr, La, Ce, Nd, Sm and Pb) along with the first-time estimates of abundances for a number of other heavy elements (Sr, Ba, Pr, Eu, Er and W) are reported. Our analysis suggests that neutron-capture elements in HD 26 primarily originate in the s-process while the major contributions to the abundances of neutron-capture elements in the more metal-poor objects HD 224959 and HD 198269 are from the r-process, possibly from materials that are pre-enriched with products of the r-process.

  9. Stability analysis of magnetized neutron stars - a semi-analytic approach

    NASA Astrophysics Data System (ADS)

    Herbrik, Marlene; Kokkotas, Kostas D.

    2017-04-01

    We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.

  10. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE-NEUTRON-STAR BINARIES

    SciTech Connect

    McWilliams, Sean T.; Levin, Janna

    2011-12-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  11. Coalescence of binary neutron stars in a scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Taniguchi, Keisuke; Okawa, Hirotada; Buonanno, Alessandra

    2014-04-01

    We carry out numerical-relativity simulations of coalescing binary neutron stars in a scalar-tensor theory that admits spontaneous scalarization. We model neutron stars with realistic equations of state. We choose the free parameters of the theory taking into account the constraints imposed by the latest observations of neutron-star-white-dwarf binaries with pulsar timing. We show that even within those severe constraints, scalarization can still affect the evolution of the binary neutron stars, not only during the late inspiral but also during the merger stage. We also confirm that even when both neutron stars have quite small scalar charge at large separations, they can be strongly scalarized dynamically during the final stages of the inspiral. In particular, we identify the binary parameters for which scalarization occurs either during the late inspiral or only after the onset of the merger when a remnant, supramassive, or hypermassive neutron star is formed. We also discuss how those results can impact the extraction of physical information on gravitational waves once they are detected.

  12. Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

    NASA Technical Reports Server (NTRS)

    Eichler, David; Livio, Mario; Piran, Tsvi; Schramm, David N.

    1989-01-01

    It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

  13. TIME-DEPENDENT, COMPOSITIONALLY DRIVEN CONVECTION IN THE OCEANS OF ACCRETING NEUTRON STARS

    SciTech Connect

    Medin, Zach; Cumming, Andrew E-mail: cumming@physics.mcgill.ca

    2015-03-20

    We discuss the effect of convection driven by chemical separation at the ocean-crust boundary of accreting neutron stars. We extend the steady-state results of Medin and Cumming to transient accretors, by considering the time-dependent cases of heating during accretion outbursts and cooling during quiescence. During accretion outbursts, inward heat transport has only a small effect on the temperature profile in the outer layers until the ocean is strongly enriched in light elements, a process that takes hundreds of years to complete. During quiescence, however, inward heat transport rapidly cools the outer layers of the ocean while keeping the inner layers hot. We find that this leads to a sharp drop in surface emission at around a week followed by a gradual recovery as cooling becomes dominated by the crust. Such a dip should be observable in the light curves of these neutron star transients, if enough data is taken at a few days to a month after the end of accretion. If such a dip is definitively observed, it will provide strong constraints on the chemical composition of the ocean and outer crust.

  14. Gamma-ray bursts and the birthrate of bare neutron stars

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Dar, A.; Nussinov, S.; Kozlovsky, B.

    1992-01-01

    Accretion of matter onto the surface of a white dwarf in a binary system can push it over the Chandrasekhar mass limit and may cause it to collapse into a neutron star without mass ejection or with the ejection of only a small mass. Such an optically quiet stellar collapse should be accompanied by a neutrino burst which could be detected with underground neutrino detectors if the collapse took place in our own Galaxy or in very close nearby galaxies. However, the frequency of such collapses is not known. Here we show that, if the ejected mass is less than 3 x 10 exp -4 solar mass, the electron-positron pairs resulting from neutrino-antineutrino annihilations outside the neutrinosphere produce a gamma-ray burst which could be observed out to distances of at least 300 Mpc, and that the observed rate of gamma-ray bursts sets stringent upper limits on the frequency of bare or nearlly bare neutron star births.

  15. New constraints on neutron star models of gamma-ray bursts. II - X-ray observations of three gamma-ray burst error boxes

    NASA Technical Reports Server (NTRS)

    Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.

    1991-01-01

    Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.

  16. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  17. Bayesian Analysis of the Mass Distribution of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Valentim, Rodolfo; Horvath, Jorge E.; Rangel, Eraldo M.

    The distribution of masses for neutron stars is analyzed using the Bayesian statistical inference, evaluating the likelihood of two a priori gaussian peaks distribution by using fifty-five measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.35M⊙ ± 0.06M⊙ and a much wider second peak at 1.73M⊙ ± 0.36M⊙. We compared the two gaussian's model centered at 1.35M⊙ and 1.55M⊙ against a "single gaussian" model with 1.50M⊙ ± 0.11M⊙ using 3σ that provided a wide peak covering objects the full range of observed of masses. In order to compare models, BIC (Baysesian Information Criterion) can be used and a strong evidence for two distributions model against one peak model was found. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (in spite that no attempt to "label" the systems has been made). However, the recently claimed low-mass group, possibly related to O - Mg - Ne core collapse events, has a monotonically decreasing likelihood and has not been identified within this sample.

  18. Helium burning and neutron sources in the stars

    NASA Astrophysics Data System (ADS)

    Aliotta, M.; Junker, M.; Prati, P.; Straniero, O.; Strieder, F.

    2016-04-01

    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple- α process, and oxygen, through the 12C( α, γ)16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C( α, n)16O and the 22Ne( α, n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories.

  19. PHOTOSPHERIC RADIUS EXPANSION IN SUPERBURST PRECURSORS FROM NEUTRON STARS

    SciTech Connect

    Keek, L.

    2012-09-10

    Thermonuclear runaway burning of carbon is in rare cases observed from accreting neutron stars as day-long X-ray flares called superbursts. In the few cases where the onset is observed, superbursts exhibit a short precursor burst at the start. In each instance, however, the data are of insufficient quality for spectral analysis of the precursor. Using data from the propane anti-coincidence detector of the Proportional Counter Array instrument on the Rossi X-ray Timing Explorer, we perform the first detailed time-resolved spectroscopy of precursors. For a superburst from 4U 1820-30 we demonstrate the presence of photospheric radius expansion. We find the precursor to be 1.4-2 times more energetic than other short bursts from this source, indicating that the burning of accreted helium is insufficient to explain the full precursor. Shock heating would be able to account for the shortfall in energy. We argue that this precursor is a strong indication that the superburst starts as a detonation, and that a shock induces the precursor. Furthermore, we employ our technique to study the superexpansion phase of the same superburst in greater detail.

  20. Possible ambiguities in the equation of state for neutron stars

    SciTech Connect

    Cheoun, Myung-Ki; Miyatsu, Tsuyoshi; Ryu, C. Y.; Deliduman, Cemsinan; Güngör, Can; Keleş, Vildan; Kajino, Toshitaka; Mathews, Grant J.

    2014-05-02

    We addressed possible ambiguities on the properties of neutron stars (NSs) estimated in theoretical sides. First, roles of hyperons inside the NS are discussed through various relativistic mean field (RMF) theories. In particular, the extension of SU(6) spin-flavor symmetry to SU(3) flavor symmetry is shown to give rise to the increase of hyperon threshold density, similarly to the Fock term effects in RMF theories. As a result, about 2.0 solar mass is obtained with the hyperons. Second, the effect by the modified f(R) gravity, which leaves a room for the dark energy in the Einstein equation to be taken into account, is discussed for the NS in a strong magnetic field (MF). Our results show that the modified gravity with the Kaluza-Klein electro-magnetism theory expanded in terms of a length scale parameter may reasonably describe the NS in strong MF, so called magnetar. Even the super-soft equation of state is shown to be revived by the modified f(R) gravity.